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Abstract—In this paper we take into account the rakeness approach
in the design of Compressed Sensing (CS) based system, which allows, by
means of the matching of some statistical properties of the CS sampling
functions with statistical features of the input signal, to greatly increase
system performance in terms of either a reduction of resources (hardware,
energy, etc) required for the signal acquisition or an increase in the
acquisition quality. In particular, with respect to the general formulation,
we make two additional and non-restrictive hypotheses to ensure a good
behavior of the system. With these, we can compute an upper and a lower
bound for the parameter r used to control the statistical matching level,
and we show with some numerical examples that the choice of r is not
critical. In particular, any r value taken from the computed interval
ensures almost optimal performance, making the rakeness approach
robust and worthwhile.

I. INTRODUCTION

In recent years, along with standard and general purpose Nyquist-
rate Analog-to-Digital (A/D) converters, some application-specific
Analog-to-Information (A2I) converters have been proposed, aiming
at reducing the amount of required resources (hardware, time, energy,
etc.) per conversion. Their design and implementation is based on
the idea of the Compressive Sensing (CS) [1]–[3], [8], that is a
paradigm which links the possibility of acquiring a signal by a
number of measurements that depends on the actual information of
the signals rather than its bandwidth. Many different CS techniques,
as well as many hardware implementations and algorithms for signal
reconstruction have been so far proposed [3]; in all of them the
fundamental concept is to have an a priori knowledge on some
properties of the signal [2].

We contributed to the general CS theory in some recent works
[4]–[6] with the introduction of the concept of rakeness. The basic
idea behind this is to exploit localization of signals, i.e., the assump-
tion that the information of the signal is not equally distributed on its
domain. Roughly speaking, localization implies that some realizations
of the input process have a higher probability with respect to other
ones. Note that, even if this is not in accordance to the common
sense, the assumption of localization is not a limiting one. In fact,
the only class of signals where all possible realizations have the same
probability is white noise [6].

In more detail, one of the CS assumptions is that measurements
are obtained trough the projection of the input signal on random
independent and identically distributed sampling functions. In [4],
[6] we showed that this is just a sufficient condition, and using
random sampling functions which are not independent but which have
a limited correlation (depending on statistical properties of the input
signal) let us increase system performance, thus allowing us either to
get a higher quality of the reconstructed signal, or a reduced number
of measurement necessary to get a given reconstruction quality. The
core idea of this approach is to solve an optimization problem to
maximize the “raked” energy by the encoder where the randomness
level of the sampling function is tuned by a parameter r.

The aim of this paper is to show that the tuning of r is not
a critical issue in the design of a rakeness-based CS system. In
particular, the performance of the system is almost unchanged when
the value of r is chosen from a given set which can be computed
in accordance to analytical considerations. This is fundamental since

it ensures that a mismatch between the designed value of r and its
actual value due, for example, to some parameters drift, does not alter
the expected system performance.

The paper is organized as follows. In Section II we recall the basic
concepts and notation for a CS system. In Section III we introduce the
concept of correlation tuning, as well as the parameter r and its range
of interest. Then, in Section IV we present our case study involving
CS on small images. Finally, we draw the conclusion.

II. CS SYSTEM MODEL

In this section we want to recall some basic concepts of CS
systems, mainly to introduce the notation used in the paper. A more
comprehensive analysis can be found in [1] or in [6]. Even if many
parts of this section (and of the following one) have a more general
validity, we focus on the Random Modulation Pre-Integration (RMPI)
approach, first proposed in [7]. This approach, when compared to
other ones, has the great advantage of being able to cope with any
class of signal without performance degradation [3]. The RMPI basic
schematic is depicted in Fig. 1 and can be briefly described as follows.
Given an input signal x(t) defined for 0 ≤ t ≤ T , RMPI collects a
set of measurement yj , j = 1, 2, . . .m, by projecting x on a set of
sampling functions φj(t), i.e., yj = 〈φj(t), x(t)〉.

