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Abstract. The advent of Industry 4.0 has boosted the usage of innovative tech-
nologies to promote the digital transformation of manufacturing realities, espe-
cially exploiting the possibilities offered by cyber physical systems and virtual 
environments (VEs). Digital Twins (DTs) have been widely adopted to virtually 
reproduce the physical world for training activities and simulations, and today 
they can also leverage on the integration of Machine Learning (ML), which is 
considered a relevant technology for industry 4.0. This paper investigates the us-
age of a combination of DT and ML technologies in the context of a real produc-
tion environment, specifically on the creation of a DT enhanced with YOLO (You 
only look once), a state-of-the-art, real-time object detection algorithm. The ML 
system has been trained with synthetic data automatically generated and labelled 
and its performance enables its usage in the VE for real-time users training.  
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1 Introduction 

The advent of the Fourth Industrial Revolution has boosted the usage of innovative 
technologies to promote the digital transformation of manufacturing realities, improv-
ing the automation of traditional industrial practices and processes. Nowadays, factories 
should leverage digitalization to become flexible towards strong products customiza-
tion and adaptive to unexpected events.  

Among these relevant technologies, Digital Twins (DTs) have been widely adopted 
to virtually reproduce the physical world and to integrate real environments with their 
digital counterpart [1]. DTs can enhance manufacturing systems in many ways: they 
can be used to improve the system’s predictions of future states by combining simula-
tion models and real data; their simulations can support decision-making tasks, process 

 
 



optimization and commissioning of production operations; a virtual simulation with a 
precise reproduction of a real-world process would improve remote assistance, could 
be adopted to train technicians, and could be exploited for maintenance procedures.   

Machine Learning (ML) is another crucial technology to improve the automation of 
manufacturing systems: it can extract useful insights through a training process on large 
volume datasets and then exploit the acquired knowledge in real case situations [2]. A 
relevant challenge in the training process is the availability of huge, labelled datasets 
consisting of high-quality data. To overcome this challenge, simulation tools could be 
exploited to automatically generate large datasets of quality data for training ML mod-
els, both in a cost and time-effective way, alleviating the need for real world data. Now-
adays, digital simulations which integrate ML mechanism based on synthetic data have 
not been widely researched and a few papers explore this scenario. This contribution 
describes the development and deployment of a DT of a production line for assembling 
skateboards. The physical line has been deployed at the Competence Industry Manu-
facturing 4.0 (CIM 4.0) Center, a research center located in Turin which aims to provide 
the strategic and operative support tools for manufacturing-oriented enterprises toward 
the digital transformation of industrial processes accordingly to the Industry 4.0 vision. 
The production line exploits an image-processing algorithm to assist a collaborative 
robot (cobot) in a pick and place task. Since this step of the procedure relies on an 
obsolete contour detection image processing algorithm, it turned out to be prone to er-
rors. The DT is then exploited to simulate and evaluate a novel image-processing ap-
proach based on a convolutional neural network (CNN) trained with a synthetic dataset 
which can provide real-time performances, thus enabling the DT to be used for real-
time immersive virtual reality simulations.  

The remaining of this paper is organized as follows: section 2 explores the state of 
the art for the proposed research topic. Section 3 provides a detailed description of the 
design and development of the proposed Digital Twin. Section 4 illustrates the system 
evaluations, with a focus on the CNN performances assessment. Section 5 summarizes 
the paper contents and suggests possible future works. 

