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Abstract: This paper focuses on the contact characteristics of the blade root joints subjected to the
dry friction damping under periodic excitation. The numerical method and experimental procedure
are combined to trace the contact behavior in the nonlinear vibration conditions. In experimental
procedure, a novel excitation method alongside the accurate measurements is used to determine
the frequencies of the blade under different axial loads. In numerical simulations, local behavior of
contact areas is investigated using the reduction method as a reliable and fast solver. Subsequently,
by using both experimental measurements and numerical outcomes in a developed code, the global
stiffness matrix is calculated. This leads to find the normal and tangential stiffness in the contact
areas of a dovetail blade root joints. The results indicate that the proposed method can provide an
accurate quantitative assessment for investigation the dynamic response of the joints with focusing
the contact areas.

Keywords: contact stiffness; turbine blade; dovetail joints; experimental; reduction techniques

1. Introduction

Complex mechanical structures usually include several subassemblies, which may
have contact surfaces in common. These interfaces affect the behavior of the entire system.
It can be realized grossly by introducing two contact parameters, namely contact stiffness
and equivalent damping.

The major sources of damping in systems, beneficial for controlling the amplitude
of vibrations, are the material damping, aerodynamic damping, and friction at contact
interfaces. Regarding the last type, the energy is dissipated via friction when contact
surfaces undergo a relative displacement. Micro-sliding or “microslip”, macro-sliding or
“gross-slip”, and separation or “lift-off” are the three common states in the surfaces contact
behavior. Partial sliding of the regions at the edge of the contact generates microslip.

Regarding the micro-scale measurements, sliding contacts between spherical surfaces
were first analyzed by Mindlin et al. [1], who measured the hysteresis loops for convex
surfaces. Johnson [2] measured the static and dynamic hysteresis of steel balls pressed
on flat surfaces. Goodman and Brown [3] examined steel balls oscillating between two
parallel planes in compression. Filippi et al. measured the friction coefficient, cycles
of hysteresis and the tangential contact stiffness at room temperature [4] and at high
temperature [5] for spherical surfaces in contact with flat surfaces. The sliding contacts
between compliant surfaces were examined by Lavella et al. [6] by using a test bench,
and measured the hysteresis cycles, the friction coefficient and the tangential stiffness of
contact by varying normal load and excitation frequency. Schwingshackl et al. [7] and
Stanbridge et al. [8] obtained the coefficient of friction and tangential stiffness of a plane
contact for different materials and load conditions. To compute the Jacobian matrix for 3D
friction contact modeling using an alternate frequency time domain method was presented
by Afzal et al. [9]. In a separate study [10], they showed the damping potential of multiple
friction contacts in a bladed disk, and the possibility of increasing the damping effectiveness.
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Recently, a few studies [11–13] devoted their attention to analyze the nonlinear dynamic
behavior of blade-like structures, namely disk-beam, rotating beam, and rotating disk-beam,
with dry friction dampers.

Regarding the macro-scale measurements, the first experimental analyses of the sliding
contacts effect on global dynamic behavior of aeronautical turbine rotors were carried out
by Goodman and Klumpp [14], who measured the hysteresis cycles for disc-blade joints
subjected to a uniform compression load. Allara et al. [15] designed a test bench to study
the behavior of dovetail joints between disc and blade as the centrifugal load and the
vibrations amplitude vary. Firstly, the oscillations’ free decay of an axially loaded beam
under electromagnetic excitation was measured. Then, the obtained signals were analyzed
to derive the frequency and the lost factor of the nonlinear system, as a function of the
traction load and amplitude of vibration. The test bench is used in the present work for
conducting experimental investigations. The same test equipment was utilized by Firrone
and Bertino [16] to measure the forced response in the frequency domain to validate the
numerical results based on the Harmonic Balance Method. Asai et al. [17] analyzed the
behavior of a cantilever beam dovetail root joints of different geometries and evaluated
the corresponding friction damping in the system. Simmons and Iyengar [18] employed
the same method to contiguous palettes to study the tension distribution and notch effect
in the blade attachments. Umer and Botto [19] evaluated the global dynamic behavior
of a vane in contact with under platform dampers, simultaneously investigated the local
contact behavior to realize the performance curves of these dampers. Very recently, Li and
coauthors [20–22] conducted several in-depth studies, contributing to better understanding
of different contact models. For instance, in Ref. [22], Iwan density function was utilized to
model sphere-on-sphere contact and flat-on-flat contact, and the results were then validated
with analytical and experimental data.

