
Doctoral Dissertation
Doctoral Program in Control and Computer Engineering (33rd cycle)

Effective techniques for systems
validation and security

Aleksa Damljanovic
* * * * * *

Supervisor
Prof. Giovanni Squillero, Supervisor

Doctoral Examination Committee:
Prof. Giorgio di Natale, Referee, CNRS - TIMA
Prof. Mottaqiallah Taouil, Referee, Delft University of Technology
Prof. Alberto Tonda, Institut national de la recherche agronomique
Prof. Stefano Quer, Politecnico di Torino
Prof. Bartolomeo Montrucchio, Politecnico di Torino

Politecnico di Torino
17th September, 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Aleksa Damljanovic

Turin, 17th September, 2021

www.creativecommons.org

Acknowledgements

To my parents without whom I would never be the person I am today, to my
other half - my brother, to my grandparents who gave me so much love.

I don’t have many close and special friends in my life, but those I have I keep
close to my heart. During last three years I’ve missed them so much, nevertheless,
they were my support and strength. Thank you Aleksandra, Sofija, Adam, Petar,
Ruzica and Andrijana for being the part of my life. Many thanks to a colleague and
first new friend in Turin, Esteban Josie Rodriguez Condia, to my friend, roommate
and professor of Italian (and Sicilian) language, Andrea Floridia, and someone with
the kind heart and beautiful smile (to whom I have been the worst ski instructor)
Annachiara Ruospo.

I would like to thank Matteo Sonza Reorda for giving me his trust and opportu-
nity to do a PhD, and Giovanni Squillero for his undivided support as my tutor. I
would also like to thank Ernesto Sanchez for his collaboration and Riccardo Cantoro
for helping me to start my research.

Artur Jutman and Anton Tsertov from Testonica deserve thanks from my side
for their industrial expertise and fruitful discussions that were essential for my
research.

Special thanks go to all people involved in the RESCUE project during 3 years
of joint research.

Without all of these people, this thesis would never see the light of the day and
my life would never be the same. This journey was an extraordinary life experience;
it was not only a school of PhD but also a school of life.

iii

Ko sme taj može, ko ne zna za strah,
taj ide napred.

Abstract

The increasing number of embedded instruments used to perform test, moni-
toring, calibration and debug within a semiconductor device has called for a brand
new standard—the IEEE 1687. Such a standard resorts to a Reconfigurable Scan
Network to provide efficient, reliable and flexible access to instruments and to han-
dle complex structures. As it has to deliver reliable service, many approaches, both
formal and simulation-based, have been proposed in the literature to perform test,
diagnosis, and verification of such networks.

So far, most of the test-generation approaches were either too computationally
demanding to be applied in complex cases, or too approximate to yield high-quality
tests. A recent idea has been exploited in this thesis in a following manner: the
state of a generic reconfigurable scan chain is modelled as a finite state automaton
and a low-level fault, as an incorrect transition; it then proposes a new algorithm
for generating a functional test sequence able to detect all incorrect transitions
far more efficiently than previous ones. Such an algorithm is based on a greedy
search, and it is able to postpone costly operations and eventually minimize their
number. Experimental results demonstrate that the proposed approach is broadly
applicable; has limited computational requirements; and the test sequences are
order of magnitudes shorter than the ones previously generated by approximate
methodologies. Together with testing the system for defects that may affect the
scan chains themselves, the diagnosis of such faults is also important. Therefore,
a method has been proposed for generating stimuli to precisely identify permanent
high-level faults in a IEEE 1687 reconfigurable scan chain. A chapter is dedicated
to the problem of post-silicon validation of a network, a problem that has not been
adequately addressed, yet. The mismatches between the specification and its silicon
implementation were analyzed, and then a methodology was proposed to detect a
subset of them by applying functional patterns and observing the length of the
active scan path.

While reconfigurable scan networks are commonly used to provide fault man-
agement and embedded instrumentation access, such as safety mechanisms, in ad-
vanced safety- and mission-critical electronic systems, a failure in such infrastruc-
ture itself has a high severity. Another aspect this thesis addressed is assessment
and mitigation of NBTI aging induced delays in logic paths within IEEE 1687

vi

IJTAG Reconfigurable Scan Networks. This methodology is based on a scalable
hierarchical (transistor-to-architecture) modelling of the NBTI impact on timing-
critical logic paths in RSN implementations. The evaluation implies analysis of
gate input signal probabilities based on the configurations and test data selected
for the RSN infrastructure.

A fundamental part of the new IEEE Std 1687 is the Instrument Connectivity
Language (ICL), which allows for abstract description of the scan network. The
big novelty if compared to legacy solutions like BSDL is the possibility of describ-
ing new topology-enabling elements such as the ScanMuxes in a behavioural way
which can be easily and efficiently exploited by Test Generation Tools to retarget
instrument-level operations to top-level patterns. This means that for a given de-
sign, the Developer will have to write both the RTL and the ICL descriptions: to
the author’s best knowledge there is no automated tool to make the translation RTL
to ICL. This methodology is error-prone due to the human factor, the difference in
intent in the two descriptions and the syntactic and semantic complexity of the lan-
guages. Incoherence between ICL and RTL will result in retargeting errors, so it is
fundamental to validate the equivalence between the two descriptions. In this thesis
an automated methodology is presented that starting from the ICL description is
able to generate a set of RTL testbenches that can be simulated against the origi-
nal RTL model to detect discrepancies and incoherence, and provides quantitative
metrics in terms of code and functional coverage.

Experimental results for these approaches are reported on the set of ITC2016
set of benchmark networks.

Recent trends in integrated circuits industry include decentralization of the
production flow by involving different integration teams, third-party IP vendors
and other untrusted entities. As a result, this is opening up a door to new types
of attacks that may lead to devastating consequences, such as denial of service or
data leakage. Therefore, the problem of ensuring hardware security has gained
much attention in the last years, especially early in the design cycle, when an
attacker may insert malicious circuitry at register transfer (RT) or gate level – a
Hardware Trojan. Due to the increased complexity of modern devices, the research
community is spending a lot of effort in developing more sophisticated detection
methodologies and smarter attacks. However, the main problem is that they are
validated on the existing benchmarks that do not reflect the real complexity. Trying
to fill this gap, this thesis proposes a set of RT-Level Hardware Trojan benchmarks
injected in a RISC-based pipelined microprocessor core. To prove the viability,
the impacts on area, power and frequency are presented and discussed. For any
proposed Hardware Trojan, the functional description, the implementation details
and the effects once activated are provided.

Furthermore, despite the considerable effort that has been invested in this area,
the evergrowing complexity of the modern devices always calls for sharper detection
methodologies. In this regard, the last chapter of the thesis illustrates a pre-silicon,

vii

simulation-based techniques to detect Hardware Trojans. The technique exploits
well-established machine learning algorithms. All of the background concepts are
presented together with the methodology and the automatized flow. The validity
of the approach has been demonstrated on the AutoSoC CPU, an industrial-grade,
safety-oriented, automotive benchmark suite. Experimental results demonstrate
the applicability and effectiveness of the approach: the proposed technique is highly
accurate in pinpointing suspicious code sections. None of the Trojans from the set
has been left undetected.

viii

Contents

List of Tables xiii

List of Figures xv

Introduction 1

I IJTAG Reconfigurable Scan Networks Dependability 7

1 Background 9
1.1 IEEE 1149.1 – JTAG . 10
1.2 IEEE 1687 – IJTAG . 10
1.3 Related works . 15
1.4 IEEE 1687 Benchmark RSNs . 17

2 Test 19
2.1 Fault model . 19
2.2 Test procedure . 20
2.3 A Semi-Formal Test Generation Technique for Reconfigurable Scan

Networks . 23
2.3.1 Network representation: FSA 24
2.3.2 Greedy search algorithm . 25

2.4 Enhanced version . 27
2.4.1 Search algorithm . 28

2.5 Evolutionary approach to test reconfigurable modules in RSNs . . . 30
2.5.1 Methodology Basics . 32
2.5.2 Transition function . 34
2.5.3 Evolutionary algorithm . 36
2.5.4 Individual encoding . 37
2.5.5 Post-processing techniques 41

2.6 Experimental Results . 43
2.6.1 Experiments for FSA approaches from Section 2.3 and Sec-

tion 2.4 . 43

x

2.6.2 Experiments for Evolutionary approach from Section 2.5 . . 47
2.7 Chapter Summary . 53

3 Diagnosis 55
3.1 Fault model and Diagnostic Mechanism 56
3.2 Proposed Diagnostic Methodology 61

3.2.1 Finite State Automaton to model an RSN 61
3.2.2 Search Algorithm . 64
3.2.3 Diagnostic analysis . 65

3.3 Experimental Results . 68
3.4 Chapter Summary . 72

4 NBTI-induced aging analysis in IEEE 1687 RSNs 73
4.1 Hierarchical Modelling of the NBTI-Induced Delays 74
4.2 Proposed approach: analysis and mitigation 76
4.3 Case study . 78
4.4 Experimental results . 80
4.5 Chapter summary . 82

5 Post-silicon validation 83
5.1 Proposed "black-box" approach to post-silicon validation 84

5.1.1 Mismatch model . 84
5.1.2 Undetectable mismatches . 87
5.1.3 Detection mechanism . 89
5.1.4 Configuration generation procedure 90

5.2 Experimental results . 92
5.3 Chapter summary . 94

6 Simulation-based equivalence checking between IEEE 1687 ICL
and RTL 99
6.1 ICL . 100
6.2 Proposed approach . 102

6.2.1 Post-silicon validation approach 102
6.2.2 Application to RTL Equivalence 104

6.3 Experimental Results . 105
6.3.1 Setup . 105
6.3.2 Results . 107

6.4 Chapter summary . 110

Summary of Part I 111

xi

II Hardware Security: Hardware Trojans 113

7 Background 115
7.1 Related Works . 116

7.1.1 HT Design . 117
7.1.2 Detection Techniques . 117

8 A Benchmark Suite of RT-level Hardware Trojans for Pipelined
Microprocessor Cores 119
8.1 Hardware Trojans . 120
8.2 Trojan Implementation and Analysis 123
8.3 Chapter summary . 127

9 Machine Learning for Hardware Security: Classifier-based Identi-
fication of Trojans in Pipelined Microprocessors 129
9.1 Design Verification and ML concepts 130

9.1.1 Digital Design Verification 131
9.1.2 Artificial Neural Networks 131
9.1.3 Support Vector Machine . 133

9.2 Proposed Detection Flow . 136
9.2.1 Control Flow Graphs Extraction 138
9.2.2 Input Data Formatting . 141
9.2.3 Classification . 142

9.3 Experimental Evaluation . 143
9.3.1 Experimental Setup . 143
9.3.2 Experimental results with Support Vector Machine 146
9.3.3 Experimental Results with Artificial Neural Networks 148

9.4 Chapter summary . 150

Summary of Part II 153

Conclusions and Recommendations for Future Research 155

Bibliography 159

xii

List of Tables

1.1 Set of possible configurations of the RSN in Fig. 1.6. 16
1.2 ITC’16 benchmark networks list . 18
2.1 Test procedure for the network in Fig.1.6 22
2.2 Test procedure for the network in Fig.1.6 25
2.3 Enhanced test procedure for the network in Fig.1.6 31
2.4 List of faults excited by the RSN in Fig. 1.6. 34
2.5 List of undetectable faults . 45
2.6 IEEE 1687 test algorithm experimental results 45
2.7 Experimental comparison of the enhanced algorithm (FSA2) – Sec-

tion 2.4 against the previous version [51] – Section 2.3, a Depth-
first algorithm [25], and an Evolutionary approach [27]. Columns
ending with “vs.” show the comparison against the current result;
percentages quantify how much the results delivered by the previous
approaches are worse. 46

2.8 Experimental results on the ITC’16 benchmark networks 51
2.9 Comparison of the experimental results with the approaches from

[25] and [27] . 52
3.1 Set of possible scan-chain fault models and their effect on the inserted

pattern 00110011. 57
3.2 Set of possible configurations of the RSN in Fig. 3.1 (top). 59
3.3 Diagnostic procedure for the network in Fig.3.3 68
3.4 Benchmark networks list . 70
3.5 IEEE 1687 algorithm experimental results 71
3.6 Experimental comparison of the proposed algorithm vs. [22] 72
4.1 Experimental results . 81
5.1 List of considered and injected mismatches for the network from

Fig. 5.1 . 86
5.2 Post-silicon validation experimental results 97
6.1 Benchmark networks list . 106
6.2 Experimental results on RSN benchmarks for 3 types of mutations

showing the range of obtained coverage for mutated RTLs 109

xiii

8.1 Number of RTL Hardware Trojan benchmarks available on Trust-
Hub [80] [92] . 120

8.2 Trojan Benchmarks Description . 121
8.3 Synthesis results . 125
9.1 Experimental results of the four SVM classifiers with different kernels

and following metrics: Recall, Accuracy, Precision, and F1-score . . 146
9.2 Experimental results of the NN . 149
9.3 Meaning of the confusion matrix in the context of HT detection . . 149

xiv

List of Figures

1 Life cycle of an IC . 2
1.1 JTAG boundary scan with dedicated registers and TAP controller . 11
1.2 TAP controller state machine . 12
1.3 Segment Insertion Bit (SIB) module: Simplified schematic (left) and

symbol (right) . 12
1.4 ScanMux (SM) module: Simplified schematic (left) and symbol (right) 13
1.5 . 14
1.6 Example of IEEE 1687 RSN. 15
2.1 Configuration vector and scan chain bit positions for fault-free and

faulty circuits . 31
2.2 Evolutionary framework. 37
2.3 Combinational circuit used for ATPG. 38
2.4 Post-processing I . 41
2.5 Post-processing II, first test vector removed 42
2.6 Post-processing II, third test vector removed 43
3.1 Examples of IEEE 1687 RSNs: the top image as a reference one;

the middle one with TDR1 of different length; the bottom one with
equal length TDRs (TDR4 and TDR5) on SM input segments. . . . 58

3.2 Example of generating FSA for the network from Fig. 3.3 63
3.3 4 serially connected SIBs with TDRs of equal length of 5 67
3.4 Initial scan chain structure with conf. vector for network from Fig.

3.3 . 69
4.1 Dynamic and static NBTI effect on threshold voltage in a pMOS

transistor . 74
4.2 Threshold voltage shift VT Hp as a function of signal probability Pz

(up). Gate delay increase ∆t dependency on voltage threshold shift
∆VT Hp in an inverter gate (down). 75

4.3 Case-study RSN with hierarchy levels - one SM, six SIBs and seven
TDRs . 79

4.4 Gate-level schematic of the longest logic path in the case-study RSN 80
4.5 Simplified schematic of a SIB module (left) and its symbol (right) . 81
5.1 Example RSN network for generating a set of mismatches 85

xv

5.2 Mismatches involving TDRs . 87
5.3 ScanMux and SIB position mismatches 88
5.4 SIB type, ScanMux control lines and input mismatch 88
5.5 ScanMux configuration mismatches 89
5.6 Hierarchical information on network’s nodes 92
5.7 Testing SM1 in steps: SM1 with its input segment 0 on active path 94
5.8 Testing SM1 in steps: accessing its configuration bit cb1; pSIB1 has

to be included into the active path 95
5.9 Testing SM1 in steps: accessing its configuration bit cb1; pSIB1 has

to be asserted . 95
5.10 Testing SM1 in steps: setting cb1 to 1 96
5.11 Testing SM1 in steps: putting back SM1 to the active path; input

segment that is now selected is 1 (TDR1a) 96
6.1 1687 RSN example . 100
6.2 Description of the pre-SIB as module in ICL 101
6.3 Parameteres in ICL . 102
6.4 SIBs with TDRs in ICL . 102
6.5 ScanMux and TDR in ICL . 103
6.6 TreeBalanced ScanMux with equal length registers 107
6.7 Coverage for mutated RTL designs with wrong register lengths –

N73D14 benchmark circuit . 107
6.8 Coverage for mutated RTL designs with wrong SIB types – TreeBal-

anced benchmark circuit . 108
6.9 Coverage for mutated RTL designs with exchanged ScanMux input

segments – TreeBalanced benchmark circuit 108
7.1 IC production flow . 115
7.2 Hardware Trojan structure . 116
8.1 Proposed RTL Hardware Trojans in the Cappuccino configuration of

the mor1kx CPU. 122
8.2 Trigger T200 condition . 123
8.3 Trigger T200 counters . 124
9.1 The basic architecture of the perceptron. 132
9.2 Artificial Neural Network: a basic representation. 132
9.3 Defining a border between classes using an SVM (support vectors

are marked with □ and ◦) . 133
9.4 Using non-linear kernel functions to map input space 135
9.5 To prevent overfitting, avoiding narrow margin is recommended.

This can sometimes be achieved by introducing a margin and al-
lowing a certain degree of misclassification 136

9.6 Detailed framework flow including three main steps: CFG extraction,
Data formatting and ML classification 137

9.7 CFG with the corresponding code structure 138

xvi

9.8 Assign statements . 140
9.9 Assign DataFlow Map . 140
9.10 mor1kx CPU core in cappuccino configuration 143
9.11 Individual coverage of each program on mor1kx core 145
9.12 Pyverilog parser . 145
9.13 ROC curves for 4 different kernels including different set of extracted

attributes (farther from the 45-diagonal, i.e., closer to the upper-left
corner, the better) . 147

9.14 Set of nodes belonging to HT as TP and FN 150

xvii

Introduction

Nanoelectronic systems are at the core of all industry sectors and are deployed
in many life-critical domains such as automotive, security, healthcare, etc. [1] In the
recent decades we witnessed new advances and immense progress in this field [2].
Emerging technologies, shrinking of the technology nodes, but above all the com-
plexity of modern devices and the integration of many different components within
a system pose significant challenges in terms of design and mutually dependent
aspects of security, reliability and quality [3]–[5].

Given the criticality of their application and the role nanoelectronic systems
have as a backbone of the large infrastructure and Cyber-Physical systems, the
need of providing the intended functionality as well as being reliable and secure is
of utmost importance. On the other hand, due to the complexity and miniaturiza-
tion of the process nodes towards the physical limits, such requirements are getting
increasingly hard to satisfy. How much will it cost? Does it satisfy initial require-
ments? How robust it is? Will it work and how efficient will be? How much time
does it take to design and produce? These are only some of the most important
questions to answer during the product’s life-cycle (Fig. 7.1).

As soon as integrated circuits (ICs) emerged, the need for design tools became
evident. Obviously, the design of modern ICs containing billions of devices would
be infeasible without software tools that are used at every stage [6]. Related tools
and methodologies that are used are called electronic design automation (EDA) [7].
It can be said that EDA, i.e. Computer-Aided Design (CAD) tools revolutionized
the IC industry and continue to do so even today. They can be used to develop
new designs, reuse the existing ones, and integrate entire systems [8], [9]. Such
tools can have different role in the process of design, manufacturing, and test:
simulation (electrical, logic gate or high-level), ATPG test vector generation, layout
design, placement and route, logic synthesis, design optimization (timing, power
and cost/area) and device performance prediction, verification (formal, functional,
equivalence checking), etc.

A variety of complementary tools and methods were added to conventional
design flows. Furthermore, library vendors started offering a whole spectrum of
libraries for optimal design choices (high-performance, low-power, etc.). In that
way, design was made portable across processes and foundries, thus making the

1

I ntr o d u cti o n

w h ol e c y cl e si g ni fi c a ntl y m or e e ffi ci e nt. S o m e n e w d esi g n ar e as h a v e m at ur e d i n
t h e m e a nti m e: g at e si zi n g (c h o osi n g t h e b est tr a nsist or wi dt h t o o bt ai n b ett er p er-
f or m a n c e), cl o c k d esi g n a n d s y nt h esis (r eli a bl e s y n c hr o ni z ati o n d u e t o hi g h n u m b er
of s e q u e nti al el e m e nts), t hr e e- di m e nsi o n al I Cs (c o nti n ui n g t o f oll o w t h e M o or e’s
l a w a n d st a c k I Cs o n e o n t o p of t h e ot h er).

I n g e n er al, all of t h e list e d t y p es of t o ols n ot o nl y a ut o m at e t h e w or k of e n gi-
n e ers, b ut als o pr o c ess l ar g e a m o u nts of h et er o g e n e o us d at a. I n c o m p aris o n wit h
h u m a n d esi g n ers t h e y ar e als o d e fi nit el y a bl e t o p erf or m m or e a c c ur at e a n al ys es
a n d m or e e ffi ci e nt a n d a d v a n c e d o pti mi z ati o ns.

I n-fi el d o p er ati o n

D e b u g/ Bri n g -u p

T e st

M a n uf a ct uri n g

D e si g n

Fi g ur e 1: Lif e c y cl e of a n I C

T his t h esis f o c us es o n t h e n e w t e c h ni q u es d e v el o p e d t o s u p p ort t h e d esi g n er
of n a n o el e ctr o ni c s yst e ms i n t h e v ali d ati o n of t h eir c orr e ct n ess. T his t as k r e q uir es
c o nsi d eri n g n ot o nl y t h e s p a c e of all p ossi bl e s c e n ari os w h er e t h e s yst e m is us e d,
b ut als o a f urt h er di m e nsi o n r e pr es e nt e d b y t h e p ossi bl e h ar d w ar e f a ults a n d e x-
t er n al att a c ks t h e s yst e m is d esi g n e d t o f a c e. Ass essi n g t h e c orr e ct f u n cti o n alit y
of t h e s yst e m wit h s u c h a h u g e c o m bi n ati o n of p ossi biliti es c a n o nl y b e d o n e b y
c o m bi ni n g di ff er e nt t e c h ni q u es c o mi n g fr o m di ff er e nt c o m m u niti es (e. g., t h e o n e of
s oft w ar e v ali d ati o n, t h e o n e of h ar d w ar e v ali d ati o n, t h e o n e of h ar d w ar e t esti n g)
a n d e x pl oiti n g di ff er e nt p ar a di g ms (e. g., r es orti n g t o f or m al t e c h ni q u es, si m ul ati o n,
t o e v ol uti o n ar y c o m p ut ati o n, et c.).

T h e gr o wi n g a d o pti o n of el e ctr o ni c s yst e ms i n s yst e ms w h er e s af et y is a c o n c er n
as ks f or stri ct r e q uir e m e nts i n t er ms of f a ult pr e v e nti o n , d et e cti o n , a n d m a n a g e-
m e nt , s o t h at t h e pr o b a bilit y of o c c urr e n c e of a n y f ail ur e d u e t o a h ar d w ar e f a ult is
k e pt u n d er t h e a c c e pt a bl e t hr es h ol d. M or e r e c e ntl y, a n ot h er iss u e ar os e, r el at e d t o

2

Introduction

the attacks that may be purposely driven against an electronic system to steal the
information it stores, or to modify its behavior . Due to the increasing frequency
of these attacks, it is crucial that the system is designed in such a way that the
chances of their success are minimized (security) [10]–[16]. The solutions adopted
by the designer to face the requirements in terms of both safety and security must
be assessed in terms of correctness and effectiveness (validation).

The bridge that exists between pre-silicon validation (verification) and post-
silicon validation, has to be mitigated to alleviate time-to-market pressure. With
the growing design complexity, technology scaling, with improving performance and
high levels of integration, design validation challenges are continuously increasing.
Time required to perform design validation and verification is extremely consuming
and in some complex cases may occupy most of product design cycle. As reported
in [17] design verification as the most important aspect of the product development
process can consume as much as 80% of the total product development time. What
is even more critical is the cost needed to find and correct design errors later in the
design flow [18]. Another issue is that often system design requirements in terms
of security and system validation do not go along with each other.

Dependability has become a key concern, demanding the presence of numerous
and various resources embedded within integrated circuits (ICs). These are used
for supporting test, such as Built-In Self-Test (BIST) modules , for monitoring
internal parameters such as current, temperature or delay sensors and configura-
tion/calibration of different modules through registers . Due to the requirements
for having a large number of these devices it became infeasible to include them into
the single scan chain or provide a separate instruction for accessing every single one,
relying on IEEE 1149.1. Additionally, instruments (or IPs) could easily originate
from different vendors, making the integration a long and complicated procedure.
There was not a simple and standardized way to perform the integration, but more
a set of ad-hoc solutions based on the instructions from the IP provider given to
the ASIC test/design engineer. It included extensive learning and different setup
for each new IP, as well as integration into the latest ASIC and latest process node.

A solution for simplifying not only the access to embedded resources and reduc-
ing the overhead, but also alleviating the aforementioned issues with the integration
has been described and published as the IEEE 1687 standard [19]. The standard
has enabled designers to flexibly trade-off between area, access time and other
parameters, since the scan chain accessible through the JTAG’s Test Access Port
(TAP) can now be split and configured. Furthermore, it offers a standard test hard-
ware description, and a standard test procedure language for each IP. More details
about the standard itself and so called, Reconfigurable Scan Networks (RSNs) will
be given in Chapter 1.

The correct operation of IJTAG-compliant infrastructure is a product of many
aspects and components including the actual hardware on the chip, the respective
standard descriptions, such as ICL (Instrument Connectivity Language) and PDL

3

Introduction

(Procedure Description Language) files as well as the software used to import the
descriptions and control the hardware. Being a relatively new standard, there are
still many different aspects insufficiently explored related to the infrastructure it
describes, especially in the context of dependability. I believe that such research is
essential for providing support and therefore wide-spread usage of this infrastruc-
ture. The first part of this thesis is oriented on the following issues:

• post-manufacturing test and efficient techniques for generating configurations
used to test reconfigurable modules within RSNs.

• identifying faults within RSNs (diagnosis)

• post-silicon validation of RSNs

• in-field use, and reliability issue related to NBTI-aging effect

• equivalence checking between ICL and RTL—verification

Another argument that this thesis will advance is the Hardware Security. In the
recent years, the growing complexity of modern devices and the fabrication costs
led the IC industry to pursue a new global business model. The half-trillion-dollar
semiconductor supply chain is one of the world’s most complex. The production
of a single computer chip often requires more than 1,000 steps passing through
international borders 70 or more times before reaching an end customer [20]. In
that regard, even more companies around the world are deeply involved in all
phases of the IC supply chain. The outsourcing of part of the process to untrusted
third-party entities raises increasing concerns about the hardware security of the
products. The problem of ensuring hardware security has gained much attention in
the last ten years, especially early in the design cycle, when an attacker may insert
malicious circuitry at register-transfer (RT) or gate level. Such type of attacks that
may lead to devastating consequences, such as denial of service or data leakage.

Particularly, Hardware Trojans (HTs) are an important topic not only for in-
dustry and academia, but also for government bodies [21].

Hardware Trojans are modifications that an adversary is able to make in original
circuitry to gain access to sensitive information (encryption keys), downgrade the
performance, prevent user access or completely disable the device or its functions.
It is assumed that the attacker is able to access the design (or its part) and perform
maliciously modifications before or during fabrication.

What renders difficult to detect such alterations is:

• large number and the complexity of soft, firm and hard IPs that are present
in modern SoC designs;

• the cost of applying reverse engineering and inspecting physically each device
given their complexity and technology miniaturization;

4

Introduction

• given the characteristics of the advanced technology used nowadays, physical
measurements in a circuit infected by a Trojan may still stay within the
margins due to process variation and thus, remain undetected;

• Trojan are by construction difficult to activate (a set of complex low-probability
conditions) and while the attacker might have information about the design,
the defender might not have any information about the Trojan, i.e., its type,
size, position etc.;

• manufacturing tests that are applied on every device are ineffective for the
reasons listed above.

Due to evolving attacks, the research community is spending a lot of effort in
developing more and more sophisticated detection methodologies. However, the
problem is that they are validated on the benchmarks that do not reflect the real
complexity of the devices used for industrial applications, such as automotive. First
contribution related to the aforementioned issue in the release of new benchmarks
targeting a pipelined open-source RISC microprocessor core.

Although most of the detection techniques work at the gate level, shifting the
detection of HTs inserted at RTL to the gate level would result in increased design
and verification costs. That is why a new and efficient method for detecting such
Trojans has been developed. It will be presented as a second contribution in this
part of the thesis. A branch of artificial intelligence (AI) and computer science that
continues to receive tremendous attention and has alleviated life to many engineers
is Machine Learning (ML). This is especially true in the context of ICs, given the
large amounts of available data from both production and use life-cycle phases.

The proposed methodology is based on ML technique for Hardware Trojans
detection, based on a deep analysis of the RT-Level model. The analysis is based
on dynamic and static properties extracted from such model. An Artificial Neural
Network (ANN) as well as the Support Vector Machine (SVM) algorithm are used
to identify suspicious code fragments potentially hiding a Trojan.

5

6

Part I

IJTAG Reconfigurable Scan
Networks Dependability

7

Chapter 1

Background

In many of the latest ICs designers introduced resources whose purpose is not
to support the circuit functionality, but rather to support ancillary features such
as test, calibration, debug and monitoring. In particular, current ICs often inte-
grate a plethora of sensors and actuators, each associated to a register to be read
and/or written from the outside, sometimes at the end of the manufacturing pro-
cess, sometimes during the operational phase. Many test solutions, such as BIST,
also require registers to activate/initialize the test and retrieve results. In order to
effectively access all these registers (also called instruments, or TDRs), companies
used to include them into a single chain, often accessed through the standard IEEE
1149.1 interface. With the significant rise in complexity and the number of de-
vices, existing infrastructure became inefficient. One of the limitations originated
from the length of a single scan chain which was constantly increasing; performing
access to communicate with a single device resulted in large time overhead. More-
over, the reliability of such structure became an issue, since a problem on a single
bit would render the entire scan-chain non-operational and consequently, lead to
a catastrophic breakdown. Another possibility involving architecture for accessing
each instrument individually, apart from limited flexibility it provides, requires in-
feasible number of instructions to be implemented. To tackle these issues solutions
based on so called Reconfigurable Scan Networks (RSNs) were introduced. 1149.1.
was updated to support such constructs, while 1687 introduced increased flow flex-
ibility and the possibility to define more complex structures in the network during
the chip integration phase in a newly developed description language. Neverthe-
less, both 1687 and 1149.1-2013 have a lot of common advantage in terms of reuse,
efficiency, automation and improved quality that affect several stages of chip devel-
opment. They can provide a means of standardization of IP verification, insertion,
internal IP test interface, etc. Both standards introduce dynamically reconfigurable
scan chains.For the sake of simplicity as different terminology is used, basic network
constructs will be described as a part of IEEE 1687 Std in Section 1.2.

9

Background

1.1 IEEE 1149.1 – JTAG
As the devices’ complexity increased and with the limitations in terms of num-

ber, cost and physical access to its pins, it became both impractical and inefficient
to use them for accessing the device and test the interconnections between different
ICs. To deal with these issues, IEEE 1149.1 industrial standard was devised. It is
commonly known as Joint Tag Access Group (JTAG) and describes a testing infras-
tructure. Registers described by the standard, boundary scan cells, as their name
suggests are composed of individual bits, or cells that are located at the boundary
of the device. They are placed between the functional core and the pins or balls by
which it is connected to a board. The standard also introduced the description of a
logic block called Test Access Point (TAP). TAP consists of a controller in charge
of executing access and data flow, which is a sequential state machine, Instruction
Register, and a number of Data Registers providing write and read functionality
(Fig. 1.1). Given its flexibility for implementing additional commands and adding
new logic blocks, TAP soon found its alternative application for programming and
debugging devices. The JTAG interface consists of 5 signals: Test Data In (TDI),
Test Data Out (TDO), Test Clock (TCK), Test Reset (TRST) and Test Mode
Select (TMS).

The TAP controller as defined by the IEEE-1149.1 standard represents a 16-
state finite state machine. It is controlled by TCK and TMS. Each transition is
determined on the rising edge of TCK, by the state of TMS. Two analogous paths
through the state machine are used to capture and/or update data by scanning
through the instruction register (IR) or through a data register (DR). The JTAG
state machine is depicted in Fig. 1.2.

1.2 IEEE 1687 – IJTAG
Exacerbated by the increasing number of instruments within a single scan chain,

the lack of flexibility is a major issue in both IEEE 1149.1 boundary-scan (JTAG)
and IEEE 1500 core test standards, along with weaknesses of the test scheduling
and scalability limitations. The new IEEE 1687 standard (IJTAG) [1] was designed
to be able to deal with problems caused by the long scan chains and the substantial
number of instructions required to access instruments. It exploits the idea of Recon-
figurable Scan Networks (RSNs), residing between device interface and instrument
interface and allowing a scan chain to be partitioned into segments that can be se-
lectively included or excluded. Through dynamic configuration and variable-length
scan-chain, IJTAG enables flexible and efficient access to all instruments. Thus,
designers are able to take into account various configurations and choose the best
trade-off between parameters such as area or access time. Although the standard
does not impose an external access mechanism, the most widely accepted one is

10

1.2 – IEEE 1687 – IJTAG

Core
Logic

TAP
Controller

Instruction Decoder

Instruction Register

Design Specific Register

Device ID Register

Bypass Register

D
ev

ic
e

In
p

u
ts

D
ev

ic
e

O
u

tp
u

ts

TDI TDOTMS TCK TRST

Figure 1.1: JTAG boundary scan with dedicated registers and TAP controller

TAP. The IEEE 1687 standard also introduces two languages: Instrument Con-
nectivity Language (ICL) and Procedural Description Language (PDL) that allow
describing the structure of the network and the protocol to access the different
instruments.

To interface each instrument, a register of a variable length is used. This corre-
sponds to a set of scan cells, IEEE 1149.1-compatible, referred to as a TDR. TDRs
can be Read-Only, Write-Only or Read-Write. Furthermore, three operations are
used to control the network and read/write data from/to TDRs: capture (C), shift
(S), update (U).

Apart from TDRs, the network is composed out of two types of programmable
modules. These are used to partition the set of instruments; including or excluding
a set of instruments obviously has an effect on the scan chain length. A segment
insertion bit (SIB) module behaves as a gateway with respect to the segment it

11

Background

Run – Test/Idle

Test-Logic Reset

Update-DR

Pause-DR

Exit 2-DR

Shift-DR

Exit 1-DR

Select DR-Scan

Capture-DR

Update-IR

Pause-IR

Exit 2-IR

Shift-IR

Exit 1-IR

Select IR-Scan

Capture-IR

0

1 1 1

1 1

1 1

1

1 1

11

1 1

0 0

1

0
0 0

00

0

1

0
0

0

00

Figure 1.2: TAP controller state machine

controls: it is able either to bypass the segment or to include the segment into the
active path (Fig. 1.3(a)). In the bypass state it is referred to as de-asserted, while
it is said to be asserted when is configured to expand the scan chain. SIBs can be
used to obtain a hierarchical structure of the network, allowing hierarchical access
to the registers interfacing the instruments. The Fig. 1.3(b) shows a symbol used
to represent a SIB.

0
 1

U

S so
si

fsotsi

SIB sosi

fsotsi

a) b)

Figure 1.3: Segment Insertion Bit (SIB) module: Simplified schematic (left) and
symbol (right)

Other than using a SIB to include or bypass a segment, a different module is
used to support exchange of one scan chain segment for another. A scan multiplexer
with shift-update cells (ScanMux, SM) can be seen as a configurable multiplexer,
which is used to alter the scan chain by selecting which of its input branch segments
are to be included into the active path. Thus, the existence of mutually exclusive

12

1.2 – IEEE 1687 – IJTAG

scan chains is supported, reinforcing the trade-off of access time with access length.
The example given in Fig. 1.4(a) shows a scan multiplexer with a two-bit shift-
update control register which is used to choose one among four segments. The
symbol shown in Fig. 1.4(b) will be used to represent a shift-update cell. Control
registers of the modules consist out of two stage cells. A cell is referred to as a
flip-flop with additional control logic. Shift (S) cell is a part of scan chain and it
shifts values, while Update (U) cell stores the S cell value, when update operation
is performed. The configuration of the module is defined by the value in the U cell.
For example, a SIB module is configured by shifting in the desired value into the S
scan cell, followed by an update, thus storing the value from the S cell to the U scan
cell. Indicatively, as illustrated by Fig. 1.3(a), in this work a SIB is considered to
be asserted if the latched bit is 1 and if so, it includes the path between tsi and fso
terminals. Conversely, it is regarded as being in a de-asserted state if the latched
bit is 0, bypassing the segment between tsi and fso terminals, directly connecting
si and so through the S cell. The provided shortcut has the length of one bit.

0
0

 0
1

 1
0

 1
1

U

S

TDR0

TDR1

TDR2

TDR3

U

S S

a) b)

Figure 1.4: ScanMux (SM) module: Simplified schematic (left) and symbol (right)

Depending on the position of the configuration bit(s) with respect to the pro-
grammable module itself the module can be either inline or remote. A module is
considered to be inline if its associated configuration cell is located in the same seg-
ment of the related module. Otherwise, it is said to be remotely controlled. Some
basic architectural constructs, varying on the organization of TDRs, are provided
in Figure 3. A simplest one is a flat structure where TDR is always accessible
(Fig. 1.5a). MUXed TDRs enable mutually exclusive access (Fig. 1.5b), while ex-
cludable TDR is either a part of the active path or is bypassed (Fig. 1.5c). Partial
configurations involve combining previous structures, thus in Fig. 1.5d (partially
selectable TDRs) always two TDRs belong to the active path (one fixed, another se-
lectable), while in Fig. 1.5e (partially excludable TDRs) one or two registers belong
to the active path (path always includes one, while the other one can be inserted).
The Fig. 1.5f shows the partially excludable and selectable configuration (one TDR
is always accessible, while one of the remaining two can be included into the active
path). These can be combined to design more complex networks.

13

Background

a)

b)

c)

d)

e)

f)

Figure 1.5

To keep the drawings simple inFig. 1.3 and Fig. 1.4, the clock, reset, control
signals (namely, shift, update, and capture), and the select signal used to gate the
control signals are not shown. To follow the examples in this work, it should
suffice to assume that only the TDR connected to the selected port of a ScanMux
receives (i.e., reacts to) the clock and control signals. It should be noted that the
configuration of the network (i.e., the status of the latched bits) does not change
when shifting a new vector through the shift cells, but only in the update phase
where the shifted vector is latched into the U cells.

To operate an IEEE 1687 network from outside the chip, the IEEE 1149.1 TAP
can be used. The TAP finite state machine provides the control signals needed to
configure the IEEE 1687 network and access the instruments through it.

As an example, let us consider an RSN that includes five instruments: the user
can access them through the TAP port, reading or writing from/to the associated
Test Data Registers (TDR1 to TDR5). In order to save time when accessing to the
instruments, the designer, instead of connecting all TDRs into a single chain, like
in 1149.1-complaint circuits, may decide to adopt an IEEE 1687 network including
three SIBs and one ScanMux (SM), as shown in Fig. 1.6; each of these four config-
uration modules can be configured to allow the access to a given subset of TDRs
(and the associated instruments). Table 1.1 reports sixteen possible configurations
supported by this network, which depend on how the SIBs and the ScanMux have
been configured. In Table 1.1, “A” means asserted, “D” means de-asserted, 0 and
1 correspond to the two possible positions of the ScanMux, and “-” appears when
a module belongs to an inaccessible segment.

In order to move the network to a given configuration, the user must first shift-in
a suitable sequence of bits, so that the S flip-flops of SIBs and ScanMuxes hold the
correct value, then activate the update signal to move these bits to the U latches.
The sequence of bits to configure the network is called configuration vector. A
generic configuration vector is referred to as cvi. Once a configuration is reached,
a given subset of the TDRs is accessible, which constitutes the so-called active

14

1.3 – Related works

SIB2

TDR1

SIB1
TDR3

length=7

SIB3

length=3

TDR2

length=6

length=4

length=3
TDR4

TDR5

S
M

0

1

Figure 1.6: Example of IEEE 1687 RSN.

path. The rightmost column of Table 1.1 reports the length of the active path for
each configuration, which corresponds to the number of TDR and S flip-flops in
the path. The reader should note that moving from one configuration to another
may require more than one configuration vector. For example, in the network of
Fig. 1.6 moving from C2 to C13 requires first turning SIB1 into the asserted state
(e.g., moving to C8) and only then we will be able to change the configuration of
the SM scan multiplexer to select input branch 1 and turn SIB2 into the asserted
state. Hence, moving from C2 to C13 requires 2 configuration vectors.

1.3 Related works
In recent years the IEEE 1687 standard and RSNs have been subject of many

research works, addressing test, verification, security and design. However, to our
knowledge, apart from [22], this is the only work addressing the issue of permanent
RSN fault diagnosis.

As already discussed, although reconfigurable scan networks introduced flexi-
bility, minimizing access time has arisen as a potential issue. The authors in [23]
analyzed various structures with different access scheduling to estimate overall ac-
cess time. Additionally, the same authors developed the CAD tool to support design
automation of optimized 1687 SIB networks [24]. Based on the access schedule and
the set of instruments, the tool is able to design a network with optimized access
time and low hardware overhead.

In [25] a general approach has been proposed to automatically generate a test
sequence for an IEEE 1687 RSN with respect to permanent faults. It provides
techniques for testing SIBs and ScanMuxes, and then it describes how to combine

15

Background

Table 1.1: Set of possible configurations of the RSN in Fig. 1.6.

Configuration SIB1 SIB2 SM SIB3 Active path Length

C0

D
D 0

D - 2C1 1
C4 A 0
C5 1

C2

D
D 0

A TDR3 9C3 1
C6 A 0
C7 1

C8 A D 0 D TDR1 6C9 1

C10 A D 0 A TDR1, TDR3 13C11 1

C12 A A 0 D TDR1, TDR2, TDR4 16

C13 A A 1 D TDR1, TDR2, TDR5 17

C14 A A 0 A TDR1, TDR2, TDR3, TDR4 23

C15 A A 1 A TDR1, TDR2, TDR3, TDR5 24

them into a single comprehensive test. This test is independent on the specific
representation of the network elements and does not require any change in the
hardware implementing the network. Test generation can directly start from the
network’s ICL description, as mandated by the IEEE 1687. The proposed test
generation algorithms are based on different heuristics that could easily run even
on relatively large RSNs.

In [26] that approach was refined to minimize the duration of the resulting test
sequence: the faced problem was properly modelled according to the graph theory,
and an optimal algorithm able to generate the minimum-duration test sequence was
described. Unfortunately, such an approach works only on relatively small RSNs,
and sub-optimal solutions must be accepted when dealing with real cases.

An alternative approach based on an evolutionary algorithm was developed in
[27] to generate test sequence for a generic RSN with minimum duration. The usage
of formal techniques to generate the minimum duration sequence able to test all
reconfigurable modules in the network is explored in [28], providing a lower bound

16

1.4 – IEEE 1687 Benchmark RSNs

for small networks and thus assessing the effectiveness of the other approaches.
The authors of [22] analyzed the effect of permanent fault on RSN elements

to determine diagnostic properties. The test sequence generated by the procedure
described in [25] is further extended to enable localization of faults, i.e., to satisfy
the defined properties.

A number of works also analyze the use of IEEE 1687 infrastructure to support
on-line health monitoring and fault management [29]–[35].

