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Abstract: In this paper, we consider a delayed counterpart of the mathematical pendulum
model that is termed sunflower equation and originally was proposed to describe a helical
motion (circumnutation) of the apex of the sunflower plant. The “culprits” of this motion are,
on one hand, the gravity and, on the other hand, the hormonal processes within the plant,
namely, the lateral transport of the growth hormone auxin. The first mathematical analysis
of the sunflower equation was conducted in the seminal work by Somolinos (1978) who gave,
in particular, a sufficient condition for the solutions’ boundedness and for the existence of a
periodic orbit. Although more than 40 years have passed since the publication of the work by
Somolinos, the sunflower equation is still far from being thoroughly studied. It is known that
a periodic solution may exist only for a sufficiently large delay, whereas for small delays the
equation exhibits the same qualitative behavior as a conventional pendulum, and every solution
converges to one of the equilibria. However, necessary and sufficient conditions for the stability
of the sunflower equation (ensuring the convergence of all solutions) are still elusive. In this
paper, we derive a novel condition for its stability, which is based on absolute stability theory of
integro-differential pendulum-like systems developed in our previous work. As will be discussed,
our estimate for the maximal delay, under which the stability can be guaranteed, improves the
existing estimates and appears to be very tight for some values of the parameters.
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1. INTRODUCTION

The general theory of delay systems has been thoroughly
studied in the recent decades (Bellman and Cooke, 1963;
Halanay, 1966; Hale, 1977; Burton, 1985; Fridman, 2014).
The most studied problems of delay systems theory are
concerned with the existence and uniqueness of solu-
tions, time-domain and frequency-domain stability condi-
tions for linear time-invariant and periodic delay systems,
and nonlinear stability theory based on the Lyapunov-
Krasovskii functionals and Razumikhin’s techniques.

In spite of enormous progress achieved in analysis and con-
trol of delay systems, dynamics of relatively simple delay
systems remains insufficiently studied. In this paper, we
consider one of such systems, being a delayed counterpart
of the usual pendulum and known as the sunflower equa-
tion. This mathematical model was proposed to portray
helical movements of the tip of a growing plant studied
by botanists since the beginning of 19th century (Israels-
son and Johnsson, 1967; Somolinos, 1978; Casal and So-
molinos, 1982). The non-trivial plant’s motion is caused
by hormonal processes in the plant, namely, non-uniform
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accumulation of the growth hormone (auxin) under the
influence of gravity. The key parameter of the equation is
the geotropic reaction time, that is, the time lag between
the plant’s inclination from the vertical and the growth
hormone gradient (Somolinos, 1978). For a sufficiently
small time lag the asymptotic behavior of the sunflower
equation mimics the behavior of the pendulum (Burton,
1985, Section 2.2.2): all solutions converge to equilibria
and no periodic orbits exist. The periodic solution exists,
however, if the delay belongs to some interval that depends
on the equation’s parameters (Somolinos, 1978). Periodic
solutions can be found via e.g. the harmonic balance
method (McDonald, 1995; Liu and Kalmár-Nagy, 2010).

The theory of sunflower equation has been developed in
many different directions, we mention only a few of them.
Casal and Somolinos (1982) examined the entrainment
of plant oscillations by periodic exogenous forces. Kulen-
ović and Ladas (1988) showed that the conditions for the
periodic orbit existence, established in Somolinos (1978),
in fact ensure the oscillatory behavior of every solution:
the plant crosses the vertical infinitely many times (these
oscillations, however, may decay over time). Lizana (1995)
considered the counterpart of the sunflower equation on
a cylinder and showed that such a system has a global
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attractor (the maximal compact invariant set that attracts
every orbit). Bisconti and Spadini (2015) analyzed a gen-
eralized sunflower equation with periodic coefficients and
found non-trivial properties of the manifold spanned by
periodic trajectories. Recent works (Wei and Huang, 1997;
Zhang and Zheng, 2006; Li, 2009) are devoted to advanced
bifurcation analysis of the sunflower equation.

