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The detection of gravitational waves is possible thanks to a multidisciplinary approach involving

different disciplines such as astrophysics, physics, engineering, and quantum optics. Consequently,

it is important today for teachers to introduce the basic features of gravitational waves science in

the undergraduate curriculum. The usual approach to gravitational wave physics is based on the

use of traceless and transverse coordinates, which do not have a direct physical meaning and, in

a teaching perspective, may cause misconceptions. In this paper, using Fermi coordinates, which

are simply related to observable quantities, we show that it is possible to introduce a

gravitoelectromagnetic analogy that describes the action of gravitational waves on test masses in

terms of electric-like and magnetic-like forces. We suggest that this approach could be more

suitable when introducing the basic principles of gravitational waves physics to students. # 2021

Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

In the framework of General Relativity (GR), Einstein1,2

calculated the emission of gravitational waves (GWs) on the
basis of the quadrupole formula. According to this formula,
ideal candidates for the emission of GWs are huge masses
moving at highly relativistic velocities. These sources are far
away from the Earth, and their effects are detected as small
perturbations or ripples in the fabric of space-time. The first
indirect evidence of the existence of GWs was obtained
studying the binary pulsar B1913þ 16:3 the orbits of binary
systems are modified by the emission of gravitational waves,
and these modifications can be observed by accurate timing
measurements.4 It took more or less 100 years after
Einstein’s first calculation to obtain, in 2015, the first direct
detection of GWs,5 which constituted the birth of gravita-
tional waves astronomy. We are currently in the era of multi-
messenger astronomy: a given astrophysical source can be
detected by means of different messengers.6 Therefore, it is
important today for physics and astronomy teachers to
explain the foundations of GWs science, starting from the
emission process up to their detection, which requires a
multidisciplinary approach involving also engineering and
quantum optics.

There are concrete proposals to integrate GWs science
into physics and astronomy curricula.7 To this end, several
introductory textbooks can be used, such as Refs. 8 and 9; a
comprehensive collection of useful materials can be found in
the resource letter in Ref. 10. There is also literature focusing
on specific issues: for instance, Ref. 11 suggests that the
basic properties of GWs can be obtained by combining
Newtonian gravity with the retardation effects due to the
finite size of the speed of light. The detection process is
made clear by considering the basic principles of interfero-
metric detectors, as explained by Refs. 12 and 13, while
Ref. 14 discusses the key features of LIGO on the basis of
Newtonian mechanics, dimensional considerations, and
analogies between gravitational and electromagnetic waves.
The mechanism of emission can be studied on the basis
of the post-Newtonian theory, as discussed in Ref. 15,
while data analysis can be used as a tool to design a GWs
laboratory, as suggested in Ref. 16.

There are subtle issues connected with the process of
detection of GWs due to the distinct role of coordinates and
observable quantities in GR.17 In Einstein’s theory, physical
measurements are meaningful only when the observer and
the object of the observations are unambiguously identi-
fied.18 Roughly speaking, there are three steps in the
measurement process: (i) observers possess their own
space-time, in the vicinity of their world-lines; (ii) covari-
ant physics laws are projected onto local space and
time; and (iii) predictions for the outcome of measure-
ments in the local space-time of the observers are obtained.
Gravitational waves are usually described in terms of a
transverse and traceless (TT) tensor, which allows intro-
ducing the so-called TT coordinates (see, e.g., Ref. 19 and
references therein for a thorough discussion on the various
coordinates used to describe the interaction with GWs). TT
coordinates are used because they do not contain gauge-
dependent information; however, from a teaching perspec-
tive, TT coordinates are difficult to handle, since they are
not strictly related to measurable quantities and lack a
direct physical meaning.20

