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In this work, we introduce a general method to
deduce spectral functional equations and, thus,
the generalized Wiener-Hopf equations (GWHEs)
for wave motion in angular regions filled by
arbitrary linear homogeneous media and illuminated
by sources localized at infinity with application
to electromagnetics. The functional equations are
obtained by solving vector differential equations of
first order that model the problem. The application of
the boundary conditions to the functional equations
yields GWHEs for practical problems. This paper
shows the general theory and the validity of
GWHESs in the context of electromagnetic applications
with respect to the current literature. Extension to
scattering problems by wedges in arbitrarily linear
media in different physics will be presented in future
works.

1. Introduction

The extension of the Wiener-Hopf (WH) technique
in angular regions [1-5] demonstrated its efficacy for
solving electromagnetic wave-scattering problems in
the presence of geometries containing angular regions
and/or stratified planar regions; see for instance [6-10]
and references therein.

This technique consists of three steps: (i) the deduction
of functional equations in the spectral domain of
subregions that constitute the whole geometry of the
problem, (ii) the imposition of boundary conditions to get
the generalized Wiener-Hopf equations (GWHEs), and
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(iii) the solution of the system of the WH equations using exact or semi-analytical /approximate
techniques of factorization, such as the Fredholm factorization technique [5-12].

This paper is focused on the first and second steps of the procedure and shows a new general
methodology. In particular, we deduce spectral functional equations and GWHEs for angular
regions filled by arbitrary linear homogeneous media in a general framework, following the
procedure first proposed in [3] with applications to electromagnetics.

The introduction of the GWHEs in angular regions was inspired by Vekua in [13]. This book
introduces the Hilbert generalized equations and shows that, with slight modifications, these
equations can be solved using the same procedures developed for the solution of the functional
equation for classical Hilbert problems. We note that these equations are more general than those
defined in the WH method.

The GWHEs differ from the classical Wiener-Hopf equations (CWHEs) in terms of the
definitions of the unknowns in the spectral domain. While CWHESs introduce plus and minus
functions that are always defined in the same complex plane, the GWHEs present plus and minus
functions that are defined in different complex planes but that are related. However, in several
important practical cases, suitable mappings allow the plus and minus functions of GWHEs to
be redefined in the same complex plane: for instance, in angular subregions see the mapping
reported in [1-6]. With this transformation we ensure the remarkable property that GWHEs
reduce to CWHEs.

When the problem can be formulated in terms of Helmholtz equations, the GWHEs are related
to the difference equation of the Sommerfeld-Malyuzhinets (SM) method; see for instance, in
wedge problem [10] and references therein. In particular, the mapping n = —k cosw relates the
spectral variables n and w, respectively defined in the WH equations using the Laplace transform
and in the difference equations using the SM method. Passing from the 7 plane to the w plane (and
vice versa) is an expedient that allows us to exploit solution properties of the same problem using
two methods (the WH factorization technique and SM difference equations). Hence, the analysis
of problems with the SM and WH methods have a useful synergy. This means that the study of
scattering problems in the presence of angular regions with different methods is fundamental. In
particular, important improvements on the SM method are reported in the books by Babich et al.
[14], Bernard [15], Budaev [16], Lyalinov & Zhu [17] and references therein.

The introduction of the GWHEs in scattering problems by angular regions presents some
aspects in common with the study of right-bounded regions; see [5,10] and references therein. In
particular, several works on right-angled structures have been studied in terms of the Riemann—
Hilbert (RH) formulations [18-20], and the relationship between RH and WH methods may
be examined in depth. However, WH and/or RH formulations of angular regions have rarely
been considered in the literature and fully interpreted. For the WH method, the last equation of
example 5.15 in [21] is a GWHE. In particular, Noble [21] suggested the mapping n = —k cosw as
a natural substitution to obtain the solution.

We also observe that Gautesen in numerous papers (e.g. [22-25]) proposed the solution of the
fundamental scattering problem from an elastic wedge, where the functional angular equations
are substantially GWHEs although they are not defined in this way. This author provides efficient
semi-analytical solutions of the spectral equations using the Cauchy decomposition formula in
the spectral plane. His method can be considered an efficient technique to approximately solve
GWHEs.

GWHEs were also introduced in [26,27] to solve the electromagnetic scattering problem of a
perfectly electrical conducting (PEC) wedge as well as of an impedance wedge. These authors are
aware that their equations might be dealt with using the factorization technique; however, they
proposed a solution based on the SM method and difference equations.

A last set of works concerning the introduction of GWHEs in wedge problems is [28,29].
The novelty of these works resides in the application of a mapping that provides a factorization
method to solve difference equations in the SM method for acoustic impenetrable wedge scalar
scattering problems. We recall also that the factorization method to solve difference equations
was, for example, proposed in [30]. We note that the mapping used in [28] resembles the one
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introduced in [1-6] but the motivation of its introduction is different. In particular, in [1-6], the
mapping is introduced to systematically reduce GWHESs of general angular-shaped region wave
problems defined in the Laplace domain to the usual classical WH equations [21].

As per rectangular regions, the WH equations of scattering problems in angular regions
can be obtained using two strategies. The first method consists of formulating the problem in
terms of integral equations in the natural domain using suitable Green’s functions [31]. Since
the formulation contains integral representations with convolutional kernels the application of
the Fourier or Laplace transforms yields the WH equations in the spectral domain. The second
method to obtain the WH equations in the spectral domain is proposed by Jones [32] and Noble
[21]. It is based on the application of the Fourier or Laplace transforms directly to the partial
differential equation formulation of the problem, avoiding the necessity to study the Green’s
function representations in the natural domain. The Jones procedure is convenient, flexible and
applicable to arbitrary media and physics where the evaluation of Green’s function can constitute
a cumbersome difficult problem. While the deduction of the functional equations in [22-29] is
based on the first method also using the second Green’s identity, we propose in this paper to
use the Jones method. We note that, in order to apply Jones’s approach to get the GWHEs in
the presence of angular region problems, it is important to introduce partial differential equation
formulations using oblique Cartesian coordinates, as in [1-5].

We have developed different strategies to apply Jones’s method. In this paper, we use a novel
general first-order differential vector formulation for transverse components of the fields as in
[3,4] and as first proposed in [33,34] as a method for solving for rectangular problems. The
method differs from the one reported in [1,2,5], where the second-order differential formulation
(wave equation) is applied. We claim superiority of the new procedure (based on the first-order
formulation) to obtain spectral functional equations in angular regions, since it is capable of
modelling arbitrary linear media in systematic steps, as illustrated in the paper. Derivation of
the explicit equations requires implementation of the procedure reported in the paper, which is
illustrated explicitly for isotropic media and is extendable to more complex media (e.g. appendix
A). While the first-order procedure provides a method to obtain the functional equations
for general arbitrary linear media filling the angular region, we note that the second-order
formulation [2,5] is impractical in non-isotropic media since no systematic procedural steps are
available. Moreover, the first-order differential formulation can also be extended to wave motion
problems in different physics.

In this paper, plane-wave sources and/or sources localized at infinity are considered in a time-
harmonic electromagnetic field with a time dependence specified by e/* (electrical engineering
notation), which is suppressed. The paper is organized into six sections, two appendices and
a glossary. The deduction of the GWHEs for scattering problems by wedges in an arbitrary
linear homogeneous medium is based on applying the boundary conditions to relevant spectral
functional equations of angular regions. The main aim of this paper is to obtain these functional
equations by introducing a conceptually simple technique starting from a first-order differential
vector formulation in terms of transverse components of fields (transverse equations). In order
to develop this technique, a preliminary study based on an abstract formulation of Maxwell’s
equations in an indefinite homogeneous medium is necessary, as reported in §2. We recall that
this methodology is also useful to study propagation in stratified media.

Using oblique Cartesian coordinates and taking into account the results of §2, §3 describes
the novel application of the method to angular regions with oblique Cartesian coordinates,
yielding the oblique transverse equations. The solution of these oblique transverse equations
(83), projected on the reciprocal eigenvectors of an algebraic matrix defined in §2, provides the
functional equations of an arbitrary angular region, reported in §4. It is remarkable that we
get functional equations independently from the materials and the sources that can be present
outside the considered angular region. The properties and validations of functional equations
and how to get the GWHEs by imposing the boundary conditions on the two faces of the angular
region are finally reported in §5 for isotropic media, with conclusions in §6. Appendix A reports
fundamental explicit matrices to apply the methodology to anisotropic media, while appendix B
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justifies the dyadic Green’s function formula of §4. The glossary reports the main abbreviations,
notations and symbols and is useful for the readability of the text.

