
Doctoral Dissertation
Doctoral Program in Computer and Control Enginering (33th cycle)

Hardware-Aware Compression
Techniques for Embedded Deep

Neural Networks

Matteo Grimaldi
* * * * * *

Supervisors
Prof. Enrico Macii, Supervisor

Prof. Andrea Calimera, Co-supervisor

Doctoral Examination Committee:
Prof. Jose Ayala, Referee, Universidad Complutense de Madrid
Prof. Anupam Chattopadhyay, Referee, Nanyang Technological University
Prof. Andrea Acquaviva, Università di Bologna
Prof. Paolo Garza, Politecnico di Torino
Prof. Eugenio Villar, Universidad de Cantabria

Politecnico di Torino
October 15, 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Matteo Grimaldi

Turin, October 15, 2021

www.creativecommons.org

Summary

The success of the Internet-of-Things (IoT) is not about the amount of data
collected but regards the ability to convert raw data to valuable information. In the
last years, data management and interpretation have been brought to a higher level
of difficulty, as the number of connected IoT devices has grown dramatically. All the
raw data collected locally by the IoT sensors need to be processed and evaluated to
extract highly informative data. This process, also known as sensemaking, consists
of complex data-analysis tasks leveraging artificial intelligence algorithms.

These strategies can predict future states just by learning from past experience,
which is represented by features processed on IoT-sensor data collections. Thanks
to the rapid advancements in deep learning theory, deep Neural Networks, in par-
ticular, machines took a closer step towards human intelligence. These solutions are
becoming ubiquitous and scalable to different levels, ranging from natural language
processing, speech recognition, computer vision, autonomous driving. Usually, the
actual solutions on this topic are deployed offline on centralized high-performance
data centers, based on cloud platforms, where the distance between the raw sensor
data and the computational hardware is critical. This solution suffers from low
scalability.

A wide consensus among the research community is assessing that the overcom-
ing of the IoT computational needs will pass through the development of near-sensor
data-analytics accelerators, able to process the collected data at the edge, without
introducing time latencies and further power consumption due to cloud comput-
ing solutions. Near-sensors data analytics is the key to sustain the IoT ecosystem
indeed. Objects that can autonomously extract and process information from the
physical world will allow the development of real-time classification solutions able
to improve the quality of service in several applications, from remote health care
and domotics to smart transportation, smart manufacturing, and smart power de-
livery. However, deep learning algorithms are extremely complex: the processing
requires huge power consumption due to considerable storage, memory bandwidth,
and high demand for computational resources. The challenge comes here: make
deep learning algorithms fit low-power end-nodes of the IoT.

This dissertation aims to investigate hardware-aware compression techniques to
facilitate the process of embedding deep learning solutions on resource-constrained

iii

architectures. The goal is to reduce the energy required to run such large deep neu-
ral networks on resource-limited devices. More specifically, the main objective of our
research is to find the perfect trade-off between the complexity of the deep learning
model and the resources available on-chip, without performance degradation during
prediction. This is accomplished through the development of novel software-level
optimizations able to address these compelling technological demands.

Various compression techniques have been explored in the last decade to bridge
this gap: pruning to remove redundant parameters, quantization to reduce their
numerical precision, encoding algorithm with sparse-matrix computation to exploit
the approximated parameters, are a subset of them. Several strategies tried to
merge these and other compression methods to optimize such deep learning algo-
rithms in terms of storage, memory, latency, and power; however, yet prioritizing
one aspect to respect others. Moreover, these techniques were often designed with-
out a proper consciousness of the hardware, limiting the compression effectiveness
to a theoretical aspect.

With such a premise, this dissertation is organized into three main parts, each
of them focusing on a different objective. The first part focuses on statistically
oriented compression of neural networks, with particular concerning on new strate-
gies to exploit the natural over-parametrization of these models. It first illustrates
a constrained training to enable an effective approximation of the distribution of
weights, with a proper encoding scheme it reaches high compression rates. Then, it
presents a novel hybrid methodology capable to discriminate between model layers
in terms of significance, with the aim to boost the final compression achievements.
In the second part, the focus shifts on the hardware awareness of the compression
strategies, a crucial feature to meet the real constraints of the deployment. The
dissertation first analyzes the optimality of memory-bounded convolutional neural
networks, through a smart heuristic able to explore the memory vs. accuracy so-
lution space. Then, it presents a new technique able to empower the processing
of n-ary precision networks on general-purpose microcontroller units. At last, it
illustrates an adaptive sparse training designed to maximize the compression of
storage-bounded networks. In the third part, the scalability of the deep learning
models is addressed with innovative solutions to explore the latency vs. accuracy
space. In particular, it presents a novel training and compression pipeline for build-
ing nested sparse networks: a set of sub-networks enclosed in a unique model able
to run-time scale configuration points, during the inference stage.

The techniques proposed in this thesis provide some useful insights into the edge-
driven compression of neural networks. For each of these three topics, results show
that the aforementioned demand to balance the trade-off between model complexity
and available resource can be effectively addressed. We hope that this work may
contribute, with other research in this field, to open up more space and help to
make artificial intelligence accessible to everyone, improving the quality of life of
our next future.

iv

Acknowledgements

Finally, this is the end. Despite all the difficulties, I will always remember these
four years of Ph.D., as some of the best in my life. For this, I would like to express
my deepest gratitude to the following people.

I would like to thank Prof. Enrico Macii, for giving me the opportunity to join
the EDA research group undertaking this Ph.D. journey.

I would like to express my most sincere gratitude to Prof. Andrea Calimera, who
has been a true mentor, passionate teacher, inspirational leader, valued colleague,
and professional role model throughout my time at Politecnico di Torino. This
dissertation would not have been possible without Andrea’s constant stream of
ideas, encyclopedic knowledge of technical minutia, and patient yet unwavering
support.

A big thanks also to all the members of the EDA group, for welcoming me
into this big family. Especially to the Lab-4 mates, for being supportive and often
helpful in my research, and even more for just being great friends. I will always
treasure the moments spent together, be it in the lab or out for dinner.

To my parents, for their unconditional and endless love. To my entire family,
whose I am very proud of belonging to. Without them, I would not be the same
person.

vi

Our treasure lies in the beehive of our
knowledge. We are perpetually on the
way thither, being by nature winged
insects and honey gatherers of the mind.