For the sake of simplicity in the following we will make the
common and not limiting assumption that x ∈ Rn. This may stand,
for example, for a discrete-time input signal where n corresponds to
the amount of Nyquist samples in a T -length time window, but also
allow us to extend our model to other different kinds of signals such
as n-bit images or even generic data. Following this, the φj ∈ Rn
assume the role of sampling vectors, and can be rearranged as the
rows of a matrix Φ ∈ Rm×n called sampling matrix. Under this
notation, all measurements yj can be joined in a single measurement
vector y = Φ · x, with y ∈ Rm. According to this model, we have
compression when m < n.

The fundamental hypothesis for achieving compression is to deal
with a sparse signal. Mathematically, given a proper basis Ψ ∈ Rn×n,
each realization x = Ψ · α of the input signal is such that the
coefficients vector α contains only a limited number of non-null
entries. More precisely, all realizations are represented by a maximum
number K � n of coefficients. In this case the input signal is called
K-sparse.

If we we also consider, for a more realistic model, that input
signal has additive noise ν, we get

y = Φ · (x+ ν) = Φ ·Ψ · α+ Φ · ν = A · α+ Φ · ν
where A ∈ Rm×n represents the link between the input signal sparse
representation and the measurement vector.

From the knowledge of y, one can recover α (and so x) by the A
operator inversion. This however is an ill-posed problem, that can be
overcome by solving the optimization problem based on the sparsity
hypothesis [1], [2], [8]–[10]

α̂ = min
α
‖α‖1 (1)

s.t. y = A · α
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Fig. 1. Basic architecture of a RMPI-based A2I system.

where ‖·‖p stands for the standard p norm.
The reconstructed signal is x̂ = Ψ · α̂ [11]. CS theory guar-

antees an accurate reconstruction (i.e., x̂ ≈ x) by choosing m ≥
4K log10 (n/K) [3].

The robustness of this procedure is ensured by two guidelines.
These are incoherence, that guarantees information extraction for any
realization of the input signal, and restricted isometry, that ensures
robustness with respect to noise, more precisely that the signal-to-
noise ratio on y is approximatively that of x. A complete description
of both guidelines is in [1], [8]. As we have already introduced, the
standard CS approach takes all the φj as a random vectors made
by independent and identically distributed elements from a normal
distribution [8], since this is the most simple way to ensure both
incoherence and restricted isometry independently of Ψ.

III. CORRELATION TUNING

In our previous works [4]–[6] we investigated a different way for
Φ generation. By defining

ρ (a, b) = Ea,b
[
|〈a, b〉|2

]
(2)

where a and b are two stochastic processes, and a and b their real-
izations, we define rakeness the expectation of the energy collected
by a sampling vector. By indicating with x and φ the processes
generating the input signal and the sampling vectors, this energy is
given by ρ

(
φ, x

)
The basic idea is to generate all sampling vectors

in accordance to a process φ which maximizes the collected energy
and at the same time is “random enough” to ensure the collection a
minimum amount of energy even from the least common realizations
of x. This intuitive approach correspond to following optimization
problem

maxφ ρ(φ, x)

s.t.
〈φj , φj〉 = e
ρ(φ, φ) ≤ re2

(3)

where e is the energy of each sampling vector and r is a design
parameter that can be tuned to set the randomness of φ. More
considerations about this approach are discussed in details on [6].

In order to exploit (3) into a useful form, we can consider the
correlation matrices Cx and Cφ of, respectively, the two stochastic
processes x and φ. Under some non-restrictive assumptions on these
two matrices [6] (including that they are Hermitian and positive
semidefinite) we can write their elements {Cx}t,s and {Cφ}t,s as

{Cx}t,s=

n−1∑

j=0

µjθ
∗
j [t]θj [s], {Cφ}t,s=

n−1∑

j=0

λjγ
∗
j [t]γj [s] (4)

where θj [·], γj [·] are the elements of the eigenvectors θj , γj , and the
sequences of real non-negative numbers µ0 ≥ µ1 ≥ µn−1 > 0 and
λ0 ≥ λ1 ≥ λn−1 are the corresponding eigenvalues. Note that the
assumption µn−1 > 0, which is an additional one with respect to [6],
ensures that the signal dimensionality is actually n.