2. First-order differential transverse equations for indefinite rectanqular
regions filled by arbitrary linear homogeneous media

The evaluation of the physical fields in a linear medium can be generally described by a system
of partial differential equations of first order. In the absence of sources localized at finite or in the
presence of plane-wave sources, the system assumes the homogeneous abstract form

I'v -y =0, 2.1

where I'y is a matrix differential operator that contains partial derivatives of first order, ¥ is
a vector that defines the field to be evaluated and 6 is an additional field that is related to
the field ¢ through constitutive relations depending on the parameters that define the physical
characteristics of the medium where the field is considered. ¥ and 6 are vectors that have the
same dimensions and the constitutive relations are defined by

=Wy, (2.2)

where the matrix W depends on the medium that is considered.
In electromagnetism, the fields E and H in an arbitrary homogeneous linear medium are
governed by Maxwell’s equations and present the following constitutive relations:

D=¢c-E+&-H
(2.3)
and B=¢-E+p-H
Thus, in electromagnetic applications, (2.1) and (2.2) are defined by
_|E . |D |0 Vx1 .| e &
1//_H, 0=jw _Bl" Fv_Vxl 0 and W=jo ¢ —p|’ (2.4)

where 1 is the unit dyadic in the Euclidean space. An extended and detailed treatise about this
abstract formulation is reported in [35], but this is not easily accessible and is not well known
in the scientific community; for this reason, here we give a short introduction and then our
application.

To complete the formulation of the field problem via (2.1)—(2.4), we also need to impose the
geometrical domain of the problem, its boundary conditions and the radiation condition.

In our method, first, we derive spectral functional equations avoiding the application of
boundary conditions for a particular domain and, then, in practical problems, we impose the
boundary conditions coupling different regions and yielding the GWHE:s of the problem.

For this reason, in the following sections, the boundary conditions will appear only at §5 where
a practical classical problem will be examined as an example of the implementation procedure:
the Malyuzhinets problem.

The application of the abstract formulation to the electromagnetic study of the stratified
medium along a direction (say y) is fundamental to introducing several important concepts in
wave propagation (e.g. [36,37]). In particular, the introduction of the transverse equations can be
used for the analysis of indefinite regions and in §3 for the development of the theory for angular
regions. The transverse equations of a field are equations that involve only the components of
the field v, say v, that remain continuous along the stratification according to the boundary
conditions on the interfaces. In [35], the abstract deduction of the transverse equations is obtained
starting from the abstract equations (2.1) and (2.2).

In the following, we assume y =const. in Cartesian coordinates as the interface among media
of rectangular shape (layers). To obtain the boundary conditions, the method resorts to a suitable
application of the divergence theorem on equation (2.1) (e.g. [33]). In electromagnetism, the
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transverse field for a stratification along the y-direction is
Y =Bt Hy|' = |E; Ex H; Hy [/, (2.5)

where ’ stands for transpose and E; = ZE, + XEx, Hy = ZH, + XH, satisfy the boundary condition
of continuity on the interfaces of the stratification.

Following [35], we deduce the electromagnetic transverse equations with respect to y, starting
from (2.1)-(2.4) for a general bianisotropic medium with constitutive parameters W where
€,&,¢, n are tensors. For practical evaluation, we assume Cartesian coordinates with the ordering
(z,x,y). We start from the decomposition of the differential operator

.0 A0 L0
V=Vi+i—, Vi=i— +3—, 2.6
H_yay ! Zaz+x3x @6)
which yields
d
Iv=Ii+1Ty— 2.7
v=1It+ Yoy 2.7)
with
|0 Vi x1 | 0 px1 A am i oAn
”_Vtxl o |© Tv=lix1 0|’ 1=zz+Xxx+1y (2.8)

We observe that the following dyadic relations hold:
It-ﬂ=ﬂ~1y, It~Fy=Fy-It=Fy, Iy'['tzrt'lt and Iy~Fy=Fy-Iy=0, (29)

where
1; O

I:
o 1

, Li=z2243%%, 1,=70y. (2.10)
Taking into account (2.6)—(2.10), the first member of (2.1) becomes
ad ad
reow=(nangn )y =nowes g+ iy @11)

where vt = |Et Hy|' = |E; Ex H; Hy|' and vy = |Ey Hy§j|" with E; = ZE; + XEy, H; = 2H, + ¥Hj.
Using the representation
W= th + Wty + Wyt + Wyyr (2~12)

where Wy =1t - W-It, Wey =1t - W - Iy, Wyr =1, - W- I, Wyy =1, - W- I, we have the following
decomposition in transversal and longitudinal components of (2.1):

Iy Tt = Wyt Y+ Wyy . wy (2-13)
and

a
It-@ YoVl T Yy =Wy - Y + Wy - Yy (2.14)

By substituting the matrix Wy defined by
Wy - Wyy =Wy, - Wy =1, (2.15)
into (2.13), it yields the relation that connects the longitudinal field ¢, in terms of the transversal

field v
Yy =Wy - (Iy - It — Wyt) - ¥, (2.16)

where explicitly
N 1

_ myly  &yly
Y ].w(gy//«y_gy{y)

. 2.17
—Gly  —eyly @17
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Taking into account that Fyz = —I;, the substitution of (2.16) into (2.14) yields the transversal

Maxwell equations (2.18)

ad a d
_ = — — )y, 2.18
3y1//t M(Bz 3x> Vi (2.18)
where the matrix operator of dimension 4, M(9/0z, 3/9x), is given by
d 0 ~
M (35 ) = =y (= W) Wy -y 13 = W) = Wil 219)
In the case of an isotropic medium, i.e. with
W=jo 801 _al (2.20)
we obtain
0 0 _ijDz j(D22 + 8/“02)
cw cw
0 0 _j(sz + gﬂwz) ijDz
M 99\ _ Ew cw
9z  ax) jDxD; B i(D + epaw?) 0 0 ’
o) o)
j(sz + 5#“’2) _ijDz 0 0
o) JIo)
(2.21)

where Dy = 3/9x, Dy = 8/dy, D; = 3/9z. Further specific examples in electromagnetism, elasticity
and more general fields are reported in [5,10,12,33,34,38].

Here, we assume that the geometry of the problem is invariant along the z-direction; thus,
without loss of generality, we assume y; = ¥(x, y,z) =f(x, ) e /%Z This yields (3/0z)y(x, y,2) =
—jooi(x,y,2),i.e. 9/0z — —ja, , thus

a9 .0 9 32 3
M (&, a) =M (-]Oto, a) :Mg +Mla +M2@ +M3@ s

Taking into account (2.19), the number of non-null terms at the second member of (2.22)
depends on I} and thus it is three, i.e. M;; =0 for m > 2. The explicit expressions of the matrices
M, are defined by the problem under investigation and, in a general electromagnetic medium,
the matrices M,;, are of dimension 4. In an isotropic medium, from (2.21), we have

(2.22)

j(—ag + epaw?)

0 0 0
Ew
0 0 —juw 0
M, = 0 2
0 J(=og + epwd) 0 0
Hw
jew 0 0
(2.23)
o
0 o -2 9 0 0 0 O
Ew a0 ]
0 0 o = 0o 0o -L o
— — Ew
and M = . 0 0 e My = 0 0 0 ol
he 0 j 0 0 0
0 —% 0 0 P

where we have omitted the dependence on —je,.

The explicit expression of M (2.19) for a general arbitrary linear medium in electromagnetic
applications is reported in [3], while in appendix A we report the anisotropic case. For readability,
in the following, we will develop explicit expressions in isotropic media even if the theory and
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the procedure are completely valid for the general case. As shown in [12,33,34,37], the transverse
equations are very useful (independently from the application of §3) to deduce the WH equation
in stratified media with discontinuity at the interfaces.

(a) The eigenvalues and the eigenvectors of M in the spectral domain

By applying the Fourier transform along the x-direction to (2.18) with (2.22)—(2.23) (M, =0, m >
2) in the absence of a source, we obtain an ordinary vector first-order differential equation

— ) = M) - ), 2
Yy

where ¥ (x) = (1/27) fiooo Wy(n) e 77 dn (notation with omission of the Y,z dependence) and
M(n) = M(—jao, —jn) = Mo — juM1 — n° Mo, (2.25)

where 9/0z — —ja, for the presence of the field factor e /%2 (see also the comment before (2.22))
and 9/0x — —jn for the property of Fourier transforms.

Now let us investigate the properties of the eigenvalue problem (2.26) associated with the
differential problem

M(n) - ui(n) = 2i(mui(n). (2.26)

We anticipate that the eigenvalues 1; and the eigenvectors u;(n) (i=1...4) of the matrix M(n)
(2.26) in rectangular-shaped regions will play a fundamental role in getting the functional
equations of an angular region as a solution to the differential problem.

