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We undertake a fundamental study of network equilibria modeled as solutions of fixed point equations for
monotone linear functions with saturation nonlinearities. The considered model extends one originally pro-
posed to study systemic risk in networks of financial institutions interconnected by mutual obligations. It is
one of the simplest continuous models accounting for shock propagation phenomena and cascading failure
effects. This model also characterizes Nash equilibria of constrained quadratic network games with strategic
complementarities. We first derive explicit expressions for network equilibria and prove necessary and suffi-
cient conditions for their uniqueness, encompassing and generalizing results available in the literature. Then,
we study jump discontinuities of the network equilibria when the exogenous flows cross certain regions of
measure 0 representable as graphs of continuous functions. Finally, we discuss some implications of our results
in the two main motivating applications. In financial networks, this bifurcation phenomenon is responsible
for how small shocks in the assets of a few nodes can trigger major aggregate losses to the system and cause
the default of several agents. In constrained quadratic network games, it induces a blow-up behavior of the
sensitivity of Nash equilibria with respect to the individual benefits.
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1. Introduction A central aspect of complex socio-technical systems such as infrastructural,
social, economic, and financial networks is the role played by interconnections in amplifying and
propagating shocks, thus increasing their fragility [5, 13, 15]. The term systemic risk refers to the
possibility that even small shocks localized in a limited part of the network can spill over and
trigger cascading mechanisms that may achieve a significant global impact [19, 33, 2].

A key challenge is to find adequate models for network systems, that are sufficiently elaborate to
incorporate such propagation phenomena, yet simple enough to allow for mathematical tractability.
Epidemic contact models prove inadequate as they are based on purely pairwise interactions. On
the other hand, binary models that present cumulative neighborhood effects, such as the linear
threshold model [4, 37, 30], have also little applicability for the limited modeling power of the binary
state variable. Indeed, in most of the applications, the cascading mechanism is rather triggered by
a process naturally described in terms of continuous variables such as, e.g., power flows or traffic
volumes in infrastructure networks, prices, assets values, and payments in economic and financial
networks.

* Giacomo Como is also with the Department of Automatic Control, Lund University, BOX 118, SE-22100, Lund,
Sweden.

1

mailto:leonardo.massai@polito.it
mailto:giacomo.como@polito.it
mailto:fabio.fagnani@polito.it
https://mathdisma.altervista.org/
https://staff.polito.it/giacomo.como/
https://staff.polito.it/fabio.fagnani/


Massai, Como, and Fagnani: Equilibria and Systemic Risk in Saturated Networks
2 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

The most tractable continuous models of network interaction considered in the literature give rise
to notions of equilibria that can be mathematically characterized as the solutions of a linear system
of equations. The core of the model is a matrix that describes the network of interconnections.
Examples include competitive equilibria in production networks [1, 3] or Nash equilibria in network
games with linear best replies, including quadratic network games [7, 14, 17, 12, 20].

While the most basic formulations of such fundamental models consider no constraints on the
involved variables, in several of the aforementioned applications it is natural to assume some a
priori lower and upper bounds. E.g., in the Eisenberg and Noe model [16], financial institutions
are interconnected by mutual obligations and the payments are necessarily non-negative and upper
bounded by the debt value. In the context of network games modeling peer effects on students’
engagement, [14] suggests to “bound the strategy space in such a game rather naturally by simply
acknowledging the fact that students have a time constraint and allocate their time between leisure
and school work”. Similarly, [11] acknowledges that “while in principle, a player’s action could be
any real number, all games in the literature place restrictions on players’ actions which represent
different real-world situations” and that “for peer effects in a classroom, there are natural lower
and upper bounds: a student can study no less than zero hours and no more than twenty-four
hours in a day.”

When a priori upper and lower bounds are taken into account in the network model, the related
equilibria become the solutions of a linear system of equations with saturation non-linearities.
[14, 8, 12, 6, 11]. Such saturated network models exhibit a considerably richer behavior than purely
linear ones, including the possibility of cascading effects coded in terms of variable saturation and
of transition phases with respect to structural parameters.

In this paper, we undertake a fundamental study of such saturated equilibrium models in net-
works with positive externalities. Precisely, we consider the following fixed point equation

xi = min

{
max

{
n∑
j=1

xjPji + ci,0

}
,wi

}
, i= 1, . . . , n , (1)

where P in Rn×n+ is a non-negative square matrix and w in Rn+ is a non-negative vector that jointly
describe a network, while c in Rn is an exogenous flow vector. Equation (1) can be more compactly
rewritten as

x= Sw0
(
P>x+ c

)
, (2)

where Sw0 denotes the vector saturation function

(Sw0 (x))i = min{max{xi,0},wi}, i= 1, . . . , n . (3)

We shall refer to vectors x that are solutions of (2) as equilibria of the network (P,w) with exogenous
flow c. Notice that the range of the vector saturation function Sw0 is contained in the complete
lattice

Lw0 = {x∈Rn : 0≤ x≤w} . (4)

As the lattice Lw0 is a nonempty, convex, and compact set, and x 7→ Sw0 (P>x+ c) maps Lw0 in itself
with continuity, existence of network equilibria directly follows from Brower’s fixed point theorem.
Hence, the set X ⊆Lw0 of network equilibria is always nonempty. On the other hand, the structure
of such network equilibria, their uniqueness, and their dependence on the exogenous flow prove to
be more delicate issues. They will be the object of this paper.

In financial networks, the model (1) has made its appearance through the seminal work of
Eisenberg and Noe [16]. In this context, the entries of the vector w represent the obligations of the
various institutions and those of the exogenous flow c represent the balance between assets possessed
by the entities and their obligations towards institutions outside the network. The matrix P is
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row-stochastic or sub-stochastic and describes the way obligations of an entity are split among its
lending entities. It encodes the backbone of the financial system interconnections. In this context,
an equilibrium x represents a set of payments that clear the network in a consistent way. A key
question is to understand the extent to which a shock hitting the value of the assets of a single
node i (perturbation of ci) reflects on the entire network and leads to possible cascade effects. In
particular, a default node is defined as one for which the quantity

∑
j Pjixj + ci (representing the

liquidity of the entity i) is below the value of its obligation wi and the default is called partial
or total if, respectively,

∑
j Pjixj + ci > 0 or not. Despite its apparent simplicity, this framework

has proved to be very useful for analyzing how losses propagate through the financial system.
Previous works including [24, 2, 18, 29] have analyzed conditions for uniqueness of the clearing
payment equilibrium x and studied its dependence on the exogenous flow vector c. In particular,
Eisenberg and Noe themselves [16] find sufficient conditions for uniqueness of clearing payment
equilibria x in the special case of non-negative exogenous flow vector c and prove monotonicity
and concavity of x as a function of c. Glasserman and Young [18] also consider the case of non-
negative exogenous flow c and extend the sufficient conditions for uniqueness in [16] to cover the
case where the matrix P has spectral radius ρ(P )< 1. They also provide estimations, for a wide
range of shock distributions, on the potential magnitude of network effects on contagion and loss
amplification. The work [2] considers a particular case of the Eisenberg and Noe model where the
network is regular and proves that the clearing payment equilibrium is generically unique with
respect to values of the exogenous flow c in Rn. Furthermore, they prove rigorous results about the
resilience of different network topologies depending on the shock magnitude. Liu and Statum [24]
use linear programming to provide a sensitivity analysis of Eisenberg and Noe model with respect
to certain parameters. Finally, Ren et al. [29] explore several sufficient conditions for uniqueness of
the clearing payment equilibrium. In particular, they show that uniqueness holds true in the case
where either at least one entry of the maximal equilibrium is saturated at its upper bound or at
least one entry of its maximal equilibrium is saturated at 0.

In quadratic network games, the entries of the vector x represent the actions strategically chosen
by n players, each one seeking to maximize a utility function ui (x) = cixi − x2

i /2 + xi
∑

j Pjixj.
The first two terms (a linear return minus a quadratic cost) represent the reward in the absence
of interactions. The last bi-linear term couples player i’s action with those of her neighbors in
the network. Here, the entries of the exogenous flow c represent the constant marginal benefits
of the individual players from their own actions and coincide with their optimal choices in the
absence of network interaction, whereas the nonzero entries of the matrix P correspond to either
strategic complementarities (if they are positive) of strategic substitutes (if they are negative)
between interacting players. In the absence of any constraints on their actions, the players’ best
responses are linear functions and Nash equilibria are solutions of the linear system x= P>x+ c
whose existence and uniqueness can be characterized in terms of the spectral properties of P . In
particular, if P has spectral radius ρ(P )< 1, then there exists a unique Nash equilibrium. In the
case when all externalities are positive, the work [7] shows how the aggregate performance can
be evaluated in terms of the sum of the marginal benefits of the individual players weighted by
their so-called Bonacich network centrality [10]. When upper and lower bounds on the feasible
players’ actions are considered, the best responses prove to be described as the composition of
linear functions with saturation non-linearities. Nash equilibria then coincide with the solutions
of the fixed point equation (2) [14, 11]. In this case, it is known that, while existence is ensured
by convexity and compactness of the strategy profile space as argued before, uniqueness is lost in
general. In this regard, [7] claims that “multiple equilibria will certainly emerge, which is a plausible
outcome in the school setting”, while [11] acknowledges that “our general knowledge of how unique
versus multiple equilibria depend on parameters and the network is still very fragmented.” For
symmetric quadratic games of strategic substitutes (i.e., non-positive symmetric P ), Bramoullé et
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al [12] prove uniqueness of Nash equilibria when P has spectral radius ρ(P )< 1, building on the
fact that in this case the quadratic game is potential [28] with strictly concave potential function.
On the other hand, in the special case when the exogenous flow c is strictly positive, Belhaj et al
[8] provide sufficient conditions for uniqueness of Nash equilibria for a class of network games with
strategic complements (non-negative P ) that include quadratic games. Their work generalizes the
result in [22] for fixed points of monotone concave functions.