2 Previous Works 

Recent advancements in information technologies have been proven to have wide 
applications in smart manufacturing [4]. The adoption of artificial intelligence, en-
hanced algorithms and virtualization of production lines in manufacturing-oriented en-
terprises can lead to real-time, self-organized control and coordination of the industrial 
process through digitization and simulations [5]. DTs have been exploited in many 
ways to enforce the innovation process defined through the Industry 4.0 paradigm. Ni-
kolakis et al. [6] proposed a DT framework to optimize the planning and commissioning 
of production process through simulation. Tao et al. [1] reported several DT applica-
tions which have been successfully applied in manufacturing processes to reduce costs 
and to improve performance. ML has been exploited as well as DT to improve manu-
facturing processes. CNNs, whose main purpose consists of image processing and anal-
ysis, have been widely adopted in industry for: automatic defect identification [7], sys-
tem optimizations [8], product diagnostics [9], classification tasks [10], and for part 
detection and recognition in robotic manipulation tasks [11]. Moreover, advances in 



computer graphics are shifting the dataset creation paradigm for training ML models 
towards synthetic datasets: Gaidon et al. [12] generated a photo-realistic dataset of vir-
tual environments for transport. Dekhtiar et al. [13] used CAD datasets to train a deep 
neural network for mechanical component recognition in industrial environments. Dah-
men et al. [14] proposed a syntetic dataset to perform defects detection in optical in-
spection systems. Alexopoulos et al. [3] proposed a framework for implementing DT 
models for training ML models. However, they also highlight the lack of concrete im-
plementations of real use cases investigating the validity of DT-driven ML systems. 
The topic of generating synthetic datasets from DTs is not widely discussed in litera-
ture, especially in association with manufacturing systems. 

3 System Design and Development 

The aim of this work is to create a DT of a demonstrative industry 4.0 production 
line for assembling skateboards. The purpose of the DT is manifold, since it will be 
used to 1) visualize, navigate and inspect the production line through immersive Virtual 
Reality (VR), 2) train technicians to correctly interact and operate the different technol-
ogies and their interaction interfaces and 3) test and evaluate possible upgrades to the 
physical line in a VE prior to implementing them in the real world. The line process 
consists of four macro steps: 1) the technician starts the process selecting through a user 
interface the color for the wheels, the trucks, and the board; 2) then he/she picks the 
components from an automatic warehouse and positions them on the production pal-
let; 3) a robotic manipulator performs a pick and place task to assemble the skate-
board; 4) the technician completes the skateboard assembly fastening all the screws in 
the last step. 

3.1 The Physical Production Line  

The physical production line consists of three main assets which are shown in Fig. 1: 1) 
a Modular Intralogistic Organizer  (MIO) by Comau, which operates as an automated 
warehouse, 2) a Virtual Guidance Interactive Learning   (Vir.GIL) system by Comau, 
a complex system which combines together different technologies to provide digital 
guidance to the user, and 3) a Racer 5  by Comau, a 6-axis articulated robotic manipu-
lator with a 5 kg payload, designed to ensure both industrial efficiency while providing 
safe, barrier-free operations.  
The MIO rotates its eight shelves providing, one at a time, all the parts required to 
assemble the skateboard. The Vir.GIL system guides the operator through the prepara-
tion of the production pallet: a laser pointer and vocal hints suggest where and how to 
correctly place the components. For the third step of the procedure, the pallet is manu-
ally moved by the operator from the Vir.GIL workbench to the Racer 5, which starts 
picking each component and assembling the skateboard. Since the position of the 
wheels is not fixed and the cobot needs to detect their precise locations to correctly pick 
them up, an image processing algorithm tries to detect their position searching a circular 
shape in a given frame of the pallet. Then, if the precision is higher than 80%, the sys-
tem is confident on the wheel position and proceeds with the pick and place operations. 
Finally, the operator moves back the pallet to the Vir.GIL station to fasten the screws. 



 

Fig. 1. The MIO (left), the Vir.GIL (center), and the Racer 5 (right).  