Friedrich Nietzsche, 1887

Contents

List of Tables x

List of Figures xiii

1 Deep Learning at the Edge 1
1.1 Need for Model Compression . 2
1.2 How to Compress a ConvNet . 6
1.3 Objectives and Contributions . 8

2 Background: Overview of ConvNet Compression Techniques 11
2.1 Generic Notation . 11

2.1.1 Training . 12
2.2 Pruning . 13

2.2.1 Basic Terminology . 14
2.2.2 What to Prune . 15
2.2.3 When to Prune . 18
2.2.4 How to Prune . 22

2.3 Quantization . 27
2.3.1 Quantized Inference . 29
2.3.2 Quantize for the Edge . 32

2.4 Encoding . 34
2.4.1 Sparse-Specific . 34
2.4.2 Type-Agnostic . 36
2.4.3 Inference of Encoded ConvNets 37

3 Statistical-Oriented Training and Compression 41
3.1 Motivation . 41
3.2 A Compression-Driven Training Framework 43

3.2.1 Training ConvNets in a Constrained Space 43
3.2.2 Experimental Results . 49
3.2.3 Conclusions . 51

3.3 Boosting Compression via Layer-Wise Strategy 53

viii

3.3.1 A Greedy Approach for Compressive Training 53
3.3.2 Experimental Results . 58
3.3.3 Conclusions . 64

4 Hardware-Driven Training and Compression 65
4.1 Motivation . 65
4.2 Optimality Assessment of Memory-Bounded ConvNets 70

4.2.1 PaQ: Prune and Quantize 70
4.2.2 Experimental Results . 74
4.2.3 Across the Memory-Accuracy Space 78
4.2.4 Conclusions . 85

4.3 Arbitrary Bit-width ConvNets on IoT MCUs 86
4.3.1 Memory-Aware Compression 88
4.3.2 Experimental Results . 90
4.3.3 Conclusions . 95

4.4 EAST: Encoding-Aware Sparse Training 96
4.4.1 Storage-Aware Compression 96
4.4.2 Experimental Results . 99
4.4.3 Conclusions . 102

5 Latency-Quality Scalable ConvNets 103
5.1 Scalable ConvNets and Their Knobs 103

5.1.1 Static Scalability . 103
5.1.2 Dynamic Scalability . 104

5.2 Motivation . 105
5.3 Run-time Scalable ConvNets via Nested Sparsity 107

5.3.1 Building Nested Sparse ConvNets 107
5.3.2 Experimental Results . 111
5.3.3 Conclusions . 119

6 Conclusions and Future Directions 121

List of Publications 125

Bibliography 126

ix

List of Tables

1.1 Main features of the Cortex-M IoT MCUs by ARM [1] 6
3.1 Results on CIFAR10. 50
3.2 Results on CIFAR100. 50
3.3 Results for custom RNN trained on IMDb. 51
3.4 Experimental results on CIFAR10. For each ConvNet model, the

accuracy loss is referred to the baseline accuracy and it is reported
in parentheses. The compression rate is abbreviated to CR. 60

3.5 Experimental results on CIFAR100. For each ConvNet model, the
accuracy loss is referred to the baseline accuracy and it is reported
in parentheses. The compression rate is abbreviated to CR. 60

3.6 Analysis of the sparsity and bit-width variation across the layers,
before and after the compressive greedy training. On the left, the full
precision model (FP), on the right the compressed model (CM), both
referring to ResNet20 ConvNet trained on CIFAR10 dataset. The
input shapes of the layers are (n, cin, kh, kw), and (n, cin) respectively
for convolutional (Conv) and fully-connected layers (Fc). The height
and the width of the kernels are defined as kh and kw, the number
of input channels as cin, and the batch-size as n. 61

3.7 Analysis of the sparsity and bit-width variation across the layers,
before and after the compressive greedy training. On the left, the full
precision model (FP), on the right the compressed model (CM), both
referring to AlexNet ConvNet trained on CIFAR100 dataset. The
input shapes of the layers are (n, cin, kh, kw), and (n, cin) respectively
for convolutional (Conv) and fully-connected layers (Fc). The height
and the width of the kernels are defined as kh and kw, the number
of input channels as cin, and the batch-size as n. 62

3.8 State-of-the-art comparison of our technique with TTN work [237]
with CIFAR10 dataset. For each ConvNet model, the accuracy loss
is referred to the baseline accuracy and it is reported in parentheses.
The compression rate is abbreviated to CR, and it is reported just
for our solution. For each comparison, we report in bold the solution
with higher accuracy. 63

x

3.9 State-of-the-art comparison of our technique with TTN work [237]
with Imagenet dataset. For each ConvNet model, the accuracy loss
is referred to the baseline accuracy and it is reported in parentheses.
The compression rate is abbreviated to CR, and it is reported just
for our solution. For each comparison, we report in bold the solution
with higher accuracy. 63

4.1 Table of abbreviations. 75
4.2 Overview of the benchmark. Each model is composed by three

types of layers: Convolutional (Conv) of shape (cout, kh, kw), max-
pooling (MaxPool) of shape (kh, kw), and fully-connected (FC) of
shape (cout). The height and the width of the kernels are defined as
kh and kw, while the number of output channels is defined as cout. . 76

4.3 List of the development boards adopted to assess the compressed
ConvNets. 76

4.4 Optimal vs. hardware-compliant solutions under different memory
targetsMt. From left to right there are three main groups of columns:
Pareto, PaQ-8, and PaQ-16. The first details the Pareto points
P, the second details the hardware-compliant solutions provided by
PaQ flow using 8-bit, and the third details the hardware-compliant
solutions provided by PaQ flow using 16-bit. All these solutions are
the same shown in the plots of Fig. 4.4. For the hardware-compliant
solutions (PaQ-8, and PaQ-16) we reported also their accuracy
distance (lower is better) to the optimal points in the column ∆. So-
lutions with too high accuracy losses (≪50%) have not been reported. 81

4.5 Training time needed (expressed as the number of epochs) to reach
the baseline accuracy for each task. 85

4.6 Summary of the ConvNets used to validate VQ. Each model is com-
posed by three types of layers: Convolutional (Conv) of shape (cout, kh, kw),
max-pooling (MaxPool) of shape (kh, kw), and fully-connected (FC)
of shape (cout). The height and the width of the kernels are defined
as kh and kw, while the number of output channels is defined as cout. 90

4.7 VQ performance obtained on the three benchmarks under analysis. 92
4.8 Top-1 accuracy on CIFAR-10 and weight memory of the dense ResNet-

9 after 32-bit floating-point training (FP32), after quantization (Q8),
and after LZ4 compression (Q8+LZ4). 99

4.9 Comparison between state-of-the-art weight pruning (WP) and EAST
in terms of Top-1 Accuracy (A) and Sparsity (S). The first column
Mt indicates the set of FLASH memory constraints used to compress
the ConvNets from the original dense version. The value of the final
compression rate (CR) needed to meet the target is reported in the
second column. 100

xi

5.1 MobileNetV1 - CIFAR-10. Best results for each sparsity level are
highlighted in bold. 114

5.2 ResNet9 - CIFAR-100. Best results for each sparsity level are high-
lighted in bold. 115

5.3 Storage footprint of ResNet9 trained on Cifar100 and MobileNetV1
trained on CIFAR10. 118

5.4 SSD-MobileNetV2. Best results for each sparsity level are high-
lighted in bold. 119

xii

List of Figures

1.1 Topology of the VGG-16 ConvNet model [180]. 3
1.2 Comparison of model size versus number of operations versus top-1

classification accuracy (bubble size) for several known ConvNets on
Imagenet benchmark [110]. Inspired by the work in [13]. 5