Modelling, verification and optimal pattern generation is tackled in [36]. RSN
formal model is presented considering structural and functional dependencies. The
problem is transformed into Boolean Satisfability Problem. The formal method is
also used for pattern retargeting, i.e., to generate scan-in data for reconfiguration
and execution of commands in instrument access procedures. Moreover, the paper
describes pattern generation method for efficient concurrent access. For the retar-
geting modelled as a sequential problem unrolled over number of time frames (CSU
operations), the authors in [37] proposed a method for calculating an upper-bound
on the number of required CSU operations. Knowing the upper-bound is used to
deal with the model complexity for large designs and reduce the search space while
preserving the optimum solution.

Defining and verifying security properties is addressed in [38]. In this work it is
described how specified permissions and restrictions are transformed into predicated
for a formal model unbounded checking.

The authors in [39] considered introducing some DfT modifications to enable
observability of shadow registers and update logic. Moreover, different test meth-
ods are proposed for stuck-at, flip-flop transparency and bridge-faults in the RSN.
Security in RSN is another important aspect considered is literature. In [40], [41],
obfuscation strategies are proposed to modify the structure of the network by intro-
ducing additional logic for controlling the state of reconfigurable modules, as well
as creating false paths to confuse the attacker. On the other hand, other works
consider validating security properties and preventing unauthorized access by the
means of external filter module both online and fixed-precomputed [42]–[44].

1.4 IEEE 1687 Benchmark RSNs
In [45] authors from both academia and industry proposed and published a set

of benchmarks to enable fair and objective comparison of the developed method-
ologies across research groups. The benchmarks are also typical and challenging
examples utilizing many different constructs and features supported by the stan-
dard. They can be classified in four different categories based on the architecture
and purpose. Table 1.2 reports some basic information about the networks used
to perform evaluation. In column 2 and 3, the table reports for each network the
number of SIBs and SMs, respectively. The number of configuration bits of SIBs

17

Background

and SMs is given in the fourth column. The column Max depth indicates the max-
imum hierarchical depth of each network (for SIB-based networks this value equals
to the maximum number of nested SIBs, according to [45]). The column Max path
reports the length of the longest path in the network, and the rightmost column
the number of bits in all the TDRs.

Table 1.2: ITC’16 benchmark networks list

Network SIB SM Tot.
bits

Max
depth

Max
path

Scan
cells

Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat_Ex 57 3 62 5 5,100 5,195
TreeUnbalanced 28 – 28 11 42,630 42,630
a586710 – 32 32 4 42,381 42,410
p22810 270 – 270 2 30,356 30,356
p34392 – 96 96 4 27,899 27,990
p93791 – 596 596 4 100,709 101,291
q12710 27 – 27 2 26,185 26,185
t512505 159 – 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 95,158
N73D14 29 17 46 12 190,526 218,869
NE1200P430 381 430 811 127 88,471 108,148
NE600P150 207 194 401 78 23,423 28,250

18

Chapter 2

Test

When a circuit includes an RSN, the issue of testing the related hardware must
clearly be considered, checking for possible defects affecting it. Failing to effectively
solve this issue may lead to completely false results when using the RSN itself.
Some works faced the issue of testing the test circuitry mandated by the IEEE
1149.1 standard [46], while other works focused on the test of possible permanent
faults affecting a standard scan chain, e.g., by shifting into the chain a sequence
of alternated 0s and 1s, and checking that the same sequence appears at the other
extreme of the chain [47]–[49]. However, to test an RSN is a more complex task
with respect to the standard scan chain test, since examining the ability of flip-flops
comprising the scan chain to shift is not sufficient to guarantee correct functionality
and expected performance. In addition, testing should check whether the network
can be moved from one configuration to another and if it operates correctly after
enforcing whichever legal configuration. Although testing an RSN clearly shares
some similarities with the task of design validation [36], time required to perform
test, i.e. test stimuli duration is considered to be more important with more strict
limitations.

2.1 Fault model
Testing a non-reconfigurable scan chain for permanent faults can be performed

by shifting a suitable sequence of 0s and 1s through the scan chain. RSNs are
however far more complicated to test: in addition to flip-flops composing the TDRs,
which have to be tested to check whether they can correctly shift values when
included in the active path, the reconfigurable modules (i.e., SIBs and ScanMuxes)
have to be also tested to check whether they are able to move the network to the
corresponding configurations.

For all of the test-related techniques that will be described in this thesis, high-
level fault model that was first introduced in [25] will be used. The faults affecting

19

Test

the reconfigurable modules, such as ScanMuxes, are modelled such that a different
configuration is selected rather than the expected one. Such a fault leads to a
different active path (called faulty path) than the expected one, and the two are
likely to have a different length. For example, in Fig. 1.6 the multiplexer (ScanMux)
may be affected by a permanent fault whose effect is that the segment connected
to the input 0 is always selected, no matter the value in the selection cell. The
same may arise for the generic SIBi, which can be affected by faults named stuck-at
asserted (SIBi-s@A) and stuck-at de-asserted (SIBi-s@D). The stuck-at faults in
the scan bits of the selection cells are considered as detected by implication by
testing such high-level faults, which cover also the faults affecting the update logic
of the reconfigurable modules.

Moreover, such faults cover some faults affecting the reset logic, whose effect is
that the module is stuck at the reset value. The other reset faults (i.e., those that
make the reset ineffective) are not considered but can be targeted by employing the
techniques described in [39].

2.2 Test procedure
Resorting to the high-level fault model, one can test an RSN by first configuring

the RSN so that the target fault is excited, and then comparing the length of the
activated path against the length of the expected path. Since the number of possible
configurations of a network grows exponentially with the number of configurable
modules, the problem of identifying a sequence of sessions which guarantees that
1) all the configurations modules are fully tested, and 2) the total test duration
is minimized, is not trivial. Coming back to the example of Fig. 1.6, this means
identifying the sequence of configurations (out of the 16 possible ones) that matches
the two above goals.

As an example, the high-level fault that affects the ScanMux of Fig. 1.6, to
always select the segment connected to the input 1, can be excited by a configuration
which selects the input 0; configurations C12 and C14 fulfil this requirement. Once
one of them is activated, one can measure the length of the active path by shifting
a given sequence (called test vector) in TDI and checking when it will appear on
TDO. Any fault modifying the length of the active path can be detected in this
way. A generic test vector is referred to as tvi in this paper.

In order to test all configurable modules in a RSN, the test sequence can be
organized in sessions: in each session the network is first configured via one or
more configuration vectors (so that each SIB and each ScanMux is switched into a
given position), and then a check is performed for whether the expected path has
been inserted between TDI and TDO via test vector, i.e., whether right segments
can be accessed.

A proper test sequence consists of an alternating bits sequence 0101..., as long as

20

2.2 – Test procedure

the active path length followed by a sequence terminator, such as two consecutive
0s or 1s. For example, if the network in Fig. 1.6 is configured to C8 (see Table 1.1), a
proper test vector is 01010101011, that is, 9 bits of alternated 0s and 1s followed by
the sequence terminator. Faults affecting the network may corrupt the network by
changing the active path, which will cause the sequence terminator to be observed
on the scan output in an unexpected clock cycle. For example, if a stuck-at fault
affects the selection of the module SIB1 (which is supposed to be asserted in the
fault-free scenario), then the network may exclude the SIB1’s controlled segment,
as in the SIB1’s de-asserted case. Thus, the active path selected in such a faulty
scenario would be the same of the configuration C0 of Table 1.1. In the faulty
scenario, the path length is 2, meaning that the sequence terminator is observed
earlier than expected on the scan output pin.

The complete process consists of the following steps:

• shifting in the sequence consisting of same values (all 0s or all 1s), while
the length of the sequence is equal to the length of the longest path in the
network; the goal of this phase is the initialization of the scan cells;

• shifting in the second, test sequence, of alternated 0s and 1s (i.e., 0101...01),
with the predetermined (expected) length

• the last sequence shifts values from the currently active path. Determining
fault-caused modifications of values in the scan chain and the length of the
active scan path is performed by verifying previously inserted test vector; in
parallel with observing the values appearing at the output, new configuration
vector is shifted in.

Applying the configuration vector demands an update operation. The duration
of the complete test procedure, referred to as a total cost, depends on the duration
of each step and is composed of configuration step cost and test step cost, both
expressed in terms of number of clock cycles. The configuration step cost is the time
needed to apply configuration vectors. The time overhead of the JTAG protocol
is also included, since moving the TAP controller from shift to update state and
vice versa also requires a few clock cycles (Fig. 1.2). The test phase cost is the
time required to shift in the test sequence. Furthermore, the duration of a session
is determined by the length of the TDRs included in the path, as well as by the
previous configuration.

In this thesis several testing procedures are presented. Two are semi-formal
techniques to generate the set of configurations that yield high coverage and low
test time based on representing the network as a Finite State Machine, while the
third one uses meta-heuristic evolutionary approach combined with post-processing
techniques.

1. Perform reset (SIB1 → SIB3)

21

Test

Table 2.1: Test procedure for the network in Fig.1.6

Input Fault free SIB1 SIB2 SM SIB3

s̄ s@D-s0 s@A-s1 s@D-s2 s@A-s3 s@0-s4 s@1-s5 s@D-s6 s@A-s7

reset
observe

DD0D
(2)

DD0D
(2)

AD0D
(6)

DD0D
(2)

DA0D
(2)

DD0D
(2)

DD1D
(2)

DD0D
(2)

DD0A
(9)

1000
observe

AD0D
(6)

DD0D
(2)

AD0D
(6)

AA0D
(16)

AD0D
(6)

AD1D
(6)

AD0D
(6)

1100
observe

AA0D
(16)

AD0D
(6)

AA0D
(16)

AA1D
(17)

AA0D
(16)

1110
observe

AA1D
(17)

AA0D
(16)

AA1D
(17)

1111
observe

AA1A
(24)

AA1D
(17)

2. Perform initialization
(a) Shift in 000000000000000000000000 (length = 24)

3. Insert test sequence
(a) Shift in 01 (length = 2)
(b) Shift in 11 (length = 2)

4. Check test sequence while applying new configuration
(a) Shift in 01 and observe the output; update (TDR1 → SIB2 → SIB1 →

SIB3)
5. Perform initialization

(a) Shift in 000000000000000000000000 (length = 24)
6. Insert test sequence

(a) Shift in 010101 (length = 6)
(b) Shift in 11 (length = 2)

7. Check test sequence while applying new configuration
(a) Shift in 011XXX and observe the output; update (TDR1 → TDR2 →

TDR4 → SM → SIB2 → SIB1 → SIB3)
8. Perform initialization

(a) Shift in 000000000000000000000000 (length = 24)
9. Insert test sequence

22

2.3 – A Semi-Formal Test Generation Technique for Reconfigurable Scan Networks

(a) Shift in 0101010101010101 (length = 16)
(b) Shift in 11 (length = 2)

10. Check test sequence while applying new configuration
(a) Shift in 0111XXXXXXXXXXXX and observe the output; update (TDR1
→ TDR2 → TDR5 → SM → SIB2 → SIB1 → SIB3)

11. Perform initialization
(a) Shift in 000000000000000000000000 (length = 24)

12. Insert test sequence
(a) Shift in 01010101010101010 (length = 17)
(b) Shift in 11 (length = 2)

13. Check test sequence while applying new configuration
(a) Shift in 1111XXXXXXXXXXXXX and observe the output; update (TDR1
→ TDR2 → TDR5 → SM → SIB2 → SIB1 → TDR3 → SIB3)

14. Perform initialization
(a) Shift in 000000000000000000000000 (length = 24)

15. Insert test sequence
(a) Shift in 010101010101010101010101 (length = 24)
(b) Shift in 11 (length = 2)

16. Last check of the test sequence
(a) Shift in a sequence of longest path length (24)

2.3 A Semi-Formal Test Generation Technique
for Reconfigurable Scan Networks

In the proposed approach, the RSN of IEEE 1687 is modelled as a finite state
automaton (FSA). Each state corresponds to a configuration, that is, a determinate
state of SIBs and SMs in the network; the input alphabet corresponds to recon-
figuration operations; the output symbols are the lengths of the network, as this
is an easily observable characteristic [9]. The high-level model is deliberately not
complete, that is, the FSA’s states encode only a subset of the possible configu-
rations. As not all transitions are possible in all states, either due to the physical
configuration of the RSN or to missing states in the FSA, whether an input does
not correspond to a transition, the FSA is brought to a special sink state with no
output transitions and a null output symbol.

23

Test

Faults taken into consideration are high-level stuck-at faults affecting SIBs and
SMs. Such faults are mapped to multiple transition fault on the high-level automa-
ton, as the same configuration operations may result in different network statuses
on faulty circuits, and the goal of the automatic test program generation is to de-
vise a sequence of inputs able to discriminate between the faulty automata and the
good one.

The proposed algorithm is based on a greedy search. While the simulation of
the automaton is exact, the method is approximate because it does not consider all
possible states nor all possible input symbols, and, consequently, not all possible
transitions. Nevertheless, the approximation is conservative with respect to testa-
bility, as any missing state or transition will cause the automaton to reach the sink
state, that by construction cannot be further distinguished from any other state.

The complexity of the proposed approach is linear on the number of states ns

times the size of the input alphabet Ain, that is O(ns·∥Ain∥). As both terms depend
linearly on the number of configuration bits ncb, the complexity is definitely smaller
than the A* algorithm presented in [26], where the search space was O(2ncb).

2.3.1 Network representation: FSA
The FSA is built incrementally. The FSA is initially composed of only of a state

with no output transition and a null output symbol. Such sink state can not be
distinguished from any other state, and, once entered, the FSA is not able to leave
it. It is used to denote a pathological condition, where the algorithm is not able
to provide reliable results due to the approximation of the model. Next, the reset
state, when all configuration bits are set to zero, is added to the automaton. Then,
for each SIBi, two states are created: one with the SIB asserted and one with
the SIB de-asserted. For each SM, one state is created for each possible output
configuration. Such a straightforward approach, however, is not always sufficient.
Scan chains may be nested, and a resource accessible only when its parent SIB is
asserted. The procedure for building the FSA detects such situations, and creates
the necessary states to handle them. The transitions from the reset state to all
these states are eventually added.

Then, for each transition in the good automaton, the possible faulty transition
are added, and whether the faulty transition would bring the automaton in a con-
figuration not already encoded as a state, that specific state is added to the FSA.
All missing transitions between existing states are also added to the automaton.
Eventually, all possible faulty transition from all existing states are also added, but
if one would bring the automaton in a configuration not encoded as a state, its
destination is set to the sink state, meaning that the FSA is unable to model such
situation. Such situations are related to ScanMux modules with two or more config-
uration bits and the number of inputs smaller than 2ncb . Non-existent inputs may
be grounded or bypassed to some other input. However, such details are related to

24

2.3 – A Semi-Formal Test Generation Technique for Reconfigurable Scan Networks

hardware implementation and are not available in the ICL descriptions.
Some heuristics are considered in order to match configurations which may re-

duce the cost. For example, states representing configurations in which accessible
SIBs that provide access to the deepest hierarchical level are not asserted may
increase the number of required sessions and therefore the cost. Additionally, con-
figurations in which a SIB is still asserted while already being fully tested together
with its sub-hierarchical modules increase the cost. Not setting minimal path length
configuration of a ScanMuxes that is fully tested together with its sub-hierarchical
modules increases the cost.

As almost only the states with a hamming distance of 1 from the reset state are
added to the FSA, the size of the automaton is linear in the number of configuration
bits. It is possible to define an automaton with more states: for instance, at some
point of the creation, all complementary states may be added as well; or all states at
a hamming distance of 2 from the reset state can be considered. It is important to
remember that the size of the automaton influences both the quality of the results
and the performance of the algorithm. Experimental evaluations indicate that such
extensions are not quite beneficial, but the designers may explicitly add relevant
states to this state or provide an additional heuristic.

Table 2.2: Test procedure for the network in Fig.1.6

Input Fault free SIB1 SIB2 SM SIB3

s̄ s@D-s0 s@A-s1 s@D-s2 s@A-s3 s@0-s4 s@1-s5 s@D-s6 s@A-s7

reset
observe

DD0D
(2)

DD0D
(2)

AD0D
(6)

DD0D
(2)

DA0D
(2)

DD0D
(2)

DD1D
(2)

DD0D
(2)

DD0A
(9)

1001
observe

AD0A
(13)

DD0A
(9)

AD0A
(13)

AA0A
(23)

AD0A
(13)

AD1A
(13)

AD0D
(6)

1100
observe

AA0D
(16)

AD0D
(6)

AA0D
(16)

AA0D
(17)

1110
observe

AA1D
(17)

AA0D
(16)

2.3.2 Greedy search algorithm
The search algorithm builds a test sequence as a sequence of transition and

observation steps. During a transition, a sequence of bits is fed into the scan chain,
bringing the RSN in a given configuration; such operation corresponds to one or
more input symbols in the FSA. During an observation, the length of the scan chain
is measured; the operation does not affect the FSA.

25

Test

In more practical terms, the goal of the test generation is to find a short and
effective sequence that brings the good circuit and the faulty ones in states where
the scan chain is of different lengths; then, to observe the length and detect the
faults. Indeed, not all transitions and not all observations require the same number
of clock cycles to be performed. The search algorithm aims at minimizing the length
of the test sequence with respect to the number of actual clock cycles required to
execute all transitions and observations.

Let x be an input symbol for the FSA. The reset operation is denoted with
reset, and it requires a single clock cycle to be performed. A sequence t of inputs
t = (reset, x0, x1, ..., xi) unequivocally defines the state of the FSA. Let s̄t be
the state of the FSA representing the fault-free circuit after the application of the
input sequence t, and let St = {s0

t, s1
t, ..., sn

t } be the set of the states of the FSA
representing the n faulty circuits. St depends on the full sequence t, and some
faulty circuits may be in the correct state, thus s̄t ∈ St. It is possible that a
fault also effects the reset state, while such a possibility is easily tractable by the
proposed methodology, it was not considered in this work.

Let DF(s̄, F) be the set of potentially detectable faults when the good machine
is in state s̄ and the faulty ones in F = (s0, s1, ..., sf), that is, the set of all faults
that caused the faulty machine to be in a state si with an output symbol different
from s̄. If an observation is performed, measuring the actual length of the RSN,
any difference would be observed and all such faults, detected.

Given a sequence of inputs t, the function Greedy extends it with the most
promising input symbol (Algorithm 1). That is, it appends the input symbol that
brings the FSA where the highest number of faults could be detected. If no new
fault can be detected by adding a single transition, the function returns an empty
input sequence.

Algorithm 1 Greedy step
function Greedy(t)

m← () ▷ Empty sequence of inputs
for x ∈ {valid input symbols in s̄t} do

u← t
Append x to u
if |DF(s̄u, Su)| > |DF(s̄m, Sm)| then

m← u
return m ▷ Most promising sequence

The search algorithm incrementally builds the test sequence t calling the func-
tion Greedy iteratively (Algorithm 2). In every step, the most useful symbol is
appended to the test sequence; however, if it is not possible to detect new faults by
adding a single symbol, the FSA is rolled back to a previous state where a useful
input symbol may be found.

26

2.4 – Enhanced version

Algorithm 2 Test Sequence Generation
procedure TPG

t← (reset) ▷ Initial test sequence
H← {t} ▷ History
F← {all detectable faults} ▷ Active faults
while |F| /= 0 do

g← Greedy(t)
if empty(g) then ▷ The greedy failed

Append reset to t ▷ Start over
for t′ ∈ H do

g′ ← Greedy(t′)
if |DF(s̄g′ , Sg′)| > |DF(s̄g, Sg)| then

g← g′ ▷ Alternative sequence
Append g to t
Append observe to t
H← H ∪ {g} ▷ Save sequence
Remove DF(s̄g, Sg) from F

The symbol observe is used to denote an observation operation in the test
sequence, it has no effect on the FSA, but its cost in term of clock cycles needs to
be considered.

To provide an example, RSN from Fig. 1.6 is used. In the initial, reset state,
original fault-free network has active path length 2. This is also the case with some
other faults, except stuck-at-asserted faults on SIB1 and SIB3 that increase the
path length to 6, i.e., 9. By inserting the test shift sequence these two faults can
be detected. From state DD0D that is seen as "DXXD", since the two modules’
configuration bits are not reachable (SIB2 and SM), possible transitions that are
considered and generated by the algorithm are AD0D, AD0A, and DD0A (by ap-
plying 1000, 1001, and 0001). Since the second one brings us to states where more
faults can be detected, this one is applied. In this iteration s@D on SIB1, s@A on
SIB2 and s@D on SIB3 are detected. Algorithm continues to explore possible tran-
sitions: from state AD0A that is now seen as "ADXA", since 3 configuration bits
are modifiable, possible transitions are AD0D, AA0D, AA0A (1000, 1100, 1101).
The one detecting most faults (and having the lowest cost) is AA0D; it detects s@D
on SIB2 and s@1 on SM. Fianlly, AA1D (1110) detects s@0 on SM.

2.4 Enhanced version
In Section 2.3, an RSN was modelled as a Finite State Automaton (FSA), and

a semi-formal method was described. Such approach is able to deal with larger and

27

Test

more complex circuits producing a test sequence able to detect any permanent fault
affecting the reconfigurable modules, but whose duration is lower than the one of
the test sequences previously generated by the heuristic solutions.

In this section, an extension of that approach is proposed. The test generator
has been rewritten. The new algorithm minimizes the number of costly operations,
postponing and compacting them, while it still guarantees to reach complete fault
coverage. At the same time, the new algorithm is almost always faster than its
predecessor. Experimental results on a set of benchmarks [50] demonstrate that
the approach is able to generate test sequences orders of magnitude shorter than
those reported in [51], [25] and [27], while always keeping the computational cost
under control.

2.4.1 Search algorithm
Let x be an input symbol for the FSA. The reset operation is denoted with

reset, and it requires a single clock cycle to be performed; the measurement of
the length of the scan chain is denoted with observe, it requires several clock
cycles and does not affect the state of the FSA. Both appending a symbol to an
input sequence and concatenating two sequences are expressed as additions, as no
ambiguities are possible. The symbol ∅ denotes an empty input and has no effect
on a sequence, e.g., t = t + ∅. A sequence t of inputs starting with a reset, i.e.,
t = (reset, i0, i1, ..., ii), unequivocally defines the state of the FSA.

Two states that have indistinguishable output symbols are equivalent and are
denoted with s′ ∼= s′′. Conversely, non equivalent states have distinguishable output
symbols and are denoted with s′ ≉ s′′. By definition, the sink state is equivalent
to any other states ∀s : s ∼= Ω.

Let s̄t be the state of the FSA representing the fault-free circuit after the ap-
plication of the input sequence t, while si

t be the state of the FSA representing
the circuit when fault i is present after the application of the same input sequence.
If their output symbols are distinguishable, that is, s̄t ≉ si

t, then an additional
observe input symbol would allow to mark the fault i as detected, and the fault
is said to be active. The number of active faults may increase as well as decrease
at each step of the input sequence.

Let D(t) be the set of all faults detected by the sequence t. Indeed, D(t) = ∅
if t contains no observe symbols; and all input symbols after the last observe do
not alter the results. Let D∗(t) be the set of all faults potentially detected by the
sequence t, that is, all faults either already detected or active after the application
of the sequence t, that is, the set of all faults that would be detected by appending
an observe to the input sequence: D∗(t) = D(t + observe).

The search algorithm incrementally builds a test sequence through a greedy
search. Explicit observations, that is observe symbols, are not included in the
test sequence unless required. The function Greedy returns the most useful input

28

2.4 – Enhanced version

symbol to be added (Algorithm 3), neglecting observations: given an input sequence
t, it identifies the symbol s that maximizes |D∗(t + s)|. If adding a single symbol
cannot activate any new fault, the function returns an empty symbol.

Algorithm 3 Identify most useful input symbol, neglecting observations.
function Greedy(t)

best← ∅ ▷ Empty symbol
for x ∈ {valid input symbols in s̄t} do

if |D∗(t + x)| > |D∗(t + best)| then
best← x

return best ▷ Most useful symbol

The search algorithm incrementally builds the test sequence t calling the func-
tion Greedy iteratively (Algorithm 4). In every step, the most useful symbol
is appended to the test sequence, trying to increase the number of active faults.
Only when a new symbol s would cause the loss of a previously activated fault, an
observe symbol is inserted before s.

When it is not possible to activate new faults by adding a single symbol, an
observe symbol is appended and the FSA is rolled back to a previous state where
useful input symbols may still be found and the search restarted. Such a state
is chosen among the previously traversed ones, and it is the closest one in term
of configuration clock cycles. The procedure terminates when all detectable faults
have been detected.

Algorithm 4 Test Sequence Generation
procedure TPG

t← (reset) ▷ Initial test sequence
H← {t} ▷ History
while D∗(t) /= {all detectable faults} do

s← Greedy(t)
if s /= ∅ then ▷ The greedy succeeded

if D∗(t) ⊈ D∗(t + s) then
t← t + observe ▷ Required

t← t + s ▷ Add symbol
H← H ∪ {t} ▷ Save sequence

else ▷ The greedy failed
t← t + observe
r← shortest({a ∈ H : Greedy(t + a) /= ∅})
t← t + r ▷ Start over

t← t + observe ▷ Final observation

29

Test

To demonstrate the difference in the Test Sequence Generation procedure be-
tween this approach and [51], we can use the network shown in Fig. 1.6. Table 2.2
and Table 2.3 show the phases of test sequence generation using procedure de-
scribed in Section 2.3 and the present one, respectively. The first column (input)
shows input symbols that were chosen and applied. The second column refers to
the fault-free network and its states. Columns 3-10 show the state of the faulty
circuits, each one for one particular fault. As it can be seen from Table 2.2, in
the previous approach each configuration phase is followed by an observation phase
(marked in bold). In this way a set of active faults is added to the set of detected
faults, which is increasing after each session. However, in Table 2.3 one can see
that not every configuration phase is necessarily followed by an observation phase.
Although the number of configuration steps is higher, the number of observation
steps, which can be extremely costly, is lower. In total, the number of clock cycles
needed to apply the test sequence given in Table 2.2 is 235 clock cycles, while on
the other hand, applying the test sequence from Table 2.3 requires 189 clock cycles,
only.

In comparison with [51], the length of the configuration vector may not be equal
to the value of the output symbol of the fault-free circuit’s current state, s̄t. The
length of the configuration vector is equal to max(s̄t, si

t), (∀i)(i ∈ {0,1, . . . , n−1}∧
(fault i not detected)), where n represents the total number of faults. The length of
the configuration vector is included in the configuration cost. Positions of certain
configuration bits in the chain that is defined by the state si

t or sj
t, i /= j, may not

correspond to any position of configuration bits in the chain determined by the state
s̄t. In this case, 0 bits are placed on these positions (Fig. 2.1). Additionally, on
the same position (in chains defined by different states), one may find configuration
bits belonging to different modules. This is all taken into account when assembling
and then applying configuration vector corresponding to the chosen input symbol.

2.5 Evolutionary approach to test reconfigurable
modules in RSNs

In this section the issue of generating effective sequences for testing the recon-
figurable elements within RSNs is addressed using evolutionary computation. Test
configurations are extracted with automatic test pattern generation (ATPG) and
used to guide the evolution. Post-processing techniques are proposed to improve
the evolutionary fittest solution. Results on a standard set of benchmark networks
show up to 27% reduced test time with respect to test generation based on RSN
exploration.

The approach proposed in this paper aims at generating an effective test se-
quence able to detect all testable faults while requiring a reduced test application

30

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

CBx CBy���

��
�

��
�

Conf.
vector

CBx CBy 0

CBx CBy 00

CBx CBy 0 00

Figure 2.1: Configuration vector and scan chain bit positions for fault-free and
faulty circuits

Table 2.3: Enhanced test procedure for the network in Fig.1.6

Input Fault free SIB1 SIB2 SM SIB3

s̄ s@D-s0 s@A-s1 s@D-s2 s@A-s3 s@0-s4 s@1-s5 s@D-s6 s@A-s7

reset DD0D
(2)

DD0D
(2)

AD0D
(6)

DD0D
(2)

DA0D
(2)

DD0D
(2)

DD1D
(2)

DD0D
(2)

DD0A
(9)

1001 AD0A
(13)

DD0A
(9)

AD0D
(6)

AD0A
(13)

AA0A
(23)

AD0A
(13)

AD1A
(13)

AD0D
(6)

AD0A
(13)

1101 AA0A
(23)

DD0D
(2)

AD0D
(6)

AD0A
(13)

DA1D
(2)

AA0A
(23)

AA1D
(17)

AA0D
(16)

AA0A
(23)

1111
observe

AA1A
(24)

DD0D
(2)

AD0D
(6)

DD0A
(9)

DA1D
(2)

AA0A
(23)

AA1D
(17)

AA1D
(17)

AA1A
(24)

0000
observe

DD0D
(2)

DD0A
(9)

time. In a first phase, an evolutionary algorithm [52] is used to cultivate a popu-
lation of individuals representing a set of RSN configurations in which test vectors
are applied. Then, the best individual produced in terms of test application time
is further optimized by a post-processing algorithm, which tries to anticipate some
test vectors and to remove redundant configurations.

In the following, the basic concepts needed to understand the proposed ap-
proach are briefly introduced (Section 2.5.1). Details are then given concerning:
the algorithm used to perform a transition from a given configuration to a target

31

Test

one (Section 2.5.2), the evolutionary algorithm (Section 2.5.3), the encoding used
for defining individuals (Section 2.5.4), and the post-processing algorithm (Sec-
tion 2.5.5).

2.5.1 Methodology Basics
The proposed approach requires the following features:

1. A function (referred to as Transition) able to produce a sequence of con-
figuration vectors cv1, cv2, ..., cvn that moves the RSN from the generic
configuration Csrc to the configuration Cdst. The configuration vectors cv1,
cv2, ..., cvn are applied (i.e., shifted in the network through scan input pins
for as many clock cycles as the active path length, and followed by an update
operation), the first (i.e., cv1) starting from Csrc and passing through several
intermediate configurations (i.e., C1, C2, ..., Cn−1) up to Cdst. This function
can be associated to a cost in terms of clock cycles required to apply all the
configuration vectors generated.

2. A function Evaluation able to produce the list of faults that can be excited
when the RSN is moved to the generic configuration Ci. Such faults would be
covered by means of a test vector applied after reaching Ci. This function can
be applied to a set of configurations; in such a case, Evaluation(C1, C2, ..., Cn)
produces the list of faults covered by all the configurations in the set: if a test
vector tvi is applied in each of the evaluated Ci, then all faults are covered.

By using an evolutionary engine which calls the Transition and Evaluation
functions we aim at identifying a sequence of configurations detecting all faults and
having minimum cost. Each configuration is associated to a test session. Each test
session is composed by applying the Transition function to generate intermediate
configuration vectors which move the network from the configuration Ci in the list
to Ci+1. The first time, the function is applied between the reset configuration
Crst and the first configuration in the list (if not equal to Crst). A test vector is
applied to the RSN after each transition to a configuration in the list. Thus, the
Evaluation function is applied to the list of configurations and the faults obtained
are used to compute the fault coverage. Moreover, the total test time is obtained as
the cost to apply the configuration vectors generated by the Transition functions
plus the time required to shift all test vectors.

As an example, let us consider the RSN in Fig. 1.6. For this network, let us
suppose the reset configuration is the one indicated with C0 in Table 1.1. A possible
solution to the problem of testing the network faults consists in the following se-
quence of configurations: [C0, C8, C13, C14]. For each configuration Ci a test vector
tvi is applied, which is made as follows:

32

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

1. as many 0s as the longest path length, i.e., 24 bits in the example network;

2. an alternated sequence 0101..., as long as the length of the active path cur-
rently selected;

3. two consecutive 1s (or two consecutive 0s) as the sequence terminator;

4. only for the last test vector, a sequence as long as the length of the active
path currently selected (values being shifted in are not important).

As highlighted in the list of faults excited by each configuration (see Table 2.4),
the configurations [C0, C8, C13, C14] allow detecting all faults in the network. The
list of vectors corresponding to such list of configurations is composed as follows:

1. tv1 in C0 (shift of 24+2+2 bits)

2. cv1 from C0 to C8 (shift of 2 bits, then update)

3. tv2 in C8 (shift of 24+6+2 bits)

4. cv2 from C8 to C13 (shift of 6 bits, then update)

5. tv3 in C13(shift of 24+17+2 bits)

6. cv3 from C13 to C14 (shift of 17 bits, then update)

7. tv4 in C14(shift of 24+23+2+23 bits)

If a cost of 5 clock cycles is considered to move the TAP controller from shift
to update and vice-versa (also including the first shift after the network reset), the
above test sequence is executed in 235 clock cycles.

The order in which configurations appear in the list is important and results in
different vectors generated by the Transition function. For example, let us consider
the same set of configurations as in the previous example but listed in a different
order: [C0, C13, C14, C8]. In this case, the list of vectors composing the test sequence
is the following:

1. tv1 in C0 (shift of 24+2+2 bits)

2. cv1 from C0 to C8 (shift of 2 bits, then update)

3. cv2 from C8 to C12 (shift of 6 bits, then update)

4. cv3 from C12 to C13 (shift of 16 bits, then update)

5. tv3 in C13(shift of 24+17+2 bits)

33

Test

Table 2.4: List of faults excited by the RSN in Fig. 1.6.

Configuration Set of covered faults

C0

SIB1-s@A, SIB3-s@AC1
C4
C5

C2

SIB1-s@A, SIB3-s@DC3
C6
C7

C8 SIB1-s@D, SIB3-s@A, SIB2-s@AC9

C10 SIB1-s@D, SIB3-s@D, SIB2-s@AC11

C12 SIB1-s@D, SIB2-s@D, SM1-s@1, SIB3-s@A

C13 SIB1-s@D, SIB2-s@D, SM1-s@0, SIB3-s@A

C14 SIB1-s@D, SIB2-s@D, SM1-s@1, SIB3-s@D

C15 SIB1-s@D, SIB2-s@D, SM1-s@0, SIB3-s@D

6. cv4 from C13 to C14 (shift of 17 bits, then update)

7. tv4 in C14 (shift of 24+23+2 bits).

8. cv5 from C14 to C8 (shift of 23 bits, then update)

9. tv5 in C8 (shift of 23+6+2+6 bits).

The above test sequence has the same fault coverage of the previous example
but is longer to execute (266 clock cycles). Moreover, it can be noticed that the
configuration C8 is visited twice before applying a test vector (tv5).

2.5.2 Transition function
The Transition function computes the sequence of configuration vectors able

to move the network state from the starting configuration to a target one with
minimal configuration cost (Algorithm 5).

34

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

Algorithm 5 Transition function
function Transition(Csrc, Cdst)

p← () ▷ Empty sequence of inputs
Cnext ← Csrc

hasNext← true
while next do

hasNext← configureBranch(Csrc, Cnext, Cdst, 0, confBits)
if hasNext then

Append Cnext to p
return p

The configureBranch function composes the portion of the next state that
is required to configure each multiplexer in the current branch towards the tar-
get state (Algorithm 6). First, the total number of steps required to configure a
multiplexer is calculated taking into account the target state of sub-hierarchical
multiplexers it controls. Then, the maximum number of steps for all multiplexers
in a given branch is set as a number of steps required to configure that branch. Sub-
sequently, all multiplexers that require the highest number of configuration steps
are immediately configured to match the target state. Conversely, the ones that
do not, are configured to match the minimal possible length configuration start-
ing from the higher hierarchical levels so that the previously calculated number of
required configurations is not affected.

Algorithm 6 Configuring the branch for next configuration
function configureBranch(Csrc, Cnext, Cdst, start, end)

branchSteps← branchConfigSteps ▷ num. of steps for conf. branch
i← start ▷ scanning the branch
while i < end do

configureBranch
Mux← {multiplexer controlled by i configuration bit}
if Mux not accessible then

continue
muxSteps← muxConfigSteps ▷ num. of steps for conf. mux
if branchSteps > 1 and muxSteps < branchSteps then

hasNext|= minimizeMux(Csrc, Cnext, Cdst, Mux) ▷ some state var.
on mux branches need to be conf.

else if muxSteps = branchSteps then
hasNext|= configureMux(Csrc, Cnext, Cdst, Mux)

i← next top level multiplexer
return hasNext

35

Test

The function configureMux composes the portion of next state needed to
configure the given multiplexer toward the target state. First, it recursively com-
poses the next state configuration for the selected branch of the multiplexer. Then
it composes the next state that the multiplexer itself must assume, selecting the
shortest branch that still needs to be configured. The function returns true if some
state variables in the multiplexer branches still need to be configured, false other-
wise. When multiple branches of the multiplexer have to be configured, these are
configured in the order of their current scan path length in order to minimize the
cost of switching between these branches.

The function minimizeMux composes the portion of the next state needed to
configure the given multiplexer toward its minimal length configuration. However,
often imposing the minimum length configuration on the multiplexer may result in
changing (increasing) the maximum number of steps required to reach the target
state. Therefore, first it calculates which branch should be configured to minimize
the multiplexer length. Then it configures the multiplexer and its branches to
match the target configuration. If the new selection of the branch corresponds to
the minimum length branch, the length of that branch is minimized. Otherwise,
the branch with the minimum length is selected. The function returns true if some
of the state variables on the multiplexer branches still need be configured, false
otherwise.

2.5.3 Evolutionary algorithm
The proposed approach exploits an evolutionary meta-heuristic to identify a

test sequence which minimizes the test cost while guarantying the full test cov-
erage. A population of individuals is cultivated by the evolutionary engine. An
individual, {Ct0, Ct1, Ct2, ..., Ctk−1}, is represented as a variable-length sequence of
valid configurations.

Individuals are evaluated by a separated evaluation engine that provides the
evolutionary engine with the fitness values of each individual. In more details, the
evaluation engine:

1. applies the Evaluation function to the list of configurations and computes
the fault coverage;

2. generates the test sequence, composed of configuration vectors obtained by
applying the Transition function between consecutive configurations in the
list, and test vectors {Ct0, {C0i}, Ct1, {C1i}, Ct2, {C2i}, ..., Ctk−1}; then, it com-
putes the cost in terms of time (number of clock cycles) needed to execute
the latter sequence.

The evolutionary framework is given in Fig. 2.2. In the proposed flow, the fitness
of an individual is composed of two components: the fault coverage and the inverse

36

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

of the test cost. These components are considered lexicographically: if the fault
coverage is higher, the fitness is higher, independently from the test costs.

DDECS 2018 19

μGP core

Population

Evolutionary engine

Individual

RSN

Fitness

Evaluation engine
Ct0, Ct1, Ct2, ..., Ctk-1

Custom tool

Transition

Evaluation

Ct0,{Coi},
Ct1, {C1i},
Ct2, {C2i},
...,
Ctk-1

[coverage[%], K/ time[cc]]

Figure 2.2: Evolutionary framework.

At the beginning of the evolution, a population of np random individuals is
generated. Then, in each step, called generation, the population is first expanded,
then shrunk back to its original size.

During the expansion, no genetic operators are activated and the generated
offspring is added to the population, in a steady-state approach. Genetic operators
include the standard mutation operators, that generate a new candidate solution
by slightly modifying an existing one, and crossover operators, that generate a
new candidate solution by recombining two existing solutions. Then the evaluation
engine is used to assess the fitness of all the new individuals. Finally, the least fit
individuals are discarded, shrinking the size of the population down to the original
np.

The process is iterated until a steady state is detected. That is, the fittest
individual in the population does not change for a given number of generations.
Such a condition intuitively indicates that a local optimum has been reached.

Alternatively, some individuals able to cover all faults can be directly inserted
in the initial population. This technique, called seeding, is likely to speed up the
evolutionary process: the optimizer is only asked to reduce the cost and not to
saturate the fault coverage first. However, the offspring of these few initial indi-
viduals could take over the entire population quickly, bringing the algorithm into
a local optimum. The experimental analyses suggest using seeding only when it is
particularly hard to reach the full test coverage of the considered RSN.

2.5.4 Individual encoding
Each individual created by the evolutionary engine consists in a sequence of

configurations. Since a configuration is determined by values in the selection bits

37

Test

of each reconfigurable element in the RSN, it can be represented by a bit-string.
Individuals are thus files composed of multiple bit-strings.

The evolutionary engine creates individuals which are structured as described
in a constraint library. The constraint library is also saved in a file and contains
one or more macros, each one defining a possible mapping of a bit-string in the
individual. In other words, in order for an individual to be considered as valid
by the evolutionary engine, each of its lines must match one of the macros in the
constraint library.

In the problem in hand, a macro describes which parts of a bit-sting are fixed
to predefined values and others which can be freely modified by the evolutionary
engine. As an example, if the RSN in Fig. 1.6 is considered, a possible macro in
the constraint library can be “D−−D", which is satisfied by all configurations in
Table 1.1 having SIB1 and SIB3 de-asserted (“−" means don’t care). If a macro
composed of all don’t care bits is included in the constraint library, then the evolu-
tionary engine is allowed to define completely random configurations. Such macro
will be referred to as the random macro.

In the proposed methodology, other than the random macro, constrained con-
figurations are extracted using automatic test patterns generation (ATPG) on a
combinational circuit that represents the problem and converted to macros. The
circuit is graphically described in Fig. 2.3 and receives as input the following values:

1. as many bits as the number of configuration bits in the RSN (conf in the
figure);

2. as many bits as the number of functional faults in the RSN (faults in the
figure).

Figure 2.3: Combinational circuit used for ATPG.

If one of the input signals of faults is set to 1, then the corresponding fault (e.g.,
SIB1-stuck-at-asserted) is activated.

As output, the circuit produces the following values:

1. the active path length (length in the figure) in the configuration conf, when
one or more faults are active (i.e., one or more bits of faults are set to 1);

38

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

2. a bit (error in the figure) that alerts when an illegal configuration is used as
the conf value.

The combinational circuit can be written in behavioural VHDL or Verilog by
encoding the truth-table of the active path length function (e.g., as in Table 1.1).
However, such an approach becomes easily unfeasible due to a high number of
configuration bits or when the RSN is designed using certain patterns (e.g., sev-
eral sibling SIBs). The approach we suggest is to build the circuit incrementally
while traversing the RSN hierarchy. The final length can be expressed as a sum of
different contributes associated to TDRs, SIBs, and ScanMuxes. As an example,
the final length of the RSN in Fig. 1.6 is the sum of the lengths associated to the
sub-networks controlled by SIB1 and SIB3, respectively. The pseudo-code of the
functions length and error for the example RSN is reported in Algorithm 7.

In order for the behavioral circuit to be ATPG ready, it is then translated in
structural Verilog by means of logic synthesis. The ATPG process consists in the
following steps:

1. in order to activate faults internally, the faults input signals are constrained
to the value 0;

2. in order to generate only valid configurations, the error output signal is con-
strained to the value 0;

3. the ATPG fault list includes stuck-at-1 faults on the faults input signals, only;

4. X values are used as don’t care bits in the patterns list.

After performing the ATPG, patterns are saved into a text file and translated
into macros and included in the constraint library, such that the evolutionary engine
can freely modify don’t care bits while fixing the other bits to the values reported
in the corresponding pattern.

