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Abstract 

Renewable sources are considered key to decarbonize energy systems and reduce 

dependency on fossil fuels. However, despite the availability of solar energy and wind 

power, technologies relying on these sources are not fully viable yet due to their 

unstable and intermittent nature. Therefore, solutions to match the high-frequency 

variation of renewable energy production with the electricity demand are fundamental 

for energy transition. In this view, large-scale energy storage can provide means for 

balancing supply and demand, increasing energy security, promoting a better 

management of the grid and allowing convergence towards a low carbon economy. To 

this end, chemical storage is currently under investigation. Chemical storage implies 

transforming electrical power into chemical energy in the form of H2. One way to 

ensure large-scale storage of chemical energy is to use the storage capacity of deep 

geological formations. Furthermore, long-term CO2 underground storage is regarded 

as an essential mitigation option to reduce greenhouse gases in the atmosphere and 

contrast climate change. Temporary underground storage is also envisioned, as a 

strategy to efficiently match the quantity of captured CO2 and the quantity of CO2 that 

can be transformed CO2 into value-added fuels and chemicals. Thus, it is evident that 

underground storage systems can play a fundamental role in the transition to a more 

sustainable energy future. 

The goal of this research was to apply the recently formalized Virtual Element 

Method (VEM) to build 3D geomechanical models and address the safety issues 

associated to fluid storage in deep geological formations, namely rock integrity and 

compaction/expansion due to fluid withdrawal/injection causing ground level 

subsidence/rebound. The advantage of using VEM mainly resides in their versatility to 
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reproduce complex geometries while maintaining a certain computational “simplicity” 

without losing solution accuracy.  

The development of the project required that knowledge and skills on numerical 

analysis were merged with competences and experience gained on fluid storage in 

underground formations. The main tasks were (1) the validation of the 3D VEM library 

(GeDim+VemElast) developed for the solution of boundary differential problems that 

describe the stress-strain behavior of deep formations subject to underground storage 

operation in the linear-elastic-domain; (2) the integration of stratigraphic and fault 

surfaces deriving from seismic interpretation within the tetrahedral discretization 

process of the investigated geological volumes, which was achieved by developing and 

implementing an effective triangulation algorithm implemented; (3) the grid 

construction using simplexes (tetrahedral cells), which also represented the preparatory 

step for the construction of generic polyhedral grids obtained through gluing 

algorithms.  

The libraries necessary to generate the models were coded in an opensource 

environment (QTCreator + CMake + MinGW) and integrated in a unitary product 

which support the cross-compiling between MS Windows and GNU/Linux. 

Extensive validation tests of the new model to calculate compaction/expansion due 

to fluid withdrawal/injection and corresponding ground level subsidence/rebound in 

the linear-elastic domain were performed. First simplified cases were considered. Then, 

tests on realistic models of the Italian Adriatic offshore and of the Po Plain panorama. 

The simulation results proved very satisfactory and consistent with the ones obtained 

by a commercial FEM solver dedicated to geomechanical simulations and typically 

used in the oil&gas field. Validation tests were mainly performed in the linear-elastic 

domain because the technical literature consistently shows that the formations behave 

elastically. However, tests were also performed in the elasto-plastic domain. 

Convergence issues highlighted the need to modify the iterative algorithm implemented 

to solve the constitutive problem to obtain consistent results under any investigated 

scenario. 
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Chapter 1 

Introduction 

Renewable sources are considered key to decarbonize energy systems and 

reduce dependency on fossil fuels, as stated by the Mission Innovation Program 

(“Mission Innovation,” 2021). Since the Paris Agreement was adopted at the United 

Nations Climate Change Conference in 2015 (“The Paris Agreement | UNFCCC,” 

2016) most of the involved countries increased their investment in the development 

of low and zero-carbon solutions and new markets arose, especially in the power 

and transport sectors in order to meet the key targets of the 2030 climate & energy 

framework (European Commission Website, 2016). However, despite the 

availability of solar energy and wind power, technologies relying on these sources 

are not fully viable yet due to their unstable and intermittent nature (Benetatos et 

al., 2019; Rodrigues et al., 2014). Therefore, solutions to match the high-frequency 

variation of renewable energy production with the electricity demand are 

fundamental for energy transition. In this view, large-scale energy storage can 

provide means for balancing supply and demand, increasing energy security, 

promoting a better management of the grid and allowing convergence towards a 

low carbon economy. To this end, both electrical storage technologies - such as 

rechargeable batteries and supercapacitors (Lamberti et al., 2015; Scalia et al., 

2021) - and chemical storage are currently under investigation. Chemical storage 

implies transforming electrical power into chemical energy in the form of H2, 

which can then be used as such or combined with captured CO2 to produce green 

CH4 (referred to as the gas-to-power technology), thus it is very versatile. One way 

to ensure large-scale storage of chemical energy is to use the storage capacity of 
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deep geological formations, since underground reservoirs have the potential to store 

large volumes of fluids with minimal impact to the environment and society (Matos 

et al., 2019). 

Furthermore, long-term CO2 underground storage is regarded as an essential 

mitigation option to reduce greenhouse gases in the atmosphere and contrast climate 

change. Strategies for CO2 capture and permanent storage have been developed to 

compensate for CO2 emissions from burning fossil fuels and to meet the challenge 

of drastically reducing CO2 emissions in the next future. Already back in 2005, the 

Special Report on Carbon Dioxide Capture and Storage (CCS) (Rubin et al., 2005), 

issued by the Intergovernmental Panel on Climate Change, illustrated strategies for 

CO2 capture, transport and permanent storage that have to be developed to 

compensate for CO2 emissions from burning fossil fuels. In this report the potential 

of CCS to mitigate the climate change was shown, pointing out that the success on 

CCS would have mainly depended on financial incentives spent for scientific 

research and technical deployment and on the capability of successfully manage the 

risks associated to CO2 storage. As opposed to permanent geological sequestration, 

temporary underground storage could be a strategy to efficiently match the quantity 

of captured CO2 and the quantity of CO2 that can be transformed CO2 into value-

added fuels and chemicals. In this approach, the storage the storage would act like 

a “buffer” and would be fully integrated with the valorization technologies. 

Based on the above, it is evident that underground storage systems can play a 

fundamental role in the transition to a decarbonized and more sustainable energy 

future. 

Two of the most important characteristics of an underground storage are its 

ability to hold natural gas for future use and the rate at which that gas can be 

withdrawn. The concept of storing natural gas underground in geologic formations 

dates back to the beginning of the last century, with the first successful underground 

storage of natural gas in a depleted natural gas reservoir developed in 1915 in 

Ontario, Canada. Since then, hundreds of facilities have been developed worldwide: 

depleted gas and oil reservoirs, deep saline formations, salt caverns and un-minable 

coal beds are the favorite candidates for safe geological storage of natural gas, but 

several reconditioned mines are also in use as gas storage facilities. 

Depleted gas or partially depleted gas reservoirs (fields located deep 

underground where most of the recoverable hydrocarbons have been extracted) are 

the most sizeable and commonly used formations for natural gas storage. A depleted 
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field typically represents the most suitable option because of its ability to contain 

and trap gas (given the reservoir has contained gas on a geological timescale, it 

should be capable of doing so again). Pressure is used to force the gas into and out 

of the porous and permeable geological formations while a sealing caprock prevents 

vertical fluid migration. Deep saline aquifers represent a common alternative for 

UGS. The development and management of saline aquifers require that the original 

formation pressure is exceeded to displace the water initially saturating the pores of 

the rock to accommodate the gas. Therefore, the sealing capacity of the caprock, 

the presence of spill points (depths below which the gas may “escape” from the 

geological structure) as well as the rock mechanical integrity must be assessed in 

order to prevent gas leakage. Salt caverns and excavated rock caverns are generally 

developed in regions where reservoirs are not available. They are typically much 

smaller in volume than either depleted reservoirs or aquifers but can provide high 

delivery rates (Benetatos et al., 2013). 

The successful development of an underground storage must include an 

appropriate site selection based on subsurface information and subsequent 

performance analysis, preferably based on an integrated geological, geochemical, 

fluid-dynamic and geomechanical approach. To this end, the same basic sets of 

information as a typical reservoir study are used: geophysics, geology, well logging 

and core analysis, well testing and production history, rock mechanic properties. 

Furthermore, an adequate monitoring program to satisfy technical and safety 

regulations together with social and environmental concerns must also be conceived 

to ensure the long-term feasibility of the project. Even though the UGS industry has 

borrowed much of its knowledge from other industries (primarily oil and gas 

reservoir engineering and production), it has also developed a technology of its own 

to meet specific challenges and concerns (Verga, 2018). 

In the context of energy transition, the know-how and gained experience in 

underground storage of natural gas (UGS) can be profitably exploited and applied 

to CO2 and H2 middle to long term confinement to guarantee both the efficiency of 

the system and the existence of safety conditions. In fact, most of the past and 

ongoing underground CO2 and H2 storage projects use the experiences of the 

underground natural gas storage in each and every aspect, such as site 

specifications, storage techniques, monitoring, cost life cycle or economic viability 

and safety. To this end, the hydraulic sealing capacity of the caprock, the risk of 

lateral gas migration and the system geomechanical response must be assessed. In 

fact, pressure changes caused in geological formations by fluid production and/or 

storage affect the rock stress state. If the variations of the rock stress state are 
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significant, they could jeopardize the formation integrity and induce 

(micro)fracturing, potential faults (re)activation and rock deformation, which can 

propagate to the surface and induce ground movements. Both current regulations 

and public concerns call for geomechanical analyses to assess safety conditions in 

terms of stored gas containment, earthquake hazard and subsidence magnitude and 

extension. Therefore, the mechanical behavior of an underground storage system is 

a key aspect to be investigated. Given the extension and complexity of the system 

in terms of geometry, stratigraphy, rock heterogeneity, original stress field and 

stress variations induced by pressure changes, 3D numerical models are needed to 

simulate the mechanical behavior. 

A geomechanical model relies on the geological (or static) model of the volume 

of interest, which comprises the depleted reservoir or aquifer to be converted into a 

storage and the neighboring formations up to the surface. In turn, the geological 

model is a representation of the structural, stratigraphic, lithological and 

petrophysical aspects of the underground and is defined based on 2/3D seismic 

datasets, well logs and rock core data. The time and space evolution of pressure and 

fluid saturations in the geological formations are obtained from fluid-flow (or 

dynamic) simulations, which require the following input: fluids thermodynamic 

(PVT) behavior, rock-fluid interaction properties, pressure and temperature at 

initial conditions, well data, and future storage targets (such as injection and 

withdrawal fluid rates) and constraints (such as minimum or maximum pressure 

values). Furthermore, variable gas composition, reservoir temperature (slight) 

reduction due to repeated “cold” fluid injection, enhanced effects of petrophysical 

heterogeneities on the pressure response due to the cyclical withdrawal and 

injection of gas at high rates resulting in rapid and significant pressure variations 

and hysteresis of gas-water relative permeabilities should be taken into account 

(Verga, 2018). Production history if any is used to calibrate the model and confirm 

its reliability to forecast the storage dynamic behavior. 

Based on the geological and the fluid-flow models, the geomechanical model 

is defined and characterized with additional data about the deformation and the 

strength parameters of the system (i.e., intact rock and discontinuities), gathered 

from well log, core data and analogues. If historical production/storage data and 

surface movement surveys are available, the geomechanical model can be back-

analyzed so as to tune the most uncertain parameters. Ground movements can be 

monitored with the Interferometric Synthetic Aperture Radar (InSAr) acquisition 

technique, which is widely adopted due to its high accuracy (millimeters) on large 

areas (A. Ferretti et al., 2001; Berardino et al., 2003). 
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Typically, a one-way coupling approach is adopted for analyzing the 

stress/strain evolution induced by gas storage activities, namely the input to the 

geomechanical model is updated according to the outcome of the dynamic model. 

Thus, the time and space pressure evolution obtained from the dynamic model 

represents the forcing function applied to the geomechanical model, which implies 

that the information must be transferred from one model to the other. This 

introduces two strictly correlated, key aspects, i.e., the investigated volume 

discretization and the numerical methods applied to solve the differential problem 

under analysis. 

Discretization is the first key aspect because it is common practice to describe 

the investigated volume with a finite number of geometrical elements identified by 

vertices, edges and faces. They can be organized on a regular structure or not. The 

process which drives the domain discretization is strongly influenced by the 

geometry and the physics of the problem. In geomodelling problems, geological 

units need to be represented with high accuracy because the material properties 

strongly influence the response of the system. Fault and stratigraphic surfaces 

usually lead the construction of the grid because they can separate zones 

characterized by properties that differ by orders of magnitude. In this context two 

main approaches can be identified: structured hexahedral corner point grids (K. 

Ponting, 1989), based on the concept of pillar gridding, which represent the industry 

standard methodology, and generic unstructured grids with different underlying 

mathematical frameworks, such as the time-space grids introduced by Mallet 

(Gringarten et al., 2008; Mallet, 2004). The two types of grids are widely 

represented in codes developed both in academic/open-source (Pellerin et al., 2017) 

and in industrial/governmental projects (Emerson, 2021; LANL, 2016; 

Schlumberger, 2020a) focused on geomodelling and earth science applications.  

Once the volume of interest has been discretized, the second key aspect is the 

selection of the numerical method to solve the problem under investigation. For 

reservoir fluid flow simulations and rock mechanics applications the Finite 

Difference Methods (FDM) and the Finite Element Methods (FEM) are the 

reference methods (Jing and Hudson, 2002). The finite difference software Flac 

(Itasca Consulting Group, 2021) and the finite element simulators Visage 

(Schlumberger, 2020b) and Diana FEA (DIANA FEA, 2021) developed for 

geotechnical and geomechanical analysis are worth mentioning. Although classical 

FDMs and FEMs represent the state of the art in the solution of generic problems 

in differential and variational form, these methods are constantly evolving to 

improve the stability and accuracy of the solutions for specific application problem. 



6  

 

The recently introduced virtual elements method (VEM) (Beirão da Veiga et al., 

2013a) derives from the finite difference mimetic methods (MFD)(Lipnikov et al., 

2014) and is considered a generalization of FEMs because it overcomes some 

limitations of the original method, especially related to the shape of the elements 

which constitutes the discretized volume. The mathematical formulation behind 

VEM allows an easy solution of the PDEs on highly elongated or highly irregular 

deformed cells which typically characterize a pillar gridding mesh. The method can 

be applied to polyhedral grids and on meshes which are not conforming and it 

allows mixing different order of solutions without extra coding effort. Given their 

recent formulation, VEM application to engineering problems is still limited. 

However, they are a promising candidate to solve linear elastic equations, 

characteristic of geomechanical problems, on grid with complex geometry such as 

the ones which describes sedimentary formations, as shown in (Andersen et al., 

2017).  

Based on the above premises, the ultimate goal of this research project was the 

development and implementation of a geomechanical model suited to address the 

safety issues associated to fluid storage in deep geological formations, namely rock 

integrity and compaction/expansion due to fluid withdrawal and/or injection and 

induced ground level subsidence/rebound. So, the following two main challenging 

issues had to be tackled: discretization of the underground volume and numerical 

modeling of the storage geomechanical behavior. 

 



  

 

Chapter 2 

Theoretical Background 

The theoretical fundamentals used in the study of the mechanical behavior of 

porous media are briefly recalled in the following. For a more detailed discussion, 

reference can be made to the reference technical literature:(Mase and Mase, 1999); 

(Lancellotta, 2012), (Fjær et al., 2008), (Neto et al., 2008), (Drucker, 1956), (Davis 

and Selvadurai, 2002), (Atkinson, 1993), (Brady, 2012),(Wood, 1991). 

Stress and strain state in a continuous medium 

The mathematical representation of the mechanical behavior of porous media 

is based on the general principles of the continuum mechanics. In particular, under 

the basic continuum assumption the minimum element is a representative element 

volume (REV) of the analyzed material. 

In this framework, let us recall the Cauchy’s Theorem and the following theory, 

according to which the complete stress state of a point in ℝ3 within a continuous 

medium can be represented by a second-order tensor (𝝈) called Cauchy stress 

tensor or simply stress tensor:  

𝝈 = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

] (1) 
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In other words, the complete stress state of a point can be determined by the 

knowledge of the state of stress acting on 3 mutually orthogonal planes (𝜋𝑥, 𝜋𝑦, 𝜋𝑧) 

passing through that point. In Figure 1 a schematic of the stress tensor components 

acting on a rectangular parallelepiped is represented, where the normal components 

to the plane 𝜋𝑖 are identified by 𝜎𝑖 and the shear stresses orthogonal to the i-

direction and parallel to the j-direction by 𝜏𝑖𝑗. 

 

Figure 1: stress tensor components representations on a rectangular parallelepiped 

If the analyzed infinitesimal element is at rest, as a consequence of the balance 

of momentum, it is possible to prove that 𝜎 is symmetric, i.e., 𝜎𝑖𝑗 = 𝜎𝑗𝑖. It follows 

that the number of independent components of the stress tensor reduces to six. It is 

also possible to prove that, solving the characteristic equation of the stress tensor 

for a generic point of the continuum medium: 

|𝝈 − σ̂𝕀| = 0 (2) 

Three orthogonal planes are identified, called principal planes, on which only 

normal stresses act (𝜏𝑖𝑗 = 0) (𝛿𝑖𝑗  is the Kroneker delta). The normal stress acting 

on these planes are called principal stress and are indicated as: 𝜎1(maximum 

principal stress), 𝜎2 (intermediate principal stress) and 𝜎3 (minimum principal 

stress). 

Focusing on the analysis of small deformations, the state of deformation of each 

point of the continuum medium is represented by means of a second order tensor 

called infinitesimal strain tensor: 
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𝜺 = [

𝜀𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧

𝛾𝑦𝑥 𝜀𝑦 𝛾𝑦𝑧

𝛾𝑧𝑥 𝛾𝑧𝑦 𝜀𝑧

] (3) 

Its definition descends from the Cauchy-Green tensors of deformation and it 

has expression 

𝜺 =
1

2
(∇𝒖 + ∇𝒖𝑇) (4) 

where 𝒖 is the displacement vector. 𝜺 is symmetric, thus only 6 components are 

independent (𝛾𝑖𝑗 = 𝛾𝑗𝑖). The above expression inherently assumes that the 

deformations are small or infinitesimal, i.e., the displacement is sufficiently small 

to neglect second order terms (∇𝒖 ∙ ∇𝒖𝑇) in the strain tensor definition. 

As for stresses, planes on which only longitudinal deformations act (𝛾𝑖𝑗 = 0) 

can be derived. Analogously to stresses, they are called principal strains: 𝜀1, 𝜀2, 𝜀3. 

In an isotropic medium, the directions of the main stresses and deformations 

coincide. 

Linear momentum balance 

Now let us recall the differential equations that represent the focus of the 

validation described in the following chapters. 

The linear momentum balance equations for a general body Ω subject to body forces 

𝒃 is: 

∫ 𝒕(𝒏)𝑑𝑠
𝑓(𝜕Ω)

+ ∫ 𝒃
𝑓(Ω)

𝑑𝑣 =  ∫ 𝜌𝒖̈
𝑓(Ω)

𝑑𝑣 (5) 

where 𝑓(Ω) represent the deformed configuration of the internal points of the body 

and 𝑓(𝜕Ω) the deformed boundary configuration. 𝜌 is the mass density and 𝒖̈ 

represents the acceleration field of the body. The Cauchy stress vector applied to 

𝑓(𝜕Ω) is 𝒕(𝒏) = 𝝈 ∙ 𝒏 where 𝒏 is the outer normal versor to 𝑓(𝜕Ω). 
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In the following it will be assumed: 

• infinitesimal deformations, i.e. reference and deformed configurations 

coincide: 𝑓(Ω) = Ω and 𝑓(𝜕Ω) = 𝜕Ω. 

• quasistatic conditions, i.e. the inertial terms are neglected: 𝜌𝒖̈ = 0 

Therefore, the pointwise or strong expression of equations (5) becomes: 

∇ ∙ 𝝈 + 𝒃 = 0 in Ω 

(6) 

𝒕(𝒏) = 𝝈 ∙ 𝒏 in 𝜕Ω 

In turn, the weak expression is  

∫ 𝒕 ∙ 𝜼
𝜕Ω

𝑑𝑆 + ∫ 𝒃 ∙ 𝜼
Ω

𝑑𝑉 = ∫ 𝝈: ∇𝜼
Ω

𝑑𝑉 ∀𝜂 ∈ 𝒱 (7) 

Where 𝒱 is the space of virtual displacements 𝜂. This equation is usually denoted 

as Principle of Virtual Work and represents the starting point for the finite 

difference method and virtual element method formulations. 

Effective stress 

Deep geological formations used for storage are typically sedimentary rocks, i.e. 

porous and permeable media whose interstitial voids are filled with fluids. To 

understand the effects induced by a variation of the stress field and therefore to be 

able to express the internal distribution of the stresses applied to a generic element 

of rock or soil, it is necessary to establish an interaction law between the solid and 

fluid phases. Terzaghi's principle of effective stress (Terzaghi, 1936), initially 

developed for soils, constitutes the universally adopted law of interaction between 

phases for soils and porous rocks (Bouteca and Guéguen, 1999). 

According to Terzaghi, “all the measurable effects of a change of the stress, such 

as compression, distortion and a change of the shearing resistance are exclusively 

due to changes in the effective stresses”. The effective stress is related to the total 

stress through the relation: 
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𝝈′ = 𝝈 − 𝛼𝑝𝕀 (8) 

where 𝜎𝑖𝑗 is the total stress tensor, 𝜎′
𝑖𝑗 is the effective stress tensor, 𝑝 is the neutral 

pressure (or pore pressure), and 𝛼 is called the Biot’s coefficient. The theoretical 

formalization of the effective stress concept and its generalization to three 

dimensional problems was performed by Biot in the soil consolidation framework 

(Biot, 1941) and it constitutes the basis of poroelasticy theory. Biot’s coefficient 

can be expressed as: 

α = 1 −
K′

KS
 (9) 

where 𝐾′ is the frame modulus, i.e. the bulk modulus of the solid skeleton, and 

𝐾𝑆 is the bulk modulus of the rock grains. Since 𝐾′ ≪ 𝐾𝑆, 𝛼 is assumed to be equal 

to unity (Geertsma, 1973a).  

Elasto-plastic constitutive models 

Geomaterials show very complex responses even when subject to simple 

loading conditions. Many characteristics of their response, such as non-linearity, 

irreversibility, stress path and time dependence, are taken into account by means of 

constitutive laws. The constitutive laws are represented by equations that describe 

the deformation of a medium subject to a stress field: 

𝛔 = C𝛆 (10) 

where 𝛔 is the total stress tensor, 𝛆 is the strain tensor and C is a fourth order 

tensor (with 81 parameters) describing the behavior of the material. 

In the scientific literature, several types of constitutive laws have been defined 

which define the deformation behavior of continuous media subject to a stress field 

with the desired level of complexity and accuracy, However, the difficulty of 

exhaustively describing all the involved phenomena using a single mathematical 

model is evident. For this reason, results provided by the application of simplified 
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models are commonly accepted, that is only those phenomena that are believed to 

influence the behavior of the rock in a significant way are taken into account. 

The general form of a constitutive model, which is commonly applied for 

geomaterial deformation analysis, is summarized below. 

The behavior of a continuous medium is defined as elastic when the stress-

strain relation is described by a bijective function (Figure 2a and Figure 2b). In such 

conditions, during a loading-unloading cycle, not only the deformation is recovered 

but also the deformation work. 

 

Figure 2: constitutive models of a continuum medium: (a) linear elastic (b) non-linear elastic (c) elastic 

with hysteresis (d) elasto-plastic 

If the material is assumed to be homogeneous, isotropic, linear and elastic 

(ILE), the C tensor is completely defined by two independent constant parameters 

and the generalized Hooke's law describes the stress-strain relation in ℝ3:  

𝝈 = 2μ𝛆 + 𝜆tr(𝛆)𝕀 (11) 

where μ and 𝜆 are the Lamé Elastic Constant 

μ =
𝐸

2(1 + 𝜈)
 𝜆 =

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 (12) 

and E is the Young's modulus and ν is the Poisson's ratio. It follows that in terms of 

effective stress it becomes: 

𝝈′ = 2μ𝛆 + [𝜆tr(𝛆) − 𝛼𝑝]𝕀 (13) 

   
(a) (b) (c) (d) 



 13 

 

Several materials, including rocks and soils, are subject to hysteresis (Figure 

2c). In such cases, although the deformation is completely recovered during the 

loading-unloading cycle, some of the deformation work is dissipated in the 

deformation process. Thus, there is no longer a one-to-one correspondence between 

stresses and strains and the constitutive law describing the process is more complex 

than the generalized Hooke's law. 

Eventually, if during a loading-unloading cycle the deformations are not 

completely recovered (irreversible process), the behavior of the material is defined 

as elasto-plastic (Figure 2d). In this situation, the constitutive law has to model the 

elastic part of the response and the plastic - or irreversible - one. Permanent 

deformations occur when stresses exceed a value called yield point (𝜎𝑦). After 

reaching the yield point, if the material can still support the load, the behavior is 

defined ductile, as shown in the section A-B of Figure 3a and in Figure 3b. 

conversely, if the stress-strain curve reaches a peak (point B in Figure 3a) and the 

material shows a reduction in resistance, the behavior is defined as brittle. As the 

confinement stress varies, geomaterials exhibit the two types of behavior shown in 

Figure 3. The behavior of Figure 3a is called strain softening and, in general, occurs 

at no or moderate confinement stresses, while the one of Figure 3b is called strain 

hardening and it typically occurs at high confinement stress. 

Behaviors illustrated in Figure 3 show that it is difficult to define what the 

failure of a material is. Conventionally, we speak of failure when the peak resistance 

is reached, commonly called the strength of the rock, as in the case of Figure 3a 

(point B); however, although there is a reduction in resistance, the material can still 

carry a load. The behavior shown in Figure 3b poses greater difficulties in defining 

the phenomenon of failure. 

 

Figure 3: stress-strain behavior of a geomaterial under compressive strength: (a) strain softening (b) 

strain hardening 

Sometimes the failure is defined as the point where the stress-strain curve 

exhibits a change in slope, but this definition may seem inappropriate since the 

(a) (b) 
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material can carry an increasing load even if it “reached the failure”. In other 

situations, a condition in which deformations are unacceptable for engineering 

applications can also be defined as "failure". For this reason, the term "resistance 

criterion" is sometimes preferred to the term "failure criterion". 

From what highlighted so far, it becomes relevant to describe the behavior of 

the material after reaching the yield stress through the concepts of the Theory of 

Plasticity. A fundamental assumption of this theory is that the strain can be 

decomposed in the sum of an elastic or reversible component (𝜺𝑒) and a plastic or 

irreversible one (𝛆p): 

𝛆 = 𝛆e + 𝛆p (14) 

In this framework, the definition of a constitutive model able to describe the 

irreversible behavior of a continuous medium requires: 

• A yield condition to establish the existence of plastic deformations. 

• A hardening law to establish the modulus of plastic deformations. 

• A flow rule to establish the direction of plastic deformations. 

In Figure 3a yield stress 𝜎𝑦 has been set as a threshold between the reversible 

and the plastic behavior. However, in the more general case of the three-

dimensional principal stress domain, assuming to apply increasing principal 

stresses according to infinite stress paths, the corresponding yielding points set 

represent the locus of the points which separate the elastic and plastic domains (as 

sketched in Figure 4), commonly known as yielding surface. 

 

Figure 4: sketch of yielding and failure surfaces 
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A relation between 𝛔′ and κ describes a general yielding surface 

Φ(𝛔′, κ) = 0 (15) 

where 𝛔 is the stress tensor and κ are internal hardening variables. 

During plastic deformation, this surface can change size and shape. The 

evolution of the yield surface is called hardening and the relation between the 

variation in yield stress and plastic deformation is known as hardening law: 

κ̇ = γH(𝛔′, κ) (16) 

where 𝛾 is called plastic multiplier and 𝛼̇ represent the rate of variation of the 

hardening variables. 

Inside the yield surface the behavior of the material is elastic and yielding 

occurs on the boundary of the surface. Consequently, if the material is subject to a 

loading process until it reaches the yield surface A (Figure 4) and is then unloaded, 

part of the deformations will be irreversible. If the material is subject to a loading 

process again, its behavior will be elastic until it reaches the yield surface A again. 

If the yield surface evolves (hardening) up to B, the behavior of the material from 

A to B (and B to A) will be elasto-plastic. 

If during the plastic deformation the yield surface does not change, the behavior 

of the medium is defined perfectly plastic. It is noticed that, for a perfectly plastic 

material, the yield condition coincides with the failure criterion. 

The direction of the plastic strain increment is independent of the stress 

increment direction, but it depends on the stress field applied to the body. Thus, the 

plastic flow rule is introduced. Its general expression is 

𝛆̇p = γN(𝛔′, κ) (17) 

where 𝑁 is the flow vector. 
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Usually, the plastic flow rule can be expressed through the introduction of a 

function of the stress components, called flow potential (Ψ) and the plastic strain 

rate is defined orthogonal to that surface: 

N(𝛔′, κ) =
∂Ψ

∂𝛔′
 (18) 

If the potential function and the yield function coincide (Ψ ≡ Φ) we speak of 

an associated plastic flow. In the more general case, the potential function and the 

yield function do not coincide, and the plastic flow criterion is defined as 

unassociated. 