In the presence of a passive medium, we observe that two eigenvalues (say A1, A2) present the
non-negative real part and the other two eigenvalues (say 13, A4) present the non-positive real
part. While A1, A, are related to progressive waves, A3, A4 are associated with regressive waves.
In this framework, we associate the direction of propagation with attenuation phenomena, while
we allow the phase variation to be free of any constraints to also model left-handed materials.

The eigenvalues of the matrix M(y) are

rM=j&(), r=j&m), rz=-—j&(n) and rg=—jés(n). (2.27)

In a medium with reflection symmetry, we have &3 4(n) = &1 2(n7). For simplicity and to get explicit
simple expressions, let us consider homogeneous isotropic lossy media (see the extension to
anisotropic media in appendix A). For these media, we have

Em=tm) =\ —n% i=1,234, (2.28)

where 1, =,/k? — o2 with Im[,] <0 and k= w,/ei is the propagation constant with Im[k] <0
(normally Re[k] > 0; otherwise, Re[k] < 0 in left-handed materials). Since K= kj% —+ k; + k% =2+
g2+ ag, &(n) is a multivalued function of . In the following, we assume as a proper sheet of £(n)
that with £(0) =7, and as branch lines the classical line Im[&(n)] =0 (see ch. 5.3b in [37]) or the
vertical line (Re[n] = Re[t,], Im[n] < Im[z,]).

In isotropic media, according to (2.27) and (2.28), the eigenvalues are 11, = —A34 =j&(n). The
eigenvectors u;(n) = u; corresponding to 4;, i=1,2,3,4 are

-502 Aol) 7702 Lz
weE weé - wieé we&
2 2 2 2
ul = [— aon , 1,[2 = _w , 1,[3 = M and 1,[4 = w . (2.29)
wek weé weé weé
0 1 0 1

1 0 1 0

0Y00LZ07 L ¥ 205§ 20d edsyjeuinol/ioBuysiigndiiaposiefos H



Downloaded from https://royal societypublishing.org/ on 22 November 2021

We also introduce the reciprocal vectors v;(n) of the eigenvectors u;(n) that are the eigenvectors of
the transpose of the matrix M(z). The vectors v;(n) satisfy the bi-orthogonal relations

Vi - u;= 5]'1‘ (2.30)
or alternatively

1 = uqvy + upvy + uzvs + ugvy, (2.31)

where djj is the Kronecker symbol, 1; is the identity dyadic such that 1; - M =M - 1; and in (2.31)
we assume dyadic products.
According to the definition reported in (2.30), we obtain from (2.29) the reciprocal vectors

vi(n) = v;
| Etal aon 1 vz:‘ a1 0 ‘
2wnE 2wiE 2 2wnuE 2puE 2 (2.32)
) _‘_ §2+o¢g aon 1 ) _‘ oon 1’02 1 0 ’ .
? dopE  dwouk 217 T 2opE 2epE 2 '

3. First-order differential oblique transverse equations forangular regions filled
by arbitrary linear homogeneous media

In this section, we introduce the oblique transverse equations using an oblique system of
Cartesian axes and applying the properties reported in §2 for rectangular regions. In the following
sections, first, we deduce spectral functional equations, then, by imposing boundary conditions,
the GWHE:s for any arbitrary medium with angular shape [3,4].

With reference to figure 1, where angular regions are defined through the angle y (0 <y <),
let us introduce the oblique Cartesian coordinates u,v,z in terms of the Cartesian coordinates

XY,z
Y

siny

u=x—ycoty, v= or x=u-+vcosy, y=vsiny, (3.1)

with partial derivatives

0 ou 9 dv d d
ox 9xom | oxdv o
0 ou o dv d d 1 0
ay oyou Taga . " au T sing av’

o _dxd  dyad _ 9

(3.2)

du ouox oudy 0x

il ox d ay 9 d 0
and —=——+4"—=Ccosy— +siny—.
dv  dvdx  dvady ax ay

In the following, we consider the system of transverse (with respect to y) equations of
dimension 4 for an electromagnetic problem with invariant geometry along the z-direction (i.e.
e /%7 field dependence) in an arbitrary homogeneous linear medium (see §2, in particular (2.18)
with (2.22) and (2.23)):

B B 92
- @lﬁt =M ( —jato, ) Y = <Mo +Mla +M28xz> -t (3.3)

Substituting (3.2), in particular 9/0x =9/0u and 9/dy = — cot y(3/du) + (1/siny)(d/dv), into (3.3),
we obtain

9 9 9 32
- %‘//t =M ]Olo/ Y= | Meo + Me1 — 9 + MeZ -, (3.4)

where
Moy =Mysiny, Mg =Mysiny —Iycosy, Mgp=Mpsiny. (3.5)
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Vv YA
P
N ®
d
O, ay ;
p=tn 0 =0 4
@Z
, @
C

Figure 1. Angular regions and oblique Cartesian coordinates. The figure reports the x, y, z Cartesian coordinates and p, ¢, z
cylindrical coordinates, which are useful to define the oblique Cartesian coordinate system u, v, z with reference to the angular
region1:0 < ¢ < y with0 < y < 7. Inthe figure, the space is divided into four angular regions delimited by ¢ = y and
the face boundaries are labelled a—d.

For the sake of simplicity and in order to get simple explicit expressions, let us consider a

homogeneous isotropic medium, even if the procedure is general and applicable to arbitrary
linear media (definitions for the anisotropic case are reported in appendix A). For isotropic media,

we have
Meo =
Mel =
and My =

By applying the Fourier transform along the x=u direction to (3.4) (i.e.

(1/27) [, @ (n)

0
jewsiny
—cosy
0
apsiny

Hw
0

o o o ©

0
0
j(—aé + epw?)siny
o)
0
apsiny
0 7
Ew
—cosy 0
0 —cosy
_apsiny 0
o
0 0
_jsiny 0
1)
0 0
0 0

0
—juwsiny
0
0

0
apsiny
cw

0

—cosy

eJnx dn with notation omitting v, z dependence), we obtain

d
— 3 W) =Me(y, ) - Wi(m),
v

j(—a(z) + epw?)siny

ew
0

0
0

(3.6)
Ve (x) =

(3.7)
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with
Me(y, 1) = Me(—jeto, —jn) = Meo — jiMe1 — n*Mea, (3.8)

since 9/0u =9/9x — —jn.

(a) Link between eigenvalues of M(n) and M(y, n)
In oblique coordinates, the solution of (3.7) is related to the eigenvalue problem

Me(y,n) - uei(y, 1) = Aei(y, Muei(v, ), (3.9)

where A, and u,(n) (i=1...n) are, respectively, the eigenvalues and the eigenvectors of the
matrix M,(y, n) of dimension n = 4 in our application. Using (3.5) and (3.8), equation (3.9) becomes

(Mosiny — jnMy siny — n* My siny) - ugi(y, n) = (rei(y, 1) — jn cos y)uei(y, n) (3.10)
and thus ( )
Xei(v,n) — jn cos
M) - iy, m) = (V—]V) ei(y ). (3.11)
sin y

Comparing (3.11) with (2.26), we observe the relation among the eigenvalues and the eigenvectors
of the two problems. The two problems defined by the matrices M() and M,(y, n) have the same
eigenvectors

uei(y,m) = u;i(n), (3.12)
and thus the same reciprocal vectors and related eigenvalues

Aei(y,m) — jn cos
SIS ULV (6.13)
siny

Since M,(y, n) and M(n) have the same eigenvectors (3.12) and the eigenvectors of M(n) are u;(n)
reported in (2.29), we note the important property that the eigenvectors of M,(y, n) do not depend
on the aperture angle y (figure 1). From (3.13), the eigenvalues A,; of M.(y,n) can be rewritten

using the notation (2.27)

de1(y,m) =j(ncosy +sinyé&i(n)),

re2(v,m) =j(ncosy +sinyé&a(n)),
(3.14)

re3(y,m) =j(ncosy — siny&s(n))
and dea(y,m) =j(ncosy — sinyé&s(n)),

where A1, A2 (A3, Aes) are related to progressive (regressive) waves.
For what concerns the specific case of electromagnetic applications with a homogeneous
isotropic medium in angular regions, the eigenvalues of the matrix M,(y, n) are

del = Aep =N cosy + jy/ T2 — n%siny
and A3 =hea =Jncosy — jy/ T2 — n?siny,

where k is the propagation constant, 7, = \/k2 — o2 and £ = £(n) = /72 — 12 (2.28) is a multivalued
function as discussed in §2a. Note that, also in the isotropic angular geometries, two independent
eigenvectors u1,up (u3,1us) (2.29) correspond to the two equal eigenvalues A1 = Ae2 (A3 = Aes) as
reported in (3.15).