The present work carries out an experimental procedure to measure the dynamic
responses of a typical dovetail joint used for connecting the blades to the disc. Extracting
the contact parameters of a blade simulacrum as a function of centrifugal force leads to
deepen understanding of joints’ dynamic performance. Furthermore, it provides a valuable
measured database during free decay of oscillations to validate newly proposed methods
of nonlinear temporal integration. Eventually, the current contribution is an attempt to
obtain normal and tangential contact stiffness from the macroscopic measurements to find
needed parameters for contact models development.

2. Experimental Configuration

In this section, the response due to an excitation is analyzed in terms of centrifugal
force and the amplitude of vibration. The dummy blade beam, which replaces the real
blade is shown in Figure 1.
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2.1. Test Bench

Experimental equipment utilized in the current study was in use as described in
Ref. [15], and it consists of the following five subsystems:



Appl. Sci. 2021, 11, 12008 3 of 15

1. The support and traction system of the blade simulacrum, shown in Figure 2. This system
includes two crosspieces: a fixed piece integrated with a support of dovetail type (c); and
a mobile piece connected to a hydraulic actuator that enables the traction (b).

2. The dynamic excitation system, which includes a signal generator, an amplifier, and
a shaker. To obtain the response associated with the mode shapes, a type of input
signal, shown in Figure 3, is applied. Performing excitation by the shaker was utilized
for the first time in the present study unlike other contributions [6,15,16].

3. The vibration measurement system, which consists of a laser pointer, Figure 4, and
a laser controller. As the specimen were excited at frequencies close to the first and
second flexural modes (1B and 2B), the laser was pointed towards the nodes of the
corresponding mode shapes, where the maximum amplitude occurs.

4. The traction force measurement system, incorporating two independent subsystems
that allow for double checking the measurements. The first consists of a pressure
gauge, providing pressure inside the hydraulic actuator. The second is composed of a
Wheatstone bridge strain gauges (Figure 5) for measuring the axial deformation δ of
the beam and a data acquisition system.

5. The data collection and acquisition system, which collects the velocity signals mea-
sured by the laser and the strain from the gauges and the input currents of the shaker,
later to be used for further analysis.
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2.2. Technical Limitations

After obtaining the velocity signal v(t) for each applied tensile force, it is possible
to realize the dependence of nonlinear modal parameters, i.e., natural frequency fn and
damping η from the vibration amplitude. To this purpose, the free decay of the envelope
velocity signal v(t) from the excitation starting points until the detachment of the shaker
tip should be analyzed. However, the signal is still the superposition of all modes of the
beam vibration, as shown Figure 6. A filter has therefore been implemented to extract the
main modal component without altering the phase of the signal, necessary for subsequent
identification of the modal parameters. A Parks–McClellan Finite Impulse Response (FIR)
filter with a ripple of 1·10–40 dB in the passband and a ripple of −40 dB in the remaining
frequency band was adopted (see Figure 7).
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To identify the nonlinear dependence of the natural frequency fn and the damping η

on the amplitude of vibration, the theory of analytical signals and Hilbert transform were
utilized following the “FREEVIB” method proposed by Feldman in [23] for nonlinear sys-
tems. It can be only applied to systems that have frequency-independent damping [15,20].
To obtain a stable solution, particular methods such as that proposed in Ref. [20] should be
taken into account due to Kelvin type structural damping in the model.