Alternative encoding

A suitable test vector is shifted-in after reaching each configuration. The
Transition function interconnects the configurations in the list, eventually adding
intermediate configurations where tests are not performed. Therefore, configuration
patterns to reach the configuration Cj from Ci are decided by Transition(Ci, Cj),
hence also intermediate configurations. Since the purpose of the proposed ap-
proach is the minimization of the test time, the Transition function should be able
to compute the minimum cost path from Ci to Cj. Alternatively, if a sub-optimal
Transition function is available, we propose to slightly modify the structure of the
individuals generated by the evolutionary engine.

39

Test

Algorithm 7 Combinational circuit functions for the RSN in Fig. 1.6
function length(conf, faults)

if SIB2 is de-asserted or SIB2-s@D then
lengthSIB2 ← 1

else if SIB2 is asserted or SIB2-s@A then
lengthSIB2 ← 1 + 7

else
lengthSIB2 ← 0 ▷ unexpected case

if SM selects 0 or SM-s@0 then
lengthSM ← 3

else if SM selects 1 or SM-s@1 then
lengthSM ← 6

else
lengthSM ← 0 ▷ unexpected case

if SIB1 is de-asserted or SIB1-s@D then
lengthSIB1 ← 1

else if SIB1 is asserted or SIB1-s@A then
lengthSIB1 ← 1 + 2 + lengthSIB2 + lengthSM + 1

else
lengthSIB1 ← 0 ▷ unexpected case

if SIB3 is de-asserted or SIB3-s@D then
lengthSIB3 ← 1

else if SIB3 is asserted or SIB3-s@A then
lengthSIB3 ← 1 + 4

else
lengthSIB3 ← 0 ▷ unexpected case

return lengthSIB1 + lengthSIB3

function error(conf) return 0 ▷ No illegal configurations

The alternative encoding consists in adding a flag to each configuration in the
list to indicate whether a test vector should be applied in that configuration or
not. An example of individual for the RSN of Fig. 1.6 is [C0t, C8f, C12t, C13t],
where t indicates that a test vector is applied after reaching that configuration,
and f the opposite case. The example can be interpreted as the intention to force
the network to pass through the configuration C8, which becomes an intermediate
configuration for the transition between C0 and C12. In details, it is like splitting
Transition(C0, C12) into Transition(C0, C8) and Transition(C8, C12). Clearly, the
fault coverage is computed by applying the Evaluation function to the configura-
tions that are marked with t, only. This is because faults excited by intermediate
configurations are potentially excited but not explicitly observed.

40

2.5 – Evolutionary approach to test reconfigurable modules in RSNs

Using the proposed modification, the problem of finding the best path to a
configuration that requires a test vector is partially delegated to the evolutionary
engine. Clearly, the problem becomes more complex compared to when an optimal
Transition function is used; thus, the progression of the evolution becomes slower.

2.5.5 Post-processing techniques
Two post-processing techniques are proposed in order to reduce the test cost of

the sequence generated resorting to the evolutionary algorithm described in Sec-
tion 2.5.3. They can be applied on the provided test sequence independently, if
necessary.

T

C + T

C + T

C

C

T

C + T

C + T

C + T

C

Figure 2.4: Post-processing I

The first one is used to process the full list of configurations in which test is
performed and configurations that are exclusively used to interconnect the latter
ones. The function reads the list in the reverse order (from end to beginning) and
tries to advance the last test vector by appending it next to one of the preceding
intermediate transition configurations (Algorithm 8); by doing so, all the configu-
ration vectors required previously to reach the last test state from the penultimate
one can be discarded including the last test vector (Fig. 2.4). Consequently, remov-
ing them, the number of clock cycles required to apply the generated test sequence
is directly reduced. The condition for advancing such test vector is that the fault
coverage has to remain unchanged while the test cost of the modified sequence
should be reduced. If the last test vector is successfully anticipated, the algorithm
continues checking the updated test sequence. This operation is performed until it
becomes impossible to satisfy the condition and move forward currently last test
vector in the modified test sequence.

The second technique is used to perform modifications on the test vector set
(Algorithm 9). For each test vector in the list, a new (reduced by one) list is gen-
erated excluding that particular vector. The new list is generated by applying the

41

Test

Algorithm 8 Bottom-up approach for moving the test states
function postproc1(S)

nextState← true
U ← S
while nextState do

Evaluate(U, faultC, costT) ▷ calculate fault coverage and test cost
minCost← costT
bestSeq ← U
nextState← false
U ← U{ remove last Test vector}
for si ∈ {U} do

if si is Configuration then
H ← U{insert Test vector at i position}
H{remove excessive Configuration vectors}
Evaluate(H, nfaultC, ncostT)
if nfaultC = 100% then ▷ check coverage

if ncostT < minCost then ▷ check cost
minCost← ncostT ▷ update cost, save new sequence
bestSeq ← H
nextState← true

U ← bestSeq

return U

T0

C10 + T1

C22 + T2

C20

C21

C31 + T3

C30

{T0, T1, T2, T3}

C02
’ + Ta1

C01
’ + Ta0

{T1, T2, T3}

C10 + T1

C20 + Ta2

C22 + T2

C21 + Ta3

C31 + T3

C30 + Ta4

{Ta1, T1 , T2, T3}

Figure 2.5: Post-processing II, first test vector removed

Transition function on all pairs of consecutive test vectors to insert interconnect-
ing configuration vectors. All the configuration vectors are considered as potential
candidates to be followed by a test vector, based on the set of faults they cover.

42

2.6 – Experimental Results

T0

C10 + T1

C22 + T2

C20

C21

C31 + T3

C30

{T0, T1, T2, T3}

T0

{T0, T1, T3}

C20
’’+ Tb0

C22
’’+ Tb2

C23
’’+ Tb3

C21
’’+ Tb1

C31 + T3

C10 + T1

{T0, T1, Tb1, T3}

Figure 2.6: Post-processing II, third test vector removed

After traversing the whole list to find potential points of test vector insertion, the
newly generated list is evaluated and recorded only if the fault coverage is un-
changed (100%) while the test cost is reduced with respect to the one previously
recorded. The process is repeated until no further improvement is possible for a
given sequence of test vectors. The Fig. 2.5 and Fig. 2.6 show the algorithm flow
and exemplify how removing different test vectors from the initial list results in
having different interconnected lists and consequently different test sequences. The
choice between the two is driven by the test cost, since the potential solutions with
lower fault coverage are not even considered.

2.6 Experimental Results

2.6.1 Experiments for FSA approaches from Section 2.3
and Section 2.4

The effectiveness of the proposed algorithm has been evaluated on a sub-set
of the ITC16 suite of benchmark reconfigurable scan networks. Some networks
included in the benchmarks have not been considered since they include some con-
structs that are not currently supported by our environment. The algorithm pro-
posed in this paper has been compared against three alternative approaches. The
first approach, to which we refer to as FSA, has been proposed in [51]. The second
approach is derived from [25] and is referred to as depth-first in this paper. The
approach is based on the exploration of the network topology graph performing a
depth-first traversal of this graph. The third approach has been proposed in [27]
and is referred to as evolutionary in this paper. The approach makes use of an
evolutionary framework to generate a test sequence possibly able to minimize the
test time.

Experiments were run using a tool written in Java. The tool supports network

43

Test

Algorithm 9 Removing test states and trying to insert new ones with reduced
cost

function postproc2(T)
CT ← T{apply Transition()} ▷ interconnect Test vect. with Conf. vect.
Evaluate(CT, faultC, costT) ▷ calculate fault coverage and test cost
minCost← costT
bestSeq ← T
hasNext← true
while hasNext do

hasNext← false
for ti ∈ {bestSeq} do

U ← bestSeq{remove ti test vector } ▷ remove one Test vector
FSet← U{set of faults covered by set of Test vectors}
TList← U{apply Transition()} ▷ add interconnecting Conf.
NTList← ()
for si ∈ TList do

if si is Configuration then ▷ among Conf. vect. try to
if Faults(si) \ FSet /= ∅ then ▷ insert Test vect. to increase

Append si to NTList ▷ fault coverage
else

Append si to NTList

Evaluate(NTList, nfaultC, ncostT) ▷ evaluate new Test vect. list
if nfaultC = 100% then

if ncostT < minCost then ▷ save the better solution
minCost← ncostT
bestSeq ← NTList
hasNext← true

return bestSeq

structure extraction from files in different formats including ICL. Moreover, the tool
is able to distinguish all faults that are undetectable, due to the inability to produce
any difference in the path length. For example, faults affecting SIB modules that
do not have any register or any other module on their branch are considered to be
undetectable. Additionally, faults affecting ScanMux modules that have registers
of equal lengths on their branches are also considered as undetectable, again taking
into account the faut model that was used in this approach. However, there is only
a small number of undetectable faults in the set of benchmark networks that were
used to evaluate the algorithm,for which we provide details in Table Table 2.5.

A laptop equipped with an Intel i5-480M processor was used to run experiments.
Table 2.6 summarizes the experimental results. The table shows the number of
configuration vectors cv (column 2) and test vectors tv (column 3) generated by

44

2.6 – Experimental Results

Table 2.5: List of undetectable faults

Network Number Comment
q12710 4 2 SIBs with the register length equal to 0
N132D4 4 2 ScanMuxes eq. branch registers (11, 18)
NE600P150 4 2 ScanMuxes eq. branch registers (45, 11)
NE1200P430 4 2 ScanMuxes eq. branch registers (115, 29)

the tool. Furthermore, the number of clock cycles required to configure the network
is given in column 4, while the number of clock cycles needed to apply test vectors
is given in column 5.

Table 2.6: IEEE 1687 test algorithm experimental results

Network cv tv
Conf.

time [cc]
Test

time [cc]
Mingle 6 7 628 811
TreeBal. 7 1 8,569 12,646
TreeFlat_Ex 6 3 7,750 16,267
TreeUnbal. 11 1 105,197 77,121
a586710 4 5 46,575 170,257
p22810 2 1 2,698 90,537
p34392 6 3 29,357 111,911
p93791 6 3 103,525 403,532
q12710 2 1 8,311 78,562
t512505 2 1 8,891 230,438
N132D4 7 2 9,387 7,682
N17D3 5 2 1,159 1,151
N32D6 5 2 230,390 282,236
N73D14 13 2 1,073,954 537,833
NE1200P430 128 2 1,638,849 200,258
NE600P150 79 2 347,629 55,098

45

Test
Ta

bl
e

2.
7:

Ex
pe

rim
en

ta
lc

om
pa

ris
on

of
th

e
en

ha
nc

ed
al

go
rit

hm
(F

SA
2)

–
Se

ct
io

n
2.

4
ag

ai
ns

t
th

e
pr

ev
io

us
ve

rs
io

n
[5

1]
–

Se
ct

io
n

2.
3,

a
D

ep
th

-fi
rs

t
al

go
rit

hm
[2

5]
,a

nd
an

Ev
ol

ut
io

na
ry

ap
pr

oa
ch

[2
7]

.
C

ol
um

ns
en

di
ng

w
ith

“v
s.”

sh
ow

th
e

co
m

pa
ris

on
ag

ai
ns

tt
he

cu
rr

en
tr

es
ul

t;
pe

rc
en

ta
ge

sq
ua

nt
ify

ho
w

m
uc

h
th

e
re

su
lts

de
liv

er
ed

by
th

e
pr

ev
io

us
ap

pr
oa

ch
es

ar
e

wo
rs

e. N
et

wo
rk

To
ta

lt
es

t
tim

e
[c

lo
ck

cy
cl

es
]

Ru
nt

im
e

(w
al

lc
lo

ck
)

FS
A

2
[5

1]
[5

1]
vs

.
[2

5]
[2

5]
vs

.
[2

7]
[2

7]
vs

.
FS

A
2

[5
1]

[2
5]

[2
7]

M
in

gl
e

1,
43

9
2,

01
4

39
.9

6%
2,

28
2

58
.5

8%
2,

07
8

44
.4

1%
49

s
26

s
1s

8h
Tr

ee
Ba

la
nc

ed
21

,2
15

63
,8

43
20

0.
93

%
69

,3
69

22
6.

98
%

69
,3

69
22

6.
98

%
1m

48
s

1s
19

h
Tr

ee
Fl

at
Ex

24
,0

17
41

,8
83

74
.3

9%
71

,3
41

19
7.

04
%

55
,7

76
13

2.
24

%
1m

71
s

1s
8h

Tr
ee

U
nb

al
an

ce
d

18
2,

31
8

71
9,

37
5

29
4.

57
%

1,
07

1,
79

9
48

7.
87

%
1,

04
2,

45
0

47
1.

78
%

1m
34

s
1s

5h
a5

86
71

0
21

6,
83

2
29

6,
79

6
36

.8
8%

29
9,

62
4

38
.1

8%
29

8,
24

1
37

.5
4%

30
s

39
s

1s
8h

p2
28

10
93

,2
35

15
2,

39
9

63
.4

6%
15

2,
93

7
64

.0
3%

15
2,

93
7

64
.0

3%
44

s
39

s
1s

9h
p3

43
92

14
1,

26
8

19
5,

55
4

38
.4

3%
19

6,
70

2
39

.2
4%

19
6,

50
5

39
.1

0%
36

s
1m

1s
7h

p9
37

91
50

7,
05

7
70

6,
24

2
39

.2
8%

70
8,

87
8

39
.8

0%
70

8,
87

8
39

.8
0%

10
m

2m
1s

27
h

q1
27

10
86

,8
73

13
1,

02
2

50
.8

2%
13

1,
02

2
50

.8
2%

13
1,

02
2

50
.8

2%
39

s
46

s
1s

5h
t5

12
50

5
23

9,
32

9
38

5,
44

0
61

.0
5%

38
6,

02
4

61
.2

9%
38

6,
02

4
61

.2
9%

45
s

50
s

1s
8h

N
13

2D
4

17
,0

69
31

,9
95

87
.4

5%
38

,7
31

12
6.

91
%

37
,2

57
11

8.
27

%
4m

2s
1s

3h
N

17
D

3
2,

31
0

3,
76

5
62

.9
9%

4,
14

3
79

.3
5%

3,
85

1
66

.7
1%

1s
1s

1s
5h

N
32

D
6

51
2,

62
6

81
6,

63
4

59
.3

0%
94

2,
47

0
83

.8
5%

89
3,

01
7

74
.2

0%
1s

6s
1s

5h
N

73
D

14
1,

61
1,

78
7

4,
37

7,
44

9
17

1.
59

%
5,

97
8,

04
7

27
0.

90
%

5,
96

7,
13

7
27

0.
22

%
16

s
97

s
3s

3h
N

E1
20

0P
43

0
1,

83
9,

10
7

14
,7

94
,8

57
70

4.
46

%
21

,5
15

,7
05

1,
06

9.
90

%
21

,5
15

,7
05

1,
06

9.
90

%
19

m
1h

3s
50

h
N

E6
00

P1
50

40
2,

72
7

2,
69

4,
67

2
56

9.
11

%
3,

72
6,

72
6

82
5.

37
%

3,
72

6,
72

6
82

5.
37

%
3m

4m
3s

12
h

46

2.6 – Experimental Results

The cost of every configuration phase expressed in clock cycles has been in-
creased by five (JTAG overhead)[27]. In addition, the same overhead has been
taken into account for calculating the cost of a test phase. This cost consists of the
length of the longest path and the length of the currently active path increased by
two (test pattern termination symbols).

All modelled, detectable faults were detected in each of the experiments, thus
reaching full coverage.

A comparison of the enhanced approach from Section 2.4 against the approach
described in Section 2.3, depth-first and evolutionary approaches is shown in Sec-
tion 2.6.1. Reported data related to the evolutionary approach are taken from
[27]. For the depth-first approach, data have been newly generated on the ITC16
benchmarks by running the tool implementing the same algorithm as in [25]. For
each algorithm, Section 2.6.1 reports the duration in clock cycles of the generated
test sequence (referred to as Test Application Time) and the CPU time required to
apply the algorithm (referred to as Generation Time).

Remarkably, results in Section 2.6.1 show a clear improvement regarding the
total test time, since the results delivered by the previous approaches were worse
up to 705% for depth-first, up to 1,070% for depth-first and evolutionary method.
Moreover, the test sequence generated by the proposed approach is shorter than
the sequences obtained by the other algorithms in all networks.

Concerning the runtime, as Java’s non-determinism prevents an accurate tim-
ing, only the total time is reported for all programs (wall-clock). The proposed
algorithm completes in the order of seconds, while 19 minutes was required only for
one network (NE1200P430). The depth-first algorithm is very fast to execute, even
for large networks. The evolutionary approach, on the other hand, requires hours.
Moreover, the results reported in [27] for the evolutionary approach were gathered
on a multi-core server, exploiting parallelism, while a simple laptop has been used
to run the proposed approach.

2.6.2 Experiments for Evolutionary approach from Section
2.5

This subsection reports experimental results obtained using the technique from
Section 2.5 on a sub-set of the ITC’16 benchmark networks. The effectiveness is
shown by comparing it to the previous approach from which it evolved [27] and the
sub-optimal approach based on the depth-first algorithm [25].

The main reason why not all networks from the benchmark set have been con-
sidered is that they contain some constructs that are currently not supported by
the tool. The networks from the evaluation set differ in the number and type of re-
configurable modules and therefore in the number of configuration bits, hierarchical
depth etc.

47

Test

The whole framework setup consists of three modules. First, the evolutionary
engine µGP [53] which generates new individuals by applying genetic operators. A
next generation of individuals is created based on the fitness values of the newly
created offsprings. The second module, the evaluator, is written in Java and works
independently. Its role is to provide the complete set of transitions for each of the
individuals calling the Transition function. Additionally, for each of the individuals
generated by the µGP the fitness scores are formed based on the values returned by
the Evaluation function that calculates the fault coverage and the number of clock
cycles required to apply the generated test sequence. The tool is able to read a file
containing the network description in various formats, including the ICL. Finally,
a separate tool – individual optimizer is developed in Java and can be optionally
used to further reduce the test cost by manipulating the best individual created by
the µGP.

The experiments were run on a server equipped with a dual Intel Xeon CPU
E5-2680 v3 and 256 GB of RAM (evolutionary phase) and on a laptop with dual
Intel i5-7200U CPU and 8GB of RAM (post-processing phase). The server was used
to run the evolutionary engine and perform evaluations for each of the individuals,
while the laptop was used to perform the post-processing. To emphasize, the reason
behind running the evolutionary and post-processing algorithms on two different
platforms is not necessity, but commodity, since the algorithms have been developed
in different environments. Additionally, the post-processing phase does not require
large amount of RAM so there was no obvious advantage of running this task on
the server as well. However, if this phase is executed on the server, wall-clock time
would be conservatively reduced up to five times.

For each benchmark RSN, the sub-optimal approach based on the depth-first
algorithm that traverses the RSN isomorphic graph structure has been executed (it
requires a single run). The depth-first approach is very efficient in terms of time
and requires few seconds to complete. The evolutionary approach has also been run
on each benchmark and compared with the depth-first approach. The experiments
executed on the server have been parallelized using up to 8 cores.

The µGP parameters were configured as follows: np set to 200, no set to 120,
while a steady state of 500 generations was chosen. Concerning genetic operators,
the following mutation operators have been enabled: insertion, removal, replace-
ment, alteration, swap; and for crossover: one-point precise/imprecise, two-point
precise/imprecise, inver-over [54].

The initial population is composed of:

• individuals that may contain random configurations (due to random macro);

• apart from random configurations, individuals may contain partially pre-
defined configurations, i.e., in this case configurations generated by the ATPG
approach

48

2.6 – Experimental Results

• an individual with a sub-optimal solution (depth-first) that has been directly
inserted into the population - seeding.

Table 2.8 provides experimental results and is organized as follows: the evo-
lutionary segment including columns 2-8 reports results regarding the evolution-
ary stage, while the second, post-processing segment (columns 9-12) provides re-
sults obtained by employing described post-processing techniques. For each of the
benchmark networks, the wall-clock time (in hours) required by the evolutionary
algorithm to reach the steady state is given in column 2 (Wall-clock time). The
column 3 (#macros) reports the total number of macros defined in a constraint file
for each of the networks. The number of evaluated individuals and the number of
generations used by the evolutionary algorithm are given in columns 4 (Eval.ind.)
and 5 (Gen.), respectively. Then, the number of configuration (#conf) and test
(#test) vectors as well as the total time in clock cycles (Test time) required to apply
the test sequence delivered by the evolutionary algorithm are reported in columns
6-8. The wall-clock time for post-processing to be applied is reported in column
9 of the same table. After running post-processing algorithm on the test sequence
generated by the evolutionary engine, a potentially modified sequence is obtained
for which the number of configuration (#conf) and test (#test) vectors are given
in columns 10 and 11, respectively. The total time (number of clock cycles) needed
to apply the aforementioned sequence is contained in column 12 (Test time).

A comparison between the presented approach and the two previously described
approaches (the evolutionary approach [27] and the depth-first approach [25]) is
given in Table 2.9. For all three approaches the table reports the number of con-
figuration vectors (#cv) and the number of test vectors (#tv), as well as the total
time in clock cycles required to apply the generated sequence (Test time). In addi-
tion, the results obtained resorting to the proposed approach have been confronted
with the results from [25] and [27]. The numbers are given in percentages in the
last two columns, respectively; they are calculated based on how much is the new
Test time reduced with respect to the previous results.

Applying the generated test sequences results in achieving full test coverage,
i.e., 100%, given the adopted fault model. Furthermore, by only rewriting the
Transition function which is used to generate the configuration vectors between
two test steps we were able to achieve up to 27% decrease in total test cost for 6
out of 16 benchmark networks when compared to the depth-first approach. In some
cases, due to the size and complexity of the networks, seeding the population with
the sub-optimal solution individual has led the evolutionary algorithm to saturate
the population, thus not improving the inserted sub-optimal solution. However,
introducing the described post-processing methods led to a further decrease of the
total test cost for the remaining circuits, i.e., in total in 14 out of 16 cases. The
post-processing has shown to be highly effective even for the two large networks
(NE1200P430 and NE600P150). The results for the networks with low hierarchical

49

Test

depth have not been particularly influenced (small improvement or none) by the
new technique, probably due to their low hierarchical depth and small number of
test vectors. In these cases, the depth-first approach has most likely produced
the solution close or equal to the global optimum. Additionally, here we report
only basic statistical qualifiers such as minimum, maximum and median values of
time reduction due to the limited and insufficient number of benchmark networks.
When the proposed approach is confronted to [25], the latter values are 0%, 27%
and 10.1%, respectively; when compared to [27], 0%, 26.6% and 7.1% values are
derived.

50

2.6 – Experimental Results

Ta
bl

e
2.

8:
Ex

pe
rim

en
ta

lr
es

ul
ts

on
th

e
IT

C
’1

6
be

nc
hm

ar
k

ne
tw

or
ks

ev
ol

ut
io

na
ry

po
st

-p
ro

ce
ss

in
g

N
et

wo
rk

W
al

l-c
lo

ck
tim

e
[h

]
#

m
ac

ro
s

Ev
al

.
in

d.
G

en
.

#
co

nf
#

te
st

Te
st

tim
e

[c
c]

W
al

l-c
lo

ck
tim

e
[m

in
]

#
co

nf
#

te
st

Te
st

tim
e

[c
c]

M
in

gl
e

8
13

49
,1

69
57

6
6

7
2,

13
5

<
1

6
7

2,
01

4
Tr

ee
Ba

la
nc

ed
6

47
43

,9
14

50
0

7
8

69
,3

69
<

1
7

8
63

,8
43

Tr
ee

Fl
at

_
Ex

13
38

34
,9

31
1,

17
8

22
6

52
,0

86
<

1
22

6
52

,0
86

Tr
ee

U
nb

al
an

ce
d

5
31

31
,3

29
81

8
17

12
1,

02
6,

33
3

<
1

12
12

1,
02

1,
02

3
a5

86
71

0
15

14
49

,1
29

50
0

5
5

29
9,

62
4

<
1

5
5

29
8,

21
0

p2
28

10
32

78
21

,0
01

50
0

2
3

15
2,

93
7

1
2

3
15

2,
39

9
p3

43
92

68
32

26
,2

92
1,

06
9

5
5

19
6,

22
3

<
1

5
5

19
6,

12
8

p9
37

91
27

48
29

,9
32

50
0

4
5

70
8,

87
8

1
4

5
70

6,
24

2
q1

27
10

24
16

19
,9

00
50

0
2

3
13

1,
02

2
<

1
2

3
13

1,
02

2
t5

12
50

5
8

40
21

,2
79

50
0

2
3

38
6,

02
4

<
1

2
3

38
5,

44
0

N
13

2D
4

3
46

47
,1

77
55

2
5

6
38

,7
31

<
1

5
6

31
,6

45
N

17
D

3
7

15
59

,3
84

50
9

4
5

3,
84

1
<

1
4

5
3,

79
7

N
32

D
6

3
15

36
,7

86
41

9
4

5
90

4,
97

4
<

1
4

5
85

6,
40

6
N

73
D

14
2

36
34

,0
75

77
4

14
13

6,
07

8,
86

8
<

1
13

13
4,

76
2,

15
0

N
E1

20
0P

43
0

78
31

7
48

,9
02

50
0

12
7

12
8

21
,5

15
,7

05
4k

12
7

12
8

16
,1

31
,1

71
N

E6
00

P1
50

19
28

6
45

,8
57

50
0

78
79

3,
72

6,
72

6
18

0
78

79
2,

73
5,

01
6

51

Test

Ta
bl

e
2.

9:
C

om
pa

ris
on

of
th

e
ex

pe
rim

en
ta

lr
es

ul
ts

w
ith

th
e

ap
pr

oa
ch

es
fro

m
[2

5]
an

d
[2

7]
.

D
ep

th
-fi

rs
t

[2
5]

Ev
ol

ut
io

na
ry

[2
7]

Pr
op

os
ed

ap
pr

oa
ch

C
om

pa
ris

on

N
et

wo
rk

#
cv

#
tv

Te
st

tim
e

[c
c]

#
cv

#
tv

Te
st

tim
e

[c
c]

#
cv

#
tv

Te
st

tim
e

[c
c]

Te
st

tim
e

re
du

ct
io

n
vs

.
[2

5]

Te
st

tim
e

re
du

ct
io

n
vs

.
[2

7]
M

in
gl

e
6

7
2,

28
2

6
7

2,
07

8
6

7
2,

01
4

11
.7

%
3.

1%
Tr

ee
Ba

la
nc

ed
7

10
69

,3
69

7
8

69
,3

69
7

8
63

,8
43

8.
0%

8.
0%

Tr
ee

Fl
at

_
Ex

5
6

71
,3

41
22

6
55

,7
76

16
6

52
,0

86
27

.0
%

6.
6%

Tr
ee

U
nb

al
an

ce
d

11
12

1,
07

1,
79

9
12

12
1,

04
2,

45
0

17
12

1,
02

1,
02

3
4.

7%
2.

1%
a5

86
71

0
4

5
29

9,
62

4
5

5
29

8,
24

1
5

5
29

8,
21

0
0.

5%
0.

0%
p2

28
10

2
3

15
2,

93
7

2
3

15
2,

93
7

2
3

15
2,

39
9

0.
4%

0.
4%

p3
43

92
4

5
19

6,
70

2
5

5
19

6,
50

5
5

5
19

6,
12

8
0.

3%
0.

2%
p9

37
91

4
5

70
8,

87
8

4
5

70
8,

87
8

4
5

70
6,

24
2

0.
4%

0.
4%

q1
27

10
2

3
13

1,
02

2
2

3
13

1,
02

2
2

3
13

1,
02

2
0.

0%
0.

0%
t5

12
50

5
2

3
38

6,
02

4
2

3
38

6,
02

4
2

3
38

5,
44

0
0.

2%
0.

2%
N

13
2D

4
5

6
38

,7
31

5
6

37
,2

57
5

6
31

,6
45

18
.3

%
15

.1
%

N
17

D
3

4
5

4,
14

3
4

5
3,

85
1

4
5

3,
79

7
8.

4%
1.

4%
N

32
D

6
4

5
94

2,
47

0
4

5
89

3,
01

7
6

5
85

6,
40

6
9.

1%
4.

1%
N

73
D

14
12

13
5,

97
8,

04
7

13
13

5,
96

7,
13

7
13

13
4,

76
2,

15
0

20
.3

%
20

.2
%

N
E1

20
0P

43
0

12
7

12
8

21
,5

15
,7

05
12

7
12

8
21

,5
15

,7
05

12
8

12
8

16
,1

31
,1

71
25

.0
%

25
.0

%
N

E6
00

P1
50

78
79

3,
72

6,
72

6
78

79
3,

72
6,

72
6

78
79

2,
73

5,
01

6
26

.6
%

26
.6

%

52

2.7 – Chapter Summary

2.7 Chapter Summary
This chapter introduced several new approaches to minimize the test time of

reconfigurable modules in an RSN.
One of the methodologies is primarily based on evolutionary computation. Ad-

ditionally, the problem of finding suitable test configurations has been converted
into a circuit suitable for applying the automatic test pattern generation procedure.
An optimized transition function and some techniques for post-processing the solu-
tion delivered by the evolutionary engine have also been presented. Experimental
results on the standard set of benchmark networks show the effectiveness of the
proposed approach, since the test time has been reduced up to 27% in 14 out of 16
cases, particularly impacting the test time for large networks.

Remaining two methodologies can be defined as semi-formal because the FSA
that models the circuit is exact, but incomplete, and the search procedure is based
on a greedy algorithm. Experimental results on the ITC’16 benchmark suite clearly
demonstrate the effectiveness of the approaches: the proposed techniques are able
to achieve better results with less computation effort than previous methods.

53

54

Chapter 3

Diagnosis

Although the IEEE 1687 standard alleviated many problems and resolved many
issues, it has also introduced some additional ones. Testing traditional scan-chains
for permanent faults is relatively simple, since shifting so called, flush sequence
(a sequence of alternated 1s and 0s) through the scan chain is sufficient to detect
and even understand the type of defect affecting it, if any [47]–[49]. On the other
hand, to test an RSN, apart from testing the capability of FFs (comprising TDRs)
to shift, modules such as SIBs and ScanMuxes also have to be tested. Without
considering the test of reconfigurable elements, no guarantee can be given that
applying any valid configuration will result in network changing its state or being
in a state corresponding to the wanted one. The previous chapter addressed exactly
those issues, by introducing newly developed techniques to test RSN reconfigurable
modules.

However, the problem becomes even more complex when discriminating be-
tween the faults affecting SIBs and ScanMuxes is required. Even though a number
of works is focused on identifying faults affecting scan-chain [55]–[60], little atten-
tion has been given to resolving the issue of fault diagnosis within RSNs. The
main motivation of this work is to determine which RSN modules (TDRs, SIBs,
ScanMuxes) are potentially affected by a permanent fault. Identifying the faulty re-
configurable module is a challenging task given the complexity of the current RSNs
and reducing the duration of the diagnosis procedure is crucial. Once the faulty
reconfigurable module is identified, the diagnostic procedure may be completed
resorting to techniques already available.

Although stimulating instruments and collecting responses could eventually re-
solve the issue of ambiguity between the modules, the functional access to the
instruments is not being considered here. Therefore, identifying classes of undis-
tinguishable faults is necessary. A fault affecting any of the elements within the
same class of equivalence has the same effect on the output, no matter which input
stimuli is applied to the network.

Since the effect of a fault observed at the output differs depending on the module

55

Diagnosis

it affects, the main goal can be divided into two categories:

• discriminating between fault-affected TDRs and detecting the pairs of TDRs
defined as undistinguishable;

• discovering a fault-affected reconfigurable module (SIB, ScanMux).

To recapitulate, this chapter is going to introduce a technique to identify and
localize permanent faults affecting reconfigurable modules in RSN. In more details,
a technique is presented to produce a diagnostic sequence of stimuli able to localize
the faulty element. The proposed method relies on a semi-formal approach: a
Finite State Automaton is dynamically built and then used by a heuristic algorithm
to generate a quite effective sequence able to diagnose all permanent faults in
the target RSN. Such a diagnosis has to be complemented with the diagnosis of
remaining components of the RSN.

3.1 Fault model and Diagnostic Mechanism
Introducing reconfigurability has made diagnosis more challenging. Apart from

localizing the faults affecting the ability of flip-flops forming TDRs to correctly
shift values, distinguishing between faults affecting reconfigurable elements is also
required. The high-level fault model introduced in [25] and then adopted in several
works (e.g., [27], [51] and [28]) is used as an abstract representation of defects on
network modules. Although it was originally designed after analyzing the effects
of possible stuck-at faults, it has certain limitations regarding certain faults (e.g.,
faults affecting reset and enable logic).

Faults affecting TDRs are considered at the level of a single FF composing the
TDR. In this case, a pair of stuck-at faults (stuck-at-0 and stuck-at-1) may affect
the output of the FF. Consequently, when a faulty TDR is accessed, repeated
subsequent values of 0s or 1s are observed at the output of the scan chain. Faults
affecting two different FFs within the same TDR can not be distinguished between
themselves, at least not using only structural information. However, performing
access at the instrument level to control and collect responses is not being considered
in this work. All stuck-at-0 and stuck-at-1 TDR’s FF faults are grouped into
two TDR faults, respectively. While the consideration that the scan cells may
be affected exclusively by stuck-at faults is an important simplification, additional
fault models may be easily taken into account thanks to the high-level nature of
the approach, e.g., timing faults including slow faults (slow-to-rise, slow-to-fall and
slow) and fast faults (fast-to-rise, fast-to-fall and fast), resulting from setup/hold-
time violations.

Although flush patterns are both sufficient and efficient to detect defects and
determine their type, they cannot identify the faulty scan cell(s). As different flush

56

3.1 – Fault model and Diagnostic Mechanism

patterns exist, the effect of permanent faults of different type on the inserted pattern
(00110011) is shown in Table 3.1. Additional type to be considered is intermittent
fault. Increasing diagnostic resolution which is currently at the level of the scan
segment may benefit from the approaches presented in survey [57]. Different flush
sequences may be used and failures from multiple failing scan patterns may be
analysed to trace back failures to the origin.

Table 3.1: Set of possible scan-chain fault models and their effect on the inserted
pattern 00110011.

Fault models Output effect (permanent faults)

Fault-free 00110011
Slow-to-rise 0010001X
Slow-to-fall 0111011X
Slow 0110011X
Fast-to-rise X0111011
Fast-to-fall X0010001
Fast X0011001
Stuck-at-0 00000000
Stuck-at-1 11111111

Faults affecting SIB and ScanMux reconfigurable modules are modelled as high-
level stuck-at faults. Accordingly, a SIB can be stuck-at asserted or stuck-at de-
asserted. Regardless of the configuration, a fault-affected SIB may be permanently
bypassing or including the associated segment. The effect of such a fault after
configuring the network, is that the path between TDI and TDO differs from the
expected one (faulty path). By shifting in a sequence of alternated 0s and 1s the
same sequence will appear at the output after a number of clock cycles different than
the expected one. Similarly, a ScanMux may be stuck-at one of its configurations
(e.g., for a 2-to-1 ScanMux, faults are stuck-at-0 and stuck-at-1, while for a 4-to-
1 ScanMux, faults are stuck-at-00, stuck-at-01, stuck-at-10, and stuck-at-11). A
corresponding input branch is always selected no matter the configuration. The
same effect on the scan path length can be observed in this case. By shifting in a
sequence of alternated 0s and 1s the same sequence is going to appear at the output
after a different number of clock cycles with respect to the expected one.

According to this high-level fault model, one can perform diagnosis on an RSN
by configuring the RSN so that the target fault is excited, shift in the sequence of
alternated 0s and 1s, and observe when it will appear at the output. By comparing
the length of the activated path against the lengths of all other path lengths includ-
ing faulty ones and the expected one the existing fault can be identified. Especially

57

Diagnosis

TDR2

length=5

SIB2

TDR1

SIB1

TDR3

length=7

SIB3

length=4
length=6

length=2TDR4

TDR5

S
M

0

1

TDR2

length=5

SIB2

TDR1

SIB1

TDR3

length=7

SIB3

length=3
length=6

length=2TDR4

TDR5
S
M

0

1

TDR2

length=5

SIB2

TDR1

SIB1

TDR3

length=7

SIB3

length=3
length=6

length=6TDR4

TDR5

S
M

0

1

Figure 3.1: Examples of IEEE 1687 RSNs: the top image as a reference one; the
middle one with TDR1 of different length; the bottom one with equal length TDRs
(TDR4 and TDR5) on SM input segments.

when all applicable configurations, starting from the initial one, result in having
different path length, the above approach is easily applicable. As an example, the
high-level fault affecting the SM in the network shown in Fig. 3.1 (top), which
always selects the segment connected to the input 1, is considered. The faulty
module can be excited by a configuration that selects its input 0; an additional
requirement is for the module itself to be included into the active path, otherwise
the fault is masked. Configurations C8, C10, C12 and C14 (given in Table 3.2) fulfil
these conditions. Once one of them is activated, one can measure the length of the
active path by shifting a given sequence (called diagnostic vector) through TDI and
checking when it will appear on TDO. It has to be noted that the total number of
clock cycles required to apply the generated diagnostic sequence, namely, cost, is
not influenced in the same manner by the choice of different configurations from
the aforementioned set.

However, it is not always trivial to localize the fault, since different faults may
result in having the same active path length. For example, in the network from Fig.
3.1 (middle), stuck-at-asserted faults on SIB1 and SIB2 result in having the same
path length (9 = SIB1(1) + TDR3(7) + SIB3(1) = TDR1(3) + SIB2(1) + TDR4(2) +
SM(1) + SIB1(1) + SIB3(1)). This issue can be resolved by continuing to stimulate
the network, until a unique sequence of path lengths is observed taking into account
the previous active path lengths. The principle is described in more details in
section Section 3.2. Moreover, some of the faults may remain undistinguishable.

58

3.1 – Fault model and Diagnostic Mechanism

Table 3.2: Set of possible configurations of the RSN in Fig. 3.1 (top).

Config. SIB1 SIB2 SM SIB3 Active path Len.

C0

D
D 0

D - 2C1 1
C4 A 0
C5 1

C2

D
D 0

A TDR3 9C3 1
C6 A 0
C7 1

C8 A D 0 D TDR1, TDR4 10

C9 A D 1 D TDR1, TDR5 14

C10 A D 0 A TDR1, TDR3, TDR4 17

C11 A D 1 A TDR1, TDR3, TDR5 21

C12 A A 0 D TDR1, TDR2, TDR4 15

C13 A A 1 D TDR1, TDR2, TDR5 19

C14 A A 0 A TDR1, TDR2, TDR3, TDR4 22

C15 A A 1 A TDR1, TDR2, TDR3, TDR5 27

Pairs of faults affecting a ScanMux module with the same length of TDRs on its
input branches belong to this group. By using this approach, it remains impossible
to differentiate between stuck-at-0 or stuck-at-1 faults on the SM module (6 =
TDR4(6) = TDR5(6)) from Fig. 3.1 (bottom).

The same procedure is used to the single permanent fault diagnosis on the RSN
elements (TDRs, SIBs and ScanMuxes). The complete generated procedure is or-
ganized as a set of sessions, each composed of a diagnostic step and a configuration
step. Configuration step corresponds to shifting configuration bits in the scan chain
and performing update. Each diagnostic step consists of the following phases:

1. shifting in the first sequence consisting of same values (all 0s or all 1s), while
the length of the sequence is equal to the length of the longest path in the
network; the goal of this phase is the initialization of the scan cells;

2. shifting in the second sequence of alternated 0s and 1s (i.e., 0101...01), with
the predetermined length of the sequence (equal to the maximum length of the

59

Diagnosis

expected path and all faulty paths). As a sequence terminator two identical
bits (either 00 or 11) are added;

3. the last, diagnostic sequence shifts values from the currently active path.

In a standard TAP controller, reaching the ShiftDR state from the UpdateDR state
requires visiting CaptureDR state. Therefore, Step 1) is required when capture
values are either not defined or not considered. Each configuration and diagnostic
step can be translated into a JTAG vector-Scan Data Register (SDR). SDR is a
state command to perform an IEEE 1149.1 Data Register scan and is defined within
Serial Vector Format (SVF). It is used with 4 arguments: TDI, TDO, MASK and
SMASK, i.e., the value to be scanned into the target, the values to be compared
against the actual values scanned out of the target, the mask to be used when
comparing TDO values against the actual values scanned out of the target, and
mask for specifying TDI data that is "don’t care", respectively. A configuration
step corresponds to a JTAG vector (SDR) of a predetermined length taking into
account active path, while an SDR vector corresponding to an observation step
followed by a configuration step contains increased number of shift operations. The
latter situation is known as "overscanning" when scanning longer than the length
of the longest path.

Determining fault-caused modifications of values in the scan chain and the
length of the active scan path is performed by verifying inserted diagnostic vector;
in parallel with observing the values appearing at the output, new configuration
vector is shifted in. The path length is deduced from the position of sequence ter-
mination symbol. Finally, applying the configuration vector demands an update
operation. The duration of the complete diagnostic procedure, referred to as a total
cost, depends on the duration of each step and is composed of configuration step
cost and diagnostic step cost, both expressed in terms of number of clock cycles.
The configuration step cost is the time needed to apply configuration vectors. The
time overhead of the JTAG protocol is also included, since moving the TAP con-
troller from shift to update state and vice versa also requires a few clock cycles.
The diagnostic phase cost is the time required to shift in the diagnostic sequence.
Furthermore, the duration of a session is determined by the length of the TDRs
included in the path, as well as by the previous configuration.

Consideration that the TAP controller is used to access and control the net-
work imposes certain restrictions. The TAP Finite State Machine with its defined
transitions is able to traverse 3 main states (capture, shift and update) in the fol-
lowing order: either capture, shift and then update or capture and then update,
avoiding the shift state. Therefore, without acquiring and applying certain design
techniques to improve the observability of such registers [39], it is not possible to
check if one shift operation destroys/overwrites previously shifted-in data. If such
defect is present, after shifting data into some other scan element in parallel or

60

3.2 – Proposed Diagnostic Methodology

rather than into the desired one, some update operation must be performed, fol-
lowed by a capture. Consequently, any previously stored data is overwritten, thus
removing any trace of unwanted/undesired access caused by the fault.

3.2 Proposed Diagnostic Methodology
As in some of the previously presented approaches to test the RSN modules

[51][61], an IEEE 1687 RSN is modelled as a finite state automaton (FSA). Each
state of SIBs and ScanMuxes in the network, referred to as configuration, represents
an automaton state. The input alphabet corresponds to the possible network’s re-
configuration operations. Apart from being in relation to the fault model, the length
of the active path is an easy obtainable property [25]. Therefore, output symbols
are mapped to the lengths of the active paths. Although the high-level model is
exact in modelling the circuit, it is deliberately incomplete, since the FSA’s states
encode only a subset of the possible configurations. Due to the particular structural
properties of the RSN, not all transitions are possible in all states. When an input
does not correspond to a transition, the FSA is brought to a special sink state (Ω),
that is a state with no output transitions and a null output symbol. For instance,
in some networks it is possible to use a Scan Multiplexer whose configuration is
based on the values of multiple configuration bits (n). However, such multiplexers
do not necessarily have defined inputs for all possible configurations (2n) in the ICL
description of the network. Even though at the implementation level, either at the
gate- or RTL-level, these pins might be tied to some other input or to logical 0/1,
to prevent any ambiguities, transitions to such unspecified configurations lead to a
special state.