(3.15)

4. Solution of the oblique transverse equations

In order to present the general solution procedure, in the following, we consider a system of
oblique transverse equations (3.4) of dimension 4 with matrix operator M,(—ja,, 3/91) with three
non-null terms (M,, M1, M) for a problem with invariant geometry along the z-direction. This
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framework is appropriate for electromagnetic applications in arbitrary linear media and it will
be explicitly developed for particular problems in §5. In this section, we obtain, as a general
solution, the spectral functional equations for the four angular regions as identified in figure 1.
The four angular regions present the same equation (3.4) but with different matrices Meo, M1, M2
depending on the medium as well as the aperture angle y.

Let us introduce the Laplace transforms (notation omitting z dependence)

&) .
B0 = | "y, ) du (1)
0
for regions 1,2 and

0 .
Ji(n,v) = J_ M1t v) i (42)

for regions 3,4.
The Laplace transforms applied to (3.4) yields

= S, 0) = Moty m) -G, ) + U0, @3)
with

Me(y, n) = Me(—jato, —jn) = Meo — jnMe1 — 1* M. (4.4)

Note that (4.4) and (3.8) share the same symbol and explicit mathematical expression; however,
the first is related to a Fourier transform while the second is related to a Laplace transform, thus
obviously they have the same eigenvalues and eigenvectors. The term v5(v) is obtained from the
derivative property of the Laplace transform (initial conditions) and for each angular region we
obtain a different expression. In particular, we indicate with /,5(v) the value of ¥s(v) on face a (see
figure 1, 0 < v < 400, u = 0.), with y5(v) the value of ¥s(v) on face b (—oco <v <0,u =0,), with
Yes(v) the value of ¥s(v) on face ¢ (—oo < v < 0,u =0_) and with ¥45(v) the value of ¥s(v) on face
d(0<v<4oo,u=0-).

Since (4.3) is a system of four ordinary differential equations of first order with constant
coefficients in a semi-infinite interval, we mainly have two methods for its solution: (i) apply
the dyadic Green’s function procedure in the v domain and (ii) apply the Laplace transform in
v that yields a linear system of four algebraic equations from which one can write down the
general solution in terms of eigenvalues and eigenfunctions. We note that both methods are
effective and in particular the second method is more useful for representing the spectral solution
in each point of the considered angular region. However, it initially introduces complex functions
of two variables. As proposed in the following subsections, we prefer the first method because,
in this way, we get the functional equations of the angular regions that directly involve complex
functions of one variable.

Using the concept of non-standard Laplace transforms (see §1.4 of [5]), the validity of (4.3) and
(4.4) in the absence of sources is extended to the total fields in the presence of plane-wave sources
or in general of sources located at infinity.

With reference to figure 1, let us now describe the four angular regions in detail. The selection
of four angular regions as in figure 1 related to a unique aperture angle y does not limit the
applicability of the method. In fact, all the equations (once derived) can be used with a different
appropriate aperture angle, just replacing y with the proper value. The purpose of deriving the
functional equations with a unique y is related to the fact that we formulate and solve the angular
region problems by analysing once and for all the matrix operator M,(y, n) (4.4). We recall also
that the imposition of boundary conditions and media for each region will be made only while
examining a practical problem and that it yields GWHEs.
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(@) Regionl:u>0,v >0
With reference to figure 1, for what concerns region 1 (1 > 0, v > 0), (4.3) holds with
. d
Vs(v) = Yus(v) = —Me1 - ¥1(04,v) + jnMen - Y04, v) — Mo - @Wt(u/ v) . (4.5)
u=0+

Equation (4.3) is a system of differential equations of first order (of dimension 4 in our
electromagnetic assumption), whose solution V¢(n, v) is obtainable as the sum of a particular
integral &p(n, v) with the general solution of the homogeneous equation Vo(n,v)

Vi(n, v) = Po(,v) + Pp(n, v). (4.6)

The solution of the homogeneous equation must satisfy

1) = Moty ) G ) 47
Considering the solution form Vo(n,v) = Ce Mvy(y), the most general solution is
Vo(n,v) = Cre 10 uy (3) + Cpe ™20 uy(p)
+ Cae MMV () + Cye 240 My (), (4.8)

where A,; and u,; = u; (i=1, 2, 3,4) are the eigenvalues and the eigenvectors of the matrix M,(y, n),
respectively reported in (3.14) and (3.12).

In the presence of a passive medium, we recall that two eigenvalues (say 11, A2) present a
non-negative real part and the other two eigenvalues (say A3, 14) present a non-positive real part.
From (3.14), we note that A.1, 1, model progressive waves along a positive v direction, while
Ael, A2 model regressive waves.

The evaluation of the particular integral of (4.3)

o0
Byl v) == |~ Gloa)- vy *9)
requires the dyadic Green'’s function G(v,v’) of (4.3), i.e. the solution of
(55 +Metr,m) G0, =50 = )1, (@.10)
v

with the boundary condition of the problem: in this case, those of region 1 (u > 0, v > 0). Note that
1; is the identity dyadic of dimension 4 in our assumption (2.31).

An original method to get the particular solution is reported in [3,33,34]. While in [33,34]
the method is applied to arbitrary stratified regions with appropriate boundary conditions, in
this paper, we apply a slightly different method to the simplified structure consisting of an
arbitrary indefinite angular region for the solution of (4.10). According to [39], it is possible to
build a Green'’s function starting from arbitrary solutions of the homogeneous equations without
imposing boundary conditions at first. Then, to get the solution to the differential problem with
the boundary conditions, the selected form of the particular integral influences the values of the
arbitrary coefficients of the homogeneous solutions for the imposition of the boundary conditions.
Finally, the sum of the homogeneous solutions with the particular integrals yields the solution to
the problem.

We select progressive and regressive waves in an indefinite half-space as homogeneous
solutions for building the dyadic Green’s function (see appendix B for the justification and
properties of the dyadic Green’s function). In our framework, we avoid imposing the boundary
condition at this point, since we want to find functional equations that are free of this constraint.
Only, while investigating a practical problem, we will impose boundary conditions on the
functional equations (for instance, in region 1 at face ¢ =0,i.e. u >0, v=0,and facep = y,ie. u =
0, v > 0), yielding GWHEs of the problem. See §5b for a practical example of the wedge-scattering
problem.
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By applying this method (appendix B) to the present problem, we obtain the dyadic Green’s
function
upvy e rarmME=v) 4 ghy, erev M=) V>,

/ j—
G, )= {_[um s R WHC (St (4.11)

where v; are the reciprocal vectors (2.30) of the eigenvectors u; of M,(y,n) and A,; are the related
eigenvalues. Note that ;v; in (4.11) are dyadic products.
By substituting (4.8) and (4.9) with (4.11) into (4.6), this yields

Vi(n, v) = Ciuq e WMV 4 Coyy @2V Cayyg @4V 4 €4y @ HealrmY

v

v
v ,L =R O=) g ) — gy, - JO =Ry =)y (/) dy

o0
e*M(Vf"KH>¢as(v’)dv’+u4u4.J e M=y Y dv'.  (4.12)

v

o0
+M3v3-J

v

Looking at the asymptotic behaviour of (4.12) for v — +oc0 we have that only the terms
Cauz e ™3V 4 Cauye 4V are divergent. For this reason, we assume C3=C4=0. Note, in
particular, the vanishing of the last two integral terms as v — +o0.

Setting v =0 in (4.12), we have

o0 o0
1/ft(77,0)=C1M1+C2u2+M3V3'J ew'"”’ws(v/)dv’+u4v4-J VMV () o' (4.13)
0 0

Multiplying (4.13) by v;(n) =v; fori=1...4, we obtain
vi(n) - Yie(n,0) = Cq,
v2(n) - Ye(n, 0) = Co,
v3(1) - Y (0, 0) = v3(n) - Vas(—fes (v, m))
and v4(1) - V17, 0) = va(n) - Vas(—jrea(y, 1)

owing to the property of the reciprocal vectors (2.30) and where 1/;%( x) is the Laplace transform
in v along face a (v = p in cylindrical coordinates)

(4.14)

Yus(x) = JO %V (v) v, (4.15)
The last two equations of (4.14) can be rewritten in the form
v3() - P11, 0) = v3(1) - Vas(—11a1 (v, ) (4.16)
and 3
va(n) - ¥t (n,0) = va(n) - Yas(—ma2(y, n)), (4.17)
with
ma1(y,n) =jre3(y,n) = —ncosy + & siny
, . (4.18)
and maa(y,n) = jrea(y,n) = —ncosy + & siny.