In this paper, we return to the original problem examined
by Somolinos (1978), namely, the existence of periodic
solutions. The criterion from (Somolinos, 1978) relates
the properties of the nonlinear sunflower equation and its
linearization about zero equilibrium. It is shown in (So-
molinos, 1978) that the periodic solution is born through
the Hopf bifurcation when the delay passes through some
critical value, at which the linearized equation loses its
stability. The results of numerical simulations reported
in (Somolinos, 1978) suggest that the original sunflower
equation is “stable” when the delay is below this critical
margin (more formally, all its solutions converge and no
periodic solution exists). This conjecture, to the best of
the authors’ knowledge, still has not been proved; and a
gap between sufficient stability conditions (see e.g. Burton
(1985)) and the necessary stability condition still exists.
In this paper, we substantially reduce this gap by deriving
a novel stability condition for the sunflower equation.
This condition is based on our recent work (Smirnova
and Proskurnikov, 2019), which, in turn, advances V.M.
Popov’s approach to absolute stability theory and pro-
vides sufficient stability conditions for a class of infinite-
dimensional systems with periodic nonlinearities.

2. PRELIMINARIES. PROBLEM SETUP.

Following the notation from (Somolinos, 1978), the sun-
flower equation is written as follows

ẋ(t) = − b

r

∫ t−r

−∞
exp

(
−a

t− r − τ

r

)
sinx(τ)dτ. (1)

A more elegant form of the sunflower equation, usually ex-
amined in the literature, is obtained by differentiating (1)
with respect to t and is as follows

rẍ(t) + aẋ(t) + b sinx(t− r) = 0. (2)

As can be easily seen, every bounded solution of (2)
defined for t ∈ (−∞,∞) (in particular, all periodic so-
lutions) obeys the integral equation (1), however, formally
equation (2) is a more general than (1).

The equation (2) involves three positive constants a, b, r >
0. The constant r > 0 quantifies the delay in hormone
transport. The problem first addressed in (Somolinos,
1978) is to find the range of r for which the system (2) has
a periodic solution. More generally, one may be interested
in the behavior of (2) for different triples a, b, r.

2.1 Stability under small delays

When r → 0, the second-order equation (2) degenerates
into the first-order equation

aẋ(t) + b sinx(t) = 0, (3)

which is featured by the gradient-like behavior (Leonov
et al., 1992): each solution converges to one of the equilib-
ria x = πk. It can also be proved by using the quadratic

Lyapunov function V (x) = (x− 2πk)2 that every solution
starting in the region of initial conditions x(0) ∈ (2πk −
π, 2πk + π) with k being integer, converges to 2πk (being
a stable equilibrium of (3)) as t → ∞. Constant solutions
x ≡ 2πk + π stand for the unstable equilibria.

One can expect that the gradient-like behavior is enjoyed
by equation (2) for r > 0 being small. This statement
appears to be correct, as shown by the following.

Lemma 1. (Burton, 1985, Section 2.2.2) Equation (2) is
featured by the gradient-like behavior (all solutions con-
verge to equilibria 1 ) whenever a, b > 0 and r is such that

0 < r < r∗
∆
=

a

2b
. (4)

Lemma 1 is proved (Burton, 1985) by using the Lyapunov-
Krasovskii functionals. As we will show in Section 3,
in fact estimate (4) is rather conservative and can be
tightened. Unlike (Burton, 1985), our method does not rely
on the Lyapunov methods and employs frequency-domain
stability criteria established in (Leonov et al., 1992, 1996)
and generalized in (Smirnova and Proskurnikov, 2019).

2.2 A linearized equation and periodic orbits

The properties of nonlinear equation (2) are closely related
to the behavior of its linearization at the equilibrim x ≡ 0,
that is, the linear delay equation

ẍ(t) +
a

r
ẋ(t) +

b

r
x(t− r) = 0. (5)

The linearized equation has been examined in (Somolinos,
1978). It was shown that a critical margin r0 = r0(a, b)
exists such that (5) is stable 2 when r < r0 and unstable
when r > r0. The critical case r = r0 corresponds to
neutral stability: the characteristic equation

λ2 +
a

r
λ+

b

r
e−rλ = 0 (6)

acquires a pair of imaginary roots λ1,2 = ±ıω0, where ω0 ∈
(0, π/2). Hence, r0 and ω0 are related by the equations

ω2
0 = br0 cosω0, aω0 = br0 sinω0. (7)

Since ω/ sinω ∈ (1, π/2) whenever ω ∈ (0, π/2), we have
a

b
< r0 <

πa

2b
.