1.3 Tools and constraints in deep learning compression. 6
1.4 An Illustrated overview of the dissertation outline. 9
2.1 A generic MLP, before (a) and after pruning (b). 13
2.2 The figures show how pruning influences the distribution of the

weights, before (on the left side) and after (on the right) its ap-
plication. The example refers to a magnitude-based pruning to the
last convolutional layer of MobileNet_v2 architecture trained on Im-
agenet (with 320 input channels and 960 output channels). The 80%
of the weights of the layer are pruned. On the right side, the figure
the y-axis has been limited for the sake of comprehension, in order to
avoid the huge peak representation in 0 (histogram value = 245760). 15

2.3 Most popular levels of pruning granularity, represented in an example
layer of shape R4×2×3×3. The structured levels are a and b, while the
unstructured levels are c, d, e, f. The pruned parameters are colored
in red. 16

2.4 The polynomial decay sparsity scheduler. The results are shown
for 4 different sparsity levels sf ∈ {60%, 70%, 80%, 90%}, with same
scheduler setting: t0=5e3, si=30%, p=3. Each dot marker represents
a pruning step, the frequency was fixed at 1000. The light-grey area
(on the left) represents the dense pre-training stage, while the dark-
gray area (on the right) indicates the mask freeze stage where the
sparsity stops to increase. 21

2.5 Before (left) and after (right) weight quantization. The example
refers to the last convolutional layer of MobileNet_v2 architecture
trained on Imagenet (with 320 input channels and 960 output chan-
nels). 27

2.6 Quantized inference (uint8). 30
2.7 Quantization-aware training . 31

xiii

2.8 Types of sparse encoding. From top to bottom: BitMap 2.4.1,
COO 2.4.1, CSR and CSC 2.4.1. 35

3.1 The proposed training flow. 43
3.2 The distribution of the second layer weights of AlexNet trained on

CIFAR10: after preliminary training (left), after pruning (center),
after σ-ternarization (right). 45

3.3 Visual representation of the solution space. 46
3.4 Weights matrix encoding: (a) pruned matrix, (b) encoding scheme,

(c) actual memory mapping. 48
3.5 Pictorial representation of LSTM network structure used on IMDb

dataset. 51
3.6 The proposed net compression pipeline. 54
3.7 AlexNet on Imagenet, layers after the sorting algorithm; the sparsity

value S is reported for each layer. 56
3.8 Accuracy evolution during the training of VGG-19 architecture on

CIFAR10 dataset. The plot shows all the details of the optimization
loop. The blue line is the accuracy after each training epoch (Step4),
which is the accuracy of the compressed model (one value for each
training epoch). The red dotted line depicts the accuracy evolution
inside a full training step (Step3 + Step4) to highlight how the model
is able to rapidly recover the accuracy loss after each compression
step, using just one epoch of retraining. 58

4.1 Cortex-M family: Active power and on-chip RAM size. 66
4.2 Sparsity vs. Accuracy of a compressed 9-layer ResNet under different

memory constraints (the labeled numbers). The net is trained on
CIFAR-10, then compressed via weight pruning and encoding. The
blue dash-dotted line marks the accuracy of the original dense version
(140kB). 68

4.3 Framework overview. 71

xiv

4.4 Solutions provided by PaQ flow showed in the memory-accuracy
space for the three tasks under analysis (a) IC, (b) KWS, (c) FER.
The green cross marker (Px) shows the solution with higher accuracy,
while the hatched area enclosed by the white dotted curve highlights
the plateau region (T), where the solutions have the accuracy loss
L ≤ 0.5 w.r.t Px. The yellow line (Q) indicates the solutions ob-
tained applying only b-quantization. The red dash-dotted lines define
the hardware-compliant solutions generated by PaQ, respectively us-
ing 8- (PaQ-8) and 16-bit PaQ-16; these are the implementations
deployed on the physical device. The green dotted line connects the
Pareto points (P) in the memory-accuracy space, i.e. all the solu-
tions that have superior accuracy w.r.t. all the other points with
the same target memory Mt. At last, all the absolute coordinates of
the Pareto points and of Px are collected on the right-side box, for
each solution reporting (target memory, bit-width, top-1 accuracy).
The right box collects the absolute coordinate of Px and each Pareto
point in the format (target memory, bit-width, top-1 accuracy). . . 80

4.5 Memory footprint vs. Top-1 accuracy for KWS. 83
4.6 Average inference time per sample of PaQ-8 solutions on KWS. . . 84
4.7 A pictorial representation of the comparison between the standard

n-ary Quantization (left) and our proposed method, Virtual Quan-
tization (right). The different depths of colors refer to the bit-width. 86

4.8 The Virtual Quantization flow. 87
4.9 Top-1 accuracy loss in the three different applications (lower is bet-

ter). The baseline accuracies are the same reported in Table 4.7. . . 93
4.10 Weight pruning (a) vs. block pruning (b). Colored weights denotes

zero-values. 97
4.11 Comparison between the speeds of EAST and weight-pruning to

meet the target. The line plot shows the Memory trend accord-
ing to the training epochs for weight pruning (blue line) and EAST
(red line). The memory target is fixed at Mt = 32kB (dashed line).
Each black dot marker indicates one increment of the block size. . . 101

5.1 Training step: full weight-set (θ) and the sub-nets (θsi) sorted with
an increasing order of sparsity from left to right (i.e s1 < s2 < s3). 108

5.2 Example of the proposed storage format NestedCSR applied to a
1 × 2 block sparse matrix that can work in three sparsity levels
S = {s1, s2, s3}. 110

5.3 Latency values normalized for each width to the NestedCSR@s=70%.
The latency of the dense model at w=1.00 is not shown as it exceeds
the FLASH memory of the adopted device (2MB). 116

xv

5.4 Latency-accuracy scaling for Slimmable ConvNets and Nested Sparse
ConvNets. Grey area shows the unfeasible solution space for the
adopted MCU, i.e., FLASH footprint > 2MB. 117

xvi

Chapter 1

Deep Learning at the Edge

The Internet of Things (IoT) is one of the most prominent trends in technology
to have emerged in recent years. Its success is not about the amount of data
collected, but it regards the ability to automatically convert raw data to

valuable information. In the last years, data management and interpretation have
been brought to a higher level of difficulty, as the number of connected IoT devices
has grown dramatically. All the raw data collected locally by the IoT sensors
need to be processed and evaluated, to finally extract highly informative data.
This process, also known as sensemaking, consists of complex data-analysis tasks
leveraging machine learning (ML) algorithms.