While the first two equations of (4.14) relate the unknowns C; and C; to the Laplace transform
Vi(n,0) evaluated in the lower face of the angular region (u > 0, v =0), the last two equations
of (4.14) provide two important functional equations that relate the Laplace transforms of
combinations of the field components on the boundaries of the angular region 1, i.e. u >0, v=0
and u =0, v > 0 (face a) in figure 1.

These functional equations are the starting point to define the GWHEs of region 1. They are
valid for any linear medium filling the region and are independent of any boundary conditions
surrounding the region.

For example, and for simplicity, the explicit forms of (4.16) and (4.17) are reported in §5 for

isotropic media where &;() = £(n) =/ 12 — 52 (see the definition of the multivalued function & (i)
in §3a).
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These functional equations are equivalent to (3.3.57) and (3.3.58) in [5], where a completely
different method has been applied for the derivation. In fact, in ch. 3 of [5], the equations
are obtained from the second-order differential formulation for electromagnetic applications
(wave equation). The theory is developed for an isotropic medium and cumbersome symmetry
properties have been used to develop the equations for the other angular regions with respect to
region 1.

In the present work, the theory is more general and is applicable to any arbitrary
electromagnetic media and extendable to different physics. In particular, the equations for the
other regions with respect to region 1 are easily derived as in the following subsections.

(b) Region2:u>0,v <0

With reference to figure 1, following the procedure reported for region 1 in §4a, we develop the
solution for region 2 (1 > 0, v < 0). The problem shows the same equation (4.3) with

Vs(v) = Yps(v) = =M1 - Y1 (04, v) + jnMea - Yt(04,v) — Mo - %V/t(u/ v) O+. (4.19)
u=
Note the different geometrical support of (4.19) with respect to (4.5), i.e. for region 2 v < 0 while
for region 1 v > 0. As per region 1, the solution of (4.3) is obtained as a combination of the
homogeneous solution and the particular integral; see (4.6). We note that the particular integral
depends on (4.19), while the homogeneous solution depends on the expressions of eigenvalues
Aei(y,n) and eigenvectors u;(n) of M.(y, n) (4.4) that are the same as for region 1, except for their
dependence on the physical constitutive parameters of region 2 that may be inhomogeneous with
respect to region 1.
Once the expression of the dyadic Green’s function specialized for region 2 has been obtained,
we get

Ui(n,v) = Crug e MV 4 Coypy @2V | Cayn @4V 4 Cyyyy @ 4ear MY

v v
vy J =AW=y (Y ' — gy, - J et =)y () 4y
—0Q

—00

0
ey mv—v )‘ﬁbs(v/) dv’ + ugvg - J ety mv—v )Wbs(v/) dv/, (4.20)

v

0
+ uzvz - J
v
where A,; and u; are reported in (3.14) and (3.12).

Looking at the asymptotic behaviour of (4.20) for v — —oo, we have that only the terms
Crug e 1 4 Coup e ™2V are divergent. For this reason, we assume C;=C;=0. Note, in
particular, the vanishing of the first two integral terms as v — —oo.

Assuming v =0 in (4.20), we have

0 0
Vi(n,0) = Cauz + Cattg — ugvy J e Pty M=y () do’ — szzj e My, () dv'.

- - 4.21)
Multiplying (4.21) by v;(n) = v; fori=1...4, we obtain
v3(n) - ¥i(n,0) = C3,
va(n) - ¥(n, 0) = Cy,
3 _ (4.22)
v1(n) - Yr(n,0) = —vi(n) - Yis(rer (v, n))
and v2(n) - Fe(n, 0) = —v2(n) - Ys(iea (v, ),
where

- 0 . oo .
0= e une)do= | " undo @.23)
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is the left Laplace transform of y(v) in v along face b (figure 1) or the Laplace transform in p of
Y¥ps(—p) in cylindrical coordinates (o, ¢, z).

As stated for region 1, in media with reflection symmetry (& 4(n7) =§12(n)), the last two
equations of (4.22) can be rewritten in the form

v1(n) - P, 0) = —v1(n) - Ys (— i (v, m) (4.24)
and 3
va(n) - Ve (n,0) = —v2(n) - Yos(—mpa(y, M), (4.25)
with
mp1(y,n) = —jre1(y,n) =ncosy + & siny
(4.26)
and mp(y,n) = —jre2(y,n) =ncosy + & siny.

While the first two equations of (4.22) relate the unknowns Cz and Cy to the Laplace transform
¥¢(n, 0) evaluated at the face of the angular region (1 > 0, v =0), the last two equations of (4.22)
provide two important functional equations that relate the Laplace transforms of combinations
of field components on the boundaries of the angular region 2, i.e. u>0, v=0and u=0, v <0
(face b) in figure 1. These functional equations are the starting point to define the GWHEs of
region 2. As stated for region 1, they are valid for any linear medium filling the region and are
independent of any boundary conditions surrounding the region. They agree with those proposed
in ch. 3 of [5] in the case of an isotropic medium for electromagnetic applications.

Note that, in view of dealing with scattering problems by wedges (see §5b), the aperture angle
of region 2 is usually different from y. This difference modifies the equations only in (4.26) for the
dependence on a different aperture angle. We recall that the motivation for deriving the functional
equations with a unique y is related to the fact that we formulate and solve the angular region
problems by analysing once and for a single matrix operator M, (y, ) (4.4).

(c) Region4:u<0,v>0

With reference to figure 1, and following the procedure reported for region 1 in §4a, we develop
the solution for region 4 (1 < 0, v > 0). Applying the Laplace transform

0 . ~
Bi,0= | e yn(,0)du= F(-n,0)

* (4.27)
and 1,00 = | e gn(-11,0)
0
to (3.4), the problem in region 4 shows the same equation (4.3)
d - -
- alﬁt ZME(V/ 7)) : Wt + ‘ps(”)r (428)

with M,(y, n) reported in (4.4) and with the different definition of
) d
l//s(U) = 1//d5(l)) = Mﬁ’l . Wt(ofx U) - ]rlMc’Z . 1//t(0,, U) + MEZ ° %Wf(ur U) 7 (429)
u=0_

which is related to the derivative property of the Laplace transform (4.27) along face d (figure 1).
The application of the method used for region 1 yields the two functional equations

v3(n) - Ui (0, 0) = v3(n) - Vias(—jhea(y, m)) (4.30)
and

va(n) - (7, 0) = va() - Yias(=jrea(y, M), (4.31)

where we have defined the Laplace transform

%s(x)zjo eV (v) . (4.32)
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The other difference with respect to the last two equations of (4.14) is the definition of

~ 0 .
Je(n, ) = J_ My, v) (4.33)

which is a minus function (left Laplace transform). Changing 7 to —n, we rewrite (4.30) and (4.31)
as

V3(=1) - Yt (0, 0) = v3(=n) - Yas(—jhea(y, —n)) (4.34)
and

va(=1) - Yt (n, 0) = va(=n) - Vs (—jrealy, =), (4.35)

with the plus function (right Laplace transform)

T, 0>=JO My (—11,0) du. (4.36)

(d) Region3:u<0,v <0
As already done for regions 1, 2 and 4, we repeat the procedure. We get the same equation (4.3)

with the definition ¥(n, 0) (4.27) except for

0
Vs(v) = Yes(v) = Me1 - ¥1(0—, v) — jnMez - Y10, v) + Mo - 871¢t(1h v) o (4.37)

which is related to the derivative property of the Laplace transform (4.27) along face c (figure 1).
This yields the two functional equations

v1(n) - Fi(n, 0) = —v1(n) - Yes(rer (v, m) (4.38)
and B
va(n) - i (n,0) = —va(n) - Yes(irea(y, m), (4.39)

where we have defined the Laplace transform

- 0 . 0o
wcs<x)=J7 e*fwics(v)dwjo 0o~ p) . (4.40)

The other difference with respect to the last two equations of (4.14) is the definition of

0 .
Fin, 1) = J_ My, v) i, (4.41)

which is a minus function (left Laplace transform). Changing 7 to —n, we rewrite (4.38) and (4.39)
as

V1(=n) - Yt (n,0) = —v1(=n) - Ves(irer (v, —n)) (4.42)
and -
v2(=1) - Yrt(n,0) = —v2(—1n) - Ves(irea(y, —n)), (4.43)

with the plus function (right Laplace transform)

Tt (1,0) = JO /My (— 1, 0) . (4.44)