The present paper develops a systematic study of the network equilibria described by equation
(2) in the general case of networks (P,w) where P is a non-negative square matrix with spectral
radius ρ(P )≤ 1. We provide three fundamental contributions:

(i) We characterize a class of non-expansive networks (cf. Definition 1) including as a special
case networks where P is a row-stochastic or sub-stochastic matrix. We prove that, for this class,
all network equilibria satisfy an invariance property (Theorem 1) with respect to a certain partition
of the node set in surplus, exposed, and deficit nodes (cf. Section 3.3);

(ii) We analyze the structure of the set of network equilibria with respect to topological prop-
erties of the network. In particular, we show how to effectively construct all network equilibria
starting from any one of them and prove necessary and sufficient conditions for uniqueness of the
network equilibrium in the general case of spectral radius ρ(P )≤ 1 (Theorem 2). This result sub-
sumes and extends the ones available in the previously surveyed literature on financial networks,
as in this context P is always a stochastic or sub-stochastic matrix, hence with spectral radius
ρ(P ) ≤ 1. It is worth emphasizing that uniqueness conditions we derive can be easily checked a
priori without the need for computing the network equilibrium itself.

(iii) We show that network equilibria exhibit a jump discontinuity in their dependence on the
exogenous flow vector c. This happens when the vector c crosses certain regions of measure 0 rep-
resentable as graphs of continuous functions, where the uniqueness of equilibrium is lost (Theorem
3). We provide an analytical description of the discontinuity set and we quantify the size of the
largest jump (Corollary 2). In the financial network application, this can be interpreted as a jump
in the aggregate loss function (cf. Section 5.1 and Example 4).

Notice that, in contrast to some of the previously reviewed literature, we do not assume the matrix
P to be symmetric or the underlying network regular (cf. [7, 14, 17, 12, 11, 3, 2]). Similarly, we
do not make assumptions on the sign of the exogenous flow c (cf. [16, 18, 8]). This creates several
technical challenges as, in particular, we cannot rely on the theory of potential games (which would
require P to be symmetric) and we have to deal with possible effective saturations at both the
upper and the lower bound (while, e.g., assuming non-negative c would have removed the impact
of the lower saturation).

Methodologically, it is worth pointing out that the non-negativity of the matrix P allows one
to interpret the considered network equilibria as Nash equilibria of a a particular class of games
known as supermodular games [34, 26, 36, 35]. The general theory of such games [34, 26, 36, 35]
can be applied in order to guarantee, e.g., that the set of network equilibria is a complete lattice, as
well as the validity of certain comparative statics [27], in particular that the minimal and maximal
network equilibria are monotone functions of the exogenous flow vector c, of the upper saturation
vector w, and of the matrix P itself (Proposition 1).

However, we depart quite soon from the general theory of supermodular games and develop an
approach to the study of such monotone linear saturated network systems that partly hinges on
some results from the theory of non-negative matrices [9] (cf. Proposition 2). Key steps in our
treatment include the derivation of some ad hoc technical results that exploit finer spectral and
topological properties of the network (Propositions 3, 4, and 5). These are instrumental in the proof
of our main results (Theorems 1, 2, and 3). We notice that our results for non-expansive networks
are somewhat reminiscent of the Rural Hospitals Theorem [31, 32] ensuring that, under suitable
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assumptions, stable matchings form a distributive lattice and satisfy a fundamental invariance
property.

The rest of this paper is organized as follows. The remainder of this Introduction is devoted to a
brief explanation of the main notational conventions to be followed throughout the paper. Section
2 presents the two main motivating applications for the considered model, i.e., financial networks
and network games with linear saturated best replies. Section 3 establishes a number of preliminary
results on the structure of the equilibria. Uniqueness results as well a general expression describing
all solutions in non-uniqueness cases is presented in Section 4. Section 5 is devoted to the analysis
of jump discontinuities in the equilibrium with respect to the variation of the exogenous flow vector
with a particular focus on financial networks. The paper ends with Section 6 dedicated to drawing
some conclusions and open problems.

Notation We briefly explain the notation to be used throughout this paper. Vectors are denoted
with lower case, matrices with upper case, and sets with calligraphic letters. A subscript associated
to vectors, for instance vA, represents the sub-vector that is the restriction of a vector v in Rn
on the set of indices A⊆ {1,2, . . . , n}. The same notation is used for matrices: PAB represents the
sub-matrix of P obtained by considering rows and columns associated with the indices contained
in sets A and B, respectively. We indicate with 1 the all-1 vector, regardless of its dimension.

Throughout the paper, the natural entry-wise partial order is considered on Rn, so that, the
inequality x≤ y for two vectors x and y in Rn is to be understood as xi ≤ yi for every i= 1,2, . . . , n,
whereas x � y means that x ≤ y with strict inequality in at least one entry. Analogously, the
absolute value of a vector v in Cn is the vector |v| in Rn+ with entries (|v|)i = |vi| for i= 1, . . . , n. A
norm ‖ · ‖ on Cn is referred to as monotone if ‖v‖ ≤ ‖w‖ whenever |v| ≤ |w|.

The spectral radius of a square matrix P in Rn×n is denoted by ρ (P ). A non-negative square
matrix P in Rn×n+ is referred to as (row) sub-stochastic if the sum of the entries in each row never
exceeds 1, i.e., if P1 ≤ 1. Notice that in the literature it is often assumed that sub-stochastic
matrices have the additional property that for at least one row there is strict inequality. Here we
prefer not to follow this convention and in this way our class of sub-stochastic matrices contains
also the stochastic matrices that are those for which P1= 1. A non-negative square matrix P is
irreducible if for every i and j, there exists l≥ 1 such that (P l)ij > 0.

A directed graph is the pair of a finite node set V and of a set E ⊆ V × V of links, whereby a
link (i, j) is meant as directed from its tail node i to its head node j. To any square matrix P
in Rn×n, we associate a directed graph GP = (V,E) with node set V = {1,2, . . . , n}, and link set
E = {(i, j)∈ V ×V : Pij 6= 0}.

2. Applications In this section, we describe two main motivating applications. We start in
Section 2.1 by presenting a model of financial networks generalizing the one first considered in [16].
We then provide an interpretation of network equilibria as Nash equilibria for a class of network
games with monotone linear saturated best responses, as explained in Section 2.2. Notice that the
considered notion of equilibrium in saturated networks and the results derived in the following
sections may find application in other contexts, such as, e.g., in some dynamical network flow
models [25].

2.1. Payment equilibria in financial networks We consider a set V = {1, . . . , n} of finan-
cial entities (e.g., banks, broke dealers,...) interconnected by internal and external obligations that
are specified by a non-negative matrix W in Rn×n+ and three non-negative vectors a, b, and u in
Rn+ whose entries have the following interpretation:
• Wij ≥ 0 is the liability of node i to node j;
• ai is the total value of assets and credits of i from external entities;
• bi is the total liability of node i to external non-financial entities;
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• ui is the total liability of node i to external financial entities.
The quantity vi =

∑
jWji−

∑
jWij +ai− bi−ui is the net worth of node i. If the condition vi ≥ 0

is verified for every i in V, it means that each node is fully liable and in principle capable to pay
back all its liabilities to the nodes in the network as well as the external ones. In case when instead
some nodes do not satisfy the condition vi ≥ 0, namely they are not fully liable, it is necessary to
determine a consistent set of payments among the various nodes.

