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Abstract—The manufacturing assembly lines of the future are
foreseen to dismiss fully unmanned systems in favour of anthro-
pocentric solutions. However, bringing in the human complexity
leads to modeling and control questions that only data can
answer. Moreover, many human-robot collaborative applications
in flexible manufacturing involve manipulator cobots, whereas
little attention is given to the role of mobile robots. This work
outlines a data-driven framework, which is the core of a brand
new project to be fully developed in the very next future, to let
human-robot collaborative processes overcome the barriers to
successful interaction, leveraging mobile and fixed-base robots.

Index Terms—Flexible manufacturing, Human-robot collabo-
ration, Data-driven framework, Mobile robotics

I. MOTIVATIONS AND STATE OF THE ART

The fourth industrial revolution marked the turning point
towards the industrial integration of all the technological
advances ranging from the Internet of Things (IoT) to 3D
printing, which allowed the implementation of a series of new
types of systems, leveraging the increase in computational
power. The key concepts of Industry 4.0 are being slowly
implemented as and where possible, but the direction of
development is inevitably dictated by market demand. The
ongoing revolution is not only linked to a further trans-
formation of the tools used for the implementation of the
production line itself but to the upheaval of the very concept of
production/assembly line as it was intended before [1]. In fact,
the production line structure has undergone morphological
changes for quite a while now [2]. Recently, manufacturing
have been shaped by lean principles applied to technology
and decision-making processes to reduce material waste and
non value-added activities [3], [4]. Lean manufacturing takes
advantage of decentralised control to foster transparency and
simplicity providing local autonomy to employees and, com-
bined with Industry 4.0 concepts, upgrades the traditional
centralised IT systems to achieve lean automation [5]. What
is going to further transform the structure of production lines
is today’s market demand for products on request, fueled by a
new awareness and sensitivity to sustainability. Indeed, current
industries and production systems are not sustainable and seen
as responsible for environmental degradation [6].

Products on request go beyond the concept of customized
products (customization upon standard products): they require

design, building and testing procedures specific to the individ-
ual product to achieve manufacturing levels that outbound the
standard ones, making the whole process more expensive and
time consuming. Mass production is in fact characterized by
low costs and consequent low prices for customers but high
risks linked to the failure to sell; conversely, custom manufac-
turing involves small batch productions, which improve sales
security but imply higher production times and labor costs
caused by the need to have human operators as an integral part
of the assembly process. As a matter of fact, human intelli-
gence in performing certain operations that require high cogni-
tive capabilities is not replaceable by artificial intelligence yet.
However, the use of automation reduces the amount of hands-
on human involvement in the manufacture of each product and
reduces human error [7]. When it comes to product on request,
the optimization parameters change: quality is optimized by
exploiting human capabilities (often experience-based) at the
expense of production efficiency (especially in terms of time).
Moreover, after the crisis due to COVID-19, many Small-and
Medium-sized Enterprises (SMEs) became loss making, being
more subject to a slow return to normal operation and less
resilient to falling demand with respect to big players [8].
The custom product production vision can help SMEs and the
relaunch of local enterprises. In particular, given the limited
resources of an SME, an ideal solution would focus less on the
optimization of machines for custom production but rather on a
systematic enhancement of human manual operations through
the collaboration with robots, exploiting artificial intelligence
algorithms to improve the overall efficiency.

The challenge of custom manufacturing is to achieve the
same standards of costs and production times of mass prod-
ucts. In order to achieve a sort of standardization of custom
manufacturing production, collaborative robotics can represent
a key enabler to fill the gap, evolving toward a smart custom
manufacturing system. To do so, Human-Robot Collaboration
(HRC) and Interaction (HRI) should aim at identifying a
balanced synergy between the human and the robot (mobile
or fixed base cobot) so as to value and enhance the cognitive
skills and experience of the former and the accuracy, strength
and efficiency of the latter. In a holistic vision, the HR system
can be interpreted as a component within the context of the
well-known and well-established concept of Cyber-Physical
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System (CPS). In [9], the authors present an architecture
to be used as a framework to achieve self-organization and
self-adaptation using a multi-agent based technology, in order
to achieve auto-reconfiguration without human intervention
to comply with product customization requirements while
reducing costs. The human operator is involved in the task
execution but not considered as part of the multi-agent system.