5. Properties and validation of the functional equations

(a) Explicit form for regions 1and 2 and validation

Using the concept of non-standard Laplace transforms (see §1.4 in [5]), the validity of the
functional equations (4.16) and (4.17), (4.24) and (4.25), (4.34) and (4.35), (4.42) and (4.43) obtained
in the absence of sources is extended to the total fields in the presence of plane-wave sources or
in general of sources located at infinity.
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In order to validate the functional equations obtained in this paper, (4.16) and (4.17), (4.24)
and (4.25), (4.34) and (4.35), (4.42) and (4.43), we demonstrate that they are equivalent to those
proposed in ch. 3 of [5] for electromagnetic applications with the angular regions filled by an
isotropic medium with permittivity ¢ and permeability . Let us consider, for simplicity, region 1
with (4.16) and (4.17), i.e.

v3() - Y (0, 0) = v3() - Yas(— e (v, ) (6.1)
and

va(n) - (1, 0) = va() - Vas(=mma2(y, m)- (5.2)

These equations need to be compared with (3.3.57) and (3.3.58) of [5], which for readability are
reported here using the notation of this paper

~ 1;2 ~ o ~
EE.(1,0) — 2 F(n,0) — 2L F,(5,0)
we we

- 12 - Qe ~
=—nE,(—m,y) — —=Hp(—m,y) + —H,(—m,y) (5.3)
we we
and
~ 102 ~ oo =~
§Hz(ﬂ/ 0) + 7Ex(77/ 0) + 7Ez(fl1 0)
we we
- 2 - o =
=—nHy(-m,y) + iEp(_m/ y)— 2 Ex(—m,y), (5.4)
we we

where for the isotropy of media

m=m(y,n) =ma(y,n) =mg(y,n=-ncosy +&siny =jra(y,n) =jrea(y,n) (5.5)
and
n=n(y,n)=—nsiny —&cosy. (5.6)

In (6.3) and (5.4), we have used Laplace transforms in n along u > 0, v =0 on the LHS and in —m
along u =0, v > 0 on the RHS, respectively, denoted by ~ and - symbols and reported in (4.1) and
(4.15).

To explicitly represent (5.1) and (5.2), we apply on the LHS the definitions of vt = |E; Ex H, Hx|'
and the reciprocal vectors reported in (2.32).

On the RHS, we use the source term 1,5(v) (4.5) of the differential equation (4.3), which,
substituting the explicit expressions of M,; and M, reported in (3.6), yields

s
E, cos(y) + oo Hz sin(y)
we
Eycos(y) + jDuH; sin(y) — Hxa, sin(y) + Hzn sin(y)
X
we
l//as(U) = W E Sin( ) , (5.7)
H _ %Ezsin(y)
2 cos(y) o
Hy cos(y) + —jDyE; sin(y) + aoEy sin(y) — Ezn sin(y)
X
o)

where D,, = 9/9u and the field quantities are defined for u = 04 and depend on v > 0.

We observe that, while (s, 0) is continuous at ¢ =0 by definition (2.5), we need to apply
mathematical manipulations to demonstrate the continuity of ¥,5(v) (5.7) at face a for an arbitrary
aperture angle y. In fact, ,5s(v) shows possible discontinuous terms at face a (u =04, v > 0) owing
to the presence of D, H, and D, E,.
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For this purpose, we resort to Maxwell’s equations

—kEy — HyZoa,

Dqu =j 7 ’
0

DyE; = j(kZoHy — aoEx). (5.8)

Substituting (5.8), where Z, is the impedance of the medium, for example free space, into (5.7)

aoH; sin
E;cos(y) + ———22 Zwe ()
kE, + H>nZ,) sin
ExCOS(y)—I—( y ZZ 0)sin(y)
Vas(v) = ; , (5.9)
H, cos(y) — aoE; sin(y)
nw
HykZ, — E;n)sin
HxCOS(]/)—F( yKLo kzz’?) (y)
[

where the field quantities are defined for # =0, and depend on v > 0. The next step is to rewrite
Ey, Ey, Hy and Hy in terms of the components (E,, Hy) and (E;, Hy), respectively, tangential and
normal to face a (outward normal with respect to region 1). We have

Ey =—E, sin(y) + Ey cos(y),
Hy = —Hj sin(y) + Hy cos(y),

(5.10)
Ey = E, sin(y) + Ej; cos(y)
and Hy = H, sin(y) + Hy, cos(y).
Substituting (5.10) into (5.9), we have
Hsi
E; cos(y) + %oHz sin(y)
we
H;nZ, si
E, 4 2" oksm()/)
Vas(v) = E. si : (5.11)
H; cos(y) — %k siny)
o)
—E,nsin(y)
Hy + —z

Note that the discontinuous components of fields (i.e. the normal components of
electromagnetic field E,H) are cancelled by substitution in (5.11), thus ¥s(v) is continuous at face
a. The absence of the discontinuous components E;, H, in (5.11) is justified by the equivalence
theorem of electromagnetism, i.e. the field in region 1 can be computed and depends only on
the field components continuous at the boundaries: for face a the tangential components of the
electromagnetic field are E,, Hy, E;, H; in u, v, z. 3

Now, substituting the Laplace transforms VUe(n,0) (4.1) of ¥(11,0) and Vas(—m) (4.15) of Yas(v)
(5.11) with (5.5) into (5.1) and (5.2), and using (2.32), yields the two functional equations

— aonEx + (" —K*)Ez + k6 ZoH
= —aonE, — [ng sin(y) + cos(y)(k — n)|Ez + ke ZoH, — sin(y)akZoH:  (5.12)
and
102Ey 4+ aonE, + k& Z,H, = t2Ey + aolcos(y)n — sin(y)&]]::Z + kZo[sin(y)n + cos(y)é]ﬁz, (5.13)

which we have normalized by the multiplying factor 2kZ,&. In (5.12) and (5.13), the field quantities
on the LHS are Laplace transforms in  along u > 0, v = 0 (symbol ~), while the field quantities on
the RHS are Laplace transforms in —m along v > 0,u =0 (symbol —). As a consequence, the field
components on the LHS are plus functions in 7, while those on the RHS are minus functions in 1.
We also observe that v components of the field in oblique Cartesian coordinates are equivalent to
p components in cylindrical coordinates.
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Equations (5.12) and (5.13) are explicit expressions of functional equations of region 1 filled by
an isotropic medium.

We note that (5.3) and (5.4) and (5.12) and (5.13) are obtained using completely different
methods and therefore equivalence is not immediate in the general case o, # 0. However, each
of (5.12) and (5.13) is a linear combination of (5.3) and (5.4) and vice versa.

For simplicity, we explicitly report the equivalence between (5.3) and a linear combination
of (5.12) and (5.13). First, we demonstrate the equivalence of the left member of (5.3) to the left
member of a linear combination between (5.12) and (5.13), imposing

~ 2 ~ ~
2KZoE(C1va(n) - ¥ (1, 0) + Cova(n) - ¥ (1, 0)) = §E=(n, 0) — ;T‘;Hx(mo) - %Hz(n, 0). (5.14)

To evaluate the linear combination constants C; and C; in (5.14), first we impose that the
coefficients of H, in both the members of (5.14) are the same. This yields

2

0 (5.15)

0 =—-2

Second, we need to eliminate the component Ey from the first member of (5.14) since no Ey
component is present at the second member, therefore

=022 (5.16)

To
With the above values of C; and C; the identity (5.14) holds.
Finally, we simply prove by substitution that the constants (5.15) and (5.16) enforce the same
equality on the right-hand members of the two formulations, i.e.

2kZo&(C1v3(n) - Vas(—11) + Cava(n) - Yas(—m))
_ 2 - ottt -
= —nEz(~m,y) = ~CHy(=m,y) + — = Hz(=m, ). (5.17)

Owing to the structure of (5.4), which is similar to that of (5.3), it is possible to demonstrate the
equivalence of (5.4) to a linear combination of (5.15) and (5.16) with the same procedure, which
we omit here.

Analogously to region 1, we can derive the explicit form of functional equations (4.24) and
(4.25) for region 2 filled by an isotropic medium with permittivity & and permeability

v1(n) - (1, 0) = —v1.(1) - Yps(—1p1 (v, m)) (5.18)
and
va(n) - Ye(n,0) = —va(n) - Vis(—1mpa (v, 1)). (5.19)

Regions 1 and 2 share the same procedure to obtain the explicit form of the functional
equations. In particular, we note the following analogies and differences: (i) the source term
assumes the same form vys(v) = ¥us(v) (5.11) with the exception of the dependence on the
constitutive parameters ¢, 1 and (ii) while applying Maxwell’s equations (5.8) to represent the
field components in terms of face a(b) tangential (E,, H,) and normal (E,, H;) components we
need to consider the outward normal of region 1(2).