Put wi =
∑

jWij +ui and

Pij =

{
Wij/wi if wi > 0

0 otherwise

We define by Xij the payment from node i to node j and by Xio the payment from node i to
external financial entities. Assuming that liabilities to non-financial entities have a higher seniority
and that all other payments (including those to external financial entities) should be proportional
to the corresponding liabilities, a consistent set of payments among the nodes has to satisfy the
relations

Xij = min

{
Pij max

{∑
k

Xki + ai− bi,0

}
,Wij

}

Xio = min

{
ui
wi

max

{∑
k

Xki + ai− bi,0

}
, ui

} (5)

Let xi =
∑

jXij+Xio be the total payment of node i to the financial entities. Summing the relations
in (5) and using the fact that Wij =wiPij, we obtain

xi = min

{
max

{∑
k

Xki + ai− bi,0

}
,wi

}
(6)

so that, Xij = xiPij. Relation (6) can thus be rewritten as

xi = min

{
max

{∑
k

xkPki + ai− bi,0

}
,wi

}
(7)

This set of relations is equivalent to (5). Indeed, if the vector x solves (7), then Xij = xiPij solves
(5). This coincides with (1) with exogenous flow c= a− b. It is worth noticing that, in the financial
jargon, vectors x are called clearing vectors.

Notice that the matrix P is sub-stochastic in its strict sense (i.e., at least one row does not sum
to 1) when either there exist nodes with a positive liability towards external financial entities, or
nodes with no financial liabilities.

In this financial setting, it is often considered the case when we start from a fully liable config-
uration, that is vi ≥ 0 for all i, leading to a solution x of (7) such that xi ≥wi for all i. We then
assume that the outside assets suffer a shock ε ∈Rn+ so that their values reduce to a− ε possibly
making some of the vi’s negative. The study of the number of nodes in default xi <wi as a function
of the shock ε is one of the key issues.

2.2. Network games with monotone linear saturated best responses We consider
games with player set V = {1, . . . , n}, whereby each player i in V chooses an action xi from the
compact interval Ai = [0,wi], where wi > 0. We gather all actions in a vector x to be referred to
as the strategy profile. Following a standard notational convention in game theory, we indicate by
x−i in

∏
j 6=iAj the strategy profile of all players other than player i.
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First, we consider the case of quadratic utility functions

ui (x) = ui(xi, x−i) = cixi−
x2
i

2
+xi

∑
j

Pjixj , (8)

for every player i in V and strategy profile x. In (8), ci denotes the marginal benefit of individual i
from its own action, while P is a non-negative matrix describing the strategic interactions among
the various players. Notice that, absent network effects, i.e., in the special case P = 0, ci is the
optimal action of player i.

Such games are known in the literature as constrained quadratic network games. Notice that
the quadratic utility function ui in (8) implies that the best response of a player i in V is always
unique and given by

Bi(x−i) = min

{
max

{
n∑
j=1

xjPji + ci,0

}
,wi

}
. (9)

It follows that Nash equilibria for such constrained quadratic network games are exactly the solu-
tions of the fixed point equation (2).

In this paper, we focus on the special case where the coefficients Pji are all non-negative. In this
way, we are considering games of pure strategic complements: for every player i, the higher the
value of x−i, the higher the rate of variation of the utility ui(xi, x−i) of player i with respect to
its own action xi. Mathematically, games like these, where actions belong to compact spaces and
utilities ui are twice differentiable functions with non-negative cross derivatives

∂2ui
∂xi∂xj

= Pji ≥ 0

for every i and j with j 6= i, are called supermodular. A more general definition of supermodular
games can be found in [26]; the one proposed here will be sufficient for our purposes. It is known
that supermodular games always admit a complete lattice of Nash equilibria and in our case they
coincide with the solutions of (2). This fact will be exploited in the Section 3.1.

In fact, our analysis applies to the broader class of network games with linear saturated best
response as in (9). This includes, e.g., games with player set V, action space Ai = [0,wi], for every
player i in V, and utility functions in the form

ui(x) =ϕi

(
xi− ci +

∑
j 6=i

Pjixj

)
, (10)

for a continuous function ϕi :R→R that is increasing on (−∞,0] and decreasing in [0,+∞) [11].
Notice that (8) is a special case of (10) with ϕi(y) =−y2/2.

3. Structural properties of network equilibria While existence of network equilibria is
guaranteed for every network (P,w) and exogenous flow c, as discussed in Section 1, their uniqueness
or multiplicity and more generally the structure of the network equilibrium set X remain more
delicate issues, as also illustrated in the following simple example.

Example 1. Consider a network (P,w) with n= 2,

P =

[
1 1
0 1

2

]
, w=

[
2
1

]
,

and the exogenous flow

c=

[
0
−1

]
.
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1

0 1 23/2

x2

x1

Figure 1. Set of network equilibria for the network in Example 1.

In this case, the fixed-point equation (2) reads

x1 = S2
0(x1) , x2 = S1

0(x1 +x2/2− 1) , (11)

and the set of network equilibria is then

X =
{(
t,S1

0(2t− 2)
)

: 0≤ t≤ 2
}
, (12)

as displayed in Figure 1.

In the rest of this section, we study structural properties of the set of network equilibria X for a
network (P,w) with exogenous flow c, i.e., for the set of solutions of the fixed-point equation (2).
Specifically, the contribution of this section is threefold. First, we exploit the fact that the network
equilibrium set X can be interpreted as the set of Nash equilibria of the n-player supermodular
game with utilities as in (8) and we establish a number of results concerning the lattice structure
of X and its monotone dependence on the exogenous flow c. Second, we review some classical
results on the spectral theory of non-negative matrices and derive some additional properties of
the set of network equilibria X for a special class of non-expansive networks. Third, we introduce a
fundamental partition of the node set into three subsets and prove that such partition is invariant
with respect to the entire set of network equilibria for non-expansive networks. We wish to remark
that, while the results concerning the lattice structure hold true in general for every network (P,w),
the rest of the results are instead deeply connected to the finer spectral assumptions on the matrix
P (cf. Definition 1) and do not hold true for general networks. In particular, such results involve
properties of the network equilibrium set that will play a crucial role in the following sections.

3.1. Lattice properties of the set of network equilibria For a network (P,w) and an
exogenous flow c, consider the following recursion on the complete lattice Lw0 :

x(t+ 1) = Sw0 (P>x(t) + c) , t≥ 0 . (13)

Notice that equation (13) can be interpreted as the update rule of a synchronous best response
dynamics for the supermodular game with utilities as in (8). The following proposition gathers a
number of results on the network equilibria set X that follow from [26] as a direct consequence of
such game-theoretic interpretation.

Proposition 1. Consider a network (P,w) and an exogenous flow c and let X be the cor-
responding set of network equilibria. Let x(t), for t = 0,1, . . . , be the sequence generated by the
recursion (13) with initial condition x(0) = x0 in Lw0 . Then:

(i) X is a complete lattice in Rn. In particular, there exist a minimal network equilibrium x and
a maximal network equilibrium x in X ;
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(ii) if x0 = 0, then x(t) is non-decreasing and limx(t) = x as t grows large;
(iii) if x0 =w, then x(t) is non-increasing and limx(t) = x as t grows large;
(iv) both x and x are monotone non-decreasing functions of the exogenous flow c in Rn, of the

matrix P in Rn+, and of the upper saturation vector w in Rn+.

Remark 1. Observe that the recursion (13) can be implemented as a distributed iterative
algorithm, whereby at every time t= 0,1, . . ., each node i in V updates in parallel its state xi(t) to

xi(t+ 1) = Swi0

(∑
j
Pjixi(t) + ci

)
.

Notice that such update only requires each node i to observe the current states xj(t) of its in-
neighbors {j ∈ V : Pji > 0} and the total complexity of each iteration of (13) is of the order of the
number of links in the network, i.e., the number of non-zero entries of P .

We now make some more refined considerations on the convergence time. Consider the recursion
(13) with the initial condition x(0) = 0 and let t−i = inf{t ≥ 0 : xi(t) = wi} for every i = 1, . . . , n.
By Proposition 1 (ii), whenever t−i < +∞ we have xi(t) = wi for every t ≥ t−i . Analogously, by
considering the recursion (13) this time with the initial condition x(0) =w and letting t+i = inf{t≥
0 : xi(t) = 0} for i = 1, . . . , n, Proposition 1 (iii) guarantees that, whenever t+i < +∞ we have
xi(t) = 0 for every t≥ t+i . Observe that, since x≥ x, we necessarily have that at most one between
(and possibly neither of) t−i and t+i is finite. Let ti = min{t−i , t+i } for all i= 1, . . . , n. Then, when
t∗ = max{ti : 1≤ i≤ n}<+∞, we have a unique network equilibrium x∗ = x= x with every entry
saturated from either below or above and convergence in finite time t∗ is guaranteed to x∗ from
every initial condition x(0) in Lw0 . In contrast, when ti = +∞ for some i convergence typically
occurs in infinite time, see Remark 6 for further considerations in this case.

3.2. Spectral properties and non-expansive networks In this subsection, we derive a
number of notions and results on non-negative matrices and introduce the notion of non-expansive
network that will play a key role in the rest of the paper. We start with the following proposition
gathering known results that can be found, e.g., in the monograph [9].