The work presented in [10] reviews the role of Multi-
Agent systems (MASs) as main tool for CPS implementation.
According to the analysed works, a MAS technology reference
architecture should be technology and system agnostic to ease
its instantiation and to favour its co-existence and integra-
tion with pre-existing automation. The agent-based solution
reconfiguration is interpreted as not strictly related to physical
modification of the system but rather as a multi-objective
reconfiguration, which could potentially include sustainability
aspects as energy saving, reuse of equipment and optimal use
of human resources. In [11], the human operator interacts with
CPSs exploiting a modular robotic cell able to reconfigure
itself according to the requested operation. In [12], the De-
centralised Manufacturing System is presented as an enabler
of distributed production layouts. To achieve optimal HR work
distribution, the authors propose an algorithm that assigns a
collaboration potential to each movement in order to distribute
process capabilities. Moreover, in the context of MASs in
smart manufacturing systems, the integration of human actions
in the control system, also referred as human-in-the-loop
(HITL), allows to consider the human-machine cell as a single
agent with the ability of self-arranging its work locally [13].
The authors of [14] claim that fully unmanned factories cannot
be implemented not only due to ethical or social reasons, but
mainly to the unfeasibility of such complex control systems.
To achieve interoperability, they propose augmented reality as
a rapid learning solution and the use of machine learning (ML)
techniques to enable self-predict capabilities for implementing
dynamic reconfiguration. As a matter of fact, Human Cyber
Physical Systems (HCPSs) are envisioned to become the core
of the factory of the future [15], suggesting an increasingly
clear transition towards anthropocentric approaches.

Therefore, a desirable solution would leverage human cog-
nition skills and machines’ processing and data mining capa-
bilities to implement human capabilities augmentation. HRC
potential could be unlocked if the different cognition models
of human operators and robotic agents were suitably interfaced
to allow effective and efficient communication [16]. One
possibility is the emulation of human interaction paradigms
that typically imply an anticipatory behaviour [17]. This,
intuitively, is implementable if the system has prediction
capabilities on its future states. However, being a human agent
part of the considered system, inferring the overall dynamics
of the system is not easy.

Indeed, much of the available literature on human inten-
tion recognition deals with the problem of modeling and
interpreting the human motion itself. In order to infer the
user intentions, many works consider a nonlinear joint model
of the human to estimate muscle activations by monitoring

electromyography (EMG) signals using wearable sensors [18].
However, given the measurement limitations linked to human
physiological parameters, other solutions, as the one proposed
in [19], utilise ML to estimate a neural network (NN) state
model relating the human joint angles and EMG signals. In
general, data-driven approaches using datasets to train activity
models that link events to activities, allow to take into account
the uncertainties of the model with the disadvantage that (i)
large dataset are needed to learn the model and (ii) inter-
pretability and generalization (reusability) are limited [20].
Note that the time required to produce such large datasets
is not compliant with short setup times.

A large and growing body of literature has investigated the
role of data synthesis and relative data augmentation to solve
the data scarcity problem. In fact, this issue is becoming more
and more relevant as the majority of AI-based methods heavily
depend on data. Most works concern low-data regime image
classification problems where small training datasets cause bad
generalization, leading to models affected by overfitting. The
latter can usually be reduced through regularization and drop-
out techniques that, nevertheless, do not tackle the problem
at its roots: here is where data augmentation comes into
play. Among the available techniques for data augmentation,
Generative Adversarial Networks (GANs) have demonstrated
their power allowing for much larger invariance space with
respect to typical data augmentation techniques that usually
rely on linear transformations [21]. The use of GANs as
data augmentation method ranges from medical applications
[22], to emotion classification [23] and, when considering the
industrial context, several examples can be found that apply
this technique to improve fault detection systems [24], [25].