Given the stuck-at faults affecting SIBs and ScanMuxes, the same configuration
operations may result in different network statuses on faulty circuits. Therefore,
such faults are mapped to multiple transition faults on the high-level automaton.
Taking into account the faulty automata and the good one, the goal of the diagnostic
procedure is to produce a sequence of inputs able to make a unique discrimination
between each one of them.

A greedy search strategy represents the basis of the proposed algorithm. Not
all possible states nor all possible input symbols are considered, and, consequently,
not all possible transitions. Nevertheless, the simulation of the automaton is exact,
while any missing state or transition will cause the automaton to reach the sink
state, that by construction cannot be further distinguished from any other state.

3.2.1 Finite State Automaton to model an RSN
Initially, the FSA is composed of only a state with no output transition and

a null output symbol. Such sink state is used to denote a pathological condition,

61

Diagnosis

where the algorithm is not able to provide reliable results due to the approximation
of the model. This state is characterized by its ambiguity with respect to any other
state. Once entered, the FSA permanently remains in this state.

Next, the state when all configuration bits are set to the initial value, denoted as
reset state, is added to the automaton. Then, for each SIBi, two states are created:
one with the SIB asserted and one with the SIB de-asserted. Similarly, for each
SM, one state is created for each possible configuration.

Such a straightforward approach, however, is not always sufficient. Scan seg-
ments may be nested, and a resource accessible only when its parent SIB is asserted.
The procedure for building the FSA detects such situations, and creates the neces-
sary states to handle them. The transitions from the reset state to all these states
are eventually added.

Since the FSA is built in an incremental mode the following modifications are
performed:

• for each transition in the good automaton, the possible faulty transitions are
added;

• if the faulty transition would bring the automaton in a configuration not
already encoded as a state, that specific state is added to the FSA;

• all nonexistent transitions between existing states are added to the automa-
ton;

• eventually, all possible faulty transitions from all existing states are also
added, but if one would bring the automaton in a configuration not encoded
as a state, its destination is set to the sink state, meaning that the FSA is
unable to model such situation.

As almost only the states with a hamming distance of 1 from the reset state are
added to the FSA, the size of the automaton is linear in the number of configuration
bits. It is possible to define an automaton with more states: for instance, at some
point of the creation, all complementary states may be added as well. It is important
to remember that the size of the automaton influences both the quality of the results
and the performance of the algorithm.

While considering the possible transitions, some additional states corresponding
to the configurations which may reduce the cost are also examined. Of course,
it is important to remember that the highest priority is to continuously increase
the number of diagnosed faults, while reducing the cost is a secondary goal. For
example, states representing configurations in which accessible SIBs that provide
access to the deepest hierarchical level are not asserted may increase the number of
required sessions and therefore the cost. Additionally, configurations in which a SIB
is still asserted while already all faults associated with it and its sub-hierarchical
modules are diagnosed may increase the cost. If all faults affecting ScanMux and

62

3.2 – Proposed Diagnostic Methodology

its sub-hierarchical modules are diagnosed, the configurations in which a ScanMux
branch with not minimal length is included into the path might also increase the
cost. It is worth noting that, although designers may explicitly define and include
some additional states to this state or provide additional heuristic, experimental
validations suggest that such extensions are unlikely to be beneficial.

For the network given in Fig. 3.3, FSA with its states and transitions is given
in Fig. 3.2. The states are represented by circular shapes with the label and out-
put symbol, while the lines with arrows denote the transitions between the states.
Initially, only states filled with white color (sDDDD, sDDDA, sDDAD, sDADD,
sADDD) are created. States in light grey are created consequently, dynamically, af-
ter applying the chosen input symbols and performing transitions on fault-free FSA.

sDDDD
4

sDDDA
9

t1

sDADD
9

sDDAD
9

sADDD
9

t2

sDADA
14

sADDA
14

sDDAA
14

t4

sDAAD
14

sAADD
14

sDAAA
19

t3

sADAD
14

sAAAA
24

Figure 3.2: Example of generating FSA for the network from Fig. 3.3
.

63

Diagnosis

Remaining states, in dark grey are created as a result of transition on faulty FSAs.
As for the transitions, some of them are created for examining the end states (dash
lines). The transitions drawn in bold lines correspond to transitions of the fault-free
FSA (t1–{sDDDD→sDDDA}, t2–{sDDDA→sDDAD}, t3–{sDDAD→DADD}, t4–
{sDADD→sADDD}). The remaining transitions are executed on the faulty FSAs
while applying the sequence of chosen input symbols (in solid style).

3.2.2 Search Algorithm
A sequence of transition and observation steps is constructed by the search

algorithm. A transition corresponds to a change in the configuration of the RSN
and it is performed by shifting an array of bits into the scan chain. On the other
hand, an observation step does not change the configuration of the RSN and does
not affect the FSA, since it is comprised only out of shift operations.

The goal of the diagnosis sequence generation procedure is to make the good
circuit and the faulty ones pass through different states to be able to distinguish
between them by comparing sequences of output symbols of the traversed states.
For every circuit a sequence of scan chain lengths is observed; if it is unique then a
fault is considered to be diagnosed.

Let x be an input symbol for the FSA. The reset operation is denoted with
reset, and it requires a single clock cycle to be performed; measuring the length
of the scan chain is characterized with observe symbol. Moreover, it requires
a certain number of clock cycles and does not affect the state of the FSA. Both
concatenation of the two sequences and appending a symbol to an input sequence
are expressed as additions, as no ambiguities are possible. The symbol ∅ denotes
an empty symbol and has no effect on an input sequence, e.g., t = t+∅. The state
of the FSA is unambiguously defined with a sequence t of inputs starting with a
reset, i.e., t = (reset, +t0, t1, ..., tk).

Two states that have undistinguishable output symbols are equivalent and are
denoted with s′ ∼= s′′. Conversely, non equivalent states have distinguishable output
symbols and are denoted with s′ ≉ s′′. By definition, the sink state is equivalent
to any other state ∀s : s ∼= Ω.

Let Λ̄t be the sequence of states [s̄reset, s̄t0 , s̄t1 , ..., s̄tk
], the FSA representing the

fault-free circuit goes through after applying the input sequence t, while Λi
t be the

sequence of states [si
reset, si

t0 , si
t1 , ..., si

tk
] the FSA representing the circuit when fault

i is present goes through when the same input sequence is applied. The two Λ
sequences Λi

t and Λj
t are considered to be different if there are at least two different

output symbols, corresponding to the same state position in both of the sequences
(e.g., si

tk−1
and sj

tk−1). Moreover, the sequence Λi
t is unique, if Λi

t ≉ Λ̄t and ∀j, j /= i,
Λi

t ≉ Λj
t. Having a unique sequence Λi

t allows to mark the fault i as diagnosed, by
appending an observe input symbol to t. The fault i is said to be “diagnosable”.

Let DF(Λt̄, St) be the set of potentially diagnosable faults when the good circuit

64

3.2 – Proposed Diagnostic Methodology

traversed the states in Λt̄ and the faulty ones St = (Λ0
t, Λ1

t, ..., Λf−1
t), i.e., the

set of all faults that caused the faulty circuit to traverse the states in a unique
Λi sequence. If an observation is performed, measuring the actual length of the
RSN path, any unique difference would be observed and all such faults, diagnosed.
Initially, all faults are annotated with an identical score (equal to −1). During
the execution of the sequence generation procedure, these values are updated with
the index number of the session in which a fault was diagnosed. If by running the
Diagnostic Sequence Generation procedure, not all faults from the F list
are diagnosed, the same procedure is run from the beginning, this time with the
updated score priority list.

A sequence of input symbols is generated iteratively since in each run the func-
tion Greedy(Algorithm 10) searches for the most optimistic input symbol for the
sequence of inputs t to be extended with (Algorithm 11). In other words, the ap-
pended input symbol brings circuits in states where the highest number of faults
with the lowest score can be diagnosed. A fault with a low score assigned means
that it was either not diagnosed in the previous run, or it was diagnosed before
some others (with a higher score). If no new fault can be diagnosed by adding a
single transition, the function Greedy returns an empty input sequence. In every
iteration, the most useful symbol is appended to the sequence, trying to increase the
number of diagnosed faults. When no symbol can result in a fault being diagnosed,
reset is appended to the sequence and history of taken transitions is considered
as an alternative. An observe symbol is always added after finding a new useful
transition (symbol). Additionally, in each run a set of diagnosed faults is updated.

Algorithm 10 Greedy score step
hbt!

function Greedy(t, score)
m← () ▷ Empty sequence of inputs
for x ∈ {valid input symbols in s̄t} do

u← t
Append x to u
FSu ← (Λ̄u, Fu, score)
FSm ← (Λ̄m, Fm, score)
if FSu > FSm then

m← u
return m ▷ Most promising sequence

3.2.3 Diagnostic analysis
According to the fault model it is obvious that the faults affecting different

types of RSN modules have a different effect and can therefore, be distinguished one

65

Diagnosis

Algorithm 11 Diagnostic Sequence Generation
procedure DPG(score)

t← (reset) ▷ Initial diagnostic sequence
H← {t} ▷ History
F← {all diagnosable faults} ▷ Active faults
tscore← {−1} ▷ Initialize fault score
while |F| /= 0 do

g← Greedy(t, score)
if empty(g) then ▷ The greedy failed

Append reset to t ▷ Start over
for t′ ∈ H do

g′ ← Greedy(t′)
if |DF(Λ̄g′ , Sg′)| > |DF(Λ̄g, Sg)| then

g← g′ ▷ Alternative sequence
Append g to t
Append observe to t
H← H ∪ {g} ▷ Save sequence
Remove DF(Λ̄t, St) from F
Set tscore for DF(Λ̄t, St)

score← tscore

from another. The faults affecting TDRs corrupt the inserted diagnostic sequence,
changing the values of particular bits. For example, a stuck-at-1 on a scan cell
within a TDR will result in observing only fixed values of 1 on all vector positions.
On the other hand, SIB or ScanMux module affected by a fault may result in a path
length different than the expected one. Consequently, the diagnostic sequence is
not corrupted, but is observed before or after the expected number of clock cycles.

Faults affecting scan cells of a single TDR are all made equivalent. Accordingly,
it is said for a fault to affect a TDR and the fault is distinguished at the TDR
instance level. The presented approach is able to generate input symbols, i.e.,
configuration vectors that modify the state of a network in such a way that in
each session, some of the SIB modules may become de-asserted and consequently
some TDRs may be excluded from the active path, but only one module can be
reconfigured to include a new segment to the active path. As shown in Fig. 3.3,
all inputs applied to the network not affected by the reconfigurable module faults
result in only one TDR being included in the active path in each session (0001 −
TDR1, 0010 − TDR2, 0100 − TDR3, 1000 − TDR4). Therefore, when a diagnostic
sequence is applied, a session that fails will specify the faulty TDR.

If the network is designed in such a way, that two or more registers are located in
the same segment, they can not be distinguished using only structural information
and are referred to as undistinguishable. Diagnosing faults affecting this sub-set of

66

3.2 – Proposed Diagnostic Methodology

TDR1

SIB1

TDR2

SIB2

TDR3

SIB3

TDR4

SIB4

length=5 length=5 length=5 length=5

Figure 3.3: 4 serially connected SIBs with TDRs of equal length of 5

TDRs may in some cases be possible using default capture values of the registers,
since the TAP controller has to pass through the capture state in order to reach the
shift state. Additionally, reading circuit’s default capture values without inserting
initialization sequence may be used to distinguish faults at the level of a single bit.
However, this issue was not considered in this work. As stated in the standard,
capture values may be fixed and predefined for some scan elements, i.e., TDRs.
However, if the scan elements are defined, not as Write-Only (here, capture func-
tionality is not necessary) but as Read-Only or Read-Write, capture source may be
defined as an external signal or value from the shadow, i.e., update stage of that
register. Additionally, an approach such as the one we propose may rely exclusively
on structural information (given by ICL), before any detailed information on which
types of instruments are to be integrated and how they are operated is available.

Faults affecting ScanMux modules may also not always be diagnosable. If a
ScanMux module has at least two branches containing equal fixed length segments,
then all faults forcing the ScanMux configuration to always select those branches
are considered as undistinguishable.

One of the advantages of the proposed approach is that is able to handle types
of networks constructed out of equally long TDRs placed behind serially connected
SIBs. An example is given in Figure 3.3, with four SIB modules and four TDRs
with the register length equal to 5. Since it is enough to observe a difference
in length, SIB stuck-at-asserted faults in this case are easily detected. However,
distinguishing between them is a more challenging task.

Table 3.3 shows the configurations the fault-free and the fault affected networks
go through, when input sequence generated by the proposed approach is applied.

As illustrated by Fig. 3.4, after applying reset, depending on the location of the
fault affecting a SIB module, the resulting scan chain can have not only a different
length, but also a different position of particular scan cells. It can be observed that
initially, the length of the scan chain in case of a fault free network and all stuck-at
de-asserted faults (s̄, s0, s2, s4, s6) is 4. In this case, the position of configuration
bits within the scan chain is the same (CB1, CB2, CB3, CB4). On the other hand,
for all stuck-at asserted faults (s1, s3, s5, s7), the scan chain is of length 9, with
a different configuration bits arrangement, due to the TDRs which are now part
of the active path. In case of s1, register TDR1 is in the active path, while e.g.,
in case of s5, TDR3 is a part of the active path. In the first case, all four SIB
configuration bits (supposed that post-SIBs are used) are located after scan cells

67

Diagnosis

comprising TDR1. On the other hand, in the second case two SIB configuration
bits (CB1 and CB2) are preceding TDR3, while two are following it (CB3 and CB4).
As a consequence of having the same path length for pairs of different faults, at
this point no fault can be diagnosed. Faults s0, s2, s4, s6 can not be distinguished
between themselves and between correctly operating circuit (length 4), while faults
s1, s3, s5, s7 are equivalent between themselves (length 9). Regardless the fault,
a configuration sequence cv can be shifted in the scan chain. In cases where the
actual length of the scan chain is lower than the one of the configuration vector,
not all values in the configuration vector will be stored in the chain cells; some of
them will be “cut-off", i.e., shifted out. By applying the update, new states will
correspond to the ones shown in the second row of Table 3.3, thus allowing five
faults to be diagnosed (s1, s3, s5, s6, s7). Even though the lengths of the active path
after applying the cv configuration vector in case of the fault-free network (s) and
the network in which SIB4 is affected by stuck-at asserted fault (s7) are equal, the
fault is diagnosed. When array of lengths of the active path in presence of the fault
[9, 9] is compared against others {[4, 9], [4, 9], [9, 24], [4, 9], [9, 19], [4, 9], [9, 14], [4, 4]},
it is determined to be unique.

Table 3.3: Diagnostic procedure for the network in Fig.3.3

Input Fault free SIB1 SIB2 SIB3 SIB4

s̄ s@D-s0 s@A-s1 s@D-s2 s@A-s3 s@D-s4 s@A-s5 s@D-s6 s@A-s7

reset
observe

DDDD
(4)

DDDD
(4)

ADDD
(9)

DDDD
(4)

DADD
(9)

DDDD
(4)

DDAD
(9)

DDDD
(4)

DDDA
(9)

0001
observe

DDDA
(9)

DDDA
(9)

AAAA
(24)

DDDA
(9)

DAAA
(19)

DDDA
(9)

DDAA
(14)

DDDD
(4)

DDDA
(9)

0010
observe

DDAD
(9)

DDAD
(9)

DDAD
(9)

DDDD
(4)

0100
observe

DADD
(9)

DADD
(9)

DDDD
(4)

1000
observe

ADDD
(9)

DDDD
(4)

3.3 Experimental Results
For the purpose of validating the proposed algorithm, a sub-set of the ITC’16

suite of benchmark reconfigurable scan networks [45] was chosen. Not all bench-
marks have been used since some of them include constructs which are currently not
supported by our environment. However, some additional benchmarks, considered
in [22], were included into the validation set to provide effectiveness comparison

68

3.3 – Experimental Results

CB2CB1 CB3 CB4

CB4CB2CB1 CB3

CB4CB2CB1 CB3

CB4CB2CB1 CB3

CB4CB2CB1 CB3

0

ҧ𝑠 𝑠0 𝑠2 𝑠4 𝑠6 (4)

𝑠1 (9)

𝑠3 (9)

𝑠5 (9)

𝑠7(9)

TDR1

TDR2

TDR3

TDR4

0 0 1 X 𝑐𝑣1 1 1 1

Figure 3.4: Initial scan chain structure with conf. vector for network from Fig. 3.3

with the present approach. It is worth noting that some of the latter benchmarks
are part of the ITC’16 set.

An in-house tool implementing the proposed algorithm was developed in Java.
The tool is first of all able to find all reconfigurable modules, for which the faults
affecting them are not distinguishable. As already discussed, this is due to their
inability to produce a different path length. Moreover, the tool can generate a list
of sets of TDRs; faults affecting TDRs in the same set are considered to be undis-
tinguishable between themselves, e.g., because they belong to the same segment.

The basic information on the benchmarks’ evaluation set is reported in Table
3.4. Columns 2 and 3 give the number of SIBs and SMs for each network. The
total number of SIB and SM configuration bits is reported in the fourth column.
The depth of a module is equal to the number of nested modules controlling its
segment. The hierarchical depth of the network corresponds to the highest module
depth in the network and is provided in column 5. The sixth and seventh columns
represent the maximum path length and the total number of scan cells in a given
network, respectively. The upper part of the table contains the list of networks
used to evaluate the approach proposed in [22], while the list of considered ITC’16
benchmarks is contained in the lower part of the same table.

A computer with an Intel i5-7200U processor and 8 GB of RAM was used to
perform the experiments. Table 3.5 reports the experimental results obtained from
running the proposed algorithm on the set of benchmark networks. In columns 2
and 3, the number of configuration vectors, i.e., the number of diagnosis vectors
is given. In this table, the cost of performing the diagnostic procedure on a given
network by applying the generated sequence is given in terms of number of clock

69

Diagnosis

Table 3.4: Benchmark networks list

Network SIB SM Tot
bits

Max
depth

Max
path

Scan
cells

A586710 6 0 6 2 41,972 41,972
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 96,158
N49D0 16 18 34 1 949 1,114
N61D2 11 22 33 2 1,162 1,422
N73D14 29 17 46 12 190,526 218,869
N88D8 32 32 64 4 1,637 2,013
N100D2 31 37 68 3 1,833 2,293
N132D4 39 40 79 5 2,555 2,991
P22810 30 0 30 2 30,915 30,915
P34392 22 0 22 2 23,478 23,478
Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat_Ex 57 3 62 5 5,100 5,195
TreeUnbalanced 28 0 28 11 42,630 42,630
a586710 0 32 32 4 42,381 42,410
p22810 270 0 270 2 30,356 30,356
p34392 0 96 96 4 27,899 27,990
q12710 27 0 27 2 26,185 26,185
t512505 159 0 159 2 77,005 77,005
NE600P150 207 194 401 78 23,423 28,250
NE1200P430 381 430 811 127 88,471 108,148

cycles required to apply all configuration steps (cv, column 4) and all diagnostic
steps (dv, column 5).

A number of experiments has been run to evaluate the effectiveness of the high-
level fault model used in this work. Selected benchmarks have been synthesised
using NanGate 45 nm Open Cell Library. Synopsys tool TetraMAX1 was used to
perform fault simulation on the designs at the gate-level by applying test sequences
generated by the method in [28]. The fault simulation results showed that in
general a high or complete stuck-at fault coverage is achieved. Certain corner cases
appeared as a result of faults affecting modules positioned deep in the hierarchy
and with the ScanMuxes having more than 2 inputs. Finally, the stuck-at faults
affecting the update logic and the flipflops are either covered or they propagate
long sequences of Xs in the circuit. Since the proposed test sessions demand for
a precise sequence of 0 and 1 s to be observed on scan output ports, faults that
propagate sequences of Xs can be safely marked as covered.

By using the proposed approach and according to the fault model which was

1TetraMAX ATPG User Guide, Version M-2016.12, Synopsys, www.synopsys.com.

70

3.3 – Experimental Results

Table 3.5: IEEE 1687 algorithm experimental results

Network cv dv
Conf.

cost [cc]
Test

cost [cc]
A586710 6 7 44,168 377,435
N17D3 15 16 3,287 9,492
N32D6 23 24 989,654 3,041,145
N49D0 34 35 20,429 55,029
N61D2 33 34 25,882 67,055
N73D14 46 47 4,883,376 13,945,235
N88D8 63 64 54,488 160,405
N100D2 67 68 73,903 200,260
N132D4 77 78 115,928 317,291
P22810 30 31 62,191 1,023,787
P34392 22 23 65,008 606,897
Mingle 14 15 921 3,591
Tree Balanced 47 48 132,172 393,223
TreeFlat_Ex 62 63 184,536 515,997
TreeUnbalanced 28 29 149,021 1,386,204
a586710 61 62 75,525 2,703,562
p22810 301 302 6,472,380 15,697,407
p34392 187 188 50,712 5,296,399
q12710 25 26 34,082 716,281
t512505 159 160 190,736 12,512,221
NE600P150 399 400 4,186,745 13,563,116
NE1200P430 809 810 39,615,088 111,319, 225

described previously, all distinguishable faults were diagnosed, thus reaching 100%
diagnostic coverage. Considering the discussion in Section 3.1, faults affecting mod-
ules that are not considered as undistinguishable are considered to be distinguish-
able. The comparison of the proposed approach with the approach from [22] is
given in the upper part of Table 3.6. The lower part of the same table refers to
the results obtained on the sub-set of ITC’16 benchmarks. The second column of
the table gives the total number of clock cycles needed to apply the input sequence
generated by the proposed approach. Comparison data on diagnosis duration in
clock cycles are taken from [22] and are provided in column 3. The fourth column
shows the comparison against the current result. The ratio between the duration of
the diagnostic sequence generated by the previous and new approach is reported,
thus showing how faster the latter one is. Due to the Java’s non-determinism at
run-time no accurate timing in terms of CPU time for generating the sequence is
possible. Therefore, only the program’s total execution time is reported in column
5. The number of pairs of undistinguishable faults affecting TDRs and SMs is
reported in columns 6 and 7.

As it can be observed from the Table 3.6, in all the cases where comparison data

71

Diagnosis

exists, the time required to perform the diagnosis is significantly reduced, up to 43
times. Although no data regarding the execution time of the previous algorithm is
provided, it is evident from the Table 3.6 that the presented algorithm is efficient
and fast to execute, since in most of the cases, the required time is measured in the
order of seconds. Exceptionally, more than one hour was needed for three networks.

Table 3.6: Experimental comparison of the proposed algorithm vs. [22]

Network Diagnostic sequence
duration [clock cycles] [22] [22] vs. proposed Runtime

(wall clock)
Und. pairs of faults

TDR CM
A586710 421,603 3,879,326 9.20x 0s 0 0
N17D3 12,779 48,099 3.76x 1s 4 0
N32D6 4,030,799 25,038,071 6.21x 0s 16 0
N49D0 75,458 263,866 3.50x 1s 105 0
N61D2 92,937 333,280 3.59x 1s 260 0
N73D14 18,828,611 320,437,112 17.02x 2s 78 0
N88D8 214,893 2,065,800 9.61x 4s 68 0
N100D2 274,163 2,219,397 8.10x 5s 206 0
N132D4 433,219 3,900,952 9.00x 17s 435 4
P22810 1,085,978 46,601,832 42.91x 1s 0 0
P34392 671,905 20,665,284 30.76x 0s 0 0
Mingle 4,512 19s 0 0
Tree Balanced 525,395 48s 9 3
TreeFlat_Ex 700,533 40s 14 3
TreeUnbalanced 1,535,225 23s 14 0
a586710 2,779,087 22s 5 0
p22810 22,169,787 1.3h 6 0
p34392 5,347,111 3m 14 0
q12710 750,363 17s 0 4
t512505 12,702,957 4m 0 0
NE600P150 17,749,861 5h 427 4
NE1200P430 150,934,088 15h 643 4

3.4 Chapter Summary
In summary, this chapter describes a new sequence generation technique to

diagnose permanent faults in RSNs resorting to an FSA model of the circuit and
a greedy search algorithm. By resorting to overscanning, once a fault is present,
applying the set of generated configurations will make the network pass through
states. The fault will be identified by observing lengths of the active path.

Experimental results demonstrate that the presented approach outperforms the
previous ones in terms of number of clock cycles required to run the generated
diagnostic sequence. Furthermore, this technique can be applied to a wide range
of network types of different complexity since for all the test cases and benchmark
networks full diagnostic coverage has been reached while keeping the computation
effort under control.

72

Chapter 4

NBTI-induced aging analysis in
IEEE 1687 RSNs

The expansion of contexts where electronic systems serve people has also led
to a significant growth of the number and variety of safety- and mission-critical
embedded systems. This comes along with the trend of implementation technology
miniaturization that allows boosting the nanoelectronic systems’ functionality, but
brings the lifetime reliability concern to the front. Autonomous and unmanned
vehicles, robotic systems, fly-by-wire aircrafts and complex industry automation
machines are often empowered by advanced computing systems and require extreme
levels of safety and dependability for years of the operational lifetime.

The phenomenon of nanoelectronics aging was addressed by numerous related
works focusing e.g., on the degradation issues caused by the Negative Bias Tem-
perature Instability (NBTI) in memories [62], [63] and in functional logic [64], [65].
To mitigate such effects in functional logic, approaches exist at different levels, e.g.,
some are based on redesign or transistor sizing techniques [66], while others rely on
modifying voltage and frequency of the circuit [67] or resort to NBTI-aware syn-
thesis [68]. Mitigation on a circuit level has been exploited in [69] where authors
propose using idle-time of the processor and unused bits in source operands of the
instruction. To the best of author’s knowledge, no work has addressed the reliabil-
ity issues caused by NBTI-induced aging in the IJTAG RSNs, so far. This chapter
will present the analysis of the effect of NBTI on logic paths in IJTAG RSNs by
estimating delay resorting to the model introduced in [65]. Additionally, it contains
details on a novel approach to mitigate the degradation with a case-study demon-
stration. The effectiveness of the approach is evaluated on a sub-set of ITC2016
benchmark RSN designs. It should be however, noted, that this work does not aim
at developing new or extending already existing technology-level models for NBTI.

73

NBTI-induced aging analysis in IEEE 1687 RSNs

4.1 Hierarchical Modelling of the NBTI-Induced
Delays

Bias Temperature Instability (BTI) phenomenon causes threshold voltage VT H

shift on MOS transistors. Two types of BTI are defined depending on the type of
stressed transistor. Negative BTI (NBTI) caused by the negative gate stress occurs
on pMOS transistors, while the Positive BTI (PBTI) is related to nMOS transistors
due to the positive gate stress. This paper focuses on NBTI [70] as it is considered
to be a dominant aging mechanism for the current implementation technologies.

Two phases can be identified in a pMOS transistor due to NBTI, stress and
recovery. When VGS = −VDD, stress phase occurs. The transistor is in a recovery
phase when bias voltage is removed (VGS = 0). When the transistor is switching,
such phases alternate and the NBTI effect is reversed to some extent. The change of
VT Hp of the device under constant stress (static NBTI) is significantly higher when
compared to dynamic NBTI, i.e. alternation of stress and recovery phases. Further-
more, the same tendency can be identified within the logic path delay degradation
though on a smaller scale. In [71] authors examined different factors and their
effect on NBTI degradation. Their results show strong correlation of the NBTI
degradation on the duty factor, i.e., input signal probability (stress/recovery).

Figure 4.1: Dynamic and static NBTI effect on threshold voltage in a pMOS tran-
sistor

In that regard, authors of [65] proposed fast yet accurate modeling of NBTI-
induced delays at the gate level.

First, technology and environment dependent curve of the threshold voltage
shift as a function of the transistor’s gate input signal probability ∆VT Hp(Pz) has to
be obtained at the transistor level. Then, technology and environment dependent
curves of the gate delay degradation as a function of the threshold voltage shift
∆t(∆VT Hp) for each gate type in the netlist (e.g. INV, 2NAND, 2NOR) assumed
for gate-level implementation.

74

4.1 – Hierarchical Modelling of the NBTI-Induced Delays

Figure 4.2: Threshold voltage shift VT Hp as a function of signal probability Pz (up).
Gate delay increase ∆t dependency on voltage threshold shift ∆VT Hp in an inverter
gate (down).

In the NBTI effect analysis, a reaction-diffusion (R-D) predictive model for dy-
namic NBTI is used [70], [72]. This model predicts the long term threshold voltage
VT Hp degradation due to NBTI at a time t > 1,000s at high frequencies [70]. It
captures the dependence of NBTI on a gate input signal probability Pz (probabil-
ity that the related pMOS transistor is under stress) in addition to its dependence
on other key process and design parameters as presented in [70]. The values of
the involved technology and environmental parameters can be summarized by a
parameter γ in the following form:

|∆VT Hp| = γ(Pz

1− Pz

)n (4.1)

Note that Equation 4.1 is valid only for dynamic stress, as ∆VT Hp becomes infinite
when Pz reaches the value 1. Therefore, the upper limit of ∆VT Hp is defined by static

75

NBTI-induced aging analysis in IEEE 1687 RSNs

NBTI models [70]. Equation 4.1 represents a convenient mathematical function of
the threshold voltage VT Hp degradation dependence on the signal probability for the
gate input signal Pz(xi) of a pMOS transistor. In the equation, n = 1/6 represents
the variety of the dominant diffusion species (H or H2) expressed by the time
exponent parameter and γ = 0.0904 represents a parameter that incorporates the
selected technology and environmental variables. In Fig. 4.2 (up), the corresponding
dependence is illustrated for PTM 65 nm technology [72] after 10 years of NBTI-
induced degradation at constant temperature T = 400K with supply voltage VDD =
1.1V . The calculated value of ∆VT Hp for static NBTI is 0.27V . The model allows
fast estimation of NBTI-induced VT Hp shifts.

A set of SPICE simulations for each logic cell is used to create a polynomial
curve to model the gate delay degradation (see Fig. 4.2) (down):

∆tgate = λ ∗∆VT Hp(Xi) + µ ∗ (∆VT Hp(Xi))2 (4.2)

Here, ∆tgate is the gate output delay increase (in percentage) compared to the nom-
inal gate delay, ∆VT Hp(xi) is the change of VT Hp for the stressed pMOS transistor at
the gate input xi, while λ and µ are technology dependent constants. For example,
in the current experimental setup λ and µ parameters are set to 0.7 and 3.2 for the
INV gate. In case a logic gate consists of multiple cascaded pMOS transistors, both
their physical location relative to the output node and the combination of 0 → 1
output transition impact the gate delay degradation. Each combination of gate in-
put values is modelled by different values of the constants λ and µ in Equation 4.2.
For an alternative technology and different parameters such as temperature and
supply voltage, additional SPICE simulations are required to obtain the curves for
modelling the gate-delay degradation.

4.2 Proposed approach: analysis and mitigation
To evaluate the aging effect based on the NBTI model introduced in the previ-

ous section a set of steps has to be performed. As a pre-processing step complex
gates in the design have to be flattened or the design has to be synthesized to gate-
level including only FFs and three types of inverting gates – NAND, NOR, INV. In
that way computationally demanding SPICE simulations, curves and parameters
have to be obtained only for these 3 types of gates. The first step is modeling
the threshold voltage shift as a function of the transistor’s gate input signal prob-
ability ∆VT Hp(Pz) (Eq. (4.1)). The next step consists of obtaining a polynomial
function that captures the dependence of gate delay degradation on the threshold
voltage shift ∆t(∆VT Hp) for NAND, NOR and INV gates as described in [65] and
summarized in Section 4.1. Intensive PSPICE simulations are run for the selected
technology, electrical and environment parameters. Then, the design needs to be

76

4.2 – Proposed approach: analysis and mitigation

simulated to obtain signal probabilities of each gate input. Next, these signal prob-
abilities are mapped to the curve parameters that were obtained in the first two
steps to calculate NBTI-induced gate delays. In the final step, paths between FFs
and primary inputs/outputs are extracted to find the critical one after aging. Since
the design consists of inverting gates, when a path is activated, all gate inputs on
the path will transition to another value. To find aged delay of a path, all gate
delays on the path must be summed up. If the output transition of a gate is 0→ 1,
NBTI-induced delay must be added to the nominal delay of the gate. Otherwise,
only nominal delay of the gate is used when calculating path delays.

RSNs are interesting from the architectural point of view. Since an RSN is a
dynamically reconfigurable network that provides a means for creating a hierarchy,
organizing set of TDRs can be performed in numerous ways. It is always a question
of trade-off, since this decision may depend on the frequency of access to a certain
instrument and overhead in terms of time (clock cycles) required to perform any
access in general. Simple restructuring of the network was performed by organiz-
ing complete set of TDRs in such a way that they can be accessed individually
through serially connected SIBs as shown in the case study (Fig. 4.5). A SIB may
provide access to a scan segment containing additional SIBs, thus deepening the
hierarchy. Having a regular structure such as a series of SIBs alleviates identify-
ing the critical logic path(s). It is always the one(s) leading to the FFs related to
the longest register. The former, however, for accessing certain TDRs may require
multiple reconfiguration operations, while in the latter one, only one configura-
tion cycle is required to assert/de-assert a SIB and include/exclude corresponding
TDR to/from the active path. On the other hand, serially connected SIBs pro-
duce overhead since Segment Insertion Bits (configuration bits) always belong to
the active path. Removing hierarchy shortens logic paths in general and therefore
reduces nominal delay. However, as it has been confirmed experimentally, it does
not impact significantly the aging-induced delay.

As the structure of the RSNs can be quite regular, some paths share, i.e., they
traverse the same gates and the same signal lines. Furthermore, it is common that
for each of those paths, the remaining parts have the exactly same structure where
the gates of the same type are encountered in the same order. As a consequence,
an abundant number of paths has the same nominal delay and ages in the same
mode.

To perform mitigation, an algorithm creates a list of most critical registers, i.e.
sorts the registers in a descending order based on the value equal to the sum of
the hierarchical level of the segment they are positioned in and their length since it
impacts the fan-out of some gates that belong to the path between primary input or
flip-flop output and the input of the flip-flop in the shift stage of the corresponding
register. Further on, a function described in Algorithm 12 is called to generate the
set of configurations for reaching desired register(s). From the internal network
model, it is possible to find controllable module providing access to the particular

77

NBTI-induced aging analysis in IEEE 1687 RSNs

scan segment and configuration bit(s) corresponding to the aforementioned module.
configureMux is called recursively saving necessary states and updating the list of
registers to be accessed removing the ones already encountered while accessing the
current one.

Algorithm 12 Listing programmable modules (SIBs, SMs) and corresponding
states to be applied in order to reach particular TDR

function generateConfigurations(gen, len, i, d)
tdr ← regList(0)
mux← getMux(tdr)
while mux /= null do

currentMuxEnc← mux current configuration
regSegEncoding ← tdr′s segment encoding
if currentMuxEnc /= regSegEncoding then

configureMux(gen, mux, regSegEncoding)
putOnPath(mux)
index← index + 1
tdr ← regList(i)
mux← getMux(tdr)

One of the advantages of the RSNs is that the mitigation can be performed in
parallel while executing required operations without affecting the final result. Of
course, the overhead of such operations exists in terms of additional clock cycles
required to access targeted registers and perform read/write operations.

4.3 Case study
The following case study illustrates how the most critical logic path at the

gate level of the RSN was identified and how the effect of NBTI-induced aging in
RSNs was analyzed. The mitigation technique is also applied to this example and
obtained results are reported.

The considered RSN, shown in Fig. 4.3, is motivated from an automotive context
and it consists of two sub-networks. The first one has four TDRs - R1 to R4
which are placed hierarchically behind 4 SIBs - SIB1 to SIB4 and are accessed less
frequently. The second section contains registers that are to be accessed more often.
It includes three TDRs - R5 to R7, two of which are placed behind SIB5 and SIB6
located on one input segment of the ScanMux (SM). The remaining register R7
has been placed directly on the second input segment of the multiplexer. There
are no remotely controlled modules, i.e, all of them are controlled in-line. As it
has been outlined previously, the function of these instruments may vary since they
can be used for monitoring (sensors), debug and calibration/configuration, or BIST
control.

78

4.3 – Case study

For the circuit shown in Fig. 4.3, a workload was created containing series
of operations to change the network configurations and read, i.e., write to/from
the registers R5, R6 and R7. In the gate-level design the critical (longest) NBTI-
degraded path was identified. It corresponds to the path having the longest total
delay consisting of the nominal gate delay and NBTI-induced delays ∆t for the
gates along that path.

Gate-level description of the circuit shown in this case study contains 695 gates,
while the total number of logic paths sums up to 2238. Fig. 4.4 shows the path with
the largest nominal delay and is at the same time the longest NBTI-degraded path
for the workload provided. When the structure of the circuit is taken into account
some regularities can be observed. The longest path starts with the top level signal
SEL and it passes several gates (U20, U19, U18 and U17) up to the tosel_SIB4
for the SIB4 module. This signal is used to gate signals CE and SE responsible for
allowing capture, i.e., shift operations. Gates R4xU138 and R4xU137 have a fan-
out since the signals at their output are used to control single FFs belonging to the
same register R4. In this circuit the register R4 has the length of 13, and therefore
consists of 13 FFs (the shift stage), gate R4xU138 has a fan-out 13 + 1 = 14, while
gate R4xU137 has a fan-out of 13. The section within the borders is a source of the
signals and is shared between logic paths leading to the shift flip-flops in a register.
The signals belonging to the section out of borders in Fig. 4.4 lead to the second
FF in R4. They are in control whether the same value is kept in the flip-flop if all
operations are disabled, or the value from the preceding FF should be stored, or the

SIB1

SIB2

SIB5

SIB6

S
M

L=5

L=7

L=4

L=5

L=6
R1

R2

R5

R7

R6

SIB3

SIB4
L=8

L=13

R3

R4

Figure 4.3: Case-study RSN with hierarchy levels - one SM, six SIBs and seven
TDRs

79

NBTI-induced aging analysis in IEEE 1687 RSNs

n68

feedback
_enable

R4xN35

R4_B11_update

n68

SIB1_PREX

>

> >
>

U20SEL
U19n15 tosel_SIB2 U18

U17
n14

tosel_SIB4

CE

SE R4XU140
R4xN106

R4xN35
R4xU138

R4xU137

R4xN36

SIB2_PREX SIB3_PREX
SIB4_PREX

n68

R4xN64 R4xN46
R4xN44

U59

R4xN45

R4xN128

R4xN35 R4_B11_shift

U61

R4xN106
R4_B12_shift

n68

R4xN36

Figure 4.4: Gate-level schematic of the longest logic path in the case-study RSN

value from the update stage should be captured since the feedback functionality is
used. The identification of the longest path takes into account the hierarchy levels
and the length of the registers.

For circuits containing registers with a large length, i.e., with the high number
of FFs, some gates may have a high fan-out. In such case, the synthesis tool may
introduce additional gates such as buffers (double inverters) to reduce the overall
load on the driving gate and decrease the transition time of the net.

For the longest path, the nominal delay is 86.67 time units, while the total delay
after estimating NBTI-induced delay equals to 103.63 time units. Therefore, the de-
lay increase given in percentages is 19.58%. After applying the mitigation technique
as already discussed in Section 4.2, the overall delay after NBTI-degradation is 92.5
time units, thus resulting in only 6.73% of delay degradation, which is significantly
less with respect to the value obtained when applying the original workload.2

4.4 Experimental results
The results are obtained on two networks from the ITC2016 set of benchmark

networks [45] - Mingle and N17D3. For both benchmarks, a flattened network with

80

4.4 – Experimental results

a separate SIB for each of the registers is generated. The workload is adjusted
preserving the access order, set of activated instruments and written values from
the workload created for original networks. In Table 4.1 for each of the considered
benchmarks and its flattened version the following data are reported: nominal delay
(tnom) and total delay (tnom + ∆t) with increase in percentages before and after
mitigation. To show its effectiveness, the ratio of the delay increase in percentages
is used, before and after mitigation. For example, in Mingle network, the NBTI-
aging effect is reduced by 2.1 times, since the delay increase changed from 19.5%
to 9.4%.

Synopsys Design Compiler tool was used for synthesising the circuit at the gate-
level from the description in RTL (VHDL) with the flattening of the hierarchy and
without any optimization. For this purpose, 65 nm technology library has been cho-
sen with imposing certain constraints primarily related to the choice of primitive
gates and flip-flops (2-input NAND gate, 2-input NOR gate, inverter gate, flip-flop
with the reset functionality). The aforementioned comes from the limited avail-
ability of data regarding the model and aging characterization (65 nm PTM). For
reporting results on different technology nodes the same procedure from Section 4.1
has to be repeated. Open-source tool zamiaCAD [73] has been used for simulation
of the design. Simulation results are used to record the signal probabilities of the
gate inputs. All calculations (nominal/NBTI-induced gate delays, path extraction
and their delays) are automated in zamiaCAD using Python scripts.

Table 4.1: Experimental results

Original circuit Flattened hierarchy

Network tnom tnom + ∆t
tnom

(mit.)
tnom + ∆t

(mit.) Decrease tnom tnom + ∆t
tnom

(mit.)
tnom + ∆t

(mit.) Decrease

Mingle 125.67 150.21 (19.5%) 125.67 137.54 (9.4%) 2.1 104.33 127.35 (22.1%) 104.33 115.13 (10.4%) 2.1
N17D3 126.67 150.76 (19.0%) 134.33 144.22 (7.4%) 2.6 115.33 135.86 (17.8%) 115.33 128.13 (11.1%) 1.6

Regarding the results, NBTI-critical path for the N17D3 network changes after
mitigation. Before altering the workload, critical path did not correspond to the
path with the largest nominal delay, since the latter lead to the register which was

SIB1

L=5

R1

SIB2

L=7

R2

SIB3

L=8

R3

SIB7

L=5

R7

…

Figure 4.5: Simplified schematic of a SIB module (left) and its symbol (right)

81

NBTI-induced aging analysis in IEEE 1687 RSNs

accessed in the workload. After performing/adding additional TDR accesses to
reduce the aging effect, the NBTI-critical path becomes the one with the largest
nominal delay.

Although the mitigation approach is scalable and applicable for larger and more
complex designs (runtime less than one second for the reported benchmarks), simu-
lating design with the test-bench stimuli generated from the workload for obtaining
signal probabilities and calculating delay is computationally expensive and there-
fore time-demanding. The whole framework was run on a modest laptop with a
dual-core CPU.