These approaches are able to predict future states just by learning from past
experience, which is represented by the features processed on IoT-sensor data col-
lections. In particular, one branch of ML algorithms has been exploring deeply for
these applications: this is Deep Learning (DL) and its most popular algorithms are
Neural Networks (NNs). These techniques are becoming ubiquitous and scalable
to different levels, ranging from natural language processing, speech recognition,
computer vision, autonomous driving. The sensemaking process is commonly im-
plemented as a cloud service, where the DL solutions are deployed offline on cen-
tralized high-performance data centers, based on cloud platforms. However, the
distance between the raw sensor data and the computational hardware is critical,
making these solutions suffer from low scalability.

A wide consensus among the research community is assessing that the overcom-
ing of the IoT computational needs will pass through the development of near-sensor
data-analytics accelerators, able to process the collected data at the edge. Objects
able to autonomously extract and process information from the physical world
will allow the development of real-time classification solutions able to improve the
quality of service in several applications, from remote health-care and domotics to
smart transportation, smart manufacturing, and smart power delivery. The edge
DL paradigm is the key enabling technology to improve the scalability of the IoT

1

Deep Learning at the Edge

ecosystem, as it ensures real-time responses, lower energy consumption, and higher
data privacy.

The cloud-to-edge shift is not free-lunch, however. Off-the-shelf NNs are incred-
ibly complex: the processing requires huge power consumption due to considerable
storage, memory bandwidth, and high demand for computational resources. Edge
DL implies processing these complex algorithms in a mW power envelope using
tiny processor cores with limited computational resources and low storage capacity.
This sets a clear limit to the complexity of Neural Networks that can be hosted.
Here the main challenge comes: make DL algorithms fit low-power architectures
for the IoT edge.

This dissertation proposes novel compression techniques for embedded deep
neural networks to run on the edge of the IoT domain. The goal is to reduce
the energy required to run such large deep neural networks on resource-limited
devices. The techniques explored in the following chapters are focused on the
software level optimization of such networks, with the aim to enable their edge
migration improving the energy vs. quality trade-off.

In the rest of this chapter, we first overview the complexity and computational
load of NNs and then analyze the most popular techniques to bring these solutions
to the edge.

1.1 Need for Model Compression
Recent forecasts on internet traffic provided by Cisco annual report [39] suggest

that by 2023 the number of connected devices will be 28.3 billion, which is more
than three times the global population. The same number was 18.4 billion just in
2018. Undoubtedly, such speed of a huge amount of data represents a volume that
communication and storage infrastructures will not be able to afford. Due to the
pervasiveness of smart systems in our everyday life, performing complex machine
learning tasks on remote cloud workstations will soon become unsustainable. With
such a premise, it is clear that smart digital devices need to be equipped with
embedded machine learning capabilities. Unfortunately, this hardware migration
represents one of the biggest challenges for the design automation community.

From the hardware perspective, the most popular solutions for the edge inference
of NNs can be grouped into three categories: (i) custom accelerators based on
application-specific designs (ASICs), (ii) general-purpose embedded CPUs, and (iii)
ultra-low-power microcontroller units (MCUs). These are different solutions for
edge deep learning, each one may be more suitable for a different use case; in
fact, there is not an optimal and generic solution for all the scenarios. Custom
ASICs guarantee performance stability and power efficiency, but off-the-shelf NNs
are static models not able to fully take advantage of the ASIC reconfigurability.
Embedded CPUs, usually involved for mobile devices, offer higher flexibility than

2

1.1 – Need for Model Compression

custom hardware but are not very suitable for low-cost IoT applications. At last,
MCUs are the most low-power solution for edge deep learning, which usually require
just a few mWs power to run. They are very appealing for the IoT scalability, but
the migration of NNs on them is challenging both for limited resources and for the
limited instruction set, as highlighted in the following chapters.

Automatic classification is one of the most relevant activities in the field of ma-
chine learning. In a nutshell, a classification problem arises when an object needs to
be assigned to a class based on the values assumed by some of its attributes. As far
as structured data are concerned, statistical and mathematical models like Support
Vector Machines [82], and Classification and Regression Tress [11] are preferred
due to their lightweight computational requirements and undoubted effectiveness.
However, with the increasing need of analyzing huge amounts of unstructured data,
e.g., pictures with ambiguities like road signs for autonomous vehicles or noisy
audio signals for track isolation, Convolutional Neural Networks (ConvNets) have
become the DL swiss-knife for accomplishing complex classification tasks.

6464

22
4

224

conv1

64 64

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512

14

conv5

1

40
96

fc6
1

40
96

fc7

1

fc8+softmax

K

Figure 1.1: Topology of the VGG-16 ConvNet model [180].

A ConvNet is an artificial system that recreates the mechanisms regulating the
primary visual cortex of the human brain [105]. Three are the most important in-
struments: (i) local connections guarantee a specific neuron’s connectivity to belong
to a limited region of the analyzed image; (ii) layering represents the possibility
of abstracting more and more complex information like the depth of the network
structure grows; and (iii) spatial invariance allows to detect objects with differ-
ent shapes, colors, and positions. Figure 1.1 depicts a typical ConvNet structure.
Two main logical regions can be identified: a feature extraction region composed of
an input layer and several hidden layers (either convolutional, pooling, or dropout
layers) that handle n-dimensional input images computations, and a classification
region (fully connected, softmax, or dense layers) that is in charge of producing the
final answer to the classification problem.

3

Deep Learning at the Edge

Although each layer has unique functionality, they all perform the same mathe-
matical transformation between an input signal, expressed with a tensor x⃗, towards
an output tensor ϕ⃗. Indeed, each neuron represents a matrix-vector multiplication
function as the one reported in Equation 1.1, being θ the matrix of the weights, b⃗
an adjusting offset parameter (bias), and f(·) an activation function.

ϕ⃗ = f(θx⃗+ b⃗) (1.1)

Both θ and b⃗ are learnable parameters. During the training phase, they are con-
stantly tuned to adhere to the n-dimensional shape of input functions in order to
converge to a feasible and reliable solution to the classification problem. A typical
ConvNet is composed of several cascading layers, each of which has thousands, or
even millions, of different weights. For instance, the VGG-16 architecture (Fig-
ure 1.1) that won the 2014 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [110] is composed of 19 layers containing a total amount of 140 million
weights. Most computational intensive layers are the convolutional (average of 2
million parameters) and fully connected ones (average of 41 million weights).

The approach for ConvNets design is radically changed during deep learning
evolution. Indeed, in the first period of deep learning the ConvNets were designed
just from an accuracy-driven perspective: the authors used to increase the number
of parameters and relative operations of the models. This old-family of ConvNets
was proposed without any consideration about the computation efficiency, but only
with the aim to increase the prediction capabilities. Then, in the second period,
the authors started to take into consideration also the ConvNets portability in
environments with limited resources, hence exploring new design approaches able
to care about the practical trade-off between accuracy and complexity. The main
knobs involved to tune the design process were two: the depth and the width.
The former scales the number of ConvNet layers, the latter modules the number of
channels (or filters) of each convolutional layer. The depth was firstly introduced
by VGG networks [180], while the width was introduced with Mobile Networks [85].