Focusing our attention on region 2 and substituting the Laplace transforms Ut(n,0) (4.1) of
Vi(u,0) and s (—myp) (4.23) of Yps(v) with

my =my(y,n) =mp(y,n)=mp(y,n=ncosy +§&siny =jre(y,n) =jreo(y,n) (5.20)
into (5.18) and (5.19), and using (2.32), yields the two functional equations
+ aonEx — (0% — KY)E, + kEZoHy
= —aonEy — [—ng sin(y) + cos(y)( — n)|Ez — ke ZoH, — sin()aokZoHz  (5.21)
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and

- TOZEX - ao’?Ez + ngOHz = TozEv + aplcos(y)n + sin(y)§1E; + kZo[sin(y)n — cos(y)§1Hz,

(5.22)
which we have normalized with the multiplying factor 2kZ,&. Equations (5.21) and (5.22) show a
change in sign with respect to (5.12) and (5.13) of region 1. In (5.21) and (5.22), the field quantities
on the LHS are Laplace transforms in  along u > 0, v = 0 (symbol ~), while the field quantities on
the RHS are Laplace transforms in —n1;, along v < 0, =0 (symbol —). As a consequence, the field
components on the LHS are plus functions in 7, while those on the RHS are minus functions in
my. We also observe that v components of a field in oblique Cartesian coordinates are equivalent
to p components with the opposite sign in cylindrical coordinates (the sign is due to the face b
orientation; see figure 1). The equivalence of (5.21) and (5.22) to (3.3.59) and (3.3.60) of [5] can be
accomplished as already done for (5.3), which is a linear combination of (5.12) and (5.13). In this
case, we need to pay attention that y in (5.21) and (5.22) must be substituted by = — yj, for the
equivalence with (3.3.59) and (3.3.60) of [5], since figure 1 of this paper describes a region 2 that is
different from the one in figure 3.3.2 in [5]. Moreover, explicit expressions of functional equations
for more complex media can be derived starting from the definitions of M,; matrices in (2.22): in
appendix A, we report the matrices for the anisotropic case.

(b) A classical example of generalized Wiener—Hopf equations for the validation of
functional equations: the Malyuzhinets problem

In this subsection, to further convince readers about the validity and the correctness of the
proposed procedure based on the matrix first-order differential formulation (§4), we derive the
GWHE:s for a classical scalar problem: the Malyuzhinets problem.

The general derivations of functional equations of the angular regions do not depend on the
materials, the sources located outside the considered angular region or the boundary conditions.

By imposing on them the constitutive parameters of the media and the boundary conditions
on the faces, we get GWHEs that in general are coupled to the electromagnetic equations present
in the regions outside the considered angular region.

We affirm that, in particular, the functional equations are useful for deriving GWHEs for
wedge problems with impenetrable boundaries as well as for those with penetrable ones; see for
instance applications in [6,7]. Moreover, the functional equations of angular regions can be used
to describe more complex scattering problems where angular regions are coupled with stratified
planar regions; see for instance [8,9].

If we are interested in decoupling the evaluation of the electromagnetic field in a region from
the equations that hold outside, we can resort to impenetrable approximate boundary conditions.

For instance, we can assume Leontovich boundary conditions that impose impedance surfaces
on the faces of the angular region [40]. In this context, several studies have been developed based
on higher order approximate boundary conditions that involve derivatives of the components of
the field on the faces. In particular, these enhanced versions of boundary conditions have been
examined in right-angled structures [18-20], yielding RH problems with exact solutions.

In this section, we report, as a simple demonstration of the method, the classical impenetrable
wedge-scattering problem known as the Malyuzhinets problem [41], which is extensively studied
in the literature using different methods. We start from the functional equations and we derive
the GWHE:s of the problem.

With reference to figure 2, the Malyuzhinets problem consists of an impenetrable wedge
structure immersed in an isotropic medium and illuminated by a plane wave at normal incidence
(oo =0), where the following scalar boundary conditions are imposed in cylindrical coordinates:

Ex(p,v) | _ Hy(p,v) E:(p,—v) _ H,(p, —y)
|:Ep(p,]/)i| = |:_Hz(,0/ V):| ’ |:Ep(p, —y):| =% |:_Hz(/0, —J/):| : (5.23)
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Figure 2. Impenetrable wedge problem with surrounding space made by a homogeneous isotropic medium divided into
angular regions 1 and 2. Cartesian coordinates (x, y, z) and cylindrical coordinates (p, ¢, z) are reported. For each angular
region, a local oblique Cartesian coordinate system is defined: for region 1u, v, z with aperture angle y, for region 2 u, v, z
with aperture angle r — 7. With respect to figure 1, regions 3 and 4 are not physically considered. Boundary conditions are
imposed at faces a and b.

In figure 2, with respect to figure 1, we identify two symmetrical homogeneous isotropic
regions, respectively, with aperture angle y and = — y, while regions 3 and 4 are not physically
considered.

The functional equations of region 1 are reported in (5.12) and (5.13), before the application of
the boundary conditions of the problem. For region 2, we note the difference in the aperture angle
in figure 1 with respect to the aperture angle in figure 2. For this reason, to derive the functional
equations of region 2 in figure 2, we need to replace y with 7 — y in (5.21) and (5.22).

At normal incidence (o = 0), the functional equations of region 1 take the following form:

§E. +kZoHl, = ~[nsin(y) + cos(y )& |- + kZoH,, (5.24)
and _ -
kE, + §Z,H, =kE, + Zo[sin(y)n + cos(y)§]H., (5.25)

with direction vectors v = p for ¢ =y (face a) and X = p for ¢ =0. The field quantities on the LHS

of (5.24) and (5.25) depend on 7 and are evaluated for ¢ =0, i.e. F :ﬁ(n,cpv =0), while the field

quantities on the RHS depend on —m (5.5) and are evaluated for ¢ =y, i.e. F=F(—m, ¢ =+y).
The functional equations in region 2 take the following form:

£E, + kZ,H, = [nsin(y) + cos(y)&]E; + kZ,H, (5.26)

and
— kE, + £Z,H, = —kE,, 4 Z,[sin(y)n + cos(y )€]Hx, (5.27)

with direction vectors 0, = —p for ¢ = —y (face b) and X =  for ¢ = 0 (see figure 2). Note also that
for region 2 in figure 2 we have, from (5.20) and (5.5),
mp(mr — y,n)=—ncosy + &Esiny =m. (5.28)

In this case, while the field quantities on the LHS of (5.26) and (5.27) are the same as those on
the LHS of (5.24) and (5.25), i.e. F = F(n, ¢ = 0), the field quantities on the RHS of (5.26) and (5.27)
depend on —m and are evaluated for ¢ = —y,i.e. F=F(—m, ¢ =—y).

0Y00LZ07 L ¥ 205§ 20d edsyjeuinol/ioBuysiigndiiaposiefos



Downloaded from https://royal societypublishing.org/ on 22 November 2021

For simplicity, focusing our attention on E. polarization, we use only (5.24) and (5.26). By
imposing the boundary conditions (5.23) and eliminating E,, we obtain the following system of
equations after some mathematical manipulation:

— §E2(n,0) + kZoH (1, 0) = (kZo + nZa)Hp (—m, +7) (5.29)
and ) ) 3
with n = —nsin(y) — cos(y)&. Finally, (5.29) and (5.30) can be reduced in the normal form to
GF 1 (n)=F_(m) (5.31)
with
& KZo
Zong+n) Zg(ng+n E.(n,0
G(n) = a(na ) a(11a ) . Fi(n)= ~2(77 )
& kZ, H,(n,0)
Zy(my + 1) Zy(my + 1) (5:32)
Ij[ I,
and F_(m)= vﬂ( m+y)
H,O(_m/ _)/)

and where n,, =kZ,/Z, ;. Note that (5.31) is a matrix GWHE with kernel G(5), plus functions
F.(n) in n and minus functions F_(m) in m. Solutions to the GWHESs of the Malyuzhinets problem
can be found in [2-6,10] using analytical and/or semi-analytical procedures after their reduction
to CWHESs in a new complex plane 7 using the special mapping [5]

n(7) = —k cos (—% arccos (—%)) . (5.33)

(c) Remarks on the functional equations to obtain generalized Wiener—Hopf equations

In general, the functional equations (4.16) and (4.17), (4.24) and (4.25), (4.34) and (4.35), (4.42)
and (4.43), respectively, for regions 1-4 (figure 1) are the starting point for deriving the GWHEs
of arbitrary angular regions (aperture angle, material) in complex scattering problems. In order
to obtain the GWHEs for a practical problem, we need to define the media and to enforce the
boundary conditions at the interfaces of the regions. For instance, see electromagnetic scattering
problems by anisotropic impedance wedges in [4,6], §5.2 in [10] and more complex problems in
[7-10].