3.2 The System Architecture 

The proposed DT was developed and deployed on a workstation equipped with an Intel 
Core i7 CPU, an NVIDIA GeForce Quadro 4000 Graphic Card and 128 GB RAM with 
dual boot for either Windows 10 or Ubuntu 20.04 LTS. The DT was developed in 
Unity 3D on Windows: the SteamVR plugin enables the application to run on the HTC 
VIVE Pro (2018) immersive Virtual Reality headset, whereas the Barracuda plugin is 
used to integrate the neural network, exported in the Open Neural Network Exchange 
(ONNX) format, into Unity 3D. The ML system was deployed on Ubuntu using Dark-
net, an open-source neural network framework written in C and CUDA. The Darknet 
framework was deployed to use You Only Look Once (YOLO), a state-of-the-art, real-
time object detection system, to recognize the pose of the wheels for the pick and place 
task. To this end, it was necessary to install the Nvidia Cuda Toolkit, the Cuda Deep 
Neural Network library and the OpenCV library. The synthetic dataset used to train the 
Neural Network was generated through Blender, an open-source 3D modeling software. 
Unity 3D is a state-of-the-art game engine, widely used due to its cross-platform capa-
bilities and its compatibility with novel technologies such as the HTC VIVE. Since the 
purpose of the DT is the training of an operator, Unity 3D provides a simple and intui-
tive framework for creating a complex VR interactive experience. 

3.3 Digital Twin Development 

The DT was developed retrieving the 3D models for all the physical assets and objects 
of the production line. The wheels, board, trucks, and screws of the skateboard have 
been modelled in Blender. The main goal of the DT is to offer an interactive experience; 
thus, it was necessary to recreate all the interactions and actions available in the real 
environment. The DT enables the user to navigate the virtual space, to grab the skate-
board components and the pallet, and to operate the Racer 5, the MIO and the Vir.GIL. 
The MIO and the Racer 5 cobot behaviors have been virtualized through a combination 
of scripting and custom animations created in Blender. The vocal hints provided by the 
Vir.GIL were translated into visual hints in the form of 2D pop up displaying the in-
structions and bouncing 3D arrows to highlight the points of interest on the workbench. 
A snapshot of the final DT is shown in Fig. 2. 



 

Fig. 2. A snapshot of the final digital twin production line.  

3.4 Object Detection Through Real-Time CNN 

The third step of the process involves the pick and place task performed by the Racer 5. 
The current vision system tries to detect the wheels position searching their shape in 
the framed image. However, the system cannot distinguish between face up and face 
down wheels, thus, when the pallet is placed under the cobot the wheels may be on the 
wrong side. To improve the pick and place task and make it robust to this type of errors, 
YOLO has been deployed to correctly detect the wheels. YOLO has been proven to be 
extremely fast and accurate [15] and it allows to easily tradeoff between speed and 
accuracy simply by changing the size of the model, without retraining the whole neural 
network. After deploying YOLO, the synthetic dataset used for this research was gen-
erated with Blender, using the wheel digital model created for the DT. A python script 
has been developed to automatically produce high-quality renders exploiting Blender’s 
Eevee render engine. YOLO should be able to recognize 3 classes: wheel top, wheel 
back and wheel side. Thus, the script created 150 rendering for each class, for a total 
of 450 images with resolution 960 × 540 pixels (as depicted in Fig. 3). To make the 
detection system more reliable and flexible, variation have been introduced for each 
class in term of colors and camera perspective. For each render the script annotates 
(within a .txt file) the label for the class, the x-axis and y-axis coordinates, the width 
and height for each object.  
 

 

Fig. 3. Samples of the training dataset (left) and of the validation dataset (right).  

To start the training phase, it is necessary to setup the configuration file, where it is 
possible to define the number of classes (3), epochs (6000), filters (24) and the size of 
the images taken as input (416 × 416 pixels). Those parameters have been fine-tuned 
through numerous tests on the specific dataset to achieve optimal performances. The 
input size is different from that of the synthetic dataset because the original renders are 