When he was 21 (some months before obtaining his
undergraduate degree in physics), Enrico Fermi published an
influential paper.21 In this paper, he introduced a quasi-
Cartesian coordinates system in the observer’s neighbour-
hood to describe the effects of gravitation. Such a set of
coordinates, called Fermi coordinates, adapted to the world-
line of an observer, defines a Fermi frame. Using this
approach, it is simple to emphasise that what an observer
measures depends both on the background field where he is
moving and, also, on his motion. This is quite similar to
what happens when we study classical mechanics in non-
inertial frames: inertial forces appear, depending on the
peculiar motion of the frame with respect to an inertial one.
Fermi coordinates have a concrete meaning, since they are
the coordinates an observer would naturally use to make
space and time measurements in the vicinity of his world-
line. Fermi coordinates are defined, by construction, as scalar
invariants.22 They are of the utmost importance to under-
stand the measurement process in GR, which is relevant in
experimental tests of gravity; moreover, they provide a sim-
ple interpretation of the equivalence principle.
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It is possible to show that using Fermi coordinates the
effects of a plane gravitational wave can be described by
gravitoelectromagnetic fields:23 in other words, the wave
field is equivalent to the combined action of a gravitoelectric
and a gravitomagnetic fields that are transverse to the propa-
gation direction and orthogonal to each other. The analogy
between electromagnetic fields and gravitational fields was
already envisaged by Heaviside, on the basis of the similarity
between Newton’s law of gravitation and Coulomb’s law of
electrostatic force (see, e.g., Ref. 24 and references therein).
General Relativity naturally predicts the existence of a gravi-
tomagnetic field, produced by mass currents, in analogy to
what happens for the magnetic field, produced by charge cur-
rents. Generally, it is possible to describe gravitational
effects on the basis of a gravitoelectromagnetic analogy as
discussed in Refs. 25 and 26.

In this paper, we introduce a gravitoelectromagnetic
description of the field of a plane gravitational wave using
Fermi coordinates, and we show that, in doing so, it is possi-
ble to understand the basic features of GWs. In particular,
this approach describes the interaction with detectors in
terms of a Lorentz-like force equation. Moreover, we show
that, while existing detectors, such LIGO and VIRGO, or
future ones, such as LISA, reveal the interaction of test
masses with the gravitoelectric components of the wave,
there are also gravitomagnetic interactions that could be
used to detect the effect of GWs on moving masses and spin-
ning particles.23,27,28

We believe that this approach can be useful for teaching
gravitational waves physics, because it directly leads to mea-
surable quantities, avoiding possible misunderstanding deriv-
ing from the use of other types of coordinates. Making an
analogy with the more familiar concept of electromagnetic
waves can also help students understand the new concept of
gravitational waves.29,30

The paper is organized as follows: in Sec. II, we briefly
review the classical approach to gravitational waves, while
we discuss Fermi coordinates and the gravitoelectromagnetic
approach in Sec. III. On the basis of the gravitoelectromag-
netic analogy, we describe in Sec. IV the interaction of GWs
with detectors. Conclusions are eventually drawn in Sec. V.

We use the convention in which Greek indices refer to
space-time coordinates and assume the values 0; 1; 2; 3,
while Latin indices refer to spatial coordinates and assume
the values 1, 2, 3, usually corresponding to the Cartesian
coordinates x, y, z; the spacetime signature is ð�1; 1; 1; 1Þ.

II. GRAVITATIONAL WAVES IN TRANSVERSE,

TRACELESS GAUGE

In this section, we briefly recall the standard approach to
the description of gravitational waves. To this end, we start
from Einstein’s equations

Gl� ¼
8pG

c4
Tl�; (1)

and we suppose that the space-time metric gl� is in the form
gl� ¼ gl� þ hl� , where jhl�j � 1 is a small perturbation of

the Minkowski tensor gl� of flat space-time. Setting �hl�

¼ hl� � ð1=2Þgl�h, with h ¼ hl
l, Einstein’s field equations

(1) in the Lorentz gauge @l
�h
l� ¼ 0 (where @l ¼ @=@xl) turn

out to be

� �hl� ¼ �
16pG

c4
Tl�; (2)

where � ¼ @l@
l ¼ r2 � ð1=c2Þ ð@=@t2Þ is the d’Alambert

operator. Gravitational waves propagate through empty
space and are solutions of equations (2) in vacuum

� �hl� ¼ 0: (3)