To guarantee the admissibility of the solution, the definition of the constitutive 

model requires that the following conditions are fulfilled: 

Φ(𝛔′, κ) ≤ 0 γ ≥ 0 γΦ(𝛔′, κ) = 0 (19) 

The first is named the consistency condition and assures the actual state of stress 

is plastically admissible, the second is the Lagrangian multiplier constraint and the 

third is the so-called complementarity condition. In the plasticity theory they are 

referred to as loading/unloading conditions, and they are nothing else than the 

Karush-Kuhn-Tucker optimality conditions for nonlinear problems (Luenberger et 

al., 1984). 

The literature reports different failure criteria formulated for the different types 

of material. For example, the Tresca criterion, the Von Mises criterion and the 

Drucker & Prager criterion are cited. However, the simplest and most widely used 

criterion of failure or plasticization in the field of soil and rock mechanics is the 

Mohr-Coulomb criterion. 

An elasto-plastic model specifically formulated for soils is the Cam Clay model 

(Schofield and Wroth, 1968). This model is based on the experimental evidence of 

triaxial tests performed on clays and it represents the first application of the theory 

of plasticity to soils with the purpose of predicting their behavior in a realistic way. 

Recently the Modified Cam Clay model has been applied to analyze the mechanical 

response of sedimentary rocks. Examples can be found in (Capasso and Mantica, 

2006; Cuss et al., 2003; Firme et al., 2014). 
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In all the cases described above, the stress-strain relation is independent of time. 

However, rocks and soils can exhibit viscous, i.e. time-dependent, behavior that is 

commonly called creep. Figure 5 schematically shows the creep phenomenon: even 

if the loading process stops at point A, the material deforms – at constant stress – 

from A to B in time t.  

 

Figure 5: creep phenomenon: time-dependent behavior of the continuous medium 

Viscous behavior is generally associated with elastic and/or plastic behavior, 

giving rise to the viscoelastic or – visco-elastoplastic constitutive models, 

respectively. The most known viscoelastic models are the Maxwell model, the 

Kelvin model and the Burgers model which are sketched as an elastic spring and a 

viscous damper connected in series and/or in parallel as shown in Figure 6. 

 

Figure 6: Maxwell model (a); Kelvin model (b); Burgers model(c). 

The Mohr-Coulomb criterion 

Coulomb (Coulomb, 1776) postulated that the shear strength of rocks and soils 

was composed of two parts: a constant cohesion and a friction component 

dependent on the normal stress (in reality the criterion was formulated in terms of 

forces, because the Cauchy’s stress vector was introduced later). Consequently, the 

(a) (b) (c) 
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shear resistance τf  that develops on a plane within an isotropic material is expressed 

as: 

τf = c + σ tanφ (20) 

where φ is the friction angle, c is the cohesion and σ is the normal stress acting 

on the failure plane. In presence of fluids the Terzaghi’s effective stress principle is 

applied and the equation is expressed in terms of effective stress, and the 

corresponding cohesion and friction angle are considered: 

τf = c′ + σ′ tanφ ′ (21) 

In the σ′ − τ plane, the shear resistance (τf) is represented by two straight lines 

(red lines in Figure 7a). If represented through the Mohr circles, the failure 

condition occurs when the Mohr circle, which represents the state of stress of the 

element subjected to loading, is tangent to the failure envelope. Figure 7b shows 

the failure of a rock element subject to a stress state σ′
1 − σ′

3. The Mohr-Coulomb 

criterion provides that the failure plane is inclined by angle β =
π

4
+ φ′ with respect 

to the direction of the minimum main stress. 

 

Figure 7: (a) Mohr-Coulomb Yield criterion in the plane 𝝈′ − 𝝉. (b) sketch of the rock plug subjected to 

loading. (c) Mohr-Coulomb Yield Criterion in the 𝝈′
𝟏 − 𝝈𝟑

′  plane 

Using the stress transformation law, the Mohr-Coulomb criterion can be 

reported in the plane σ′1 − σ′3 (Figure 7c): 

(a) (b) (c) 
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σ′
c =

2c cosφ′

1 − sinφ′
    N′

φ =
1 + sinφ′

1 − sinφ′
 (22) 

where 𝜎𝑐 is the uniaxial compressive strength and 𝑁𝑐 is the slope of the straight 

line representing the criterion. 

When generalized to the three-dimensional case, the expression of the yield 

surface becomes: 

Φi1,i2
(𝛔′) = (1 − sinφ)σi1

′ − (1 + sinφ)σi2
′ − 2c′ cosφ ′ 

(23) 
𝑖1, 𝑖2 = 1,2,3 i1 ≠ i2 

The multi-surface representation in the space of the principal stresses is a 

pyramid with a hexagonal base and axis coinciding with the hydrostatic axis, as 

shown in Figure 8 where it is assumed that 𝜎1 ≥ 𝜎2 ≥ 𝜎3. 

  
(a) (b) 

Figure 8: (a) representation of the yield function defined by the Mohr-Coulomb criterion in the space 

of the principal stresses. As an example, c = 2.5 bar and φ = 25 ° were imposed. In (b) projection of the 

function on the deviatoric plane 

When applying Mohr-Coulomb yield criterion to rock materials, a non-

associated plastic flow is usually introduced and a flow potential Ψ defined. Such 

a choice is due to the necessity to control the dilatancy effect usually overestimated 

by associative plastic flow. For the Mohr-Coulomb yield model the flow potential 

is similar to yield surface, i.e. the friction angle φ is substituted by the dilatancy 

angle 𝜓 (Fjær et al., 2008; Neto et al., 2008): 
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Ψi1,i2
(𝛔′) = (1 − sinψ)σi1

′ − (1 + sinψ)σi2
′ − 2c cosψ 

(24) 

𝑖1, 𝑖2 = 1,2,3 i1 ≠ i2 

 

Safety Factor 

The formation pressure and stress fields variations during fluids 

withdrawal/injection are strongly related to safety issue. The modification of the 

stress state can cause borehole instability, jeopardize the reservoir cap-rock 

integrity, induce deformations that propagate to the surface generating 

subsidence/rebound and even lead to the (re)activation of discontinuities such as 

faults or fractures at reservoir and regional scale with possible induced 

(micro)seismicity. 

The aim of failure mechanics is the reliable characterization of the constitutive 

laws describing the rock stress-strain behavior through laboratory tests, and the 

application of adequate criteria to assess the risks of failure. For this reason, in 

geotechnical analysis it is common practice to quantify the level of risks with a 

safety factor (S). In the technical literature the Mohr-Coulomb criterion is 

commonly assumed as a failure envelope and applied for this purpose (Fjær et al., 

2008; Mao et al., 2020; S. Kwon et al., 2013). For an isotropic material, its 

representation in the 𝜎 − 𝜏 plane is depicted in Figure 9: 

 

Figure 9: failure envelope for the Mohr-Coulomb criterion 

where: 
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• DC =
1

2
(σ′

1 + σ′
3) +

c′

tanφ′
 

• AC =
1

2
(σ′

1 − σ′
3) represents the stress acting on the material 

• BC = DC sinφ′ represents the strength of the material, i.e. the stress 

level at which the material fails 

and S is defined as 

𝑆 =
AC

BC
=  

1
2

(σ′
1 − σ′

3)

[
1
2

(σ′
1 + σ′

3) +
c

tanφ′] sinφ′
   (25) 

It follows that if the Mohr’s circle lies below the failure envelope, 𝑆 ∈ [0,1] and it 

approaches 1 when the circle is tangent to the envelope as depicted in Figure 10: 

 

Figure 10: shear failure according to Mohr-Coulomb failure criteria 

The tangent condition means that the material reached a shear failure: it occurs 

when the shear stress along a plane (failure plane) is sufficiently high, thus a fault 

zone can develop, and a relative translation can occur between two bodies in contact 

and separated by the failure plane. It is also observed that frictional forces that 

oppose to the movement depend on the compressive stress which presses the two 

bodies together. 

From a general point of view failure of a material can also occur when the 

tensile stress exceeds a value called tensile strength (𝑇0) which is a characteristic 

property of the rock. Most sedimentary rocks are characterized by tensile strength 

values (typically in the order of few MPa) smaller than shear strength. This is the 
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reason why in many applications this value is assumed equal to zero. In the 𝜎′ − 𝜏 

plane Mohr’s circle representation tensile failure occurs when the minimum 

principal stress is lower than 𝑇0. In the safety assessment Mohr-Coulomb failure 

envelope can be modified by introducing a tensile cut-off (𝑇0) (Figure 11) in order 

to keep into account tensile failure mode (although the criterion is specific for 

predicting shear failure) (Brady, 2012) 

 

Figure 11: tensile stress cut-off on the Mohr-Coulomb failure criteria 

It is worth mentioning that pore pressure plays a crucial role in the evaluation 

of the safety factor S. As already discussed, effective stress variations are 

responsible for skeleton deformation and the pore pressure only influences the 

normal components of the total stress. Generally speaking, production induces more 

stable stress states (i.e. translation of the Mohr’s circle towards higher values of the 

normal stress in the σ-τ plane), if the variations of the deviatoric stress are limited 

or negligible compared to the plastic deviatoric stress. Conversely, injection 

induces stress configuration closer to failure state as sketched in Figure 12. 

  
(a) (b) 

Figure 12: 𝝈′ − 𝝉 Mohr’s circle representation of effective stress: (a) pressure decreasing and (b) 

pressure increasing effects 

Finally, it is observed that Biot’s coefficient was originally derived for linear elastic 

intact rock, and it should not be applied to failure analysis. However, Terzaghi’s 
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effective stress definition is generally applied to failure analysis (Bouteca and 

Guéguen, 1999) 

Stress state of the lithosphere 

The knowledge of the active stress field in the Earth’s crust is of fundamental 

importance for the understanding of the geodynamic processes that govern the 

evolution of the lithosphere, for the evaluation of the seismic hazard, to verify the 

stability of underground constructions and for the optimization of reservoir 

management (Sperner et al., 2003). From a modelling point of view, it represents 

the initial stress equilibrium state of the investigated volume. 

Within the lithosphere, stress is conventionally described by three main 

components of compressive stress: a vertical component (𝜎𝑣) and two horizontal 

components (𝜎𝑜𝑟) corresponding to the maximum horizontal stress (𝜎𝐻) and 

minimum (𝜎ℎ). When that the Earth's surface does not have an elevated and 

irregular topography, and in the absence of discontinuities, it can be assumed that 

the components 𝜎𝑉, 𝜎𝐻 and 𝜎ℎ coincide with the main stress axes. The vertical 

component depends on gravity and, for a rock volume located at a given depth, it 

depends on the weight of the overburden rock. This component is called lithostatic 

pressure and depends on the thickness and nature of the sediments and saturating 

fluids as well as on the depositional history. The value of the 𝜎𝐻 component is the 

most difficult to calculate and is typically derived from direct correlation with the 

value of 𝜎ℎ. Different correlations between, 𝜎𝐻, 𝜎ℎ and 𝜎𝑉 have been proposed as 

a function of rock type and tectonic regime (Zang et al., 2012). 

The stress field inside the lithosphere is therefore the result of the interaction, 

at different scales, between the gravitational force, processes involved in the 

movement and tectonics of plates, lithological variations, heterogeneity of the 

mechanical properties of rocks, changes of temperature and pore pressure. The two 

main components are represented by the stress connected to the lithostatic pressure 

and by that connected to tectonic processes, respectively:  

𝜎𝑣 = 𝜎𝑙𝑖𝑡𝑜 = 𝜌𝑔𝑧 (26) 

𝜎𝑜𝑟 = 𝐾𝜎𝑣 + 𝜎𝑡𝑒𝑐 (27) 
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In (26) 𝜎𝑙𝑖𝑡𝑜 is the lithostatic pressure [MPa], ρ is the density [kg/m3], g is the 

acceleration of gravity [m/s2] and z is the depth [m]. In the Italian geological 

context, Montone and Mariucci (Montone and Mariucci, 2015) calculated the 

lithostatic stress gradients representative for the eastern Po Valley, the northern 

Apennines and the North-Western Adriatic. In particular, a lithostatic gradient of 

about 21 MPa/km was calculated for the Adriatic off-shore and about 22 MPa/km 

for the Po Plain (Montone and Mariucci, 2015). In (27) K is the lateral stress 

coefficient which represents the ratio between the average horizontal stress and the 

vertical one: 

𝐾 = 0.5
𝜎𝐻 + 𝜎ℎ

𝜎𝑣
 (28) 

K is characterized by a strongly non-linear behavior, and it decreases significantly 

as the depth increases (Brown and Hoek, 1978; Taherynia et al., 2016; Zang and 

Stephansson, 2009). 

According to Anderson's theory, the orientation of the axes 𝜎1, 𝜎2 and 𝜎3 controls 

the orientation and the type of faults that can potentially form in a given tectonic 

regime. Figure 13 shows the most common types of faulting, under the hypothesis 

that one principal stress is vertical (Fjær et al., 2008). 

 

Figure 13: sketch of fault types (Fjær et al., 2008) 
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Induced subsidence and rebound 

In the case of a saturated porous medium, such as deep geological formations, 

the pressure exerted by the lithostatic load is distributed between effective stress, 

i.e. the part supported by the solid skeleton, and interstitial pressure, which 

represents the fraction supported by fluids saturating the porous medium (Terzaghi, 

1936). 

The withdrawal/injection of fluids, whether liquid or gaseous, generates a 

progressive variation in the interstitial pressure of the porous medium and, 

consequently, a variation in the effective stresses, which insist on the solid skeleton; 

in turn the skeleton reacts to the new stress state with a deformation. In other words, 

the void index 𝑒 (or porosity 𝜙) is reduced/increased. The void index is defined by 

the following relationship: 

𝑒 =  
𝑉𝑣

𝑉𝑠
 (29) 

where 𝑉𝑣 is the volume of the voids and 𝑉𝑠 is the volume of the solid phase. The 

void index is related to porosity 𝜙 by the following relation: 

𝜙 = 
𝑒

1 + 𝑒
 (30) 

At the macroscale, the reduction/increase of the void index, or porosity, 

corresponds to a volumetric change known as compaction/expansion (Figure 14). 

 

Figure 14: sketch of induced compaction/expansion as a consequence of withdrawal/injection of fluids in 

deep geological formations 
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Before starting any withdrawal/injection operations, the effective stress field of 

rock is at equilibrium. During the production or storage operations the fluid pressure 

in the pores decreases/increases, causing an increase/decrease in the effective 

stresses. As a result, the rock formations compact/expand and the degree of 

compaction/expansion is essentially governed by the variation of effective stresses, 

the compressibility of the formation rock and its thickness (Nagel, 2001). The 

volume variation, caused by the compaction/expansion of the rock, propagates to 

the surface, causing subsidence/rebound (or uplift) phenomena. The extent of 

subsidence/rebound depends on the compaction/expansion magnitude, on 

geometric factors, such as the depth and size of the interested formations, and on 

the fluid-dynamic and mechanical properties of the geological bodies located above 

(overburden), to the sides (sideburden) and below (underburden) the formations 

affected by production or storage. 

The compaction/expansion phenomena and the induced subsidence/uplift by 

production or withdrawal/injection from deep rock formations are widely described 

in the technical-scientific literature. Subsidence studies are typically related to oil 

and gas production, which can induce significant variations in the pore pressure. 

Starting from the first analyzed case related to the Goose Creek field (Texas) in 

1918, recent examples of important subsidence phenomena (over 6 meters) are 

those of the Ekofisk and Valhall fields in the Norwegian sector of the North Sea. In 

the 90’s, the subsidence due to the extraction of gas from the huge fields of 

Groninghen and Ameland (on-shore and off-shore) in the Netherlands received 

particular attention. However, most hydrocarbon fields are subject to modest 

compaction and, consequently, the corresponding subsidence on the surface is 

negligible. In particular Fjær et al. (Fjær et al., 2008) report that subsidence 

becomes appreciable when one or more of the following conditions exist: the 

formation rock is highly compressible, the pressure drop in the formation is 

considerable, the reservoir has a significant thickness, the mechanical properties of 

the overburden are similar to those of the reservoir. It follows that important 

subsidence phenomena are expected only in certain circumstances and therefore in 

a limited number of cases. 

Injection of fluids in deep formations has gained an increasing interest in the 

last decades and currently occurs worldwide for different purposes. For example, 

underground gas storage (UGS) in depleted gas/oil fields is a common strategy to 

meet daily and seasonal oscillations in energy needs and enhanced oil recovery 

(EOR) by fluid (water, CO2) injection in the oil fields for reservoir productivity 

optimization is a widespread practice. Similarly, aquifer storage and recovery 
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(ASR) practice is at the center of many projects with the aim of recharging aquifer 

systems and mitigate land subsidence. There is also a revived interest in the Carbon 

Capture and Storage (CCS) practice, i.e. underground storage of CO2 in order to 

mitigate climate change by reducing greenhouse gas emissions, and CCS is at the 

center of international scientific projects (reference can be found in (Rubin et al., 

2005). 

As already mentioned, injection of fluids can cause land uplift that can range 

from few millimeters to tens of centimeters making necessary an accurate feasibility 

analysis and a close monitoring of the system evolution. A survey of sites where 

induced land uplift was observed can be found in (Pietro Teatini et al., 2011). 

Analytical and semi-analytical approaches 

The assessment and monitoring of induced subsidence/rebound is one of the 

goals of geomechanical analyses performed on deep formations subject to 

withdrawal/injection of fluids to prevent safety issues. There are many contributors 

in the scientific literature who proposed analytical and semi-analytical solutions to 

the problem. By nature, analytical approaches to evaluate subsidence represent 

quick investigation techniques that generally offer an approximate but rapid 

evaluation of the phenomenon. Conversely, the numerous simplifying hypotheses 

underlying these methods often do not allow one to correctly reproduce the effects 

of the heterogeneity or structural characteristics of the investigated volume. 

Furthermore, the analytical solution of particularly complex models may not be 

feasible due to the nature of the mathematical laws and/or the geometry of the 

domain. 

One of the most known analytical models in the oil and gas industry was 

proposed by Geertsma (Geertsma, 1973b, 1973a). It was derived in the framework 

of the nuclei of strain theory and based on a parallelism with thermo-elasticity 

(Mindlin, 1936; Mindlin and Cheng, 1950; Sen, 1951). The model provides the 

order of magnitude of both compaction and related subsidence generated by a 

decrease in the interstitial pressure in a disk-shaped underground porous medium 

with radius 𝑅 and thickness 𝐻. 

Reservoir compaction, ∆𝐻, is defined by eq. (31) with, Biot’s coefficient 𝛼 set 

equal to 1, that is: 
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∆𝐻 = 𝑐𝑀∆𝑝 𝐻 (31) 

while the vertical displacement induced on the surface at a distance 𝑟 from the 

symmetry axis of the reservoir, 𝑢𝑧 (𝑟, 0), is: 

𝑢𝑧  (𝑟, 0) = − 2𝑐𝑀(1 − 𝜈)𝛥𝑝𝐻 𝐴(𝜌, 𝜂) (32) 

Since radial symmetry is assumed, the solution of the model is provided in 

cylindrical coordinates. Therefore, the radial displacement at a distance 𝑟 from the 

reservoir  𝑢𝑟  (𝑟, 0) has the expression: 

𝑢𝑟 (𝑟, 0) =  2𝑐𝑀(1 − 𝜈)𝛥𝑝𝐻 𝐵(𝜌, 𝜂) (33) 

where: 

• 𝑐𝑀: uniaxial compressibility coefficient expressed as 
(1+𝜈)(1−2𝜈)

𝐸(1−𝜈)
 

• 𝜈: Poisson’s ratio 

• 𝛥𝑝: pressure reduction in the reservoir 

• 𝐻: depth of the reservoir 

• 𝜌: ratio between the distance from the axis of the reservoir 𝑟 and the 

radius of the reservoir 𝑅 (𝑟 𝑅⁄ ) 

• η: ratio between depth and radius of the reservoir (𝐻 𝑅⁄ ) 

• 𝐴 (𝜌, 𝜂) and 𝐵 (𝜌, 𝜂): Hankel integrals functions parametrized by 𝜌 and 

𝜂. Details in (Geertsma, 1973b) 

It can be shown that the maximum subsidence, 𝑢𝑧 (0, 0), i.e. the vertical 

displacement at the axis of the reservoir, can be obtained from equation (32) and is 

equal to: 

𝑢𝑧 (0, 0) = − 2𝑐𝑀(1 − 𝜈)𝛥𝑝𝐻 (1 −
𝜂

√1 + 𝜂2
)  (34) 
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The simplicity and ease of application of the method counterbalance the 

simplifying hypotheses underlying it (among which the main ones are disk-shaped 

reservoir with high areal dimension with respect to its thickness, constant and 

instantaneous reduction of interstitial pressure, constant parameters throughout the 

domain, uniaxial and elastic deformations). 

Numerous other authors have formulated analytical solutions to the subsidence 

problem, in some cases adopting less simplifying hypotheses to make the models 

more realistic. As an example, the work of Morita et al. (Morita et al., 1989) 

constitutes an extension of Geertsma's results to a more realistic case with different 

Young's moduli for the reservoir and its cap rock. 

More recently, semi-analytical models were formulated, in which the analytical 

solutions are associated with numerical integration techniques to describe the 

spatial variation of the pressure field obtained from an external fluid dynamic model 

of a reservoir with generic shape. Furthermore, thanks to the effect of superposition, 

it is possible to estimate the first approximation subsidence expected from multi-

layered producing fields (as the sum of the subsidence induced by each level). As 

an example, the approach formulated by Fokker and Orlic (Fokker and Orlic, 2007) 

is worth mentioning. This semi-analytical model, developed through the TNO's 

AEsubs subsidence modelling tool, uses linear combinations of analytical solutions 

of elastic (or viscoelastic) equations to approximate boundary conditions. The 

number of unknown parameters to be estimated is limited and, consequently, the 

calculation is very fast. The model is also applicable to multi-layer systems (with 

variable viscoelastic parameters per level) and allows the adoption of an arbitrary 

history of reservoir pressure changes.



  

 

Chapter 3 

Numerical model 

Model construction 

The purpose of a 3D numerical model of the reservoir interested by 

withdrawal/injection operations and of the neighboring formations is to describe 

the spatial and temporal pressure evolution due to fluid flow and the consequent 

deformation response of the system. This is achieved through integration of all the 

available information, whether of geological, geophysical, petrophysical or 

geotechnical type or related to production/injection of fluids. When properly 

calibrated, the model becomes a reliable tool to forecast the performance of the 

system according to different scenarios. 

The definition of a comprehensive model that allows the analysis of all the 

involved phenomena requires the integration of three reference models, each 

dedicated to describing a specific aspect of the problem in detail:  

1. Geological (static) model 

2. Fluid dynamic (dynamic) model 

3. Mechanical model 

The construction and characterization of a static model allows geologists to 

accurately describe the structural characteristics and the distribution of the 

lithological/petrophysical properties of the formations under analysis. The static 

model, integrated with the PVT (pressure, volume and temperature) parameters 
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describing the thermodynamic behavior of the fluids that saturate the porous media, 

the well type and completion characteristics and the production/injection data (such 

as well flow rates, cumulatively produced volumes, static bottom hole pressures), 

are the basis for the analysis of flow phenomena. The geological model, suitably 

extended to the neighboring formations and characterized from a geotechnical point 

of view with resistance and deformability parameters, can then be integrated with 

the dynamic model to define the mechanical model. Mechanical analyses are aimed 

at evaluating the effects of production/injection on the stress-strain response of the 

rock as well as at assessing the variations of the petrophysical parameters induced 

by rock matrix deformation. 

One possible approach to define a geomechanical model that integrates static 

and dynamic information is articulated as follows. Initially, the static model is built. 

It is represented by a 3D grid with high areal and vertical resolution, and it includes 

all the structural, stratigraphic and petrophysical characteristics of the formation. In 

the case of hydrocarbon reservoirs this model is mainly used for estimating the 

volume of fluids originally in place. The grid of the static model, with all its 

properties, is then converted into a new grid, with lower resolution and therefore 

better suited for dynamic simulations. It represents the starting point of the dynamic 

model, used to simulate the pressure and saturation variations induced by fluid 

production/injection in the reservoir. In turn, the calculated pressure fields represent 

a fundamental input for geomechanical simulations. At last, the 3D grid used for 

geomechanical simulations is constructed by extending the grid of the static model 

to a regional scale to include all the formations interested by the phenomena under 

analysis. Thus, the extended grid also describes the geometry of the geological units 

surrounding the reservoir, including the main regional discontinuity systems within 

the modeled area (geological model on a regional scale). The related 

geomechanical model integrates this grid with all the information relative to the 

geomechanical and dynamic properties needed for the mechanical simulations. 

Static model 

The reservoir study is divided into several phases. The workflow is meant to 

integrate geological and geophysical data but also dynamic information useful to 

understand if layers or zones are hydraulically separated. Each phase and its 

contribution to the construction of the geological model are presented in the 

following paragraphs.  
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Construction of the database and quality check 

The definition of the reservoir model begins with the collection of data that will 

constitute the integrated database necessary for the reconstruction of the geometries 

and geological characteristics of the reservoir. It follows that the quality of the 

available data affects the results of the reservoir study. The database typically 

includes data of different nature related to sedimentological-stratigraphic 

understanding of the system, seismic, wells, logs, and cores. 

Construction of the structural model 

The model construction consists in the definition of the maps of the structural 

top and of the faults intercepting the reservoir. In most cases top maps derive from 

seismic interpretation. The horizons are defined starting from the interpreted 

seismic reflections to build 3D maps in the time domain. Subsequently, using a 

velocity model, the maps are converted in the space domain (depth) and integrated 

with the well data for the construction of the static model. The presence of faults 

can be identified through the analysis of seismic data, log data or pressure data. 

Seismic data provide information about the geometry of the faults through lines or 

polygons. The reconstructed fault surfaces constitute the basis of the 3D grid.  

Construction of the stratigraphic model 

The stratigraphic model is defined through the correlation of the horizons, that 

limit the main stratigraphic units of the reservoir, adjusted at the wells. Information 

on the size of the sedimentary bodies, their geometry and their 3D organization can 

derive from the conceptual geological model and from regional stratigraphy. The 

stratigraphic correlation can be relatively simple in the case of bodies characterized 

by high lateral continuity, as in the case of turbiditic lobes; conversely, it can be 

extremely complex in the case of bodies characterized by rapid variations in 

orientation, thickness, and lateral continuity, as in the case of channelized 

deposition environments. 

Facies and petrophysics characterization 

During this phase, the depositional and lithological facies and the associated 

petrophysical characteristics are defined. For the definition of the depositional and 

lithological facies it is necessary to refer to a sedimentological model; this model is 

generally based on core data, which provide information on the lithologies present 

within the reservoir and on their petrophysical properties. The association of 
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petrophysical characteristics to the lithological facies is carried out through the 

analysis and integration of the available logs and core data (RCAL, SCAL). 

Properties such as porosity (𝜙) and irreducible water saturation (𝑆𝑤𝑖) are necessary 

for the calculation of the hydrocarbon volume; the permeability values (𝑘) are 

indispensable for the subsequent fluid dynamic simulations. 

Construction of the 3d geometric model 

The 3D geometric model of the reservoir is the result of the integration of the 

structural and stratigraphic models with the well data within the grid. The grid is an 

object which spatially describes the investigated volume, and it consists of a number 

of cells which can have a structured or unstructured organization. The nature of the 

grid strictly depends on the physical properties/phenomena that are 

represented/simulated and on the methods applied to perform such simulations. In 

case of geomechanics, grids with a vertical discretization following the stratigraphic 

sequence of the formations and suitable for the integration of the well data are 

typically generated; the areal dimensions of the cells are mainly defined based on 

the areal spacing of the wells and the desired total number of cells.  

Distribution of facies and petrophysical distribution 

Starting from the wells, the facies identified along the wells are distributed 

within the grid of the static model using geostatistical algorithms for a realistic 

reconstruction of the depositional bodies. 

Up-scaling of the static model 

To ensure the geological representativeness of the static reservoir model, the 

3D grid is normally characterized by a high areal and vertical resolution, i.e. by a 

high number of cells. However, to optimize the computational times of dynamic 

simulations, the number of cells must be reduced. 

The conversion from a geological grid to a dynamic grid is carried out through 

a coarsening process which involves the areal and vertical resizing of the cells. All 

previously distributed petrophysical properties are transferred in the new grid 

through an up-scaling process. At the end of these operations the new grid can be 

conveniently used for dynamic simulations. 
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Static model at a regional scale 

Geomechanical simulations require a grid of much larger dimensions than those 

of the static/dynamic grid to reproduce all the formations interested by the 

phenomena under analysis. The areal and vertical extension must be optimized on 

a case-by-case basis according to the size and depth of the reservoir, the presence 

of a bounding aquifer as well as the numerical modeling technique adopted in the 

mechanical simulation phase. The extension of the model to a regional scale 

involves a series of changes compared to the original model, which may include the 

extension of the main reservoir horizons and faults and integration of faults of 

regional significance external to the reservoir. For this purpose, it is necessary to 

expand the database with information relative to the regional geology, such as: 

geological and structural maps at regional scale, geological sections and 2D seismic 

sections, location, and profiles of wells outside the reservoir, information on studies 

related to neighboring fields and analogues. 

Usually, outside the reservoir area there is no 3D seismic data coverage and the 

number of wells available is very low.  