To place the work presented in this paper, it is worth point-
ing out that HRC in manufacturing applications have showed
to have numerous facets depending on specific parameters,
such as the degree of collaboration, dictated by the product
characteristics [26], and the human operator long and short
term attributes [27]. Keeping in mind these aspects, several
approaches when considering close-proximity interactions be-
tween human operators and robotic systems can be found
in the literature on HITL. The framework presented in [28]
provides a remote human-in-the-loop control mechanism that
brings an enhanced reality visualization tool and a gesture
recognition system together to implement a natural interaction
between the human operator and two manipulator collaborative
robots. The method provided in [29] aims at recognising
patterns by identifying maneuvers or motifs in time series
trajectory data generated in HITL applications. In particu-
lar, to perform pattern extraction, the authors exploit ML
algorithms on symbolic representations obtained by clustering
feature vectors, which in turn are derived from trajectory
segments. The work in [30] provides a deep learning (DL)-
based visual prediction method in which a multilayered neural
network realizes recognition and prediction of various human
manipulation actions. Specifically, the algorithm uses partial
sequences of motion data, allowing to recognize and predict
motions before the action takes place.



In [31], the human arm trajectory is segmented and partial
segments are used for human intention inference. Specifically,
they apply time series classification, which finds similarities
between the current partial trajectory and each representative
trajectory of each task, corresponding to the average of all
training trajectories. Moreover, the methods in [32] exploit
gaze approximations and skeletal data to estimate the reaching
goal intention. This information initializes a learning algorithm
on a nonlinear state-space model with the uncertain system
dynamics modeled using a dynamic NN; the estimated human
trajectory is then used as a reference for safe and efficient
robot motion. These examples highlight that, while some re-
search has been carried out on HITL collaborative applications
involving standard cobots, i.e., collaborative manipulators,
frameworks involving Autonomous Mobile Robots (AMRs)
and mobile manipulators are not taken into account, suppos-
edly due to the lack of clear mobile-cobots safety regulations
[33]. Nevertheless, mobile robotics represents one of the key
enablers of flexible manufacturing and should be considered
in HITL applications. Namely, in passive HITL, i.e., when the
human does not exercise control over the system [34], e.g.,
applications engaging the robotic system for monitoring the
human operator and autonomously adapting to the situation.

The aim of this paper is to lay out the specifications for
a data-driven framework, involving collaborative robotic sys-
tems at large, with the role of distributed sensors. The system
goal is to recognise the executed process, inferring it from the
human operator state, and make it known to the robotic system,
with the aim of implementing a suitable control to maximize
execution performances. The outlined solution seeks to reduce
the complexity of available collaborative systems capable of
behaviour recognition, to investigate if less information can be
more significant than what has been considered so far.

The paper is organized as follows: Section II provides
an outline of the framework within a proper manufacturing
scenario. Then in Section III, development ideas and a fea-
sibility analysis of the solution are discussed, based on the
available tools and technologies. Finally, Section IV draws
some conclusions and defines the project next steps.

II. FRAMEWORK OUTLINE

In this section, a preliminary definition of the proposed
HITL framework is carried on. To better describe its com-
ponents, a use case scenario posed as a problem scenario
is considered and described hereafter. We consider a cus-
tom manufacturing context where flexible production lines
are implemented using both fixed-base and mobile robots.
This means that the execution of manufacturing processes is
distributed among agents, with the aim of complying with
the flexibility requirements of custom products and products
on request, whose assembly often heavily relies on cognitive
and experience-based capabilities of human operators. As
mentioned before, fully-automated operations do not always
represent the most suitable solution to certain operations.
In fact, several operations are still necessarily brought on
by hand, especially in the case of small-scale job shops.

For this reason, the robotic system collaborating with the
human operator can be considered as an apprentice, i.e., it
exploits information coming from the human counterpart to
autonomously learn and gain awareness about the executed
operation or task. Note that we consider an operation as
composed of a set of tasks, where tasks are performed by
the operator in collaboration with cobots, moving from one
workstation to the other.

An envisioned use case is that of a job shop operation where
a human operator is needed for the successful finalization of
the product. The operation to manipulate or assemble a product
requires her/his presence at different manufacturing worksta-
tions placed in the shop floor, depending on the product to be
delivered (Figure 1).

Fig. 1. A robot-assisted assembly use case for the presented collaborative
framework. The human operator needs to carry out several tasks performed at
ad-hoc workstations. The robotic system observes the operator to determine
the current process to infer its own desired behaviour.