Now, solving (3) for a given r value means finding the optimum
λj and γj given the knowledge of x, i.e. of µj and θj . The analytical

solution (see [6] for details) is given by

γj = θj (5)

λj =
e

n




1 +
nµj − Σ1√
Σ2 − 1

n
Σ2

1

r − 1
n




(6)

where Σ1 =
∑n−1
j=0 µj and Σ2 =

∑n−1
j=0 µ

2
j . With the obtained λj and

γj we can use (4) to design the optimum φ process. Note that this
is a simplified representation with respect to the more general case
considered in [6] when we consider only solutions of (3) that ensure
that all λj are greater than zero. This assumption preserves the ability
of sampling vectors to span the whole input signal domain.

The main contribution of this paper is to show with numerical
evidences that, under the two above additional assumptions with
respect to [6], the effect of the rakeness is always positive and almost
independent on the value of r.

The first results we show is that the above additional assumptions
imply a new upper bound for r. Using the constraint λn−1 > 0 in
(6) gives rise to

r <
Σ2 − 2Σ1µn−1 + nµ2

n−1

(Σ1 − nµn−1)2
(7)

On the opposite side, the lower bound for r corresponds to
the case where all φj are composed by random independent and
identically distributed symbols, as suggested in the classical CS theory
following both incoherence and restricted isometry. Here all λj have
the same value λj = e

n
, so that the r lower bound is given by.

r >
1

n
(8)

In the next section, supported by a case study, we will show
system performance in terms of average reconstructed SNR (ARSNR)
when r is swept in the above computed range.

IV. RESULTS

The class of signals we consider in this section is composed by
black and white, 24×24-pixel images. Each instance represents a
small white printed number or letter on black background (gray-level
dithering is allowed), where numbers and letters are randomly rotated
and displaced from the center of the image. The color of each pixel
has been coded with a value ranging from 0 (black) to 1 (white).
All pixel values of an image have been unrolled in a single vector
with size n = 24 ·24 = 756 pixel, which has been considered as
input signal in a CS system based on RMPI. This signal class is
actually sparse, since each instance image has no more than about 85
non-black pixels. The considered sparsity basis is the canonical one.
Furthermore, to make the system more realistic, we added a white
additive Gaussian noise ν to all images to get a 30 dB SNR.

The correlation matrix of this class of signals has been estimated
by the statistical analysis of a wide collection of different instances.
The eigenvalues and eigenvectors µj and θj has been computed and
used in (7) and (8) to get the following upper and lower bound for r

rmin = 0.001736, rmax = 0.01911 (9)

This test signal has been used to compare performance of a
standard CS system and a rakeness-based CS system with different r
values. In the first case, measurement vectors y has been obtained by
projecting the unrolled input vector on normalized (i.e., e = 1) inde-
pendent Gaussian sampling vectors φj with zero mean and variance
1
n

. In the second one the φj has been achieved as realizations of multi-
variance Gaussian process with correlation matrix in accordance to the
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(a) (b) (c)

Fig. 2. Example instance of the considered class of signals (a) and its
reconstruction made with m = 106 measurements using both standard CS
approach (b) and rakeness based approach with r = 0.008 (c).

solutions (5) and (6) of rakeness optimization problem, obtained for
a given value of r. An example image, along with the reconstructed
ones using both standard CS and rakeness-based CS is depicted in
Fig. 2.

According to the optimization problem (3), the aim of the
rakeness is to increase the energy collected by the measurements at
the cost of introducing correlation in the φj vectors. Since an increase
in r relaxes the constraints in the optimization problem (3), we can
expect a non-decreasing relation between the collected energy and
r. This is confirmed by Fig. 3, where we have plotted the average
energy of the measurement vector, computed as ‖y‖2, for r ranging
in set defined by (9), compared to what we get in the standard CS
approach based on independent measuring vectors and corresponding
to the case r = rmin. The number of measurements in this example
has been fixed to m = 180, which has been chosen since it ensures
a correct signal reconstruction for the rakeness-based approach.

While increasing r implies increasing ‖y‖2, and this has certainly
a positive influence for the overall system, we have also to cope
with the negative effect given by the violation of the incoherence
and restricted isometry requirements. For this reason, the connection
between the r value and system performance is not clear and intuitive
due to the strong non-linearity of the reconstruction process.