Particular attention must be paid to the modeling of the units above the reservoir 

as they are affected by the effects of pressure variations induced by the 

production/injection operations in the reservoir. 

To keep the number of cells relatively low (thus limiting computational times) 

the dimensions of the model cells are progressively increased from the reservoir 

area (where the original dimensions are maintained) towards the peripheral and 

deep areas of the model, which are scarcely affected by the consequences of 

pressure variations in the reservoir. 

The grid thus defined will subsequently be used for mechanical analyzes. 

Dynamic model 

The purposes of a fluid-dynamic numerical model (dynamic model) are many, 

but the main one is certainly the evaluation of the expected performance of the wells 

and the estimation of the final recovery/injection of fluids under different 

development and/or production/injection scenarios. 

The definition of a dynamic model requires the integration of data of different 

nature and from different sources: 
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• permeability and its anisotropy through laboratory tests (Routine Core 

Analysis) 

• rock-fluid interaction parameters such as capillary pressures and 

relative permeability curves, obtained from laboratory tests (Special 

Core Analysis) 

• chemical and thermodynamic properties of fluids sampled and analyzed 

in the laboratory 

• well tests 

• production data such as flow rates of injected/produced fluids 

• static and dynamic well pressures 

• well completions 

Preliminary to the construction of the model, according to the available data 

and past production/injection history, a series of analysis are carried out: 

• interpretation of the static pressure data acquired at different wells in 

different moments during the life of the reservoir 

• interpretation of well tests 

• application of analytical methods based on the material balance 

equation. 

The information that can be obtained about any hydraulic compartmentalization 

of the system, volume of fluids originally in place and production mechanism are 

fundamental for acquiring a better knowledge of the system and therefore for the 

subsequent fine-tuning and calibration of the dynamic model. 

Once characterized by all the petrophysical parameters, PVT, rock-fluid 

interaction properties, fluid contacts, initial thermodynamic conditions and well 

location, type and completion, the dynamic model is initialized and, in the presence 

of a previous production/injection history, subject to a calibration process by which 

the most uncertain input parameters are fine-tuned in order to reproduce the 

historical behavior of the reservoir in terms of recorded flow rates and static 

pressures measured at the wells. At the end of the calibration process, the dynamic 

model is assumed to represent a reliable tool for predicting the future behavior of 

the reservoir (Mattax et al., 1990). 
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Mechanical model 

The mechanical model allows us to predict the stress field variation and the 

deformation response of the reservoir and neighboring formations due to 

production/injection of fluids and therefore, to assess rock integrity and fault 

stability and to investigate the spatial and temporal evolution of subsidence. 

The definition of a mechanical model requires the integration of the static and 

dynamic study with about the stress-strain behavior of the modeled formations. The 

geotechnical parameters are generally obtained both from laboratory tests and in 

situ investigations. Laboratory mono or triaxial compression tests on rock samples 

are performed to define the deformation behavior (i.e.: Young's modulus, Poisson's 

ratio, etc.) and resistance of the material (e.g.: cohesion and friction angle relative 

to the Mohr - Coulomb criterion). Young's modulus can also be obtained at the well 

or field level through the analysis of sonic and density logs and through the 

interpretation of the seismic data, respectively. By nature, laboratory data provide 

accurate but very local information, while data at the well or reservoir scale are able 

to capture the heterogeneity of the system - although to the detriment of accuracy 

or resolution of the information. In the following the analysis of flow phenomena 

and deformation phenomena will be considered one-way coupled and consequently 

the corresponding model solved sequentially. Conversely, in the case of a totally 

coupled approach, correlations between the matrix deformation behavior and 

variation of the petrophysical parameters are also necessary. In addition to the cited 

strain and strength parameters, information about the principal stresses is also 

required, the minimum of which can be obtained by in situ fracturing tests. 

Since the volumes simulated by mechanical models are often considerable 

(extension in the order of tens of kilometers), the direct characterization of the 

geological formations is excessively expensive and, moreover, does not bear any 

significant added value. It is therefore common practice to analyze samples 

retrieved from the reservoir or from the aquifer, directly affected by the stress 

changes and deformations induced by the production/injection operations, and their 

cap rock. 

Once suitably characterized through the assignment of deformability and 

resistance parameters, the geomechanical model is initialized, i.e. the distribution 

of the interstitial pressures and the stress field of the undisturbed formations are 

assigned accordingly to depth, lithology, depositional history and saturating fluids. 



 37 

 

If the mechanical analysis is carried out separately from the dynamic one, the 

link between them is constituted by the variation of the field pressure: it is provided 

by the dynamic simulator and represents the input to the mechanical model. In such 

approach the calibration processes of the two models are completely independent 

and generally sequential.  

FEM and VEM 

The Principle of Virtual Work formulation of the linear momentum balance 

equations (recalled in the previous Chapter) represents the starting point of the 

formulation of Finite Element Methods (FEM). FEM belong to the family of 

numerical resolution methods and allow one to evaluate an approximation of the 

solution of the variational problem in discrete points of the domain. The Finite 

Element Methods (FEM) theory was formulated starting from the 1950s and since 

then has found application in the numerical modeling of physical systems in a wide 

variety of engineering disciplines (Gockenbach, 2006). In brief, FEMs solve 

differential problems, expressed in their variational form, partitioning the domain 

in blocks of simple form (elements) such as triangle/tetrahedra or 

quadrilateral/hexahedra. On each element the solution of the problem is expressed 

by the linear combination of piecewise polynomial functions of fixed degree whose 

coefficients (degrees of freedom) become the unknowns of the resulting algebraic 

problem descending from the spatial discretization. In practice, on three-

dimensional geometries, the analysis domain is partitioned into elements typically 

of tetrahedral or hexahedral shape since some limitations arise to the definition of 

low order basis on more complex shaped elements. The method is applicable, 

however, only on grids that comply with the conformity criterion, i.e. it is necessary 

that adjacent elements share the same degrees of freedom at their interface. It 

follows that on particularly complex geometries (for example with discontinuities) 

it is necessary to define a high number of elements, and consequently degrees of 

freedom, to satisfy the conformity principle. 

Recently, an innovative method of numerical simulation has been proposed 

which takes the name of the Virtual Elements Method (VEM). It is the latest 

evolution of the Mimetic Finite Difference (MFD), with various points of contact 

with the FEM so as to represent an important generalization ((Beirão da Veiga et 

al., 2017, 2016a, 2014, 2013a). Although very recent, this method has already found 

application in the modeling of problems related to different engineering disciplines 
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including problems of fluid dynamics and linear elasticity (Andersen et al., 2017; 

Beirão da Veiga et al., 2013b; Benedetto et al., 2016; Gain et al., 2014). 

The key aspect of this approach consists in preserving the polynomial accuracy 

that is ensured on tetrahedron (three-dimensional simplex) on not necessarily 

convex polyhedral elements and in the presence of hanging nodes. The innovative 

feature consists in the use of a local approximation space which includes 

polynomial functions that do not have explicit expression (hence the name of virtual 

elements). Indeed, explicit integration of shape functions for the stiffness matrix 

evaluation is avoided, thus it is only necessary to carefully choose the degree of 

freedom of the elements where the solution is calculated to preserve the method 

stability and accuracy. All this is possible by applying suitable projection operators 

(which can be evaluated thanks to the choice of the degrees of freedom) in place of 

the unknown polynomial functions for the determination of the components 

necessary for the evaluation of the solution (Ahmad et al., 2013). Thus, VEM is 

based on a theoretical framework sufficiently general to allow some of the FEM 

limitations to be overcome such as typology of elements used to discretize the 

domain or the applicability to non-conforming grids (Gain et al., 2014). 

Furthermore, with the same order of convergence, the VEM solution provides a 

representation of the exact solution with an accuracy similar to that obtained by the 

FEM. 

From these first considerations, it is evident that the discretization of the 

domain plays a fundamental role in the solution process not only in terms of 

accuracy of the solution, but also in terms of necessary computational time. In the 

case of geomechanical applications, such as subsidence/rebound assessment and 

safety analyses, complex geometries must be discretized due to the presence of 

pinch-outs, i.e. progressively thinner geological bodies, as well as structural 

discontinuity (such as faults) characterized by strong throw that must be adequately 

reproduced in the grid construction. Using only hexahedral/tetrahedral elements for 

discretization could therefore generate problems of numerical stability caused by 

the presence of degenerate or excessively irregular elements. For this reason, the 

best choice for the discretization of the domain is the use of elements of different 

types that offer an adequate representation of the structural model. Although both 

FEM and VEM methods do not have theoretical limitations to the use of generic 

polyhedrons for the numerical solution of PDE, the use of FEMs on hybrid grids 

often requires a laborious implementation while the VEM formulation preserves a 

certain degree of "simplicity". Furthermore, since VEMs do not require conformity 

between adjacent elements, it is possible to use different degrees of approximation 
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in distinct elements, reproducing the solution with great accuracy only on the 

portions of main interest of the domain, with a consequent saving in terms of 

computational cost.



  

 

Chapter 4 

Gridding 

The process of volume discretization for simulation purposes is strictly linked 

to the process of structural modelling introduced in the previous chapter which 

integrates information coming from different data sources with the aim of 

describing with accuracy the stratigraphic structure of the underground. In 

summary, sedimentary formations are the expression of three main phenomena: 

sedimentation - which produces thin layers; faulting - which can cause connection 

between layers not originally communicating; and erosion - which produces 

degenerated layers. Therefore, the gridding process begins from creating a 

structural mesh by exploiting available information about faults and stratigraphy. 

In the technical literature two different approaches can be identified for volume 

discretization, namely the definition of structured hexahedral grids (corner-point 

grids) that follow the profile of faults and stratigraphic surfaces, and the generation 

of unstructured tetrahedral or polyhedral grids "which fill the regions" identified by 

the above-mentioned constraining surfaces or derive the grid from parametric 

transformation. Corner-point grids are results of the pillar-gridding approach and 

represent the standard approach in the oil&gas industry (K. Ponting, 1989). This 

approach is currently implemented in the Petrel E&P software platform 

(Schlumberger, 2020a) and exploited by the integrated reservoir simulator Eclipse 

(Schlumberger, 2020c) and the mechanical simulator Visage (Schlumberger, 

2020b). In the resulting hexahedral discretized volume, the structural constraints 

produce elongated cells in the areal direction, sometimes degenerated with respect 

to the original topology and with evident distortions at the faulting surfaces. The 



 41 

 

second approach has a relevant example in the SKUA-GOCAD software (Emerson, 

2021), which implements the uvt-trasnform (from the geological grid to a 

parametric grid) formalized by Mallet (Mallet, 2004). The algorithm tries to 

overcome some limitations of the pillar-gridding approach in the accuracy of the 

description of the sedimentary formations, having the capability of representing 

complex geological structures and introducing highly deformed cells.  

Recognizing the importance that pillar-gridding strategy still currently holds in 

UGS related simulation, in the present project the choice was made to integrate a 

C++ parser that is able to read the grid generated by Visage and to convert it into 

the open source format vtu (Visualization Toolkit Unstructured grid) (Schroeder et 

al., 2006) as it is briefly described in the next paragraph. 

Subsequently, the formalized and implemented process for the generation of 

unstructured tetrahedral grids, constrained to stratigraphic and fault surfaces 

resulting from geological modeling, is described. In the presented validation cases 

it was assumed that that the surfaces derive from a Petrel E&P modelling process. 

However, the proposed algorithms are of completely general validity. 

Corner point gridding parser 

From a general point of view corner-point grids can be defined as the 

hexahedron tessellation of the ℝ3 Euclidean space. Each cell is defined by the 

assignment of eight not necessarily distinct vertices (corners) which, in turn, belong 

to a two-dimensional Cartesian partition of the xy-plane called pillars, identified by 

the couple of ij indexes. Pillars are straight lines with dominant vertical direction 

defined by two end points which respectively belong to the top and to the bottom 

surfaces bounding the discretization domain. Pillar directions derive from fault 

modelling whereas the discretization along pillars (span by k index) depends on the 

horizons position. The number of discretization points along the pillars is set 

constant. It follows that each node in the grid is identified both by spatial 

coordinates xyz and by a corresponding index triplet ijk. The cell volume is defined 

connecting four couples of nodes belonging to four distinct adjacent pillars as 

shown in Figure 15. In Figure 16 a corner-point grid with a single fault (in red) and 

layers given by sinusoidal surfaces is represented. It was generated with the 

Matlab® Reservoir Simulation Toolbox (MRST) 2021a (SINTEF, 2021), a free 

open-source software for reservoir modelling and simulation, developed primarily 

by the Computational Geosciences group at the Department of Mathematics and 

Cybernetics at SINTEF Digital (Lie et al., 2012; Lie, 2019).  
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In the specific case of the Petrel E&P platform, information related to the pillar-

gridding structure are encoded in ASCII DATA format shared with the Eclipse 

reservoir simulator, for which the model information is organized in a set of 

keywords (Schlumberger, 2020d). The ones of interest related to the grid are: 

• SPECGRID identifies specification of grid characteristics: number of 

grid blocks along the coordinates Cartesian axes. 

• MAPAXES identifies the input of pre-processor map origin: 

transformation from the global to the local model coordinates. 

• COORD identifies coordinate lines: two triplets of xyz-coordinates for 

each pillar representing two distinct points on it. The number of 

specified items is equal to 2(𝑛𝑥 + 1) (𝑛𝑦 + 1) where 𝑛𝑥 and 𝑛𝑦 are the 

number of cells in the xy-plane in the x and y direction, respectively. 

• ZCORN identifies depths of grid block corners. The number of 

specified items is equal to 6𝑛𝑥𝑛𝑦𝑛𝑧. The depth values for each vertex 

of each cell of the grid is specified by scanning the grid by i-rows 

starting from the top surface. 

 

Figure 15: corner-point grid cell (yellow) defined through the specification of eight vertices (red 

bullets) identified by the ijk index triplet. Red lines represent the pillars. 

The decoded pillar gridding was then transformed in the corresponding 

unstructured grid object available in the Visualization ToolKit (VTK) (Schroeder 

et al., 2006). This is an open-source software for manipulating and displaying 3D 

scientific data which found application to a wide variety of real-world problems. 

Moreover, the VTK’s fundamental data structures are particularly well-suited to 

engineering problems that involve finite difference and finite element solutions. In 

the following, the generic vtkUnstructureGrid class, a concrete implementation of 

vtkDataset class, is exploited (I. Kitware, 2021). An unstructured grid object can be 
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made up of any combinations of any cell types: 0D (points), 1D (lines, polylines), 

2D (triangles, polygons), and 3D (hexahedron, tetrahedron, polyhedron, etc.). It 

provides random access to cells, as well as topological information. 

The coded parser, then, converts each cell deriving from corner-point grid 

structure into a mix of hexahedron and polyhedral cells. Since the original 

discretization tolerates the presence of degenerated cells and possibly not planar 

faces, specific routines were implemented to recognize elements with coincident 

vertices. To study the impact of the presence of not planar faces, instead, the 

triangulation strategy of not planar quadrilateral proposed in the MRST library was 

applied: the barycenter of not planar faces is introduced, converting a hexahedron 

into a generic polyhedron. A grid refinement process is then implemented by 

splitting polyhedral cells into a set of tetrahedrons to verify the impact of the grid 

refinement in the reservoir. An example of the sequence for the transformation of a 

generic cell is depicted in Figure 17. Simulations performed on grid derived from 

the Petrel E&P workflow are processed to validate the methodology using the 

parser here introduced and whose main steps are recapped in Figure 18. 

 

Figure 16: example of pillar gridding model with a single fault and layers given by sinusoidal surfaces 

(fault faces are marked in red).  

 

(a) (b) (c) 

Figure 17: cells splitting procedure: (a) original hexahedral cell. (b) polyhedral cell obtained by 

triangulation of not planar faces through insertion of face barycenter. (c) tetrahedral decomposition. 
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Figure 18: workflow of the corner-grid parser 
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Unstructured grid construction workflow 

As previously mentioned, the definition of the numerical mesh for geological 

applications is historically constrained to stratigraphic and fault surfaces that 

represent the main spatial elements guiding both the zoning process and the 

numerical discretization of the volume of interest. In the following the formalized 

and implemented workflow for the construction of the mesh is presented. It is 

defined according to the step sequence shown in Figure 19 and it allows one: 

• to generate a 2D Delaunay triangulation of each surface with quality mesh 

control in terms of minimum angle and maximum area of each triangle, with 

a reduced computational cost. The triangulation is constrained to the Planar 

Straight Line Graph constituted by the Concave Hull of the 3D point cloud 

projected on the Best Fitting Plane. The presented process is based on the 

algorithm proposed by Park and Oh (Park and Oh, 2012) and on the derived 

Geological Surface Reconstruction method sketched in Figure 20 and 

published in (Serazio et al., 2021). The Eigen library (Guennebaud et al., 

2010) was exploited to perform linear algebra operations and the Triangle 

library (Shewchuk, 1996) for the Convex Hull calculations and constrained 

Delaunay Triangulation. 

• to integrate all the surface triangulations in an object conforming to the input 

required by the tetrahedrization library Tetgen (Si, 2015) which represents 

the core of the discretization process of the modeled volume. 

Necessary input require that the stratigraphic surfaces come from a geological 

interpretation, or that they have been adjusted at the wells. In the implemented code, 

an interpolation function of the stratigraphic surface points has been integrated, thus 

making unnecessary that all the stratigraphic surfaces are sampled at the same 

points of the plane to evaluate possible intersections. 
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Figure 19: workflow for the grid generation 

As already mentioned, it is also possible to upload and triangulate fault 

surfaces, which are not necessarily flat and with an arbitrary orientation in the 

space. In the following paragraphs the methodologies and algorithms used for the 

triangulation of the individual stratigraphic surfaces (Step 3) and of the fault 

surfaces (Step 5) are illustrated.  
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Figure 20: main steps of Surface Reconstruction of Geological Surface from Point Cloud (Serazio et al., 

2021) 

By way of example, Figure 21, Figure 22 and Figure 23, respectively sketch 

steps 1, 3, 4, 7 and 10 of the above workflow, through the generation of the grid for 

a synthetic case. In particular, it is assumed that the geometry of the model is 

defined by four already extended stratigraphic surfaces (Figure 21), i.e. whose areal 

dimensions correspond to those of the geomechanical model. 

 

Figure 21: sequence of stratigraphic surfaces defining the model domain (Step 1). 
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Figure 22: triangulation of the reference stratigraphic surface (red) and projection of the triangulation 

on the underlying surfaces (Step 3 and Step 4). 

In the implemented process, it was decided to apply the triangulation algorithm 

only to the reference surface, typically ground level, and to project the obtained 

discretization on the underlying surfaces, interpolating points on the surfaces, if 

necessary, as illustrated in Figure 22. 

Successively, the option of adding "fictitious" stratigraphic surfaces to the 

current mesh was also implemented to increase the level of detail of the vertical 

discretization or to define portions of the model with homogeneous geomechanical 

behavior (this comes very handy for the subsequent characterization phase); in 

particular, such “fictious” surfaces can be defined in three different ways: 

1. constant depth assignment for the entire areal extension of the model 

2. grid translation of a pre-existing surface 

3. convex combination of two pre-existing surfaces 

Therefore, in the following all the stratigraphic surfaces share the same 

sampling on the XY plane: this allows one to easily verify and manage the presence 

of intersections between surfaces or pinch-outs. Furthermore, a threshold distance 

(equal to 0.05 m) between two points of distinct surfaces was defined. Below such 

a value, two points are considered coincident. 
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Figure 23: triangulation of the lateral faces (Step 7). In evidence the intersection between the lateral 

faces and the intermediate stratigraphic surfaces (a). Section of the model orthogonal to the Y direction 

(b). 

The sequence of triangulated surfaces represents the input data of the next 

processing step which involves the identification of the boundary points for each 

surface and the assignment to the corresponding side faces. Figure 23a and Figure 

23b illustrate the result of the triangulation process (constrained to the edge points 

of the stratigraphic surfaces) of the single lateral faces, both in perspective and 

along the section orthogonal to the Y direction. 

The global constraining mesh is obtained from the incremental union of the 

triangulations of all the surfaces which define the model geometry. It must be 

conforming, i.e. the triangles must not have reciprocal intersections, in order to be 

set, in turn, as a constraint for the tetrahedrization algorithm implemented in the 

Tetgen library. As result of the discretization process, a tetrahedral volume is thus 

obtained. In Figure 21, a section orthogonal to the Y direction of the global mesh is 

(a) 

(b) 
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shown. In the example the obtained grid has a spatial extension of about 17 km x 

17 km for a depth of 2 km and includes about 6.3 103 nodes. 

The Tetgen library provides a functionality for the identification of regions 

delimited by the stratigraphic and fault surfaces (and laterally constrained by the 

lateral surfaces), as shown in Figure 25. This algorithm allows one to characterize 

the obtained discretized volume referring to the region indexes assigned to each 

cell. 

 

Figure 24: sectional view of the tetrahedralized computing domain (Step 13). The stratigraphic 

surfaces that represent the constraints in the process of generating the 3D grid are highlighted. 

 

Figure 25: sectional view of the tetrahedralized computing domain. Regions identified by the Tetgen 

library (Step 12) are highlighted with different colors. 
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Stratigraphical surface triangulation  

The triangulation of the stratigraphic surfaces represents the first phase in the 

process of tetrahedrization of the computational domain. Figure 26 illustrates the 

steps of the implemented workflow. First, it provides a procedure for importing the 

stratigraphic surfaces point clouds which are supposed to be stored as a sequence 

of ℝ3cartesian points coordinates (x y z). At the same time, the feature for importing 

the surfaces according to vtkPolyData data structures formats made available by 

VTK (Schroeder et al., 2006) is set up. In addition, a dedicated flag allows one to 

distinguish between imported surfaces that need a further extension from those 

already extended to the edges of the model. 

 

Figure 26: stratigraphic surface reconstruction from 3D point cloud 

In the construction process of the model geometry, it is assumed that at least 

one stratigraphic surface is provided. Generally, when a single stratigraphic surface 
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is available, it corresponds to the top of the reservoir. Its point coordinates on the 

XY-plane are exploited to define a top and a bottom surface to limit the model. It 

is exactly the top surface, i.e., the seabed or the ground level, the reference surface 

to which the triangulation process is applied. The obtained discretization is then 

projected onto the underlying surfaces. 

In general, the application of the triangulation algorithms available in Triangle 

requires the projection of the 3D surface point cloud on the plane that best 

approximates it (in the sense of least squares). However, for the intrinsic 

characteristic of stratigraphical surface point cloud, their BFP is assumed to 

coincide with the XY-plane of the current Cartesian coordinate system. In the 

absence of additional constraints, the Triangle library generates a 2D Delaunay 

triangulation constrained to the Convex Hull of the point cloud in the two-

dimensional reference system. However, as shown in Figure 30a, (Convex Hull in 

red) the resulting triangulation, projected back to the three-dimensional space, is 

unacceptable as it is made up of triangles that join together points that should be 

tagged as boundary and/or triangles that do not conform to the shape of the original 

surface and characterized by minimum angles of the order of a tenth of a degree 

that could potentially generate numerical instabilities in the calculation of the stress 

and strain fields. From a general point of view, it should be necessary to update the 

boundary polygon to identify the Concave Hull that properly approximates the 

boundary of the 2D point cloud and it should be assigned as constraint to the 

triangulation algorithm. As an example, in Figure 30b is shown the triangulation 

obtained from the Concave Hull as boundary (green line). The algorithm proposed 

to define from the one of Park and Oh (Park and Oh, 2012) whose main idea was 

to incrementally “dig” the Convex Hull by splitting the current boundary edges in 

two sub-edges by including a point of the cloud that was previously classified as 

internal. The admissibility of the new boundary node is verified exploiting the 

point-in-polygon strategy whose implementation can be found in (Graphics Gems 

IV, 1994) and whose criticalities are discussed in (Schirra, 2008). Details in the 

implemented methodology can be found in (Serazio et al., 2021). 

It is noticed that, when projected on the XY-plane, the point cloud results in a 

regular sampled set aligned with the coordinate axes or diagonals, as shown in 

Figure 27. Thus, the algorithm was specifically tailored exploiting this regular 

spatial pattern.  



 53 

 

 

Figure 27: detail of the XY-plane point cloud projection (black). Points result equally spaced and 

aligned with diagonals. the initial Convex Hull and corresponding Concave Hull, in green and red, 

respectively. 

 

Figure 28: detail of the XY-plane point cloud projection. The colormap refers to edge ratio of the 

triangles of the triangulation constrained to the Convex Hull (red nodes). The mean value of the edge 

length distribution it is approximately 14. Triangles external to the final Concave Hull (green) show 

edge-ratio that deviate from the mean becoming candidates to be removed from the triangulation. 

Initially, the mean and the standard deviation of the triangle edge length of the 

distribution of the triangulation constrained to the Convex Hull were calculated. 

Such quantities defined, in turns, the threshold used to discriminate if a triangle can 

concur to the refinement of the Concave Hull or not. To clarify this passage, let us 

consider a detail of the starting triangulation in Figure 28, where the color map 

describes the trend of the edge ratio, i.e., the measure of the mesh quality calculated 

as the ratio between the maximum and the minimum edge length of each triangle 

of the grid. Due to the regularity of the point sampling, it assumes values roughly 
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constant (about 1.4) over the whole domain. Triangles characterized by edge ratio 

that deviates from the mean value are exclusively close to the boundary polygon 

where the Convex Hull (in red) does not adequately describe the point cloud profile. 

Furthermore, it is observed that they are all external to the Concave Hull (in green) 

supporting the strategy that want to exclude such triangles from the discretization.  

The proposed methodology proved to give satisfactory results in terms of 

surface reconstruction as shown in the two validation cases, denoted as Surf Top 

and Erosional 50, whose main parameters are summarized in Table 1 and the 

corresponding triangulations are shown in Figure 29-Figure 30 and Figure 31-

Figure 32, respectively. 

Table 1: example of reconstruction of stratigraphic surfaces. The main parameters are reported: number 

of cloud points, sampling increment, dimension of the Convex Hull and the Concave Hull and 

corresponding triangulation (Serazio et al., 2021). 

Case # Points Sampling Convex Hull Concave Hull 

  [m] # nodes #  triangles #  nodes # triangles 

Surf Top 34635 150 x 150 32 69236 627 68641 

Erosional 50 7335 50 x 50 23 14645 353 14315 

However, the application of the proposed methodology directly to the surfaces 

who define a Geomechanical model can produce issues related to the resolution of 

the final volume tetrahedrization. In fact, since the triangulated surfaces represent 

the input constraints of the tetrahedrization procedure, the resulting tetrahedral 

mesh must comply with their triangle size to preserve conformity. It follows that, if 

the stratigraphical surface is sampled with a constant step for the whole spatial 

extension of the domain, the mesh could be inadequate to describe with sufficient 

accuracy the analyzed phenomena, or conversely, it could have a high level of 

refinement in zones were coarsening would be preferable. 
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Figure 29: case Surf Top - detail of the XY-plane point cloud projection: initial Convex Hull 

constrained triangulation (red) (a) and corresponding Concave Hull constrained triangulation (green) 

(b) (Serazio et al., 2021). 

 

Figure 30: case Surf Top - original Cartesian coordinate system comparison between the initial Convex 

Hull constrained triangulation (red) (a) and corresponding Concave Hull constrained triangulation 

(green) (b) (Serazio et al., 2021). 

(a) 

(b) 

(a) (b) 
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Figure 31: case Erosional 50 - detail of the XY-plane point cloud projection: initial Convex Hull 

constrained triangulation (red) (a) and corresponding Concave Hull constrained triangulation (green) 

(b) (Serazio et al., 2021). 

 

Figure 32: case Erosional 50 - original Cartesian coordinate system comparison between the initial 

Convex Hull constrained triangulation (red) (a) and corresponding Concave Hull constrained 

triangulation (green) (b) (Serazio et al., 2021). 

  

(a) (b) 

(a) 

(b) 
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For this reason, in the proposed workflow two further steps were implemented 

(step 4 and 5 of Figure 26), i.e., the identification of an inner area where constant 

high-resolution spacing is set (CHIN) and an outer zone where increasing triangle 

size is allowed (CHOUT). A distinction between surfaces that need extension and 

already extended surfaces was done, branch (a) and (b) of Figure 26, respectively. 

In the case of an input stratigraphic surface that must be extended, the 

identification of the vertices of the polygon that delimits the geomechanical model 

CHOUT. is performed by extending CHIN uniformly in both directions, i.e., 

extending the smallest quadrilateral containing the input surface projected on the 

XY-plane (CHIN → CHOUT). Alternatively, CHOUT can be input as a convex 

polygon with arbitrary number of edges, thus the algorithm verifies that is the 

Convex Hull of the reference surface point cloud is included in the CHIN. Sketch in 

Figure 33a. 

The triangulation of the input point cloud is obtained exploiting the Triangle 

library through the imposition of a minimum angle constraint equal to 30° to the 

resulting mesh (Figure 34). This procedure allows for a high-level detail 

triangulation in the area of interest, with triangles of increasing size as you get 

closer to the edges of the model (Figure 36a), where variations of the stress and 

strain fields are negligible. 

  
(a) (b) 

Figure 33: XY-plane projections of stratigraphic surface point cloud. In (a) the surface need extension 

and the outer boundary need to be identified: in red points at high-resolution and in gray the area 

occupied by the extended stratigraphic surface. In (b) the uploaded surface does not need extension. 