Given the above scenario, the problem statement can be
defined as follows: given a collaborative operation, the robotic
system should implement proactiveness to maximize execution
effectiveness and efficiency, complying with lean manufactur-
ing requirements. To face this problem, the idea is to have a
robotic system able to autonomously understand the on-going
process to behave accordingly. This improves the interaction
during collaboration (the robotic system awareness allows
for anticipatory behaviour) leading to effective execution.
Furthermore, it reduces waiting times of the human opera-
tor, corresponding to a minimization of the overall process
execution time, hence of the execution efficiency.

The solution implementing the described idea has the fol-
lowing main objectives: using human information to learn a
model for process (operation or task) recognition, and control-
ling the robotic system based on the process recognition output
to implement anticipatory behaviour. The resulting framework
is composed of the following two physical components: (i)
the human operator, representing the main source for process
classification, and (ii) the robotic system, serving as sensor
data source and used for anticipatory behaviour.



Fig. 2. Framework high level schema.

The framework considers the human-robot comprehensive
system as a CPS that implements a passive HITL manu-
facturing application by abstracting from the mentioned two
physical components what we refer to as the system functions.
The combination of such functions determines two levels
of abstraction: the global functions of the system consist
in operation-oriented classification and associated control of
AMRs and cobotic manipulators, and the local functions, in
charge of task recognition and related actions on behalf of
standard cobots. From a practical point of view, the system
provides a global recognition of the human motion between
workstations of the flexible production line (operation execu-
tion), and a local classification of human manipulation and
actions (task execution). To stress the need to involve mobile
robots in HITL manufacturing applications, the focus is put
on the description of the global functions of the framework.
The framework functions can be summarized as follows:

(i) Human operator modeling. From the global point of view,
the human operator is approximated by a 2D point on
the plant map. Indeed, human modeling is complex and
with the goal of operation recognition, considering the
2D motion of the human operator should be sufficient.

(ii) Data collection. In order to identify the 2D point position
corresponding to a human operator, an algorithm filters
sensor data about the surrounding environment to retrieve
the relevant piece of information. In this case, data
are gathered by the robotic system itself, serving as a
distributed network of sensors.

(iii) Robotic system awareness. Globally, the estimated se-
quence of 2D positions of the human operator is fed
to a classification algorithm. Based on the classification
capabilities of the model, the ongoing operation should
be identified and a reference trajectory for the mobile
robotic system generated.

(iv) Robotic system control. The computed robot reference tra-
jectory is employed for controlling the mobile platform,
which is then able to anticipate the expected motion of
the human operator.

An overview of the framework is shown in Figure 2.

III. DEVELOPMENT FEASIBILITY ANALYSIS

In this section, the development analysis of the proposed
framework is tackled, mainly concerning the technical limita-
tions and feasibility of the project itself. To do so, possible
implementation choices are evaluated. As anticipated, this
paper focuses on the description of the global functions of
the framework and the physical components involved in it.

The following analysis can be interpreted as the evaluation
of possible instantiations of the abstract global functions of
the framework. The authors consider functions (i) and (ii),
namely Human operator modeling and Data collection, as
already available. In fact, the Sen3Bot meta-sensor [35] has the
specific function of monitoring industrial scenarios while de-
tecting human operators, implementing a safe behaviour when
approaching them. The Sen3Bot can be considered a sensor
itself, able to publish the 2D position of the human operators
on a shared map, in order to make it available to all the robotic
systems’ components (Figure 3). In [36] the possibility of a

Fig. 3. Sen3bot 2D human position publishing on the plant map.

collaborative behaviour has been introduced: within this HITL
framework the Sen3Bot would be upgraded to a collaborative
Sen3Bot (Sen3CoBot) able both to autonomously navigate and
be aware of the executed process. As a side note, to lighten
the computer vision computational effort of the Sen3CoBot,
downgrading the Sen3Bot original software choices to favour
edge computing should be considered.