Proposition 2. Let P in Rn×n+ be a non-negative square matrix. Then:
(i) the spectral radius ρ(P ) is an eigenvalue of P and there exist vectors p and π in Rn+ \ {0}

such that
Pp= ρ(P )p , π>P = ρ(P )π> .

Such vectors are called, respectively, a right and a left dominant eigenvector of P ;
(ii) if Q is a principal square sub-matrix of P , then ρ(Q)≤ ρ(P ).

Moreover, if P is irreducible, then
(iii) the dominant eigenvectors p and π are unique up to normalization and have all positive

entries;
(iv) for every vector c in Rn such that p>c = 0, the equation x = ρ(P )P>x+ c admits infinite

solutions x in Rn;
(v) if Q is a principal proper square sub-matrix of P , then ρ(Q)<ρ(P ).

For a non-negative square matrix P in Rn×n+ , we shall consider the connected components
V1, . . . ,Vs of the associated digraph GP and refer to them as the classes of P . Upon a possible per-
mutation of the indices i= 1, . . . , n, we can always assume that the matrix P admits the following
block triangular structure

P =


P (11) P (12) · · · P (1s)

0 P (22) · · · P (2s)

0 0
. . .

...
0 0 · · · P (ss)

 , (14)
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where, for i, j = 1, . . . , l, P (i,j) in RVi×Vj+ is the sub-matrix of P obtained by keeping only rows with
index in Vi and columns with index in Vj. Notice that this is equivalent to saying that the diagonal
blocks P (ii) are irreducible and that in GP there is no link from a node in a class Vl to any node
in a class Vi with i < l. It then follows from Proposition 2 (ii) that ρ(P (ii))≤ ρ(P ). A class Vi, for
1≤ i≤ s, will then be referred to (cf. [9]) as:
• basic if ρ(P (ii)) = ρ(P );
• final if P (ih) = 0 for every h 6= i.
We can state the following result.

Proposition 3. Let P in Rn×n+ be a non-negative square matrix. Then, there exists a positive
vector v in Rn+ such that

Pv≤ v , (15)

if and only if ρ(P )< 1 or ρ(P ) = 1 and every basic class of P is final.

Proof See Appendix 6.

Observe that to every positive vector v in Rn+ we may associate the weighted l1-norm

‖x‖=
n∑
i=1

vi|xi| , x∈Cn . (16)

Clearly, the above is an absolute norm, hence a monotone norm [21]. Condition (15) implies that

‖P>x‖= v>P>|x| ≤ v>|x|= ‖x‖ , ∀x∈Cn . (17)

We introduce the following definition.

Definition 1. A network (P,w) is non-expansive if either
(i) ρ(P )< 1; or
(ii) ρ(P ) = 1 and every basic class of P is final.

Remark 2. Consider a non-expansive network (P,w) and let ‖ · ‖ be the monotone vector
norm defined by (16) for a positive vector v satisfying (15). Then, for arbitrary vectors x, x̃, c, c̃ in
Rn, we have

‖Sw0 (P>x+ c)−Sw0 (P>x̃+ c̃)‖ =
n∑
i=1

vi|Swi0 ((P>x)i + ci)−Swi0 ((P>x̃)i + c̃i)|

≤
n∑
i=1

vi|(P>x)i + ci− (P>x̃)i− c̃i|

≤
n∑
i=1

vi|(P>(x− x̃))i|+
n∑
i=1

vi|ci− c̃i|

= ‖P>(x− x̃)‖+ ‖c− c̃‖

≤ ‖x− x̃‖+ ‖c− c̃‖ ,

(18)

where the first inequality above follows from monotonicity of the weighted l1-norm ‖ · ‖ and the
last one from (17). This property justifies the terminology introduced in Definition 1.

Remark 3. A special class of non-expansive networks is provided by those networks (P,w)
such that the matrix P is (row) sub-stochastic, that is a matrix P ∈Rn×n+ where the sum of the
elements in each row never exceeds 1, i.e., P1≤ 1. Indeed, for a sub-stochastic matrix P , it can be
easily checked that ρ(P )≤ 1 and that if ρ(P ) = 1 then every basic class is necessarily final. Notice
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that in the literature it is often assumed that sub-stochastic matrices have the additional property
that for at least one row there is strict inequality. Here we prefer not to follow this convention and
in this way our class of sub-stochastic matrices contains also the stochastic matrices that are those
for which P1= 1.

Remark 4. It is worth pointing out that existence of a (not necessarily monotone) vector
norm ‖ · ‖ on Cn such that (17) holds true can be guaranteed under slightly weaker assumptions
than those in Definition 1. Specifically [23] shows that this is equivalent to that either ρ(P ) < 1
or ρ(P ) = 1 and the geometric multiplicity of every eigenvalue λ of P with |λ|= 1 is equal to its
algebraic multiplicity. In fact, notice that, when ρ(P ) = 1, that every basic class of P is final implies
that the geometric multiplicity of every eigenvalue λ of P with |λ| = 1 is equal to its algebraic
multiplicity, but not vice versa. For a counterexample, take P as in Example 1: there P has unitary
spectral radius and λ= ρ(P ) = 1 is a simple eigenvalue, with algebraic and geometric multiplicities
both equal to 1, however, there are two classes, V1 = {1} and V2 = {2}, the first of which is basic
but not final.

In fact, such stricter condition (ii) in Proposition 3 in the case when ρ(P ) = 1 ensures not only
existence of a vector norm ‖ · ‖ on Cn such that (17) holds true, but also that such a vector norm
can be chosen as a weighted l1-norm (16). It is exactly the monotonicity of such a norm that allows
one to show that non-expansiveness is preserved when composing the affine map P>x+ c with the
nonlinear saturation Sw0 ( · ), as in (18).

3.3. Invariance property of network equilibria In this subsection, we show that the set
of network equilibria X of every non-expansive network presents a relevant invariant property that
will play a key role in the uniqueness results presented in the next section.

Consider an arbitrary network (P,w) with exogenous flow c. For a network equilibrium x in X ,
we can always introduce the following partition of the node set V = {1,2, . . . , n}:

V = Vx− ∪Vx+ ∪Vx0 , (19)

where
• Vx+ =

{
i∈ V : ci +

∑
k 6=iPkixk >wi

}
is the set of surplus nodes;

• Vx0 =
{
i∈ V : 0≤ ci +

∑
k 6=iPkixk ≤wi

}
is the set of exposed nodes;

• Vx− =
{
i∈ V : ci +

∑
k 6=iPkixk < 0

}
is the set of deficit nodes.

Observe that, by the way these sets have been defined, it directly follows that

xi = 0 , ∀ i∈ Vx− ,

xi =wi , ∀ i∈ Vx+ ,

xi = ci +
∑

j 6=iPjixj , ∀ i∈ Vx0 .

(20)

We now show that, if the network (P,w) is non-expansive, then partition (19) is invariant with
respect to the chosen network equilibrium. This is stated in the following, which is the key result
of this section and will be instrumental to all our future derivations.

Theorem 1. For a non-expansive network (P,w) and any exogenous flow c in Rn, the partition
(19) is invariant over all equilibria x in X .

Proof We shall consider the maximal network equilibrium x and any another network equilibrium
x in X and show that they share the same node partition (19). To begin with, notice that, since
x≥ x, we have Vx+ ⊇ Vx+ and Vx− ⊆ Vx−. Let us split nodes in five different classes, C1,C2,C3,C4,C5,
corresponding to the possible cases in which the entries of the network equilibria x and x can differ
and are precisely defined as follows:
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• C1 = Vx+ is the set of nodes that are surplus for both equilibria;
• C2 = Vx+ \ Vx+ is the set of nodes that are surplus for x but not for x;
• C3 = Vx0 ∩Vx0 is the set of nodes that are exposed for both equilibria;
• C4 = Vx0 \ Vx0 is the set of nodes that are exposed for x and deficit for x;
• C5 = Vx− is the set of nodes that are deficit for both equilibria.

We shall write any vector y in Rn in a block form y= (y(1), y(2), y(3), y(4), y(5)) and for simplicity of
notation indicate Q(ij) := (P>)CiCj for i, j = 1, . . . ,5. Notice that x(1) = x(1) = w(1), x(5) = x(5) = 0,
and

w(2) = x(2) <
4∑
k=1

Q(2k)x(k) + c(2), x(2) ≥
4∑
k=1

Q(2k)x(k) + c(2) , (21)

x(3) =
4∑
k=1

Q(3k)x(k) + c(3), x(3) =
4∑
k=1

Q(3k)x(k) + c(3) , (22)

x(4) =
4∑
k=1

Q(4k)x(k) + c(4), 0 = x(4) >
4∑
k=1

Q(4k)x(k) + c(4) . (23)

Put z = x− x ≥ 0 and notice that, for classes C1 and C5 we have that z(1) = z(5) = 0. For the
remaining blocks, using (21), (22), and (23), we obtain

z(2) <
4∑
k=2

Q(2k)z(k) , z(3) =
4∑
k=2

Q(3k)z(k) , z(4) <
4∑
k=2

Q(4k)z(k) . (24)

Now, assume by contradiction that C2 ∪C4 6= ∅, so that the above would imply that

z � P>z . (25)

Since the network is non-expansive, by Proposition 3 there exists a positive vector v such that (15)
holds true. Together with (25), this would imply that

v>z < v>P>z ≤ v>z ,

thus leading to a contradiction. This implies that necessarily C2 = C4 = ∅, so that z = 0, thus showing
invariance of the node partition (19) with respect to the network equilibria x in X .