Conversely the high-resolution zone needs to be identified (points in red). In blue the boundary 

polygons defined in workflow in Figure 26, step 4-5, a and b, respectively. 
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Figure 34: detail of the triangulation of an extended stratigraphic surface: measure of the quality mesh 

is given by the minimum angle of each triangle. Triangulation results from the 30° minimum angle 

constraints in the Triangle library routine. 

In the case of an extended stratigraphic surface, instead, CHOUT is defined by 

identifying the smallest quadrilateral containing the Convex Hull of the point cloud 

projected onto the XY-plane. Applying the inverse procedure defined for surface 

extension, the CHIN, that delimits high-level detail area, is obtained by rescaling 

CHOUT uniformly in both directions according to a constant factor (CHOUT → CHIN) 

as sketched in Figure 33b. There is also the possibility to set CHIN as an arbitrary 

convex polygon that must be strictly included in the current CHOUT. 

The triangulation of an extended stratigraphic surface has therefore been 

reduced to a problem of triangulation of a surface that requires extension. This 

approach has the purpose of minimizing the complexity of the resulting grid, in 

terms of number of points and cells, and consequently to reduce the number of 

degrees of freedom characterizing the VEM problem solution. It guarantees a high-

level of detail in the region of interest and a reduced one closer to the boundary 

where phenomenology relevance is minimal. In Figure 36a and Figure 36b a 

comparison between two triangulations of an extended surface is shown: in the 

former the high-resolution triangulation is guaranteed only in the area of interest, 

in the latter, instead, the level of detail of the stratigraphic surface is preserved for 
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the entire areal extension. This example wants to show how the adopted strategy 

can avoid an excessive increase in the computation cost required for the resolution 

of the geomechanical problem. However, the triangulation process of the reference 

stratigraphic surface requires the definition of additional points to preserve the 

effectiveness of the resulting mesh (Figure 35). Consequently, to complete the 

surface reconstruction process, it is necessary to assign to each of them an 

appropriate depth value. In the proposed process this evaluation is carried out 

applying the interpolation routines available in Computational Geometry 

Algorithms Library (CGAL) (The CGAL Project, 2021) to each input stratigraphic 

surface. 

 

Figure 35: resulting triangulation of stratigraphic surface. 

In detail, for each triangulation point for which the depth is unknown, a 2D 

linear interpolation algorithm is used (Flötotto, 2021): the estimated depth value is 

function of the depth values assigned to the neighboring points. Specifically, the 

algorithm allows to reconstruct the depth value of each point of the XY-plane within 

the 2D Convex Hull of the original surface input point cloud. In Figure 36 results 

of the interpolation process are shown: Figure 36a shows the triangulation resulting 

from the interpolation process applied to the extended surface of Figure 33b. In 

Figure 36b, instead, the original uniform sampling extended surface is shown. To 

appreciate the satisfactory level of agreement between the original and the 

reconstructed surface, a superimposition of the triangulations in the original ℝ3 

space is shown in Figure 37. 
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Figure 36: comparison of two triangulation strategies. Above (a) a high level of detail is preserved only 

on in the portion of interest of the investigation domain and extrapolation of depth values is applied. 

Below (b) a high level of detail is guaranteed for the entire extension of the geomechanical model and 

interpolation algorithm is applied outside the high-resolution zone. 

Points external to the Convex Hull of the original point clouds are processed 

exploiting an extrapolation strategy: once calculated the barycenter (C) of CHIN, the 

depth associate to P is set equal to the depth value of point P′ obtained by 

intersecting CHIN with the segment that connects CP (Figure 38). In other words, 

the depths of the points (P′) on the inner boundary CHIN are projected to points (P) 

which lies in the low-resolution zone or on the boundary of the model. CHOUT. 

(a) 

(b) 
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Figure 37: comparison between the stratigraphic surface extended obtained from the interpolation 

phase (grey) and the triangulation of the interpolated stratigraphic surface point cloud (blue). In the 

graph an amplification factor of 2 in the Z direction was applied to appreciate differences. 

 

Figure 38: intersection P 'on the XY plane between the Convex Hull (blue line) of the surface point 

cloud and the segment that connects the center of CH (C) and the point P external to CH. 
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Fault surface triangulation  

The fault surface is the other type of input that contributes to the definition of 

the model geometry and to which the final grid must be constrained. 

Preliminary analyses on the nature of the point cloud that defines a fault surface 

have determined the need to develop a dedicated algorithm for their triangulation. 

The proposed workflow, derived from the Park and Oh algorithm (Park and Oh, 

2012), can be declined in the steps sketched in Figure 39. 

 

Figure 39: fault surface reconstruction from 3D point cloud 

Unlike stratigraphic surfaces, faults are generally described with a loose 

sampling, if compared with their extension, and inhomogeneous in different 

directions. They are unlikely approximated by a plane and can be characterized by 

strongly irregular edges. Moreover, as extensively cited, the Triangle library 

supports only planar triangulations constrained to planar straight-line graphs. 

Therefore, unlike the case of stratigraphic surface point clouds, it becomes 

necessary to identify the best plane approximating the fault surface (BFP) (step 2), 

in the sense of least squares, on which to project the point cloud and successively 

identify the Concave Hull (ConcH) (step 5) which accurately describes the 

boundary of the projected cloud. 
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The BFP identification was performed by exploiting the linear algebra 

algorithms available in the Eigen library (Guennebaud et al., 2010). In the specific 

case the principal components of the matrix consisting of the coordinates of the 

points of the cloud expressed respect to a Cartesian reference system centered in 

the barycenter of the cloud itself were calculated by solving the associated 

eigenvalue problem. In figure an example of fault surface point cloud (a), 

intersection with the calculated BFP in ℝ3 (b) and point cloud projection onto BFP 

(c), respectively. 

 

Figure 40: (a) point cloud in ℝ𝟑, representative of a fault surface. (b) Intersection of the point cloud 

with the BFP (grey) in ℝ𝟑 (c) Point cloud projection on the BFP. (Serazio et al., 2021) 

For the identification of the Concave Hull, as done for the stratigraphic 

surfaces, the starting polygon of the algorithm is the Convex Hull obtained as the 

output of Triangle and the depth to which the hull is iteratively "excavated" is 

determined by a parameter indicated as nDig ∈ [0,1]. Indeed, it defines the width 

of the neighborhood exploration through the relation r = edgeLength ∗ 𝑛𝐷𝑖𝑔. The 

algorithm iterates over all the nodes of the actual boundary, and for each of them 

look for an internal node belonging to the neighborhood which can be classified as 

boundary. In Figure 41, as an example of the “digging” evolution, the initial Convex 

Hull (in red) and four concave hulls of increasing number of nodes (from orange to 

yellow) are represented. The resulting Concave Hull is the green boundary. In Table 

2 are reported the key parameters of two validation case of the proposed algorithm 

and published in (Serazio et al., 2021) where details on the implementation of the 

proposed algorithm can be found. In both cases the boundary, once projected on the 

BFP plane present an irregular trend with concavities of different size. This is the 

main characteristic which made the attempt of applying the 2D α-shapes strategies 

available in the CGAL module (Da, 2021) not satisfactory. Indeed, to obtain 

accurate representation of the boundary polygons a tuning of the nDig parameter 

was necessary and the final values reflect the different nature of the two surfaces  

(a) (b) (c) 
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Figure 41: "digging" algorithm evolution example. Boundary polygons corresponding to five steps are 

shown. The initial Convex Hull (red) of 40 nodes, iterations at 100, 150, 200 nodes and the final Concave 

Hull (green) of 216 nodes. (Serazio et al., 2021) 

The Fault 12 represent an example of fault that cannot be approximated by a 

plane. Conversely the boundary shows an irregular shape, but not  narrow changes 

in concavity, thus a relatively low value of nDig (0.4) produces the expected result 

as shown in Figure 42 and Figure 43 where the initial and the final triangulation are 

compared on the plane and on the original Cartesian coordinate system, 

respectively. The H53 case, instead, is closer to a planar fault, but the boundary 

presents different concavities, very narrow, which are satisfactorily described with 

a high value of nDig. Comparison of the triangulation on the plane and in the 

original Cartesian coordinate system are shown in Figure 44 and Figure 45, 

respectively. 

Table 2: example of reconstruction of fault surfaces. The main parameters are reported: number of the 

cloud points, nDig, dimension of the Convex Hull and the Concave Hull and corresponding triangulation 

(Serazio et al., 2021). 

Case # Points nDig  Convex Hull Concave Hull 

   # nodes #  triangles #  nodes # triangles 

Fault 12 1110 0.4 40 2178 216 2002 

H53 1632 0.75 32 3230 436 2826 
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Figure 42: case Fault 12 - XY-plane point cloud projection: initial Convex Hull constrained 

triangulation (red) (a) and corresponding Concave Hull constrained triangulation (green) (b) (Serazio 

et al., 2021). 

 

 

Figure 43: case Fault 12 - original Cartesian coordinate system comparison between the initial Convex 

Hull constrained triangulation (red) (a) and corresponding Concave Hull constrained triangulation 

(green) (b). (Serazio et al., 2021). 

(a) (b) 

(a) (b) 
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Figure 44: case H53 - XY-plane point cloud projection: initial Convex Hull constrained triangulation 

(red) (a) and corresponding Concave Hull constrained triangulation (green) (b)(Serazio et al., 2021) 

 

 

Figure 45: case H53 - - original Cartesian coordinate system comparison between the initial Convex 

Hull constrained triangulation (red) (a) and corresponding Concave Hull constrained triangulation 

(green) (b) (Serazio et al., 2021). 

(a) (b) 

(a) (b) 
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Lateral surface triangulation 

The lateral surface is the type of surface that identifies the external face of the model 

and allows to define the closed domain to be used as input for the Tetgen 

tetrahedrization library. The algorithm implemented for the triangulation of the 

lateral surfaces does not substantially differ from that used for the fault surfaces 

(Figure 39), except for the fact that the faces are well defined and known a priori; 

Figure 46 illustrates the steps of the proposed workflow. 

 
Figure 46: lateral surface triangulation workflow 

Lateral surfaces are defined by the boundary edges of the extended stratigraphic 

surfaces which constitute the geomechanical model. They allow identification of 

the points that will constitute the lateral surface as well as the segments that will 

constitute the constraints for the triangulation library. Since no quality constraint 

are imposed to the Triangle function, the resulting triangulation will consist only of 

the points originally associated with the lateral faces of the stratigraphic surfaces; 

consequently, this triangulation procedure does not require the use of any 

interpolation algorithms for the assignment of the depth value to any additional 

points. Figure 47 shows the result of the triangulation process of the lateral surfaces 

relative to the example case shown in Figure 21 and Figure 22. It is observed that 

the triangulation is conforming to the associated stratigraphic surfaces. 
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Figure 47: triangulation of the lateral faces of the model 

Intersection between faults and stratigraphic surfaces  

The Tetgen library (Si, 2020), used for the discretization of the investigated 

domain, requires a conforming data structure, i.e. a set of points, segments and 

polygons without reciprocal intersection, piecewise linear complex (PLC), as an 

input; therefore, it is necessary to ensure that this constraint is respected for all the 

surface and fault triangulations that play a role in the construction of the discretized 

domain. It is observed that, by construction, the triangulations of stratigraphic and 

lateral surfaces are consistent. Conversely, the integration of fault surfaces requires 

appropriate checks since they are likely to intersect with one another and/or 

intersect the stratigraphic and lateral surfaces in points not belonging to the PLC, 

and this would represent an obstacle to the tetrahedrization of the geomechanical 

volume. 

The identification of the intersection between two surfaces in a three-

dimensional space can be reduced to the identification of the set of points in space 

where two surfaces coincide. This process is very onerous from a computational 

point of view, especially considering the extension of a geomechanical model and 

the numerousness of points and cells that constitute the triangulated surfaces. 

Furthermore, it should be noted that, since there is no function that describes the 

surfaces involved, it is not possible to analytically calculate their possible 

intersections (Patrikalakis et al., 2004), but it is necessary to exploit to suitable 

numerical algorithms. 

In the dedicated literature the approaches for identifying the intersections 

between two surfaces are basically divided into two categories: 



 69 

 

1. Marching Methods: given a known point of intersection between two 

surfaces, this algorithm’s family iteratively identifies the next intersection point 

through suitable strategies of exploration of the domain (see for example (Barnhill 

and Kersey, 1990). This type of approach has numerous disadvantages: the 

identification of an exploration algorithm suitable for the type of application, and 

also the additional cost due to the identification of the initial guess from which the 

exploration begins. 

2. Splitting Methods: this second category includes algorithms which reduce 

the computationally onerous initial problem into sub-problems of identifying 

intersections on portions of the original domain through a splitting of the 

exploration domain (see as an example (Filip et al., 1986). One of the disadvantages 

associated with this type of algorithm is represented by the difficulty of identifying 

an optimal domain subdivision strategy, sufficiently general and capable of 

minimizing calculation times and the computational cost. 

Taking advantage of the available data structures, in the process of integrating 

the fault surfaces, the second type of algorithm has currently been proposed, i.e. the 

application of a divide et impera methodology. 

The definition of the exploration strategy exploits the fact that the construction 

of the PLC (Tetgen input) derives from the triangulation of all the surfaces making 

up the model. Therefore, the intersection identification problem is further reduced, 

and it consists in verifying the intersection (if any) between two triangles in ℝ3. In 

the technical literature there are numerous algorithms dedicated to this task, 

however, most of them return a Boolean output, i.e. if the two triangles do or do not 

show an intersection, without identifying its actual position in the space. To retrieve 

this information, functionality available in the Tetgen library were exploited: given 

a pair of triangles, it returns the presence of any intersections, combined with a 

series of accessory attributes useful for their spatial identification. Starting from this 

information, an ad hoc algorithm was developed that made it possible to identify 

the trace of the intersection between two surfaces. As an example, an application of 

the implemented algorithm is shown to the stratigraphic surface represented in 

orange in Figure 22, which is intersected by two fault surfaces (respectively blue 

and red surfaces in Fig. 24); in particular, in the sequence Fig. 23-Fig. 27 the 

evolution of the triangulations of the stratigraphic surface and of the fault surfaces 

afterward the integration of the intersections, the blue fault at first (Fig. 25), and in 

succession the red one (Fig. 26 and Fig. 27)  
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In the next step of the workflow, the identified intersection is integrated within 

the PLC input to Tetgen, thus allowing one to manage geometries that foresee the 

presence of fault surfaces. 

 

Figure 48: stratigraphic surface sample (orange in Figure 22) used to illustrate the evolution of 

triangulation afterward the identification of intersections with fault surfaces. 

 

Figure 49: spatial position of the fault surfaces (in red and blue) with respect to the sample stratigraphic 

surface 
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Figure 50: updating of the stratigraphic surface triangulation after the identification of intersections 

with the red fault surface of Figure 49. Added points and segments with respect to the starting 

triangulation are highlighted in red. 

 

Figure 51: updating of the stratigraphic surface triangulation after the identification of intersections 

with the blue fault surface of Figure 49. Added points and segments with respect to the starting 

triangulation are highlighted in red. 
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Figure 52: conforming triangulation resulting from the identification of intersections between the sample 

stratigraphic surface and the fault surfaces. 

 

Domain vertical refinement 

To represent with sufficient accuracy the stress-deformation response of the 

geomechanical model in the region affected by subsidence, a high-level areal 

discretization is not sufficient, and an adequate vertical representation is also 

necessary. 

Usually, the stratigraphic surfaces available to the user for the definition of the 

geomechanical model are not sufficient to ensure an acceptable vertical 

discretization. A possible strategy to overcome this problem is to insert fictitious 

surfaces (“numerical layers”) between two stratigraphic surfaces. Although the 

method is feasible, the inclusion of these layers raises two main problems: 

• The first is related to the presence of fault surfaces in the geomechanical 

model. In fact, they greatly complicate the insertion of any numerical layers, 

as for their definition the vertical and areal extension of all the fault surfaces 

involved as well as the induced dislocations must be considered. 

Furthermore, the definition of numerical layers makes the verification and 

imposition of the compliance constraints of the input PLC to the Tetgen 

library more onerous. 

• The second problem is associated with the characterization of the 

geomechanical model. As it will be described in detail in § 2.6, the model 

is populated by assigning properties to each region identified by the 

surfaces. The insertion of numerical layers between two stratigraphic 
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surfaces involves the subdivision of the defined regions into sub-regions, 

further complicating the property assignment phase.  

Following these considerations, different solutions have been explored to 

define a vertical refinement suitable for geomechanical modeling. 

The Tetgen library constructs a Delaunay tetrahedrization bounded to the input 

PLC, possibly respecting specific mesh quality parameters; in particular, Tetgen 

allows the definition of the desired level of detail in terms of the maximum volume 

of the generated tetrahedra (switch –a) and in terms of the maximum length of the 

arcs that constitute them (switch -m) by applying a mesh dimensioning function 

defined by user. The limitation to the use of these options is due to the impossibility 

of specifying the constraints differentiating them in different directions. 

Consequently, by specifying the same quality constraints both in the areal and 

vertical direction, the obtained meshes count a number of cells and nodes 

unacceptable to perform geomechanical study. By way of example, let us consider 

the orange region of Figure 25 delimited by the red and orange stratigraphic 

surfaces of Figure 22; at the center of the reservoir the two surfaces are about 200 

m apart in the vertical direction. Since the volume where deformations occur must 

be discretized with a good level of detail, it is desirable to refine the grid in the 

orange region. It is assumed a maximum volume limit is applied to each tetrahedron 

which belongs to that region, so that the vertical detail is approximately 10 m. To 

satisfy the imposed constraint, the library inserts some additional points (Steiner 

points) into the region, reducing not only the vertical discretization, but also the 

areal one of the whole modeled volume, leading to a volume tetrahedrization 

exaggeratedly thicker than necessary, significantly increasing the computational 

cost of the geomechanical problem solution and without any improvement of the 

whole solution. For this reason, the proposed algorithm consists in forcing the 

insertion of a list of additional points to the PLC input to the Tetgen library (switch 

–i) that satisfy the desired vertical detail. Each stratigraphic surface has been 

associated with a thickness (expressed in m), to be used in the high-resolution area 

(red in Figure 33), which represents the level of desired vertical detail close to the 

stratigraphic surface. The vertical progression of the points between two successive 

stratigraphic surfaces can be linear or logarithmic, at the user's discretion. It is also 

possible to specify additional degrees of freedom in the vertical point progression 

definition by associating thickness values in correspondence of intermediate depth 

between the two surfaces. In Figure 53 an example of discretization is shown, 

relative to the case of Figure 21-Figure 25, where the following constraints have 

been imposed with respect to the stratigraphic surfaces illustrated in Figure 21: 
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• 10 m at ground level (red) 

• 50 m on the average “fictitious” surface (white) defined starting from 

ground level and the underlying stratigraphic surface (orange) 

• 10 m on the orange surface 

• 30 m on the yellow surface 

• 500 m on the model base (green) 

 

Figure 53: vertical discretization of the geomechanical model constrained by the depth values assigned 

to each surface of the model (white boxes) 

Region identification and characterization 

The process of defining the model properties is carried out by defining 

geomechanical classes (i.e., volumes with homogeneous geomechanical 

characteristics); since the idea of characterizing one by one each cell belonging to 

the domain is impractical, the class assignment is supported by the region 

identification process. In particular, the identification of regions delimited by 

stratigraphic and fault surfaces, as well as by the lateral surfaces, was performed 

applying the available functionalities through an appropriate command line switch; 

Tetgen allows one to assign a marker to each tetrahedron, so that all the tetrahedra 

belonging to the same region are associated to the same marker; Figure 25 shows 

the result of the identification process of the regions applied to the example case. 

In general, the number of geomechanical classes may not coincide with the 

number of regions that can be identified. Therefore, it is useful to be able to use 
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additional fictitious surfaces to have a unique correspondence between 

geomechanical classes and regions. 

For each geomechanical class it is possible to define the corresponding pseudo-

elastic parameters as well as the parameters required by the adopted yield criterion. 

The actual implementation involves the Mohr-Coulomb resistance criterion. 

The characterization of a material with a transversely isotropic elastic behavior 

follows naturally from the isotropic case.



  

 

Chapter 5 

Validation test in the linear-elastic 

domain 

VEM formalization for the solution of the elastic problem  

The Virtual Elements Method (VEM), introduced in (Beirão da Veiga et al., 

2014, 2013a, 2013b) is a generalization of the Finite Element Method (FEM) able 

to manage generic grids in a natural way. To this end, an appropriate abstract 

functional space is defined, containing the one exploited by FEMs, characterized 

by the fact that the functions in this space are not explicitly known (hence the 

adjective "virtual"), except on the edges of the grid. The space construction allows 

one to approximate the solution with a piecewise polynomial on each element of 

the grid and solve the problem using these polynomial approximations. In detail, 

the calculated VEM displacements are continuous functions belonging, on each 

polyhedron (E), to the space Vh
E defined as 

𝑉ℎ
𝐸 = {𝑣 ∈ 𝐻1(𝐸) ∶  ∆𝑣 ∈ ℙ1(𝐸), 𝑣 ∈ ℙ1(𝑒)  ∀𝑒 ∈ 𝜕𝐸, 𝑣 ∈ 𝐶0(𝜕𝐸) } (35) 

where H1(E) is the space of functions having a square-integrable gradient on 

E, ∂E indicates the set of edges of the polyhedron, ℙ1(E), is the space of 

polynomials of degree lower than or equal to 1. It is possible to prove that a function 



 77 

 

in such a space is uniquely determined by its values at the vertices of the polyhedron 

which coincide with the degrees of freedom of the problem. 

The formulation of the linear momentum balance equation (6) with no 

displacement allowed on the domain boundary (∂Ω) for a linear-elastic medium 

reduces to a Poisson’s equation with homogeneous boundary conditions: 

{
𝛻 ∙ 𝜎(𝑢) + 𝑏 = 0 𝑖𝑛 𝛺

𝑢 = 0 𝑜𝑛 𝛤𝐷

𝜎 ∙ 𝑛 = 0 𝑜𝑛 𝛤𝑁

 (36) 

where Ω indicates the computational domain, 𝜎 is the stress tensor, 𝑏 is a forcing 

term per unit of volume and  𝒖 =  (𝑢1, 𝑢2, 𝑢3)
𝑇 is the displacement vector. Under 

the hypothesis of small deformations, the strain vector has expression (4) and the 

stress-strain relation for an isotropic linear elastic medium has expression (11) and 

Lamé coefficients in (12). 

The continuous variational formulation of the problem in case of homogeneous 

boundary conditions, written in terms of the deformation 𝜀(∇𝑢) is: 

∫ 2𝜇𝜀(∇𝑢) ∶ 𝜀(∇𝑣)𝑑Ω + ∫ 𝜆
ΩΩ

∇ ∙ 𝑢∇ ∙ 𝑣𝑑Ω

=  ∫ 𝑏 𝑣 𝑑Ω             ∀𝑣 ∈ 𝐻
0,Γ𝐷
1 (Ω)

Ω

 

(37) 

where 𝐻
0,Γ𝐷
1 (Ω) is the space of the functions of the Sobolev space 𝐻1 (Ω) that 

cancels on the portion of boundary Γ𝐷 where homogeneous Dirichlet conditions are 

defined. This formulation cannot be directly discretized with the VEMs, because 

the basis functions of the space are not known analytically, and the integrals are 

therefore not computable. For this reason, polynomial projections of the basis 

functions are employed, adding a stabilization term to guarantee the non-singularity 

of the resulting matrix. The discrete problem results, ∀𝑣ℎ ∈ 𝑉ℎ 
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∫ 2𝜇𝜀(𝛱0
0(𝛻𝑢ℎ)) ∶ 𝜀(𝛱0

0(𝛻𝑣ℎ))
𝛺

𝑑 + ∫ 𝜆𝛱0
0(𝛻 ∙ 𝑢ℎ)

𝛺

𝛱0
0(𝛻 ∙ 𝑣ℎ)𝑑𝛺

+ (2𝜇 +  𝜆) 𝑆 ((𝕀 − 𝛱1
0)𝑢ℎ, (𝕀 − 𝛱1

0)𝑣ℎ)

=  ∫ 𝑏 𝛱1
0

𝛺

(𝑣ℎ)𝑑𝛺   

(38) 

where the symbol 𝛱1
0 indicates a suitable projection on the polynomials of the 

VEM function, which can be calculated from the degrees of freedom. As the 

stabilization form is 𝑆(∙,∙), it is sufficient to choose the scalar product of the degrees 

of freedom of the two involved functions. 

Implementation details 

The method was implemented in C++ language using a calculation procedure 

entirely based on the matrix product (see Appendix for details). To optimize the 

products, the classes and methods made available by the Eigen library were 

exploited (Guennebaud et al., 2010). As for the calculation of the polynomial 

projection matrices, reference was made to (Beirão da Veiga et al., 2016b, 2014). 

It is also noticed that, from the point of view of the computational cost, the 

dimensions of the resulting linear system make a direct resolution impractical. The 

preconditioned conjugate gradient method was then applied (Saad, 2003). 

The known-term calculations, instead, was set equal to the delta pore pressure 

∆𝑝 recorded between two states of the system, i.e., before starting production and 

at the end of the primary production phase, or in the specific UGS context, the 

pressure difference recorded between the beginning and the end of a cycle (injection 

or production). 

𝑏 =  −∇ ∙ (∆𝑝𝕀) =  − 

(

 
 
 
 

𝜕(∆𝑝)

𝜕𝑥
𝜕(∆𝑝)

𝜕𝑦

𝜕(∆𝑝)

𝜕𝑧 )

 
 
 
 

 (39) 
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The divergence value was determined by applying a finite difference scheme, 

i.e., by calculating an approximation of the normal derivative to each face using the 

pressure values of the neighboring cells. (See Appendix for further details) 

Validation 

Disk-shaped reservoir model 

As introduced in the “Theoretical Background” Chapter, analytical solutions 

were developed in case of systems with simplified geometry and characterized by 

isotropic homogeneous and constant parameters. This is the case of a disk-shaped 

reservoir with vertical axis of symmetry and thickness vs radius ratio (H/R) of the 

order of 0.1. The induced subsidence profile in a cylindrical coordinate system was 

proposed by Geertsma (Geertsma, 1973b) and recalled in equations (32) and (33). 

As a preliminary validation test of the VEM implementation, a comparison was 

made between the FEM commercial software Visage (Schlumberger, 2020b), the 

VEM code profiles and the Geertsma’s analytical solution. 

It is observed that the analytical solution of Geertsma is calculated on a semi-

space by means of the strain nuclei concept thus no boundary conditions are 

imposed. It follows that the domain of investigation of the numerical solvers needs 

to be sufficiently extended so that the boundary effects on the calculated solution 

can be considered negligible. In the specific case, the box domain has an extension 

of 14 km x 14 km x 10 km as sketched in Figure 54a. The model parameters are 

listed in Table 3. 

Two different volume discretizations were defined. The unstructured grid, 

based on the VTK framework and the Tetgen library, was set up through the 

identification of the reservoir region and of a refinement volume, defined as a 

cylinder with vertical axes and areal extension sufficient to cover the subsidence 

bowl, characterized by an absolute vertical displacement higher than 0.5 cm (Figure 

54b). In parallel, the corner-point grid procedure was run in the Petrel E&P platform 

and a coherent domain was defined. In this case the refinement option relies on the 

Cartesian structure of the grid, resulting in a tartan refinement which spans the 

whole extension of the domain. 
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Table 3: Geertsma’s test model parameters 

Parameter Description Value 

𝐻 Reservoir thickness [m] 100 m 

𝑅 Reservoir radius 1000 m 

𝐶 Reservoir depth 400 m 

𝐸 Young’s Modulus 2 GPa 

𝜈 Poisson’s Ratio 0.25 

Δ𝑝 
Imposed reservoir pore pressure 

variation 
-3 MPa 

 

  
(a) (b) 

Figure 54: sketch of the model defined for the comparison of VEM numerical solution against 

Geertsma analytical one. (a) disk-shaped reservoir in red and black boundary of the refinement 

cylinder. (b) cells of the domain interested by a vertical displacement higher than 0.5 cm in absolute 

value. 

The resulting discretization accounts for about 3.5 105 tetrahedra of the 

unstructured grid and 4.8 105 hexahedra of the corner-point grid. In Figure 55, the 

trend of the cell volumes for the two grids along a y-plane clip shows the higher 

flexibility of the unstructured grid with respect to the pillar gridding where the 

refinement of the mesh exclusively applies to the zone of interest while preserving 
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the quality of the mesh in the entire volume as shown in Figure 56 (the color map 

refers to the edge ratio associated to each element). 

 
(a) (b) 

Figure 55: section orthogonal to Y-axis of the volume discretization with unstructured grid (a) and 

corner-point gird (b). The color map refers to the cell volumes (m3) 

 
(a) (b) 

Figure 56: section orthogonal to Y-axis of the volume discretization with unstructured grid (a) and 

corner-point gird (b). The color map refers to the cell quality (edge ratio) 
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In Figure 57 and in Figure 58, the y-plane clip and the top view of the two 

models are shown. The reservoir, where the variation of pore pressure is imposed, 

is highlighted in red. 

 

(a) (b) 

Figure 57: section orthogonal to Y-axis of the two grid models: on the left (a) unstructured grid for 

VEM simulation and, on the right (b), corner-point grid for FEM simulation, respectively. In red the 

reservoir where pore pressure variation is imposed. 