Figure 1.2 reports a visual comparison between most popular ConvNets trained
on ImageNet [110]. Looking at the picture, two are the main observations that
can be drawn. First, the bubble plot in Figure 1.2 clearly shows that most of the
standard ConvNets have more than 10M parameters with more than 1K opera-
tions. This assays that moving off-the-shelf ConvNets to the hardware level is a
challenging task. Accurate ConvNets on complex tasks require a huge amount of
computational firepower, as well as very large memory banks that usually repre-
sent serious bottlenecks in terms of speed and energy efficiency. For example, as
reported in [13], the VGG-16 model requires about 12W and 800MB of memory
on an NVIDIA Jetson TX1 board. The same ConvNet cannot be deployed on
tinier hardware devices, like the ones powered by MCUs of the Cortex-M family

4

1.1 – Need for Model Compression

102 103 104

Operations [M-ops]

50

55

60

65

70

75

80

85

To
p-

1
Ac

cu
ra

cy
 [%

]

Nan 1M 10M 50M 100M

AlexNet
BN-AlexNet

ResNet-152

ResNet-101ResNet-50

ResNet-18
GoogleNet

Inception V3

Inception V4

BN-NIN

ENet

1.0 MBv1-224
1.0 MBv1-192

1.0 MBv1-160

1.0 MBv1-128

0.75 MBv1-224

0.5 MBv1-224

0.25 MBv1-224

DN-BC-121

DN-BC-264

MSD-A

MSD-B

MSD-C
MSD-D

VGG-16
1.0 MBv2-224

1.4 MBv2-224

Figure 1.2: Comparison of model size versus number of operations versus top-1 clas-
sification accuracy (bubble size) for several known ConvNets on Imagenet bench-
mark [110]. Inspired by the work in [13].

by ARM1. As reported in Table 1.1, they are equipped with few kBs of on-chip
(ranging from 4 to 512 kBs, depending on the chip-set), which is insufficient to run
most of the architectures reported in Figure 1.2.

Second, a bigger ConvNet does not always mean a better ConvNet. Artificial
neural networks in general are systems trained on examples. Their effectiveness is
not only affected by the quality of the adopted training set but also by the gener-
alization capabilities that a model is capable to carry out. Indeed, from a quality-
of-result perspective, the main concern is how well a ConvNet generalizes patterns
outside of the training set. Having more parameters does not always guarantee
an improved classification accuracy, as Figure 1.2 reports. Overfitting and local
minima represent two critical conditions usually determined by over-parameterized
networks, thus preventing fruitful exploitation of ConvNets capabilities. Therefore,
a perfect generalization system would be the one with the smallest size that best
fits the shape of the data. Needless to say, selecting the optimal ConvNet size is

1https://os.mbed.com/platforms/

5

Deep Learning at the Edge

Cortex-M Power RAM Floating Integer SIMD Unit
(µW/MHz) (KB) (32b) (16b,8b) (#lane)

M0 5.3 4-32 No Yes No
M3 11.0 32-128 No Yes No
M4 12.3 128-256 No/Optional Yes 2
M7 33.0 256-512 No/Optional Yes 2

Table 1.1: Main features of the Cortex-M IoT MCUs by ARM [1]

not an obvious task. A clear example of this phenomenon is the comparison be-
tween VGG16 and MobileNet_v1 architectures. VGG16 belong to the old-family
of ConvNets, which are strongly overparametrized with a high number of channels
per layer, while MobileNet_v2 is a more recent architecture belonging to the new-
family of models designed to better fit resource-constrained environments, with high
depth and small width. Despite VGG16 is 37.7× bigger than MobileNet (88MB vs.
14MB), they both reach 71.3% of accuracy on the same task.

Both the observations are critical aspects of current research on efficient deep
learning. Both can be mitigated by optimization and compression of the ConvNets
structures. The rationale is that many parameters in the network structure are re-
dundant, thereby inducing noise inside the model, as well as an increased algorithm
complexity with higher memory requirements. Very deep structures are usually
preferred to have a general and robust model less sensitive to initial conditions.
However, too many irrelevant parameters are harmful to prediction performance
and resource usage. This motivates the need of effective compression techniques to
facilitate the edge deployment of these models.

1.2 How to Compress a ConvNet

Storage Memory

Latency

Quantization Encoding

Pruning

Tools Constraints

Figure 1.3: Tools and constraints in deep learning compression.

6

1.2 – How to Compress a ConvNet

The interaction between algorithms and hardware is a crucial aspect to com-
press a ConvNet. To define a compression pipeline there are two main choices to
fix: what is the constraint to optimize and which tools to use. The former question
regards where the ConvNet needs to be optimized (i.e., storage, memory, latency)
to be run on a specific hardware device, while the latter question indicates which
software tools (i.e., for example, pruning, quantization, encoding) can address these
hardware demands. Figure 1.3 shows a schematic view of both the tools and the
constraints. Usually, the choice of hardware device where to run the ConvNet au-
tomatically implies the target constraints (one or more) of the compression, while
the designer has to choose which tools to involve to reach the objective, possibly
with no accuracy loss. The tools represented in Figure 1.3, that are pruning [72],
quantization [28], and encoding [67], are not the only ones presented in the litera-
ture, but just a subset of them we selected as the most used in the works presented
in this dissertation. We suggest referring to the state-of-the-art survey in [31] for a
more exhaustive overview of the available tools for ConvNet compression. All these
three tools are software side optimization of ConvNets, but they usually require
some hardware co-design strategies to fully accomplish their benefits. Pruning re-
moves redundant connections from the ConvNet: it downsizes the original topology
when applied as structured-level, while it induces sparsity inside the tensors with
no reshaping when applied as unstructured-level. Data quantization reduces the
data bits used to represent the parameters, which originally are stored in 32-bit
full precision. Encoding reorganizes the storing format to exploit eventual common
patterns present in model tensors, like sequences of neighboring zero values. In the
following Chapter 2 we further provide a more detailed description of these three
popular strategies.

Depending on the complexity of the task, and by the strictness of the constraint,
one single or a combination of multiple compression tools should be used. For
example, if the objective is to reduce the memory storage of a model, we may use
just 8-bit quantization to reduce the storage footprint by 4× if the constraint is too
stringent; or instead, we may combine sparse pruning, quantization, and encoding
to boost the compression in order to meet a more stringent constraint. All these
choices strongly depend on the constraints and compatibility of the target device.
Interestingly, these approaches with all the possible combinations produce different
trade-offs in terms of application scenario, compression ratio, model accuracy, and
hardware usability.