Typically, these equations are solved using the so-called
transverse-traceless coordinates (see, e.g., Ref. 19). In partic-
ular, we look for plane wave solutions propagating along the
x axis. Accordingly, a solution of Eq. (3) can be written in
the form

�hl� ¼ � hþeþl� þ h�e�l�

� �
; (4)

with

hþ ¼ Aþ cos xt� kxþ /þ
� �

;

h� ¼ A� cos xt� kxþ /�ð Þ;
(5)

where /þ;/� are constants, and

eþl� ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 �1

2
66664

3
77775; e�l� ¼

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

2
66664

3
77775 (6)

are the linear polarization tensors of the wave. In the above
definitions, Aþ;A� are the amplitude of the wave in the two
polarization states, /þ;/� the corresponding phases, while
x is the frequency and k is the wave number, so that the
wave four-vector is kl ¼ ðx=c; k; 0; 0Þ, with klkl ¼ 0.
Notice that any radiation field of spin s has two states of lin-
ear polarization inclined to each other at an angle of p=ð2sÞ:
for the photon s¼ 1 and the linear polarization states of elec-
tromagnetic waves are orthogonal, while for gravitational
waves the linear polarization states (6) are at p=4, since s¼ 2
(see, e.g., Ref. 31). Furthermore, by analogy with electro-
magnetic waves, the two linear polarizations states can be
added with phase difference of 6p=2 to get circularly polar-
ized waves. We will use

hþ ¼ Aþ sin xt� kxð Þ; h� ¼ A� cos xt� kxð Þ; (7)

thus fixing the phase difference: accordingly, circular polari-
zation corresponds to the condition Aþ ¼ 6A�.

In TT coordinates, the gravitational field of the wave is
described by the line element

ds2 ¼ �c2dt2 þ dx2 þ ð1� hþÞdy2 þ ð1þ hþÞdz2

� 2h�dydz: (8)

Now, in order to understand the effect of a GW on test
masses, we focus on the geodesic equation: starting from

d2x

ds2

l

þ Cl
ab

dxa

ds
dxb

ds
¼ 0; (9)

and using the chain rule
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dxi

ds
¼ dxi

dt

dt

ds
d2xi

ds2
¼ d2xi

dt2

dt

ds

� �2

þ dxi

dt

d2t

ds2
; (10)

the space components of Eq. (9) can be expressed in terms of
the form

d2xi

dt2

dt

ds

� �2

þ dxi

dt

d2t

ds2
þ Ci

ab
dxa

dt

dxb

dt

dt

ds

� �2

¼ 0; (11)

where ai ¼ d2xi=dt2 and vi ¼ dxi=dt are, respectively, the
coordinate acceleration and velocity. If we also use the time
component, we can write

1

c2

d2xi

dt2
¼ �Ci

jk

vj

c

vk

c
� 2Ci

0j

vj

c
� Ci

00

þ vi

c
C0

00 þ C0
jk

vj

c

vk

c
þ 2C0

0j

vj

c

� �
: (12)

We suppose that test masses are moving at non-relativistic
velocities, which is reasonable if we are dealing with detec-
tors: hence, since jvij=c� 1, we can neglect all velocity-
dependent terms in Eq. (12) and obtain

1

c2

d2xi

dt2
¼ �Ci

00: (13)

Using the metric (8), we get Ci
00 ¼ 0 and, then, d2xi=dt2 ¼ 0.

It is interesting to point out that this result is true for any
gravitational field in the form

ds2 ¼ �c2dt2 þ gijðxlÞdxidxj; (14)

i.e., with g00 ¼ �1 and g0i ¼ 0: all test particles that are spa-
tially at rest in such a spacetime follow geodesics. In TT
gauge, the metric (8) is in the form (14), and this simply
means that the TT coordinates of a test mass acted upon by a
gravitational wave do not change: but remember that coordi-
nates in general relativity do not have a direct physical
meaning. In order to see the effect of GWs on test masses,
we need to evaluate the variation of the physical distance
between them, which is defined by the proper length and not
by the coordinate distance. For instance, let us suppose that
two test masses are located along the y axis, at P1 ¼ ð0; 0; 0Þ
and P2 ¼ ð0; L; 0Þ. The proper distance dy between them is
obtained from the line element (8)

dy ¼
ðL

0

ffiffiffiffiffiffi
gyy
p

dy ¼
ðL

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hþ
p

dy ’ 1� hþ

2

� �
L; (15)

where we have taken into account the smallness of the per-
turbation; hence, according to Eq. (7) the proper distance
changes with time, due to the passage of the GWs.
Interferometers like LIGO and VIRGO are designed to mea-
sure this change. As we are going to show below, Fermi
coordinates allow a direct description of the effect of GWs
on test masses, in terms of measurable quantities.