4.5 Chapter summary
The chapter proposes a methodology for assessment and mitigation of NBTI

aging induced delays in logic paths within IEEE 1687 IJTAG Reconfigurable Scan
Networks. While RSNs are commonly used to provide fault management and em-
bedded instrumentation access, such as safety mechanisms, in advanced safety-
and mission-critical electronic systems, a failure in such infrastructure itself has a
high severity. The methodology is based on a scalable hierarchical (transistor-to-
architecture) modelling of the NBTI impact on timing-critical logic paths in RSN
implementations. The evaluation implies analysis of gate input signal probabili-
ties based on the configurations and test data selected for the RSN infrastructure.
The details of the methodology are demonstrated by a case study on an example
RSN and the feasibility and efficiency are validated by experiments on a subset of
ITC2016 RSN benchmarks. The experimental results demonstrate that RSNs can
be impacted by significant NBTI-induced logic path delays and a simple proposed
mitigation technique can reduce such delays up to 2.6 times. The future work is
aimed at a comparative analysis of aging in the RSN gates and the functional part
of the circuit.

82

Chapter 5

Post-silicon validation

In previous chapters of this thesis new approaches to test and diagnose per-
manent faults have been introduced as well as the analysis of the NBTI-induced
aging effect on logic paths inside an RSN. However, the correct operation of IJTAG-
compliant infrastructure is a product of many aspects and components including
the actual hardware on the chip, the respective standard descriptions, such as ICL
(Instrument Connectivity Language) and PDL (Procedure Description Language)
files as well as the software used to import the descriptions and control the hard-
ware.

The importance of the problem is being escalated by previous experience of the
electronics industry, which suffered from the inconsistency between description files
and actual hardware implementation of an earlier similar standard: IEEE 1149.1.
In surprisingly numerous cases, the BSDL (Boundary Scan Description Language)
descriptions did not match the actual implementation of JTAG features in silicon.
Most of those mismatches were caused by simply non-matching revisions of the
silicon and the BSDL, but of course a certain number of problems were related to
bugs and design errors in hardware. Even if the error-checking is performed before
tape-out, it does not necessarily imply that the silicon will work or that the ICL
matches the actual silicon implementation. Independent of particular reasons caus-
ing such mismatches, the task of proving full compliance between the silicon and
the documentation is not trivial. Taking into account the fact that the infrastruc-
ture described by IEEE 1687 is certainly more complex than classical Boundary
Scan, ensuring its correct operation is an important research topic.

The focus of this chapter is on the problem of checking the equivalence between
the silicon implementation of IEEE 1687 RSNs and their respective ICL descrip-
tions. The proposed method assumes that the former is a black box and the latter
plays the role of specification, while no other information about the target system
is available. Although observability of signals in simulation (for pre-silicon verifi-
cation) is exceptional, this is unfortunately not the case when accessing the read
device through its interface, i.e. we can only apply stimuli and observe responses

83

Post-silicon validation

through scan input and output ports.
Previous work that addresses this problem is very limited. The problem’s gen-

eral definition along with a trivial algorithm for simple RSNs was first proposed in
EU FP7 BASTION project report [74]. An important contribution of that work
was in defining three levels of validation thoroughness with respect to required test
access and effort. At the base level (“Level 0”) the RSN infrastructure is validated
by checking scan chain length and capture values in various configurations ensuring
that every instrument is correctly accessible.

The main contribution of this part of the thesis is twofold. First, a compre-
hensive fault model defined as a set of mismatches between the ICL description
and the silicon implementation is introduced. Second, for a subset of mismatches
falling into Level 0 category, a universal method and a tool of their detection based
on observing the length of the active scan path is proposed. In addition, the mis-
matches are categorized with respect to the level of detection difficulty providing
a list of those undetectable by the method. Experimental results based on the
set of ITC’2016 RSN benchmarks [45] demonstrate that the proposed approach is
broadly applicable as well as that the test tool is able to generate the sequences
for detecting all target mismatches. The proposed validation tool is a part of an
ecosystem of IEEE 1687 benchmarks and tools [75].

5.1 Proposed "black-box" approach to post-silicon
validation

The proposed methodology is based on previous work focused on generating
efficient patterns to perform end-of-manufacturing test for RSNs [76]. The detection
mechanism introduced first in [25] and then adopted in several works [27], [28] has
been modified to reduce significant overhead and has been made more suitable for
addressing the presented problem.

5.1.1 Mismatch model
Well-established metrics exist for post-manufacturing tests (single-stuck-at cov-

erage, transition fault coverage) and experimental results have demonstrated the
effectiveness of such metrics. Although pre-silicon verification metrics are less stan-
dardized (syntactic (code coverage) and semantic (covering assertion goals)), met-
rics for post-silicon validation are still the subject of research. The list of considered
mismatches was created after analyzing the literature and taking into account that
the source of a mismatch is usually confined, such as a typo in the specification, or
a localized hardware bug. It contains following items:

• TDR mismatches Fig. 5.2

84

5.1 – Proposed "black-box" approach to post-silicon validation

– A missing register
– An added register
– A wrong register of different length
– A wrong register with the modified functionality
– Exchanging two or more registers (their position)

• Reconfigurable modules position mismatches Fig. 5.3

– Exchanging a register with a ScanMux or a SIB
– Exchanging two SIBs belonging to the same segment
– Exchanging two ScanMuxes
– Exchanging a ScanMux and a SIB

• SIB type, SM control and input mismatches Fig. 5.4

– Exchanging inputs or control lines of the ScanMux
– Wrong SIB type (pre-SIB to post-SIB and vice versa)

• Wrong ScanMux configurations Fig. 5.5

cb2cb1pSIB1

TDR1

TDR1a

TDR1b

SM
1TDR2 TDR3

TDR2a

TDR2b

SM
2 SIB2p

TDR2p pSIB3

TDRp3

length = 11

length = 11
length = 15

length = 7
length = 9

length = 1

length = 12 length = 8

length = 6

pre-SIB post-SIB

a)

0

1 1

0

SIB2p

Figure 5.1: Example RSN network for generating a set of mismatches

For the network given as an example in Fig. 5.1, Table 5.1 provides a set of
considered mismatches joined by their type.

Relying on the structural information provided by the ICL is sufficient for de-
tecting a missing register at one of the scan segments, since this type of mismatch
directly affects the length of the active scan path. An added register has the similar
effect on the scan path length although this time it is reduced with respect to the
expected one. A wrong register with the different length is equivalent to having
a missing and/or added register. Exchanging the registers is being performed not
only within the same scan segment but also outside of one domain. This modifica-
tion can be modelled as having multiple wrong register length mismatches. Since
the registers belong to different scan segments, not having both of them on the

85

Post-silicon validation

Table 5.1: List of considered and injected mismatches for the network from Fig. 5.1

Mismatch Type N Mismatch set

SWAP_TDR_SIB 5

[[pSIB1, TDR2],
[TDR2, SIB2p],
[TDR3, SIB2p],
[TDR2p, pSIB3],
[pSIB1, TDR3]]

SIB_PRE_POST 3 [[pSIB1], [SIB2p], [pSIB3]]
SWAP_CB_CB 1 [[cb1, cb2]]
ADDED_REGISTER 27
WRONG_REG_FUNC 9 not considered

WRONG_MUX_CONF 2 [[SM1|0, TDR1b; 1, TDR1a],
[SM2|0, TDR2b; 1, TDR2a]]

SWAP_TDR_TDR 1 [[TDR2, TDR3]]
WRONG_REG_LENGTH 9 all registers
SWAP_TDR_TDR_DD 35 from domain to domain

SWAP_SIB_SM 4 [[pSIB1, SM1], [SM2, SIB2p],
[SM1, SIB2p], [pSIB1, SM2]]

MISSING_REGISTER 9 all registers

SWAP_TDR_SM 4 [[TDR2, SM1], [SM1, TDR3],
[TDR3, SM2], [TDR2, SM2]]

SWAP_SIB_SIB 1 [[pSIB1, SIB2p]]
SWAP_SM_SM 1 [[SM1, SM2]]
SWAP_MUX_CONTROL not modelled explicitly
SWAP_MUX_INPUTS not modelled explicitly

same path for the first time they are accessed enables immediate detection of this
particular mismatch. Fig. 5.2 depicts these situations.

Even though a mismatch of exchanged ScanMux control signals (Fig.5.4c) or
inputs (Fig.5.4b) does not have an effect on the active path length it can still be
detected. The configuration of the ScanMux is determined by the value in the
control bit. The output signal from the update stage, apart from controlling the
multiplexer can also be used to gate shift, update and capture. In that case, if upper
input is selected, all data shifted at the input is supposed to go through TDR1 and
appear at the output. However, in case of exchanged control signals, although the
segment is chosen according to the configuration, all operations are forbidden on
that segment and allowed on the other one. Consequently, shifted values will not
propagate to the output, resulting in all 0s or all 1s, depending on the value stored
in the last scan cell in the selected input segment. Exchanging input connections is
an equivalent mismatch and can be analyzed in a similar way. Guaranteeing that
all scan segments are accessed at least once ensures that all mismatches of this type

86

5.1 – Proposed "black-box" approach to post-silicon validation

are detected.
Another type of considered mismatch is a ScanMux with configurations incor-

rectly assigned to its input segments. In Fig. 5.5, configurations 00, 01, 10 and
11 result in including registers TDR0, TDR1, TDR2, TDR3 into the scan path,
respectively. In case of a mismatch, chosen registers appear in the different order:
TDR3, TDR0, TDR2, TDR1. If at least one of the segments has a length different
than the original one in the same position, the mismatch is detectable comparing
the lengths. This type of mismatch also covers the modified order of control bits
(cb0, cb1-10 with 01).

In case of the wrong SIB module type (pre-/post-), the length and the order
of elements on the scan segment remains unchanged when SIB is de-asserted. If
there are some control bits in the controlled segment-their order is shifted for one
position, while the SIB itself is placed after, i.e., before the elements of the included
segment (Fig. 5.4a).

In general, mismatches involving the modified order of TDRs, SIBs and Scan-
Muxes do not affect the length of the active path when the corresponding segment
is included into it (Fig. 5.3). However, detecting them remains possible as long
as certain configuration bits do not match original positions. Writing into them
to set the desired configuration may result in writing into TDRs or some other
configuration bits.

#MISSING_REGISTER

SI

SI SO

SO
TDRA

TDRA TDRB

#ADDED_REGISTER

SI

SI SO

SO
TDRA

TDRA TDRB

TDRBTDRC

SO

#WRONG_REGISTER_LENGTH

SI

SI

SO
TDRA

TDRA TDRB

TDRB’

� ����
� ≠ �(����)

SO

#WRONG_REGISTER_FUNCTIONALITY

SI

SI

SO
TDRA

TDRA TDRB

� ����
� = �(����)

f ����
� ≠ �(����)

TDRB’

#WRONG_REGISTER_ORDER

SI SO
TDRC

SI SO
TDRA TDRCTDRB

TDRB TDRA

Figure 5.2: Mismatches involving TDRs

5.1.2 Undetectable mismatches
A mismatch is considered to be undetectable if applying whichever legal config-

uration results in observing expected length of the scan path.

87

Post-silicon validation

SIB
TDR

SIB
TDR

#SWAP_TDR_SIB

SM

TDR

SM

TDR

#SWAP_TDR_SM

SIBA SIBB

SIBB SIBA

#SWAP_SIB_SIB

SIBB

SM
B

SM
B SIBB

#SWAP_SIB_SM

SM
B

SM
A

SM
A

SM
B

#SWAP_SM_SM

Figure 5.3: ScanMux and SIB position mismatches

P
R
E

P
O
ST

SIBScan segment

Scan segmentSIB

SI
#SWAP_SIB_PRE_POST

SIB

SM

#SWAP_MUX_INPUT

TDRA

TDRB

SM

TDRA

TDRB

SM

#SWAP_MUX_CONTROL

TDRA

TDRB

SM

TDRA

TDRB

Figure 5.4: SIB type, ScanMux control lines and input mismatch

The modified functionality of the register has been modelled as a permutation
of register’s bit scan cells and it is equivalent to having permuted connections with
the instrument. Since there is no effect on the length of the scan path, this type
of mismatch is undetectable. Exchanged position of registers within the same scan
segment may not always be detectable. In particular, this is the case if the registers
are adjacent or have the same length. Furthermore, if there is not even a single
control bit cell located in between, all configurations are properly applied and no
mismatch is observed at the output. In the case of exchanging two or more SIBs
within the same scan segment, the mismatch is undetectable if they have completely

88

5.1 – Proposed "black-box" approach to post-silicon validation

TDR1

TDR3

TDR0

TDR1 SM

TDR2

TDR3

 ���� − 00
 ���� − 01
 ���� − 10
 ���� − 11

 ���� − 01
 ���� − 11
 ���� − 10
 ���� − 00

cb0 cb1

cb0 cb1TDR

#WRONG_MUX_CONF

TDR0 SM

TDR2

cb0 cb1

 The case of exchanging
position of configuration bits
(��� &���) is a sub-case of
wrong MUX conf. values

Figure 5.5: ScanMux configuration mismatches

same structure (the position, length and type of modules), except if they provide
access to remote ScanMux control bits. Wrong configuration mismatch is also
undetectable when all input segments have the same fixed length (only TDRs).

Potentially, by “Level 1” validation [74], some currently undetectable mismatches
could be targeted. Correct reaction of instruments on PDL defined-actions has to
be verified upon accessing them through performing read and write operations.
Furthermore, the presence of undocumented or specially hidden structures can be
targeted by “Level 2” validation (phantom detection) [74].

5.1.3 Detection mechanism
The procedure for detecting mismatches is organized as a set of sessions. A

session consists of a configuration pattern to which an additional sequence of bits is
appended. It contains values for defining the state of the network. The appended
sequence is used as a key to validate that the expected path is connected between
scan input and scan output pins. Configuration sequence of bits has the length of
the currently active path. This sequence of bits is shifted into the scan chain, while
in parallel the output pin is monitored. If the sequence observed at the output,
long as it is the key sequence presented at the input, matches the very same key,
it is considered that no potential mismatch could be detected in that session. This
is due to the effect of a mismatch which can either corrupt the values of the key
loaded into the network (e.g., all 0s or all 1s) or can change its position (postpone

89

Post-silicon validation

it or anticipate it at the output) with respect to the expected one.
Additionally, if a TAP controller is used to control and access the network,

its state machine has to traverse capture and update states, while the shift state
can be omitted. Therefore, before shifting in the sequence, a capture operation
is performed. The values appearing at the output during the shift-in are capture
values and can be used to enhance detection capability. The pause state, following
the shift state of the TAP controller can be used to prevent performing update
before checking the pattern at the output, thus avoiding undesired effects such as
moving the network to an unknown state.

Cost of applying one session is equal to the number of clock cycles (shift oper-
ations) as long as the active path increased by the length of a key. It should be
mentioned that after performing update to apply wanted configuration, reaching
the shift state in a state machine requires certain number of clock cycles (JTAG
protocol overhead).

5.1.4 Configuration generation procedure
The mismatch detection is solved as a problem of discriminating between a set

of Finite State Machines (FSMs). One FSM is created for the original network
without any mismatch present; for each mismatch, an additional FSM is created.
Initial state is appended to each FSM, where the state corresponds to the current
configuration of the network. Positions of configuration (control) bits with respect
to the network’s input are being tracked constantly. After applying the transition
(reconfiguration operation), the state of each FSM is updated, while the new length
(output symbol) is calculated based on the injected mismatch, if any. Addition-
ally, positions of the configuration bits in a new state are calculated and updated
accordingly.

Before generating input symbols, during the construction of the internal network
model, every reconfigurable element (ScanMux, SIB) in the network is annotated
with auxiliary information. First attribute is the hierarchical level (lc) of the scan
segments in which the module is positioned, while the second one is the highest hi-
erarchical level (ld) of all modules’ levels that are positioned within scan segment(s)
attached to the input(s) of the current module. In Fig. 5.6b a structural represen-
tation of the network from Fig. 5.6a is shown as an example in the form of a tree.
A node coincides with the reconfigurable module, while encoding of the segment
that is either insertable (SIB) or selectable (ScanMux) is given as a vertex. Nodes
n1, n2 and n3 are located at the top level scan segment, while nodes n31, n32 and
n33 are accessible through n3 (located in its input segment(s)). Nodes n11(1,1) and
n13(1,1) provide access only to empty segments and segments that include either
TDRs or control bits (registers), which is obviously not the case with the node
n12(1,2). This node provides access to the segment at the second level of hierarchy
with one node n121(2,2) in it.

90

5.1 – Proposed "black-box" approach to post-silicon validation

The mechanism for generating input symbols is able to determine if the net-
work contains remotely controlled scan multiplexer architecture or all modules are
controlled in-line. In the first case, the priority list for accessing nodes is shown in
Fig. 5.6c. The ni node’s position in the list is based on the li

d value; the precedence
is given to the node with the higher values. However, if the nodes ni and nj have
equal value of the second parameter (li

d = lj
d), the position is decided based on the

first parameter value lc. Finally, in case that li
c = lj

c the nodes whose parent nodes
are closer to the input are chosen first e.g., n11 has precedence in comparison to
n31, while n31 is put before n33.

The procedure (Algorithm 13) starts from the position of all configuration bits,
taking into account only accessible ones when choosing the element from the priority
list (Fig. 5.6c). When it is a SIB instance, if it is in a de-asserted state, new
configuration sets it to assert, while if it is a ScanMux with no children nodes,
one configuration is generated for every input segment in order to include it to the
active path at least once. For a ScanMux with some reconfigurable nodes in its
input segments the decision which configuration to set is based on the priority list.
In that sense n3 could be a SIB with three serially connected nodes n31, n32, n33
located at the same segment, but it could also be a ScanMux with three input
segments; in first n31, in second n32, and in third n33. When a segment is included
to the active path it is marked as tested. If all children nodes for a parent SIB node
are marked as tested, the next configuration will also de-assert that SIB.

In this work we also considered more complex networks involving remotely con-
trolled scan multiplexer architecture. They are more difficult to manage in terms
of module’s controllability and observability: corresponding control bits have to be
part of the active path in order to set desired configuration, while additional recon-
figuration operations are required to include the module itself into the active path.
Therefore, an algorithm (Algorithm 14) implemented with two recursive functions
configureMux and putOnPath provides input symbols for guaranteeing that
all scan segments are accessed at least once, while also detecting the full set of
considered, detectable mismatches. The order in which multiplexers are provided
is obtained using the same rule as in the previous algorithm with the difference that
is performed once, globally, taking all multiplexers into consideration (Fig. 5.6d).
To give an example of testing SM1 from Fig. 5.7 that is in configuration "0" and on
the active path (01 input segment of SM0) a set of figures is provided. SM1 needs
to be brought to its "1" configuration which was immediately possible with mod-
ules controlled inline (such as SM0). On the other hand with remotely controlled
modules, such as SM1, their configuration bit has to be accessed. configureMux
will compute set of configuration transitions to do so:

• SM0 needs to be brought to "11" state to include pSIB1 (Fig. 5.8)

• once pSIB1 is on the active path, it has to be asserted (Fig. 5.9)

91

Post-silicon validation

• as bit cb1 is now accessible it needs to be set to 1 (Fig. 5.10); configuration
of SM1 is now as wanted; still, it has to be included into the active path.

Finally, putOnPath will change the configuration of the SM0 to 01 as this is
enough to include to have SM1 included into active path (Fig. 5.11).

n1 n2 n3

n11 n12

n121 n122

n1221

n31 n32 n33

n321
a)

n1(0,3)

n11(1,1) n12(1,3)

n122(2,3)

n2(0,0) n3(0,2)

n31(1,1) n32(1,2) n33(1,1)

n1(0,3)
n12(1,3)
n122(2,3)
n1221(3,3)
n121(2,2)
n3(0,2)
n32(1,2)
n321(2,2)
n11(1,1)
n31(1,1)
n33(1,1)
n2(0,0)

n121(2,2)

n1221(3,3)

n321(2,2)

n1221(3,3)
n122(2,3)
n12(1,3)
n1(0,3)
n321(2,2)
n121(2,2)
n32(1,2)
n3(0,2)
n33(1,1)
n31(1,1)
n11(1,1)
n2(0,0)

b) c) d)

Figure 5.6: Hierarchical information on network’s nodes

5.2 Experimental results
We developed a prototypical tool, able to build an internal simplified RSN

model by reading the ICL description of the network. After generation of selected
mismatches, pattern generation is run. Upon completion, a report is generated
with the list of applied configurations, set of covered mismatches and those which
are considered as undetectable.

Experimental results using the proposed mismatch model and pattern genera-
tion algorithms are reported for the sub-set of ITC2016 benchmark networks, since
the tool currently does not support all the constructs. Some synthetic networks
from the same set [45] have been translated from an internal XML description to

92

5.2 – Experimental results

Algorithm 13 Deterministic algorithm for in-line RSN architecture
function generateInputSymbol(prevState, state)

i← Size(bitBuffer) ▷ number of control bits
genState← accessible(state) ▷ visible control bits
while i ≥ 0 do

mux← getMux(StateV ars, i) ▷ mux corr. to i
if accessible(i) then ▷ control bit on act. path

checkMux(0, mux) ▷ update mux test status hier.
if SIB then ▷ mux is SIB type

if bitBuffer[i] A then
if hierTested(mux) then

bitBuffer[i]← D ▷ close SIB
setTested(mux) ▷ mark as tested

curL← mux segment hier. level(lc) ▷ 1nd parameter
deepL← mux deepest hier. level(ld) ▷ 2st parameter
if ScanMux or (SIB and (bitBuffer[i] D
or (bitBuffer[i] A and isTested(mux))) then

if deepL ≥ maxD and ¬isTested(mux) then
if curL ≥ maxC then

sMux← mux ▷ save the multiplexer
update levels (maxD)

i← i− selectionCellSize(mux)
if ¬isTested(sMux) then ▷ decide how to conf. mux

if ScanMux then ▷ traverse ScanMux inputs
bitBuffer ← apply next encoding
if last encoding then

setTested(sMux) ▷ mark as tested
else

if bitBuffer[i] D then
bitBuffer[i]← A

else
if (mux, lc = ld) then

setTested(sMux) ▷ mark as tested

the ICL format and can be found at the ecosystem’s website. 1.
The experimental results are given in Table 5.2. For each of the benchmarks in

column 1, number of generated configurations is reported in column 2. Column 3
gives the total cost in clock cycles for applying the generated sequence. The key
length has been set to 32, while 5 clock cycles are added as JTAG overhead to each

1https://gitlab.com/IJTAG/benchmarks/tree/master/ICL

93

Post-silicon validation

Algorithm 14 Generating configurations for remotely controlled RSN architecture
function generateConfigurations(gen, len, i, d)

mux← muxList(0)
while mux /= null do

currentConfEnc← mux current configuration
for encoding all mux encodings do

if currentConfEnc /= encoding then
configureMux(gen, mux, encoding)

putOnPath(mux)
index← index + 1
mux← muxList(index)

pSIB1

TDRsib

SM
0

TDR1a

SM
1

TDR2a

SM
2

TDR3b

SM
3

SM
4

TDR4b

cb4

cb3

cb1

TDR1

cb2

cb0

Figure 5.7: Testing SM1 in steps: SM1 with its input segment 0 on active path

of the sessions. Furthermore, the time required by the tool written in Java to apply
the algorithm is given in column Runtime. Columns 5 and 6 report on total number
of considered faults (excluding implicit ones) and the total number of undetectable
faults, respectively. It is worth noting that in all cases applying generated sequence
resulted in achieving full coverage.

5.3 Chapter summary
Reconfigurable Scan Networks provide flexible instrumentation access through

dynamic reconfiguration. To ensure there is no mismatch between prototypical de-
vice and initial specifications, product life-cycle requires performing (post-silicon)

94

5.3 – Chapter summary

pSIB1

TDRsib

SM
0

TDR1a

SM
1

TDR2a

SM
2

TDR3b

SM
3

SM
4

TDR4b

cb4

cb3

cb1

TDR1

cb2

cb0

Figure 5.8: Testing SM1 in steps: accessing its configuration bit cb1; pSIB1 has to
be included into the active path

pSIB1

TDRsib

SM
0

TDR1a

SM
1

TDR2a

SM
2

TDR3b

SM
3

SM
4

TDR4b

cb4

cb3

cb1

TDR1

cb2

cb0

Figure 5.9: Testing SM1 in steps: accessing its configuration bit cb1; pSIB1 has to
be asserted

validation before going into the mass production. Such additional effort prevents
rendering the whole infrastructure inoperable and avoids enormous re-design costs.
In this chapter a mismatch model for post-silicon validation of RSNs was proposed.

95

Post-silicon validation

pSIB1

TDRsib

SM
0

TDR1a

SM
1

TDR2a

SM
2

TDR3b

SM
3

SM
4

TDR4b

cb4

cb3

cb1

TDR1

cb2

cb0

Figure 5.10: Testing SM1 in steps: setting cb1 to 1

pSIB1

TDRsib

SM
0

TDR1a

SM
1

TDR2a

SM
2

TDR3b

SM
3

SM
4

TDR4b

cb4

cb3

cb1

TDR1

cb2

cb0

Figure 5.11: Testing SM1 in steps: putting back SM1 to the active path; input
segment that is now selected is 1 (TDR1a)

Furthermore, two algorithms have been developed for generating configuration pat-
terns to detect the set of considered mismatches. The ITC2016 benchmark networks
were used to evaluate the proposed methodology. It was found that in all cases full
detection coverage has been reached. For the detection procedure based on the
active path length comparison, the tool is able to generate a list of undetectable
mismatches. Furthermore, mismatch model is easily extendable, due to the nature

96

5.3 – Chapter summary

Table 5.2: Post-silicon validation experimental results

Network Number of
conf. steps

Total
cost [cc]

Run-
time

Total
mismatches

Undetectable
mismatches

Mingle 32 4,437 1s 124 29
TreeBalanced 62 19,391 9s 1,423 47
TreeFlat_Ex 102 16,446 10s 2,725 149
TreeUnbalanced 44 150,277 4s 874 50
a586710 106 1,588,162 7s 1,029 186
p22810 518 162,668 8m 36,371 851
p34392 310 2,853,219 100s 8,250 1,377
p93791 1,864 76,688,262 11h 203,832 21,342
q12710 50 54,760 4s 491 8
t512505 287 176,506 1m 10,246 557
N132D4 96 100,629 47s 18,140 492
N17D3 17 3,464 1s 553 11
N32D6 29 850,906 5s 1,290 4
N73D14 55 3,361,858 7s 4,836 21
NE600P150 432 1,685,759 37m 319,871 5,818
NE1200P430 854 10,696,840 4h 1,337,343 11,303

of the problem and internal model of the network extracted by the tool.

97

98

Chapter 6

Simulation-based equivalence
checking between IEEE 1687 ICL
and RTL

The standardization and portability the IEEE 1687 Standard introduced was
supported by two description languages: the Instrument Connectivity Language
(ICL) and the Procedure Description Language (PDL). The two languages together
allow for instrument access procedures to be written once at the IP level, and then
be applied regardless of where the IP was integrated and how many times was
instantiated.

Role of the Instrument Connectivity Language (ICL) is to describe the new
systems in a tool-friendly manner. This means that a given system will have two
different descriptions: the RTL, used in the design flow to obtain the final circuit,
and the ICL, to describe connections in high-level manner, between the IJTAG scan
circuitry and the instrument ports, without instrument functionality. Depending on
the company’s internal design strategy, ICL and RTL could be developed in parallel
starting from the same high-level specifications, ICL could be extracted from the
RTL or vice-versa. In all cases, this implies to have two different descriptions of
the same system: any incoherence between the two models might cause serious
problems. This is especially true for a new standard like IEEE 1687-2014 : ICL
can be complex and engineers are still learning it, making human error extremely
likely.

In this chapter, an automated and reliable method for verifying equivalence
between ICL and RTL descriptions is proposed. After giving a short introduction to
IEEE-1687 ICL in Section 6.1, the approach is presented in Section 6.2. Section 6.3
will provide experimental results based on the ITC16 benchmark suite [45].

99

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

6.1 ICL
The Standard document states that ICL’s purpose is "to describe the elements

that comprise the instrument access network as well as their logical (though not
necessarily their physical) connections to each other and to the instruments at the
endpoints of the network" [77]. The connections between IJTAG scan circuitry
and the instrument ports without instrument functionality is what essentially ICL
supplies. To obtain this result, the language takes an approach quite similar to a
"light-RTL": registers and instruments can be instantiated and parametrized, and
connected through "ports" and "logic signals". Dynamic topologies can be described
using "ScanMuxes", whose truth table is used to select the active path. Overall, ICL
provides descriptions to find every IJTAG control and data bit on the chip. ICL
designs can also be split into multiple files for easier maintenance and code reuse.
The code base can therefore become quite big, and manual verification cannot be
trusted : an automated and quantifiable Equivalence Checking tool is the only
viable solution.

A fundamental entity in ICL is called a module. As an example, we provide
a description for the pre-SIB module in Figure 6.2. Here structural description
of the module is given together with the definitions of two scan interfaces: host
and client interface. The module consists of one ScanMux primitive - SIBmux and
ScanRegister primitive - SR, whose update stage is used to control the multiplexer.
This control register (bit) is placed after the multiplexer since its source (ScanIn-
Source) is defined as the output of SIBmux. CaptureSource and ResetValue fields
are also specified for the register. SIBmux has two input segments, first used to
bypass (client input - SI) and the second one to include the segment (host input -
fromSO).

TDR5SIB1

TDR1 SIB2

TDR2

TDR3

TDR4

SM
1

len=3

len=7

len=4

len=10
len=5

Figure 6.1: 1687 RSN example

A description of the device can contain instantiated modules. In Figures 6.3, 6.4
and 6.5, example network from Fig. 6.1 is partially described. Parameters are used
to define the length of the registers (Fig. 6.3). It can be seen that not all ports of the

100

6.1 – ICL

instantiated modules are connected. Since ICL is an abstract language rather than
a netlist language, they are considered to be connected implicitly. For example,
SEL ports of some instances (TDR1 and TDR2) are produced implicitly, directly
from the parent modules (SIB1 and SIB2) (Fig. 6.4). On the other hand, instance
TDR3 placed behind the ScanMux has explicitly defined select signal where SM’s
SEL port is gated with the associated decode of the DO[0:0] signal used to select
the active SO signal of the ScanMux (Fig. 6.5).

Module SIB_mux_pre
ScanInPort SI;
CaptureEnPort CE;
ShiftEnPort SE;
UpdateEnPort UE;
SelectPort SEL;
ResetPort RST;
TCKPort TCK;
ScanOutPort SO {

Source SR;
}
ScanInterface client {

Port SI;
Port CE;
Port SE;
Port UE;
Port SEL;
Port RST;
Port TCK;
Port SO;

}

LogicSignal toSel_SR_SEL {
SR[0] & SEL;

}
ScanInPort fromSO;
ToCaptureEnPort toCE;
ToShiftEnPort toSE;

ToUpdateEnPort toUE;
ToSelectPort toSEL {

Source toSel_SR_SEL;
}
ToResetPort toRST;
ToTCKPort toTCK;
ScanOutPort toSI {

Source SI;
}
ScanInterface host {

Port fromSO;
Port toCE;
Port toSE;
Port toUE;
Port toSEL;
Port toRST;
Port toTCK;
Port toSI;

}
ScanRegister SR {

ScanInSource SIBmux;
CaptureSource SR;
ResetValue 1’b0;

}
ScanMux SIBmux SelectedBy SR {

1’b0 : SI;
1’b1 : fromSO;

}

Figure 6.2: Description of the pre-SIB as module in ICL

101

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

Parameter lenR1= 3;
Parameter lenR2 = 7;
Parameter lenR3 = 4;
Parameter lenR4 = 10;
Parameter lenR5 = 5;

Figure 6.3: Parameteres in ICL

Instance sib1 Of SIB_mux_pre {
InputPort SI = SI;
InputPort fromSO = sib2.SO;

}
Instance TDR1 Of WrappedScan {

InputPort SI = sib1.toSI;
Parameter dataWidth = \$lenR1;

}
Instance sib2 Of SIB_mux_pre {

InputPort SI = regR1.SO;
InputPort fromSO = regR2.SO;

}
Instance TDR2 Of WrappedScan {

InputPort SI = sib2.toSI;
Parameter dataWidth = \$lenR2;

}

Figure 6.4: SIBs with TDRs in ICL

6.2 Proposed approach

6.2.1 Post-silicon validation approach
Chapter 5 describes an approach for the purpose of validating silicon implemen-

tation of the RSN against respective ICL descriptions. The method itself relies on
the ICL as only specification, without any additional information available. Since
the observability is reduced compared to gate level or RTL level in simulation, the
device itself is considered to be a black-box. Therefore, the proposed approach
relies solely on applying the stimuli at the input and observing responses at the
output.

Although well-defined and experimentally verified metrics exist for post-manufacturing

102

6.2 – Proposed approach

Instance TDR3 Of WrappedScan {
InputPort SI = sib1.SO;
InputPort SEL = sel_SR3;
Parameter dataWidth = \$lenR3;

}
ScanMux SM SelectedBy controlSM.DO {

0: TDR3.SO;
1: TDR4.SO;

}
Instance controlSM Of SCB {

InputPort SI = SM;
}
LogicSignal sel_SR3 {

SEL \& (controlSM.DO[0:0] == 1’b0);
}

Figure 6.5: ScanMux and TDR in ICL

tests and some less standardized semantic and syntactic for verification (pre-silicon),
for post-silicon validation they are still the subject of research. Independent on the
specific reasons for the existence of a mismatch between the specification and the
implementation we defined a fault model containing a set of mismatches of differ-
ent type: a missing register, an added register, a wrong register length, exchanged
position of two modules (TDR, ScanMux & SIB), wrong configuration, exchanged
inputs and control lines of the ScanMux, wrong SIB type. Additional constraint
taken into account is that the TAP controller is used for controlling the network. Its
state machine allows specific order of operations to be executed: either capture shift
and then update, in cycles, with the possibility to avoid shift - only capture and
then update. Therefore, we organized the procedure for detecting such mismatches
as a set of steps. Every step consists of:

• Capture operation

• Shift operation - first a unique key sequence (32/64/128 bits) is inserted into
the scan chain. Its purpose is to check the integrity of the scan chain and the
length of the active scan path. To continue, a sequence of bits containing the
new configuration is inserted while observing the values at the serial output.

• Update operation - to apply the wanted configuration

After analyzing potential mismatches a conclusion has been drawn that their
effect is such that the checking sequence is either corrupted - its values are modified,

103

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

or shifted in time - values are appearing later or earlier than expected. When
a segment that includes modules (TDRs, SIBs and ScanMuxes) whose order is
modified is included into the active for the first time, it does not have an effect on
the length of the active path. However, detecting them remains possible as long
as certain configuration bits do not match original positions. Writing into them
to set the desired configuration may result in writing into TDRs or some other
configuration bits.

The algorithm for generating configurations is deterministic. It starts from
the internal network model and the set of considered mismatches. Some of the
mismatches are considered detected implicitly with the condition that each scan
segment has to be accessed at least once.

The network is modelled as a Finite State Machine (FSM):
• State is represented as the current configuration of the network.

• Output symbol is the length of currently active scan path.

• Input symbol is the bit stream shifted at the input

• Transitions are reconfiguration operations.
Apart for the original, unmodified network, one FSM is created for every mis-

match. Such FSMs contain the set of segments that do not match those in the
original network due to the injected mismatch. Additionally, the record of posi-
tions for all configuration bits is kept. Initial states are generated and set for all
FSMs, while consecutive states are being created dynamically.

Reconfigurable modules are listed based on their position in the hierarchy of
the network as well as on the highest hierarchical level they provide access to.

Two algorithms for generating configurations were developed in order to support
both, networks with all modules controlled in-line and those incorporating remotely
controlled configurable modules as well, where the ScanMux and associated set of
control bits are either non-adjacent or do not belong to the same scan segment. The
latter are more difficult to manage since for a certain network configuration to be
applied, multiple reconfiguration operations may take place to first set the desired
value(s) of relevant control bit(s) and then include the module into the active path.

6.2.2 Application to RTL Equivalence
In this paper, we propose to apply the same approach to the problem of RTL

and ICL Equivalence: starting from the ICL description of the System Under Test
we develop a testbench, which thanks to the properties detailed in the previous
sub-section, when simulated against the correct RTL description provides a 100%
coverage. In case of non-compliance between the RTL and the ICL, coverage will
drop as the hypothesis behind the testbench generation are not true: this condition
will therefore allow us detection, as will be detailed in the following Section.

104

6.3 – Experimental Results

6.3 Experimental Results

6.3.1 Setup
To validate the approach, an experimental setup has been devised [45]: for an

RSN the following experimental procedure is followed:

1. First the ICL is parsed to obtain the internal network model;

2. From this model, an RTL description of the System-Under-Test is generated,
which is correct and coherent with the ICL by construction. It is the golden
reference;

3. By applying the method of Section 6.2.1, i.e., Chapter 5 a reference testbench
is obtained;

4. The testbench is simulated in Questa®SIM, while enabling the calculation of
code coverage and functional coverage;

5. Starting from the Golden Reference (Step 2), a set of erroneous RTL is gen-
erated by mutating the model against a set of possible error

6. For each mutated RTL, the testbench gets executed and the coverage gets
recorded: the mutation is considered as detected if there is a coverage drop.

In Table 6.1 we report some basic information on the subset of ITC2016 bench-
mark networks [45], together with experimental results. The networks from the
evaluation set differ in the number and type of programmable modules. For each
network given in column 1 (Network) following information is reported:

• Columns 2 (SIB) and 3 (SM) - the total number of SIB and ScanMux recon-
figurable modules, respectively.

• Column 4 (Conf. bits) - the total number of configuration bits in the network

• Column 5 (Max. depth) - the maximum hierarchical depth of the network
(for SIB-based networks this value equals to the maximum number of nested
SIBs, according to [45])

• Column 6 (Long. path) - the length of the longest scan path in the network

• Column 7 (Scan Cells) - the total length of all scan cells existing in the
network

• Column 8 (TB Gen) - the time needed to generate the testbench for the given
network

105

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

• Column 9 (TB Exe) - the time needed to execute the testbench for the given
network

In all the considered benchmarks, the statement coverage, branch coverage and
assertion coverage have reached 100% when simulating the Golden Reference RTL
design.

To validate the approach, we selected the following set of possible errors:
• mismatch in one register’s length

• wrong position of the controlling register of a SIB’s: pre (i.e. ScanMux pre-
cedes the control register) - & post (the ScanMux comes after the control
register

• Error in the order of scan segments connected to the inputs of scan multi-
plexers

This is only a subset of possible errors, but from their experience the authors
deem it representative of typical human coding. As this selection only impact
the experimental validation and not the benchmark generation itself, it would be
extremely easy to verify coverage for other error types.

Fig. 6.7 depicts the output of an experimental run for a network being subjected
to mutations for a register length, Fig. 6.8 for a network with wrong SIB types and
Fig. 6.9 for mixed ScanMux inputs.

For each mutation, represented on the X-Axis, three coverage metrics are given:
statement, branch and assertion. In all 63 cases but 2 (replica 50 and 56) at least
one of the three types of coverage is under 100%, which is the mismatch detection
condition. For this example, detection rate is therefore 88/90=97.8%.

Table 6.1: Benchmark networks list

Network SIB SM Conf.
bits

Max
depth

Max
path

Scan
cells

TB
Gen

TB
Exe

Mingle 10 3 13 4 171 270 2s 5s
TreeBalanced 43 3 48 7 5,219 5,581 11s 16s
TreeFlat_Ex 57 3 62 5 5,100 5,195 12s 40s
TreeUnbalanced 28 - 28 11 42,630 42,630 6s 2m
a586710 - 32 32 4 42,381 42,410 20s 3m
q12710 27 - 27 2 26,185 26,185 5s 16s
N132D4 39 40 79 5 2,555 2,991 52s 95s
N17D3 7 8 15 4 372 462 2s 2s
N32D6 13 10 23 4 84,039 96,158 7s 4m
N73D14 29 17 46 12 190,526 218,869 9s 10m

Instruments are considered to be raw with defined data input and output ports,
while the network has been designed with the feedback functionality to enable read-
ing out the same values that were previously written. This is the main reason why

106

6.3 – Experimental Results

full toggle coverage cannot be achieved on registers representing TDRs. Additional
constraint is that we considered no information is available on which type of in-
struments are to be integrated or how they are operated.

6.3.2 Results
Table 6.2 resumes experimental results: for each network in Column 1, ranges for

three types of coverage (A-Assertion, B-Branch, S-Statement) for each error type
are reported in percentage of hits with respect to the total bin number. Further-
more, for each error type the number of detected errors and number of generated
errors is given in the ratio form in Columns Det/Tot. Finally, for each network, the
last column gives the detection rate taking into account all mutations generated for
each error type.

TDR1

TDR2

TDR3

TDR5

cb1cb0 cb2

000

001

010

011

101

SIB

SIB SIB

SM

TDR TDR

Figure 6.6: TreeBalanced ScanMux with equal length registers

Figure 6.7: Coverage for mutated RTL designs with wrong register lengths –
N73D14 benchmark circuit

107

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

The approach provides extremely good performances: coverage is close to 100%
in most cases, and execution times are extremely low, making its usage compatible
with the Design flow without impacting development times. As of now, testbenches
are executed until the end to obtain complete coverage metrics, but it is possible to
pinpoint the moment the deviation from the Golden Reference occurs: future devel-
opments will focus on this aspect to identify the exact difference between ICL and
RTL to help debugging. There are some test escapes, which need to be analyzed in
more detail. In these cases, the mutated circuit cannot be differentiated from the
original one because of symmetry inside the network. Take for instance network
TreeBalanced, whose part is depicted in Fig. 6.6: the registers TDR1, TDR3 and
TDR5 have the same length, so even though the ScanMux has a selection error,
it is impossible to tell them apart. Rather than limitations of our chosen detec-
tion algorithm, these escapes are pathological networks that result in untestable
topologies, and which should be avoided in the final silicon.

Figure 6.8: Coverage for mutated RTL designs with wrong SIB types – TreeBal-
anced benchmark circuit

Figure 6.9: Coverage for mutated RTL designs with exchanged ScanMux input
segments – TreeBalanced benchmark circuit

108

6.3 – Experimental Results

Ta
bl

e
6.

2:
Ex

pe
rim

en
ta

lr
es

ul
ts

on
R

SN
be

nc
hm

ar
ks

fo
r

3
ty

pe
s

of
m

ut
at

io
ns

sh
ow

in
g

th
e

ra
ng

e
of

ob
ta

in
ed

co
ve

ra
ge

fo
r

m
ut

at
ed

RT
Ls

.

SI
B

ty
pe

m
ut

at
io

ns
R

eg
ist

er
le

ng
th

m
ut

at
io

ns
Sc

an
M

ux
se

gm
en

ts
m

ut
at

io
ns

R
an

ge
[%

]
R

an
ge

[%
]

R
an

ge
[%

]

N
et

wo
rk

A
B

S
D

et
/T

ot
A

B
S

D
et

/T
ot

A
B

S
D

et
/T

ot
D

et
ec

tio
n

ra
te

M
in

gl
e

58
.5

-9
2.

2
89

.8
-1

00
92

.5
-1

00
10

/1
0

60
.2

-9
9.

2
89

.8
-1

00
92

.5
-1

00
9/

9
59

.7
-6

9.
4

84
.6

-9
3.