Using the seminal Hopf birufcation theorem (Somolinos,
1978; Li, 2009; Wei and Huang, 1997) that a periodic
orbit is born as delay passes through the critical value
r = r0, and hence the periodic solutions exist when
r → r0, r > r0. A non-trivial result by Somolinos (1978)
shows, furthermore, that a periodic orbit exists when

r0 < r < r1
∆
=

πa2

b(a+ 1)
. (8)

Furthermore, it was shown in (Wei and Huang, 1997) that
a solution of period ≥ 2r exists provided that

r0 < r < r2
∆
=

πa

b
− 1

a
=

(1 + a)r1 − 1

a
and a > b. (9)

1 It was also shown in (Burton, 1985) that (4) provides that ẋ ∈
L2[0,∞) for every solution.
2 It is evident that if (5) is stable, then the equilibria 2πk, k =
0,±1,±2, . . . of the nonlinear equation are locally stable. It can be
easily shown that the remaining equilibria π+2πk are exponentially
unstable for any choice of the delay r ≥ 0.

If a > b and r1 > 1, then r2 > r1 and hence the
result by Wei and Huang (1997) outperforms the result
by Somolinos (1978), giving a broader range of delays in
which the periodic orbit’s existence is ensured.

2.3 Problem in question: stability for “medium” delays

In this paper, we are interested in the behavior of sunflower
equation (2) in the range of “medium” delays such that
r∗ < r < r0. The numerical results reported in (Somolinos,
1978) (for special parameters a, b) suggest that the equa-
tion has no periodic orbits as 0 < r < r0, and the equation
is featured by the gradient-like behavior. To the best of
the authors’ knowledge, the validity of this statement for
r ∈ [r∗, r0) remains an open problem. In this paper, we
take a step towards stability analysis in this delay range.

Using techniques developed in our previous work (Smirnova
and Proskurnikov, 2019), we derive a frequency-domain
inequality ensuring stability of (2) (which allows, in par-
ticular, to improve the result of Lemma 1). Whereas an-
alytic validation of this frequency-domain inequality can
be troublesome, it can be efficiently tested numerically. It
appears, in particular, that for the numerical parameters
reported in (Somolinos, 1978), the value of r0 is indeed
very close to the maximal delay under which the stability
is guaranteed by our criterion.

3. NEW RESULTS: FREQUENCY-DOMAIN
STABILITY CRITERION

For our purposes, it is convenient to consider an integro-
differential equation including (2) as a special case

ẋ(t) = α(t)−
∫ t

0

g(t− τ) sinx(τ)dτ ∀t ≥ 0,

g(t)
∆
=




b

r
e−a t−r

r t ≥ r,

0, t < r.

(10)

where α(t) can be an arbitrary exponentially decaying
function, |α(t)| ≤ ce−λt, c, λ > 0. Henceforth, integral
equation (10) is referred to as the sunflower equation.

Equation (10) has a structure typical for many control sys-
tems and may be considered as a feedback superposition 3

of the exponentially stable linear block

ẋ(t) = α(t)−
∫ t

0

g(t− τ)x(τ)dτ ∀t ≥ 0 (11)

and the nonlinear feedback characteristics is ϕ(σ) =
sin(σ). To examine equation (10), we employ a frequency-
domain criterion from (Smirnova and Proskurnikov, 2019).

3.1 A frequency-domain stability criterion

First, we need to introduce some notation. Follow-
ing (Smirnova and Proskurnikov, 2019), we introduce the

3 Systems of such a structure are sometimes called “pendulum-
like” (Leonov et al., 1992). They are also termed “synchronization
systems” or “synchronous control” systems (Leonov, 2006; Lindsey,
1972; Hoppensteadt, 1983; Leonov and Kuznetsov, 2014), because
they describe a broad class of control circuits (e.g. phase- and
frequency-locked loops) providing synchronization of oscillators.

transfer function of the linear block (11) from the input
(−ξ) to ẋ, which, in our situation, is given by

K(p) =

∫ ∞

0

g(t)e−pt dt =
b

r

e−pr

p+ a
r

, p ∈ C.