TT gauge is used because of its convenience:20 as we said,
in linearized theory it fixes all gauge freedom so that the
metric perturbations are physical and do not contain gauge-
dependent information; moreover, in this gauge, it is mani-
fest that the GWs have two polarization components and that
they are transverse to the propagation direction.

For future convenience, we remember that, in linear
approximation in the perturbation hl� , the Riemann curva-
ture tensor is written in the form

Ralb� ¼
1

2
ha�;lb þ hlb;�a � hl�;ab � hab;l�ð Þ: (16)

In particular, since in the TT metric hi0 ¼ 0 and h00 ¼ �1,
we obtain the following expression of the Riemann tensor:

R0lb� ¼
1

2
hlb;�0 � hl�;0bð Þ; (17)

which will be used below.

III. FERMI COORDINATES

The space-time metric in Fermi coordinates, in the vicinity
of a given observer’s world-line, depends both on where and
how the observer is moving. In other words, the background
space-time and the type of motion within it determine the
local metric, whose general expression can be found in Ref.
23. Here, since we are concerned with GWs effects, for the
sake of simplicity we consider an observer freely falling in
the field of a plane gravitational wave: hence, Fermi coordi-
nates are a geodesic coordinate system based on non-rotating
frame along the observer’s world-line (the reference world-
line).32,33 If we set Fermi coordinates Xa ¼ ðcT;X; Y; ZÞ
¼ ðcT;XÞ, the metric can be expressed in a power series in
X from the reference world-line, in the form31,34

ds2¼� 1þR0i0jX
iXj

� �
c2dT2�4

3
R0jikXjXkcdTdXi

þ dij�
1

3
RikjlX

kXl

� �
dXidXj: (18)

The above expression is valid up to quadratic displacements
jXij from the reference world-line. Notice that Rabcd
¼ RabcdðTÞ is the Riemann curvature tensor evaluated along
the reference geodesic, where X ¼ 0, and it depends on T
only, which is the observer’s proper time.

As discussed in Ref. 26, neglecting the terms gij related to
the spatial curvature, the space-time element (18) can be
recast in terms of the gravito-electromagntic potentials
ðU;AÞ

ds2 ¼ � 1� 2
U
c2

� �
c2dT2 � 4

c
ðA � dXÞdtþ dijdXidXj;

(19)

where the gravitoelectric potential U ¼ UðT;XÞ is

UðT;XÞ ¼ � c2

2
R0i0jðTÞXiXj; (20)

and the components of the gravitomagnetic potential A
¼ AðT;XÞ turn out to be

AiðT;XÞ ¼
c2

3
R0jikðTÞXjXk: (21)

In close analogy to electromagnetism, the gravitoelectric and
gravitomagnetic fields E and B are defined in terms of the
potentials by
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E ¼ �rU� 1

c

@

@T

1

2
A

� �
; B ¼ r� A: (22)

Using the definitions (20) and (21), we obtain (up to linear
order in jXij) the following components:

EiðT;XÞ ¼ c2R0i0jðTÞXj; (23)

and

BiðT;RÞ ¼ �
c2

2
�ijkRjk

0lðTÞXl: (24)

The electromagnetic analogy is useful to describe the
motion of free test particles: namely, the geodesic equation
of the space-time metric (19) can be written in the form of a
Lorentz-like force equation26

m
d2X

dT2
¼ qEEþ qB

V

c
� B; (25)

up to linear order in the particle velocity V ¼ dX=dT, which
is actually a relative velocity.