We gather some immediate consequences of Theorem 1 in the following result.

Corollary 1. Let (P,w) be a non-expansive network. Then, for every exogenous flow c, there
exists a partition of the node set

V = V+ ∪V0 ∪V− , (26)

such that, indicated with z = (z(+), z(0), z(−)) the corresponding block decomposition of a vector z in
Rn and with P (αβ) = P|Vα×Vβ for α,β =−,0,+,

(i) for every network equilibrium x in X

x(−) = 0 , x(0) = P (00)>x(0) +P (+0)>x(+) + c(0) , x(+) =w(+) ; (27)

(ii) for every two network equilibria x and y in X ,

x(−) = y(−) , x(+) = y(+) . (28)



Massai, Como, and Fagnani: Equilibria and Systemic Risk in Saturated Networks
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

Corollary 1 implies that uniqueness can always be tested by simply looking at those entries of
the network equilibria that belong to V0 and that such entries solve a linear system of equations.
However, the outstanding difficulty in the analysis of the equilibrium set X stems from the fact
that the partition (26) is not known a priori, a problem that will be dealt with in the next section.

Remark 5. The necessity of the additional assumption that every basic class of P is final for
networks (P,w) where P is non-stochastic and ρ(P ) = 1 is illustrated by Example 1. In the network
considered there, P has two classes: {1} that is basic but not final and {2} that is final but not
basic. In fact, it is easily seen from (11) and (12) that, while node 1 is always exposed for every
network equilibrium x in X , node 2 is:
• a deficit node for every network equilibrium x in X− = {(t,0) : 0≤ t < 1};
• an exposed node for every network equilibrium x in X0 = {(t,2t− 2) : 1≤ t≤ 3/2};
• a surplus node for every network equilibrium x in X+ = {(t,1) : 3/2< t≤ 2}.

Therefore, partition (19) is clearly equilibrium-dependent in this case. As already pointed out in
Remark 4 in this case the matrix P has unitary spectral radius and its eigenvalue λ= ρ(P ) = 1 has
algebraic and geometric multiplicities both equal to 1. This shows that, when ρ(P ) = 1, the weaker
condition that λ= 1 has algebraic multiplicity equal to its geometric multiplicity is not sufficient
for the conclusions of Theorem 1 and Corollary 1 to hold true and the stricter assumption that
every basic class be final is required.

Remark 6. For a non-expansive network, consider once again the recursion (13) and, for
i = 1, . . . , n, let ti be defined as in Remark 1. Assume that ti = +∞ for some i and let t∗ =
max({0}∪ {ti : ti <+∞}). Then, by combining the considerations in Remark 1 with Theorem 1 we
get that the recursion (13) started in x(0) = 0 and x(0) =w respectively determines partition (26)
by time t∗. Indeed, the surplus, deficit, and exposed nodes are exactly those i= 1, . . . , n such that
xi(t

∗) =wi, xi(t
∗) = 0, 0<xi(

∗)<wi, respectively, for the sequence x(t) generated by the recursion
(13) started in an arbitrary initial condition x(0) in Lw0 . Notice that, once such partition has been
determined, in order to find all network equilibria, one is simply left to solve the linear system

xi = ci +
∑
j 6=i

Pjixj , ∀ i∈ V0 ,

with boundary conditions xi = 0 for all i in V− and xi =wi for all i in V+, something that can be
performed in finite time using standard algorithms for linear systems, e.g., Gaussian elimination.

4. Geometry and uniqueness of network equilibria In this section, we undertake a
fundamental geometric study of the set of network equilibria and, in particular, we derive necessary
and sufficient conditions for their uniqueness. We shall first consider two relevant special cases:
• when the matrix P is asymptotically stable, i.e., such that ρ(P )< 1 (Proposition 4);
• when P is irreducible and such that ρ(P ) = 1 (Proposition 5).

Then, we build on these two cases in order to prove a general result (Theorem 2) on the geometric
structure of the network equilibrium set X for every network (P,w) such that P has spectrum
contained in the closed unitary disk.

Proposition 4. For a network (P,w) such that ρ(P )< 1 and every exogenous flow c in Rn,
there exists a unique network equilibrium x.

Proof Let x and y in X be two network equilibria and put ∆ = x− y. We know from Corollary
1 (ii) that ∆i = 0 for every i in V− ∪ V+. The proof is finished if V0 = ∅. Otherwise, let z in RV0
and Q in RV0×V0 be the restrictions of ∆ to V0 and of P to V0 ×V0, respectively. It then follows
from Corollary 1 (i) that z satisfies the equation z =Q>z. By Proposition 2 (ii), ρ(Q)≤ ρ(P )< 1,
so that the matrix (I −Q) is invertible and thus z = 0. Therefore, x= y.
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We now study the case of networks (P,w) with P irreducible and such that ρ(P ) = 1. The
following result gives an explicit characterization of the condition of non-uniqueness as well as a
representation of the set of network equilibria.

Proposition 5. Let (P,w) be a network such that P is irreducible and ρ(P ) = 1. Let π and p
be, respectively, left and right dominant eigenvectors of P , as in Proposition 2 (i). Then, for every
exogenous flow c, there exists more than one network equilibrium in X if and only if

p>c= 0, min
i

{
νi
πi

}
+ min

i

{
wi− νi
πi

}
> 0 , (29)

where ν is any solution of the equation ν = P>ν+c (cf. Proposition 2 (iv)). Moreover, in this case,
the set of network equilibria is given by

X =

{
x= ν+απ : −min

i

{
νi
πi

}
≤ α≤min

i

{
wi− νi
πi

}}
. (30)

Proof We first analyze the solution on Rn of the non-saturated linear system

x= P>x+ c . (31)

Left multiplying by the vector p, we obtain

p>x= p>P>x+ p>c= p>x+ p>c

so that, for solutions of (31) to exist, it must hold true that p>c= 0. On the other hand, if condition
p>c= 0 is satisfied, since P is irreducible, Proposition 2 (iii) and (iv) ensure that the set of solutions
of (31) is an affine line

H= {x= ν+ tπ : t∈R} . (32)

where ν is any solution of (31). Notice that solutions of the linear system (31) that belong to the
complete lattice Lw0 are necessarily network equilibria, i.e., H∩Lw0 ⊆ X . Moreover, observe that
H∩Lw0 coincides with the right-hand side of (30) and that condition (29) is equivalent to saying
that H∩Lw0 is a segment of strictly positive length.

We are now ready to prove the statements of the theorem. Suppose first that there are multiple
equilibria, i.e., |X |> 1. Since P is irreducible, the only class of GP is basic and final, so that Theorem
1 implies that the node set partition (26) is common to all network equilibria. If V−∪V+ 6= ∅, since
V0 is a proper subset of V, Proposition 2 (v) guarantees that the restriction Q of P to V0×V0 has
spectral radius smaller than 1. Arguing exactly as in the proof of Proposition 4, we then deduce
that |X | = 1 thus reaching a contradiction. Therefore, necessarily V = V0. In this case, it follows
from Corollary 1 (i) that all network equilibria are solutions of (31), i.e., H ∩ Lw0 = X . By our
previous considerations, since this set is nonempty, the condition p>c= 0 must hold true. Moreover,
|X |> 1 implies that H∩Lw0 must be a segment of positive length that, as previously observed, is
equivalent to the second condition in (29).

Suppose now that the conditions in (29) hold true. Then previous considerations imply that
H∩Lw0 ⊆X is a segment of positive length. Non-uniqueness of network equilibria is thus proven.

Finally, notice that, if any of the two equivalent conditions hold, then H∩Lw0 = X and this is
equivalent to representation (30).

Remark 7. The result above has a simple geometric interpretation in part already exploited
in the proof. Assuming that p>c = 0, the line H defined in (32) is the set of solutions of the
non-saturated linear system (31). The non-uniqueness condition (29) is simply the condition that
this line intersects the interior part of the lattice Lw0 and the set of equilibria in this case is the
segment obtained by this intersection. The minimal and maximal equilibria are the boundary points
of this interval. We notice that the arguments used in the proof also show that, in the case of
non-uniqueness, necessarily all nodes must be exposed nodes, namely V = V0.
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Figure 2. The network of Example 2.