Lemma 2. (Smirnova and Proskurnikov, 2019, Lemma 3)
Consider a system (11), where the function ϕ(·) is C1-
smooth, ∆-periodic (ϕ(σ) = ϕ(σ+∆)) with finite number
of zeros over the period, obeys the slope restrictions α1 ≤
ϕ′(σ) ≤ α2 ∀σ and has the zero average over the period∫∆

0
ϕ(σ) dσ = 0. Assume that α, g exponentially decay as

t → ∞. Suppose also that inequality holds

Re
{
κK(ıω)− ε|K(ıω)|2−
−
[
K(ıω) + ıωα−1

1

]∗
τ
[
K(ıω) + ıωα−1

2

] }
− δ ≥ 0 ∀ω

for some parameters κ ∈ R, δ > 0, τ, ε ≥ 0. Then every
solution of (11) converges to one of the equilibria

ϕ(x(t)) −−−→
t→∞

0, ẋ(t) −−−→
t→∞

0.

Furthermore, ϕ(x(·)) ∈ L2[0,∞), which also implies, in
view of (11), that ẋ ∈ L2.

Applying Lemma 2 to linear block (11) and the nonlinear-
ity ϕ(x) = sinx (corresponding to α1 = −1, α2 = 1), one
obtains the following convergence criterion.

Corollary 3. Assume that parameters κ ∈ R, δ > 0, τ, ε ≥
0 exist such that the frequency-domain inequality holds

Π(ω)
∆
= ReκK(ıω)− (τ + ε)|K(ıω)|2 + τω2 ≥ δ ∀ω ≥ 0.

(12)
Then, every solution of integral equation (10) converges to
some equilibrium point, that is,

ẋ(t) −−−→
t→∞

0, x(t) −−−→
t→∞

2πk, k ∈ {0,±1,±2, . . .}.

Furthermore, ẋ(·), sinx(·) ∈ L2[0,∞).

3.2 An equivalent form of the frequency-domain condition

To reduce the number of free parameters in the stability
criterion, notice that

ReK(ıω) =
b(cosωr − ı sinωr)

ıωr + a
=

b(a cosωr − ωr sinωr)

(a2 + r2ω2)
,

|K(ıω)| = b√
a2 + r2ω2

.

It is convenient to introduce a new variable ω̄ = ωr and
denote B

∆
= br. Then, (12) shapes into

κBr(a cos ω̄ − ω̄ sin ω̄)− (τ + ε)B2 + τ ω̄2(a2 + ω̄2) ≥ δ.

Substituting ω̄ = 0, it is obvious that the latter inequal-
ity can hold only for κ > 0. Rescaling the quadruple
(κ, τ, ε, δ), we may assume, without loss of generality, that
κr = 1. Also, the left-hand side converges to ∞ as ω̄ → ∞.
Hence, the latter inequality is satisfied for sufficiently small
δ, ε > 0 if and only if the condition is valid

Πτ (ω)
∆
= τω2(a2 + ω2)− τB2 +B(a cosω − ω sinω) > 0

(13)
for some parameter τ > 0 and all ω > 0 (for brevity, we
have redesignated ω̄ �→ ω). One arrives at the following.

Theorem 4. Suppose that for some parameters a, b, r > 0
a number τ > 0 exists such that the frequency-domain in-
equality (13) is fulfilled. Then, the sunflower equation (10)
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If a > b and r1 > 1, then r2 > r1 and hence the
result by Wei and Huang (1997) outperforms the result
by Somolinos (1978), giving a broader range of delays in
which the periodic orbit’s existence is ensured.