In the same as for compression tools, also the constraints showed in Figure 1.3
are not the only features to optimize for edge inference, but for sure latency, storage
and memory are the most popular, and also the ones we focus on the works will
be presented in the following chapters of this dissertation. For each edge device,
the lack of storage space is relevant, indeed even the smallest ConvNet requires
tens of MBs of space, while low-power devices usually have limited space. Espe-
cially low-power MCUs suffer from this issue, as they usually are equipped just

7

Deep Learning at the Edge

with less than 2MB of non-volatile memory. Another important feature to con-
sider for efficient edge inference is the capacity of the device to compute complex
operations, which depends on the on-chip random-access memory (RAM). Usu-
ally, for the IoT segment, RAM available in low-power is limited to a few hundred
KBs, as for example the Cortex-M MCUs by ARM reported in Table 1.1. A Con-
vNet compression focused to reduce the computation memory required to process
a certain task would be extremely beneficial to the MCU working. At last, some
applications, like keyword spotting or object detection, require fast inference time
to process input samples, limiting the inference latency to fixed to a certain range
of times. To meet these requirements possible solution is to induce sparsity through
pruning inside the ConvNet. Then using custom kernels for matrix multiplication
the inference can sensitively speed up, which may be crucial to respect latency con-
straints. This strategy can be applied differently across processors, ranging from
microcontrollers [225] to GPUs [38].

1.3 Objectives and Contributions
Until now there is no a standard and optimal compression pipeline able to

optimized a ConvNet model for efficient edge inference from all the points of view.
Several strategies have been proposed in the last decade, but they tend to prioritize
one aspect respect others. Furthermore, most of these techniques, especially in the
first years, were designed without hardware awareness, limiting the compression
benefits to a theoretical aspect. In this context, this dissertation has a threefold
objective.

• Developing a novel software-level optimization strategy to improve the effec-
tiveness of ConvNet compression. Focusing on how to exploit parameters
redundancy with proper encoding strategies is possible to boost the compres-
sion with negligible prediction degradation. The objective is to provide a
more compact model: easier to deploy and to run at the edge.

• Searching optimal solutions in several constrained solutions spaces. Different
compression strategies induce different benefits to the edge device, with a
not homogeneous distribution between storage, memory, and latency. One
strategy to rule all the constraints is not trivial, but a full-stack design with
hardware awareness improves radically the efficiency-quality trade-off.

• Exploring automated routines to scale ConvNets at run-time. The staticity
of ConvNets can be overcome using proper knobs, like width, depth, and
pattern-based sparsity. These strategies are demonstrated to be very effective
and promising for future real-case scenarios in the IoT domain, as they allow
to provide multiple solutions still training a unique ConvNet model.

8

1.3 – Objectives and Contributions

Statistics Hardware Awareness Scalability

Chapter 3 Chapter 4 Chapter 5

Storage Storage, Memory
Storage, Memory,

Latency

A Compression-Driven

Training Framework

Boosting Compression via

Layer-wise Strategy

Optimality Assessment of

Memory-Bounded ConvNets

EAST: Encoding-Aware

Sparse Training

Arbitrary Bit-width ConvNets

on IoT MCUs

Run-time Scalable ConvNets

via Nested Sparsity

Figure 1.4: An Illustrated overview of the dissertation outline.

For the sake of comprehension, Figure 1.4 illustrates a brief summary of the
technical contributions enclosed in this thesis. The three technical chapters (3,
4, 5) are preceded by a brief survey Chapter 2 to overviews the most popular
compression tools. For each technical chapter, we presented various strategies to
optimize the ConvNet models targeting three main aspects: (i) the storage (i.e.,
the area dedicated to long-term store the model parameters), the memory (i.e., the
area dedicated to short-term allocations used during model processing), and the
latency (i.e., the time delay between cause and effect of the network inference).

Chapter 3 targets on statistically oriented compression, focusing the attention
on weights distribution and how to compress them. We first studied the behavior
of deep ConvNets during the learning phase, particularly how the distribution of
their parameters changes during training. Then we focused on their natural over-
parametrization [23], and how to leverage such redundancy through state-of-the-art
compression techniques. We drove the compression pipeline with a homogeneous
fusion of pruning [72], quantization [28], and encoding [67] during the training loop.
The aim was to enhance the accuracy vs. compression trade-off.

Chapter 4 aims to connect algorithms for ConvNet compression with hardware
awareness. To effectively deploy ConvNets on edge devices the compression strate-
gies have to be driven by some consciousness of the target hardware. Given a fixed
device, with relative hardware constraints, the compression has to meet the require-
ments still guaranteeing negligible accuracy losses. We first analyzed the memory
vs. accuracy solution space to assess the optimality of compressed ConvNets. Then
we proposed two novel strategies to compress ConvNets with a budget-aware mech-
anism: the former under memory constraint, the latter under storage constraint.

9

Deep Learning at the Edge

Chapter 5 explores the run-time scalabilty of ConvNets during inference. Several
works have been published to prove the effectiveness to scale ConvNets depending
on memory and performance requirements, in particular involving the use of three
knobs: depth, width, and resolution. These solutions allow reaching multiple con-
figuration points, with multiple ConvNet models. To overcome this we propose a
new training and compression pipeline able to nest a novel class of nested sparse
ConvNets with custom training and encoding. Using the sparsity as a dynamic
knob, these nested networks are able to adapt latency and accuracy at run-time,
yet reducing the memory footprint (storage) and the RAM (memory) needed by
inference.

At last, the conclusions and the future research directions are depicted in Chap-
ter 6.

10

Chapter 2

Background: Overview of
ConvNet Compression Techniques

In the last decade, the deep learning community started to deeply work to
make the standard ConvNet more efficient without losing original performance.
As the standard models are often over-parameterized [84], they bring additional
computational and memory costs to the edge device, both for training and inference
stages. To overcome this limitation, several techniques have been explored, both
novel and inspired by other research fields, with the same objective to improve
the ConvNet efficiency and then to facilitate its deployment at the edge. Three of
the most popular efficient deep learning techniques are pruning, quantization, and
encoding.

As the techniques are proven on different tasks with variable terms of validation,
it is not easy to make a clear and comprehensive taxonomy. However, in this
chapter, we reported a representative selection of the most popular techniques for
efficient deep learning, preceded for the sake of comprehension, by a generic notation
summary of the ConvNet inference.

2.1 Generic Notation
Considering a generic ConvNet structure, like the one reported in Figure 1.1,

composed by NL convolutional layers, each l layer is composed by a 4-D weight
tensor θl⃗ = θl · x⃗. The shape of each θl⃗ tensor is θl ∈ Rn×c×h×w, where n is the
number of input channels (also called filter), c is the number of output channels,
while w and h are the width and height in pixels of each 2-D kernel array. During
inference, for each 2-D convolution operation (Conv2D) over an input signal x⃗, the
generic output tensor ϕ⃗ ∈ Rcout×hout×wout is obtained through Equation 1.1 from the
input tensor x⃗ ∈ Rcin×hin×win , where the triple (co, ho, wo) corresponds to number
of channels, width and height for input or output tensor (if o is equal to in or out).