However, if we limit ourselves to values of r in the above
computed range, the effect of the rakeness is always positive and
furthermore almost independent on the chosen value of r. In Fig. 4 we
plotted the ARSNR for the rakeness-based CS system, for r ranging
in its definition set, compared to what we get in the standard CS
approach. As in the previous case, we have m = 180. Excluding
cases when r is similar to rmin (where the system behavior is very
similar that of a standard CS system as expected) and to rmax, system
performance is always improved by almost 7 dB. Furthermore, this
increment has a very weak dependence on r. This is an extremely
important result, since guarantees that the choice of r is not critical
in the system design.

This effect can be intuitively explained by observing Fig. 5, where
we have plotted the probability distribution function (PDF) obtained
for ‖y‖2 with some different values of r. In the figure it is clear that,
when r assumes values in the right neighborhood of the minimum
value (compare, in the figure, the PDF associated to rmin ≈ 0.0017
and r = 0.002) there is a remarkable difference between the two
distributions. However, for larger values of r (compare the cases r =
0.008 and r = 0.014), despite the fact that the mean value is actually
increasing as observed in Fig. 4, the difference between the two PDFs
is not so evident.

In conclusion, since the choice of r has been shown to be not
critical, any value taken from the mid-range of the above computed
set ensures near-optimum system performance. For example, in the
design of the system considered in this paper, a good choice could
be r = 0.008. Assuming this value, we can show some system
performance to confirm the advantages of the rakeness-based CS
approach with respect to the standard one.

In Fig. 6 we compare, for different values of m, the ARSNR
of the standard CS approach with respect to the one achieved
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by the rakeness-based approach with the above value of r. This
comparison were done by considering two different encoding strate-
gies, optimization based reconstruction and iterative support-guessing
reconstruction [3]. Where the second is an iterative approach that
suppose knowledge about the sparsity level of the acquired signal. We
report both decoding strategies to highlight that advantage introduced
by rakenees approach are not decoding algorithm depending. In
the rest we will consider only results obtained by optimization
based reconstruction. It is clear that, for optimum performance (i.e.,
for ARSNR closed to the 30 dB upper bound given by the input
additive noise) we need m greater than approximatively 160 for the
rakeness-based system, while we need m greater than approximatively
300 for the standard approach. This corresponds to a gain in the
compression rate m

n
from 1.9 (standard approach) to 3.6 (rakeness-

based approach).
As an additional figure of merit, we can compare performance of

the two CS systems (standard and rakeness-based) not only in terms
of average reconstruction SNR, but in terms of the reconstruction
SNR distribution. Results are shown in Fig. 7 and can be commented
as follows. In case (a) we have m = 106, which is shown to be
insufficient to ensure that the input signal is correctly reconstructed. In
the standard approach only a limited number of instances are correctly
reconstructed, while in the rakeness-based approach the number of
correctly reconstructed instances is much higher, but still insufficient.
On the contrary, in case (b) the value m = 160 is enough to ensure
correct reconstruction, but only in the rakeness-based approach. In
the case (c) the m value is raised to 213, which still does not ensure
correct reconstruction for the standard approach, since we can notice
the presence of many input instance with a very low reconstruction
SNR.
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Fig. 6. ARSNR as a function of m for the standard CS system, and for the
rakeness-based one for r = 0.008 considering both iterative support-guessing
reconstruction and optimization based reconstruction.
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V. CONCLUSION

In this paper we have taken into account the rakeness approach in
the design of CS based system and, with respect to the general formu-
lation, we have made two additional and non-restrictive hypotheses
to ensure a good behavior of the system. This allowed us to compute
an upper and a lower bound for the parameter r, which actually is the
only one used in the design of rakeness-based systems and which is
used to control the statistical matching level between the input signal
x and the sampling functions φj .

With a numerical analysis of a case study we have been able
to prove that the choice of r is not critical. In particular, any
r value taken from the computed interval ensures almost optimal
performance. In this way, the rakeness approach has been shown to
be robust and worthwhile in real systems.
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