2.3 Problem in question: stability for “medium” delays

In this paper, we are interested in the behavior of sunflower
equation (2) in the range of “medium” delays such that
r∗ < r < r0. The numerical results reported in (Somolinos,
1978) (for special parameters a, b) suggest that the equa-
tion has no periodic orbits as 0 < r < r0, and the equation
is featured by the gradient-like behavior. To the best of
the authors’ knowledge, the validity of this statement for
r ∈ [r∗, r0) remains an open problem. In this paper, we
take a step towards stability analysis in this delay range.

Using techniques developed in our previous work (Smirnova
and Proskurnikov, 2019), we derive a frequency-domain
inequality ensuring stability of (2) (which allows, in par-
ticular, to improve the result of Lemma 1). Whereas an-
alytic validation of this frequency-domain inequality can
be troublesome, it can be efficiently tested numerically. It
appears, in particular, that for the numerical parameters
reported in (Somolinos, 1978), the value of r0 is indeed
very close to the maximal delay under which the stability
is guaranteed by our criterion.

3. NEW RESULTS: FREQUENCY-DOMAIN
STABILITY CRITERION

For our purposes, it is convenient to consider an integro-
differential equation including (2) as a special case

ẋ(t) = α(t)−
∫ t

0

g(t− τ) sinx(τ)dτ ∀t ≥ 0,

g(t)
∆
=




b

r
e−a t−r

r t ≥ r,

0, t < r.

(10)

where α(t) can be an arbitrary exponentially decaying
function, |α(t)| ≤ ce−λt, c, λ > 0. Henceforth, integral
equation (10) is referred to as the sunflower equation.

Equation (10) has a structure typical for many control sys-
tems and may be considered as a feedback superposition 3

of the exponentially stable linear block

ẋ(t) = α(t)−
∫ t

0

g(t− τ)x(τ)dτ ∀t ≥ 0 (11)

and the nonlinear feedback characteristics is ϕ(σ) =
sin(σ). To examine equation (10), we employ a frequency-
domain criterion from (Smirnova and Proskurnikov, 2019).

3.1 A frequency-domain stability criterion

First, we need to introduce some notation. Follow-
ing (Smirnova and Proskurnikov, 2019), we introduce the

3 Systems of such a structure are sometimes called “pendulum-
like” (Leonov et al., 1992). They are also termed “synchronization
systems” or “synchronous control” systems (Leonov, 2006; Lindsey,
1972; Hoppensteadt, 1983; Leonov and Kuznetsov, 2014), because
they describe a broad class of control circuits (e.g. phase- and
frequency-locked loops) providing synchronization of oscillators.

transfer function of the linear block (11) from the input
(−ξ) to ẋ, which, in our situation, is given by

K(p) =

∫ ∞

0

g(t)e−pt dt =
b

r

e−pr

p+ a
r

, p ∈ C.

Lemma 2. (Smirnova and Proskurnikov, 2019, Lemma 3)
Consider a system (11), where the function ϕ(·) is C1-
smooth, ∆-periodic (ϕ(σ) = ϕ(σ+∆)) with finite number
of zeros over the period, obeys the slope restrictions α1 ≤
ϕ′(σ) ≤ α2 ∀σ and has the zero average over the period∫∆

0
ϕ(σ) dσ = 0. Assume that α, g exponentially decay as

t → ∞. Suppose also that inequality holds

Re
{
κK(ıω)− ε|K(ıω)|2−
−
[
K(ıω) + ıωα−1

1

]∗
τ
[
K(ıω) + ıωα−1

2

] }
− δ ≥ 0 ∀ω

for some parameters κ ∈ R, δ > 0, τ, ε ≥ 0. Then every
solution of (11) converges to one of the equilibria

ϕ(x(t)) −−−→
t→∞

0, ẋ(t) −−−→
t→∞

0.

Furthermore, ϕ(x(·)) ∈ L2[0,∞), which also implies, in
view of (11), that ẋ ∈ L2.

Applying Lemma 2 to linear block (11) and the nonlinear-
ity ϕ(x) = sinx (corresponding to α1 = −1, α2 = 1), one
obtains the following convergence criterion.