11

Background: Overview of ConvNet Compression Techniques

The generic Conv2D, for a fixed layer, can be described in details with Equation 2.1.

ϕ⃗(coutj) = b⃗(coutj) +
cin−1∑︂
k=0

θ⃗(coutj , k) ∗ x⃗(k) (2.1)

It needs to be observed that the number of filters nF and kernels nK of the generic
tensor θ⃗ are respectively equal to cout and cin, while to compute the size of hout and
wout is used the Equation 2.2.⎧⎨⎩ hout = hin+2·padh−dilh·(hin−1)−1

strh
+ 1

wout = win+2·padw−dilw·(win−1)−1
strw

+ 1
(2.2)

Considering pad, dil and str are the standard image processing operations: padding,
dilatation and stride.

2.1.1 Training
Deep Neural Networks are usually trained using back-propagation [169]. This

iterative procedure evaluates the derivatives of a loss function L and propagates
them backward through the network thus finding the fastest way to reach the
minimum value, i.e., the lowest error. At each training step, the network weights,
are updated accordingly.

The loss function L is defined as the difference between desired δ⃗ and inferred
outputζ⃗:

L(f(x⃗, θ⃗)) =
⃓⃓⃓⃓⃓⃓
δ⃗ − ζ⃗

⃓⃓⃓⃓⃓⃓2
(2.3)

Other formulations of L are reported in [169]. Hence, it is possible to derive a
generic cost function L over the entire training set S (with cardinality N), given
by (2.4).

L(θ⃗) = 1
N

∑︂
S
L(f(x⃗, θ⃗) = 1

N

∑︂
S

⃓⃓⃓⃓⃓⃓
δ⃗ − ζ⃗

⃓⃓⃓⃓⃓⃓2
(2.4)

One of the most popular algorithms used to minimize complex objective func-
tions is Stochastic Gradient Descent (SGD) [10], as Equation 2.4. It guarantees the
global (local) minimum for convex (non-convex) functions with reasonable compu-
tational efforts. As the name suggests, this method follows the negative slope of
the objective function derivatives until a minimum is reached, i.e., the optimal θ⃗.
At each (k + 1)-th iteration, the tensor θ⃗k is updated with decreasing η learning
rate as:

θ⃗k+1 = θ⃗k − η∇⃗L(θ⃗k) (2.5)
where ∇⃗L(ω⃗k) is defined as follows:

∇⃗L(θ⃗k) = 1
N

∑︂
S
∇⃗L(θ⃗k, x⃗k) (2.6)

12

2.2 – Pruning

The learning rate parameter η needs a proper assignment to efficiently fine-tune
the training algorithm.

2.2 Pruning
Pruning algorithms for generic neural networks models have been firstly pro-

posed by LeCun et al. in [115], before the deep learning popularity. The conceptual
pruning idea was to remove unimportant weights from a multi-layer perceptron
(MLP) in order to achieve better generalization, decrease the number of training
examples required, improve the learning process, and increase the inference speed.
This basically means to selectively delete some parts from the model, obtaining
a sub-network with equal or different performance. The most popular pictorial
scheme about this technique is reported in Figure 2.1, where a generic MLP is
reshaped cutting off its redundant connections. Both the network synapses (black
lines) and neurons (green circles) can be pruned, operating at different levels of
granularity. The main objective is to remove just the unnecessary instances to pre-
serve the knowledge of the model, aspiring to find the optimal trade-off between
the number of parameters and prediction performance. Most of the effort is then
focused on the optimal selection search. Despite these optimization techniques are
heterogeneous and not very recent, in the last years have been largely applied es-
pecially on deep convolutional neural networks. Here the structure sizes are bigger
and the redundant model parameters number is considerably higher than standard
predictive systems.

(a) (b)

Figure 2.1: A generic MLP, before (a) and after pruning (b).

The ideal and optimal solution for pruning a generic neural network would
be to empirically search for superfluous parameters iteratively, i.e., by removing
one network parameter at a time, usually those that have the lowest impact on
accuracy degradation. This procedure should be done for all the layers and for all
pruning iterations (N), deleting just one parameter (W) at a time. This “brute-
force” approach implies a huge computational complexity (O(NW 3)), and it is not

13

Background: Overview of ConvNet Compression Techniques

suitable especially for deep networks. In fact, all the main research solutions in this
field try to choose a less direct and more approximate approach.

Many solutions have been explored in the last years by several research groups,
each one tries to achieve one common goal: adjusting the network model structure
to reach better prediction performance with lightweight solutions. However, they
do not work in the same way nor are not built for the same reason. On the contrary,
they differ considerably between each other with respect to several criteria.

2.2.1 Basic Terminology
Saliency One fundamental concept of pruning algorithms is the saliency, which
represents how much the deletion of a certain parameter influences the training
error. In general the saliency can be defined as the importance of the parameter
weights. In the field of statistical analysis, it is common to easily extract some data
information to find an importance order of model parameters. However, this is
quite hard in deep learning structures. Exactly for this reason, a saliency measure
is often used to sort the network parameters by importance, under the assumption
that an instance with low saliency is little effective on the network training error. In
Section 2.2.4 we provide a schematic overview of some of the most popular saliency
metrics used to prune ConvNets.

Binary Mask Neural Network pruning basically consists in searching and delet-
ing a subset P ⊂ θ of parameters, where θ is the original dense 4-D weight tensor.
After each pruning application the weight tensor is updated as θ∗ = θ ⊙M , where
M ∈ {0,1} is a binary mask and ⊙ is the point-wise product. The mask M is ini-
tialized as M = 1|W |, and mapped as M(P) = 0 during each pruning step: all zero
values are placed just on the corresponding positions of subset P . The subset P
and the mask M can be updated with different scheduling procedures, as discussed
later.

After pruning application, a large amount of parameters is removed from the
ConvNet model. In order to validate the effectiveness of pruning there are two
popular metrics.

• Sparsity: defined as the fraction of zero weights |θ∅| to the total number of
weights:

S = |θ
∅|
|θ|

(2.7)

Usually, if the number of pruned weights is not negligible, the ConvNet is
considered a sparse model, the other way around if the ConvNet is considered
a dense model if there are no zero values. Inducing sparsity inside the network
automatically change the distribution of weights, as showed in Figure 2.2.

14

2.2 – Pruning

Usually, over 50% of the parameters are pruned from the original ConvNet
to enable the use of efficient sparse storage formats [84].

• Compression: usually defined as the ratio between the sizes of the pruned
model respect the original one:

CR = θ ⊙M
θ

(2.8)

This metric is mostly used when pruning change the original topology of
the ConvNet, for example, if entire filters are removed from the structure
(Section 2.2.2). The expected compression factor strongly depends on the
ConvNet architecture and the hardware constraints, however, it is common
to compress the model at least 2× with respect to the original one [135, 131].