The measurement points, (P1) for the first and (P2) for the second flexural mode is
displayed in Figure 8. Concerning the first mode, the dependence of damping on the vibration
amplitude for different value of axial loads is shown in Figure 9. For small vibration amplitudes,
it observes a constant damping, i.e., independent of amplitude. This suggests the complete
adhesion at the contact region, implying the linearity of the system in question. For amplitudes
greater than a critical value, the damping shows a steep increase, indicating the beginning
of possible sliding in the contact region, and thereby the establishment of the hysteresis
loop due to the alternation between adhesion and sliding states during each oscillation cycle.
Furthermore, the dissipation peaks at a critical value of vibration amplitude, as can be seen
in Figure 9, and eventually decreases as amplitude exceeds that critical value. Moreover, the
peak (maximum damping) drops as the traction force F increases. This is because not all four
contact regions are in the state of macro-creep, and some regions are in the state of microslip,
i.e., sliding only at edges of the contact regions. Indeed, various combinations of the macroslip
and microslip states at the four contact zones could influence the results in different manners.
This hypothesis is compatible with the previous supposition on the variation in force normal
to the contact region.
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The variation of the frequency against the vibration amplitude is depicted in Figure 10.
Based on the figure, rather flat curves for small oscillations suggest linearity of the system,
the indication of complete adhesion. As the amplitude grows, the frequency decreases
sharply, signaling the occurrence of possible sliding in the contact region. Eventually, the
stiffening phenomenon (increase in frequency) is observed for further larger values of
vibration amplitude, which can be attributed to the variation of normal force at the contact
region caused by the bending of the blade simulacrum.
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Regarding the second flexural mode, variations of damping and frequency with
respect to the vibration amplitude are shown in Figure 11. According to this, an initial
stretch of constant damping is observed for small vibration amplitudes. Then, a steep
growth is evident beyond a critical amplitude at which the sliding begins. Considering
the same traction force, the critical amplitude depends upon the effective I_RMS current
sent to the shaker. This current defines the amplitude of oscillation of the exciting force
before the detachment of the shaker tip from the beam, and therefore the amplitude of the
vibration at the beginning of the free decay. Close examination of the figure suggests that
the highest damping is achieved when a traction force of approximately 8 kN is exerted
to the beam, and more intense loading results in a drop in damping. Besides, a decrease
in the critical amplitude is observed as the traction force increases, the phenomenon also
presents in the first flexural mode.
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The dependence of the frequency on the vibration amplitude is also illustrated in
Figure 11, where the frequency follows a constant trait for low amplitude values, revealing
the complete adhesion at the contact regions. Stiffening effect, already identified for the
first bending mode, can be recognized from the frequency trend against the traction force.

3. Contact Model

In this part the normal and tangential stiffness components, i.e., kn and kt, are investi-
gated by considering the equivalent model of the dovetail joint (see Figure 12).
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The following procedure was followed to search for the values of kn and kt:

1. The model of the beam with dovetail supports at both ends as well as the corre-
sponding supports was discretized with the finite element method implemented in
commercial finite element software, paying particular attention to the coincidence of
the nodes in the contact interfaces.

2. Nonlinear static analyses were carried out in commercial finite element software on
the beam alone as the axial traction varied to discern the stiffening effect of the force
on the stiffness matrices of the blade simulacrum.

3. Reducing the model DOF in commercial finite element software using Craig-Bampton’s
Component Mode Synthesis technique [24] and importing the reduced mass and stiff-
ness matrices into a numeric computing environment.

4. The reduced models of the blade simulacrum and supports (slots) were assembled in
a numeric computing environment by introducing linear contact elements.

A script was developed to search for kn and kt, which compares the frequencies of
the first and second flexural modes from the FEM model with those obtained from the
measurements within the range of axial traction forces in which complete adhesion of the
contacts was recognized.

3.1. Finite Element Method

To discretize the model using the ANSYS® 2020-R2, SOLID185 8-node hexahedral
linear elements (ANSYS, Canonsburg, PA, USA) were utilized for meshing, the size of
which was gradually reduced in the vicinity of the contact areas. To employ Node-to-Node
contact elements in the subsequent assembly in a numeric computing environment, the
nodes at the contact interfaces were set to coincide geometrically, as shown in Figure 13.
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3.2. Reduction Technique

The search for the values of the kn and kt was carried out by comparing the frequencies
of the first and second flexural modes of the FEM model with those obtained from the
measurements. This procedure required the use of a global method varying kn and kt. In
this regard, the degrees of freedom of the beam and support were reduced. In particular,
the technique proposed by Craig–Bampton [24] was adopted in the present study, already
implemented in commercial finite element software.

The method implements a change of coordinates of the equations of motion to obtain
a description of the system with a reduced number of generalized coordinates. The first
step is to break down the degrees of freedom of the model into master DOFs (m), which
will be also present in the final reduced model, and slave DOFs (s).