With reference to figure 1, we observe that the axial spectra Vt(n,0) and ¥r4(n,0) at the
interfaces, respectively, between regions 1 and 2 and between regions 3 and 4 are defined
in terms of only continuous components of the fields satisfying the boundary conditions in
electromagnetic problems. Meanwhile, the face spectra s(x) on the interface between regions 1
and 4 (2 and 3) could present discontinuous components and/or derivatives of the fields; see
faces a and d (faces b and c) in figure 1. To check the continuity of the face spectra, we have
re-written the component of ¥5(x) in terms of continuous components of the field in the case of
isotropic media. In a practical case, according to our experience, we note that appropriate relations
are always available in arbitrary linear media.

Once the GWHEs have been obtained from the functional equations of an angular region
problem, an important aspect is their reduction to CWHEs by using a suitable mapping, such
as the one reported in (5.33).

The introduction of the complex angular plane w

n=—kcosw (5.34)

helps the analysis of asymptotic solutions to practical problems by allowing analytical extension
of the approximate solutions [5-10]. In fact, the application of (5.34) to GWHEs allows us to
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obtain difference equations that are useful for recursive applications. We further note that the
difference equations relate GWHEs to the SM method for a valuable synergy between the two
methods.

This article reports explicit expressions of functional equations for isotropic media. However,
the procedure is general and applicable to more complex media, starting from the definitions of
M,; matrices in (2.22); in appendix A, we report the matrices for the anisotropic media.

6. Conclusion

In this work, we have introduced a general method for the deduction of spectral functional
equations in angular regions filled by arbitrary linear homogeneous media. These equations are
obtained by solving vector differential equations of first order using the dyadic Green’s function
and then by projecting the solution on reciprocal eigenvectors of an algebraic matrix related to
the medium filling the angular region. The fundamental starting point to derive equations in
arbitrary linear media is the derivation of matrices M,, M1, M. From a practical point of view, we
have reported these matrices for anisotropic media in appendix A, while the main text contains
those for isotropic media. The derivation of explicit equations requires the implementation of
the procedure reported in the paper, illustrated explicitly for isotropic media. The application
of the boundary conditions to the functional equations yields GWHEs for practical problems. In
this paper, the method is applied to electromagnetic applications and the functional equations
are explicitly derived and verified in the case of isotropic media with respect to the current
literature.

The efficacy of the GWHE formulation has been demonstrated in several practical
electromagnetic engineering works by the authors; see the references. We assert that the proposed
method to obtain spectral functional equations in arbitrary angular regions for the wave motion
problem is general and is applicable to different physics.
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Appendix A

In this appendix, we report the explicit definitions of the fundamental matrices M,, M1, M, (2.22)
that are useful for developing applications of the method in electromagnetic anisotropic media,
ie. £=0,¢=0in (2.3) and (2.4) (we avoid reporting the matrices for the bi-anisotropic case
because of their length). In particular, to develop the procedure, it is sufficient to replace (2.23)
of the isotropic case with

j‘xoeyz . Eyx  Maxy jw(ﬂxzﬂyy - Mxyﬂyz) . Pexy Hyx jﬂluz
—— —joto [ = — == — oy — ) =
Eyy Eyy My ‘ Hyy Hyy Eyy®
JQo [z ]w(ﬂ 2y — MyyMzz) . Myx Mz
0 _ y yzhzy — Ky oo (g — PR
M, = Hyy Hyy Hyy
jw <8xz _ 5W5y2> joro . Jeo(exyeyx — Exxbyy) _ Jeokyz iy (sﬂ _ M)
Eyy Hyy® Eyy Hyy Sy Hyy
]w(eyyezz - syzgzy) ]w(eyyszx - 5yx52y) 0 _]anszy
Eyy Eyy Eyy

(AT
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_ jMxy 0 jao 0
' Hyy ' Eyy@ ‘
](gyyl/«zy - Syzliyy) _Jeyx 0 _ %
& & Eyyw
M, = yyHyy Wy . vy (A2)
_ % 0 _Joy 0
Hyyw ‘ ' Eyy '
0 joo  Jlezyyy — Eyybyz) jiyx
Hyy® EyyHyy Hyy
_jMxy 0 jao 0
. My . Eyy@
Jeyyhzy — yzityy) — jeyx 0 LT
Eyy L € Eyy@
and M, = yyHyy vy _ we | (A3)
_ % 0 oy 0
Hyy® . Eyy .
0 jeo  J(ezyltyy — Eyytyz)  Jhyx
Hyy® EyyHyy Hyy

As a practical propagation example, by restricting the case to o, =0 and diagonal &, p we
compute easily the eigenvalues (2.27) of M(n) (2.25), yielding

N JE
§51=86= \/?xxv wzgzzﬂyy - 772/ §r=61= \/Tﬁ\/ U)Zé'yyﬂzz - 772/ (A4)
vy vy

which constitutes two propagation modalities: the ordinary and extraordinary waves.

Appendix B

In this appendix, we report the justification and the properties of the dyadic Green’s function
(4.11) to get the particular solution (4.9) of (4.3). The dyadic Green’s function is the solution to the
dyadic equation

L6+ My G, ) =30~ VL, ®1)

where 1 is the unitary dyadic (2.31). According to [39], we select as solutions to the homogeneous
equations to build the dyadic Green’s function progressive and regressive waves in an indefinite
region. Moreover, the dyadic Green’s functions need to model the behaviour at v =v" of (B1) to
allow the particular solution (4.9) to be the solution of (4.3). Using dyadic notation, for v > v', we
have the set of progressive waves (i =1,2), while for v < v’ we have the set of regressive waves
(i=3,4),ie.

Gi(v, V) = uiAj(v ) e MY =1 4 (B2)

where 1.i(y,n) and u; are the eigenvalues and the eigenvectors of the matrix of dimension 4 and
Me(y,n) and A;(v') are arbitrary vector coefficients.
The most general solution of (B1) is expressed by the dyadics

G(v, V) = u1 A (v') e m iy Ay (v) e r2rmv |y sy,

G, v)=1 -
®v) G(v,v') = uzAz(v)) e s 4y Ay(v'yePalrmv g <y,

(B3)
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In order to find the vectors A;(v'), G(v,v") must satisfy (B1) also at v=1v" by imposing the
fundamental jump condition

G, V) = G, v) =1 (B4)
This yields
u Ay () e * AV 4 Ag(v)) e R Y
— (u3A3(v) eV gy Ay (v)) e ralr Yy = 1, (B5)
Pre-multiplying (B5) by the reciprocal eigenvectors v; (2.30) and (2.31), we get

AWy =v;erdrmV(1=1,2)
, (B6)
and Ay = —v; vV (=3 4),

Substituting (B6) into (B3), we get the dyadic Green’s function (4.11).
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Glossary

In table 1, we report a glossary of main abbreviations, notations and symbols introduced in the
paper and that are useful for its readability.
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Table 1. Main abbreviations, notations and symbols introduced in the paper.

WH Wiener—Hopf
G general|zedW|ener—Hopf equ s
G R p - q L
e Sommerfeld—MaIy e ets(m ethod) ......................................................................................................
i perfectelectncalcon s
(X yz) ......................... T
(p (p z) ....................... cy s
(u . uz) ...................... ob||que(arte s
. EH : DB ...................... o ﬁeld . magnet|c F eId . - agnet|c L
S propaga e
Z,, .................................. o espa(e |mpedance .................................................................................................................................
‘e,uand£, ¢ tensor constitutive parameters (electric permittivity, magnetic permeability and magnetoelectric
tensors)
g — o dependen L
Fv ............................... S fferent|a|operato e
w e s
T L param T
. w, ................................ T anng theyd e
v longitudinal field for astratifiation along the y-direction

Dy=09/0x alternative partial derivative notation
«% due to invariance along the z-direction, withoutoss of generality, we suppose that a feld dependence
specified by the factor e/*oZ

n .................................. L Laplace spectralva o a(cordlngtoth . p L
q/t(n) ........................... e anng thex:ud|rect|on(y zorv zdepende S tted) ...................................
M) matrix operator in the Fourier/Laplace domain in an indefinite rectangularregion
A,u, ,,,,,,,,,,,,,,,,,,,,,,,,,, elgenvaluesandelgenvector ofM(n) ....................................................................................................
v, .................................. reqprocal o ofu, ................................................................................................................................
g, .................................. G ofk,for p ropagatlons propertlesmultlv T
y ................................ aperture angle - angularreglons(ﬁgure 1) ............................................................................................
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