Below, we report an explicit calculation of the network equilibria for a three-dimensional network
and two possible exogenous flows, respectively yielding uniqueness and multiplicity of network
equilibria.

Example 2. Consider the network (P,w) where

P =

 0 0.75 0.25
0 0 1

0.3 0.7 0

 , w=

5
3
2

 .
Notice that the matrix P is stochastic and irreducible, hence we can take p= 1. The associated
graph GP is depicted in Figure 2. We analyze uniqueness for two possible exogenous flows

c(1) = [−1,1,0]> c(2) = [−2,2,0]> .

First of all, notice that p>c(1) = p>c(2) = 0. Moreover, a direct computation shows that

min
i

{
ν1i
πi

}
+ min

i

{
wi− ν1i
πi

}
≈ 1.60> 0

min
i

{
ν2i
πi

}
+ min

i

{
wi− ν2i
πi

}
≈−6.41< 0.

(33)

By Proposition 5 we deduce that for the flow c(1) there are multiple equilibria, while for the flow
c(2) the equilibrium is unique. The set of network equilibria X in the two cases is shown in Figure
3. Notice how in the first case the line H has a non-trivial intersection with the complete lattice
Lw0 that is the segment of network equilibria. In contrast, in the second case, the line H does not
intersect the complete lattice Lw0 and the unique network equilibrium is a single point lying on the
boundary of the lattice as some of its entries xi are necessarily saturated at either 0 or wi.

We now study the structure of network equilibria and give a full characterization of uniqueness
in the general case of networks (P,w) where P is an arbitrary non-negative matrix with spectral
radius ρ(P )≤ 1 and w is an arbitrary non-negative vector. Our analysis relies on the partition of
the node set in the classes of P

V = V1 ∪ · · · ∪ Vs (34)

and on the corresponding triangular structure of P as described in (14).

Theorem 2. Consider a network (P,w) such that ρ(P )≤ 1, and an exogenous flow c. Let (34)
be the classes of P and assume that P is in the block triangular structure (14). Indicate the related
split of a vector y in Rn as y = [y(1), . . . , y(s)]>. Then, the network equilibria x in X iteratively
satisfy the following properties:

(i) the projection x(l) on a class Vl such that ρ(P (ll))< 1 is unique;
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(a) The network (P,w) with exogenous flow c(1)

admits multiple equilibria (the black thick segment).
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(b) The network (P,w) with exogenous flow c(2)

admits a unique equilibrium (the black dot).

Figure 3. Sets of network equilibria for Example 2.

(ii) given (x(1), . . . , x(l−1)), the projection x(l) on a class Vl such that ρ(P (ll)) = 1 is non-unique
if and only if

p(l)>

(
c(l) +

∑
1≤i<l

P (il)>x(i)

)
= 0 , (35)

and

min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
+ min

i∈Vl

{
wi− ν(l)i
π
(l)
i

}
> 0 , (36)

where
• p(l) = P (ll)p(l) is any right dominant eigenvector of the block P (ll);
• π(l) = P (ll)>π(l) is any left dominant eigenvector of the block P (ll);
• ν(l) = P (ll)>ν(l) +

∑l

i=1P
(jl)>x(i) + c(l).

Moreover, in this case, given [x(1), . . . , x(l−1)]>, the projection x(l) of any equilibrium satisfies

x(l) = ν(l) +απ(l) , −min
i∈Vl

{
ν
(l)
i

π
(l)
i

}
≤ α≤min

i∈Vl

{
wi− ν(l)i
π
(l)
i

}
. (37)

Proof It follows from (2) and the block triangular structure of P (14) that network equilibria
satisfy the iterative relations

x(l) = Sw
(l)

0

(
P (ll)>x(l) +

∑
0≤i<l

P (il)>x(i) + c(l)

)
, l= 1,2, . . . , s . (38)

The above says that the projection x(l) on the class Vl can be interpreted as a network equilibrium
for the network (P (ll),w(l)) and exogenous flow

∑
i<lP

(il)>x(i) + c(l). The claim then follows from
Propositions 4 and 5.

Notice that, as Proposition 1 gives an efficient iterative way of computing the network equilibrium
when this is unique, Theorem 2 provides an explicit way of computing, in an iterative way, the
entire lattice of network equilibria X in the general case when ρ(P )≤ 1.

Remark 8. In the special case when the network is non-expansive (this includes the case when
P is stochastic or sub-stochastic) Theorem 2 admits an important simplification. Indeed, in this
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Figure 4. The set of network equilibria X for the network discussed in Remark 9 as a function of the exogenous
flow c.

case either ρ(P )< 1, and then one can use Proposition 4 directly to compute the unique network
equilibrium (e.g., by using (13) as a distributed iterative algorithm, cf. Remark 1), or ρ(P ) = 1 and
the basic classes are final so that we can always assume that in the partition (34) they are the last
ones. Precisely, in the latter case, we can assume that

ρ(P (ll))< 1 for l≤m, ρ(P (ll)) = 1 for m< l≤ s . (39)

The projection (x(1), . . . , x(m)) of the network equilibria x on the first m classes is unique. For each
basic class Vl, with m< l≤ s, the non uniqueness condition of the projection x(l) is given by

p(l)>

(
c(l) +

∑
1≤i≤m

P (il)>x(i)

)
= 0 , (40)

together with (36). We notice that these conditions only depend on (x(1), . . . , x(m)). In other words,
once the solution on the non-basic classes is computed, the check of uniqueness and the parametriza-
tion of the solutions in case of non-uniqueness in the various basic classes are completely decoupled.

Remark 9. Notice that our analysis has mostly focused on networks (P,w) with spectral radius
ρ(P )≤ 1. In fact, Theorem 2 provides a complete description of the set of network equilibria X in
this case. It is worth stressing out that, for networks with ρ(P )> 1, while X remains a nonempty
complete lattice as per Proposition 1, its geometry can differ quite significantly in this case. In
fact, consider a simple example with a single node, P = 2, and w= 1. Then, depending of the value
of the exogenous flow c in R the set of network equilibria is

X =


{0} if c <−1

{0,−c,1} if −1≤ c≤ 0

{1} if c > 0 ,

(41)

as illustrated in Figure 4. In particular, notice that for values of the exogenous flow c in M =
[−1,0], there are multiple isolated network equilibria, specifically |X |= 2 for c=−1 and |X |= 3
for −1 < c < 0. This is in stark contrast with the case ρ(P ) ≤ 1, where Theorem 2 in particular
implies that, when the network equilibrium is not unique, there is in fact a continuum of network
equilibria.

5. Continuity of network equilibria and the lack thereof In this section, we study the
dependence of the network equilibria of a given network (P,w) on the exogenous flow c. This
analysis is crucial to study the way exogenous shocks affect the payment equilibria in financial net-
works (cf. Section 2.1) or the individual marginal benefits affect the Nash equilibrium in quadratic
network games (cf. Section 2.2).
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Let us consider a given network (P,w) and use the notation

X (c), x(c), x(c)

to emphasize the dependence of, respectively, the set of network equilibria, and the maximal and
minimal network equilibrium on the exogenous flow c. Moreover, let

U = {c∈Rn : |X (c)|= 1} , M=Rn \U , (42)

be the subsets of exogenous flows for which the network equilibrium is unique and, respectively,
there are multiple network equilibria. For exogenous flows c in U , we shall also use the notation

x(c) = x(c) = x(c)

for the unique equilibrium.
The following result gives a complete picture of the behavior of the set of network equilibria X (c)

as a function of the exogenous flow c. It shows that the set of exogenous flows M for which the
network equilibrium is not unique has Lebesgue measure 0 and is contained in the union of a finite
number of graphs of continuous functions. Moreover, the network equilibrium x(c) is a piece-wise
continuous function of the exogenous flow c that undergoes jump discontinuities when c crosses
the non-uniqueness set M.

Theorem 3. For a network (P,w) such that ρ(P )≤ 1, let m be number of basic classes of P
and let U and M be defined as in (42). Then,

(i) the non-uniqueness set M has Lebesgue measure 0 and is contained in the closed set consist-
ing of the union of at most m graphs of scalar continuous functions;

(ii) the map c 7→ x(c) is continuous on the uniqueness set U ;
(iii) for every exogenous flow c∗ in M,

lim inf
c∈U
c→c∗

x(c) = x(c∗) , limsup
c∈U
c→c∗

x(c) = x(c∗) .

Proof We start with a preliminary computation that will prove useful in the following derivations.
Consider a sequence c(1), c(2), . . . of exogenous flows in Rn such that

c(t)
t→+∞−→ c∗ , x(c(t))

k→+∞−→ x∗ . (43)

Since

x(c(t)) = Sw0
(
P>x(c(t)) + c(t)

)
,

for all t= 1,2, . . ., passing to the limit in both sides of the above, by continuity we get that

x∗ = Sw0
(
P>x∗+ c∗

)
,

thus showing that x∗ belongs to X (c∗). In particular, this implies that

x(c∗)≤ x∗ ≤ x(c∗) . (44)

Arbitrariness of the sequence satisfying (43) and (44) imply that

x(c∗)≤ lim inf
c∈U
c→c∗

x(c)≤ limsup
c∈U
c→c∗

x(c)≤ x(c∗) (45)
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In particular, for every exogenous flow c∗ in U , we have that x(c∗) = x(c∗) and then relation (45)
yields point (ii) of the claim.