 

(a) (b) 

Figure 58: top view of the two grid models: on the left (a) unstructured grid for VEM simulation and, 

on the right (b), corner-point grid for FEM simulation, respectively. In both grids a refinement zone in 

correspondence of the subsidence bowl was defined. 
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The solution comparison in terms of displacement field is performed on a 

section HH’ of the top surface (z = 0 m) as shown in Figure 59a where the colormap 

refers to the subsidence of the VEM solution expressed in cm. In Figure 59b the 

comparison of the z-direction displacement, calculated with the three methods 

along the HH’ section, shows a satisfactory correspondence. 

Analogous colormap and plot are depicted for the displacement along the x-

direction in Figure 60a and Figure 60b, respectively. Due to the radial symmetry, 

the x-direction component of the numerical solver is compared with the radial one 

proposed by Geertsma in equation (33). Analogous comparison was performed for 

the variation of the stress field induced by imposed Δ𝑝 as shown in Figure 61 and 

Figure 62 where Δ𝜎𝑥𝑥 and Δ𝜎𝑦𝑦 are shown, respectively. 

Agreement among the solutions was also verified through a section along the 

vertical segment OO’. The vertical displacement is depicted in Figure 63, while the 

stress components Δ𝜎𝑥𝑥 and Δ𝜎𝑧𝑧 are shown in Figure 64 and Figure 65, 

respectively. 

 
(a) (b) 

Figure 59: (a) top view of the model. The colormap refers to the subsidence expressed in cm. (b) 

comparison of the subsidence along the dotted red segment HH’ in (a). 

H H’ 
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(a) (b) 

Figure 60: (a) top view of the model. The colormap refers to the displacement along x-axis expressed in 

cm. (b) comparison of the subsidence along the dotted red segment HH’ in (a). 

 
(a) (b) 

Figure 61: (a) top view of the model. The colormap refers to 𝚫𝝈𝒙𝒙, expressed in MPa, induced by the 

imposed 𝚫𝒑. (b) comparison of the induced 𝚫𝝈𝒙𝒙along the dotted red segment HH’ in (a). 

H H’ 

H H’ 
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(a) (b) 

Figure 62: (a) top view of the model. The colormap refers to 𝚫𝝈𝒚𝒚, expressed in MPa, induced by the 

imposed 𝚫𝒑. (b) comparison of the induced 𝚫𝝈𝒚𝒚along the dotted red segment HH’ in (a). 

 
(a) (b) 

Figure 63: (a) section orthogonal to Y-axis of the model. The colormap refers to the displacement along 

z-axis expressed in cm. (b) comparison of the z-axis displacement along the dotted red segment OO’ in 

(a) 

H H’ 

O 

O’ 
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(a) (b) 

Figure 64: (a) section orthogonal to Y-axis of the model. The colormap refers to 𝚫𝝈𝒙𝒙, expressed in 

MPa, induced by the imposed 𝚫𝒑. (b) comparison of the induced 𝚫𝝈𝒙𝒙 along the dotted red segment 

HH’ in (a). 

 
(a) (b) 

Figure 65: (a) section orthogonal to Y-axis of the model. The colormap refers to 𝚫𝝈𝒛𝒛, expressed in 

MPa, induced by the imposed 𝚫𝒑. (b) comparison of the induced 𝚫𝝈𝒛𝒛 along the dotted red segment 

HH’ in (a). 

O 

O’ 

O 

O’ 
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Offshore Adriatic model 

To test the grid generation process and the VEM solver, a synthetic geological 

model was constructed that reproduces a typical example of the 

stratigraphic/structural set-up of the North Adriatic offshore. The definition of the 

case study was based on the outcome of project carried out under an agreement 

between Politecnico di Torino and the Ministry of Economic Development, 

involving a detailed survey of all the reservoirs located in the area and the review 

of the relevant bibliography. Details about the seismic sections and well data 

collection and the geological classification of the analyzed area were provided in a 

technical report (SEADOG center, 2017) and are currently being published in a 

journal paper. 

Geological classification of the area 

The study area belongs to the North Adriatic Basin delimited by three 

collisional chains: Dinarides to the East, Southern Alps to the North and Northern 

Apennines to the West. During the Cenozoic, the North Adriatic basin represented 

the foredeep-foreland system of the three collisional chains. Its current geological 

configuration is the result of the orogenic evolution that occurred during the 

Paleocene-Eocene (Dinaric system), Miocene-Upper Pliocene (southern Alpine 

system) and Pliocene-Pleistocene (Apennine system) (Cazzini et al., 2015).  

Between the Upper Permian and the Middle Triassic, the area was affected by 

the first phases of extensional tectonics which favored the deposition of limestone, 

dolomite and evaporites; the extensional regime continued throughout the 

Mesozoic up to the lower Eocene and led to the development of structural highs 

with neritic sedimentation (carbonate platforms) separated by deep basins with 

predominantly pelagic sedimentation (Donda et al., 2013). 

The subsequent development of a compressional regime between the Paleocene 

and Miocene, linked to the convergence between the European and African plate, 

resulted in an increase in terrigenous sediment supply within the basin with a 

consequent sedimentation of hemipelagic marl (Marl of Gallare). 

During the Pliocene, the flexuration, triggered by the east north-east migration 

of the Apennine front, caused the rapid subsidence of the internal margin of the 

basin and a sudden marine transition which in turn favored the deposition of 

hemipelagic clays in the foreland and foreland ramp areas (Fm. Argille del 
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Santerno), as well as the deposition of turbidite sequences in the deepest areas of 

the foredeep domain (Fm. Porto Corsini and Porto Garibaldi) (Velić et al., 2015). 

Between the Upper Pliocene and the Lower Pleistocene, the filling of the basin 

recorded the transition from a deep sea to a delta system controlled by the gradual 

decrease of the compressional tectonic forces of the Apennines and by an increase 

in the sediment supply from the Po River. The delta system progradation produced 

the consequent migration of the Adriatic foredeep towards south-east. Between the 

Pleistocene and the Holocene, the Apennine progradation was accompanied by the 

onlap deposition of foredeep turbidites on the foreland margin deeping to the west. 

These deposits have a basin-scale tabular geometry developing on gentle anticlines 

which formed during differential the compaction of Plio-Pleistocene turbidites 

(Carola and Ravenna Formation) (Ghielmi et al., 2010; Malvić et al., 2011; Velić 

and Malvić, 2011). 

Geomechanical Model Construction 

The model reproduces a typical gas-bearing reservoir of the North Adriatic 

area. The reservoir formation is composed of a Pleistocene sedimentary sequence 

characterized by an alternation of sands and clays. The reservoir consists of a single 

pool, at an average depth of 730 m. The structural trap is an anticline with a NW-

SE direction, while the hydraulic seal is ensured by a clayey formation above the 

mineralized volume. The areal extension of the field is about 8 km x 7 km as shown 

in Figure 66 and has an average thickness of 100 m. 

 

Figure 66: Structural top of the reservoir 
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The geomechanical model has an areal extension of 35 km x 35 km with a 

thickness of about 3.2 km. The zoning and geomechanical classes of the model are 

shown in Tab. 4 and Tab. 5, respectively, while the vertical sections are represented 

in Figure 67 and in Figure 68. The stratigraphic surfaces used for the construction 

of the model are listed in Tab. 1. It is observed that the Carola formation appears to 

be in an onlap relationship with the underlying Santerno. 

 

Table 4: zoning of the geomechanical model on the basis of the stratigraphy 

 

 

 

Figure 67: zoning of the geomechanical model (thicknesses amplification factor of 5 applied in the z-

direction) 
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Table 5: geomechanical classes defined in the model. 

Geomechanical 

Classes 

Young’s Modulus Poisson’s Ratio Bulk density 
Biot’s 

Coefficient 

E 𝜈 𝜌 𝛼 

GPa - g/cm
3
 - 

1 0.03 
0.38 

1.8 

1  

2 0.4 1.9 

3 

0.0046 z + 0.3082 
0.35 

2.1 

4 2.2 

5 2.3 

6 65 2.6 

 

 

Figure 68: geomechanical classes defined in the model (thicknesses amplification factor of 5 applied in 

the z-direction) 

 

As far as the pressure map is concerned, it has been assumed that, after 4 years 

of gas production (22/03/2018-22/03/2022), the production is interrupted, and the 

pressure re-equilibrates in the system. The measured pressure variation is thus 

homogeneous throughout the reservoir and equal to 4 MPa (in Figure 69 a sectional 

view). 

The domain discretization was performed by exploiting both the pillar-gridding 

process implemented in Petrel E&P and the workflow for unstructured grid 
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construction illustrated in the “Unstructured grid construction workflow” section. 

The former is characterized by a tartan refinement and counts 2.9 105 nodes. In 

Figure 70a and Figure 70b the grid top and a 3D view are shown, respectively. The 

latter is made up of 1.9 105 nodes. In Figure 71a and Figure 71b the corresponding 

top and 3D view are shown.  

 

 

Figure 69: sectional view of the pressure map @ 23/03/2022 model (thicknesses amplification factor of 5 

applied in the z-direction). 

 

 

(a) (b) 

Figure 70: domain discretization by pillar-gridding: (a) top view and (b) 3D view. Reservoir cells are 

highlighted in green. In (b) a thicknesses amplification factor of 5 applied in the z-direction) to 

highlight the progression of the discretization. 
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(a) (b) 

Figure 71: domain discretization by unstructured grid construction workflow: (a) top view and (b) 3D 

view. Reservoir cells are highlighted in green. In (b) a thicknesses amplification factor of 5 applied in 

the z-direction to highlight the progression of the discretization. 

 

The set of sampled surfaces which were used as constraints for the unstructured 

grid construction (step 1 of the workflow of Figure 19) are shown in Figure 72. 

Since the sampling step is of 150 m x 150 m and would generate a too coarse grid, 

a refinement zone of about 7500 m x 7500 m is defined (yellow area). The presence 

of pinch-out (orange and green surfaces) made necessary to verify the presence of 

duplicated points and surface intersections. To make such operations easier, the 

triangulation performed on the top surface (“Sea Bottom”) was projected on the 

underlying surfaces. The drawback of this approach is the resulting discretization 

in the lower region of the model, where unnecessary cells were defined - as it 

happens for the corner point grid with tartan refinement. 
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Figure 72: surfaces constraining the unstructured grid. Amplification factor of 5 applied in the z-

direction.  

The comparison of the vertical section between the two grids is shown in Figure 

73a and Figure 73b. In both cases it is observed how the grid could be optimized in 

the underburden zone by introducing a coarsen triangulation of the constraining 

surfaces or applying a gluing approach which defines polyhedral (not necessarily 

convex) cells by the union of two or more tetrahedra. 

 
(a) (b) 

Figure 73: vertical section of the defined grid: (a) corner-point grid and (b) unstructured grid. 

Amplification factor of 5 applied in the z-direction. 

Once the grid was defined and the regions identified (Figure 74), the 

mechanical properties were appropriately assigned. Figure 75 shows the trend of 

Young's module, whose value can depend on the cell centroid depth as specified in 

Table 5. 
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Figure 74: region identification from tetrahedralization process. Amplification factor of 5 applied in 

the z-direction. 

The assignment of the pore pressure forcing term requires the correct 

identification of the reservoir cells. This objective is achieved by applying a 

dedicated workflow which requires two inputs: the region identification and the 

depth of the gas-water contact (GWC), if available. The resulting superposition of 

the reservoir corner-point grid discretization (green) to the unstructured 

tetrahedrization (blue-lines) is shown in Figure 76. It is observed that the faces of 

hexahedra, defined through the pillar-gridding process, are not necessarily planar 

and in the analyzed model they occur especially in correspondence of the reservoir 

cells due to the presence of the smooth anticlinal. Conversely, the VEM theoretical 

framework and the corresponding tested implementation involve polyhedral cells 

with planar faces, thus, if applied to grids which violate such hypothesis, can lead 

to the reduction of the solution accuracy. To verify the impact of not-planar grid 

cells two different grid refinements were introduced in correspondence of the 

reservoir cells as shown in Figure 17. 
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Figure 75: Young’s modulus assignment. Amplification factor of 5 applied in the z-direction. 

 

Figure 76: reservoir’s cells identification 

 

The resulting sequence of grids to be compared are: (a) hexahedral corner-point 

grid, (b) hexahedral corner-point grid “split faces”, i.e. reservoir hexahedral cells 

characterized by not-planar cells are substituted by polyhedrons obtained by adding 

a node in correspondence of the barycenter of the not-planar faces, (c) hexahedral 

corner-point grid “refine reservoir”, i.e. reservoir polyhedral cells are decomposed 

in tetrahedra. In Figure 77 the grid sequence and the reservoir top view are 

represented.  
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(a) 

 

 
(b) 

 

 

(c) 

Figure 77: top view of the reservoir cells: (a) corner-point hexahedral grid, (b) polyedral grid obtained 

by adding a node in correspondence of the barycenter of not planar faces in (a), (c) tetrahedral grid 

from decomposition of polyhedron in (b). 

The assessment of the impact of the not planar faces in the VEM computed 

solution was performed in terms of relative discrepancy of the displacement z-

component (𝑤). The FEM solution calculated on the original hexahedral pillar grid 

was taken as the reference value (see Figure 78 and Figure 79 for the top view and 

y-axis section, respectively). The relative discrepancy, instead, was defined as: 
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𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 =  
|𝑤𝑉𝐸𝑀 − 𝑤𝐹𝐸𝑀|

𝑚𝑎𝑥(|𝑤𝐹𝐸𝑀|)
∙ 100 (40) 

 

 

Figure 78: top view of the model. Colormap refers to the z-component of the FEM displacement. It 

ranges between 45mm and 10 mm. 

 

 

Figure 79: y-axis orthogonal section of the model. Colormap refers to the z-component of the FEM 

displacement. It ranges between 45mm and 10 mm. 
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The top view of the reservoir cells is shown in Figure 80,. The colormap refers 

to the relative discrepancy defined in (40). It is observed that no significant 

discrepancy is observed among the solutions calculated on different grids. This 

proves that the presence of not planar faces, due to the smooth anticlinal 

characterizing the current model, does not cause a reduction in the solution 

accuracy. The maximum recorded relative discrepancy is of the order of 5% and it 

refers to the boundary reservoir cells. Here the discontinuity of the imposed forcing 

term (constant delta pore pressure in the reservoir and zero outside) exasperates the 

effects of different strategies of refinement. For completeness, the top view and the 

y-axis orthogonal section of the model are shown in Figure 81 and Figure 82, 

respectively. Colormap refers to the z-component displacement relative 

discrepancy between FEM reference solution and VEM solution calculated on the 

original hexahedral corner-point grid (a), in the “spit faces” grid (b) and in the 

“refine reservoir” grid (c). The vertical displacement appears to be satisfactorily 

described. On the top surface the subsidence maximum discrepancy is about 2%. 

On the y-axis orthogonal section, instead, the discrepancy reaches the same 

magnitude as for the reservoir cells, about 5%. 

Eventually, a comparison of the FEM Corner-Point Grid and the VEM 

Unstructured Grid (Figure 70) is shown. Preliminarily the subsidence bowls 

identified by the two solutions were compared, as shown in Figure 83, where cells 

are filtered using the minimum displacement of 0.5 mm as the threshold, i.e. values 

below that value are considered negligible. It is observed that both the planar and 

the vertical extension are in agreement, showing that the phenomenon is 

macroscopically captured. Since the solutions were calculated on different 

discretization nodes, a qualitative comparison was performed through line plots 

along a top surface segment as already shown for the Geertsma’s model validation 

test. The comparison of the three components of displacement (along the segment 

HH’ of Figure 84a) are is shown in Figure 84b, Figure 85b and Figure 86b, 

respectively. A good agreement is observed between solutions especially in the x 

and y direction. In the refinement zone, indeed, the two grids share the same areal 

discretization. In the vertical direction, instead, a slight overestimation of the 

subsidence is observed. The vertical discretization can play a role, but it is also 

noticed that the maximum subsidence values are -29.8 mm and -31.8 mm for the 

FEM and VEM, respectively, which lead to a relative discrepancy of 4.5% - in line 

with the one observed in the previous tests. 



 99 

 

 
(a) 

 
(b) 

 

(c) 

Figure 80: Top view of the reservoir cells. The colormap refers to the z-component displacement 

relative discrepancy between FEM reference solution and VEM solution calculated on the original 

hexahedral corner-point grid (a), in the “spit faces” grid (b) and in the “refine reservoir” grid. 

W Discrepancy % - Corner Point Grid Split Faces (Hexa + Poly) 

W Discrepancy % - Corner Point Grid (Hexa) 

W Discrepancy % - Corner Point Grid Refine Reservoir (Hexa + Tetra) 
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(a) 

 
(b) 

 

(c) 

Figure 81: top view of the model. The colormap refers to the z-component displacement relative 

discrepancy between FEM reference solution and VEM solution calculated on the original hexahedral 

corner-point grid (a), in the “spit faces” grid (b) and in the “refine reservoir” grid. 

W Discrepancy % - Corner Point Grid (Hexa) 

W Discrepancy % - Corner Point Grid Split Faces (Hexa + Poly) 

W Discrepancy % - Corner Point Grid Refine Reservoir (Hexa + Tetra) 
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(a) 

 

(b) 

 

(c) 

Figure 82: y-axis orthogonal section of the model. The colormap refers to the z-component 

displacement relative discrepancy between FEM reference solution and VEM solution calculated on 

the original hexahedral corner-point grid (a), in the “spit faces” grid (b) and in the “refine reservoir” 

grid. 

 

W Discrepancy % - Corner Point Grid Refine Reservoir (Hexa + Tetra) 

W Discrepancy % - Corner Point Grid Split Faces (Hexa + Poly) 

W Discrepancy % - Corner Point Grid (Hexa) 



102  

 

 

(a) (b) 

Figure 83: (a) top view and (b) y-axis orthogonal section of the subsidence bowl identified by the FEM 

solution calculated on the Corner-Point Grid (surface) and the VEM solution calculated on the 

Unstructured Grid (wireframe). Amplification factor of 2 applied in the z-direction. 

 
(a) (b) 

Figure 84: (a) model top-view. Colormap refers to the z-component of displacement (subsidence W) 

obtained by FEM on the original Corner-Point Grid. (b) Plot along the HH’ line shown in (a). 

Comparison between the reference FEM solution on the corner point grid (hexa) (dotted red) against 

the VEM solutions calculated on the hexa corner point-grid (green) and on the tetra unstructured grid 

(blue) is shown. 

H H’ 
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(a) (b) 

Figure 85: (a) model top-view. Colormap refers to the x-component of displacement (U) obtained by 

FEM on the original Corner-Point Grid. (b) Plot along the HH’ line shown in (a). Comparison between 

the reference FEM solution on the corner point grid (hexa) (dotted red) against the VEM solutions 

calculated on the hexa corner point-grid (green) and on the tetra unstructured grid (blue) is shown. 

 
(a) (b) 

Figure 86: (a) model top-view. Colormap refers to the y-component of displacement (V) obtained by 

FEM on the original Corner-Point Grid. (b) Plot along the HH’ line shown in (a). Comparison between 

the reference FEM solution on the corner point grid (hexa) (dotted red) against the VEM solutions 

calculated on the hexa corner point-grid (green) and on the tetra unstructured grid (blue) is shown. 

  

H H’ 

H H’ 
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UGS model  

The analyzed Offshore Adriatic model was used to perform a validation test on 

a storage scenario. In the Carola formation, characterized by an alternation of sands 

and clays, seven superimposed gas pools were defined, representing a typical 

formation of the Italian landscape. The key parameters characterizing the 

corresponding dynamic model are listed in Table 6. Realistic petrophysical 

parameters were assigned. Figure 87 shows the discretized formation volume used 

for dynamic simulations; the wells defined to design the UGS strategy are also 

shown. The reservoir main production mechanism is gas expansion. The resulting 

UGS strategy was straightforward: 12 vertical wells were defined with the same 

completion data. They produce from all the layers simultaneously with control 

mode on bottom hole pressure (BHP): minimum pressure equal to 1 MPa and 

maximum pressure equal to 7 MPa during production and injection periods, 

respectively.  

Table 6: UGS dynamic model parameters 

Parameter Description Value 

𝐹𝑃𝑅 Average Field Pressure 7.034 MPa 

𝑅𝐺𝐼𝑃 Reservoir Gas in Place 9.3 109 sm3 

𝑁𝑇𝐺 Net to Gross 0.7 

𝑆𝑊 Water Saturation 0.266 

𝑃𝐻𝐼 Porosity 0.3 

𝑃𝐸𝑅𝑀𝑋 Absolute Permeability 250 mD 
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Figure 87: UGS dynamic model: 7 superimposed gas pools are simulated. UGS strategy considered 12 

wells. 

A UGS cycle was defined by 6 months of gas withdrawal followed by six 

months of gas injection with a week of closure in between. The dynamic 

simulations considered 10 cycles. The resulting gas rate and field pressure evolution 

are shown in Figure 88 and Figure 89, respectively. Due to the imposed pressure 

constraint the injected volume is maximized without exceeding the initial reservoir 

pressure. Moreover, as already mentioned, the only presence of depletion drive 

makes the UGS response balanced and stabilized both in terms of reservoir static 

pressures and injected/produced gas volume: each cycle is characterized by the 

same withdrawn/injected volume with a corresponding pressure variation ∆𝑝 =

6.2 MPa. Due to the constant pressure variation cycle after cycle and to the linearity 

of the considered constitutive law the induced displacement is expected to replicate 

the trend shown by pressure. Geomechanical analyses were then performed on the 

first cycle (highlighted in red in Figure 89) and a sequence of two simulations were 

performed imposing a withdrawal ∆𝑝1 = −∆𝑝 and an injection ∆𝑝2 = ∆𝑝. 

The grid construction of the geomechanical model was performed through the 

already mentioned pillar-gridding workflow. The resulting model has an areal 

extension of 55 km x 50 km and a thickness of 3.2 km. The number of nodes is 

about 2.67 105. For the geomechanical characterization the classes defined in Table 

5 were assigned according to the scheme in Figure 68. y-axis orthogonal slice of 
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the geomechanical grid is shown in Figure 90. Colored cells identify the reservoir 

where pressure variation (the forcing term) is applied. 

 

Figure 88: gas rate history of the UGS scenario: 10 gas storage cycles of 6 moths of production followed 

by 6 months of injection. A week of closure between two cycles. In red the cycle under analysis. 

 

 

Figure 89: field gas pressure history of the UGS scenario. In red the cycle under analysis 

P0 

P1 

P2 

Qprod 

Qinj 
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Figure 90: y-axis orthogonal slice of the geomechanical grid. Colored cells represent the reservoir. 

Amplification factor of 10 applied in the z-direction. 

 

As a preliminary validation the subsidence bowls identified by the two 

solutions were compared. The threshold was set equal to -0.05 mm. The top view 

and the y-axis orthogonal section are shown in Figure 91a and Figure 91b, 

respectively. Colored cell surfaces represent the FEM solution and wireframe 

corresponds to the VEM one. A good agreement between the two is observed and 

is verified that the extension of the refinement region is adequate to capture the 

analyzed phenomena. 

In the sequences Figure 92-Figure 94 and Figure 97-Figure 99, comparisons of 

the displacement components of the two solutions are shown along the segment 

HH’ on the top surface (Figure 92a). Indices 1 and 2 identify the withdrawal and 

injection results, respectively. It is observed that in the second step, where the 

rebound compensates the subsidence induced by gas production, the resulting 

vertical displacement is barely of 0.05 cm against the 17 cm shown at the end of 

production. Despite the different order of magnitude, a satisfactory agreement of 

the two solutions is observed. Analogous comparison is performed in terms of 

increment of the effective stress components along the vertical segment OO’ 

(Figure 95a) of the y-axis orthogonal section. The xx and zz components, which 

show a not negligible variation are shown in Figure 95-Figure 96 and Figure 100-

Figure 101. As expected, values different from zero are observed in correspondence 

of the reservoir cells where the load is applied. 
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(a) (b) 

Figure 91: (a) top view and (b) y-axis orthogonal section of the subsidence bowl identified by the FEM 

(surface) and the VEM (wireframe) solution. Amplification factor of 2 applied in the z-direction. 

 

 

(a) (b) 

Figure 92: (a) model top-view. Colormap refers to the x-component of displacement (U) obtained by 

FEM at the end of production (∆𝒑𝟏). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

H H’ 
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(a) (b) 

Figure 93: (a) model top-view. Colormap refers to the y-component of displacement (V) obtained by 

FEM at the end of production (∆𝒑𝟏). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

 

 

(a) (b) 

Figure 94: (a) model top-view. Colormap refers to the z-component of displacement (W subsidence) 

obtained by FEM at the end of production (∆𝒑𝟏). (b) Plot along the HH’ line shown in (a). Comparison 

between the reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

H H’ 

H H’ 
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(a) (b) 

Figure 95: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the xx-

effective stress component obtained by FEM at the end of production (∆𝒑𝟏). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown. 

 

(a) (b) 

Figure 96: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the zz-

effective stress component obtained by FEM at the end of production (∆𝒑𝟏). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown. 

O 

O’ 

O 

O’ 
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(a) (b) 

Figure 97: (a) model Top-view. Colormap refers to the x-component of displacement (U) obtained by 

FEM at the end of injection (∆𝒑𝟐). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

 

(a) (b) 

Figure 98: (a) model Top-view. Colormap refers to the y-component of displacement (V) obtained by 

FEM at the end of injection (∆𝒑𝟐). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

H H’ 

H H’ 
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(a) (b) 

Figure 99: (a) model Top-view. Colormap refers to the z-component of displacement (W subsidence) 

obtained by FEM at the end of injection (∆𝒑𝟐). (b) Plot along the HH’ line shown in (a). Comparison 

between the reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

 

 

(a) (b) 

Figure 100: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the xx-

effective stress component obtained by FEM at the end of injection (∆𝒑𝟐). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown. 

O 

O’ 

H H’ 
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(a) (b) 

Figure 101: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the zz-

effective stress component obtained by FEM at the end of injection (∆𝒑𝟐). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown.

O 

O’ 



  

 

Chapter 6 

Validation test in the elasto-plastic 

domain 

In the case of an elasto-plastic material, i.e. a material whose response depends 

on the load path to which it is subject, the model resolution process requires the 

integration of an additional algorithm able to assess the plastic component of strain. 

In the following a model is implemented to that end. The model an isotropic 

linear elastic (ILE) (i.e. constitutive law: 𝝈′ = 𝐷𝛆𝑒), perfectly plastic (𝜅̇ = 0) yield 

surface, defined by Mohr-Coulomb failure criteria with non-associated plastic flow 

(i.e. the yield surface and the plastic potential do not coincide). 

Techniques successfully applied to FEM for solving elasto-plastic problems 

can be broadly distinguished in methods that recompute the stiffness matrix at each 

load step and/or iteration, and methods that keep the stiffness matrix constant and 

only update the loads. Tangential and secant stiffness methods belong to the first 

group; conversely, initial strain and initial stress methods belong to the second 

group. In the initial strain family, the increase of the plastic strain during a load 

increment is calculated and treated as an initial strain, for which the elastic stress 

distribution is adjusted. In the initial stress approach, the stress–strain relation is 

adjusted to take plastic deformations into account for every load increment; the 

strain increments define the stress uniquely. With a properly specified elasto–plastic 
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matrix, this incremental elasticity approach can successfully treat perfect plasticity, 

as well as hardening plasticity. 

In the framework of the constitutive problem introduced in the “Elasto-plastic 

constitutive models” section, the basic computational principles of the initial stress 

method (Zienkiewicz et al., 1969) are summarized below. 

Let’s suppose to apply a load increment which causes a displacement increment 

and, consequently, a total strain increment. Then the constitutive stress-strain 

relation can be expressed as: 

𝝈′ = 𝐷𝑒𝑝𝜺 (41) 

where 𝐷𝑒𝑝 represents the elasto-plastic constitutive matrix. By using relations 

(10), (14) and (17), (41) becomes 

𝐷𝑒𝑝 = 𝐷 −
𝐷

∂Ψ
∂𝛔′ (

∂Φ
∂𝛔′)

𝑇

𝐷

(
∂Φ
∂𝛔′)

𝑇

𝐷
∂Ψ
∂𝛔′

 (42) 

Eq. (42) uniquely defines the stress increment due to a total strain increment. 

Moreover, it is noticed that 𝐷𝑒𝑝 depends on the current stress state, thus introducing 

a non-linear relation in the discretized equilibrium equations implemented in the 

FEM and VEM. It follows that an iterative procedure must be introduced for 

determining 𝐷𝑒𝑝. 

A family of algorithms denoted as return-mapping are commonly applied to 

solve such constitutive problem (Neto et al., 2008) 
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Return-mapping algorithms 

Constitutive problems can also be equivalently formulated as initial value 

problem in the strain variable: 

𝛆̇e = 𝛆̇ − γ̇∇Φ(𝛔′) 

𝛾̇ ≥ 0    Φ(𝝈′) ≤ 0    𝛾̇Φ(𝝈′) = 0 
(43) 

where the initial value 𝜺𝑒(𝑡0) is known and the history of the infinitesimal strain 

tensor 𝜺 = 𝜺(𝑡) = 𝜺𝑒(𝑡) + 𝜺𝑝(𝑡) is assumed to be known; 𝑡 denotes the pseudo-

temporal variable which determines variations of strain and stress fields. 