In the Lorentz-like force equation, qE ¼ �m is the gravi-
toelectric charge, and qB ¼ �2m is the gravitomagnetic one.
(The minus sign takes into account the fact that the gravita-
tional force is always attractive.) We notice that the ratio
qB=qE ¼ 2, since linearized gravity is a spin-2 field.

As a consequence, the Lorentz-like force equation
becomes

m
d2X

dT2
¼ �mE� 2m

V

c
� B: (26)

This equation is the key point of this paper; let us briefly
comment on its meaning and implication on the study of
GWs. According to our approach, we may say that, in his
reference frame, the observer studies the evolution of a test
mass using Eq. (26); in other words, the latter equation
describes how the mass coordinates X, Y, Z (which, by con-
struction, measure proper distances away from the reference
world-line) change due to the action of the gravitational
field.

It is important to emphasise that the effects expressed by
the gravitoelectromagnetic fields E and B have a tidal char-
acter, since both fields (23) and (24) depend on the location
of the mass, relative to the observer which is at the origin of
the frame. Accordingly, the action of the GWs is simply
described in the Fermi frame in terms of Newtonian
gravitoelectromagnetic forces; of course, if other forces are
present (such as mechanical or electromagnetic ones) they
should be added to the equation of motion.

The gravitoelectromagnetic fields E and B, according to
their expressions (23) and (24), vanish along the reference
world-line, where X ¼ 0; then, the Lorentz-like force equa-
tion (26) suggests that test masses are freely moving. This is
nothing but a rephrasing of the equivalence principle: in
local freely falling frames the physics of special relativity
holds true.

In Sec. IV, we are going to show how, using the Lorentz-
like equation (26) it is possible to describe the interaction of
the wave with a detector. To be more specific, in the
Riemann curvature tensor needed to the define the gravitoe-
lectromagnetic fields, we will neglect the contributions due

to local gravitational fields (such as the one of the Earth) and
we will consider only the contribution of the wave.

IV. GRAVITOELECTROMAGNETIC EFFECTS IN

THE FERMI FRAME

According to what we have seen before, in order to study
the interaction of GWs with test masses, we can use the
Lorentz-like force equation (26): to this end, we need the
explicit expressions of the gravitoelectromagnetic fields
appearing therein. We remember that these fields are defined
in terms of the Riemann tensor

EiðT;XÞ ¼ c2R0i0jðTÞXj;

BiðT;RÞ ¼ �
c2

2
�ijkRjk

0lðTÞXl:
(27)

To calculate these fields, in principle, we need the expres-
sion of the Riemann tensor in Fermi coordinates. However,
in the weak field approximation—that is to say up to linear
order in hl�—the Riemann tensor is invariant with respect to
coordinate transformations, hence it has the same expression
in terms of the new coordinates. As a consequence, we can
use the TT values for the perturbations hl� given in Eq. (8)
and express them in Fermi coordinates. Also, dealing with
GWs, in what follows we suppose that the extension of the
reference frame is much smaller than the wavelength, so that
we may neglect the spatial variation of the wave field: conse-
quently, the components of the Riemann tensor are evaluated
at the origin of our frame, where X ¼ 0. If this condition is
not fulfilled, it is necessary to use the expression of the
Fermi coordinates valid at higher order in the distance from
the reference world-line (see, e.g., Ref. 33) and, as a conse-
quence, additional terms will be present.

Using Eqs. (8) and (17), the components of the gravito-
electric field (23) are

EX¼0; EY¼�
x2

2
Aþsin xTð ÞYþA�cos xTð ÞZ½ �;

EZ¼�
x2

2
A�cos xTð ÞY�Aþ sin xTð ÞZ½ �;

(28)

while those of the gravitomagnetic field (24) turn out to be

BX ¼ 0; BY ¼ �
x2

2
�A� cos xTð ÞY þ Aþ sin xTð ÞZ½ �;

BZ ¼ �
x2

2
Aþ sin xTð ÞY þ A� cos xTð ÞZ½ �: ð29Þ

Notice that both fields are perpendicular to the propagation
direction: gravitational waves, like electromagnetic ones, are
transverse. Taking into account the expressions (28) and (29), it
is easy to check that E � B ¼ 0: in other words, the two fields

are orthogonal everywhere; moreover, we obtain also that jEj2

�jBj2 ¼ 0: they have the same magnitude. Notice also that
EðA�Þ ¼ BðAþÞ and EðAþÞ ¼ �BðA�Þ.