Consider now the partition (34) of the node set into the classes of P and assume without loss
of generality that P is in the block triangular structure (14). As usual, we indicate the relative
split of any vector y in Rn as y = [y(1), . . . , y(s)]>. Assume that l1 < · · ·< lm are the indices among
{1, . . . , s} corresponding to the basic classes Vl1 , . . . ,Vlm . For a fixed j, we consider the projection
of the set of equilibria on V1∪· · ·∪Vlj−1. Notice that, because of the triangular structure of P , such
projected set depends on c= [c(1), . . . c(s)]> only through the sub-vector [c(1), . . . c(lj−1)]>. Suppose
that for a given c and for a given j, such projected set is a singleton and indicate the projected
block components of such equilibrium as x(i)([c(1), . . . c(lj−1)]) for i = 1, . . . , lj − 1. It then follows
from Theorem 2 that a necessary condition for the projection of the equilibria on V(lj) not to be
unique, is that

p(lj)>

c(lj) +
∑
i<lj

P (ilj)>x(i)[c(1), . . . c(lj−1)]

= 0 (46)

Now, define the sets Uk,Mk ⊆RV1∪···∪Vlk as follows:

Uk = {[c(1), . . . , c(lk)] : [c(1), . . . c(lj)] does not satisfy (46) ∀j ≤ k} ;

Mk = {[c(1), . . . , c(lk)] : [c(1), . . . c(lj)]∈ Uj ∀j ≤ k− 1,and (46) is satisfied for j = k} .
(47)

Put M̃k =Mk×RVlk+1∪···∪Vm and notice that the considerations above imply that

M⊆
m⋃
k=1

M̃k (48)

Applying item (ii) to the restricted network consisting of the nodes in V1 ∪ · · · ∪ Vlk we deduce
that, for every i= 1, . . . , lk, the functions x(i)([c(1), . . . c(lk)]) are continuous on the set Uk. This fact,
together with the definition of Mk and the form of condition (46), allows us to conclude that Mk

is the graph of a continuous function defined on Uk−1 ×RVlk\{sk} where sk is any element in Vlk .
An analogous conclusion then holds true for M̃k. This proves (i).

We are now left with proving (iii). Let c∗ in M be an exogenous flow giving rise to multiple
equilibria and define the sequence of exogenous flows c(t) as follows:

c(i)(t) = c∗(i)− 1

t
p(i) ∀ i= 1, . . . , s .

where p(i) is any right dominant eigenvector of the block P (ii) We claim that c(t) necessarily belongs
to U for sufficiently large t. Indeed, a simple iterative argument shows that, if t is sufficiently large,
[c(1)(t), . . . c(lk)(t)]∈ Uk for every k and therefore c(t) 6∈ M̃k for every k. The claim then follows from
(48). Since c(t)≤ c∗ for every t= 1,2, . . ., it follows from Proposition 1 (iv) that

x(c(t)) = x(c(t))≤ x(c∗) .

Using relation (45), we deduce that

lim inf
c∈U
c→c∗

x(c) = x(c∗) . (49)

An analogous argument allows us to prove the other relation in (iii) concerning the limsup.

For the special case of non-expansive networks (P,w), we are able to characterize the maximum
discontinuity jump of the network equilibrium as the exogenous flow c varies in Rn, as stated in
the following result.
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Corollary 2. For a non-expansive network (P,w), consider the partition (34) of the node set
into the classes of P and let the block triangular structure of P be as in (14). Let π(l) be any left
dominant eigenvalue relative to P (ll). Then,

(i) for every exogenous flow c, indicated with

Lc = {l= 1, . . . , s | Vl is basic and (40) is satisfied}

the norm of the jump discontinuity of the network equilibrium at c can be expressed as

‖x(c)−x(c)‖pp =
∑

l=1,...,s:
l∈Lc

[min
i∈Vl

wi− ν(l)i
π
(l)
i

+ min
i∈Vl

ν
(l)
i

π
(l)
i

]+p

‖π(l)‖pp , (50)

where ν(l) is defined in Theorem 2.
(ii) the maximum jump discontinuity norm is for c= 0 and is given by

max
c∈Rn
‖x(c)−x(c)‖pp = ‖x(0)−x(0)‖pp =

∑
l=1,...,s:
Vl basic

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp , (51)

Proof Formula (50) directly follows from Theorem 2 by virtue of the non-uniqueness condition
(35) as modified in (40) and the structure of solutions as expressed in (37). From (50), we obtain
that

‖x(c)−x(c)‖pp ≤
∑

l=1,...,s:
l∈Lc

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp ≤

∑
l=1,...,s:
Vl basic

(
min
i∈Vl

wi

π
(l)
i

)p
‖π(l)‖pp

On the other hand, since for c= 0 every l for which Vl is a basic class belongs to Lc, and since we
can choose ν(l) = 0, formula (50) yields (51).

A few comments are in order. First, notice that, for networks such that ρ(P ) = 1, Theorems 2 and
3 ensure that the network equilibrium is generically unique and at the same time characterize the
setM of exogenous flows inducing multiple network equilibria. As a function of the exogenous flow
c, the network equilibrium x(c) is proven to be a piece-wise continuous function (it is also monotone
in c thanks to Proposition 1) with jump discontinuities occurring exactly when crossing the non-
uniqueness set M. For the relevant family of non-expansive networks, Corollary 2 establishes an
explicit formula for the value norm of these jumps. For networks with ρ(P ) < 1, Proposition 5
guarantees that the network equilibrium x(c) is unique for every value of the exogenous flow c and,
in this case, it is a monotone continuous function of it.

Another relevant observation is that the multiplicity of network equilibria for networks (P,w)
with spectral radius ρ(P ) = 1 and particular exogenous flows c∗ can also be interpreted as an
indicator of high sensitivity in the dependence of the network equilibrium x̃(c) of networks (P̃ ,w)
with spectral radius ρ(P̃ )< 1 that are sufficiently close to the nominal network (P,w). This is first
illustrated by the following simple example.

Example 3. Consider the family of networks (P (ε),w), indexed by ε∈ [0,1), with n= 2 nodes
and

P (ε) =

[
1− ε 1

0 1/2

]
, w=

[
2
1

]
.

Notice that for ε ∈ (0,1) we have ρ(P (ε)) = max{1− ε,1/2} and for every exogenous flow c in R2

there exists a unique network equilibrium x(ε)(c) with entries

x
(ε)
1 (c) = S2

0(c1/ε) , x
(ε)
2 (c) = S1

0(2c2 + 2S2
0(c1/ε)) .
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On the other hand, for ε = 0 we recover the same network as in Example 1, with ρ(P (0)) = 1.
For such network, the set of exogenous flows giving rise to multiple equilibria is the whole line
M= {(0, t) : t∈R}. It is then clear as the sensitivity of the first entry of the network equilibrium
satisfies

∂xε1
∂c1

(0+, c2) =
1

ε

ε↓0−→+∞ ,

for every c1 in R.

We conclude this section by discussing implications of our results in the two main motivating
applications presented in Section 2.

5.1. Systemic risk in financial networks Consider the generalized Eisenberg and Noe
financial network model introduced in Section 2.1. In order to measure the aggregated effect of a
shock, it is useful to introduce a risk measure known as systemic loss [38]. Let c◦ be a nominal
exogenous flow for which all nodes in the financial network are fully liable, i.e., such that x(c◦) =
w. The, let c ≤ c◦ be the exogenous flow after a shock has negatively affected the assets and
external credits of some of the financial entities in the network and let x(c) be a corresponding
network equilibrium. As in Subsection 2.1, let the net worth vectors before and after the shock be,
respectively, v◦ = P>w+ c◦−w and v= P>x(c) + c−w. Then, the systemic loss is defined as their
aggregate difference

l (c◦, c) := 1
> (v◦− v) = 1

>
(
P
>
w+ c◦−w−

(
P
>
x(c) + c−w

))
= 1

>
(c◦−c)+1

>(w−x(c)) . (52)

In the rightmost side of the expression above, the term 1
>(c◦−c) represents the direct loss inflicted

by the shock, while 1>(w− x(c)) represents the indirect loss triggered by reduced payments and
is also referred to as shortfall term. Then, we may apply (52) and Theorem 3 (iii) to obtain the
following expression for the size of the jump discontinuity of the systemic loss at some point c= c∗:

∆l (c∗) := limsup
c∈U
c→c∗

l (c◦, c)− lim inf
c∈U
c→c∗

l (c◦, c) = ‖x(c∗)−x(c∗)‖1 . (53)

Explicit estimates of the expression above can then be obtained using formula (50) in Corollary 2.
Systemic loss jumps are expected to play a crucial role in the resilience analysis of the financial net-
work as they will often be associated to important failure events where several nodes simultaneously
lose their liability, as illustrated in the example below.