modified in the data augmentation step performed by the proposed detection system, 
which enlarges the training dataset by a large number of variations obtained through 
cropping, scaling and other visual artifacts and transformations applied to the original 
images. A validation dataset is defined to compute the mean Average Precision (mAP) 
of the neural network (two samples are depicted in Fig. 3). The training process is 
started through a shell prompt, and it takes about twelve hours to complete. Once the 
training phase was completed, the model was tested with both images and a video of 
the real production line. The YOLO system grabs each frame of the video, makes the 
prediction, and shows the result as a new, labelled video. To use the trained neural 
network in the DT Unity 3D application it was necessary to convert it to the Open Neu-
ral Network Exchange (ONNX) standard, an open format for ML models which allows 
to easily interchange models between various ML frameworks and tools. Through the 
ONNX, the DT can perform the object detection on a snapshot of the wheels taken with 
an invisible camera in the VE, at the same position and perspective of the real one. The 
result of the detection will be a tensor, a container that stores data in N-dimensions. The 
trained YOLO system generates an output of dimension 24 × 52 × 52 containing the 
results of the detection, given by the bounding boxes and the confidence of the detec-
tion. For each object detected in the input image, the output tensor stores the x-axis 
coordinate, the y-axis coordinate, width, and height. After filtering these results by se-
lecting the ones with higher confidence, it is possible to draw the corresponding bound-
ing boxes to the snapshot used as input, using different colors to distinguish the three 
classes (top, back, side). Fig. 4 shows an example of real-time detection. 
 

 

Fig. 4. An example of real-time detection on the real pallet.  

Inside the VE, a GUI panel displayed near the cobot shows at each frame both the ac-
quired snapshot and the detection result, whereas the user can restart the detection by a 
button (e.g., after correcting the pose of a misplaced wheel). The ONNX module is able 
to run YOLO and give back the results in about 2 seconds, which is a reasonable delay 
for testing the behavior of the cobot inside the DT.   

4 System Evaluation 

Due to the Covid-19 Pandemic, it was not possible to statistically evaluate the DT 
system by end user tests. However, the DT has been tried by both researchers and tech-
nicians from the CIM 4.0 competence center and has been assessed through interviews 
as a proper and complete digitalization of the physical production line.  



Moreover, the YOLO detection system allowed to test an enhancement of the phys-
ical line, overcoming a limitation of the real model. In regards of the YOLO object 
detection system, the accuracy has been estimated by calculating the mAP during the 
training phase. The mAP compares the ground-truth bounding box to the detected box 
and returns a score. The higher the score, the more accurate the model is in its detection. 
For this purpose, a validation dataset of 55 images (labelled using YOLO mark) taken 
from the real world has been defined. Every 4 epochs of the training phase the AP is 
being calculated using images from validation dataset. Fig. 5 shows the loss function in 
blue and the mAP trend in red. The loss function is very high at the beginning, but it 
rapidly decreases as the model learns how to detect the wheels. The mAP increases 
during the epochs, and it reaches its maximum value nearby the 2400 epoch. The vali-
dation dataset and the corresponding trend of mAP are useful to select meaningful pa-
rameters for the detection system configuration. In this case, the mAP indicates that the 
best weights are around the 3000th step of the training phase. Testing the model in the 
real environment, with the weights obtained in the dataset validation step and the input 
from an industrial camera, proved that the system can achieve an accuracy of 85%. 

   

Fig. 5. Average Precision (red line) and loss function (blue line).  

5 Conclusions and Future Works 

The proposed research describes the development and deployment of a Digital Twin of 
a production line for assembling skateboards, which combines different recent technol-
ogies and image-processing algorithms, especially to assist a cobot in a pick and place 
task. Since this step of the procedure relies on a detection approach prone to errors, the 
DT was exploited to simulate and evaluate a possible upgrade for the production line. 
To overcome this limitation, the DT integrates YOLO, a state-of-the-art, object detec-
tion system based on a CNN trained on synthetic data, which provides real-time perfor-
mances for real-time immersive VR simulations. Overall, all the technologies provided 
in the physical line have been successfully digitalized in the DT, resulting in a compel-
ling and valuable tool that will be used to visualize, navigate and inspect the production 



line through immersive VR and to train technicians. The proposed upgrade to the im-
age-processing system clearly enhances the system reliability and will lead to a physical 
update of the real-world system. Future works will be aimed at further testing and eval-
uating upgrades to the physical line in the VE prior to deploying them in the real world. 
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