In a general case, the system of equations of the motion is of the form:

[M]
{ ..

u
}
+ [K] {u} = {0} (1)

where the matrices [M] and [K] and the vector {u} can be considered in the following form:

{u} =
{

um
us

}
(2)

[M] =

[
Mmm 0

0 Mss

]

[K] =
[

Kmm Kms
Ksm Kss

]
Defining the static modes

[
ΦC
]

as the displacements of the slave DOFs due to the
displacements of master DOFs, one can extract:

[Ksm]{um}+ [Kss]{us} = {0} → {us} =
[
ΦC
]
{um} (3)

with [
ΦC
]
= −[Kss]

−1[Ksm] (4)

The internal modes [ΦN ] are defined as:

ω2[Mss][ΦN ] = [Kss][ΦN ] (5)

When all the “master DOFs” are bound, it is now assumed that the movements of
the “slave DOFs” can be approximated by a combination of a subset of the internal modes
[ΦN ] as:

{us} = [ΦN ]{pN} = [ΦN |Φ̂N ]

{
pN
p̂N

}
'
[
ΦN
]
{pN} (6)
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Defining a new generalized coordinate system consisting of the master DOFs and the
coordinates {pN} as:

{p} =
{

um
pN

}
(7)

Thus, the movements of the slave DOFs can be written according to the new coordi-
nates using the static modes and internal modes in the following form:

{us} = [ΦC]{um}+ [ΦN ]{pN} (8)

The above relation implies that the initial degrees of freedom and the new generalized
coordinate system are related by the following transformation matrix:{

um
us

}
=

[
I 0

ΦC ΦN

]{
um
pN

}
(9)

Defining [α] =

[
I 0

ΦC ΦN

]
and {p} =

{
um
pN

}
, the equations of motion of the

structure in the new coordinates are therefore:

[α]T [M][α]
{ ..

p
}
+ [α]T [K][α]{p} = {0} →

[
M
]{ ..

p
}
+
[
K
]
{p} = {0} (10)

where [
K
]
= [α]T [K][α] (11)[

M
]
= [α]T [M][α]

To analyze the problem of interest, the master nodes chosen for the beam are:

• 33 nodes for each of the four contact interfaces
• 21 nodes along the longitudinal axis of the beam on each side, see Figure 14b, to be

capable of viewing the mode shapes of the reduced model.
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Regarding each slot, the following master nodes were chosen:

• 33 nodes for each of the two contact interfaces
• 8 nodes corresponding to the vertices of the support for displaying the modes.
• 117 nodes at the base of the support, see Figure 14a, to be subsequently constrained in

a numeric computing environment.
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Once the master nodes for the blade simulacrum and the supports were defined, the
reduction of each was carried out and the respective reduced matrices [M] and [K] were
exported to a numeric computing environment.

3.3. Assembly of Stiffness and Mass Matrices

The derived local matrices [M] and [K] from the reduced models of the beam and two
supports are used to calculate the global matrices [MGLOB] and [KGLOB] of the assembly.
As described in Figure 15, the degrees of freedom of the reduced models were ordered for
both beam and slots.
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By dividing the degrees of freedom into two categories, namely free (F) and the
constrained (C), it was possible to split the mass and stiffness matrices as:(

−ω2[MGLOB] + [KGLOB]
)
{q} = {0}+ {Rv} →

{ (
−ω2[MFF] + [KFF]

)
{qF} = {0}(

−ω2[MCF] + [KCF]
)
{qF} = {Rv}

(12)

The modal analysis was then carried out using the matrices [MFF] and [KFF], obtained
from the global matrices [MGLOB] and [KGLOB] by eliminating the rows and columns
corresponding to the degrees of freedom of the bases of the two slots. The structure of the
resulting matrices is exhibited in Figure 16.
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To insert the contact elements to the interfaces, it is necessary to define a connectivity
matrix to associate the degrees of freedom of the coinciding nodes of the blade simulacrum
and supports. Each row of the connectivity matrix corresponds to a pair of coinciding nodes
between which a contact element operates. Coincident nodes were identified by looking
for nodes with the same identification number used in commercial finite element software,
according to the procedure explained above. Linear contact elements were created, i.e.,
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contact elements that do not allow sliding nor the separation at the contact region. The
stiffness matrix for the contact elements in the local coordinate system is:

[
KL
(e)

]
=



kn 0 0 −kn 0 0
0 kt 0 0 −kt 0
0 0 kt 0 0 −kt
−kn 0 0 kn 0 0

0 −kt 0 0 kt 0
0 0 −kt 0 0 kt

 (13)

The rotation matrix [Λ] was used to switch from the local to the global coordinate
system. Indeed, since the total potential energy is invariant with respect to the reference
system, the global stiffness matrix becomes:[

KG
(e)

]
=
[
Λ(e)

]T[
KL
(e)

][
Λ(e)

]
(14)

where

[Λ] =



c 0 s 0 0 0
0 1 0 0 0 0
−s 0 c 0 0 0
0 0 0 c 0 s
0 0 0 0 1 0
0 0 0 −s 0 c

 (15)

with c and s denoting the trigonometric functions cos and sin. Eventually, the corresponding
stiffness matric of contact elements for each pair of coincident nodes was inserted into the
global matrix of the assembly [(KGLOB)FF] (see Figure 17).
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3.4. Determination of Stiffness, kn and kt

The global matrix [(KGLOB)FF] is a function of the parameters kn and kt. To compare
the natural frequencies with experimental outcomes, they need to be measured during the
complete adhesion of the contact regions. Specifically, by examining the concerning curves
(see Figures 9 and 11), the bandwidth in which the frequency has a rather constant trend
was selected, to indicate the complete contact adhesion.

The frequencies of FEM model (for each axial traction force) were obtained from the
classical linear modal analysis. Considering the global matrices [M] = [(MGLOB)FF] and
[K] = [(KGLOB)FF], the governing equations of motion are:

[M]
{ ..

q(t)
}
+ [Ki(kn, kt)]{q(t)} = 0 ∀Fax i− th (16)



Appl. Sci. 2021, 11, 12008 13 of 15

With the following linear harmonic solution:

{q(t)} = {q} eiωt ⇒
(
−ω2M + Ki

)
{q} = 0 (17)

Excluding the trivial solution {q} = 0, other possible solutions (eigenvectors) are ob-
tained for the eigenvalues of the generalized problem ω2, for which the matrix

(
−ω2M + K

)
is not invertible. This condition is verified when:

det
(
−ω2M + Ki(kn, kt)

)
= 0 ∀Fi (18)

from which ω2
n,i are the roots of the characteristic polynomial and the eigenvalues:

Ndo f

∑
j=0

aj(kn, kt)
(

ω2
n, i

)j
= 0 ∀Fi (19)

The shape of each depends on the coefficients aj, which are nonlinear functions of
the parameters kn and kt. Thus, the frequencies depend non-linearly on these parameters,
which required an iterative local or global method to find the solution (kn, kt).

By making a comparison between the measured frequencies and those from the FEM
model, for the first and second flexural modes (1B and 2B):

( f1B)FEM(kn, kt)− ( f1B)Measured = 0

( f2B)FEM(kn, kt)− ( f2B)Measured = 0
(20)

which can be written in the following vector form:

{∆ f } =
{

(∆ f )1B(kn, kt)
(∆ f )2B (kn, kt)

}
=

{
0
0

}
(21)

The function {∆ f } does not vanish at any point, i.e., there are no (kn, kt) such as to
satisfy both Equation (20); however, it can be minimized. Therefore, the system of equations
becomes:

{|∆ f |} < δ{∆ f } (22)

This system was solved with a global search within the domain (kn, kt) for satisfying
the following condition:

||{∆ f }|| < δ||{∆ f }|| (23)

where ||{∆ f }|| is the Euclidean norm of the vector {∆ f } and δ||{∆ f }|| is the error, calcu-
lated with the theory of error propagation and σ defines the stress.

Following the procedure explained above, the parameters kn and kt are obtained for
i-th axial force and reported in Table 1.

Table 1. Obtained results of search for kn and kt.