In Figure 102 the main steps of the implemented resolution algorithm, denoted 

as Implicit Return-Mapping algorithm, are outlined. The first step of the solution 

algorithm involves the pseudo-temporal discretization of equations (43). In this 

case, an Implicit Euler scheme is applied, in which the increase in total deformation 

is assumed to be known ∆𝜀: 

𝜺𝑛+1
𝑒 = 𝜺𝑛

𝑒 + ∆𝜺 − ∆𝛾∇Φ(𝝈𝑛+1
′ ) 

∆𝛾 ≥ 0    Φ(𝝈𝑛+1
′ ) ≤ 0    ∆𝛾Φ(𝝈𝑛+1

′ ) = 0 
(44) 

expression ∆(∙) refers to (∙)𝑛+1 − (∙)𝑛, while the subscripts 𝑛, 𝑛 + 1 identify 

the "updated" (unknown) state and the current state (known), respectively. Then a 

TRIAL elastic step follows where the stress state is assumed to be in the elastic 

domain (∆𝛾 = 0). If the evaluation of the yield surface Φ(𝝈𝑛+1
′ 𝑇𝑅𝐼𝐴𝐿) is negative or 

null, the TRIAL solution is feasible, and therefore it is possible to update the 

variables and proceed to the next loading step. Otherwise, a plastic correction step 

projects the solution onto the yield surface, so that the stress state can be classified 

as admissible. The workflow for the application of the Implicit Return-Mapping 

algorithm for the solution of the initial value elasto-plastic constitutive problem is 

schematized in Figure 102. Figure 103 shows a qualitative scheme of the two steps 

Return-Mapping algorithm. 
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Figure 102: implicit Return-Mapping Algorithm for the solution of the initial value elasto-plastic 

constitutive problem. 
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The implementation of the plastic correction step requires the evaluation of 

𝑁(𝜎𝑛+1
′ 𝑇𝑅𝐼𝐴𝐿), i.e. the flow vector corresponding to the TRIAL stress state. In the case 

of the Mohr-Coulomb criterion the potential surface (Ψ) is convex, but not 

differentiable, as shown in Figure 104, where the projection on the deviatoric plane 

is sketched. The non-univocity of the direction of the derivative represents one of 

the difficulties in implementing the method. 

The code tested in this project implements an Implicit Return-Mapping 

algorithm based on sub-differential operators (Sysala et al., 2017) applied to a C2 

continuous approximation to the Mohr-Coulomb yield surface (Abbo et al., 2011) 

Implementation details can be found in the reference publications. 

 

 

Figure 103: qualitative scheme of the Return-Mapping algorithm. 

 

Figure 104: representation on the deviatoric plane of the flow potential 𝚿 deriving from the Mohr-

Coulomb criterion. Flow vectors normal to the surface are identified by 𝑵. 
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Validation 

Analytical scaled model 

As a preliminary step of validation of the solution developed for the constitutive 

sub-problem, the choice was made to compare results of the VEM C++ 

implementation with the SS-MC-NP-3D code developed by the Institute of Geonics 

of the Czech Academy of Sciences in collaboration with VŠB-Technical University 

of Ostrava. The code is developed in the Matlab® environment, is distributed under 

the GNU General Public License and can be downloaded from the institutional page 

http://www.ugn.cas.cz/. SS-MC-NP-3D implements an elastic-perfectly plastic 

constitutive law with Mohr-Coulomb yield surface with non-associated plastic 

flow. 

The model represents a scale test case. The domain is represented by a unitary 

cube and the imposed forcing term has the expression: 

∆𝑝(𝑥, 𝑦, 𝑧) = ∆𝑝𝑀𝐴𝑋  
(𝑎 − 𝑥)(𝑎 − 𝑦)(𝑎 − 𝑧)(𝑏 − 𝑥)(𝑏 − 𝑦)(𝑏 − 𝑧)

(𝑎 −
1
2)

3

(𝑏 −
1
2)

3  
(45) 

Where the parameters assume the values∆𝑝𝑀𝐴𝑋 =  0.61 MPa, 𝑎 = 0 and 𝑏 =

1. A section view (XZ plane) of the function ∆𝑝(𝑥, 𝑦, 𝑧) is represented in Figure 

105.  

 

Figure 105: section view (XZ plane) of the pore pressure variation imposed as forcing term. 

Δp (bar) 
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The parameters which characterize the elasto-plastic constitutive model are 

listed in Table 7. 

Table 7: parameters of the elasto-plastic constitutive model 

Parameter Value 

Cohesion (c) 0.13 MPa 

Friction angle (𝜑) 7° 

Young’s modulus (𝐸) 3 GPa 

Poisson’s ratio (𝜈) 0.35 

Dilatancy angle (𝜓) 5° 

 

The two codes were tested on two different volume discretization. The SS-MC-

NP-3D code was tested on a hexahedron structured grid, characterized by a fixed 

number of nodes in the 3 directions: in the specific case 15x15x15 = 3375. The 

VEM code was tested on an unstructured grid of the same order of magnitude 

consisting of 4576 nodes and 21140 cells. The comparison between the two 

solutions was carried out in terms of the maximum value of the yield function 

obtained at each load step. Here the forcing term was divided in 100 load steps. As 

shown in Figure 106, there is a good agreement between the two solutions that reach 

the plasticization state for nearly the same load step. For completeness, Figure 107 

also shows a qualitative comparison between the total vertical displacements 

obtained by the two solvers on the XY plane for z = zmax. It is confirmed that a good 

agreement is observed between the two solvers. 
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Figure 106: Comparison between the SS-MC-NP-3D Matlab (red line) and the VEM C++ (blue line) 

trend of the maximum value of the yield function (Φ) over the entire domain with respect to the load 

steps 

 

(a) (b) 

Figure 107: Comparison between the vertical displacement W (cm) on the XY plane calculated by the 

SS-MC-NP-3D code (a) and the VEM solver (b). 

  

Loading Step 
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Disk-shaped reservoir model 

A second step of validation was performed on the disk-shaped reservoir model 

introduced in the “Disk-shaped reservoir model” section. The model is 

characterized by homogeneous parameters, listed in Table 8. The Mohr-Coulomb 

yield surface is completely defined by two parameters, i.e. friction angle (φ) and 

cohesion (c). Plastic flow is non-associated, thus a dilatancy angle (ψ) was assigned. 

No hardening parameters were set due to the perfect plasticity hypothesis. To force 

some nodes of the disk to reach plasticity it was necessary to impose a pore pressure 

variation of 2.5 MPa at a depth of 400 m (where the initial value is of the order of 

4 MPa). 

Simulations were initially run in the elastic domain and the resulting 

displacement and stress fields variations were compared to verify the agreement 

between the two solutions. The top view and a line plot of the horizontal, 𝑢, and 

vertical, 𝑤, components of the displacement at the top surface shown satisfactory 

agreement (Figure 109 and Figure 110). Analogous results were obtained along the 

y-axis orthogonal section and the corresponding line plot (Figure 118 and Figure 

119). A comparison of vertical displacement, 𝑤, and variation of the 𝜎′𝑥𝑥 and 𝜎′𝑧𝑧 

are shown in Figure 120. 

Table 8: disk-shaper reservoir model. Load term and elasto-plastic constitutive model parameters 

Parameter Description Value 

Δ𝑝 
Imposed reservoir pore pressure 

variation 
2.5 MPa 

𝐸 Young’s Modulus 2 GPa 

𝜈 Poisson’s Ratio 0.25 

φ Friction angle 25° 

c Cohesion 0.16 MPa 

ψ Dilatancy angle 5° 
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The Safety Factors, S, introduced in the “Safety Factor” section was calculated 

for the disk-shaped reservoir cells where shear failure can occur. As an example 

case, in Figure 108 there are shown the two reservoir cells, belonging to the 

unstructured (green) and corner-point grid (blue), whose S values are given in 

Figure 108. As expected, the S values increase after injection due to a shift towards 

lower effective stresses - as shown by Mohr’s circle representation of Figure 114. 

Due to the different grid and consequently different centroid position in space, a 

discrepancy between the safety factor calculated from the FEM and VEM computed 

solutions can be observed. However, both exceed unity thus violating the yielding 

criterion and revealing plasticity occurred.  

The subsequent step was to test the implemented return-mapping algorithm on the 

generalized Mohr-Coulomb yield surface. The investigated volume has extension 

14 km x 14 km x 4.5 km and counts about 4.3 105 nodes. Unfortunately, preliminary 

tests carried out so far highlighted convergence issues of the implemented Newton’s 

algorithm. The method, indeed, guarantees only local convergence, i.e. only when 

the trial step is close enough to the searched solution, the solution can be 

successfully identified. Conversely, there are globally converging methods, such as 

the conjugate gradient family, which have the tendency to stagnation, i.e. the 

solution does not change for several iterative steps (Atkinson, 1989; Saad, 2003). 

The high non-linearity of the problem makes necessary further investigation on the 

influence of the characteristic parameters of the model to identify a suitable strategy 

to be applied. 

 
 

(a) (b) 

Figure 108: (a) top view of the model scheme: disk-shaped reservoir (in red) with the identification of 

the zone (green square) zoomed in (b) , where are shown VEM tetrahedron (green) and FEM 

hexahedron (blue) cells whose safety factors are compared in Table 9. 
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Table 9: Safety Factor calculated in correspondence of the centroid of test cell of the disk-shaped 

reservoir, both at the initial equilibrium (t0) and after injection (t1) 

 FEM VEM 

Coordinates of the cell 

centroid 

6512.5 m 6499.32 m 

6162.5 m 6154.4 m 

-387.5 m -393.32 m 

Safety Factor @ t0 0.6 0.6 

Safety Factor @ t1 1.04 1.1 

 

 

(a) (b) 

Figure 109: (a) model top-view. Colormap refers to the x-component of displacement (U) obtained by 

FEM at the end of injection (∆𝒑). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

H H’ 



 125 

 

 

(a) (b) 

Figure 110: (a) model Top-view. Colormap refers to the z-component of displacement (W rebound) 

obtained by FEM at the end of production (∆𝒑). (b) Plot along the HH’ line shown in (a). Comparison 

between the reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

 

 

(a) (b) 

Figure 111: (a) y-axis orthogonal section view of the model with a thicknesses amplification factor of 2 

applied along the z-direction. Colormap refers to the z-component of displacement (W rebound) at the 

end of injection (∆𝒑). (b) Plot along the OO’ segment shown in (a). Comparison between the reference 

FEM solution on (red) against the VEM solutions (blue) is shown. 

O 

O’ 

H H’ 
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(a) (b) 

Figure 112: (a) y-axis orthogonal section view of the model with a thicknesses amplification factor of 2 

applied along the z-direction. Colormap refers to variation of the xx-effective stress component 

obtained by FEM at the end of injection (∆𝒑). (b) Plot along the OO’ segment shown in (a). 

Comparison between the reference FEM solution on (dotted red) against the VEM solutions (blue) is 

shown. 

 

(a) (b) 

Figure 113: (a) y-axis orthogonal section view of the model with a thicknesses amplification factor of 2 

applied along the z-direction. Colormap refers to variation of the xx-effective stress component 

obtained by FEM at the end of injection (∆𝒑). (b) Plot along the OO’ segment shown in (a). 

Comparison between the reference FEM solution on (dotted red) against the VEM solutions (blue) is 

shown. 

O 

O’ 

O 

O’ 
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Figure 114: Mohr’s circle representation of the initial state of stress (blue) and the one assessed after 

injection (green) in correspondence of the centroid of a disk-shaped reservoir cell. Mohr-Coulomb 

failure criteria is represented as a black line. 

Underground Natural Gas Storage Test 

To complete the set of the tests to verify whether plasticity occurred, the 

calculation of the Safety Factor was also applied to an underground natural gas 

storage. The UGS model is the same as that introduced in the “UGS model” section. 

One standard storage cycle of gas withdrawal followed by gas injection step was 

taken into consideration; the maximum reservoir pressure at the end of the injection 

phase is approximately equal to the initial formation pressure. 

Table 10: Mohr-Coulomb yield criteria parameters  

Geomechanical 

Classes 

Cohesion Friction Angle Dilatancy Angle 

C 𝜑 𝜓 

MPa ° ° 

1 0.1 38 

5 

2 0.2 30 

3 1 30 

4 1.5 28 

5 0.63 30 

6 4 45 

 

As expected, the calculated safety factor S shows a decrease after gas 

withdrawal (t1) and an increase (to approximately the initial value) after gas 
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injection (t2). As an example case, values calculated in the correspondence of the 

centroid of a selected reservoir cell are listed in Table 11; the corresponding Mohr’s 

circle representation is depicted in Figure 115. Such results are supported by the 

technical literature analyzing the surveys of ground movements induced by the 

storage activities in the Po Plain, Italy. Ground movements monitoring with the 

Interferometric Synthetic Aperture Radar (InSAr) technique on large areas (A. 

Ferretti et al., 2001; Berardino et al., 2003) showed a consistent correlation between 

pressure variations due to gas injection/withdrawal and subsidence/rebound at the 

surface level (Benetatos et al., 2020; Codegone et al., 2016; Coti et al., 2018). 

Furthermore, the upward/downward ground movements indicate that the 

formations behave elastically (Ferronato et al., 2013; P. Teatini et al., 2011).  

Table 11: Safety Factor values of a reservoir and a caprock cells at the initial state (t0), at the end of 

primary production (t1) and after an injection period (t2) 

 FEM VEM 

Coordinates of the cell 

centroid 

3.3353e+07 m 3.3353e+07 m 

4.98178e+06 m 4.98178e+06 m 

-810.089 m -810.089 m 

Safety Factor @ t0 0.3190 0.3190 

Safety Factor @ t1 0.3768 0.3771 

Safety Factor @ t2 0.3193 0.3193 

 

The management strategies of a UGS usually aim at maximizing the volume of 

stored gas that can be available to marketplace (working gas) and to enhance the 

storage performance (gas rates that can be delivered). To this end it is a common 

option to operate storage at a maximum working pressure in excess of the initial 

formation pressure (delta-pressuring). In the Italian panorama this is a possible 

practice provided that the maximum pressure does not exceed 107% of the initial 

pressure. For the case study under consideration this means that the final reservoir 

pressure should not exceed 7.5 MPa. The results of the simulations performed for 

the scenario in which a 107% delta-pressure is applied, are provided in Figure 116-



 129 

 

Figure 120. The solutions obtained with FEM and VEM are compared in terms of 

displacement and effective stress variations. The z-component along the HH’ 

segment on the top surface is plotted in Figure 117: the delta-pressure condition 

causes a lift of the order of 1.5 cm at the surface. The corresponding values of the 

safety factor are listed in Table 12 and the Mohr’s circle represented in Figure 121. 

All the obtained results confirm the case studies published in the reference literature 

and reinforce that simulation can be carried out in the elastic domain as a standard 

step of the geomechanical safety assessment. 

 

Figure 115: Mohr’s circle representation of the state of stress for the selected reservoir cell obtained 

from VEM solution. Three states are represented: initial (blue), end of primary production (green) and 

end of injection period (dotted red). Projections on the Mohr-Coulomb failure line are used to evaluate 

the Safety Factor. 
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(a) (b) 

Figure 116: (a) model top-view. Colormap refers to the x-component of displacement (U) obtained by 

FEM at the end of injection (∆𝒑𝟐). (b) Plot along the HH’ line shown in (a). Comparison between the 

reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

 

(a) (b) 

Figure 117: (a) model top-view. Colormap refers to the z-component of displacement (W subsidence) 

obtained by FEM at the end of production (∆𝒑𝟐). (b) Plot along the HH’ line shown in (a). Comparison 

between the reference FEM solution on (dotted red) against the VEM solutions (blue) is shown. 

H H’ 

H H’ 
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(a) (b) 

Figure 118: (a) y-axis orthogonal section view of the model. Colormap refers to the z-component of 

displacement (W subsidence) at the end of injection (∆𝒑𝟐). (b) Plot along the OO’ segment shown in (a). 

Comparison between the reference FEM solution on (dotted red) against the VEM solutions (blue) is 

shown.  

 

(a) (b) 

Figure 119: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the xx-

effective stress component obtained by FEM at the end of injection (∆𝒑𝟐). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown. 

O 

O’ 

O 

O’ 
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(a) (b) 

Figure 120: (a) y-axis orthogonal section view of the model. Colormap refers to variation of the zz-

effective stress component obtained by FEM at the end of injection (∆𝒑𝟐). (b) Plot along the OO’ 

segment shown in (a). Comparison between the reference FEM solution on (dotted red) against the 

VEM solutions (blue) is shown. 

 

Figure 121: Mohr’s circle representation of the state of stress for the selected reservoir cell obtained 

from VEM solution. Three states are represented: initial (bleu), end of primary production (green) and 

end of injection period (red). Projections on the Mohr-Coulomb failure line are used to evaluate the 

Safety Factor. 

O 

O’ 



 133 

 
Table 12: Safety Factor values of a reservoir and a caprock cells at the initial state (t0), at the end of 

primary production (t1) and after an injection period (t2) 

 FEM VEM 

Coordinates of the cell 

centroid 

3.3353e+07 m 3.3353e+07 m 

4.98178e+06 m 4.98178e+06 m 

-810.089 m -810.089 m 

Safety Factor @ t0 0.3190 0.3190 

Safety Factor @ t1 0.3768 0.3771 

Safety Factor @ t2 0.3114 0.3114 



  

 

Chapter 7 

Code development and GUI 

prototyping for model validation 

and data analysis 

The present project has seen, during the entire development, the adoption of 

different development tools. This was the optimal and preferred choice for different 

parts of the research due to the presence of pre-existing libraries and modules 

originally developed on two different systems: Microsoft Windows Systems and 

GNU/Linux. Indeed, it is well known that software compiled for Microsoft 

Windows does not work on GNU/Linux systems and vice versa. It follows that for 

the integration of piece of code written for different system into a prototype 

application as well as the construction of the validation process here described, it 

was necessary to identify the development actors that were most suitable for making 

the resulting workflow as independent as possible from the platform were the code 

was developed and compiled. 

In Table 13 are summarized the pre-existing application development 

ecosystem actors characterizing the two development environments that needed to 

be integrated.  
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Table 13: pre-existing Software Development Ecosystem Actors 

Operating System Microsoft Windows 7  

Microsoft Window 10 

GNU/Linux 

User Interface GUI Bash shell 

Development Tools Matlab® Mathworks 

Visual Studio® Microsoft 

Eclipse IDE 

Paraview Kitware 

GCC compiler for C++ 

Vim editor 

Paraview Kitware 

Bitbucket 

Languages C# C++ 

Java/AWT 

VTK/Java wrapper 

Python 

C C++ 

Data Formats Schlumberger Proprietary 

GRDECL and SIMOPT 

Open-source Legacy VTK and 

VTU 

Generic ASCII 

Open-source Legacy VTK and 

VTU 

Framework and 

Toolkits 

Matlab 

Eclipse RCP 

VTK as visualization toolkit and 

reader/parser 

Eigen 

Tetgen 

Triangle 

CGAL 

Eigen 

Tetgen 

Triangle 

VTK as an open-source format 

data container and reader/parser 

The development of the project tasks involved the subdivision of the activities 

between the functionalities for gridding and visualizations and the solution of 

equations. The former included the Gridding Library and GUI, the latter the GeDim 

and VemElast libraries. For sake of effectiveness and because of the pre-existing 

codes and libraries, related to the two sets of activities, were implemented in 

different environments, therefore, their integration in the prototype application 

architecture (sketched in Figure 122) required to adapt the model that was initially 

hypothesized. 

On the other side, the underlying adopted strategy, by which the main functions 

were isolated in logical units, was very effective to develop each of them 

independently and give to the resulting code a modular structure. Each logical unit 
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was designed as a single library according to the MS Windows Dynamic Linking 

Library (dll) model, completely analogous to that of the Shared Objects of the 

Linux world. In this pattern, once a list of input and outputs parameters are coded, 

the internal functioning of the library is transparent, and it can be included in the 

main application even when not all its functionalities are already implemented. 

Such a choice, indeed, allows to modify the code locally without undermining the 

structure of the whole application. 

 

Figure 122: Software architecture 

Some of the tools were added during the project development while some were 

abandoned. Consequently, entire pieces of code have been completely rewritten to 

incorporate the experience gained during the integration process. The main steps 

which retrace the evolution process of the application prototype and of the 

development environment can be summarized as follows: 

• STEP 1: The Main Application and the Gridding libraries are developed with 

Visual Studio on Microsoft Windows. The GeDim (Generic Discretization 

Method) library, instead, runs on GNU/Linux. A sketch of the configuration can 

be found in Figure 123. The two environments do not have points of contact. 

Input and output data needs to be coded and a VEM implementation for the 

solution of the linear elastic boundary value problem is required. 

• STEP 2: the VemElast (3D VEM implementation for the solution of the linear 

elastic boundary value problem) library is connected to the GeDim library on 

GNU/Linux. In this phase input and output data are codified as VTK legacy 

format in ASCII files and VTK framework is used as data container and 

reader/parser. A basic Graphical User Interface (GUI) developed in Qt is 

integrated in the Main Application together with the Gridding library. The user 

can now call grid importing functions without modifying the code. However, to 

perform a simulation, it is necessary to physically move data from workstations 
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running the Main Application on MS Windows to other running VemElast 

library on GNU/Linux. A sketch in depicted in Figure 124.  

• STEP 3: the VemElast and some functionalities of the GeDim libraries are 

ported from GNU/Linux to MS Windows. Running the code is now simpler: the 

GUI has importing functions and it can directly call Gedim+VemElast at 

runtime avoiding export and re-import data from ASCII files. The development 

tool used is Visual Studio making compatibility with GNU/Linux platform 

difficult. 

• STEP 4: the Main Application code is migrated to the open-source development 

environment made up of QTCreator + CMake + MinGW. The testing phase of 

the new environment required time and tuning but this new setting allowed to 

unify both GNU/Linux and MS Windows library development processes in the 

same environment (see Figure 125). Data structures are now shared inside the 

main application and ASCII files were no longer required. 

• STEP 5: the GUI is developed in the Qt framework exploiting native classes 

which allows the coupling between Qt and VTK. Now, parameters, data and 

results can be passed from/to the Main Application and from/to libraries at run 

time, using slots and signals mechanism from Qt (The Qt Company, 2021a), 

thus it is possible to produce simple visualizations of imported grids and results 

from the Gedim+VemElast simulations. The sequence of actions which 

exemplifies the main functions implemented in the Main Application GUI are 

shown in the sequence of screenshot Figure 128-Figure 134. 

 

Figure 123: sketch of STEP1 of the evolution process.  
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Figure 124: sketch of STEP2 of the evolution process. 

 

 

Figure 125: sketch of STEP4 of the evolution process. 

Among the many advantages deriving from the use of the Qt framework, two 

are to be underlined as key aspects: the communication system commonly known 

as "Signals and Slots" (The Qt Company, 2021a) and the low-level API QThread 

(The Qt Company, 2021b). 
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Signal and slots are a peculiar implementation of communication between 

objects implemented in the Qt frameworks. This is a solution alternative to the 

original Callback pointers to functions commonly used in the communication 

between widgets in a GUI. The logical scheme of slot/signal communication 

mechanism is depicted in Figure 126. Signals are emitted when a particular event 

occurs. A signal is emitted by an object when its internal state has changed. Then 

the slots (C++ functions) connected to it are executed independently of any GUI 

event loop. The main advantage in using such a mechanism is that signals are 

automatically generated by the program that handles Qt's C++ extensions (Meta-

Object Compiler) and must not be implemented in the cpp files, making coding 

faster. The mechanism is type safe through signal signature verification at runtime 

overcoming errors in type-correctness of callback arguments. This development 

pattern is widely used in GUI interfaces but is also used extensively in multi-

threading management. 

Signals and Slots, indeed, are also founding tools for Qt multi-threading 

implementation. Substantial feature of QThread is that it's not a thread, but it is a 

wrapper around a thread object. This wrapper provides signals, slots and methods 

to easily implement the thread object within a Qt project (wiki.qt.io). The need to 

use multi-threading in an application is directly linked to the availability, especially 

in the most recent workstations, of many processors: the capability to execute 

several parallel operations reduces the execution time of even very simple tasks and 

the user experience can benefit from this mechanism. 

The combined use of the QThread Class and the "Signals and Slots" pattern 

provides the programmer with an easy-to-use tool to achieve this goal. From the 

simple need not to freeze the GUI while executing a process that takes a long time, 

such as loading an ASCII file, to the possibility of parallelizing a complex 

calculation, these two tools open a world of possibilities. Only a few rules are 

required to manage the execution of multiple tasks in parallel. Particular attention 

must be paid to the way shared resources are accessed and the intertwining of 

possible errors that could be generated by a System that can reach a high degree of 

complexity. 

The parallelization of the deepest computational parts is beyond this type of 

management and have been structured with the use of more complex and 

specialized models, linked to the area of competence of the GeDim library. 
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Figure 126: scheme of signal/slot connection between objects (The Qt Company, 2021a) 

The resulting development flowchart (sketched in Figure 127) is made up of 

four main actors 

• Qt Creator (The Qt Company, 2021c): a cross-platform C++, 

JavaScript and QML Integrated Development Environment (IDE). 

which simplifies GUI application development. It is part of the SDK for 

the Qt GUI application development framework and uses the Qt API, 

which encapsulates host OS GUI function calls. 

• CMake (Kitware, 2021): cross-platform free and open-source software 

for build automation, testing, packaging and installation of software by 

using a compiler-independent method. CMake is not a build system but 

rather it generates another system's build files. 

• • MinGW and MinGW-w64 (Mingw-w64, 2021): native Windows 

port of the GNU Compiler Collection (GCC), commonly referred to as 

a toolchain . They both contain freely distributable import libraries and 

header files for building native Windows applications; they include 

extensions to the MSVC runtime to support C99 functionality. These 

toolchains are re-distributed by QTCreator package. Qt versions up to 

4.8.6 target MinGW toolchain; newer Qt 4.8 binary packages ship with 

MinGW-w64 based toolchain. 
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• Code Versioning tools allow to easily redistribute code and test new 

ideas. Their introduction in the development environment facilitates 

asynchronous remote working model, i.e. team members do not have to 

necessarily work in the same geographical location and at the same 

time. There were set up: 

o GitLab (Gitlab inc., 2021): web-based DevOps1 lifecycle tool 

that provides a Git repository manager providing wiki, issue-

tracking and continuous integration and deployment pipeline 

features (GitLab inc., 2021), the core features are distributed 

under a MIT open-source license,  

o Bitbucket (Atlassian, 2021): is a Git-based source code 

repository hosting service owned by Atlassian.  

 

Figure 127: Current Development Flowchart 

 
1 Practices that combine software development (Dev) and IT operations (Ops) 
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Figure 128: Main Application GUI – menu item for selection of the grid file to be processed 

 

Figure 129: Main Application GUI – logging window for grid upload 



 143 

 

 

Figure 130: Main Application GUI – successful upload of unstructured gridding with attributes 

 

Figure 131: Main Application GUI – grid attributes visualization through combobox 
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Figure 132: Main Application GUI – dialog box for threshold filtering. By way of example, reservoir is 

identified by selecting cells with associated dP equal to 40 bar. 

 

Figure 133: Main Application GUI – visualization of the threshold filter’s output 
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Figure 134: Main Application GUI – dialog box for association of grid attributes to the VEM simulation 

input parameters 

 



  

 

Chapter 8 

Conclusion and future development 

The renewed interest in underground fluid storage systems in the perspective 

of energy transition and decarbonization was the starting point of this project. CO2 

confinement in deep geological formations and in saline aquifers could significantly 

contribute to reduce greenhouse gases in the atmosphere and mitigate climate 

change effects. H2 underground storage is currently under investigation as an 

option to store chemical energy obtained from the excess of electrical power 

production from renewable sources, which are unstable and intermitted by nature 

and unsuited to match the electricity demand. 

Underground fluid storage implies rock stress state variations, induced in the 

geological formations by the pressure changes due to fluid injection and 

withdrawal. If the variations of the rock stress state are significant, they could 

jeopardize the formation integrity and induce (micro)fracturing, potential faults 

(re)activation and rock deformation, which can propagate to the surface and induce 

ground movements. Because of the complexity of the problem, 3D geomechanical 

models are needed to assess that safety conditions can be guaranteed during the 

storage lifetime. 

The goal of this research was to apply the recently formalized Virtual Element 

Method (VEM) to build 3D geomechanical models and address the safety issues 

associated to fluid storage in deep geological formations, namely rock integrity and 

compaction/expansion due to fluid withdrawal/injection causing ground level 

subsidence/rebound. The advantage of using VEM mainly resides in their versatility 
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to reproduce complex geometries while maintaining a certain computational 

“simplicity” without losing solution accuracy. Indeed, VEM is based on a 

theoretical framework sufficiently general to allow to overcome some of the FEM 

limitations such as typology of elements used to discretize the domain or the 

applicability to non-conforming grids (Gain et al., 2014): VEM allows the presence 

of hanging nodes and hybrid grids, i.e. the use of elements of different types and 

different degrees of approximation, reaching an adequate representation of the 

structural model and reproducing the solution with great accuracy only on the 

portions of main interest of the domain, with a consequent saving in terms of 

computational cost. 

The first step of the research project was the implementation of a new workflow 

for the generation of the mechanical model grid. It was formalized starting from the 

minimal structural constraint set, that is the domain boundaries, at least one 

stratigraphic surface (already adjusted to the stratigraphic sequence intercepted by 

the wells) and fault surfaces, if any. The following step consisted in the 

tetrahedrization of the volume of interest, using the above geologic elements as 

constraints. An unstructured grid was obtained, with a refinement in the portion of 

the volume of interest where the investigated phenomena, that is 

compaction/expansion due to fluid withdrawal/injection and induced ground level 

subsidence/rebound, are occurring. 