Example 4. Consider the financial network of Example 2. (Figure 2). The setM of exogenous
flows giving rise to multiple network equilibria is plotted in Figure 5. Consider an initial exogenous
flow c◦ = [5,2,2]> and a perturbation of it c= c◦− εq, where q = [0.07,0.59,0.34]>, and ε ∈ [0,14].
A straightforward computation, using condition of Proposition 5, implies that the only case where
we have multiple equilibria is for ε= 9 corresponding to the exogenous flow c∗ = [4.4,−3.3,−1.1]>

for which
∆l(c∗) = min

i
{νi/πi}+ min

i
{(wi− νi)/πi} ≈ 4.44> 0

The loss function and the equilibrium x as functions of ε are plotted in Figure 6. In particular,
Figure 6 (a) shows how the loss function varies piece-wise linearly until ε= 9, where it undergoes
the jump discontinuity of size ∆l(c∗). On the other hand, from Figure 6 (b) we can notice that
all nodes are solvent for ε < 6.5 while for ε≈ 6.5 node 2 goes bankrupt as its outflow falls below
w2 = 3. As the shock magnitude increases, we reach the discontinuity point at ε = 9 where the
network suffers a dramatic crisis as nodes 1 and 3 suddenly default. Notice in particular how node
3 goes from fully solvent (x3 =w3) to completely insolvent (x3 = 0) as the shock crosses the critical
threshold ε= 9.
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5.2. Sensitivity of Nash equilibria in constrained quadratic network games In the
literature, the constrained quadratic games introduced in Section 2.2 are often studied [11] with
the matrix P parameterized as P (δ) = δG where G is some fixed matrix encoding the network
interconnections and δ > 0 is a parameter describing the strength of the network interaction among
the agents. If we put δ∗ = ρ(G)−1, we have that ρ(δG)< 1 for δ < δ∗. While Proposition 5 implies
that, for every fixed δ < δ∗, the network equilibrium is unique and continuous in the exogenous flow
c, its sensitivity to the variations of c may grow unbounded when δ approaches δ∗. As it turns out,
this occurs when the limit network has multiple equilibria. Indeed, we have the following result
showing that in this case, arbitrarily small variations in the exogenous flow c will determine, for δ
close to δ∗, a variation in the equilibrium of the size of the set of equilibria for the limit case δ= δ∗.

Corollary 3. For an irreducible matrix G in Rn×n+ and a vector w in Rn+, and δ in (0, δ∗],
where δ∗ = 1/ρ(G)−1, let P (δ) = δG and let x(δ)(c) and x(δ)(c) to be the minimal and maximal
network equilibrium of the network (P (δ),w) with exogenous flow c in Rn. Also, write x(δ) for the
network equilibrium when it is unique. Let c∗ be an exogenous flow such that the (P δ∗ ,w) has
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multiple network equilibria. Then,

sup
δ<δ∗

sup
c :‖c−c∗‖≤ε

‖x(δ)(c)−x(δ)(c∗)‖ ≥ ‖x(δ∗)(c∗)−x(δ∗)(c∗)‖> 0 , (54)

for every monotone norm ‖ · ‖ and every ε > 0.

Proof It follows from the comparative statics in Proposition 1 (iv) that, for δ < δ∗,

x(δ)(c∗)≤ x(δ∗)(c∗)� x(δ∗)(c∗) . (55)

Let p be any left dominant eigenvector of G and thus of all P (δ). It then follows from Proposition
5 that,

x(δ∗)(c∗+ εp) = x(δ∗)(c∗+ εp) , ∀ε > 0 ,

and thus, by Theorem 3 and Proposition 1 (v) again,

lim
δ↓δ∗

x(δ)(c∗+ εp) = x(δ∗)(c∗+ εp)≥ x(δ∗)(c∗) . (56)

For every monotone norm ‖ · ‖, (55) and (56) imply that

lim
δ↓δ∗
‖x(δ)(c∗+ εp)−x(δ)(c∗)‖ ≥ ‖x(δ∗)(c∗)−x(δ∗)(c∗)‖> 0 ,

so that (54) holds true for every ε > 0.

6. Conclusion This paper has analyzed network equilibria modeled as the solutions of a lin-
ear fixed point equation with saturation non-linearities. Necessary and sufficient conditions for
uniqueness and a general expression describing all such equilibria for a general network with spec-
tral radius not larger than 1 have been proved. Finally, the dependence of the network equilibria on
the exogenous flows in the network has been studied highlighting the existence of jump discontinu-
ities. This model was first considered to determine clearing payments in the context of networked
financial institutions interconnected by obligations and it is one of the simplest continuous model
where shock propagation phenomena and cascading failure effects may occur. It also describes
the Nash equilibria of constrained quadratic network games with strategic complementarities. Our
results contribute to an in-depth analysis of such applications.

The understanding of the extent to which the network topology determines the structure of
the solutions as well the possibility of these cascading effects to occur is still not sufficiently
understood. As a future project, we aim at studying this for random networks with prescribed
degree distributions.
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[8] Belhaj M, Bramoullé Y, Deröıan F (2014) Network games under strategic complementarities. Games
and Economic Behavior 88:310–319.

[9] Berman A, Plemmons R (1994) Nonnegative matrices in the mathematical sciences. Classics in Applied
Mathematics (SIAM).

[10] Bonacich P (1987) Power and centrality: A family of measures. American Journal of Sociology
92(5):1170–1182.
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Appendix. Proof of Proposition 3

We start with the following result.

Lemma 1. Let P in Rn×n+ be a non-negative square matrix such that
• there exists a non-negative vector v 6= 0 such that Pv≤ v;
• for every i= 1, . . . , n, there exists a path in GP connecting i to some j such that (Pv)j < vj.

Then, ρ(P )< 1.

Proof Notice that, for every h≥ 0, P hv ≤ v, so that, for t≥ h, non-negativity of P t−h implies
that (P tv) = P t−hP hv ≤ P hv. On the other hand, existence of a length-li path from i to j in GP
is equivalent to that (P li)ij > 0. Therefore, if there exists a length-li path in GP from i to some j
such that (Pv)j < vj, then, for every t > li,

(P tv)i ≤ (P li+1v)i =
n∑
k=1

(P li)ik(Pv)k =
n∑
k=1

(P li)ikvk < (P liv)i ≤ vi .

Therefore, with t = 1 + maxi li, we have (P tv)i < xi for every i. Since xi > 0 for every i, we
can find ε > 0 such that P tv ≤ (1− ε)v. This implies that limP tm = 0 as m grows large and thus
ρ(P t)< 1. This yields ρ(P )< 1.

We can now proceed to the proof of Proposition 3.
First, we prove existence of a positive vector v satisfying (15) for every non-expansive network.

We proceed by induction on the number s of classes of P . If s= 1, i.e., P if is irreducible, the result
follows from Proposition 2 (iii). Now, assume that the result holds true for s− 1 and let us prove
it for s. Consider the block structure (14) and notice that by the inductive hypothesis we can find
vectors x(l) of dimension |Vl| for l= 2, . . . , s with all positive entries such that

s∑
h=l

P (lh)v(h) ≤ v(l) .
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We now show that we can find α> 0 and x(1) of dimension |V1| with all positive entries, such that

P (11)v(1) +α
s∑
j=2

P (1j)v(j) ≤ v(1) . (57)

Indeed, if ρ(P (11)) < 1 this simply follows from a continuity argument. Instead, if ρ(P (11)) = 1,
then since P (11) is irreducible, it admits a positive right dominant eigenvalue v(1) = P (11)v(1) by
Proposition 2 (iii). On the other hand, since V1 is final, we have that P (1h) = 0 for every h= 1, . . . , s,
so that (57) is satisfied as an equality for all possible values of α> 0. This implies that the vector
v= (v(1), . . . , v(s−1), v(s)) has all positive entries and satisfies Pv≤ v.

Finally, we prove that, existence of a positive vector v satisfying (15) implies that the network is
non-expansive. From (15), using the fact that all entries of v are strictly positive, we deduce that
P t is a bounded sequence, so that ρ(P ) ≤ 1. Now, assume that Vl is a non final class such that
ρ(P (ll)) = 1. Indicating as usual with v(l) the restriction of v to Vl, we obtain the relation

P (ll)v(l) +
s∑

h=l+1

P (lh)v(h) ≤ v(l)

from which we deduce that P (ll)v(l) � v(l). Since P (ll) is irreducible, we can apply Lemma 1 and
conclude that ρ(P (ll))< 1.
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