Corollary 3. Assume that parameters κ ∈ R, δ > 0, τ, ε ≥
0 exist such that the frequency-domain inequality holds

Π(ω)
∆
= ReκK(ıω)− (τ + ε)|K(ıω)|2 + τω2 ≥ δ ∀ω ≥ 0.

(12)
Then, every solution of integral equation (10) converges to
some equilibrium point, that is,

ẋ(t) −−−→
t→∞

0, x(t) −−−→
t→∞

2πk, k ∈ {0,±1,±2, . . .}.

Furthermore, ẋ(·), sinx(·) ∈ L2[0,∞).

3.2 An equivalent form of the frequency-domain condition

To reduce the number of free parameters in the stability
criterion, notice that

ReK(ıω) =
b(cosωr − ı sinωr)

ıωr + a
=

b(a cosωr − ωr sinωr)

(a2 + r2ω2)
,

|K(ıω)| = b√
a2 + r2ω2

.

It is convenient to introduce a new variable ω̄ = ωr and
denote B

∆
= br. Then, (12) shapes into

κBr(a cos ω̄ − ω̄ sin ω̄)− (τ + ε)B2 + τ ω̄2(a2 + ω̄2) ≥ δ.

Substituting ω̄ = 0, it is obvious that the latter inequal-
ity can hold only for κ > 0. Rescaling the quadruple
(κ, τ, ε, δ), we may assume, without loss of generality, that
κr = 1. Also, the left-hand side converges to ∞ as ω̄ → ∞.
Hence, the latter inequality is satisfied for sufficiently small
δ, ε > 0 if and only if the condition is valid

Πτ (ω)
∆
= τω2(a2 + ω2)− τB2 +B(a cosω − ω sinω) > 0

(13)
for some parameter τ > 0 and all ω > 0 (for brevity, we
have redesignated ω̄ �→ ω). One arrives at the following.

Theorem 4. Suppose that for some parameters a, b, r > 0
a number τ > 0 exists such that the frequency-domain in-
equality (13) is fulfilled. Then, the sunflower equation (10)
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enjoys gradient-like behavior, that is, all its solutions con-
verge to equilibria. In particular, the equation may not
have (non-constant) periodic solutions.

Remark 5. One may notice that (13) cannot hold when
r ≥ r0, where r0 is delay corresponding to Hopf bifurcation
(see Section 2). Indeed, finding ω0 ∈ (0, π/2) from (7),
one may easily notice that a cosω0 − ω0 sinω0 = 0 and
ω2
0(ω

2
0 + a2) = b2r20 < B2 = b2r2 due to (7). For this

reason, (13) is violated at ω = ω0, no matter how τ > 0
is chosen. Our stability criterion thus allows to examine
stability of the sunflower equation for r < r0.

3.3 A sufficient analytic condition

Although analytic validation of the inequality (13) is prob-
lematic, Theorem 4 allows to derive a sufficient analytic
condition that generalizes Lemma 1. Notice that

sinω ≤ ω ∀ω ≥ 0,

cosω = 1− 2
(
sin

ω

2

)2

≥ 1− ω2

2
∀ω ≥ 0.

Hence, the inequality (13) is entailed by the following
condition

τω2(a2 + ω2)− τB2 +Ba

(
1− ω2

2

)
−Bω2 > 0, (14)

which is equivalent to

fτ (s) = τs2+

[
τa2 − aB

2
−B

]
s+(aB−τB2) > 0 ∀s ≥ 0.

The latter condition, obviously, holds in two situations

(1) τa2 − aB
2 − B ≥ 0 and aB − τB2 > 0 (then fτ (s) ≥

fτ (0) > 0);
(2) if (τa2 − aB

2 −B)2 < 4τ(aB − τB2) (then, the global
minimum of fτ is positive).

The first condition can be satisfied for some τ > 0 only if

a

B
>

(a+ 2)B

2a2
=⇒ B < a

√
2a

a+ 2
.