2
88

.7
-9

4.
5

3/
3

10
0%

Tr
ee

Ba
la

nc
ed

79
.0

3-
99

.9
6

65
.4

1-
10

0
73

.7
6-

10
0

43
/4

3
79

.4
7-

99
.8

8
66

.2
5-

10
0

74
.3

9-
10

0
44

/4
4

82
.2

4-
10

0
74

.5
8-

10
0

80
.7

1-
10

0
11

6/
12

1
97

.6
%

Tr
ee

Fl
at

_
Ex

96
.9

7-
99

.9
8

88
.4

1-
10

0
91

.1
4-

10
0

57
/5

7
97

.5
1-

99
.9

8
88

.7
1-

10
0

91
.3

8-
10

0
63

/6
3

98
.1

7-
10

0
93

.5
9-

10
0

95
.1

-1
00

11
6/

12
1

97
.9

%
Tr

ee
U

nb
al

an
ce

d
84

.6
-9

9.
92

68
.4

5-
10

0
75

.6
1-

10
0

28
/2

8
85

.3
1-

99
.9

2
70

.8
3-

10
0

77
.4

5-
10

0
35

/3
5

-
-

-
-

10
0%

a5
86

71
0

-
-

-
-

10
0-

10
0

10
0-

10
0

10
0-

10
0

0/
32

-
67

.1
8-

96
.4

8
75

-9
7.

32
32

/3
2

50
%

p2
28

10
?

?
?

?
?

?
?

-
-

-
-

?
q1

27
10

93
.8

9-
99

.9
2

85
-1

00
88

.7
2-

10
0

27
/2

7
93

.8
9-

99
.8

5
86

.5
-1

00
89

.8
4-

10
0

23
/2

3
-

-
-

-
10

0%
N

13
2D

4
97

.1
2-

99
.9

7
91

.1
8-

10
0

92
.9

1-
10

0
39

/3
9

95
.1

-1
00

79
.0

8-
10

0
83

.1
7-

10
0

16
7/

17
2

95
.7

3-
10

0
79

.0
8-

10
0

87
.1

7-
10

0
37

/4
0

96
.8

%
N

17
D

3
79

.6
9-

98
.4

9
80

.3
5-

99
.1

84
.4

3-
99

.2
9

7/
7

72
.4

3-
10

0
80

.3
5-

10
0

84
.4

3-
10

0
25

/2
7

76
.9

4-
88

.7
2

78
.5

7-
97

.3
2

83
.0

1-
97

.8
7

8/
8

95
.2

%
N

32
D

6
85

.6
4-

99
.7

4
79

.8
5-

10
0

83
.9

5-
10

0
13

/1
3

82
.5

6-
10

0
73

.1
3-

10
0

78
.6

-1
00

43
/4

4
81

.0
2-

97
.6

9
78

.7
3-

98
.8

8
83

.0
6-

99
.1

10
/1

0
98

.%
N

73
D

14
93

.0
4-

99
.9

3
87

.5
9-

10
0

90
.0

9-
10

0
29

/2
9

90
.7

6-
10

0
75

.1
8-

10
0

80
.1

9-
10

0
88

/9
0

87
.1

2-
91

.2
5

72
.4

2-
81

.9
8

77
.9

8-
85

.6
1

17
/1

7
98

.5
%

109

Simulation-based equivalence checking between IEEE 1687 ICL and RTL

6.4 Chapter summary
This chapter addressed the problem of detecting inconsistencies between ICL

and RTL models of RSNs, resorting to simulation-based verification. Automatically
generated test-benches for stimulating the RTL model are based on the patterns
used for post-silicon validation of networks. The approach was verified through a se-
ries of experimental benchmarks, obtaining extremely high detection coverage with
reduced execution time. We were also able to identify test escapes as pathological
network configurations.

110

Summary of Part I

This part of the thesis addressed issues related to Reconfigurable Scan Networks.
Relatively new standard IEEE 1687 describes architectural structures and two new
languages. They are used to enable efficient embedding of various instruments that
support test, debug, monitoring and calibration/configuration in the system. The
tools for supporting their integration and operation are being developed as they
continue to attract more and more interest from the industrial point of view.

Initially, the first part describes several techniques to minimize time to test,
i.e. to check if reconfigurable modules work as they are supposed to as well as to
perform diagnosis and identify the faulty module. Faults that have been observed
are permanent and have been considered using a high-level fault model. Then it
proposes novel approaches for post-silicon validation, equivalence checking between
ICL and RTL descriptions, and finally, NBTI-aging effect analysis and mitigation
in RSN logic paths.

111

112

Part II

Hardware Security: Hardware
Trojans

113

Chapter 7

Background

The ever-growing complexity of modern devices and the fabrication costs led
the Integrated Circuit (IC) industry to pursue a new global business model. In
that regard, more companies around the world are deeply involved in all phases of
the IC supply chain (Fig. 7.1). The outsourcing of part of the process to untrusted
third-party entities raises increasing concerns about the hardware security of the
products. The situation is becoming both critical and challenging and requires
careful regard.

Specific measures need to be taken for detecting, avoiding, and mitigating po-
tential threats based on a component’s importance. Furthermore, security needs
are driven by the evolving types of attacks, i.e., new adversary models, and type
and intended use of the device. No single solution exists able to obtain complete
protection. A common stance both in academia and industry is that such a solution
should be a set of flexible technologically-driven solutions that are to be applied
during the whole life-cycle of the device: development, deployment and operation.

D
es

ig
n

 In
te

gr
at

io
n

R
TL

 N
et

lis
t

Lo
gi

c
Sy

n
th

es
is

R
TL

 V
er

if
ic

at
io

n

P
h

ys
ic

al
 S

yn
th

es
is

La
yo

u
t

V
er

if
ic

at
io

n

Te
st

Pa
ck

ag
e

&

A
ss

em
b

ly

In-house
design

Integration
team

3PIPs
Foundry

RTL Netlist
IC

Gate-level
Netlist Layout(GDSII) Wafer

Figure 7.1: IC production flow

Apart from detecting and localizing accidental bugs as a part of design and
production flow, it is necessary to identify intentionally placed malicious circuits.
Different reports warn about such threats from both malicious and negligent actors
and vulnerabilities they can exploit. Particularly, the so-called Hardware Trojans
(HTs) continue to gain worldwide attention not only from industry (military) and

115

Background

academia, but also from government bodies [21].
A Hardware Trojan is defined as a malicious and intended alteration of a circuit,

that endangers the trustworthiness and the security of the hardware, leading to
unexpected behaviour. For instance, it may leak secret information, change the
circuit functionality or degrade the performance. A typical HT is composed of
a trigger and a payload circuit (Fig. 7.2). The trigger usually monitors specific
signals or series of events under some internal or external conditions. When the
trigger condition is met, it informs the payload circuit, which executes the malicious
function. The trigger is usually hidden under rare conditions, so the HT is dormant
for most of the time and the payload, inactive. In that case, the circuit acts as
a Trojan-free circuit. If the activation does not depend on the trigger circuit,
the Trojan belongs to another category, denoted as always-on. Such Trojan gets
activated as soon as its host design is powered on. Techniques to deal with the
latter exist on different levels of abstraction in IC design: from logic-level search
for sequentially-deep states, to unexpected patterns of power consumption.

Trigger Payload

O r i g i n a l c i r c u i t

H a r d w a r e T r o j a n

M a l i c i o u s l y m o d i f i e d c i r c u i t s

H a r d w a r e T r o j a n

Circuit

inputs

Circuit

output

Trigger

inputs

Payload

output

Circuit

inputs

Circuit

output

Trigger Payload

Figure 7.2: Hardware Trojan structure

The Section 7.1 provides an overview of the state-of-the-art regarding ML tech-
niques for RT-Level HT detection.

7.1 Related Works
To better position the work on HTs, the following subsections introduce the

most relevant state-of-the-art HT design methodologies and detection techniques.

116

7.1 – Related Works

7.1.1 HT Design
Some works have focused on design possibilities and proposed certain method-

ologies to create new types of HTs. In [78], authors discuss the design and im-
plementation of RTL HTs to be hard to trigger and able to evade hardware trust
verification based on unused circuit identification (UCI). They rely on specific cod-
ing style and trigger input selection. Additionally, signal controllability is examined
from the attacker’s perspective. In [79], authors explored different implementations
of HTs with different combinations of triggers, payloads, as well as unique sections
of the architecture that each HT attacks. They were all designed with a vary-
ing level of sophistication, allowing the attacker to trade-off design time, ability
to evade detection, and payload. They concluded that RTL designs can be quite
vulnerable to hardware attacks given the vast insertion space and functional test-
ing can often be useless in detecting them. Apart from introducing a metric for
quantifying HT activation and effect, [80] introduces a vulnerability analysis flow
by determining hard-to-detect areas and provide public trust benchmarks. Some
works proposed automatic techniques (malicious CAD tool) for HT insertion. To
generate HTs using a highly configurable generation platform, authors in [81] use
transition probability to identify the rarely activated internal nodes to target for
HT insertion, rather than functional simulation as used in existing platforms. The
platform has been tested to generate HT-infected circuits and then evaluated by
the ML detection technique [82] — the Controllability and Observability for HT
Detection (COTD).

7.1.2 Detection Techniques
Methodologies for detecting triggered-type HTs at RT-Level can be broadly

classified as dynamic and static. The former considers the adoption of verification
test patterns and dynamic type of analysis based on, for instance, code coverage
metrics. On the other hand, static techniques rely exclusively on static proprieties
of the target RTL model, without applying any stimuli. As regards the first class
(dynamic), one of the first approaches dates back to 2010, when Hicks et al. [83]
presented BlueChip, a hybrid design time/runtime system for detecting and neu-
tralizing malicious circuits at RTL. BlueChip is based on the assumption that part
of the circuit is dormant during the design verification and could therefore hide a
HT. The UCI technique can flag a part of the circuit as suspicious and deactivate
it by raising an exception when it becomes active. Its weakness has been demon-
strated in [84], showing a class of HTs that evade detection. Though UCI technique
may be able to discover many of the HTs shown in literature, it is sensitive to the
actual coding style. From another perspective, authors in [85] describe a framework
for generating directed test cases to activate HTs. It mixes concrete simulation and

117

Background

symbolic execution. The results are compared with EBMC1, a state-of-the-art for-
mal model checker, and demonstrate good scalability on large designs. A similar
approach is presented in [86], where the authors proposed an automated test gen-
eration technique for activating multiple targets in RTL models by the means of
concolic testing.

Concerning the static approaches, in [87], the authors exploit a sub-graph iso-
morphism algorithm for the detection of HTs inside an RTL model. Resorting to a
static pre-defined library of known HTs, the algorithm searches for the occurrence
of similar structures inside the Control Flow Graph (CFG) of the device under ver-
ification. A CFG is a representation in the form of a graph of all the paths in the
RTL model that might be traversed during the execution. However, this approach
produces a considerable number of false positives. To overcome this limitation, in
[88] the authors combine it with a classifier based on a Probabilistic Neural Net-
work, i.e., a feed-forward neural network usually used for classification tasks [89].
Even though the number of false positives is greatly reduced, the main drawback is
still the difficulty in finding Trojans that are not included in the pre-defined library.
power

1http://www.cprover.org/ebmc/

118

Chapter 8

A Benchmark Suite of RT-level
Hardware Trojans for Pipelined
Microprocessor Cores

A malicious alteration can be performed during any phase of the production
cycle. One category of HTs are those inserted at the manufacturing stage. In
this particular scenario, an adversary could access the mask and modify it to add
malicious logic. It is supposed that such logic is inserted intelligently, difficult to
activate with manufacturing tests given the combination of rare internal signals
values that is used to trigger it. However, more interesting are Trojans inserted
earlier in the design cycle, at the register transfer level (RTL) or gate-level. Apart
from superfluous complex reverse engineering, an attacker inserting a Trojan early
in the design process may take advantage of the vast design space. Also, such Trojan
may potentially remain hidden even in the following generations of the device.

During the last years, a huge effort has been invested in developing detection
methodologies as well as designing benchmark circuits to favour the advancements
in research. Indeed, the research community has received a strong drive to adopt
open benchmarks for validating their detection techniques. In this light, many HT
models have been proposed [90], [91]. However, the growing complexity of modern
devices as well as more mature and elaborate detection methodologies call for more
complex benchmark circuits. Some of the authors in their studies proposed different
HT taxonomies based on the insertion phase, location, abstraction level, activation
mechanism, effects, etc. However, it is complicated to create a HT model given
the whole spectrum of constantly evolving attacks and adversaries that are gaining
access to more and more phases of the IC development.

A common trend is to use benchmarks released from the Trust-Hub platform
[80], [92]. Considering HTs at RT-Level, only 8 typologies of benchmarks are cur-
rently available in Trust-Hub (Table 8.1), and none of them is applied to a pipelined
processor similar to the ones used in the real-life, as the ones in the automotive

119

A Benchmark Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores

Table 8.1: Number of RTL Hardware Trojan benchmarks available on Trust-Hub
[80] [92]

Design Class AES b19 BasicRSA MC8051 memctrl PIC RS-232 wb_conmax TOTAL

Number 21 3 4 7 1 4 10 2 52

applications. This is even more concerning, given higher flexibility for implement-
ing different kinds of malicious functions at RTL. The available HTs are injected
on a small 8-bit 8051 microprocessor, and a detection technique has already been
proposed in [83]. Hence, even the state-of-the-art HT detection techniques are
validated on obsolete benchmarks that do not reflect the true complexity of the
modern embedded devices. As stated in [91], to further support the development
of appropriate detection methods, the design and implementation of practical HTs
need to be considered.

To fill this gap, a total of 28 Hardware Trojans Benchmarks targeting a pipelined
RISC microprocessor core are released and presented in this chapter1. From the
structure of 8 HTs placed in different CPU’s locations, additional benchmarks were
derived by modifying their trigger mechanism. Their design follows the guidelines
for creating a hard-to-detect Trojan, presented in [78].

Section 8.1 describes the typology and general structure of new benchmarks.
Section 8.2 deepens the HTs design and provides implementation details together
with the impact such injection has on power, area and frequency.

8.1 Hardware Trojans
The proposed benchmarks are intellectual property (IP) level Hardware Tro-

jans conceived for a pipelined Central Processing Unit (CPU). Such Trojans are
implanted into an individual IP core of the SoC and can affect only the specific
IP in which they are embedded [93]. The benchmarks comply with the taxonomy
and the classification scheme outlined in [21], [80], [92]. Furthermore, the following
attributes are outlined for each benchmark: abstraction level, insertion phase, loca-
tion, activation mechanism, trigger, payload, effect. For the sake of completeness,
the insertion phase of the HTs is the Design phase, while the abstraction level is
the Register-Transfer level for all of the introduced benchmarks. Concerning the
effects, the benchmarks might prove to be disastrous or introduce minor damage.
Three different categories have been identified:

1. Degrade Performance (DP): The availability of the system under attack

1The presented HT Benchmarks will be made available for the research community and will
be uploaded on Trust-Hub platform.

120

8.1 – Hardware Trojans

might not be affected, remaining fully operational. However, the HT might
damage the performance of an IC and, in the worst-case, cause it to fail.

2. Denial Of Service (DoS): The HT when activated stops all the activities
of the system.

3. Change the Functionality (CF): The HT alters the functionalities of the
system, causing it to perform malicious, unauthorized operations. The CF
might also lead to a DP or DoS.

Table 8.2: Trojan Benchmarks Description

.

Name Location Trigger Payload Cat

OR1K-
T100

Decode
Unit

Sequence of instructions Periodically forcing
signal values

DP

OR1K-
T200

Control
Unit

Counters monitoring read
accesses to SPRs

Entering the supervi-
sor mode

DoS

OR1K-
T300

PIC Unit2 Counters for mask and sta-
tus reg. write access

Disabling external in-
terrupts

CF

OR1K-
T400

Control
Unit

3 counters for monitoring
instructions

Disabling control flag
bit

CF

OR1K-
T500

Decode
Unit

A specific sequence of in-
structions

Introducing "bubbles"
to stall the pipeline

DP

OR1K-
T600

Data
Cache

Counters monitoring Data
Cache Final State Machine
(FSM) transitions

Invalidating dcache
content

DP

OR1K-
T700

Load &
Store Unit

Instruction type, order and
number

Exception on the data
bus

DoS

OR1K-
T800

Instr.
Cache

Counters monitoring Instr.
Cache FSM transitions

Invalidating icache
content

DoS

Regarding the trigger part in the introduced Trojan benchmarks, they can be
grouped into two main categories. The first category is represented by a sequence
of events that, when triggered, enable the payload. Such events can be related to
different signals in the model, for instance, an exact sequence of instructions or a
set of consecutive values observed on a given bus. There are different possibilities
for implementing it; however, two main parts can be identified: a set of conditions
that activate or deactivate a targeted flag, and the second one for registering that
flag with some auxiliary combinational or sequential logic. Given the complexity

121

A Benchmark Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores

of the condition, this type of trigger may be difficult to activate, and therefore
may escape to standard verification approaches. The second category of triggers
is used to create and check sub-conditions. Once all of them are satisfied, the
payload is activated. They can be implemented by monitoring different processor
resources, for example, by observing certain values on the bus, the order and/or the
number of certain instructions, the read/write access to the registers, or tracking
the value of control signals between different stages of the pipeline. Sub-conditions
may also check the state of counters in charge of monitoring different activities
in the processor. The implemented counters may be part of a separate process
observing the aforementioned activities or be hidden, for instance, in an already
existing state machine. This type of trigger gives the possibility to create wide-
range of complex conditions. A HT would generally be expected to be as much
controllable as possible from the attacker’s perspective. However, working with a
microcontroller, i.e., a System-on-chip (SoC) that integrate additional components
such as peripherals, memories, etc. renders such access more difficult. Given that
all of the benchmarks are developed for a processor core, and that no mechanisms
are relying on the user input, i.e., component output, such as switches, keyboards
or keywords in the input data stream to activate a Trojan, all of the HTs in our set
are considered internally triggered. Moreover, they are activated either depending
on the time-based events or on the instructions that are being executed. Table 8.2
reports all the essential details related to the newly developed benchmarks: their
name, location, trigger and payload brief description and their category.

Figure 8.1: Proposed RTL Hardware Trojans in the Cappuccino configuration of
the mor1kx CPU.

122

8.2 – Trojan Implementation and Analysis

8.2 Trojan Implementation and Analysis
The proposed RTL Hardware Trojans are implemented in the mor1kx CPU,

whose architecture and HTs’ respective faulty location being depicted in Fig. 8.1.
The mor1kx is an open-source core provided by the OpenRISC community; it
is a configurable 32/64-bit load and store RISC architecture, written in Verilog
Hardware Description Language (HDL).

Figure 8.2: Trigger T200 condition

Due to the high design flexibility, it is possible to customize the core by choosing
the best trade-off between area and performance. The version selected in this work
(Cappuccino) has a pipeline with 4 stages, supports delay slot and is tightly coupled
with the caches. It also integrates a Programmable Interrupt Controller (PIC), a
Tick Timer (TT) and Debug units. In this work, HTs are injected into the original
HDL design, one at a time, by directly modifying the RTL code. On top of 8
primary HT designs, detailed in Table 8.2, we performed modifications concerning
the complexity of trigger conditions and coding style to expand our benchmark
library and to obtain additional 20 HT designs.
Trojan T100 : This Trojan is located in the processor’s decode-execute unit (de-
code to execute signal stage passing). A new process has been added to monitor the
instructions being executed. An if-then-else nested structure controls the opcode
value originating from the decode unit. Each time an instruction gets decoded, if
the sequence is correct, a counter is incremented; if the sequence is interrupted, the
counter is reset. The sequence of instructions is ORI-ADDI-AND-ORI-SUB-XOR-
AND-XORI-ADD-OR. Once the counter reaches the value 10, i.e., consecutive in-
structions correspond to the above sequence, payload gets activated. In this case,
pipeline is stalled indefinitely, thus disrupting the service.
Trojan T200 : This implementation is located in the control unit of the processor.
Eleven counters in the newly added process monitor read and write access of spe-
cial purpose registers (CPUCFGR, EPCR0, SR, DCCR, PCCR0, PCMR0, PMR,
PICMR, PICSR, TTMR, TTCR) (Fig. 8.2). With each access, a corresponding
counter is incremented. When all of the counters reach pre-defined values, a trigger
is activated (Fig. 8.3). The payload in this case is integrated into existing code by
adding a single OR condition to go from user to supervisor mode. Such behaviour
is typical when an exception occurs. The effect is interrupts and timer exceptions

123

A Benchmark Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores

Figure 8.3: Trigger T200 counters

being disabled, as well as Data and Instruction MMU. Additionally, a device that
is in the supervisor mode enables access to some sensitive registers.
Trojan T300 : This HT is located in the programmable interrupt controller. Two
counters are inserted to count write accesses to picmr (PIC mask) and picsr (PIC
status) special-purpose supervisor-level registers. Once the trigger part is activated
and there are no pending interrupts, payload gets to perform its role by masking all
maskable interrupts, which may result in disastrous consequences in safety-critical
systems. Reset needs to be performed to unmask such interrupts and disable the
HT.
Trojan T400 : Malicious trigger-part of this HT consists of three counters count-
ing the number of 3 instructions in the control stage (rfe – return from exception,
mfspr – move from special purpose register, mtspr – move to special purpose reg-
ister). When all three counters count up to a predefined value, the payload is

124

8.2 – Trojan Implementation and Analysis

activated. Once activated, the malicious function is designed to prevent the first
succeeding setting of the compare-conditional branch flag by adding a simple con-
dition in the assign statement. However, the effect can be severe, given that often
a processor when dealing with some instructions uses exactly this flag to calculate
the address or/and choose the operand, which may disrupt the desired flow and
cause serious problems depending on the application. Once the request for set-
ting the flag arrives Trojan performs its malicious function and gets deactivated.
Additionally, a reset signal resets the counters and deactivates the Trojan.

Table 8.3: Synthesis results

Design Size
δArea[%] Power mW

δPower[%]
Ports Nets Cells Comb./Seq. Area Intern. Switch.Leak. Total

Orig. 9,679 931,538 924,619 601,116 4,777,062.18 – 257.62 4.93 69.42 331.99 –323.252

T100 9,679 931,567 924,648 601,145 4,777,100.66 0.1× 10−2 257.62 4.93 69.42 331.99 −1.81× 10−4
323,252

T200 9.679 932,716 925,797 602,038 4,781,729.10 9.8× 10−2 257.82 4.94 69.48 332.24 7.60× 10−2
323,508

T300 9,679 931,899 924,980 601,412 4,778,437.10 2.9× 10−2 257.67 4.93 69.44 332.06 2.03× 10−2
323,317

T400 9,679 932,033 925,114 601,515 4,779,015.82 4.1× 10−2 257.70 4.93 69.45 332.09 3.07× 10−2
323,348

T500 9,679 931,793 924,874 601,333 4,777,998.70 2.0× 10−2 257.65 4.93 69.43 332.03 1.35× 10−2
323,290

T600 9,679 932,056 925,137 601,535 4,779,066.78 4.2× 10−2 257.69 4.93 69.43 332.06 2.11× 10−2
323,351

T700 9,679 931,787 924,867 601,330 4,777,932.66 1.8× 10−2 257.65 4.93 69.43 332.03 1.16× 10−2
323,286

T800 9,697 932,052 925,043 601,441 4,779,032.98 4.1× 10−2 257.70 4.94 69.45 332.09 3.18× 10−2
323,351

Trojan T500 : In the decode to execute unit, a Trojan is implanted to monitor
the consecutive instructions. Once the sequence of instructions corresponds to
the sequence of 14 pre-defined instructions a trigger is activated. The difference
with respect to some of the others HTs introduced in this paper is that this HT
introduces two processes for registering the activation signal and producing a pulse.
In that manner, the payload gets activated periodically. The payload is added to
the condition to form the decode_bubble_o signal and insert periodically a bubble
into the pipeline. The effect is no change in functionality of the processor. However,
due to the stalls it becomes slower, thus, degrading the performance.
Trojan T600 : This HT has been inserted into the data cache module. The
trigger part consists of 3 counters inserted in the state machine. The Cache FSM
has five states: IDLE, WRITE, READ, REFILL, INVALIDATE. The counters have

125

A Benchmark Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores

been inserted to count the transitions between the states: IDLE to INVALIDATE,
READ to REFILL, WRITE to READ. Once all of the three counters reach certain
values, cache invalidation is forced.
Trojan T700 : This HT is located in the load-store unit. Trigger part consists
of nested if-else examining the sequence of consecutive multiple load i.e., store
operations with 3 different types of access: byte (8), half-word (16) and word (32).
Once the complex condition gets satisfied, a pulse signal is generated to activate
the payload. The payload in this case is integrated into the process dealing with
the data bus exceptions. In this regard, once the payload becomes activated, it will
execute its malicious function by simulating a data bus exception and stepping into
the exception routine. As a result, the processor proceeds to the next instruction in
the pipeline skipping the current one at the moment when the exception occurred.
Such event may definitely disrupt the normal operation of the processor.
Trojan T800 : This HT is implanted into the instruction cache unit. Its trigger
part is incorporated within the FSM with counters following FSM state transitions.
Once all the counters get set to predefined values, a payload is activated: the inter-
nal hit signal is tied to zero, therefore, every time a request is sent, the instruction
cache reports a miss, i.e., not found in cache memory. Consequently, a refill oper-
ation is performed, thus significantly slowing down processor’s performance.

To demonstrate the feasibility of performing the proposed modifications and
inserting malicious code, we synthesized all of our 8 HT designs, including the
original one, with a 65nm industrial technology. Successively, we collected reports
regarding area, power and frequency. The results given in Table 8.3 clearly show
that such insertions are negligible in terms of area and power overhead. The relative
area difference is below 9.8×10−4, while the total power relative difference is below
7.6 × 10−4. Furthermore, we have confirmed that the critical path in the design
does not change by introducing the proposed modifications.

Starting from the structure of these original 8 HTs, 20 additional benchmarks
have been derived by making changes mainly on the trigger part (complexity of trig-
ger conditions, changing the comparison values, and changing them structurally).
For instance, if the trigger looks for a particular instructions sequence, this has
been shortened or extended. Additional wire signals for controlling the conditions
are introduced, and the position and number of counters is changed together with
comparison values. Furthermore, if the trigger sequence was hosted in a single RTL
process, it has been split up to use two or more processes, clearly maintaining the
same sequence. For example, Trojan T200, originally uses the value of 11 counters
to control the trigger condition. A modified version of this Trojan uses 14 counters
for its activation. Their values are incremented within two separate processes (10
+ 4). The aforementioned changes are especially useful for evading detection by
some methodologies that rely on one particular coding style. On the whole, the
benchmark set finally contains a total of 28 HT.

126

8.3 – Chapter summary

Functional testing is quite unlikely to detect malicious circuitry based on in-
struction or access sequences as the input space is too large. The number of in-
structions in 32-bit version of the processor is 96 (including custom ones). There-
fore, the probability of activating Trojan T100 is 10 × 10−20 order of magnitude.
Moreover, functional verification/testing is statistically useless trying to detect HTs
observing multiple counter values. It is not only because of the large number of
conditions but also given the large comparison values and limited time required to
run the simulations. All of the listed HTs can get excited and are not completely
dormant/silent in terms of activity. Nevertheless, the probability of activating the
payload is extremely low without the knowledge of HT’s structure inserted by the
attacker. UCI detection technique has certain limitations. UCI can be avoided by
inserting malicious circuits that affect unchecked outputs. Unchecked outputs could
arise from incomplete test cases or from unspecified output states. Additionally, an
attacker might exploit implementation-specific behavior and hide a HT in a module
such as cache. Such affected outputs might be difficult for a testing program to
check deterministically, thus causing malicious circuits to affect outputs and avoid
UCI analysis.

8.3 Chapter summary
In this chapter, a set of 8 new principle HTs is introduced as well as their 20

modifications for a pipelined processor core. The proposed HTs have been injected
into very different parts of the processor design. They differ in the trigger and
payload. The synthesis reports show the negligible impact that the introduced
modifications have on area, power and frequency.

In the author’s modest opinion the set of benchmarks could be extremely useful
for validating dynamic HT detection methodologies since the core is open-source
and in the near future the HTs will be also made publicly available.

127

128

Chapter 9

Machine Learning for Hardware
Security: Classifier-based
Identification of Trojans in
Pipelined Microprocessors

Researchers have faced the hardware-based security problems from several an-
gles. The state-of-the-art detection techniques can be classified according to dif-
ferent factors: the Trojan typology, the insertion time, the abstraction level, the
location, the activation mechanism, the effects, the physical characteristics, the
need for a golden model, etc. As a result, comparing all the work that has been
done is a challenging task. An interesting overview is provided in [21], where the au-
thors summarize what has been covered and suggest a roadmap for future research
in this field. Interestingly, many methodologies utilizing Machine Learning (ML)
for HT defence have emerged [93]. Among the existing ML-based techniques, Arti-
ficial Neural Networks (ANN) are commonly used for predictive analysis. Another
commonly used ML approach for the problem of binary classification is Support
Vector Machine (SVM). The success and popularity of ML methodologies in vari-
ous research domains has motivated both industrial and academic communities to
explore the potential of applying them to the hardware security field. In particular,
the main progress in ML-based techniques has been achieved in three widely used
detection methodologies: reverse engineering [94], [95], circuit feature analysis [96],
[97], and side-channel analysis [98], [99].

This chapter describes a way to exploit powerful and robust ML techniques for
Hardware Trojan detection. The proposed methodology is applied at the pre-silicon
phase of the supply chain, and is based on a deep-learning analysis of the dynamic
and static properties extracted from the design RT-Level model. The former prop-
erties are gathered by exciting the model by executing software code; the latter
uniquely depends on the structure of the model and the code/data dependency. In

129

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

this article, these two properties are jointly used to feed the ML model which then
performs classification, i.e., calculates the probability of input sample belonging
to the malicious insertion, as it will be deepened in Section 9.2. Unlike common
approaches, this one combines both static and dynamic properties for building a
comprehensive detection methodology at the RT-Level.

Understanding the System-on-Chip (SoC) supply chain Fig. 7.1 is the first nec-
essary step for delineating the possible attacks scenarios. In [21], the authors pro-
vide an interesting overview of the SoC development flow and all the entities that
come into play. They identify three main phases: the Intellectual Property (IP)
Development, the SoC Integration and the Foundry. The first one involves all the
IPs providers. An SoC is typically comprised of more than one IP. To reduce re-
search and development costs, some of them are built in-house, others are bought
from third-party IP vendors. Once that all the IPs are available, the second phase
consists in joining them in a single SoC, i.e., the SoC Integration. Both SoC de-
signers and IP providers for facilitating the design process rely on EDA tools. At
this point, all the side structures are integrated into the SoC, for example, Design-
For-Testability modules, Debug Units, and Built-In Self-Test blocks are typically
entrusted to third-party specialized vendors. Once the SoC post-layout phase is
done, it is sent to the foundry for IC fabrication. The fabrication process is usually
the most costly stage of the flow, thus, their fabrication is usually granted to exter-
nal foundries. A malicious actor present in any stage can insert the HT at various
levels of abstraction. The key issue lies exactly in understanding which of these
entities are trusted and which are not. Once it has been established, the threat
model can be drawn. In [92] and [21], the authors provide a comprehensive list of
adversarial models showing exactly when, where and how a Trojan can be placed
into an IC. The detection technique we propose here is ML-based, to be applied
during the pre-silicon phase at the RT-level. Note that exploiting ML-based tech-
nique is likely to imply the creation of models from a set of historical data and
then utilizing these trained models for prediction [93]. Two different learning tasks
can be used: supervised learning and unsupervised learning. The former exploits
labelled data to perform model training, the latter focuses on the relations between
data when labels are unavailable.

9.1 Design Verification and ML concepts
The following section introduces four important concepts that underlie the pro-

posed work. First, the fundamental characteristics of digital design verification are
introduced (Section 9.1.1); this background knowledge is useful for describing the
dynamic analysis used in our detection methodology. However, it may be super-
fluous for the readers that possess some basic knowledge on this topic. Next, an
overview of Artificial Neural Networks is provided in Section 9.1.2 and finally, the

130

9.1 – Design Verification and ML concepts

Support Vector Machine technique is presented in Section 9.1.3.

9.1.1 Digital Design Verification
Digital systems are created by following a series of steps that comprise several

intermediate design phases. Clearly, the lower the abstraction level, the higher the
complexity of the resulting model. Identifying and removing logic errors in a design
is not a trivial task; in fact, nowadays, the development resources devoted to these
tasks amount to about 50%-60% of the total cost in the design process [100]. A
series of verification processes are required intending to guarantee that the design
model meets the expected specifications [101]. Very different methodologies have
been developed to generate verification stimuli. The main possibilities range from
manual verification techniques to formal verification techniques, including random
and semi-random approaches. In particular, simulation-based methodologies try
to completely exercise the current model of the device to uncover design errors.
Briefly, a simulation-based verification process is composed of three basic elements:
input data (also called set of stimuli), the model of the device under evaluation (also
called design or device under verification or DUT); and the response checker, which
generates the pass/fail information regarding the current process by performing a
comparison of the obtained results against the expected ones. To qualify a stimuli
set, one of the most used methodologies is based on collecting a series of measure-
ments obtained by computing the code coverage metrics during the simulation of the
device while running the stimuli set. These metrics identify which code structures
belonging to the circuit description are exercised by the set of stimuli, and whether
the control flow graph corresponding to the code description has been thoroughly
traversed. The structures exploited by code coverage metrics range from a single
line of code to if-then-else constructs. Today CAD tools can measure among other
the statement coverage, branch coverage, condition coverage, expression coverage,
toggle coverage, and metrics based on Finite State Machine models [102].

9.1.2 Artificial Neural Networks
The origin of Neural Networks dates back to 1950s, when the basic building

block of modern neural networks, the perceptron, was first proposed [103]. Over the
years, key theoretical discoveries and technological advances allowed this concept
to evolve into a brand new field. The original perceptron contains a single input
layer and an output node, as shown in Figure 9.1, and may implement a linear
binary classifier. The input layer does not perform any computation and thus it is
not included in the count of the number of layers in a neural network. Therefore,
in modern terminology, the perceptron would be considered a single-layer network.
It is worth underlying that modern neural networks are certainly built with more
than one computational layer.

131

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

y

x1

x2

xN

w1

w2

wN

...

bias

f

Activation
Function

Output

in
pu

ts

Neuron Body

Communication
Channels

Synaptic
Weights

Summation

Figure 9.1: The basic architecture of the perceptron.

More in detail, the input layer of a perceptron contains N nodes that transmit
the N features X = [x1 ... xN] with edges of weight W = [w1...wN] to an output
node y. The prediction of the perceptron is computed as follows:

y = f(
N∑︂

j=1
wjxj + b) (9.1)

Where xj are the inputs, wj the weights, b is the bias. The activation function
(f) defines how the weighted sum of the input is transferred to the output node.
The choice of f is considered a critical part of neural network design since it has
a large impact on the capability and performance of the neural network. The
interpretation of the perceptron as a computational unit is useful, and it allows us
to combine multiple units (i.e., multi-layer perceptron) to develop far more efficient
models [104]. Broadly speaking, Artificial Neural Networks are computing models
composed of computing nodes, connected through communication links (Fig. 9.2).
Nodes are arranged in layers, at least one input layer, one intermediate (or hidden),
and one output layer.

Figure 9.2: Artificial Neural Network: a basic representation.

Nowadays, the conventional machine-learning applications used for example to

132

9.1 – Design Verification and ML concepts

identify objects in images or transcribe speech into text make use of techniques
stemming from NN and labelled as “deep learning” [105]. Thanks to the multi-
ple levels of representations, quite complex functions can be learned; nevertheless,
in the building blocks of such structures, it is still recognizable the old idea of
perceptron.

Over the years, many different neural network architectures have been created
depending on the layers and their organization, the activation functions and many
other exploited features. Among the most common and widespread types are con-
volutional neural networks (CNNs) and residual neural networks (ResNet) for im-
age classification and object detection tasks; recurrent neural networks (RNNs) for
tasks that involve sequential inputs such as speech and language. Recent studies
have demonstrated that state-of-the-art neural networks can surpass human-level
performance: for example, in [106] the authors achieved 4.94% top-5 test error on
the ImageNet classification dataset, and the human-level performance was 5.1%,
according to Russakovsky et al. [107]. The potential of this kind of deep and com-
plex neural networks (e.g., ResNet [108]) reflects the fact that biological neural
networks gain much of their power from depth.

9.1.3 Support Vector Machine
An SVM, close to its current form, was described in [109] as a training algorithm

that maximizes the margin between the training patterns and the decision bound-
ary. It has been developed from the Statistical Learning Theory in the 1960’s [110].
The goal of the SVM algorithm is to define an optimal separating hyperplane for
a two-class dataset. SVM tries to maximize the width of the margin between the
so-called support vectors, that is, training samples that lie closest to the separating
hyperplane (Figure 9.3).

�

Figure 9.3: Defining a border between classes using an SVM (support vectors are
marked with □ and ◦)

133

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

Training input for the system can be represented as a set of r elements: {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xr, yr)},
where xi, i = 1,2, . . . , r represents a n-dimensional input sample vector with the
corresponding response value yi, i = 1,2, . . . , r (9.2).

yi =
⎧⎨⎩1, if x ∈ A

−1, if x ∈ B
(9.2)

At the end, after the training process is done, the class of the new input data
vector x, will depend on the decision function value, D (x), in such a way that
it represents a position below or under the hyperplane that separates two classes.
This function can be expressed as a linear combination of parameters (9.3),

D (x) =
n∑︂

j=1
wjxj + b = wx + b (9.3)

where wj are coefficients, x is input vector and b is a bias coefficient. Conditions for
discrimination between input sample xi being on one (9.4) or the other side (9.5)
of the hyperplane, can be unified into a single condition (9.6).

wxi + b ≥ 1, yi = 1 (9.4)

wxi + b ≤ −1, yi = −1 (9.5)
yi (wxi + b) ≥ 1 (9.6)

wx+ + b = 1 (9.7)
wx− + b = −1 (9.8)

w (x+ − x−) = 2 (9.9)

M = w
∥w∥

(x+ − x−) = 2
∥w∥

(9.10)

Margin M is defined using a difference (9.9) of two samples x+ (9.7) and x− (9.8)
lying on two boundaries. The objective of this algorithm is to find the coefficient
vector w to maximize the margin M (9.10). To summarize, the goal is minimizing
∥w∥2

2 with the condition of correctly classifying all the points yi (wxi + b) ≥ 1.
Solution to the problem of minimizing minxf(x) , with respect to gi(x) ≤ 0

for i = 1, . . . , n is equivalent to finding the solution to Lagrangian’s zero gradient
(9.11). ⎧⎪⎪⎨⎪⎪⎩

∂

∂x

(︄
f (x) +

∑︂
i=0

αigi (x)
)︄

= 0, ∃αi > 0, i = 1, . . . , n

gi (x) ≥ 0
(9.11)

134

9.1 – Design Verification and ML concepts

Comparing the method with the existing problem f (x) = ∥w∥
2 , gi (x) = 1 −

yi (wxi + b). After setting the Lagrangian’s gradient to zero, we obtain essential re-
lation between coefficients and the dual problem to be solved. That is max (W (α))
(9.12), which, in the end, is a quadratic optimization problem. Its solution are α
coefficients.

W (α) =
r∑︂

i=1
αi −

1
2

r∑︂
i=1,j=1

αiαjyiyjxixj,
r∑︂

i=1
αiyi = 0, (9.12)

After obtaining αi coefficients, it is trivial to obtain w as well (9.13). Coefficient
vector w is a linear combination of small number of input sample vectors, and
therefore, many of the αi coefficients are equal to zero. Input vectors xi with
nonzero αi coefficients are called Support Vectors. From equations (9.3) and (9.13)
final form for calculating the score is derived (9.14).

w =
s∑︂

j=1
αtj

ytj
xtj (9.13)

D (x) =
s∑︂

j=1
αtj

ytj
xxtj + b (9.14)

Having a non-linearly separable classification problem, ϵi deviation can be in-
troduced (9.15). ⎧⎪⎪⎨⎪⎪⎩

wxi + b ≥ 1− ϵi, yi = 1
wxi + b ≤ 1 + ϵi, yi = −1
ϵi ≥ 0, ∀i

(9.15)

In many applications, constructing a hyperplane is not possible and will not
result in successful classification of the input data. By applying the technique
called "kernel trick", input space gets mapped into a higher dimensional, linearly
separable feature space Fig. 9.4. Complex kernels that are most commonly used are
polynomial, gaussian and sigmoid. Linear kernel is the simplest one, corresponding
to the dot-product between two vectors and is used for linearly separable data to
construct a hyperplane. A linear operation in the feature space is equivalent to a
nonlinear operation in the input space.

Feature spaceInput space

ϕ

Figure 9.4: Using non-linear kernel functions to map input space

135

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

K(x, y) = x · y

Kp(x, y) = (1 + x · y)p

Krbf (x, y) = exp
−∥x2 − y2∥

2σ2

Ks(x, y) = tanh(1 + x · y)p

xi

xj

εi

εj

Figure 9.5: To prevent overfitting, avoiding narrow margin is recommended. This
can sometimes be achieved by introducing a margin and allowing a certain degree
of misclassification

Having a non-linearly separable classification problem, a deviation can be in-
troduced, using a parameter to adjust the desired error/margin. Such parameter
is usually referred to as probability threshold. Although we allow for a certain
misclassification, the boundary margin is still retained (Fig. 9.5).

9.2 Proposed Detection Flow
The proposed methodology relies on a supervised learning scheme. It is neces-

sary to underline that, apart from [88], the major part of ML-based techniques are
applied at the gate-level. However, more and more examples of HTs inserted at RTL
are available, due to the flexibility for implementing various malicious functions.
Hence, there is a pressing need for more RTL HT detection techniques. To fill the
above-mentioned gaps, this paper presents a ML-based methodology for detecting
triggered-type Hardware Trojans. It combines a dynamic approach with a static
analysis of the RTL model. Indeed, if a static approach analyzes the structure of
the model looking for similarity with the structure of a Trojan, a dynamic method
considers the true activity of the circuit. For this reason, the proposed work picks

136

9.2 – Proposed Detection Flow

up the best of the two methods in order to cover a greater set of HTs and thus,
generalize the detection approach.

The proposed flow is shown in Fig. 9.6. The input of the framework is the design
that is about to be processed; it is the behavioural RTL model description. The
output is a report indicating suspicious parts in the design, i.e., the code fragments
that should be checked more thoroughly for malicious HTs insertion. The RTL
design is processed in order to extract both dynamic and static information. While
the dynamic is derived from observing the model behaviour under different stimuli,
the static is obtained without any code execution and is related to the structure
and control/data dependency in the code. The data extracted from the RTL model
are embedded in CFGs. Static/Dynamic data are used as attributes to create input
samples out of node sets for the classification task. At the end, ML-based binary
classification is used for distinguishing between input samples originating from the
CFGs. The proposed approach is based on the following steps:

• Control Flow Graphs Extraction:

1. Static Attributes
2. Assign DataFlow Map
3. Dynamic Attributes

• Data Formatting

• Classification

In the following subsections, each of the steps is described in a more detailed man-
ner.