In Figs. 1 and 2, the components of the gravitoelectric and
gravitomagnetic fields are plotted at fixed T: it is manifest
that, for both fields, the A� components are obtained from
the Aþ with a rotation of p=4. In Fig. 3, we see that, at fixed
time, the Aþ components of the fields are orthogonal at any
spatial location; the same is true for the A� components.
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Now, using the gravitoelectromagnetic approach, we want
to study the interaction of the wave with a detector. To begin
with, it is important to understand, in this context, the mean-
ing of detector. One of the first extensive analyses of gravita-
tional waves detectors can be found in the paper by Press
and Thorne;35 here a GW is described as “field of (relative)
gravitational forces propagating with the speed of light.”
This definition nicely fits our approach, where it gets a true
operational meaning: in fact using Fermi coordinates relative
to a given observer, physical quantities, such as displace-
ments, are relative to the reference world-line. In particular,
the gravitoelectric and gravitomagnetic fields are position
dependent and act differently on test masses located at differ-
ent positions, thus producing tidal effects. In summary, the
passage of GWs provokes a space-time deformation which
can be described in terms of tidal forces due to the gravitoe-
lectromagnetic fields.

That being said, a detector or gravitational antenna is a
physical system made of test masses, on which the wave acts
producing displacements and motion relative to the reference
world-line. Starting from the explicit expressions of the

gravitoelectromagnetic fields (28) and (29), we are now in a
position to use the Lorentz-like force equation (26) to
describe the effect of GWs on gravitational antennas. Before
doing that, it is important to point out the limits of our
approximation: we work at first order in the wave amplitude,
so we have to deal with equations in a self-consistent way. If
we suppose that V0 is the velocity of a test mass before the
passage of the wave, the wave produces a change
VðTÞ ¼ V0 þ dVðTÞ, where the variation dVðTÞ is of the
order of the wave amplitude A: dVðTÞ ¼ OðAÞ. As a conse-
quence, in the linear approximation in the equation of motion
(26), we can neglect the contribution of the gravitomagnetic
field if the test masses are at rest before the passage of the
wave; things are different if we consider masses in motion
before the passage of the wave.

The simplest GW-antenna is made of two free masses that
are at rest before the passage of the wave; in particular, we
suppose that one of them is at the origin, so we are interested
in the motion of the other mass. Accordingly, the test mass is
acted upon by the gravitoelectric field only, and its equation
of motion is

Fig. 1. The gravitoelectric field E: on the left, we suppose that the GW has just the Aþ polarization; on the right, we suppose that the GW has just the A� polar-

ization. Notice that the two polarizations differ by a rotation of p=4.

Fig. 2. The gravitomagnetic field B: on the left, we suppose that the GW has just the Aþ polarization; on the right, we suppose that the GW has just the A�

polarization. Notice that the two polarizations differ by a rotation of p=4.
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d2X

dT2
¼ �E: (30)

Let us suppose that the polarization of the wave is such that
A� ¼ 0 (as we have seen before, the effect of the A� polari-
zation is qualitatively the same); according to Eq. (28), the
gravitoelectric field is given by

EX ¼ 0; EY ¼ �
x2

2
Aþ sin xTð ÞY½ �;

EZ ¼
x2

2
Aþ sin xTð ÞZ½ �:

(31)

Let the location of the mass before the passage of the
wave be X0 ¼ ð0; L; 0Þ, so that the physical distance between
the two masses is L. Then, the solution of Eq. (30) up to lin-
ear order in the wave amplitude is

XðTÞ ¼ 0; YðTÞ ¼ L 1� Aþ

2
sin xTð Þ

	 

; ZðTÞ ¼ 0:

(32)

The distance between the two masses changes with time. This
result is in agreement with Eq. (15), obtained using TT coordi-
nates and considering, then, the physical distance: the coordi-
nate distance in Fermi coordinates is an observable quantity.