The second situation is possible if τ > 0 exists such that

τ2
[
a4 + 4B2

]
− τaB[a2 + 2a+ 4]+

+B2

(
1 +

a2

4
+ a

)
< 0,

which is possible if and only if a2B2[a2 + 2a + 4]2 >

4[a4 + 4B2]B2
[
1 + a2

4 + a
]

= (a4 + 4B2)B2(a+ 2)2 or,

equivalently,

8a(a3+2a2+2a) > 4B2(a+2)2 =⇒ B < a

√
2(a2 + 2a+ 2)

a+ 2
.

It can be noted that in the second situation we get a
broader range of parameters, because

a

√
2a

a+ 2
< a

√
2(a2 + 2a+ 2)

a+ 2
.

Recalling that B = br, we arrive at the following analytic
stability criteria.

Theorem 6. Suppose that the delay r is so small that

0 < r < r+
∆
=

a

b

√
2(a2 + 2a+ 2)

a+ 2
. (15)

Then, all solutions of equation (10) converge to equilibria.

As we know, r0 is the critical delay margin beyond which
the gradient-like property fails to hold, hence, we always
have r+(a, b) ≤ r0(a, b). Generally (see the next subsec-
tion), the inequality is strict, so (15) is a much stronger
condition than (13). However, it can be easily seen from (7)
that for b being fixed and a → 0+, one has

r0(a, b) =
a

b
+ o(a) = r+(a, b) + o(a) as a → 0.

In other words, the estimate (15) becomes asymptotically
tight as a → 0. As will be reported in the next section, for
parameters presented in (Somolinos, 1978), the gap r0−r+
is less than 10% of r0.

One can also see that Theorem 6 entails Lemma 1, because
r∗ = a/2b < r+ whenever a, b > 0.

3.4 Numerical validation of the frequency-domain condition

Notice that the condition r < r+ is only sufficient for
validity of the frequency-domain condition (13), which can
hold also for r > r+. As we have already noticed, (13) can
be valid only when r ∈ (r+, r0). Besides this, aB > τB2

(which is obtained by substituting ω = 0). If the latter
condition holds, then it suffices to check (13) for

ω2 ≤ Ω(a,B, τ),

Ω(a,B, τ)
∆
=

B − τa2 +
√

(τa2 −B)2 + 4τ(τB2 + aB)

2τ
.

Indeed, in view of the relation | sinω| ≤ |ω|, the left-hand
side of (13) can be estimated as

Πτ (ω) ≥ τω4 + (τa2 −B)ω2 − (τB2 + aB),

which expression is automatically positive for ω2 >
Ω(a,B, τ). These observations enable numerical validation
of (13) by sweeping the parameters r ∈ (r+, r0) and
τ ∈ (0, a/B) and finding minimum of the left-hand side

of (13) over all ω ∈ [0,
√

Ω(a,B, τ)]. As demonstrated in
the next section, in special situation this method actually
gives a very tight estimate for the range of delays, in which
stability is guaranteed.

The results on stability for different delay ranges are
summarized in Table 1.

4. NUMERICAL EXPERIMENT

In this section we consider a numerical experiment, allow-
ing to evaluate the conservatism of stability criteria.

We consider the parameters reported in (Somolinos, 1978):
a = 4.8, b = 0.186. To solve (7), we first find ω0 from

ω0 tanω0 = a,

obtaining that ω0 ≈ 1.3053. This allows to find r0 ≈
34.908 from the second equation 4 . As follows from results
obtained in (Somolinos, 1978), for r ∈ (r0, r1) the system
has a periodic orbit. The simulation shows, in fact, that
around each equilibrium x(t) ≡ 2πk a periodic attractor
exists that attracts the solutions. Fig. 1 shows 5 the
behavior of solutions corresponding to delay r = 34.908
and the initial condition x(t) = x0 = 0.5, ẋ(t) = 0 ∀t ≤ 0.
The simulation demonstrates that, in fact, in the vicinity
of equilibria 2πk several locally stable periodic orbits exist.