F kn σnn δkn/kn kt σtt δkt/kt
[kN] [N/mm] [N/mm2] [%] [N/mm] [N/mm2] [%]

12 41,428.6 4866.6 11.7 68,285.7 6587.2 10.2
14 50,000.0 10,042.7 20.1 61,428.6 10,822.9 17.6
16 50,000.0 5439.4 10.9 72,857.1 6550.7 9.0
18 55,714.3 9546.3 17.1 75,714.3 11,395.6 15.1
20 58,571.4 11,672.8 19.9 84,285.7 14,891.4 17.7
22 61,428.6 16,485.4 26.8 84,285.7 19,768.3 23.5

Eventually the frequencies obtained from the experiment are compared with those
from the presented numerical approach and the analytical method in Figure 18. The
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theoretical data are extracted from the beam model of Euler-Bernoulli (constrained at both
ends), modified to consider the stiffening effect of the traction force. The discrepancies
between the calculated frequencies from the theoretical model for low traction values can
be attributed to the microslip at the contact regions. In fact, that is why the axial traction
forces greater than 12 kN are taken into account, where the contacts behave linearly, in the
numerical model.
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the following condition: ||{𝛥𝑓}|| 𝛿||{𝛥𝑓}|| (23) 

where ||{𝛥𝑓}|| is the Euclidean norm of the vector {𝛥𝑓} and 𝛿||{𝛥𝑓}|| is the error, calcu-
lated with the theory of error propagation and 𝜎 defines the stress. 

Following the procedure explained above, the parameters 𝑘  and 𝑘  are obtained 
for i-th axial force and reported in Table 1. 

Table 1. Obtained results of search for 𝑘  and 𝑘 . 𝑭 𝒌𝒏 𝝈𝒏𝒏 𝜹𝒌𝒏/𝒌𝒏 𝒌𝒕 𝝈𝒕𝒕 𝜹𝒌𝒕/𝒌𝒕 [𝐤𝐍] [𝐍/𝐦𝐦] [𝐍/𝐦𝐦𝟐] [%] [𝐍/𝐦𝐦] [𝐍/𝐦𝐦𝟐] [%] 
12 41,428.6 4866.6 11.7 68,285.7 6587.2 10.2 
14 50,000.0 10,042.7 20.1 61,428.6 10,822.9 17.6 
16 50,000.0 5439.4 10.9 72,857.1 6550.7 9.0 
18 55,714.3 9546.3 17.1 75,714.3 11,395.6 15.1 
20 58,571.4 11,672.8 19.9 84,285.7 14,891.4 17.7 
22 61,428.6 16,485.4 26.8 84,285.7 19,768.3 23.5 

Eventually the frequencies obtained from the experiment are compared with those 
from the presented numerical approach and the analytical method in Figure 18. The the-
oretical data are extracted from the beam model of Euler-Bernoulli (constrained at both 
ends), modified to consider the stiffening effect of the traction force. The discrepancies 
between the calculated frequencies from the theoretical model for low traction values can 
be attributed to the microslip at the contact regions. In fact, that is why the axial traction 
forces greater than 12 kN are taken into account, where the contacts behave linearly, in 
the numerical model. 
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second flexural mode. 
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joint. For that matter, an experimental procedure was carried out, with the aim of realizing 

Figure 18. Obtained frequencies from experimental, numerical, and analytical approaches: (a) first
flexural mode and (b) second flexural mode.

4. Conclusions

The present work is devoted to identifying the corresponding parameters of a type
of contact element, namely normal stiffness, and tangential stiffness. The contact element
intends to simulate the vibration of a turbine blade connected to its disc via a dovetail
joint. For that matter, an experimental procedure was carried out, with the aim of realizing
the modal parameters (frequency and damping) of system that resembles the disc-blade
configuration. The first and second flexural modes of the experimental setup were extracted
from its free decay, when excited with a frequency close to that of the mode shapes in
question. Then, the collected data along with a comprehensive numerical method were
utilized for determining the normal and tangential stiffness of the system. Along this
path, finite element model of the configuration was built in commercial finite element
software, and the corresponding stiffness and mass matrices were imported in a numeric
computing environment after applying the Craig–Bampton reduction technique. Once the
global matrices of the system were obtained and assembled with the global stiffness matrix
of the contact element, the concerning parameters were extracted through an iterative
process. Acceptable agreement was found between the obtained values and those from the
measurements and analytical models.
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