Logic
simulation

Design RTL

Coverage
reports

toggle
block

CFG

Assign DataFlow Map

STATIC 0
1

Data
Labelling
(Training)

[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11]

ML

DYNAMIC

CFG EXTRACTION DATA FORMATTING ML CLASSIFICATION

Static Dynamic

Attribute List

node

Final
Report

Figure 9.6: Detailed framework flow including three main steps: CFG extraction,
Data formatting and ML classification

137

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

9.2.1 Control Flow Graphs Extraction
The RTL model of the design is described as a set of concurrent "processes".

Two main hardware description languages are VHDL [111] and Verilog [112]. At the
initial stage, the RTL design is represented in the form of a CFG, which incorporates
key properties of the design: the static, dynamic and dataflow map. These are
essential for the training of the NN which is responsible for identifying malicious
insertion in the code.
A CFG is a directed graph G = (V, E, in, out), where V is a set of vertices (nodes)
and E set of edges. For each process P in the RTL design D, a CFG G can be
extracted. A node v ∈ V of the graph G can be:

• a single non-blocking statement – allow scheduling assignments without block-
ing the procedural flow;

• a conditional statement/loop (IF-ELSE, CASE, FOR, WHILE).
E is a finite subset of V × V ; e is an edge between the nodes v1, v2 if and only

if v2 can be executed after v1 in the process P . in and out are the first and the
last node in a CFG, respectively, used to mark entering the process and leaving
the process. An example of the structure and its corresponding CFG are shown in
Fig. 9.7. Then, each node in the CFG holds an attribute list, which will be created
as described in the following.

If (condition1) begin
statement11;
statement12;
end

else if (condition2) begin
statement21;
statement22;

end
else if (condition3)

statement31;

condition1

condition2

condition3

statement11

statement21
statement12

statement31

T

T

T

F

F

F statement22

Figure 9.7: CFG with the corresponding code structure

Static Attributes

The static attributes have been extracted from the RTL desing by parsing the
source code files. Given the complexity of the modern designs, such a task requires

138

9.2 – Proposed Detection Flow

an automated tool. Usually, such tools provide as an output an abstract syntax
tree (AST). AST is a convenient hierarchical tree-like representation of the abstract
syntactic structure of source code. Then, syntax trees generated by the parser are
traversed to perform the extraction of the CFGs in accordance with the definition
that was introduced previously. It is worth noting that each of the source files
may contain more than one process, which are all elaborated sequentially. The
algorithm extracts the list of input signals, registers, wires, output signals, and
parameters. A CFG node is identified by its unique name and a unique line number
that get assigned inside the processes while creating nodes and attaching them
to the corresponding graph. Since one node can represent either a conditional
statement, i.e., a loop, or a non-blocking statement, it is possible to extract static
properties from such constructs. These include the number of input signals, the
number of output signals, the number of logic operators, relational and equality
operators, arithmetic operators and numbers (constants). Additionally, each node
has its depth in the CFG (level - the number of edges in the path from the root to
the node).

Algorithm 15 Generating Assign DataFlow Map
function generateAssignDataFlowMap(gen, len, i, d)

assignMap← []
while statementis assign do

L, R← statement
if L in assignMapkeys then

assignMap[L][0]← assignMap[L][0] + Rattributes

assignMap[L][1]← assignMap[L][1] ∪Rsignals

else
assignMap[L]← [[attributes(R), set(signals(R))]]

Assign DataFlow Map

To deal with the combinational logic (e.g., the assign statements in Verilog),
the proposed flow introduces an auxiliary structure. Creating an Assign DataFlow
Map allows the information outside of the (sequential) processes to be captured
and incorporated later into the CFGs Algorithm 15. The left part of the assign
statement is used as a key to identify an item in such a structure, while the corre-
sponding value is in a form of a list. Its first element is an array of properties that
coincide with the ones for the statements inside the process (static attributes). The
second one is a list of used signals, either inputs (input), registers of integers (reg,
integer) or other wires (wire). The map is searched recursively for all of its key
elements, summing up the attributes for a corresponding signal list. It stops when
there are no more wire signals, i.e. if the remaining ones are a register, integer,

139

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

assign signal1 = input11 & !(input12 | input13) &
(counter1 == 121346) ? 1 : 0;
assign signal2 = (input21>output21) &
(counter2 == 314431) ? 1 : 0;
assign signal3 = (counter3 == 122214) ? 1 : 0;
assign signal12 = signal1 & signal2;
assign signal123 = signal12 & signal3;

Figure 9.8: Assign statements
signal1: [3, 0, 0, 1, 4, 0, 0, 3], {counter1, input11, input12, input13}
{counter1, input11, input12, input13}
[3, 0, 4, 1, 0, 0, 0, 3]

signal2: [1, 1, 1, 2, 0, 0, 0, 3],{counter2, input21, output21}
{counter2, input21, output21}
[1, 1, 1, 2, 0, 0, 0, 3]

signal3: [0, 0, 0, 1, 0, 0, 0, 3],{counter3}
{counter3}
[0, 0, 0, 1, 0, 0, 0, 3]

signal12: [0, 0, 1, 0, 0, 0, 0, 0], {signal2, signal1}
{counter1, counter2, input11, input12, input13, input21,
output21}
[4, 1, 5, 3, 0, 0, 0, 6]

signal123: [0, 0, 1, 0, 0, 0, 0, 0],{signal12, signal3}
{counter1, counter2, counter3, input11, input12, input13,
input21, output21}
[4, 1, 5, 4, 0, 0, 0 9]

Figure 9.9: Assign DataFlow Map

input or output. For example, in Fig. 9.9, for signal123, it adds the attributes of
signal12 and signal3, then it does the same for signal12, taking the attributes
of signal1 and signal2. On the other hand, signal1, signal2, and signal3
do not contain in their signal set any keys from the map entries. While creating
the CFGs and extracting their nodes’ static attributes, the influence that a signal
present in Assign DataFlow Map has on a statement inside the process is taken into
account by adding its attributes from the corresponding value in the map entry.

Dynamic Attributes

Logic simulations of the design under assessment are performed to collect code
coverage reports, based on standard metrics such as statement and toggle coverage.
The idea is to gather information from a set of programs that thoroughly exercise

140

9.2 – Proposed Detection Flow

the design under analysis. It is essential to outline that such a set of programs
may have been written either as a part of pre-silicon or post-silicon verification,
validation, or even manufacturing tests etc., targeting different parts and different
features of the system. For every instance in the design, uncovered sequential state-
ments belonging to a process are listed with their line number, source code, and type
(if and case conditional structures, for and while loops together with non-blocking
assign statements). The second type of reports focuses on the toggle activity of
signals which are being used outside of sequential processes as inputs/outputs, to
model combinational logic in assign statements. For each and every program in the
library, a statement-coverage report is generated, while only one merged report for
all runs regarding the signal toggling.

Hence, two additional fields have been created in the attribute list for such
purpose: one for execution probability and one for signal toggling activity.

Regarding the former, a category is decided for each node (statement) based
on the number of executions, i.e., how many times it was covered. This technique
is an important tool for preparing numerical data for ML and is referred to as
unsupervised discretization [113]. It consists of transforming data from continuous
to discrete, using e.g., equally wide intervals. A typical use case is having many
unique values to model effectively. In Eq. (9.16) that shows the range for deciding
a category, nexec is a number of times a statement has been covered out of M runs.
N is the number of intermediate categories, set to 5. Consequently, apart from two
extreme categories never (N) and always (A), there are other five: almost never
(XS), rarely (S), sometimes (M), often (L), and almost always (XL).

i
M

N
≤ cat(nexec) < (i + 1)M

N
, i ∈ {0,1,2, · · · , N} (9.16)

As for the latter, toggle reports are merged for all runs into one report, showing
if a wire signal has toggled in at least one run, fully or partially (rise and fall). The
algorithm embeds such information into a node belonging to a process statement
in the following manner: wire signals are listed in such statement, if any, otherwise
score 0 is set; based on their total number t and the number of those that toggled
d a ratio R = d

t
is calculated; R falls into one of the ranges, 0, (0, 1

4], (1
4 , 2

4], (2
4 , 3

4],
(3

4 , 1), 1, and gets assigned a value from 6 to 1.

9.2.2 Input Data Formatting
To capture the dependency, structural and functional, between the nodes in a

CFG, and bring in context and neighbourhood information into the predictions,
the node’s closest neighbours may be selected to form a set, i.e., to obtain an
input sample. Obviously, such sets may vary in size, given the bound that is
chosen for grouping the nodes. It is desirable not to be too generic neither too
specific since this action will have an impact on the learning capabilities. For

141

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

this reason, we considered a set of 4 nodes. Therefore, each node that has at
least one parent and at least one child is processed. For nodes with more than
one parent P and more than two children C, all the possible combinations are
extracted P ·

(︂
C
2

)︂
. A child having no siblings is included in the selection two

times. For all the CFGs, the algorithm implementing a set of above-mentioned
rules extracts a set S of node selections ti = (pi, ni, c1i, c2i). Subsequently, by
expanding its nodes with their incorporated attributes gets transformed into tai =
(a(pi)[], a(ni)[], a(c1i)[], a(c2i)[]). For the training, such input data have to be
labelled relying on the set of Trojan Benchmarks introduced in [114]. If a central
node ni for which we select its environment belongs to the malicious insertion then,
the set of 4 nodes is marked as positive. Otherwise, it is marked as negative, i.e.,
non-suspicious.

9.2.3 Classification
Once the data have been extracted, the problem may be tackled as a pure

Machine Learning classification problem. The learning phase, i.e., the training
process, relies on the features obtained from the data formatting. Here, we apply
different paradigms to perform the classification and confront their performance in
the following sections. The first one is using the SVM algorithm, while the second
is based on a fully connected feed-forward neural network.

Classification with Support Vector Machine

SVM algorithm is used with different kernels to choose the one that fits the
best for the problem in question. Often the differences in the scales across input
variables may affect the training process and therefore the final result. A model
might become unstable meaning that it would suffer from poor performance in
both learning and validation/test phases, as a result of high sensitivity to input
data and higher generalization error. Therefore, using pre-processing techniques
such as scaling or normalizing input data is preferred when working with many
ML algorithms. Normalization is a scaling of the data from the original range so
that all values are within the new range between 0 and 1. It can be performed
on an individual data sample (row-wise) or across data features (column-wise).
Standardization, on the other hand, includes transforming data in such a way to
change its distribution of values: the mean of observed values becomes 0 and the
standard deviation 1. For this particular purpose we perform scaling across the
features: X = X − µ

σ
.

142

9.3 – Experimental Evaluation

Classification with an Artificial Neural Network

Given the number of attributes, the number of inputs for a fully connected
feed-forward neural network is set to 60, after expanding some of the features with
one-hot-encoding. Following the common experience of machine learning experts,
having too many layers when dealing with a limited number of training data (an
order of magnitude of 1000 samples) may result in underfitting. Furthermore, the
number of NN inputs is a limiting factor when defining the number of nodes in
layers. Given the previous consideration as well as empirical analysis, the following
topology has been adopted: (64, tanh), (32, tanh), (32, relu), (2, sigmoid). For the
sake of clarity, the first number indicates the number of neurons that constitutes the
fully-connected layer while the second parameter specifies the activation function,
e.g., hyperbolic tangent, rectified linear unit , sigmoid.

For a fixed topology, tuning training parameters may significantly enhance the
NN learning capabilities. Hence, K-fold cross-validation method is employed to
find the best optimizer and select optimal parameters such as batch and number
of epochs. One of the challenges faced in ML is memorizing the input samples,
especially when having a small training dataset. However, the NNs have shown to
be more resilient to such problem. In any case, to reduce the generalization error,
i.e., to prevent overfitting, a Gaussian noise is added to the input. In this way, the
training process is made more robust.

9.3 Experimental Evaluation

9.3.1 Experimental Setup
The selected platform is AutoSoC [115], an open-source SoC benchmark suite,

conceived to serve the needs for standardization and benchmarking in the automo-
tive area.

Figure 9.10: mor1kx CPU core in cappuccino configuration

143

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

For each one of the 28 benchmarks described previously, the following experi-
mental procedure was used:

1. Parsing of the design model using a set of Python tools and an in-house
developed tool to generate CFGs;

2. Performing the logic simulation and report generation using state-of-the-art
commercial tools; then, adding the information originating from the coverage
and toggle reports to the CFGs;

3. Node extraction: a selection of nodes with their neighbourhood is made (par-
ents and children) to create textual files whose rows contain the attributes for
each of the 4 nodes. For the training process, such data have to be labelled
manually; repeating items, if any, are eliminated.

The whole setup has been developed to perform logic simulation and generate
reports in Linux environment on a server equipped with a dual Intel Xeon CPU E5-
2680 v3 and 256 GB of RAM. The process itself is managed by a set of bash scripts
taking care of design elaboration, design simulation, calculating the coverage and
merging the reports. Given the fact that for the training process a certain number
of simulations has to be performed on the number of designs with the different type
and implementation of HTs, the time required for obtaining the reports can become
significant. To speed up the execution time, a multi-process environment has been
developed. For this purpose, the complete Test Program Library of mor1kx CPU
has been simulated on all the 28 RTL trojan models. The Test Program Library
includes 46 programs for a total of 64 KB. Launching a set of 46 program simulations
on one design in this configuration requires 22 minutes on average. By merging the
contribution of every single program, the entire Test Program Library achieves
85% of statement and toggle coverage on the golden design model (Fig. 9.11). It
is worth underlining that the Test Program Library is not able to activate the
Hardware Trojans, being coherent with the assumption that HTs hide under rare
trigger conditions.

144

9.3 – Experimental Evaluation

0

10

20

30

40

50

60

70

80

90

100
C

o
ve

ra
ge

 [
%

]

Test program

85.17%

Figure 9.11: Individual coverage of each program on mor1kx core

In our approach, the tool for performing the task of parsing is Pyverilog [116].
It is a Python-based hardware design processing toolkit for Verilog HDL. The tool
relies on Icarus,an open-source tool for performing the preprocessing. It flattens
the hierarchy by implementing the include and define directives, producing the
equivalent output related to such directives. Successively, Pyverilog reads the source
code and generates Abstract Syntax Tree (AST) in the form of Python nested
class objects. The parser is built upon PLY1 which is used as a parser genera-
tor (compiler-compiler). PLY is a Python implementation of the Lex-Yacc lexical
analyzer.

Module CTRL
(input CLK,
input RST,
output enable,..

Verilog HDL
Code

Lexical
Analyzer

Syntax
Analyzer

AST

Parser

Figure 9.12: Pyverilog parser

1http://www.dabeaz.com/ply/

145

http://www.dabeaz.com/ply/

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

9.3.2 Experimental results with Support Vector Machine
The first set of experiments is intended to utilize SVM as a model to perform the

classification of code sections given in the form of attributes belonging to the family
of nodes. A common practice when working with supervised learning and data clas-
sification is to split the data set into three exclusive sets: training set, validation set
and test set. However, by partitioning the available data into three sets, we drasti-
cally reduce the number of samples used for the learning phase. Consequently, such
action might have a negative impact on the model’s performance. Furthermore, the
results can depend on a particular random choice when choosing/creating training
and validation sets. A solution to this issue is using an approach called, k-fold
cross-validation. It consists in splitting the training set into k smaller sets. The
following procedure is followed for each of the k “folds”: a model is trained using
k − 1 folds as input data for the training; the resulting model is validated on the
remaining part of the data (i.e., it is used as a test set to compute a performance
measure). Training/validation data and test data contain respectively, 80% and
20% of the complete data set.

The average recall, precision, accuracy and F1-score [117] were calculated on
cross-validation sets with 10 folds for each of the four classifiers and reported in
the first four columns of the Table 9.1. Subsequently, the model was trained on
the whole training data set (80%), with a particular model configuration. Next,
we examined the models’ strength by applying test data that had not been used
previously, i.e., the remaining 20% of the initial complete set.

Table 9.1: Experimental results of the four SVM classifiers with different kernels
and following metrics: Recall, Accuracy, Precision, and F1-score

.
Cross-Validation 10− fold Training [80%] Test [20%]

Kernel Rec. Prec. Acc. F1-sc. Rec. Prec. Rec. Prec. Acc. F1-sc. TN FP
FN TP

Linear 0.79 0.60 0.87 0.69 0.80 0.64 0.81 0.61 0.87 0.70 314 42
15 66

Polynomial 0.49 0.90 0.90 0.63 0.57 0.97 0.64 0.95 0.93 0.76 353 3
29 52

RBF 0.82 0.81 0.93 0.82 0.88 0.90 0.91 0.87 0.96 0.87 345 11
7 74

Sigmoid 0.67 0.42 0.77 0.52 0.68 0.4 0.64 0.41 0.76 0.5 280 76
28 53

Receiver Operating Characteristic (ROC) curve is a graphical plot showing the
influence of the threshold margin on the performance of the binary classifier system;
it gives a trade-off between sensitivity (true positive rate) and specificity (1 - false
positive rate). Classifiers with corresponding ROC curves closer to the top-left

146

9.3 – Experimental Evaluation

(a) ROC curve for linear kernel (b) ROC curve for polynomial kernel

(c) ROC curve for rbf (gaussian) kernel (d) ROC curve for sigmoid kernel

Figure 9.13: ROC curves for 4 different kernels including different set of extracted
attributes (farther from the 45-diagonal, i.e., closer to the upper-left corner, the
better)

corner indicate a better performance. On the other hand, the closer the curve
comes to the 45-degree diagonal of the ROC space, which is used as a baseline for the
random classifier, the less powerful the classifier becomes. Four Receiver Operating
Characteristic (ROC) curves for linear, polynomial, rbf and sigmoid kernels are
given in Fig. 9.13. They provide enough information to analyze the predictive
power of a classifier and find the optimal threshold. Based on the aforementioned
analysis, the threshold was set to 0.19. Moreover, the RBF kernel was chosen as
the best one in terms of performance when compared to the other 3. This claim
can be supported by observing the numerical values in Table 9.1, where we report
recall and precision on the training set, and successively, recall, precision, accuracy
and F1-score on the test set, together with the corresponding confusion matrix.
Additionally, here we decided to split the attributes extracted from the set of nodes

147

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

and examine their partial influence on the performance of the classifiers. As shown
in the Fig. 9.13, we performed the training using exclusively static attributes (stat),
then dynamic attributes (dyn) and finally, latter and former combined (stat+dyn).
All of the classifiers clearly underperformed when relying only on the dynamic
attributes. In case of the classifier with the RBF kernel, using the complete set of
attributes instead of static attributes only resulted in improved classification power;
in particular, 0.91 instead of 0.88 for recall, 0.87 instead of 0.8 for precision, 0.96
instead of 0.94 for accuracy and 0.87 instead of 0.84 for f1-score.

9.3.3 Experimental Results with Artificial Neural Networks
The second set of experiments is related to training the NN and evaluating its

performance. For selecting the parameters of the NN during the training process,
exhaustive experiments were run using LazyGrid2, an open-source package that
eases hyper-parameters tuning and comparing different machine-learning models.

To evaluate the effectiveness of the proposed NN approach , eight different
experiments have been conducted, one for each group of HTs. To determine how the
NN will generalize for an independent data set, we used cross validation technique.
In other words, the NN has been trained on a set completely independent from the
test one. The results show that even though the NN learns only on a category of
HTs, it is able to discover different types as well.

In Table 9.2, we report for each training data set, the results obtained by eval-
uating the learning capabilities of the NN on the corresponding test sets. For a
subset of benchmarks Tk∗ that is used later for test, we first train the NN on the
whole set of all benchmarks (⋃︁T) excluding that one particular subset Tk and
benchmarks derived from modifying it (Tk∗). Confusion matrix terminology is used
to present training and test performance given the predicted and expected classes
for binary classification. The number of CFGs in a design (a set) is equal to the
number of processes it contains. Finally, a false positive rate (F P

F P +T N
) is given in

the penultimate column of the table.
Elements of the confusion matrix in context of HT detection are given in Ta-

ble 9.3, with their corresponding explanation and the effect from the user’s point
of view. The number of FPs (a non-trojan detected as trojan) should ideally be 0,
i.e., in practice it should be kept as low as possible, together with the FNs. How-
ever, the obtained numbers (FP and FN) are still significantly low, given the total
number of samples that have been evaluated (∼1.5k).

It is essential to outline that, first of all, the number of FPs remains significantly
lower than the number of TNs, while being comparable to TPs. Therefore, checking
all samples marked as positive (TPs + FPs), does not represent a huge effort.

2https://github.com/glubbdubdrib/lazygrid

148

https://github.com/glubbdubdrib/lazygrid

9.3 – Experimental Evaluation

Table 9.2: Experimental results of the NN

.

Training
Dataset
∪T\

Training performance Test
Dataset
(nCF G)

Test performance FP
rate
[%]

Det.

TP TN FN FP TP TN FN FP

T1∗ 260 1781 42 8

T1(183) 23 1493 7 1 1.1 ✓
T11(183) 18 1493 6 1 1.1 ✓
T12(183) 27 1493 9 1 1.1 ✓
T13(184) 24 1493 7 1 1.1 ✓
T14(185) 23 1493 8 1 1.1 ✓

T2∗ 308 1764 13 14
T2(182) 19 1490 15 5 0.1 ✓
T21(183) 24 1491 16 6 0.1 ✓
T22(182) 19 1493 11 5 0.1 ✓

T3∗ 358 1769 22 11
T3(182) 8 1487 1 10 0.3 ✓
T31(183) 6 1489 2 10 0.3 ✓
T32(184) 5 1490 7 12 0.3 ✓

T4∗ 346 1770 25 16

T4(182) 5 1485 9 10 0.3 ✓
T41(182) 4 1487 10 10 0.3 ✓
T42(182) 40 1494 11 10 0.3 ✓
T43(183) 3 1487 11 10 0.3 ✓

T5∗ 305 1770 16 13

T5(184) 35 1487 7 8 1.4 ✓
T51(184) 28 1489 6 8 1.8 ✓
T52(184) 35 1491 8 13 1.8 ✓
T53(185) 38 1489 7 8 1.8 ✓

T6∗ 343 1641 30 9
T6(181) 7 1489 9 5 1.2 ✓
T61(181) 9 1492 5 5 1.1 ✓
T62(181) 9 1486 15 5 1.3 ✓

T7∗ 358 1781 32 7
T7(183) 23 1494 2 3 1.0 ✓
T71(183) 21 1496 2 1 1.0 ✓
T72(184) 29 1496 4 1 1.1 ✓

T8∗ 340 1656 34 5
T8(181) 8 1490 13 2 0.4 ✓
T81(181) 10 1493 8 2 0.4 ✓
T82(181) 10 1493 8 7 0.5 ✓

Classification Explanation
True positive (TP) Trojan code correctly recognized as malicious
True negative (TN) Circuit code correctly considered safe
False positive (FP) Safe circuit code believed to be malicious (i.e., a false alarm)
False negative (FN) Malicious code that escaped detection (i.e., a major error)

Table 9.3: Meaning of the confusion matrix in the context of HT detection

Secondly, even though there are FNs, it does not mean some parts of malicious
code escape the final analysis and remain undetected. As it can be seen from
Fig. 9.14, a set of nodes marked in orange belongs to the HT (inserted malicious

149

Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors

Figure 9.14: Set of nodes belonging to HT as TP and FN

code), while those in blue are not. Those nodes covered in red polygon are detected
as malicious, therefore enter in TP category, while those in blue polygon are left
undetected, belonging to the FN. By revealing one, others can be examined and
by tracing back all TPs, a verification engineer can completely discover all of the
maliciously inserted code. Thus, we can confirm that all of the Trojans in the test
set have been discovered.

9.4 Chapter summary
This chapter addresses the problem of detecting RT-Level HTs resorting to ML-

based techniques in a pipelined CPU. A mixed approach consisting of static and
dynamic model analysis is presented where robust machine learning algorithms are
used to perform classification. Experimental results prove the technique’s efficacy:
no HT was left undetected, showing that this technique could be used with similar
complex industrial designs, in an automatized manner, reducing both effort and
time. The in-house tool was built and integrated into the whole flow to provide
a fast and efficient analysis. It is adjustable for other commercial tools that can
simulate the design and generate a code coverage report. Additional items and rules
can be introduced for feature extraction, as well as different CFG node environments
to create the classification input. The final flow processing of the input, given as an
RTL behavioral model, includes logic simulation, CFG extraction and annotation,
and input formatting. The final result of the evaluation is the list of suspicious
locations in the code. By “out-of-sample” testing it has been shown that the NN
method is able to identify all HTs embedded in a complex design aggravating the
detection process. Additionally, the performance of four different SVM classifiers
was evaluated. The one using the RBF kernel was shown to generalize very well.
Comparing the two models in terms of performance, SVM RBF kernel is more
successful in discovering the set of nodes that are marked as malicious and also
takes less time to train. Nevertheless, both of the approaches in the end detect
each and every HT as an entity, following the discussion that a set of nodes might

150

9.4 – Chapter summary

represent only one section of a HT. The relatively small amount of training data
might be responsible for a poorer performance of the NN.

However, the principal limitation of the approach is that still some manual
post-processing is required to analyze suspicious code and decide if it is a malicious
insertion or not. Trojans evolve in structure and their location is unpredictable. A
lot of effort is being invested into their classification and development. Since the
supervised type of learning is used to train both SVM and ANN, it is uncertain how
their classification performance will change with new types of HTs. Nevertheless,
such new malicious insertions may be included into the training set.

151

152

Summary of Part II

The second and last part of the thesis deals with hardware security threats, in
particular malicious insertions named Hardware Trojans. Due to the decentraliza-
tion of the production flow, different phases have become more vulnerable and a
possible target for an attacker to disrupt the security integrity of the product. Se-
curity concerns encouraged both industry and academia to dedicate more attention
to this issue and come with countermeasures.

Publicly available HT benchmarks that are used for validating detection method-
ologies at the RT-level are not many and are obsolete, i.e., they do not reflect a
complexity that can be found in modern, real industrial case processors used for
cutting-edge applications. Therefore, a set of HTs has been implanted in different
modules of a pipelined microprocessor core mor1kx and published. New bench-
marks will hopefully facilitate the validation of novel detection approaches.

Furthermore, despite the considerable effort that has been invested in developing
new detection methodologies, the growing complexity of modern devices always
calls for sharper detection methodologies. This is especially true early in the design
cycle, when an attacker may insert malicious circuitry at register transfer (RT) or
gate level that may remain undetected even in the next generations of the device.

In this regard, a pre-silicon, simulation-based technique to detect HTs that
exploits well-established machine learning algorithms is proposed. The validity of
the approach has been demonstrated on the AutoSoC CPU, an industrial-grade,
safety-oriented, automotive benchmark suite. Experimental results demonstrate
the applicability and effectiveness of the approach: the proposed technique is highly
accurate in pinpointing suspicious code sections. None of the HTs from the set has
been left undetected.

153

154

Conclusions and
Recommendations for Future
Research

This thesis is composed out of two main parts. While the first part deals with
different issues related to IEEE 1687 RSNs such as reliability and aging, perma-
nent fault detection and identification, design validation and description equiva-
lence checking, the second one focuses on hardware security, particularly malicious
insertions – Hardware Trojans, by introducing a set of newly developed RT-level
benchmarks and Machine Learning-based detection techniques.

In Chapter 1 background related to the first part of the thesis has been provided
with a particular focus on IEEE 1687 standard and related constructs and features
it supports. It also gives an overview of the state-of-the-art and basic information
about ITC’16 benchmarks that were used to evaluate and validate the proposed
methodologies.

Chapter 2 describes three different approaches to generate efficient sequences
to test reconfigurable modules in an RSN. Two (basic and enhanced versions) can
be defined as semi-formal because the FSA that models the circuit is exact but
incomplete, and the search procedure is based on a greedy algorithm. Experimen-
tal results on the ITC’16 benchmark suite clearly demonstrate the effectiveness of
the approach: the proposed technique can achieve better results with less compu-
tation effort than previous heuristics. The technique may be easily extended to
handle different fault models and more complex scenarios, and experts’ knowledge
could be exploited by tweaking the FSA states and input alphabet. The third
approach to minimize the test time is based on evolutionary computation Addi-
tionally, the problem of finding suitable test configurations has been converted into
a circuit suitable for applying the automatic test pattern generation procedure. An
optimized transition function and some techniques for post-processing the solution
delivered by the evolutionary engine have also been presented. Experimental results
on the standard set of benchmark networks show the effectiveness of the proposed
approach since the test time has been reduced up to 27% in 14 out of 16 cases,
particularly impacting the test time for large networks.

155

Conclusions and Recommendations for Future Research

In Chapter 3 a technique to diagnose permanent faults in an RSN has been
explained in detail and experimental results were provided for a subset of ITC’16
benchmarks. The approach resorts to an FSA model of the circuit and a greedy
search algorithm. Experimental results demonstrate that the presented approach
outperforms the previous ones in terms of number of clock cycles required to run
the generated diagnostic sequence. Furthermore, this technique can be applied to
a wide range of network types of different complexity since for all of the test cases
and benchmark networks full diagnostic coverage has been reached while keeping
the computation effort under control. Future work should focus on extending the
technique to support different fault models.

A methodology for assessment and mitigation of NBTI aging-induced delays in
logic paths within IEEE 1687 IJTAG Reconfigurable Scan Networks is described
in Chapter 4. While RSNs are commonly used to provide fault management and
embedded instrumentation access, such as safety mechanisms, in advanced safety-
and mission-critical electronic systems, a failure in such infrastructure itself has a
high severity. The methodology is based on a scalable hierarchical (transistor-to-
architecture) modelling of the NBTI impact on timing-critical logic paths in RSN
implementations. The evaluation implies analysis of gate input signal probabilities
based on the configurations and test data selected for the RSN infrastructure.
The details of the methodology are demonstrated by a case study on an example
RSN and the feasibility and efficiency are validated by experiments on a subset of
ITC2016 RSN benchmarks. The experimental results demonstrate that RSNs can
be impacted by significant NBTI-induced logic path delays and a simple proposed
mitigation technique can reduce such delays up to 2.6 times. The future work is
aimed at a comparative analysis of aging in the RSN gates and the functional part
of the circuit.

To ensure there is no mismatch between prototypical device and initial specifica-
tions, product life-cycle requires performing (post-silicon) validation before going
into the mass production. Such additional effort prevents rendering the whole
infrastructure inoperable and avoids enormous re-design costs. In Chapter 5 a mis-
match model for post-silicon validation of RSNs. Furthermore, two algorithms have
been developed for generating configuration patterns to detect the set of consid-
ered mismatches. The ITC2016 benchmark networks were used to evaluate the
proposed methodology. It was found that in all cases full detection coverage has
been reached. For the detection procedure based on the active path length compar-
ison, the tool generates a list of undetectable mismatches. Furthermore, mismatch
model is easily extendable, due to the nature of the problem and the internal model
of the network extracted by the tool.

Chapter 6 addresses the problem of detecting inconsistencies between ICL and
RTL models of RSNs, resorting to simulation-based verification. Automatically
generated test-benches for stimulating the RTL model are based on the patterns
used for post-silicon validation of networks. The approach has been verified through

156

Conclusions and Recommendations for Future Research

a series of experiments, obtaining extremely high detection coverage with reduced
execution time. Test escapes have also been identified as pathological network
configurations. Future work should extend the experimental verification to other
error models such as, for instance, ICL connection errors, and to reinforce debug
capabilities. Another direction would be the in-depth analysis of test escapes con-
figurations to devise algorithms able to detect potentially untestable networks and
warn the designer.

The research work related to IJTAG opens several research directions. The tech-
niques to test and diagnose faults may be easily extended to handle different fault
models and more complex scenarios, and experts’ knowledge could be exploited by
tweaking the FSA states and input alphabet. As for the NBTI aging effect and
mitigation in an RSN, the future work could be aimed at a comparative analysis
of aging in the RSN gates and the functional part of the circuit. The equivalence
checking technique should be experimentally verified to other error models such as,
for instance, ICL connection errors, and reinforcing debug capabilities. Another
open research direction is the in-depth analysis of test escapes configurations to
devise algorithms able to detect potentially untestable networks and warn the de-
signer. Exploring the structure of RSNs and creating a set of Design-for-Test rules
and recommendations would be extremely useful. A tool that is able to generate
the information intended for helping the designer after analysing the ICL and PDL
would resolve many issues; problems that are a consequence of symmetry in the
structure of RSNs and related to test, diagnosis, validation and verification would
be prevented.

Chapter 7 provides background information on hardware security with basic
concepts and terminology related to Hardware Trojans as well as state-of-the-art
overview for both design methodologies and detection techniques.

To deal with the issue of obsolete HT benchmarks that do not correspond to
state-of-the-art devices used in real applications, a set of 8 new principle HTs and
their 20 modifications for a pipelined processor core has been introduced in Chap-
ter 8. The proposed HTs have been injected into very different parts of the processor
design. They differ in the trigger and payload. The synthesis reports show the neg-
ligible impact that the introduced modifications have on area, power and frequency.
Furthermore, the set of benchmarks could be extremely useful for validating dy-
namic HT detection methodologies since the core is open-source and in the near
future the HTs will be also publicly available. The proposed set of HTs are easily
modifiable and allows to create even more complex set of trigger conditions, while
the space for inserting payloads is quite vast and allows to execute different type
of malicious functions. That is why future work should be focused on diversifying
and developing the HT Benchmarks Library even further.

Although most of the detection techniques work at the gate level, shifting the
detection of HTs inserted at RTL to the gate level would result in increased de-
sign and verification costs. That is why a new technique was developed to detect

157

Conclusions and Recommendations for Future Research

RT-Level HTs resorting to ML-based techniques in a pipelined CPU. Chapter 9
introduces the aforementioned mixed approach that is composed of both static and
dynamic analysis of the model. The in-house tool was built and integrated into
the whole flow to provide fast and efficient analysis. Flow processing of the input,
given as an RTL behavioural model includes logic simulation and CFG extraction.
The final result of the evaluation is the list of suspicious locations in the code.
By “out-of-sample” testing it was shown that the NN method can identify all HTs
embedded in a complex design aggravating the detection process. Additionally, the
performance of four different SVM classifiers has been evaluated. The one using
RBF kernel was shown to generalize very well. Comparing two models in terms of
performance, SVM RBF kernel is more successful in discovering the set of nodes
that is marked as malicious and also takes less time to train. Nevertheless, both
of the approaches, in the end, detect each and every HT as an entity, following
the discussion that a set of nodes might represent only one section of a HT. The
relatively small amount of training data might be responsible for a poorer perfor-
mance of the NN. However, the principal limitation of the approach is that still
some manual post-processing is required to analyze suspicious code and decide if it
is a malicious insertion.

The proposed set of HTs are easily modifiable and allow to create even more
complex set of trigger conditions, while the space for inserting payloads is quite
vast and allows to execute different types of malicious functions. That is why
future work should be focused on diversifying and developing the HT Benchmarks
Library even further. It is an utterly important objective, given the constant race
of the defenders against the attackers and the need of complex benchmarks that
will help validate new methodologies for detection and analysis of HTs. As for the
HT detection technique, examining and extending the set of properties used for
the analysis and validating the approach further with some other HTs represent
potential research topics.

158

Bibliography

[1] Nanotechnology – Energy, Transportation, Medical and Healthcare, Electron-
ics and IT. [Online]. Available: https://www.nano.gov/you/nanotechnology-
benefits.

[2] C. Claeys, “Trends and challenges in micro- and nanoelectronics for the next
decade”, in Proceedings of the 19th International Conference Mixed Design
of Integrated Circuits and Systems - MIXDES 2012, 2012, pp. 37–42.

[3] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges and
Trends in Modern SoC Design Verification”, IEEE Design Test, vol. 34,
no. 5, pp. 7–22, 2017. doi: 10.1109/MDAT.2017.2735383.

[4] I. Verbauwhede, “Security Adds an Extra Dimension to IC Design: Future
IC Design Must Focus on Security in Addition to Low Power and Energy”,
IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 41–45, 2017. doi:
10.1109/MSSC.2017.2745799.

[5] X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik,
and D. Alexandrescu, “Understanding multidimensional verification: Where
functional meets non-functional”, Microprocessors and Microsystems, vol. 71,
p. 102 867, 2019, issn: 0141-9331. doi: https://doi.org/10.1016/j.
micpro.2019.102867. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0141933119300250.

[6] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th. USA: Addison-Wesley Publishing Company, 2010, isbn:
0321547748.

[7] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC System Design, Veri-
fication, and Testing (Electronic Design Automation for Integrated Circuits
Handbook). USA: CRC Press, Inc., 2006, isbn: 0849379237.

[8] E. Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD
Tools, 1st. USA: Addison-Wesley Publishing Company, 2009, isbn: 0321547993.

[9] G. Gielen and R. Rutenbar, “Computer-aided design of analog and mixed-
signal integrated circuits”, Proceedings of the IEEE, vol. 88, no. 12, pp. 1825–
1854, 2000. doi: 10.1109/5.899053.

159

https://www.nano.gov/you/nanotechnology-benefits
https://www.nano.gov/you/nanotechnology-benefits
https://doi.org/10.1109/MDAT.2017.2735383
https://doi.org/10.1109/MSSC.2017.2745799
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102867
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102867
https://www.sciencedirect.com/science/article/pii/S0141933119300250
https://www.sciencedirect.com/science/article/pii/S0141933119300250
https://doi.org/10.1109/5.899053

BIBLIOGRAPHY

[10] 2. S. 112th Congress, “Inquiry into counterfeit electronic parts in the de-
partment of defense supply chain”, in Report, Committee on Armed Ser-
vices, vol. U.S. Government Printing Office, pp. 112–167, 2012. [Online].
Available: https://www.armed-services.senate.gov/imo/media/doc/
Counterfeit-Electronic-Parts.pdf.

[11] Y. Alkabani and F. Koushanfar, “Active control and digital rights manage-
ment of integrated circuit IP cores”, Jan. 2008, pp. 227–234. doi: 10.1145/
1450095.1450129.

[12] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Physical Unclonable
Functions and Public-Key Crypto for FPGA IP Protection”, in 2007 Inter-
national Conference on Field Programmable Logic and Applications, 2007,
pp. 189–195. doi: 10.1109/FPL.2007.4380646.

[13] G. Suh, C. O’Donnell, I. Sachdev, and S. Devadas, “Design and imple-
mentation of the AEGIS single-chip secure processor using physical ran-
dom functions”, in 32nd International Symposium on Computer Architecture
(ISCA05), 2005, pp. 25–36. doi: 10.1109/ISCA.2005.22.

[14] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM Side-
Channel(s)”, Berlin, Heidelberg: Springer-Verlag, 2002, isbn: 3540004092.

[15] I. Polian, F. Altmann, T. Arul, C. Boit, R. Brederlow, L. Davi, R. Drech-
sler, N. Du, T. Eisenbarth, T. Guneysu, S. Hermann, M. Hiller, R. Leupers,
F. Merchant, T. Mussenbrock, S. Katzenbeisser, A. Kumar, W. Kunz, T.
Mikolajick, V. Pachauri, J.-P. Seifert, F. S. Torres, and J. Trommer, “Nano
Security: From Nano-Electronics to Secure Systems”, in 2021 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2021, pp. 1334–
1339. doi: 10.23919/DATE51398.2021.9474187.

[16] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security:
Models, Methods, and Metrics”, Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014. doi: 10.1109/JPROC.2014.2335155.

[17] C. E. Stroud, L.-T. Wang, and Y.-W. Chang, “CHAPTER 1 - Introduction”,
in Electronic Design Automation, Boston: Morgan Kaufmann, 2009, pp. 1–
38, isbn: 978-0-12-374364-0. doi: https://doi.org/10.1016/B978-0-12-
374364-0.50008-4.

[18] R. Bentley, “Foreword for "Formal Verification: An Essential Toolkit for
Modern VLSI Design"”, in Formal Verification, E. Seligman, T. Schubert,
and M. V. A. K. Kumar, Eds., Boston: Morgan Kaufmann, 2015, pp. xiii–
xvi, isbn: 978-0-12-800727-3. doi: https://doi.org/10.1016/B978-0-
12-800727-3.00016-2.

160

https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-Electronic-Parts.pdf
https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-Electronic-Parts.pdf
https://doi.org/10.1145/1450095.1450129
https://doi.org/10.1145/1450095.1450129
https://doi.org/10.1109/FPL.2007.4380646
https://doi.org/10.1109/ISCA.2005.22
https://doi.org/10.23919/DATE51398.2021.9474187
https://doi.org/10.1109/JPROC.2014.2335155
https://doi.org/https://doi.org/10.1016/B978-0-12-374364-0.50008-4
https://doi.org/https://doi.org/10.1016/B978-0-12-374364-0.50008-4
https://doi.org/https://doi.org/10.1016/B978-0-12-800727-3.00016-2
https://doi.org/https://doi.org/10.1016/B978-0-12-800727-3.00016-2

BIBLIOGRAPHY

[19] “IEEE Standard for Access and Control of Instrumentation Embedded within
a Semiconductor Device”, IEEE Std 1687-2014, pp. 1–283, 2014. doi: 10.
1109/IEEESTD.2014.6974961.

[20] A. Syed, C. Timothy, L. Shrikant, S. Shungo, and B. McKinley, “Global-
ity and Complexity of the Semiconductor Ecosystem”, in Accenture. [On-
line]. Available: https : / / www . accenture . com / _acnmedia / PDF - 119 /
Accenture-Globality-Semiconductor-Industry.pdf.

[21] K. Xiao et al., “Hardware Trojans: Lessons Learned after One Decade of
Research”, ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 1, May
2016.

[22] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson,
“Automatic generation of stimuli for fault diagnosis in IEEE 1687 networks”,
in 2016 22nd IEEE International Symposium on On-Line Testing and Ro-
bust System Design (IOLTS), IEEE, 2016, pp. 167–172.

[23] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Access time
analysis for IEEE P1687”, IEEE Transactions on Computers, vol. 61, no. 10,
pp. 1459–1472, 2012.

[24] ——, “Design automation for IEEE P1687”, in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, IEEE, 2011, pp. 1–6.

[25] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson,
“On the testability of IEEE 1687 networks”, in 2015 IEEE 24th Asian Test
Symposium (ATS), IEEE, 2015, pp. 211–216.

[26] R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda, “Test Time Mini-
mization in Reconfigurable Scan Networks”, in 2016 25th IEEE Asian Test
Symposium (ATS), IEEE, 2016, pp. 119–124.

[27] R. Cantoro, L. San Paolo, M. Sonza Reorda, and G. Squillero, “New tech-
niques for reducing the duration of Reconfigurable Scan Network test”, in
Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2018
IEEE 21th International Symposium on, IEEE, 2018.

[28] R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and M. S.
Reorda, “Test of Reconfigurable Modules in Scan Networks”, IEEE Trans-
actions on Computers, vol. 67, no. 12, pp. 1806–1817, Dec. 2018, issn: 0018-
9340. doi: 10.1109/TC.2018.2834915.