Another kind of detector, called a heterodyne antenna,
was proposed during the 1970s by Braginskij and collabora-
tors;36,37 its functioning is based on the resonance principle.
It is interesting to see how our approach allows to simply
understand the interaction of GWs with this device, using the
equations of basic mechanics in the Fermi frame.

The antenna is made of two dumbbells crossed at an angle
of p=2, with length R. Before the passage of the wave, they
independently rotate in the plane orthogonal to the propaga-
tion direction with the same frequency x0. We suppose
that at T¼ 0 the configuration of the dumbbells is that of
Fig. 4(a), i.e., the four masses m1 ¼ m2 ¼ m3 ¼ m4 ¼ m are
along the axes Y and Z. The coordinates of the mass m1,
whose position at T¼ 0 is X0 ¼ ð0; 0;RÞ, are

X1 ¼ 0; Y1 ¼ R sin x0T; Z1 ¼ R cos x0T: (33)

We suppose that the wave is circularly polarised, so that
Aþ ¼ A� ¼ A; using the gravitoelectric field (28), the force
acting on the mass is FE

1 ¼ �mE

FE
1;X ¼ 0; FE

1;Y ¼
mx2AR

2
cos x� x0ð ÞT;

FE
1;Z ¼ �

mx2AR

2
sin x� x0ð ÞT: (34)

If x0 ¼ x=2, the above expression becomes

FE
1;X ¼ 0; FE

1;Y ¼
mx2AR

2
cos

x
2

T;

FE
1;Z ¼ �

mx2AR

2
sin

x
2

T: (35)

Hence, if the resonance condition x0 ¼ x=2 is fulfilled, the
mass m1 experiences a force of constant magnitude
jFE

1 j ¼ mx2AR=2, orthogonal to the dumbbell. A similar
approach suggests that the other mass m2 undergoes an equal
force in opposite direction. In summary, due to the action of
the wave, a constant torque s12 ¼ �mx2AR2uX (where uX is
the unit vector of the X axis) acts on the dumbbell, with the
effect of accelerating its rotation.

Applying the same approach to the other dumbbell, we see
that it is acted upon by a constant torque s34 ¼ mx2AR2uX,
with the effect of decelerating its rotation.

In summary, with this choice of the rotation frequency,
one dumbbell is accelerated and the other is decelerated, so
that the masses come closer: the angular separation h
between the two dumbbells evolves with time with the law
DðhÞðTÞ ¼ ðp=2Þ � dhðTÞ ¼ ðp=2Þ � ð1=2Þx2AT2, which is
independent of the length R.

However, our approach based on the Lorentz force equa-
tion (26) suggests that, since before the passage of the wave
the masses are in motion, there is an additional effect, due to
the action of the gravitomagnetic field on the rotating
masses. The gravitomagnetic force acting on a mass moving
with speed V is FB ¼ �2m ðV=cÞ � B. Since we are
working at linear order in the wave amplitude, we use in this
expression the velocity of the system before the passage
of the wave. Let the rotation frequency be x=2 again: from
Eq. (29), we obtain the gravitomagnetic field acting on the
mass m1

Fig. 3. (Color Online) The gravitoelectric E and gravitomagnetic field B for

a wave with Aþ polarization: notice that the two fields orthogonal

everywhere.

Fig. 4. (a) Two identical dumbbells are made by test masses m1 ¼ m2 ¼
m3 ¼ m4 ¼ m at fixed distance R, and rotated by p=2 with respect each

other. They independently rotate with frequency x0, before the passage of

the wave. (b) The gravitoelectromagnetic fields acting on the test masses,

due the passage of the wave.
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BX ¼ 0; BY ¼ �
x2AR

2
sin

x
2

T;

BZ ¼ �
x2AR

2
cos

x
2

T: (36)

This field has constant magnitude, and it is always directed
toward the center; hence, the mass m1 undergoes the force
FB

1 ¼ ðmx3AR2=2cÞuX. The other mass m2 undergoes to the
same force, so that the total force acting on the first dumbbell
is FB

12 ¼ ðmx3AR2=cÞuX. If we consider the other dumbbell,
using the same approach we see that it experiences a total
force FB

34 ¼ �ðmx3AR2=cÞuX. The first dumbbell moves in
the direction of propagation of the wave, while the other one
moves in the opposite direction: accordingly, their distance d
changes with time according to dðTÞ ¼ ðx3AR2=cÞT2.