4 Somolinos (1978) reports an approximate value r0 = 35 .
5 To solve the delay equation (2), we use dde23 function.

Paper Delay range Type of result

Somolinos (1978) r < r0 Local stability of equilibria 2πk;
r ∈ (r0, r1) Existence of a periodic solution

Burton (1985) r < r∗ < r0 Global stability of the equilibrium set (solution convergence)
Wei and Huang (1997) r ∈ (r0, r2), r2 > r1 Existence of a solution with period ≥ 2r
This work r∗ < r < r+ Global stability of the equilibrium set (solution convergence)

r+ ≤ r < r0 Sufficient global stability condition: a frequency-domain numerical test
Remains an open problem: r > r2

Table 1. Properties of the sunflower equation for different delay ranges.

Fig. 1. The solutions converging to periodic attractors.
Top section: the solutions corresponding to x0 = 0.1
and x0 = 0.5 approach a common periodic orbit
(from, respectively, inside and outside), the solution
corresponding to x0 = 0.05 converges to another
periodic orbit. Bottom section: the steady periodic
motion corresponding to x0 = 0.5: amplitude 0.025
rad for the angle and 0.0016 rad/s for the angular
velocity. The duration of simulation is T = 4 · 105s.

We first compare the two analytic stability criteria.
Lemma 1 states that the equation is gradient-like if r <
r∗ = a/(2b) ≈ 12.903. Theorem 6 substantially improves
the latter estimate, ensuring stability for

r < r+ ≈ 31.588,

which is much closer to r0. Actually, the difference between
r+ and r0 is less than 10%. Fig. 2 demonstrates solutions
converging to equilibria 2πk, k = 0,±1.

Fig. 2. Solutions converging to equilibria (r < r+).

The numerical analysis of the frequency-domain equa-
tion (13) shows that, in fact, it holds for r < 34.9079,
so in fact Theorem 4 gives an almost tight estimate for
the critical delay margin. For instance, in the case of
r = 34.9078, the frequency-domain condition (13) holds
for τ = 0.5574. Fig. 3 shows the plot of function Πτ (ω)
in the left-hand side of (13), which attains its minimal
value minΠτ ≈ 1.37 · 10−4 at ω ≈ 1.3076. It should be

Fig. 3. Validation of the frequency-domain inequality with
r = 34.9078 and τ = 0.5574.

noticed, however, that as r approaches its critical value
r0, the convergence becomes very slow, so it is practically
impossible to validate this result numerically using the
standard DDE solvers. To obtain an explicit convergence
rate and other characteristics of the transient behavior
in pendulum-like systems is a non-trivial open problem.
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noticed, however, that as r approaches its critical value
r0, the convergence becomes very slow, so it is practically
impossible to validate this result numerically using the
standard DDE solvers. To obtain an explicit convergence
rate and other characteristics of the transient behavior
in pendulum-like systems is a non-trivial open problem.
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Numerical simulation for r = 34.9 shows that the solu-
tions starting at x0 = ±π/2 oscillates with a very slowly
decaying amplitude (at time t = 106 seconds the amplitude
of oscillations is ≈ 0.01), see Fig. 4

Fig. 4. r = 34.9: Theorem 4 predicts convergence, which
is however very slow.

5. CONCLUSIONS

In this paper, we examine asymptotic properties of the
sunflower equation for the delays smaller than the critical
value, given by the Hopf bifurcation theorem. Numerical
simulations show that for such delays the equation enjoys
gradient-like behavior (all trajectories converge), however,
this conjecture remains unproved. We obtain two efficient
criteria for the gradient-like behavior. One of them requires
to validate a frequency-domain inequality (similar to those
arising in absolute stability theory). The second one is
more conservative, however, gives an explicit estimate for
the delay range in which solutions’ convergence is ensured.

We have also performed a number of numerical experi-
ments, showing that for parameters reported in (Somoli-
nos, 1978), our frequency-domain stability criteria practi-
cally guarantees stability for all delays less than the critical
value, even though the convergence becomes enormously
slow. The analytic criterion ensures stability for the delay
which differs from the critical one by less than 10%.

Finally, it should be noted that the sunflower equation
is nowadays considered as a very simplistic model of
circumnutation. Experiments with plants on the orbital
space station have revealed that circumnutation persists
even in the absence of gravity. The more realistic two
oscillator model (Johnsson et al., 1999) is still waiting for
mathematically rigorous analysis.
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