[29] E. Larsson and K. šibin, “Fault management in an IEEE P1687 (IJTAG)
environment”, in 2012 IEEE 15th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), 2012, pp. 7–7. doi:
10.1109/DDECS.2012.6219013.

161

https://doi.org/10.1109/IEEESTD.2014.6974961
https://doi.org/10.1109/IEEESTD.2014.6974961
https://www.accenture.com/_acnmedia/PDF-119/Accenture-Globality-Semiconductor-Industry.pdf
https://www.accenture.com/_acnmedia/PDF-119/Accenture-Globality-Semiconductor-Industry.pdf
https://doi.org/10.1109/TC.2018.2834915
https://doi.org/10.1109/DDECS.2012.6219013

BIBLIOGRAPHY

[30] K. Shibin, S. Devadze, and A. Jutman, “Asynchronous Fault Detection in
IEEE P1687 Instrument Network”, in 2014 IEEE 23rd North Atlantic Test
Workshop, 2014, pp. 73–78. doi: 10.1109/NATW.2014.24.

[31] K. Petersén, D. Nikolov, U. Ingelsson, G. Carlsson, F. G. Zadegan, and E.
Larsson, “Fault injection and fault handling: An MPSoC demonstrator using
IEEE P1687”, in 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), 2014, pp. 170–175. doi: 10.1109/IOLTS.2014.6873664.

[32] A. Jutman, S. Devadze, and K. Shibin, “Effective Scalable IEEE 1687 Instru-
mentation Network for Fault Management”, IEEE Design Test, vol. 30, no. 5,
pp. 26–35, Oct. 2013, issn: 2168-2356. doi: 10.1109/MDAT.2013.2278535.

[33] F. G. Zadegan, D. Nikolov, and E. Larsson, “On-Chip Fault Monitoring Us-
ing Self-Reconfiguring IEEE 1687 Networks”, IEEE Transactions on Com-
puters, vol. 67, no. 2, pp. 237–251, 2018. doi: 10.1109/TC.2017.2731338.

[34] ——, “A self-reconfiguring IEEE 1687 network for fault monitoring”, in 2016
21th IEEE European Test Symposium (ETS), 2016, pp. 1–6. doi: 10.1109/
ETS.2016.7519288.

[35] A. Jutman, K. Shibin, and S. Devadze, “Reliable health monitoring and
fault management infrastructure based on embedded instrumentation and
IEEE 1687”, in 2016 IEEE AUTOTESTCON, IEEE, Sep. 2016, pp. 1–10.
doi: 10.1109/AUTEST.2016.7589605.

[36] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable scan
networks: Modeling, verification, and optimal pattern generation”, ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 20,
no. 2, p. 30, 2015.

[37] F. G. Zadegan, R. Krenz-Baath, and E. Larsson, “Upper-bound computation
for optimal retargeting in IEEE1687 networks”, in Test Conference (ITC),
2016 IEEE International, IEEE, 2016, pp. 1–10.

[38] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wunderlich,
“Formal verification of secure reconfigurable scan network infrastructure”,
in Test Symposium (ETS), 2016 21th IEEE European, IEEE, 2016, pp. 1–6.

[39] D. Ull, M. Kochte, and H. J. Wunderlich, “Structure-Oriented Test of Recon-
figurable Scan Networks”, in 2017 IEEE 26th Asian Test Symposium (ATS),
IEEE, Nov. 2017, pp. 127–132. doi: 10.1109/ATS.2017.34.

[40] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton,
“Don’t forget to lock your SIB: hiding instruments using P1687”, in 2013
IEEE International Test Conference (ITC), Sep. 2013, pp. 1–10.

162

https://doi.org/10.1109/NATW.2014.24
https://doi.org/10.1109/IOLTS.2014.6873664
https://doi.org/10.1109/MDAT.2013.2278535
https://doi.org/10.1109/TC.2017.2731338
https://doi.org/10.1109/ETS.2016.7519288
https://doi.org/10.1109/ETS.2016.7519288
https://doi.org/10.1109/AUTEST.2016.7589605
https://doi.org/10.1109/ATS.2017.34

BIBLIOGRAPHY

[41] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter, “Making it harder
to unlock an LSIB: Honeytraps and misdirection in a P1687 network”, in
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2014, pp. 1–6.

[42] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, and H. Wun-
derlich, “Specification and verification of security in reconfigurable scan net-
works”, in 2017 22nd IEEE European Test Symposium (ETS), May 2017,
pp. 1–6.

[43] R. Baranowski, M. A. Kochte, and H. Wunderlich, “Securing Access to Re-
configurable Scan Networks”, in 2013 22nd Asian Test Symposium, Nov.
2013, pp. 295–300.

[44] A. Atteya, M. A. Kochte, M. Sauer, P. Raiola, B. Becker, and H. Wunderlich,
“Online prevention of security violations in reconfigurable scan networks”,
in 2018 IEEE 23rd European Test Symposium (ETS), May 2018.

[45] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of IEEE
1687 benchmark networks”, in 2016 IEEE International Test Conference
(ITC), IEEE, 2016, pp. 1–10.

[46] A. T. Dahbura, M. U. Uyar, and C. W. Yau, “An optimal test sequence
for the JTAG/IEEE P1149. 1 test access port controller”, in International
Test Conference, 1989. Proceedings. Meeting the Tests of Time, IEEE, 1989,
pp. 55–62.

[47] K.-J. Lee and M. A. Breuer, “A universal test sequence for CMOS scan reg-
isters”, in Proceedings of the IEEE 1990 Custom Integrated Circuits Confer-
ence, IEEE, 1990, pp. 28–5.

[48] S. Maka and E. J. McCluskey, “ATPG for scan chain latches and flip-flops”,
in 1997 15th IEEE VLSI Test Symposium, IEEE, 1997, pp. 364–369.

[49] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomeranz,
“On the detectability of scan chain internal faults an industrial case study”,
in VLSI Test Symposium, 2008. VTS 2008. 26th IEEE, IEEE, 2008, pp. 79–
84.

[50] A. Tšertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G. Zadegan,
R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of IEEE 1687
benchmark networks”, in 2016 IEEE International Test Conference (ITC),
IEEE, 2016, pp. 1–10.

[51] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A Semi-
Technique to Generate Effective Test Sequences for Reconfigurable Scan Net-
works”, in Test Conference in Asia (ITC-Asia), 2017 International, IEEE,
2018.

163

BIBLIOGRAPHY

[52] A. Eiben and J. Smith, Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2015. doi: 10.1007/978- 3- 662- 44874- 8. [Online].
Available: https://doi.org/10.1007/978-3-662-44874-8.

[53] E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary Optimization: the
µGP toolkit. Springer Science & Business Media, 2011.

[54] Genetic operators, https://sourceforge.net/p/ugp3/wiki/Genetic%20operators/.
[55] S. Kundu, S. Chattopadhyay, I. Sengupta, and R. Kapur, “Scan Chain

Masking for Diagnosis of Multiple Chain Failures in a Space Compaction
Environment”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 7, pp. 1185–1195, Jul. 2015, issn: 1063-8210. doi:
10.1109/TVLSI.2014.2333691.

[56] J. Ye, Y. Huang, Y. Hu, W. T. Cheng, R. Guo, L. Lai, T. P. Tai, X. Li,
W. Changchien, D. M. Lee, J. J. Chen, S. C. Eruvathi, K. K. Kumara, C.
Liu, and S. Pan, “Diagnosis and Layout Aware (DLA) Scan Chain Stitching”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 3, pp. 466–479, Mar. 2015, issn: 1063-8210. doi: 10.1109/TVLSI.2014.
2313563.

[57] Y. Huang, R. Guo, W. T. Cheng, and J. C. M. Li, “Survey of Scan Chain
Diagnosis”, IEEE Design Test of Computers, vol. 25, no. 3, pp. 240–248,
May 2008, issn: 0740-7475. doi: 10.1109/MDT.2008.83.

[58] Y. Huang, X. Fan, H. Tang, M. Sharma, W. T. Cheng, B. Benware, and S. M.
Reddy, “Distributed dynamic partitioning based diagnosis of scan chain”,
in 2013 31st IEEE VLSI Test Symposium (VTS), Apr. 2013, pp. 1–6. doi:
10.1109/VTS.2013.6548916.

[59] W. H. Lo, A. C. Hsieh, C. M. Lan, M. H. Lin, and T. Hwang, “Utilizing
Circuit Structure for Scan Chain Diagnosis”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2766–2778, Dec.
2014, issn: 1063-8210. doi: 10.1109/TVLSI.2013.2294712.

[60] H. Chen, Z. Qi, L. Wang, and C. Xu, “A scan chain optimization method
for diagnosis”, in 2015 33rd IEEE International Conference on Computer
Design (ICCD), Oct. 2015, pp. 613–620. doi: 10.1109/ICCD.2015.7357172.

[61] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A New
Technique to Generate Test Sequences for Reconfigurable Scan Networks”,
in 2018 IEEE International Test Conference (ITC), IEEE, Oct. 2018.

[62] F. Ahmed and L. Milor, “Reliable cache design with on-chip monitoring
of NBTI degradation in SRAM cells using BIST”, in 2010 28th VLSI Test
Symposium (VTS), Apr. 2010, pp. 63–68.

164

https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1109/TVLSI.2014.2333691
https://doi.org/10.1109/TVLSI.2014.2313563
https://doi.org/10.1109/TVLSI.2014.2313563
https://doi.org/10.1109/MDT.2008.83
https://doi.org/10.1109/VTS.2013.6548916
https://doi.org/10.1109/TVLSI.2013.2294712
https://doi.org/10.1109/ICCD.2015.7357172

BIBLIOGRAPHY

[63] C. Ferri, D. Papagiannopoulou, R. I. Bahar, and A. Calimera, “NBTI-aware
data allocation strategies for scratchpad memory based embedded systems”,
in 2011 12th Latin American Test Workshop (LATW), Mar. 2011, pp. 1–6.

[64] H. Kükner et al., “Comparison of Reaction-Diffusion and Atomistic Trap-
Based BTI Models for Logic Gates”, IEEE Transactions on Device and Ma-
terials Reliability, vol. 14, no. 1, pp. 182–193, Mar. 2014.

[65] M. Jenihhin et al., “Identification and Rejuvenation of NBTI-Critical Logic
Paths in Nanoscale Circuits”, Journal of Electronic Testin, vol. 32, no. 3,
pp. 273–289, Jun. 2016.

[66] S. Khan and S. Hamdioui, “Modeling and mitigating NBTI in nanoscale
circuits”, in 2011 IEEE 17th International On-Line Testing Symposium, Jul.
2011, pp. 1–6.

[67] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in mul-
ticores”, in 2008 41st IEEE/ACM International Symposium on Microarchi-
tecture, Nov. 2008, pp. 129–140.

[68] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-Aware Synthesis of
Digital Circuits”, in 2007 44th ACM/IEEE Design Automation Conference,
Jun. 2007, pp. 370–375.

[69] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-Aware Proces-
sor”, in 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2007), Dec. 2007, pp. 85–96.

[70] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predic-
tive Modeling of the NBTI Effect for Reliable Design”, in IEEE Custom
Integrated Circuits Conference 2006, Sep. 2006, pp. 189–192.

[71] H. Kükner, S. Khan, P. Weckx, P. Raghavan, S. Hamdioui, B. Kaczer, F.
Catthoor, L. Van der Perre, R. Lauwereins, and G. Groeseneken, “Compar-
ison of Reaction-Diffusion and Atomistic Trap-Based BTI Models for Logic
Gates”, IEEE Transactions on Device and Materials Reliability, vol. 14,
no. 1, pp. 182–193, 2014. doi: 10.1109/TDMR.2013.2267274.

[72] W. Wang et al., “Compact Modeling and Simulation of Circuit Reliability
for 65-nm CMOS Technology”, IEEE Transactions on Device and Materials
Reliability, vol. 7, no. 4, pp. 509–517, Dec. 2007.

[73] A. Tšepurov, G. Bartsch, R. Dorsch, M. Jenihhin, J. Raik, and V. Tih-
homirov, “A scalable model based RTL framework zamiaCAD for static
analysis”, in 2012 IEEE IFIP 20th International Conference on VLSI and
System-on-Chip (VLSI-SoC), 2012, pp. 171–176.

165

https://doi.org/10.1109/TDMR.2013.2267274

BIBLIOGRAPHY

[74] “Report on structural analysis, verification and optimization methodology
for ICL networks”, in EU FP7 BASTION project report, Feb. 2016, pp. 1–42.
[Online]. Available: https://cordis.europa.eu/docs/projects/cnect/
1/619871/080/deliverables/001-BASTIOND23v204.pdf.

[75] A. Tsertov, A. Jutman, K. Shibin, and S. Devadze, “IEEE 1687 Compli-
ant Ecosystem for Embedded Instrumentation Access and In-Field Health
Monitoring”, in AUTOTESTCON 2018, Sep. 2018, pp. 1–9. doi: 10.1109/
AUTEST.2018.8532559.

[76] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A New
Technique to Generate Effective Test Sequences for Reconfigurable Scan
Networks”, in IEEE International Test Conference (ITC), 2018.

[77] “IEEE Standard for Access and Control of Instrumentation Embedded within
a Semiconductor Device”, IEEE Std 1687-2014, pp. 1–283, Dec. 2014. doi:
10.1109/IEEESTD.2014.6974961.

[78] J. Zhang and Q. Xu, “On hardware Trojan design and implementation at
register-transfer level”, 2013.

[79] Y. Jin, N. Kupp, and Y. Makris, “Experiences in Hardware Trojan design
and implementation”, in 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, 2009, pp. 50–57. doi: 10.1109/HST.2009.
5224971.

[80] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability anal-
ysis and trust benchmarks development”, in 2013 IEEE 31st International
Conference on Computer Design (ICCD), 2013, pp. 471–474.

[81] S. Yu, W. Liu, and M. O’Neill, “An Improved Automatic Hardware Trojan
Generation Platform”, in 2019 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2019, pp. 302–307. doi: 10.1109/ISVLSI.2019.00062.

[82] H. Salmani, “COTD: Reference-Free Hardware Trojan Detection and Re-
covery Based on Controllability and Observability in Gate-Level Netlist”,
IEEE Transactions on Information Forensics and Security, vol. 12, no. 2,
pp. 338–350, 2017. doi: 10.1109/TIFS.2016.2613842.

[83] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an Untrusted Computing Base: Detecting and Removing Ma-
licious Hardware Automatically”, in 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 159–172.

[84] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI: Building
Stealthy and Malicious Hardware”, in 2011 IEEE Symposium on Security
and Privacy, 2011, pp. 64–77.

166

https://cordis.europa.eu/docs/projects/cnect/1/619871/080/deliverables/001-BASTIOND23v204.pdf
https://cordis.europa.eu/docs/projects/cnect/1/619871/080/deliverables/001-BASTIOND23v204.pdf
https://doi.org/10.1109/AUTEST.2018.8532559
https://doi.org/10.1109/AUTEST.2018.8532559
https://doi.org/10.1109/IEEESTD.2014.6974961
https://doi.org/10.1109/HST.2009.5224971
https://doi.org/10.1109/HST.2009.5224971
https://doi.org/10.1109/ISVLSI.2019.00062
https://doi.org/10.1109/TIFS.2016.2613842

BIBLIOGRAPHY

[85] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable Hardware
Trojan Activation by Interleaving Concrete Simulation and Symbolic Exe-
cution”, in 2018 IEEE International Test Conference (ITC), 2018, pp. 1–
10.

[86] Y. Lyu, A. Ahmed, and P. Mishra, “Automated Activation of Multiple Tar-
gets in RTL Models using Concolic Testing”, in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), 2019, pp. 354–359.

[87] L. Piccolboni, A. Menon, and G. Pravadelli, “Efficient Control-Flow Sub-
graph Matching for Detecting Hardware Trojans in RTL Models”, ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, Sep. 2017, issn: 1539-9087.
doi: 10.1145/3126552. [Online]. Available: https://doi.org/10.1145/
3126552.

[88] F. Demrozi, R. Zucchelli, and G. Pravadelli, “Exploiting sub-graph isomor-
phism and probabilistic neural networks for the detection of hardware Tro-
jans at RTL”, in 2017 IEEE International High Level Design Validation and
Test Workshop (HLDVT), 2017, pp. 67–73.

[89] D. F. Specht, “Probabilistic Neural Networks”, Neural Netw., vol. 3, no. 1,
pp. 109–118, Jan. 1990.

[90] S. King et al., “Designing and Implementing Malicious Hardware.”, Jan.
2008.

[91] Y. Jin, N. Kupp, and Y. Makris, “Experiences in Hardware Trojan design
and implementation”, in 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, 2009, pp. 50–57.

[92] B. Shakya et al., “Benchmarking of Hardware Trojans and Maliciously Af-
fected Circuits”, Journal of Hardware and Systems Security, 2017.

[93] R. Elnaggar and K. Chakrabarty, “Machine Learning for Hardware Security:
Opportunities and Risks”, Journal of Electronic Testing, 2018.

[94] C. Bao, D. Forte, and A. Srivastava, “On application of one-class SVM to
reverse engineering-based hardware Trojan detection”, in Fifteenth Interna-
tional Symposium on Quality Electronic Design, 2014, pp. 47–54.

[95] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using be-
havioral pattern mining”, in 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust, 2012, pp. 83–88.

[96] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-Trojan detection using
random forest classifier”, in 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), 2017, pp. 1–4.

167

https://doi.org/10.1145/3126552
https://doi.org/10.1145/3126552
https://doi.org/10.1145/3126552

BIBLIOGRAPHY

[97] E. Zhou et al., “A Novel Detection Method for Hardware Trojan in Third
Party IP Cores”, in 2016 International Conference on Information System
and Artificial Intelligence (ISAI).

[98] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of
Hardware Trojan Design and Detection in Wireless Cryptographic ICs”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 4, pp. 1506–1519, 2017.

[99] S. Wang et al., “Hardware Trojan detection based on ELM neural network”,
in 2016 First IEEE International Conference on Computer Communication
and the Internet (ICCCI), 2016, pp. 400–403.

[100] D. K. Pradhan and I. G. Harris, Practical Design Verification. Cambridge
University Press, 2009. doi: 10.1017/CBO9780511626913.

[101] A. Piziali, Functional Verification Coverage Measurement and Analysis, 1st.
Springer Publishing Company, Incorporated, 2007, isbn: 0387739920.

[102] S. Tasiran and K. Keutzer, “Coverage Metrics for Functional Validation of
Hardware Designs”, IEEE Des. Test, vol. 18, no. 4, pp. 36–45, Jul. 2001,
issn: 0740-7475. doi: 10 . 1109 / 54 . 936247. [Online]. Available: https :
//doi.org/10.1109/54.936247.

[103] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain.”, en, Psychological Review, vol. 65, no. 6,
1958.

[104] C. C. Aggarwal, Neural Networks and Deep Learning, A Textbook. Springer,
2018, p. 497, isbn: 978-3-319-94462-3. doi: 10.1007/978-3-319-94463-0.

[105] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol. 521,
no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539. [Online]. Avail-
able: https://doi.org/10.1038/nature14539.

[106] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification”, in Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV),
ser. ICCV ’15, USA: IEEE Computer Society, 2015, pp. 1026–1034, isbn:
9781467383912. doi: 10.1109/ICCV.2015.123. [Online]. Available: https:
//doi.org/10.1109/ICCV.2015.123.

[107] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet Large Scale Visual Recognition Challenge”, International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/
s11263- 015-0816-y. [Online]. Available: https://doi.org/10.1007/
s11263-015-0816-y.

168

https://doi.org/10.1017/CBO9780511626913
https://doi.org/10.1109/54.936247
https://doi.org/10.1109/54.936247
https://doi.org/10.1109/54.936247
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY

[108] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition”, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90. [Online]. Available: https://doi.org/10.1109/
CVPR.2016.90.

[109] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for
Optimal Margin Classifiers”, in Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, ser. COLT ’92, Pittsburgh, Pennsylva-
nia, USA: Association for Computing Machinery, 1992, pp. 144–152, isbn:
089791497X. doi: 10.1145/130385.130401. [Online]. Available: https:
//doi.org/10.1145/130385.130401.

[110] V. N. Vapnik, The Nature of Statistical Learning Theory. Berlin, Heidelberg:
Springer-Verlag, 1995, isbn: 0387945598.

[111] “IEEE Standard for VHDL Language Reference Manual”, IEEE Std 1076-
2019, pp. 1–673, 2019. doi: 10.1109/IEEESTD.2019.8938196.

[112] “IEEE Standard for Verilog Hardware Description Language”, IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), pp. 1–590, 2006. doi: 10.
1109/IEEESTD.2006.99495.

[113] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and Unsupervised
Discretization of Continuous Features”, in Machine Learning Proceedings
1995, A. Prieditis and S. Russell, Eds., San Francisco (CA): Morgan Kauf-
mann, 1995, pp. 194–202, isbn: 978-1-55860-377-6. doi: https://doi.org/
10.1016/B978-1-55860-377-6.50032-3. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/B9781558603776500323.

[114] A. Damljanovic, A. Ruospo, E. Sanchez, and G. Squillero, “A Benchmark
Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores”,
24th International Symposium on Design and Diagnostics of Electronic Cir-
cuits and Systems (DDECS), 2021.

[115] F. Silva et al., “Special Session: AutoSoC - A Suite of Open-Source Automo-
tive SoC Benchmarks”, Apr. 2020, pp. 1–9. doi: 10.1109/VTS48691.2020.
9107599.

[116] S. Takamaeda-Yamazaki, “Pyverilog: A Python-Based Hardware Design Pro-
cessing Toolkit for Verilog HDL”, in Applied Reconfigurable Computing, ser. Lec-
ture Notes in Computer Science, vol. 9040, Springer International Publish-
ing, 2015, pp. 451–460. doi: 10.1007/978-3-319-16214-0_42. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16214-0_42.

[117] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media, Aug. 2019, isbn: 1492032646.

169

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://doi.org/10.1109/VTS48691.2020.9107599
https://doi.org/10.1109/VTS48691.2020.9107599
https://doi.org/10.1007/978-3-319-16214-0_42
http://dx.doi.org/10.1007/978-3-319-16214-0_42

BIBLIOGRAPHY

[118] B. Shakya, M. T. He, H. Salmani, D. Forte, S. Bhunia, and M. M. Tehra-
nipoor, “Benchmarking of Hardware Trojans and Maliciously Affected Cir-
cuits”, Journal of Hardware and Systems Security, vol. 1, pp. 85–102, 2017.

[119] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson,
“On the diagnostic analysis of IEEE 1687 networks”, in Test Symposium
(ETS), 2016 21th IEEE European, IEEE, 2016, pp. 1–2.

[120] S. Narayanan and M. A. Breuer, “Reconfigurable scan chains: A novel ap-
proach to reduce test application time”, in Proceedings of the 1993 IEEE/ACM
international conference on Computer-aided design, IEEE Computer Society
Press, 1993, pp. 710–715.

[121] R. Krenz-Baath, F. G. Zadegan, and E. Larsson, “Access time minimization
in IEEE 1687 networks”, in 2015 IEEE International Test Conference (ITC),
IEEE, Oct. 2015, pp. 1–10. doi: 10.1109/TEST.2015.7342408.

[122] S. R. Makar and E. J. McCluskey, “On the testing of multiplexers”, in
International Test Conference, 1988. Proceedings. New Frontiers in Testing,
IEEE, 1988, pp. 669–679.

[123] F. G. Zadegan, U. Ingelsson, G. Asani, G. Carlsson, and E. Larsson, “Test
scheduling in an ieee p1687 environment with resource and power con-
straints”, in 2011 20th IEEE Asian Test Symposium (ATS), IEEE, 2011,
pp. 525–531.

[124] Y. Blaquiere, Y. Basile-Bellavance, S. Berrima, and Y. Savaria, “Design and
validation of a novel reconfigurable and defect tolerant JTAG scan chain”,
in 2014 IEEE International Symposium on Circuits and Systems (ISCAS),
IEEE, 2014, pp. 2559–2562.

[125] “IEEE Standard for Test Access Port and Boundary-Scan Architecture”,
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444, May
2013. doi: 10.1109/IEEESTD.2013.6515989.

[126] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomeranz,
“Detectability of Internal Bridging Faults in Scan Chains”, in Asia and South
Pacific Design Automation Conference, Jan. 2009, pp. 678–683. doi: 10.
1109/ASPDAC.2009.4796558.

[127] R. Krenz-Baath, F. G. Zadegan, and E. Larsson, “Access time minimization
in IEEE 1687 networks”, in 2015 IEEE International Test Conference (ITC),
Oct. 2015, pp. 1–10.

[128] A. Ibrahim and H. G. Kerkhoff, “Efficient utilization of hierarchical iJTAG
networks for interrupts management”, in 2016 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Sep. 2016, pp. 97–102.

170

https://doi.org/10.1109/TEST.2015.7342408
https://doi.org/10.1109/IEEESTD.2013.6515989
https://doi.org/10.1109/ASPDAC.2009.4796558
https://doi.org/10.1109/ASPDAC.2009.4796558

BIBLIOGRAPHY

[129] G. Ali, A. Badawy, and H. G. Kerkhoff, “Accessing on-chip temperature
health monitors using the IEEE 1687 standard”, in 2016 IEEE Interna-
tional Conference on Electronics, Circuits and Systems (ICECS), Dec. 2016,
pp. 776–779.

[130] F. G. Zadegan, D. Nikolov, and E. Larsson, “On-Chip Fault Monitoring Us-
ing Self-Reconfiguring IEEE 1687 Networks”, IEEE Transactions on Com-
puters, vol. 67, no. 2, pp. 237–251, Feb. 2018.

[131] M. Portolan, “A novel test generation and application flow for functional
access to IEEE 1687 instruments”, in 2016 21th IEEE European Test Sym-
posium (ETS), May 2016, pp. 1–6.

[132] A. Jutman et al., “Effective Scalable IEEE 1687 Instrumentation Network
for Fault Management”, IEEE Design Test, vol. 30, no. 5, pp. 26–35, Oct.
2013.

[133] Y. Cao and W. Zhao, “Predictive Technology Model for Nano-CMOS Design
Exploration”, in 2006 1st International Conference on Nano-Networks and
Workshops, Sep. 2006, pp. 1–5. doi: 10.1109/NANONET.2006.346227.

[134] A. Molina and O. Cadenas, “Functional verification: approaches and chal-
lenges”, 2007.

[135] A. Damljanovic, A. Jutman, G. Squillero, and A. Tsertov, “Post-Silicon Vali-
dation of IEEE 1687 Reconfigurable Scan Networks”, in 24th IEEE European
Test Symposium (ETS) (to be published), IEEE, 2019.

[136] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks for
modular testing of SOCs”, in Test Conference, 2002. Proceedings. Interna-
tional, IEEE, 2002, pp. 519–528.

[137] M. K. Reddy and S. M. Reddy, “Detecting FET Stuck-Open Faults in CMOS
Latches And Flip-Flops”, IEEE Design & Test of Computers, vol. 3, no. 5,
pp. 17–26, Oct. 1986.

[138] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “Detection of Internal Stuck-Open Faults in Scan Chains”, in IEEE
International Test Conference, Oct. 2008, pp. 1–10. doi: 10.1109/TEST.
2008.4700577.

[139] F. G. Zadegan, E. Larsson, A. Jutman, S. Devadze, and R. Krenz-Baath,
“Design, Verification, and Application of IEEE 1687”, in Proceedings of the
2014 IEEE 23rd Asian Test Symposium, ser. ATS ’14, Washington, DC,
USA: IEEE Computer Society, 2014, pp. 93–100, isbn: 978-1-4799-6030-9.
doi: 10.1109/ATS.2014.28. [Online]. Available: http://dx.doi.org/10.
1109/ATS.2014.28.

171

https://doi.org/10.1109/NANONET.2006.346227
https://doi.org/10.1109/TEST.2008.4700577
https://doi.org/10.1109/TEST.2008.4700577
https://doi.org/10.1109/ATS.2014.28
http://dx.doi.org/10.1109/ATS.2014.28
http://dx.doi.org/10.1109/ATS.2014.28

BIBLIOGRAPHY

[140] M. A. Kochte, R. Baranowski, M. Schaal, and H. Wunderlich, “Test Strate-
gies for Reconfigurable Scan Networks”, in 2016 IEEE 25th Asian Test Sym-
posium(ATS), vol. 00, Nov. 2016, pp. 113–118. doi: 10.1109/ATS.2016.35.
[Online]. Available: doi.ieeecomputersociety.org/10.1109/ATS.2016.
35.

[141] M. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degra-
dation”, Microelectronics Reliability, vol. 45, no. 1, pp. 71–81, 2005, issn:
0026-2714. doi: https://doi.org/10.1016/j.microrel.2004.03.019.

[142] A. Ceratti, T. Copetti, L. Bolzani, and F. Vargas, “Investigating the use of
an on-chip sensor to monitor NBTI effect in SRAM”, in 2012 13th Latin
American Test Workshop (LATW), 2012, pp. 1–6. doi: 10.1109/LATW.
2012.6261238.

[143] A. Ruospo and E. Sanchez, “On the Detection of Always-On Hardware Tro-
jans Supported by a Pre-Silicon Verification Methodology”, in 2019 20th
International Workshop on Microprocessor/SoC Test, Security and Verifi-
cation (MTV), Dec. 2019, pp. 25–30. doi: 10.1109/MTV48867.2019.00013.

[144] S. Pham, J. Dworak, and T. Manikas, “An Analysis of Differences between
Trojans inserted at RTL and at Manufacturing with Implications for their
Detectability”, in 2012 IEEE North Atlantic Test Workshop (NATW), 2012.

[145] J. Zhang and Q. Xu, “On hardware Trojan design and implementation at
register-transfer level”, in 2013 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2013, pp. 107–112. doi: 10.1109/HST.
2013.6581574.

[146] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity”, The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, Dec. 1943. doi: 10 . 1007 / BF02478259. [Online]. Available:
https://doi.org/10.1007/BF02478259.

[147] S. V. Pham and J. Dworak, “An Analysis of Differences between Trojans
inserted at RTL and at Manufacturing with Implications for their Detectabil-
ity”, 2012.

[148] K. Xiao et al., “Hardware Trojans: Lessons Learned after One Decade of
Research”, ACM Transactions on Design Automation of Electronic Systems,
vol. 22, pp. 1–23, May 2016. doi: 10.1145/2906147.

[149] R. Elnaggar and K. Chakrabarty, “Machine Learning for Hardware Security:
Opportunities and Risks”, Journal of Electronic Testing, vol. 34, pp. 1–19,
Apr. 2018. doi: 10.1007/s10836-018-5726-9.

[150] J. Cramer, “The Origins of Logistic Regression”, en, SSRN Electronic Jour-
nal, 2003, issn: 1556-5068. doi: 10.2139/ssrn.360300. [Online]. Available:
http://www.ssrn.com/abstract=360300.

172

https://doi.org/10.1109/ATS.2016.35
doi.ieeecomputersociety.org/10.1109/ATS.2016.35
doi.ieeecomputersociety.org/10.1109/ATS.2016.35
https://doi.org/https://doi.org/10.1016/j.microrel.2004.03.019
https://doi.org/10.1109/LATW.2012.6261238
https://doi.org/10.1109/LATW.2012.6261238
https://doi.org/10.1109/MTV48867.2019.00013
https://doi.org/10.1109/HST.2013.6581574
https://doi.org/10.1109/HST.2013.6581574
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1145/2906147
https://doi.org/10.1007/s10836-018-5726-9
https://doi.org/10.2139/ssrn.360300
http://www.ssrn.com/abstract=360300

BIBLIOGRAPHY

[151] A. Broder, “On the resemblance and containment of documents”, in Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171), 1997, pp. 21–29. doi: 10.1109/SEQUEN.1997.666900.

[152] N. Altman and M. Krzywinski, “Sources of variation”, en, Nature Methods,
vol. 12, no. 1, pp. 5–6, 2015, issn: 1548-7091, 1548-7105. doi: 10.1038/
nmeth.3224. [Online]. Available: http://www.nature.com/articles/
nmeth.3224.

[153] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “AN OVERVIEW OF
MACHINE LEARNING”, en, in Machine Learning, Elsevier, 1983, pp. 3–
23, isbn: 978-0-08-051054-5. [Online]. Available: https : / / linkinghub .
elsevier.com/retrieve/pii/B9780080510545500054.

[154] D. Blaauw, S. Kalaiselvan, K. Lai, W. Ma, S. Pant, C. Tokunaga, S. Das,
and D. Bull, “Razor II: In Situ Error Detection and Correction for PVT and
SER Tolerance”, in 2008 IEEE International Solid-State Circuits Conference
- Digest of Technical Papers, 2008, pp. 400–622. doi: 10.1109/ISSCC.2008.
4523226.

[155] T. B. Chan, P. Gupta, A. Kahng, and L. Lai, “DDRO: A Novel Perfor-
mance Monitoring Methodology Based on Design-Dependent Ring Oscilla-
tors”, pp. 633–640, May 2012. doi: 10.1109/ISQED.2012.6187559.

[156] M. Cozzi, J.-M. Galliere, and P. Maurine, “Thermal Scans for Detecting
Hardware Trojans”, in. Jan. 2018, pp. 117–132, isbn: 978-3-319-89640-3.
doi: 10.1007/978-3-319-89641-0_7.

[157] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehranipoor,
“Security-Aware FSM Design Flow for Identifying and Mitigating Vulnera-
bilities to Fault Attacks”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 6, pp. 1003–1016, 2019.

[158] M. Rathmair, F. Schupfer, and C. Krieg, “Applied formal methods for hard-
ware Trojan detection”, in 2014 IEEE International Symposium on Circuits
and Systems (ISCAS), 2014, pp. 169–172.

[159] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores”, in 2011 IEEE International Symposium on
Hardware-Oriented Security and Trust, 2011, pp. 67–70.

[160] J. Cruz, F. Farahmandi, A. Ahmed, and P. Mishra, “Hardware Trojan Detec-
tion Using ATPG and Model Checking”, in 2018 31st International Confer-
ence on VLSI Design and 2018 17th International Conference on Embedded
Systems (VLSID), 2018, pp. 91–96.

[161] S. Yao, X. Chen, J. Zhang, Q. Liu, J. Wang, Q. Xu, Y. Wang, and H. Yang,
“FASTrust: Feature analysis for third-party IP trust verification”, in 2015
IEEE International Test Conference (ITC), 2015, pp. 1–10.

173

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1038/nmeth.3224
https://doi.org/10.1038/nmeth.3224
http://www.nature.com/articles/nmeth.3224
http://www.nature.com/articles/nmeth.3224
https://linkinghub.elsevier.com/retrieve/pii/B9780080510545500054
https://linkinghub.elsevier.com/retrieve/pii/B9780080510545500054
https://doi.org/10.1109/ISSCC.2008.4523226
https://doi.org/10.1109/ISSCC.2008.4523226
https://doi.org/10.1109/ISQED.2012.6187559
https://doi.org/10.1007/978-3-319-89641-0_7

BIBLIOGRAPHY

[162] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification for
Hardware Trust”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[163] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis”, Nov. 2013,
pp. 697–708. doi: 10.1145/2508859.2516654.

[164] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y.
LeCun, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Compari-
son of classifier methods: a case study in handwritten digit recognition”, in
Proceedings of the 12th IAPR International Conference on Pattern Recogni-
tion, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), vol. 2,
1994, 77–82 vol.2. doi: 10.1109/ICPR.1994.576879.

[165] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097–1105.

[166] A. Ruospo and E. Sanchez, “On the Detection of Always-On Hardware Tro-
jans Supported by a Pre-Silicon Verification Methodology”, in 2019 20th
International Workshop on Microprocessor/SoC Test, Security and Verifi-
cation (MTV), 2019, pp. 25–30. doi: 10.1109/MTV48867.2019.00013.

[167] K. Hasegawa, M. Yanagisawa, and N. Togawa, “A hardware Trojan classifi-
cation method using machine learning at gate-level netlists based on Trojan
features”, Jul. 2017, pp. 1427–1438.

[168] A. Kulkarni, Y. Pino, and T. Mohsenin, “Adaptive real-time Trojan de-
tection framework through machine learning”, in 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2016.

[169] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration of
hardware Trojan design and detection in wireless cryptographic ICs”, 2017.

[170] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan at-
tacks: Threat analysis and countermeasures”, Aug. 2014, pp. 1229–1247.

[171] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxon-
omy and Detection”, Design & Test of Computers, IEEE, 2010.

[172] A. Ruospo and E. Sanchez, “On the Detection of Always-On Hardware Tro-
jans Supported by a Pre-Silicon Verification Methodology”, in 2019 20th
International Workshop on Microprocessor SoC Test, Security and Verifica-
tion (MTV), 2019, pp. 25–30.

[173] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep Blue”, en, Artificial In-
telligence, vol. 134, no. 1, pp. 57–83, Jan. 2002, issn: 0004-3702. doi: 10.
1016/S0004-3702(01)00129-1.

174

https://doi.org/10.1145/2508859.2516654
https://doi.org/10.1109/ICPR.1994.576879
https://doi.org/10.1109/MTV48867.2019.00013
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1

BIBLIOGRAPHY

[174] M. I. Jordan and T. M. Mitchell, “Machine Learning: Trends, Perspectives,
and Prospects”, en, Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, issn:
0036-8075, 1095-9203. doi: 10.1126/science.aaa8415.

[175] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Check-
ers”, IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229,
1959, issn: 0018-8646. doi: 10.1147/rd.33.0210.

[176] A. M. Turing, “COMPUTING MACHINERY AND INTELLIGENCE”, en,
Mind, vol. LIX, no. 236, pp. 433–460, 1950, issn: 1460-2113, 0026-4423. doi:
10.1093/mind/LIX.236.433. [Online]. Available: https://academic.oup.
com/mind/article/LIX/236/433/986238.

[177] Icarus verilog. [Online]. Available: http://iverilog.icarus.com/.
[178] Ply (python lex-yacc). [Online]. Available: http://www.dabeaz.com/ply/.
[179] Lazygrid. [Online]. Available: https://pypi.org/project/lazygrid/.
[180] S. Linnainmaa, “Taylor expansion of the accumulated rounding error”, en,

BIT Numerical Mathematics, vol. 16, no. 2, pp. 146–160, 1976, issn: 1572-
9125. doi: 10.1007/BF01931367. [Online]. Available: https://doi.org/
10.1007/BF01931367.

[181] K. von Arnim, C. Pacha, K. Hofmann, T. Schulz, K. Schrufer, and J. Berthold,
“An Effective Switching Current Methodology to Predict the Performance
of Complex Digital Circuits”, in 2007 IEEE International Electron Devices
Meeting, 2007, pp. 483–486. doi: 10.1109/IEDM.2007.4418979.

[182] G. Sannena and B. P. Das, “Low Overhead Warning Flip-Flop Based on
Charge Sharing for Timing Slack Monitoring”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 7, pp. 1223–1232, 2018,
issn: 1557-9999. doi: 10.1109/TVLSI.2018.2810954.

[183] M. Cozzi, J.-M. Galliere, and P. Maurine, “Thermal Scans for Detecting
Hardware Trojans”, in. Jan. 2018, pp. 117–132, isbn: 978-3-319-89640-3.
doi: 10.1007/978-3-319-89641-0_7.

[184] W. Hu, B. Mao, J. Oberg, and R. Kastner, “Detecting Hardware Tro-
jans with Gate-Level Information-Flow Tracking”, Computer, vol. 49, no. 8,
pp. 44–52, 2016.

[185] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-Trojan detection using
random forest classifier”, in 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), 2017, pp. 1–4.

[186] P. Zhao and Q. Liu, “Density-based Clustering Method for Hardware Trojan
Detection Based on Gate-level Structural Features”, in 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), 2019, pp. 1–4.

175

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article/LIX/236/433/986238
https://academic.oup.com/mind/article/LIX/236/433/986238
http://iverilog.icarus.com/
http://www.dabeaz.com/ply/
https://pypi.org/project/lazygrid/
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF01931367
https://doi.org/10.1109/IEDM.2007.4418979
https://doi.org/10.1109/TVLSI.2018.2810954
https://doi.org/10.1007/978-3-319-89641-0_7

BIBLIOGRAPHY

[187] T. Inoue, K. Hasegawa, Y. Kobayashi, M. Yanagisawa, and N. Togawa, “De-
signing Subspecies of Hardware Trojans and Their Detection Using Neural
Network Approach”, in 2018 IEEE 8th International Conference on Con-
sumer Electronics - Berlin (ICCE-Berlin), 2018, pp. 1–4.

[188] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-Trojan detection using
random forest classifier”, in 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), 2017, pp. 1–4.

176

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

	List of Tables
	List of Figures
	Introduction
	I IJTAG Reconfigurable Scan Networks Dependability
	Background
	IEEE 1149.1 – JTAG
	IEEE 1687 – IJTAG
	Related works
	IEEE 1687 Benchmark RSNs

	Test
	Fault model
	Test procedure
	A Semi-Formal Test Generation Technique for Reconfigurable Scan Networks
	Network representation: FSA
	Greedy search algorithm

	Enhanced version
	Search algorithm

	Evolutionary approach to test reconfigurable modules in RSNs
	Methodology Basics
	Transition function
	Evolutionary algorithm
	Individual encoding
	Post-processing techniques

	Experimental Results
	Experiments for FSA approaches from Section 2.3 and Section 2.4
	Experiments for Evolutionary approach from Section 2.5

	Chapter Summary

	Diagnosis
	Fault model and Diagnostic Mechanism
	Proposed Diagnostic Methodology
	Finite State Automaton to model an RSN
	Search Algorithm
	Diagnostic analysis

	Experimental Results
	Chapter Summary

	NBTI-induced aging analysis in IEEE 1687 RSNs
	Hierarchical Modelling of the NBTI-Induced Delays
	Proposed approach: analysis and mitigation
	Case study
	Experimental results
	Chapter summary

	Post-silicon validation
	Proposed "black-box" approach to post-silicon validation
	Mismatch model
	Undetectable mismatches
	Detection mechanism
	Configuration generation procedure

	Experimental results
	Chapter summary

	Simulation-based equivalence checking between IEEE 1687 ICL and RTL
	ICL
	Proposed approach
	Post-silicon validation approach
	Application to RTL Equivalence

	Experimental Results
	Setup
	Results

	Chapter summary

	Summary of Part I

	II Hardware Security: Hardware Trojans
	Background
	Related Works
	HT Design
	Detection Techniques

	A Benchmark Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores
	Hardware Trojans
	Trojan Implementation and Analysis
	Chapter summary

	Machine Learning for Hardware Security: Classifier-based Identification of Trojans in Pipelined Microprocessors
	Design Verification and ML concepts
	Digital Design Verification
	Artificial Neural Networks
	Support Vector Machine

	Proposed Detection Flow
	Control Flow Graphs Extraction
	Input Data Formatting
	Classification

	Experimental Evaluation
	Experimental Setup
	Experimental results with Support Vector Machine
	Experimental Results with Artificial Neural Networks

	Chapter summary

	Summary of Part II
	Conclusions and Recommendations for Future Research
	Bibliography