This effect can be understood taking into account the
expression of the Poynting vector

P ¼ c

4pG
E� B; (37)

which defines the energy per unit time and unit of surface
transported by the wave along its propagation direction (see,
e.g., Ref. 26). In fact, if we consider the fields acting on the
test masses, as described in Fig. 4(b), it is easy to check that
the Poynting vector acting on the first dumbbell is directed
along the direction of propagation of the wave, while it acts
in the opposite direction on the second dumbbell. Since
Fermi coordinates have a concrete meaning and are strictly
related to measurable quantities, this result is a simple dem-
onstration of the wave transmitting linear momentum. The
effect of the wave on a rotating detector suggests another
simple argument that proves the reality of gravitational
waves in addition to famous sticky bead argument, devel-
oped by Feynman and Bondi to show that gravitational
waves can have physical effects: in particular, they suggested
that if beads sliding on sticky rock move under the effect of
the passing wave, they must transfer heat to the road by fric-
tion, which proves that gravitational waves carry energy
(see, e.g., Ref. 38).

The above examples suggest that our approach provides a
simple interpretation of the interaction between GWs and
test masses. Indeed, it is important to emphasise that current
detectors are essentially looking for gravitoelectric effects. A
proposal to exploit the gravitomagnetic effect is discussed in
Ref. 28.

V. CONCLUSIONS

Gravitational waves are today a key ingredient of multi-
messenger astronomy, which allows us to study astrophysical
sources using different channels and contributes to increas-
ing our understanding of the Universe. As a consequence, we
believe that it is important to teach the main features of grav-
itational waves science in introductory physics and astron-
omy courses, which is useful also to give students the
possibility of understanding the continuous breakthroughs in
this field. The standard approach in teaching gravitational
waves physics is usually based on TT coordinates. On one
hand, these coordinates are useful because they explain some
basic characteristics of GWs, such as their polarizations and
the fact that they are transverse to the propagation direction.
On the other hand, TT coordinates lack a physical meaning

and, in order to understand the interaction of the waves with
detectors, it is necessary to obtain observable quantities
using the standard GR approach. From a teaching perspec-
tive, we believe that a different approach, based on the use
of Fermi coordinates, would be more suitable: in fact, Fermi
coordinates are defined, by construction, as scalar invariants
and have a concrete meaning, since they are the coordinates
an observer would naturally use to make space and time
measurements in the vicinity of her/his world-line.
Moreover, Fermi coordinates enable simple understanding of
the meaning of the principle of equivalence, on which GR is
based.

We have shown that, thanks to Fermi coordinates, it is
possible to describe the effects of a plane gravitational wave
using an electromagnetic analogy: in fact, the wave field is
equivalent to the action of a gravitoelectric and a gravito-
magnetic field, that are transverse to the propagation direc-
tion and orthogonal to each other. Moreover, the action of
the wave on test masses is described in terms of tidal forces,
determined by a Lorentz-like equation. Then, it is easy to
describe how the physical distance between two test masses
changes, due to the passage of the wave: this can be under-
stood as the action of a gravitoelectric field which, because
of its tidal character, provokes different effects on masses
located at different positions. Furthermore, on the basis of
this approach, it is possible to see that there are also gravito-
magnetic effects, caused by the passage of the wave on mov-
ing test masses. Indeed, even if existing detectors, such as
LIGO and VIRGO, and future ones, such as LISA, are aimed
at detecting gravitoelectric effects, it is possible that new
types of detectors could be designed to measure also gravito-
magnetic effects.

In summary, we believe that our approach, which rests
upon the analogy with well known facts from electromag-
netic theory, could help students to better understand and
explore gravitational waves physics.
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