Because the geomechanical safety assessments necessarily follow the geologic 

modeling and the fluid-flow simulations, the main targets of the project also brought 

about the need for integration with other software. In fact, the mechanical analysis 

of deep geologic formations requires also relies on information deriving from the 

static and dynamic models. In turn, this implies the ability to correctly transfer or 

manipulate data, such adapting the grids and scaling the properties (such as the 

petrophysical properties or the pressure values) from the static and dynamic models 

to set up a coherent mechanical model. This is the reason why integrated platforms 

were developed to manage the whole workflow from geological modelling to 

mechanical analyses. The relevant technical literature mentions several codes 

which were specifically developed to integrate the output of geo-modelers and 

simulators devoted to different physical phenomena in an unified workflow 

(Fischer et al., 2021; Nakaten and Kempka, 2014; Park et al., 2014; Sentís and 

Gable, 2017). Among them, a reference tool in the oil and gas field is the Petrel 

E&P Software Platform, which uses proprietary data structures and gridding, by 

Schlumberger. Petrel is used for geologic modeling while Eclipse is the applied to 

dynamic simulations; the module Visage was developed for mechanical analyses 
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(Schlumberger, 2020b). Therefore, in parallel with the generation of a new gridding 

procedure for the mechanical model, these additional activities were performed: the 

construction of a C++ parser able to read the grid generated by Petrel (but 

potentially from any other software used for static modeling) and to convert it into 

the open source format vtu (Visualization Toolkit Unstructured grid) (Schroeder et 

al., 2006) as well as the implementation of a routine to extract the calculated 

pressure values from the dynamic simulator Eclipse (but potentially from any other 

software used for dynamic modeling).  

Subsequently, the identified geological regions and/or layers were 

characterized based on preliminary defined geomechanical classes (i.e. rock 

characterized by homogeneous and constant isotropic strain and deformation 

parameters). 

Once the volume discretization and the characterization of the geological 

formations were completed, the VEM method was applied and the approximated 

solutions of the PDEs were calculated on a fixed number of points, which can be 

the vertices or the centers of each element of the grid. Tests on the underground 

volume to be included in the simulations to avoid boundary effects and grid 

refinement were carried out. Furthermore, tests were also performed both on pillar 

grids generated by Petrel E&P and on unstructured grids built ad hoc according to 

the developed workflow. Eventually, to validate the methodology and the VEM 

solver implemented by the Numerical Analysis and Scientific Computing Group of 

the Department of Mathematical Sciences of Politecnico di Torino, tests were made 

on cases representative of natural gas underground storages in the Italian panorama. 

The VEM solution was compared with the FEM solution calculated with the Visage 

module in terms of subsidence/rebound induced by UGS operations in the linear 

elastic field. In fact, the analysis of ground movement surveys induced by the 

storage systems located in the Po Plain, Italy, shows a consistent relation between 

pressure variations and corresponding subsidence/rebound at the surface level 

(Benetatos et al., 2020; Codegone et al., 2016; Coti et al., 2018). This UGS-related 

pressure variations due to the withdrawal/injection phases affect the formation 

cyclically and over relatively short periods (typically 5-7 months) and the 

correlation between gas injection/withdrawal and upward/downward ground 

movements indicates that the formations behave elastically (Ferronato et al., 2013; 

P. Teatini et al., 2011). 

The implemented constitutive model also includes the possibility of simulating 

the behavior of the rock in an elasto-plastic regime with a Mohr-Coulomb yield 
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surface and analyses on models largely representative of the Adriatic/Po Plain 

scenario were also performed. The calculation of a safety factor, which expressed 

the risk of shear failure, indicates if plasticity occurred in the investigated 

geological volume. However, convergence issues highlighted the need to modify 

the iterative algorithm implemented to solve the constitutive problem to obtain 

consistent results under any investigated scenario. 

 



  

 

Appendix 

In this section the VEM formulation on polygonal and polyhedral elements is 

briefly introduced, with focus on the computation of the local stiffness matrix and 

the forcing term associated to the model problem defined in (36). A short overview 

of the abstract framework necessary to apply the VEM is shown, however the 

discussion on discretization process is limited to elements of accuracy order equal 

to 1.Theoretical details can be found in (Ahmad et al., 2013; Beirão da Veiga et al., 

2014, 2013a). 

VEM discrete approximations 

The strong expression of the set of equations which describes the behavior of 

the linear elastic medium is given in (36). If the solution 𝑢 and test functions belong 

to the Sobolev space 𝐻
0,𝛤𝐷
1 (Ω), the corresponding variational formulation becomes 

∫ 𝜎(𝑢): ∇𝑣𝑑Ω 
Ω

= ∫ 𝑏 𝑣 𝑑Ω 
Ω

  ∀𝑣 ∈ 𝐻
0,𝛤𝐷
1 (Ω) (a.1) 

where 𝛺 ⊆ ℝ3 is the domain with boundary 𝛤 partitioned in disjoint non-trivial 

segments 𝛤𝐷 and 𝛤𝑁 and mixed homogeneous boundary conditions are implicitly 

supposed, i.e. 

𝑢 = 0 𝑜𝑛 𝛤𝐷

𝜎 ∙ 𝑛 = 0 𝑜𝑛 𝛤𝑁 (a.2) 

Combining (a.1) with the hypothesis of small deformation in the generalized 

Hooke’s law, the symmetric bilinear form is defined as  
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𝑎(𝑢, 𝑣) ≔ ∫ 𝜎(𝑢) ∶ 𝜀(𝑣)𝑑Ω 
Ω

 (a.3) 

and, consequently, the model problem can be formulated as: 

find 𝑢 ∈ 𝑉:  𝑎(𝑢, 𝑣) = (𝑏, 𝑣)     ∀𝑣 ∈ 𝑉  (a.4) 

where 𝑉 ≔ 𝐻
0,Γ𝐷
1 (Ω), 𝑏 ∈ 𝐿2(Ω) and the (∙,∙) is the 𝐿2-scalar product. 

The solution of the model problem through VEM is performed introducing a 

discrete approximation of the domain Ω, the solution space 𝑉, the bilinear form 𝑎 

and the forcing term 𝑏.  

Let us consider a tessellation {𝒯ℎ}ℎ of Ω into disjoint non-overlapping 

polyhedral elements 𝐸. It is supposed that there exists a positive real number 𝛾 such 

that 

• for every element 𝐸, for every face 𝑓 of 𝐸, and for every edge 𝑒 of 𝑓 

ℎ𝑒 ≥ 𝛾ℎ𝑓 ≥ 𝛾2ℎ𝐸 

here ℎ𝑒, ℎ𝑓 and ℎ𝐸  are edge, face, and element diameters, respectively 

• every element 𝐸 is star-shaped with respect to all the points of a sphere of 

radius ≥ 𝛾ℎ𝐸 

• every face 𝑓 is star-shaped with respect to all the points of a sphere of radius 

≥ 𝛾ℎ𝑓. 

Then the maximum diameter of the decomposition can be set as ℎ ≔ max
𝐸∈𝒯ℎ

ℎ𝐸 .  

In accordance with the Galerkin approximation, for each ℎ, it is possible to 

introduce a finite dimensional space 𝑉ℎ ⊂ 𝑉  

𝑉ℎ = {𝑣ℎ ∈ 𝑉: 𝑣ℎ|𝐸 ∈ 𝑉ℎ(𝐸)  ∀𝐸 ∈ 𝒯ℎ}  (a.5) 

and to split the symmetric bilinear form (𝑎𝐸) on each element 𝐸: 
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𝑎(𝑢ℎ, 𝑣ℎ) = ∑ 𝑎𝐸 (𝑢ℎ, 𝑣ℎ)

𝐸∈𝒯ℎ

     ∀𝑢ℎ , 𝑣ℎ ∈ 𝑉ℎ  (a.6) 

so as, the discrete model problem becomes 

find 𝑢ℎ ∈ 𝑉ℎ: 𝑎(𝑢ℎ, 𝑣ℎ) = 〈𝑏, 𝑣ℎ〉     ∀𝑣ℎ ∈ 𝑉ℎ  (a.7) 

The solution of (a.7) requires the computation of the local stiffness matrix on 

each element, i.e., the calculation of weak form integrals through evaluation of 

interpolation functions in the interior of the element. Since functions in 𝑉ℎ and its 

basis are in general non-polynomial functions, high order quadrature rules are 

adopted to reduce integral approximation errors, making the computational cost 

prohibitive.  

VEM core idea it is to define adequate (virtual) space 𝑉ℎ such that functions 

contain the polynomial of degree ≤ 𝑘 (where 𝑘 is the order of accuracy of the 

method), plus additional functions (in general not polynomials) that are never 

required to be computed thanks to the careful choice of the degrees of freedom and 

the introduction of an approximation 𝑎ℎ of the bilinear form. Operatively, it is 

necessary to construct a local projector on the space of polynomials of degree ≤ 𝑘. 

Substituting the approximated bilinear form 𝑎ℎ: 𝑉ℎ × 𝑉ℎ ⟶ ℝ: 

find 𝑢ℎ ∈ 𝑉ℎ: 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 〈𝑏ℎ, 𝑣ℎ〉     ∀𝑣ℎ ∈ 𝑉ℎ (a.8) 

and supposing to split on each element 𝐸 

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = ∑ 𝑎ℎ
𝐸(𝑢ℎ, 𝑣ℎ)

𝐸∈𝒯ℎ

     ∀𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ  (a.9) 

where 𝑎ℎ
𝐸(⋅,⋅): 𝑉ℎ(𝐸) × 𝑉ℎ(𝐸) ⟶ ℝ and 𝑏ℎ ∈ 𝑉ℎ′ approximates the forcing term. 

The VEM model problem has the form: 
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find 𝑢ℎ ∈ 𝑉ℎ: 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 〈𝑏ℎ, 𝑣ℎ〉     ∀𝑣ℎ ∈ 𝑉ℎ  (a.10) 

Let us introduce, as basis for the space of polynomials ℙ1(ℰ) of degree 1 on 

the 𝑑-dimensional object ℰ (i.e. 𝑑 = 2 for polygon, 𝑑 = 3 for polyhedron), the set 

of scaled monomials of degree less than or equal to |𝜶|: 

ℳ1(ℰ) ≔ {𝑚𝒔: 𝑚𝒔 = (
𝒙 − 𝒙ℰ

ℎℰ
)
𝜶

 for 𝛼 ∈ ℕ𝑑  with |𝜶| ≤ 1} (a.11) 

where 𝑥ℰ and ℎℰ  are the barycenter and the diameter of the object ℰ, 

respectively. The multi-index notation denotes: 𝜶:= (𝛼1, … , 𝛼𝑑), |𝜶|:= ∑ 𝛼𝑑
𝑖=1 𝑖

 

and 𝑥𝜶: = ∏ 𝑥𝑖
𝛼𝑖𝑑

𝑖=1 . The number of elements in ℳ𝑘(ℰ) is equal to                                        

𝑛 = (∏ (1 + 𝑖)𝑑
𝑖=1 )/𝑑!. It follows that on polygon 𝑛𝑚f = 3 and on polyhedron 

𝑛𝑚𝐸 = 4. 

ℙ0(ℰ) is, instead the space of constant valued function on the 𝑑-dimensional 

object ℰ. And recall that ℙ−1(ℰ) = {0}. To define the virtual space of the trial 

function it is necessary to introduce the following elementwise projection operators 

for each object ℰ.  

•  𝐻1(ℰ)-orthogonal projection operator Π1,ℰ
∇ : 𝐻1(ℰ) → ℙ1(ℰ) 

(∇𝑝, ∇Π1,ℰ
∇ 𝑣)

ℰ
= (∇𝑝, ∇𝑣)ℰ   ∀𝑣 ∈ 𝐻1(ℰ), ∀𝑝 ∈ ℙ1(ℰ) 

(1, ∇Π1ℰ
∇ 𝑣)

𝜕ℰ
= (1, 𝑣)𝜕ℰ   ∀𝑣 ∈ 𝐻1(ℰ) 

(a.12) 

• 𝐿2(ℰ)-orthogonal projection operator Π1,ℰ
0 : 𝐿2(ℰ) → ℙ1(ℰ) 

(𝑝, Π1,ℰ
0 𝑣)

ℰ
= (𝑝, 𝑣)ℰ   ∀𝑣 ∈ 𝐿2(ℰ), ∀𝑝 ∈ ℙ1(ℰ) (a.13) 

• 𝐿2(ℰ)-orthogonal projection operator of derivatives Π0,ℰ
0 ∇:𝐻1(ℰ) → ℙ0(ℰ) 
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(𝑝, Π0,ℰ
0

𝜕𝑣

𝜕𝑥𝑖
)
ℰ

= (𝑝,
𝜕𝑣

𝜕𝑥𝑖
)
ℰ

  ∀𝑣 ∈ 𝐻1(ℰ), ∀𝑝 ∈ ℙ0(ℰ) (a.14) 

The construction of the three-dimensional virtual element space lies on the two-

dimensional framework. To this end let us introduce the sequence of spaces defined 

on the boundary of a face (𝜕𝑓) and on the face itself (𝑓). In particular, the enhanced 

version of the virtual spaces (𝕎1) are introduced to guarantee the evaluation of       

∆-operator on the polyhedron and its faces. Details on the construction of such 

spaces can be found in (Ahmad et al., 2013; Beirão da Veiga et al., 2016b, 2013a). 

𝔹1(𝜕𝑓) ≔ {𝑣: 𝑣 ∈ 𝐶0(𝜕𝑓) and 𝑣|𝑒 ∈ ℙ1(𝑒)  ∀ 𝑒 ∈ 𝜕𝑓} (a.15) 

where ℙ1(𝑒) is the space of polynomials of degree ≤ 1 on the edge 𝑒. 𝔹1(𝜕𝑓) 

is a linear space of dimension equal to the number of edges (𝑛𝑣𝑓). Thus, the 

enhanced virtual space for each face has expression: 

𝕎1(𝑓) ≔ {
𝑤 ∈ 𝐻1(𝑓):𝑤|𝜕𝑓 ∈ 𝔹1(𝜕𝑓), ∆𝑤 ∈ ℙ1(𝑓)  and

 (𝑤,𝑚𝒔)0,𝑓 = (Π1,𝑓
∇ 𝑤,𝑚𝒔)0,𝑓

   ∀𝑚𝒔 ∈ ℳ1(𝑓), 𝒔 = 0,1
} (a.16) 

𝕎1(𝑓) is made up of functions which are linear on each edge and are 

completely determined by their value at the 𝑛𝑣𝑓 vertices. In 𝕎1(𝑓) the 𝑛𝑣𝑓  values 

of 𝑤 at the vertices are chosen as degrees of freedom. Analogously on the boundary 

of the polyhedron is defined the space: 

𝔹1(𝜕𝐸) ≔ {𝑣: 𝑣 ∈ 𝐶0(𝜕𝐸)and 𝑣|𝑓 ∈ 𝕎1(𝑓) ∀𝑓 ⊂ 𝜕𝐸} (a.17) 

where functions are continuously linked on the faces and are linear if restricted to 

the edges. And the enhanced virtual space defined on the polyhedron 𝕎1(𝐸) has 

expression: 
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𝕎1(𝐸) ≔ {
𝑤 ∈ 𝐻1(E): 𝑣|𝜕𝐸 ∈ 𝔹1(𝜕𝐸), ∆𝑤 ∈ ℙ1(𝐸) 𝑎𝑛𝑑

(𝑤,𝑚𝒔)0,𝐸 = (Π1,𝐸
∇ 𝑤,𝑚𝒔)0,𝐸

 ∀𝑚𝒔 ∈ ℳ1(𝐸), 𝒔 = 0,1
 
 
} (a.18) 

The space has dimension 𝑁𝐸 = 𝑛𝑣𝐸  (i.e., the number of vertices of the 

polyhedron) and the choice of the degrees of freedom coincides with the values of 

𝑤 at the 𝑛𝑣𝐸  vertices of the polyhedron 𝐸. In the discretization process here 

described it is assumed that that 𝑉ℎ(𝐸) ≔ 𝕎1(𝐸). It is observed that, for order 1, 

Π1,ℰ
∇ ≡ Π1,ℰ

0 , as shown below. 

The introduction of such spaces allows to define the approximation of the 

bilinear form: 

𝑎ℎ
𝐸(𝑢ℎ, 𝑣ℎ) ≔ 𝑎𝐸,∇(𝑢ℎ, 𝑣ℎ) + 𝑆𝐸,∇(𝑢ℎ, 𝑣ℎ)       ∀𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(𝐸) (a.19) 

where the two terms 𝑎𝐸,∇(𝑢ℎ, 𝑣ℎ) and 𝑆𝐸,∇(𝑢ℎ, 𝑣ℎ) ensure consistency and stability 

of the method, respectively. In the specific case the two terms of (a.19) reduce to: 

𝑎𝐸,∇(𝑢ℎ, 𝑣ℎ) = ∫ 𝜎(Π0,𝐸
0 ∇𝑢ℎ) ∶ 𝜀(Π0,𝐸

0 ∇𝑣ℎ)𝑑E 
E

 

𝑆𝐸,∇(𝑢ℎ, 𝑣ℎ) = (2𝜇 +  𝜆) 𝑆 ((𝕀 − Π1,𝐸
∇ )𝑢ℎ, (𝕀 − Π1,𝐸

∇ )𝑣ℎ) 

(a.20) 

The computation of (a.20), i.e. the construction of the local stiffness matrix, in 

the VEM framework requires the introduction of a series of key elements, such as 

the computation of the orthogonal projectors defined in (a.12) (a.13) and (a.14). It 

follows a brief description of their construction on polygonal faces and their 

extension to polyhedron. 

 VEM on Polygonal Faces 

Quadrature and Vandermonde Matrices 

Let us consider a polygonal face 𝑓 with 𝑛𝑣𝑓 vertices (which is equal to the 

number of edges). To preserve the hypothesis of planarity the face 𝑓 =  ⋃ 𝜏𝑖
𝑛𝑣𝑓

𝑖=1
 is 

decomposed 𝑛𝑣𝑓 triangles with vertices [𝑒(0), 𝑒(1), 𝑐𝑓], i.e., they coincide with the 
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extremes of the current edge 𝑒 and the barycenter 𝑐𝑓 of the polygonal face, 

respectively. On the reference element 𝜏̂ a second order quadrature Gaussian 

formula is defined: this means that the 3 quadrature internal points, and the 

corresponding weights, are stored in a 𝑷̂𝒇 ∈ ℝ2×3  and 𝑾̂𝒇 ∈ ℝ3×1 matrices, 

respectively. The reference triangle 𝜏̂ is mapped to each triangle 𝜏𝑖, thus the storage 

of the whole quadrature formula on 𝑓 requires two matrices 𝑷𝑓 ∈ ℝ2×3𝑛𝑣𝑓  and 

𝑾𝑓 ∈ ℝ3𝑛𝑣𝑓×1. 

𝑷𝑓 = [𝑷1
𝑓

… 𝑷𝑛𝑣𝑓

𝑓
] and 𝑷𝑖

𝑓
= [𝑝𝑖

1 𝑝𝑖
2 𝑝𝑖

3] = [
𝑥1

𝑦1
 
𝑥2

𝑦2
 
𝑥3

𝑦3
 ] 

𝑾𝑓 = [𝑾1
𝑓

… 𝑾𝑛𝑣𝑓

𝑓
]
𝑇

 and 𝑾𝑖
𝑓

= [𝑤𝑖
1 𝑤𝑖

2 𝑤𝑖
3] 

(a.21) 

where for the generic triangle 𝜏𝑖: 𝑷𝑖
𝑓

= 𝑱𝑖𝑷̂
𝒇 + 𝒃𝑖 and 𝑾𝑖

𝑓
= |𝐽𝑖|𝑾̂

𝒇. 

On the boundary a Gauss-Lobatto quadrature formula of order 1 is assumed. 

The quadrature points coincide with the 𝑛𝑣𝑓 polygon vertices and the corresponding 

matrix 𝑷𝜕𝑓 = [𝑝1
𝜕𝑓

…  𝑝𝑛𝑣𝑓

𝜕𝑓
]. ∈ ℝ2×𝑛𝑣𝑓.. Analogously to the internal points, a map 

between the reference 1D edge [0,1] (with weights [𝑤̂𝑒0
𝜕  𝑤̂𝑒1

𝜕 ]) to the 2D edge 𝑒 is 

performed. At each boundary point 𝑝𝑖
𝜕 the weight is defined as 𝑤 𝑖

𝜕𝑓
= 𝑤̂ 0

𝜕|𝐽𝑒0
| +

𝑤̂1
𝜕|𝐽𝑒1

| where 𝑒0 and 𝑒1 are the two edges which have the vertex 𝑖 as extrema. If 

the normal outward versor for each edge 𝑒𝑖 is defined as [𝑛𝑥
𝑒𝑖 , 𝑛𝑦

𝑒𝑖]𝑇 the 

corresponding weighted component are  

𝑤𝑖 
𝜕𝑓

𝑛𝑥 = 𝑛𝑥
𝑒0𝑤̂ 0

𝜕|𝐽𝑒0
| + 𝑛𝑥

𝑒1𝑤̂1
𝜕|𝐽𝑒1

| 

𝑤𝑖 
𝜕𝑓

𝑛𝑥 = 𝑛𝑦
𝑒0𝑤̂ 0

𝜕|𝐽𝑒0
| + 𝑛𝑦

𝑒1𝑤̂1
𝜕|𝐽𝑒1

| 

(a.22) 

resulting in 3 matrices 𝑾
𝜕𝑓

, 𝑾𝑛𝑥

𝜕𝑓
, 𝑾𝑛𝑦

𝜕𝑓
 ∈ ℝ𝑛𝑣𝑓×1. 

Let now consider the monomial basis ℳ1(𝑓) of dimension 𝑛𝑚𝑓 = 3. The 

multi-index 𝜶 has expression  



 157 

 

𝜶 = [
0 0
1 0
0 1

] (a.23) 

To calculate efficiently integrals required for the construction of the local 

stiffness matrix, monomial and their partial derivatives evaluated on the quadrature 

points (internal and on boundary), are stored in Vandermonde matrices where the 

index 𝑖 ≔ 4(𝑘 − 1) + 𝑞 𝑗 = 1, …𝑛𝑚𝑓, 𝑘 = 1, …𝑛𝑣𝑓 and 𝑞 = 1,…3: 

𝑽𝑓 ∈ ℝ3𝑛𝑣𝑓×𝑛𝑚𝑓  𝑉𝑖𝑗 = 𝑚𝑗(𝑝𝑘
𝑞) 

(a.24) 
𝑽𝑥

𝑓
∈ ℝ3𝑛𝑣𝑓×𝑛𝑚𝑓  

𝜕𝑉𝑖𝑗

𝜕𝑥
=

𝜕𝑚𝑗

𝜕𝑥
(𝑝𝑘

𝑞) 

𝑽𝑦
𝑓

∈ ℝ3𝑛𝑣𝑓×𝑛𝑚𝑓  
𝜕𝑉𝑖𝑗

𝜕𝑦
=

𝜕𝑚𝑗

𝜕𝑦
(𝑝𝑘

𝑞) 

and in the following it is supposed 𝑖 = 1,…𝑛𝑣𝑓 𝑗 = 1, … 3: 

𝑽𝜕𝑓 ∈ ℝ𝑛𝑣𝑓×𝑛𝑚𝑓  𝑉𝑖𝑗
𝜕𝑓

= 𝑚𝑗(𝑝𝑖
𝜕𝑓

) 

(a.25) 
𝑽𝑥

𝜕𝑓
∈ ℝ𝑛𝑣𝑓×𝑛𝑚𝑓  

𝜕𝑉𝑖𝑗
𝜕𝑓

𝜕𝑥
=

𝜕𝑚𝑗

𝜕𝑥
(𝑝𝑖

𝜕𝑓
) 

𝑽𝑦
𝜕𝑓

∈ ℝ𝑛𝑣𝑓×𝑛𝑚𝑓  
𝜕𝑉𝑖𝑗

𝜕𝑓

𝜕𝑦
=

𝜕𝑚𝑗

𝜕𝑦
(𝑝𝑖

𝜕𝑓
) 

Computation of 𝛱1,𝑓
𝛻  

Once numbered the degrees of freedom, from 1 to 𝑛𝑣𝑓, let us introduce the 

operator 𝜒𝑖: 𝕎1(𝑓) → ℝ as 

𝜒𝑖(𝑣): = i − th degree of freedom of 𝑣 𝑖 = 1: 𝑛𝑣𝑓 (a.26) 

and the local basis function 𝜑𝑖 ∈ 𝕎1(𝑓) defined as the canonical basis function: 
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𝜒𝑖(𝜑𝑗): = 𝛿𝑖𝑗     𝑖, 𝑗 = 1: 𝑛𝑣𝑓 (a.27) 

It follows the Lagrange-type interpolation identity: 

𝑣ℎ = ∑𝜒𝑖(𝑣ℎ)𝜑𝑖

𝑛𝑣𝑓

𝑖=1

    ∀𝑣ℎ ∈ 𝕎1(𝑓) (a.28) 

Moreover, since Π1,𝑓
∇ 𝑣ℎ ∈ ℙ1(𝑓), it is possible to represent it in the basis of ℳ1(𝑓) 

Π1,𝑓
∇ 𝑣ℎ = ∑ 𝑠𝛽(𝑣ℎ)𝑚𝛽

𝑛𝑚𝑓

𝛽=1

 ∀𝑣ℎ ∈ 𝕎1(𝑓) (a.29) 

From the definition of the operator (a.12) and substituting ∇𝑝 = ∇𝑚𝛼 and (a.28) 

∑ 𝑠𝛽(∇𝑚𝛼, ∇𝑚𝛽)
𝑓

𝑛𝑚

𝛽=1

= (∇𝑚𝛼, ∇𝑣ℎ)𝑓    𝛼 = 1,… , 𝑛𝑚   

(1, ∑ 𝑠𝛽𝑚𝛽

𝑛𝑚

𝛽=1

)

𝜕𝑓

= (1, 𝑣ℎ)𝜕𝑓  ∀𝑣ℎ ∈ 𝕎1(𝑓) 

(a.30) 

The system has expression 

𝐆𝒇𝐬 = 𝐛̃𝑓 (a.31) 

where 𝐬 is the vector of the components of Π1,𝑓
∇ 𝑣ℎ in the monomial basis and 
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𝐆𝑓 = [
(1,𝑚1)𝜕𝑓

0

0

(1,𝑚2)𝜕𝑓

(∇𝑚2, ∇𝑚2)𝑓

(∇𝑚3, ∇𝑚2)𝑓

(1,𝑚3)𝜕𝑓

(∇𝑚2, ∇𝑚3)𝑓

(∇𝑚3, ∇𝑚3)𝑓

] 

𝒃̃𝑓 = [

(1, 𝑣ℎ)𝜕𝑓

(∇𝑚2, ∇𝑣ℎ)𝑓

(∇𝑚3, ∇𝑣ℎ)𝑓

] 

(a.32) 

The computation of the matrix 𝐆𝑓 ∈ ℝ𝑛𝑚𝑓×𝑛𝑚𝑓 requires only to evaluate integrals 

of polynomials on the face 𝑓 

(∇𝑚𝑖, ∇𝑚𝑗)𝑓
= ∑ ∑ [

𝜕𝑚𝑖

𝜕𝑥
(𝑝𝑘

𝑞)𝑤𝑘
𝑞 𝜕𝑚𝑗

𝜕𝑥
(𝑝𝑘

𝑞)

3

𝑞=1

𝑛𝑣𝑓

𝑘=1

+
𝜕𝑚𝑖

𝜕𝑦
(𝑝𝑘

𝑞)𝑤𝑘
𝑞 𝜕𝑚𝑗

𝜕𝑦
(𝑝𝑘

𝑞)]    𝑖, 𝑗 = 2,3 

(a.33) 

The first row, instead is defined 

(1,𝑚𝑗)𝜕𝑓
= ∑ 𝑚𝑗(𝑝𝑘

𝜕𝑓
)

𝑛𝑣𝑓

𝑘=1 𝑤𝑘 
𝜕𝑓

 𝑗 = 1,…𝑛𝑚 (a.34) 

and in compact form it can be written as: 

𝐆𝑓 = [
(𝑾

𝜕𝑓
)𝑇𝑽𝜕𝑓

𝑽𝑥
𝑓 𝑇

diag(𝑾𝑓)𝑽𝑥
𝑓
+ 𝑽𝑦

𝑓 𝑇
diag(𝑾𝑓)𝑽𝒚

𝑓 ] (a.35) 

Let us observe that, applying the divergence theorem, it is possible to write the right 

term in (a.30) as 

(∇𝑚𝑖, ∇𝑣ℎ)𝑓 = −∫ ∆𝑚𝑖𝑣ℎ𝑑𝑓
𝑓

+ ∫
𝑑𝑚𝑖

𝑑𝒏
𝑣ℎ𝑑𝑠

𝜕𝑓

    ∀𝑖 (a.36) 
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Since 𝑚𝑖 ∈ ℙ1(𝑓) the ∆𝑚𝑖 is equal to zero thus, the computation of 𝒃̃𝑓 reduces to: 