The Robotic system awareness (global function (iii)) devel-
opment and implementation should take into account several



Fig. 4. Robotic system awareness summarizing schema.

feasibility aspects. Given the intention of employing Arti-
ficial Intelligence for this function, some technical details
intrinsically influence the algorithmic choice. First of all,
data availability must be considered: ML methods typically
require structured data, implying accurate manipulation if not
available; on the other hand, DL algorithms often require a
large quantity of training data to avoid overfitting. Moreover,
another aspect that must be taken into account is the available
hardware. Operations performed within DL models, such as
convolutions, are best executed on a GPU parallel architec-
ture. A possible distributed solution could involve the use of
edge computing systems, e.g., embedded GPUs. Additionally,
Cloud deep learning services offer several solutions, which
take advantage of shared powerful hardware.

Properly choosing an AI algorithm also implies selecting an
unsupervised or a supervised learning technique. The function
requires the recognition of the executed operation, thus a
classification is necessary. Supervised learning requires a lot of
labelled data to train the model. In this case, however, there are
no readily available labelled datasets on 2D human trajectories
during an operation, and labelling should be done for each
new recorded trajectory, which can be quite time demanding.
Conversely, unsupervised learning would allow to train and
use the clustering model with unlabelled data but, because
there are no labels, there is no way to identify the process and
retrieve the associated reference trajectory for the robot. To
face this problem, a mixed method supported by GAN-based
data augmentation could provide a feasible solution. Clustering
could be performed on large sets of synthetic data generated
by a GAN, then the obtained clustered data could be used
for training a classification model. Note that we assume the
number of clusters c, i.e., the number of operations, to be
known a-priori. However, depending on the required accuracy,
it could be necessary to bring on the labelling and feature
engineering processes for supervised classification.

Hence, to implement the operation recognition function,
a suitable trajectory time series data classification algorithm
should be identified. Ideally the model is trained and fed with
partial trajectory data to implement the desired anticipatory be-
haviour and, based on the confidence with which the trajectory

is classified, use the robot reference trajectory associated to the
recognized operation to control the robotic system. The first
development step should identify the best data structure to be
used, since it must contain both the human operator trajectory
and the Sen3CoBot trajectory. In fact, during training the robot
should be teleoperated to assist the human operator when
necessary, so as to record both the sampled human trajectory
xh and the Sen3CoBot trajectory xr. Once the operation is
recognized by feeding the model partial trajectory data, the
Sen3CoBot is given xr from that instant k on, as the reference
to be tracked. The sampling interval, at first, could be fixed and
assigned, while a more dynamic tuning could be implemented
to discretize the trajectory based on some relevant criteria. A
summarizing schema of the Robotic system awareness function
instantiation is shown in Figure 4.

Finally, the Robotic system control function will receive the
Sen3bot reference trajectory xr associated with the recognized
operation. The Sen3CoBot control could implement a mission
planner to deal with exceptions, such as an obstacle present
in the next goal position in the reference trajectory. Moreover,
if no robot motion is predicted to be necessary within the
recognized operation, the Sen3CoBot could go in an energy
saving mode/state to minimize battery consumption. A further
functionality that would be interesting for the Sen3CoBot
control, is a sort of proactiveness of the robotic system, that
through visual or sound outputs could cause a reaction in the
human behaviour, for example to signal possible delays with
respect to the expected operation execution time.

IV. CONCLUSIONS AND NEXT STEPS

This paper presented a framework outline to improve col-
laborative human-robot flexible manufacturing processes. The
main physical components and the desirable implemented
functions have been provided introducing an envisioned use
case scenario. Development feasibility has been carried on, to
map the desired goals to available methodologies and evaluate
the best implementation steps to be undertaken. Strong moti-
vations and future trends have pushed towards the inclusion of
mobile robotics in flexible manufacturing HITL applications.

Along with the global functions implementation, further
research shall be put on the local implementation to monitor



the execution at task level. Local functions would interest
cobots equipped with proper sensors, e.g., hand-tracking or
vision-based sensors, to track the approximated human motion
corresponding to her/his end effectors (hands) 3D poses, in
order to perform task recognition. Moreover if unsupervised
learning were implemented, association methods could allow
to identify dependencies and recognize what is a sequence of
different tools needed by the operator to perform a certain
task, and share this information to a manipulator in order to
trigger a suitable interaction with the operator.

The authors future works will focus on the implementation
of the framework global functions after carrying out a deeper
investigation and choice of the most suitable methods to
achieve the desired behaviour.
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