𝑏̃𝑓 1 = (1, 𝑣ℎ)𝜕𝑓 = ∑ 𝜒𝑘(𝑣ℎ)(1, 𝜑𝑘)𝜕𝑓

𝑛𝑣𝑓

𝑘=1

= ∑ 𝜒𝑘(𝑣ℎ)∫ 𝜑𝑘𝑑𝑠
𝜕𝑓

𝑛𝑣𝑓

𝑘=1

 

𝑏̃𝑓 𝑖 = (∇𝑚𝑖, ∇𝑣ℎ)𝑓 = ∫
𝑑𝑚𝑖

𝑑𝒏
𝑣ℎ𝑑𝑠

𝜕𝑓

= ∑ 𝜒𝑘(𝑣ℎ)∫
𝑑𝑚𝑖

𝑑𝒏
𝜑𝑘𝑑𝑠

𝜕𝑓

𝑛𝑣𝑓

𝑘=1

  

(a.37) 

Since 𝜑𝑘|𝜕𝑓 ∈ 𝔹1(𝜕𝑓) thus the integrand function is a polynomial of degree 1. The 

evaluation of the (a.37) with a Gauss-Lobatto quadrature rule with 2 points 

guarantees order 1 precision, so as 

∫ 𝜑𝑘𝑑𝑠
𝜕𝑓

= ∑𝑤𝑖 
𝜕𝑓

𝜑𝑘 (𝑝𝑖
𝜕𝑓

)

𝑛𝑣𝑓

𝑖=1

= ∑𝑤𝑖 
𝜕𝑓

𝛿𝑖𝑘

𝑛𝑣𝑓

𝑖=1

= 𝑤𝑘
𝜕𝑓

 

∫
𝑑𝑚𝑖

𝑑𝒏
𝜑𝑘𝑑𝑠

𝜕𝑓

= ∑[
𝜕𝑚𝑖

𝜕𝑥
(𝑝𝑖

𝜕𝑓
)𝑤𝑖 

𝜕𝑓
𝑛𝑥 +

𝜕𝑚𝑖

𝜕𝑦
(𝑝𝑖

𝜕𝑓
)𝑤𝑖 

𝜕𝑓
𝑛𝑦] 𝜑𝑘 (𝑝𝑖

𝜕𝑓
)

𝑛𝑣𝑓

𝑖=1

= ∑[
𝜕𝑚𝑖

𝜕𝑥
(𝑝𝑖

𝜕𝑓
)𝑤𝑖 

𝜕𝑓
𝑛𝑥 +

𝜕𝑚𝑖

𝜕𝑦
(𝑝𝑖

𝜕𝑓
)𝑤𝑖 

𝜕𝑓
𝑛𝑦] 𝛿𝑖𝑘

𝑛𝑣𝑓

𝑖=1

=
𝜕𝑚𝑘

𝜕𝑥
(𝑝𝑘

𝜕𝑓
)𝑤𝑘 

𝜕𝑓
𝑛𝑥 +

𝜕𝑚𝑘

𝜕𝑦
(𝑝𝑘

𝜕𝑓
)𝑤𝑘 

𝜕𝑓
𝑛𝑦  

(a.38) 

It follows that the computation of 𝒃̃𝑓 can be performed knowing only the 𝜒𝑘(𝑣ℎ) 

on the face. Since the stiffness matrix involves uniquely the canonical basis, let now 

define the matrix 𝐁𝑓 ∈ ℝ𝑛𝑚𝑓×𝑛𝑣𝑓: 

𝐁𝑓 = [𝒃𝑓1, … , 𝒃𝑓𝑛𝑣𝑓
] 

[

(1, 𝜑1)𝜕𝑓

(∇𝑚2 ∙ 𝒏, 𝜑1)𝜕𝑓

(∇𝑚3 ∙ 𝒏, 𝜑1)𝜕𝑓

(1, 𝜑2)𝜕𝑓

(∇𝑚2 ∙ 𝒏, 𝜑2)𝜕𝑓

(∇𝑚3 ∙ 𝒏, 𝜑2)𝜕𝑓

(1, 𝜑3)𝜕𝑓

(∇𝑚2 ∙ 𝒏, 𝜑3)𝜕𝑓

 (∇𝑚3 ∙ 𝒏, 𝜑3)𝜕𝑓

(1, 𝜑4)𝜕𝑓

(∇𝑚2 ∙ 𝒏, 𝜑4)𝜕𝑓

(∇𝑚2 ∙ 𝒏, 𝜑4)𝜕𝑓

] 

(a.39) 
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= [
(𝑾𝜕𝑓)𝑇

(𝑽𝑥
𝜕𝑓

)
𝑻
diag(𝑾𝑛𝑥

𝜕𝑓
) + (𝑽𝑦

𝜕𝑓
)
𝑻
diag(𝑾𝑛𝑦

𝜕𝑓
)
] 

It follows that the computation of Π1,𝑓
∇ 𝜑𝑖 has the compact expression 

𝚷1,𝑓
𝛁∗ = [𝒔1, … , 𝒔𝑛𝑣

] = 𝐁𝑓
−1𝐆𝑓 (a.40) 

This is the matrix representation 𝚷1,𝑓
𝛁∗ ∈ ℝ𝑛𝑚𝑓×𝑛𝑣𝑓of the projection operator acting 

from 𝕎1(𝑓) → ℙ1(𝑓). However, it is necessary to compute projectors respect to 

the canonical basis, i.e. interpreting the operator as acting 𝕎1(𝑓) → 𝕎1(𝑓): 

Π1,𝑓
∇ 𝜑𝑖 = ∑𝜒𝑗(Π1,𝑓

∇ 𝜑𝑖)𝜑𝑗

𝑛𝑣𝑓

𝑗=1

    𝑖 = 1,… , 𝑛𝑣𝑓 (a.41) 

Substituting the representation (a.29) of 𝜑𝑗: 

Π1,𝑓
∇ 𝜑𝑖 = ∑ 𝑠𝛼(𝜑𝑖)𝑚𝛼

𝑛𝑚𝑓

𝛼=1

= ∑ 𝑠𝛼(𝜑𝑖)∑𝜒𝑗(𝑚𝛼)𝜑𝑗

𝑛𝑣𝑓

𝑗=1

𝑛𝑚𝑓

𝛼=1

= ∑(∑ 𝑠𝛼(𝜑𝑖)𝜒𝑗(𝑚𝛼)

𝑛𝑚𝑓

𝛼=1

)𝜑𝑗

𝑛𝑣𝑓

𝑗=1

   𝑖 = 1, … , 𝑛𝑣𝑓 

(a.42) 

It follows that 

𝜒𝑗(Π1,𝑓
∇ 𝜑𝑖) =  ∑ 𝑠𝛼(𝜑𝑖)𝜒𝑗(𝑚𝛼)

𝑛𝑚𝑓

𝛼=1

   𝑖, 𝑗 = 1,… , 𝑛𝑣𝑓 (a.43) 

Let now define the matrix 𝐃𝑓 ∈ ℝ𝑛𝑣𝑓×𝑛𝑚𝑓  
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𝑫𝑓 ≔

[
 
 
 
𝜒1(𝑚1)

𝜒2(𝑚1)

𝜒3(𝑚1)

𝜒4(𝑚1)

   𝜒1(𝑚2)

  𝜒2(𝑚2)

  𝜒3(𝑚2)

  𝜒4(𝑚2)

   𝜒1(𝑚3)

  𝜒2(𝑚3)

  𝜒3(𝑚3)

  𝜒4(𝑚3)]
 
 
 

     with 𝑛𝑣𝑓 = 4 and 𝑛𝑚𝑓 = 3 (a.44) 

In the analyzed case, since the dof coincide with the vertices of the face, it follows 

that 𝐃𝑓 ≡ 𝑽𝜕𝑓. Thus, in compact form the projector matrix 𝚷1,𝑓
𝛁 ∈ ℝ𝑛𝑣𝑓×𝑛𝑣𝑓 in the 

canonical basis has expression 

𝚷1,𝑓
𝛁 = 𝑫𝑓𝑮𝑓

−1𝐁𝑓 = 𝑽𝜕𝑓𝚷1,𝑓
𝛁∗  (a.45) 

Computation of Π1,𝑓
0  

From the definition 𝐿2(𝑓)-orthogonal projection operator in (a.13) 

(𝑚𝛼 , Π1,𝑓
0 𝑣ℎ)

𝑓
= (𝑚𝛼, 𝑣ℎ)𝑓  ∀𝑣ℎ ∈ 𝑊1(𝑓), ∀𝑚𝛼 ∈ ℳ1(𝑓) (a.46) 

and, as done for the Π1,𝑓
∇∗ , let express each function respect to the monomial basis 

Π1,𝑓
0∗ 𝑣ℎ = ∑ 𝑡𝛽(𝑣ℎ)𝑚𝛽

𝑛𝑚𝑓

𝛽=1

 (a.47) 

It follows that  

∑(𝑚𝛼, 𝑚𝛽)
𝑓
𝑡𝛽(𝑣ℎ)

𝑛𝑚𝑓

𝛽=1

= (𝑚𝛼, 𝑣ℎ)𝑓  

 ∀𝑣ℎ ∈ 𝑊1(𝑓), ∀𝑚𝛼, 𝑚𝛽 ∈ ℳ1(𝑓) 

(a.48) 

The system has expression 
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𝑯1
𝑓
𝒕 = 𝒄̃𝑓 (a.49) 

where 𝒕 is the vector of the components of Π1,𝑓
0 𝑣ℎ in the monomial basis and 

𝑯1
𝑓

= [

1 (1,𝑚2)𝑓 (1,𝑚3)𝑓

(𝑚2, 1)𝑓 (𝑚2, 𝑚2)𝑓 (𝑚2, 𝑚3)𝑓

(𝑚3, 1)𝑓 (𝑚3, 𝑚2)𝑓 (𝑚3, 𝑚3)𝑓

] with 𝑛𝑚𝑓 = 3 

𝒄̃𝑓 = [

(1, 𝑣ℎ)𝑓

(𝑚2, 𝑣ℎ)𝑓

(𝑚3, 𝑣ℎ)𝑓

] 

(a.50) 

𝑯1
𝑓

∈ ℝ𝑛𝑚𝑓×𝑛𝑚𝑓  is called mass matrix and can be calculated as 

𝑯1
𝑓

= 𝑽𝑓 𝑇diag(𝑾𝑓)𝑽𝑓 (a.51) 

For the calculation of the 𝒄̃
𝑓

, it is exploited the enhancement property, which 

allows to evaluate integrals through the actual degree of freedom of the resulting 

polynomial, i.e. 

𝑐̃𝑖
𝑓

= (𝑚𝑖, 𝑣ℎ)𝑓 = ∫ 𝑚𝑖𝑣ℎ𝑑𝑓
𝑓

= ∫ 𝑚𝑖Π1,𝑓
∇ 𝑣ℎ𝑑𝑓

𝑓

  (a.52) 

If it is defined the corresponding matrix 𝑪1
𝑓

∈ ℝ𝑛𝑚𝑓×𝑛𝑣𝑓 with elements 

𝑐𝑖𝑗
𝑓

= (𝑚𝑖, 𝜑𝑗)𝑓
= (𝑚𝑖, Π1,𝑓

∇ 𝜑𝑗)𝑓
  (a.53) 

in the compact form it reduces 
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𝑪1
𝑓

= 𝑯1
𝑓
𝚷1,𝑓

𝛁∗  (a.54) 

consequently, the expression of the 𝐿2(𝑓)-orthogonal projection operator, for order 

1 has expression 

𝚷1,𝑓
𝟎∗ = 𝚷1,𝑓

𝛁∗  (a.55) 

At last, the projector can be expressed in terms of VEM basis function by 

𝚷1,𝑓
𝟎 = 𝑽𝜕𝑓 𝚷1,𝑓

𝟎∗  (a.56) 

Computation of Π0,𝑓
0 ∇ 

From the definition of the 𝐻1(𝑓)-orthogonal projection operator of derivatives 

in (a.14) and considering that the monomial basis reduces to 𝑚1 = 1, we have  

( 𝑚1, Π0,𝑓
0

𝜕𝑣ℎ

𝜕𝑥
)
𝑓

= ( 𝑚1,
𝜕𝑣ℎ

𝜕𝑥
)
𝑓
  

 ( 𝑚1, Π0,𝑓
0

𝜕𝑣ℎ

𝜕𝑦
)
𝑓

= ( 𝑚1,
𝜕𝑣ℎ

𝜕𝑦
)
𝑓

  

 ∀𝑣ℎ ∈ 𝕎1(𝑓) (a.57) 

Considering the composition of the projector and the partial derivative, let’s define 

the operators Π0,𝑓
0,𝑥

 and Π0,𝑓
0,𝑦

 that, in the trivial case of ℙ0(𝑓), reduce to 

Π0,𝑓
0,𝑥𝑣ℎ = 𝑡̃1

𝑥(𝑣ℎ) 𝑚1  

 Π0,𝑓
0,𝑦

𝑣ℎ = 𝑡̃1
𝑦(𝑣ℎ) 𝑚1 

 ∀𝑣ℎ ∈ 𝕎1(𝑓) (a.58) 

Thus, for the single element of the basis of 𝕎1(𝑓) 
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Π0,𝑓
0,𝑥𝜑𝑖 = 𝑡1𝑖

𝑥 (𝜑𝑖) 𝑚1  

 Π0,𝑓
0,𝑦

𝜑𝑖 = 𝑡̃1𝑖
𝑦 (𝜑𝑖) 𝑚1 

 ∀𝑖 = 1,… , 𝑛𝑣𝑓 (a.59) 

Applying again the divergence theorem the right term of (a.57) can be written as: 

( 𝑚1,
𝜕𝜑𝑖

𝜕𝑥
)
𝑓
: = ∫

𝜕𝜑𝑖

𝜕𝑥𝑓

𝑑𝑓 = ∫ 𝜑𝑖𝑛𝑥
𝜕𝑓

 

( 𝑚1,
𝜕𝜑𝑖

𝜕𝑦
)
𝑓

: = ∫
𝜕𝜑𝑖

𝜕𝑦𝑓

𝑑𝑓 = ∫ 𝜑𝑖𝑛𝑦
𝜕𝑓

 

(a.60) 

where it is assumed that ∇𝑚1 = 0. In this simple case the mass matrix 𝑯0
𝑓
 reduces 

to a scalar value equal to 1. Thus, in compact form the projector respect to the 

monomial basis of ℙ0(𝑓) can be expressed as  

𝚷0,𝑓
0,𝑥∗ = (𝑽𝑥

𝜕𝑓(: ,1))
𝑇

diag(𝑾𝑛𝑥
𝜕𝑓

) 

 𝚷0,𝑓
0,𝑦∗

= (𝑽𝑦
𝜕𝑓(: ,1))

𝑇

diag(𝑾𝑛𝑦
𝜕𝑓

) 

(a.61) 

𝑽𝑥
𝜕𝑓(: ,1) and 𝑽𝑦

𝜕𝑓(: ,1) represents the first column of the corresponding complete 

Vandermonde matrices. 𝚷0,𝑓
0,𝑥∗

 and 𝚷0,𝑓
0,𝑦∗

∈ ℝ1×𝑛𝑣𝑓. 

VEM on Polyhedron 

Operators and the matrix representation introduced on faces can be naturally 

extended to polyhedrons. In the following only key elements are briefly introduced. 

Quadrature and Vandermonde Matrices 

Let us consider a star-shaped polyhedron 𝐸 with 𝑛𝑣𝐸  vertices and 𝑛𝑓𝐸 faces 𝑓. 

The polyhedron is decomposed in tetrahedra 𝐸 =  ⋃ Τ𝑖
𝑛ΤE
𝑖=1  where 𝑛ΤE = ∑ 𝑛𝑣𝑓

𝑘𝑛𝑓𝐸

𝑘=1  

and 𝑛𝑣𝑓
𝑘  is the number of vertices (coincides with the number of edges) of the face 
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𝑘. Once calculated the barycenter 𝑐𝐸, each tetrahedron is defined as 

[𝑒𝑓(0), 𝑒𝑓(1), 𝑐𝑓 , 𝑐𝐸] where [𝑒𝑓(0), 𝑒𝑓(1)] and 𝑐𝑓 are one of the edges and the 

barycenter of the current face, respectively. On the reference element Τ̂ a second 

order quadrature Gaussian formula is defined: this means that 4 quadrature internal 

points, and the corresponding weights, are stored in a 𝑷̂𝒇 ∈ ℝ3×4 and 𝑾̂𝒇 ∈ ℝ4×1 

matrices, respectively. The reference tetrahedron Τ̂ is mapped to each Τ𝑖, thus the 

storage of the whole quadrature formula on 𝐸 requires two matrices 𝑷𝐸 ∈ ℝ3×4𝑛𝑇𝐸 

and 𝑾𝐸 ∈ ℝ4𝑛𝑇𝐸×1. On the boundary, quadrature formulas defined for faces are 

exploited. In particular, the number of the boundary quadrature points are           

𝑛∂E = ∑ 𝑛𝑣𝑓
𝑘𝑛𝑓𝐸

𝑘=1  , and matrices 

𝑷𝜕𝐸 = [𝑷1
𝜕𝑓

, … , 𝑷𝑛𝑓𝐸

𝜕𝑓
] ∈ ℝ3×3𝑛∂E 

𝑾𝜕𝐸 = [𝑾1
𝜕𝑓

, … ,𝑾𝑛𝑓𝐸

𝜕𝑓
] ∈ ℝ3𝑛∂E×1 

(a.62) 

Analogously 𝑾𝑛𝑥
𝜕𝐸, 𝑾𝑛𝑦

𝜕𝐸, 𝑾𝑛𝑧
𝜕𝐸 ∈ ℝ3𝑛∂E×1. The monomial basis ℳ1(𝐸) has 

dimension 𝑛𝑚𝐸 = 4 and the multi-index 𝜶 has expression  

𝜶 =

[
 
 
 

 
0  
1  
0  
0  

 
0  
0  
1  
0  

 
0
0
0
1]
 
 
 
 (a.63) 

As done for faces, Vandermonde matrices on polyhedron are defined to store values 

of monomial basis on the selected quadrature points. For the internal points, there 

are defined 𝑽𝐸 , 𝑽𝑥
𝐸 , 𝑽𝑦

𝐸 , 𝑽𝑧
𝐸 ∈ ℝ4𝑛𝑇𝐸×𝑛𝑚𝐸 and 𝑽𝜕𝐸 , 𝑽𝑥

𝜕𝐸 , 𝑽𝑦
𝜕𝐸 , 𝑽𝑧

𝜕𝐸 ∈ ℝ3𝑛∂E×𝑛𝑚𝐸 . The 

construction of the stiffness matrix requires the evaluation of Π0,𝐸
0 ∇𝜑𝑖 on the 

quadrature nodes respect to the VEM basis. The computation of such operator 

exploits the fact that the 𝑛𝑣𝑓 dof of each face belongs to 𝑛𝑣𝐸  dof of the polyhedron. 

This means that, for each face, the product (𝑽𝑓(: ,1))
𝑇

𝚷0,𝑓
0∗ ∈ ℝ3𝑛𝑣𝑓×𝑛𝑣𝑓 is 

interpreted as the evaluation at the quadrature points of the canonical basis on     

 𝑓 ⊂ 𝜕𝐸 respect to the canonical basis on 𝐸. Thus, the complete matrix 𝑽̅𝜕𝐸 belongs 

to ℝ𝑛∂E×𝑛𝑚𝐸. 
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Computation of 𝛱1,𝐸
𝛻  

The extension to the three-dimensional case is straightforward and the linear system 

which allows to compute 𝐬𝑗 , the vector of the components of Π1,𝐸
∇ 𝜑𝑗 in the 

monomial basis has expression 

𝐆𝐸𝐬𝑗 = 𝐛𝐸
𝑗

 (a.64) 

with 

𝐆𝑬 =

[
 
 
 (1,𝑚1)𝜕𝐸

0
0
0

(1,𝑚2)𝜕𝐸

(∇𝑚2, ∇𝑚2)𝐸

(∇𝑚3, ∇𝑚2)𝐸

(∇𝑚4, ∇𝑚2)𝐸

(1,𝑚3)𝜕𝐸

(∇𝑚2, ∇𝑚3)𝐸

(∇𝑚3, ∇𝑚3)𝐸

(∇𝑚4, ∇𝑚2)𝐸

(1,𝑚4)𝜕𝐸

(∇𝑚2, ∇𝑚4)𝐸

(∇𝑚3, ∇𝑚4)𝐸

(∇𝑚4, ∇𝑚4)𝐸]
 
 
 

 

𝐛𝐸
𝑗

=

[
 
 
 
 
 

(1, 𝜑𝑗)𝜕𝐸

(∇𝑚2, ∇𝜑𝑗)𝐸

(∇𝑚3, ∇𝜑𝑗)𝐸

(∇𝑚4, ∇𝜑𝑗)𝐸]
 
 
 
 
 

 

(a.65) 

Analogously to what done on faces, it is possible to write 

𝐆𝑬 = [
(𝑾𝜕𝐸)𝑇𝑽𝜕𝐸

(𝑽𝑥
E )𝑻diag(𝑾𝐸)𝑽𝑥

𝑬 + (𝑽𝑦
E)

𝑻
diag(𝑾𝐸)𝑽𝒚

E 
] 

𝑩𝑬 = [
(𝑾𝜕𝐸)𝑇𝑽̅𝜕𝐸

((𝑽𝑥
𝜕𝐸)

𝑇
diag(𝑾𝑛𝑥

𝜕𝐸) + (𝑽𝑦
𝜕𝐸)

𝑇
diag(𝑾𝑛𝑦

𝜕𝐸) + (𝑽𝑧
𝜕𝐸)

𝑇
diag(𝑾𝑛𝑧

𝜕𝐸)) 𝑽̅𝜕𝐸
] 

(a.66) 

Thus, the whole matrix 𝚷1,𝐸
∇ ∈ ℝ𝑛𝑚𝐸×𝑛𝑣𝐸  with 𝐆𝑬 ∈ ℝ𝑛𝑚𝐸×𝑛𝑚𝐸 and                        

𝑩𝑬 ∈ ℝ𝑛𝑚𝐸×𝑛𝑣𝐸 has expression: 

𝚷1,𝐸
∇ = 𝐆𝑬

−𝟏𝑩𝑬 (a.67) 
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Computation of Π0,𝐸
0 ∇ 

Extending again to the polyhedron expression calculated for each face, it is 

possible to compute the operator 

𝚷0,E
0,𝑥 = (𝑽𝑥

𝜕𝐸(: ,1))
𝑇

diag(𝑾𝑛𝑥
𝜕𝐸) 𝑽̅𝜕𝐸 

 𝚷0,𝐸
0,𝑦

= (𝑽𝑦
𝜕𝐸(: ,1))

𝑇

diag(𝑾𝑛𝑦
𝜕𝐸)𝑽̅𝜕𝐸 

𝚷0,E
0,z = (𝑽𝑧

𝜕𝐸(: ,1))
𝑇

diag(𝑾𝑛𝑧
𝜕𝐸)𝑽̅𝜕𝐸 

(a.68) 

𝚷0,E
0,𝑥

, 𝚷0,𝐸
0,𝑦

 𝚷0,E
0,z ∈ ℝ1×𝑛𝑣𝐸. This means that the gradient of the projected VEM basis 

evaluated on the internal quadrature points Π0,E
0 ∇φ(𝑷𝐸) can be stored in 3 matrices 

ℝ4𝑛𝑇𝐸×𝑛𝑣𝐸with column 𝑗 defined as 

Π0,E
0,x𝜑𝑗(𝑷

𝐸) = (𝑽𝐸(: ,1))
𝑇
 𝚷0,E

0,x(𝑗) 

Π0,E
0,y

𝜑𝑗(𝑷
𝐸) = (𝑽𝐸(: ,1))

𝑇
 𝚷0,E

0,y
(𝑗) 

Π0,E
0,z𝜑𝑗(𝑷

𝐸) = (𝑽𝐸(: ,1))
𝑇
 𝚷0,E

0,z(𝑗) 

(a.69) 

Computation of the local stiffness matrix 

The evaluation of the approximated bilinear form 𝒂ℎ
𝐸 defined in (a.19) requires 

the calculation of the two terms introduced in (a.20). In particular, the first term 

𝒂𝐸,∇ can be then evaluated exploiting the introduced canonical basis function 

projections. Exploiting the expression in (a.69), it is possible to define the 𝜺 strain 

tensor respect to the canonical basis evaluated at the internal quadrature points. 

Each of the 6 components belongs to ℝ4𝑛𝑇𝐸×3𝑛𝑣𝐸, and they are defined as rows of 

block-matrix of size 4𝑛𝑇𝐸 × 𝑛𝑣𝐸: 
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𝜺11 = [Π0,E
0,x𝜑(𝑷𝐸) 0 0] 

𝜺21 = [
1

2
Π0,E

0,y
𝜑(𝑷𝐸)

1

2
Π0,E

0,x𝜑(𝑷𝐸) 0] 

𝜺22 = [0 Π0,E
0,y

𝜑(𝑷𝐸) 0] 

𝜺31 = [
1

2
Π0,E

0,z𝜑(𝑷𝐸) 0
1

2
Π0,E

0,x𝜑(𝑷𝐸)] 

𝜺32 = [0
1

2
Π0,E

0,z𝜑(𝑷𝐸)
1

2
Π0,E

0,y
𝜑(𝑷𝐸)] 

𝜺33 = [0 0 Π0,E
0,z𝜑(𝑷𝐸)] 

(a.70) 

The stress tensor, which depends linearly on the strain tensor, can be calculated 

substituting the expression below 

with 

It follows that the bilinear form ∫ 𝜎(Π0,𝐸
0 ∇𝜑) ∶ 𝜀(Π0,𝐸

0 ∇𝜑)𝑑E 
E

can be computed as 

The stabilization term  𝑆𝐸,∇ in (a.20) is evaluated defining as (Beirão da Veiga et 

al., 2014, 2013a; Gain et al., 2014) 

𝝈𝒊𝒋 = 2μ𝛆𝒊𝒋 + 𝜆tr(𝛆)𝛿𝑖𝑗   𝑤𝑖𝑡ℎ 1 ≤ i, j ≤ 3 (a.71) 

𝜆tr(𝛆) = diag(𝜆)[Π0,E
0,x𝜑(𝑷𝐸) Π0,E

0,y
𝜑(𝑷𝐸) Π0,E

0,z𝜑(𝑷𝐸)] (a.72) 

 ∑(𝜺𝑖𝑗
𝑇 diag(𝑾𝐸)𝝈𝑖𝑗 + 𝟐∑𝜺𝑖𝑗

𝑇 diag(𝑾𝐸)𝝈𝑖𝑗

𝒊−𝟏

𝒋=𝟏

)

𝟑

𝒊=𝟏

 (a.73) 
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Recalling that 𝜒𝑘(𝜑𝑖) =  𝛿𝑘𝑖 and that analogously to (a.44) 𝑫𝐸 ∈ ℝ𝑛𝑣𝐸×𝑛𝑚𝐸 is 

defined as 𝑫𝐸 𝑖𝑗 = 𝜒𝑖(𝑚𝑗) 

|ℎ𝐸| is the diameter of the polyhedron. 

Computation of the stiffness matrix is thus obtained summing up the two terms in 

(a.73) and (a.75) 

Computation of the forcing term 

At last, the computation of the forcing term requires the evaluation of the 

integral of each element of the element basis 

Applying divergence theorem and the L2-projectors it is possible to write 

Let us define ∆𝒑 ∈ ℝ4𝑛𝑇𝐸×1 as the pore pressure variation evaluated on the internal 

quadrature point of 𝐸 that is supposed constant on the polyhedron. It follows that 

the forcing term results, evaluated respect to the VEM basis results in a 3-block 

vector 

 𝑆 ((𝕀 − 𝛱1
∇)𝜑𝑖, (𝕀 − 𝛱1

∇)𝜑𝑗)

≔ ∑ 𝜒𝑘((𝕀 − 𝛱1
∇)𝜑𝑖)𝜒𝑘((𝕀 − 𝛱1

∇)𝜑𝑗)

𝑛𝑣𝐸

𝑘=1

 
(a.74) 

𝑆𝐸,∇ = (2𝜇 +  𝜆)|ℎ𝐸|(𝑰 − 𝑫𝐸𝚷1
∇∗)𝑇(𝑰 − 𝑫𝐸𝚷1

∇∗) (a.75) 

〈𝑏ℎ, 𝜑𝑖〉𝐸 ≔ −∫ ∇ ∙ (∆𝑝𝕀)𝜑𝑖𝑑E
E

 (a.76) 

〈𝑏ℎ, 𝜑𝑖〉𝐸 = −∫ ∆𝑝∇𝜑𝑖𝑑E
E

= −∫ ∆𝑝Π0,E
0 ∇𝜑𝑖𝑑E

E

 (a.77) 
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𝒃ℎ
𝐸 =

[
 
 
 
 
 (Π0,E

0,x𝜑(𝑷𝐸))
𝑇
(∆𝒑 ∘ 𝑾𝐸)

(Π0,E
0,z𝜑(𝑷𝐸))

𝑇
(∆𝒑 ∘  𝑾𝐸)

(Π0,E
0,z𝜑(𝑷𝐸))

𝑇
(∆𝒑 ∘  𝑾𝐸)]

 
 
 
 
 

∈ ℝ3𝑛𝑣𝐸×1 (a.78) 
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