0.2 0.1 0.0 0.1 0.2
Values

0

200

400

600

800

1000

1200

Oc
cu

rre
nc

e

Dense

0.2 0.1 0.0 0.1 0.2
Values

0

200

400

600

800

1000

1200

80% Sparse

Figure 2.2: The figures show how pruning influences the distribution of the weights,
before (on the left side) and after (on the right) its application. The example refers
to a magnitude-based pruning to the last convolutional layer of MobileNet_v2 ar-
chitecture trained on Imagenet (with 320 input channels and 960 output channels).
The 80% of the weights of the layer are pruned. On the right side, the figure the
y-axis has been limited for the sake of comprehension, in order to avoid the huge
peak representation in 0 (histogram value = 245760).

2.2.2 What to Prune
An essential aspect of a pruning algorithm is its granularity, i.e., the hierarchical

level of the network structure where the algorithm is applied. Several solutions have
been explored in the last few years, but all of them can be grouped in two main
categories: unstructured or structured. While the first basically induce sparsity
inside the model removing “sparse” weights, the second removes entire structures
from the model (i.e., grouped weights, filters, channels, etc.). We present now a
more detailed comparison between these two categories. Two pictorial schemes of
the most common pruning granularities are reported in Figures 2.3a, 2.3b, according
to different projection views.

15

Background: Overview of ConvNet Compression Techniques

n

c
w

h

(b) (d) (e) (f)(a) (c)

(a) (n,c,h,w) layout.

(b) (d) (e) (f)(a) (c)

c
h
w

n

(b) n-chw layout.

Figure 2.3: Most popular levels of pruning granularity, represented in an example
layer of shape R4×2×3×3. The structured levels are a and b, while the unstructured
levels are c, d, e, f. The pruned parameters are colored in red.

Unstructured Pruning

This branch of pruning techniques aims to reduce the number of nonzero pa-
rameters inside the model, increasing the numerator of the Equation 2.7. This
optimization does not modify the network topology, but just the values inside its

16

2.2 – Pruning

tensors. Indeed it does not bring immediate gaining in terms of model efficiency,
as the model structure remains the same. However, the memory footprint can dra-
matically be reduced if the unstructured pruning is combined with sparse-aware
encoding strategies, as described in Section 2.4. While this procedure requires
proper encoding and ad-hoc kernel libraries [38] to optimize memory, storage, and
latency on general-purpose architectures, this procedure has been the most explored
in literature, especially in more recent works, as it allows to have best specific con-
trol on the network parameters and also it was already used on standard neural
networks. They are identified as (c,d,e,f) in Figures 2.3a, 2.3b. Some of the most
popular pruning works at unstructured granularity are proposed in [72, 61, 145,
239, 225, 44, 134].

Weight This is the lowest granularity of the network structure, pruning operates
directly on the redundant weights. This is also called fine-grained pruning, as it
works exactly on the individual weights. The direct efficiency of this granularity
approach is the lowest. During each 2-D convolution operation over an input signal
x⃗, for each pruned parameter, the operations saved are equal to cin · hin · win.

Block Another solution is to group close weights in some blocks (or patterns) of
various shapes. In this way, the procedure aims to induce a structured sparsity
inside each model, according to a fixed pattern. The block shape is generally de-
fined as bs ∈ Rn×m, where n and m are the height and width of the pattern. The
blocks usually are considered as unique and non-overlapping instances composed
of chunks of individual neighboring weights. We reported three popular examples
block-pruning in Figures 2.3a, 2.3b. Considering a block composed by s weights,
the block can be chosen in direction of output channel s× 1 (d), or input channel
1×s (e), or instead without any direction s

2×
s
2 (f). The possible shape can be cho-

sen according to the custom architecture of the kernel library with the aim to take
advantage of data reuse for inference speed-up. Respect single-weight pruning, this
approach is certainly more effective in terms of inference latency: bigger block-size
brings higher inference speed, at the expense of a loss of control. For each pruned
block, the operations saved are equal to s · cin · hin · win.

Structured Pruning

This category contains all the strategies that remove entire structures from the
original model, like neurons (for original MLP), channels, or filters (for ConvNets).
Contrarily to unstructured strategies, using these solutions the model is directly
compressed, as it basically changes its architecture. It needs to be observed that
for each pruned structure (channel or filter) inside a layer l, it is automatically
removed the connected structure in the following layer l + 1. In this way, the

17

Background: Overview of ConvNet Compression Techniques

feature maps between the two layers of the ConvNet are implicitly reduced. For
these reasons, the structured granularity is the most efficient for the model, but
it is also the most difficult to handle because it is quite rare to have an entire
redundant filter without any useful weight, whereas it is more common to have just
a subset of its internal parameters that need to be pruned. They are identified as
(a, b) in Figures 2.3a, 2.3a. Some of the most popular pruning works at structured
granularity are proposed in [119, 147, 5, 131, 80, 135, 182, 86].

Channel It focuses on the deletion of the second dimension of the tensor W ∈
Rn×c×h×w, it is sometimes called kernel as it removes the 2-D slice matrix of each 3-D
filter, as reported in Figure 2.3a-b. The channels are considered as unique instances
to prune according to a certain score, which is normalized between all the weights
inside it. This approach allows to reach high compression rates: for each pruned
channel the number of operation saved in the layer l is equal to n ·w ·h ·cin ·hin ·win.
Remembering that n is the number of input channels or filters, the operations saved
can be simplified as whc2

inwinhin.

Filter The filter level approach is quite similar to the previous one, with the main
difference that now the pruned instances are the filters n, or input channel (accord-
ing to the nomenclature reported above). It removes entire 3-D filters inside each
layer, hence focusing on 3-D structured sparsity (Figure 2.3a-a). For each pruned
filter in the layer l the algorithm saves cout · w · h · cin · hin · win operations. Filter
pruning can be considered as the corresponding of neuron pruning for Multi-Layer
Perceptrons (MLP).

2.2.3 When to Prune
The broad aim of the pruning algorithms is to delete all the redundant pa-

rameters from a network model without performance loss, to find the best effi-
cient accurate model for that fixed objective. To accomplish this task, the most
common pruning flow includes three stages: (i) pre-training, (ii) pruning and (iii)
fine-tuning. The pre-training is the standard dense training to reach some starting
accuracy state; the pruning phase comprises the actual masking of the model with
the relative update of the binary mask; at last, the fine-tuning allows the model
to freeze the masks and recover from the loss of prediction accuracy, due to the
new limited data space. The actual position of these three stages can be scheduled
differently in the training flow pipeline.

The most popular schemes to schedule pruning inside a full training procedure
are two: prune once and retrain and iterative pruning and retrain. The following
text briefly describes both these pruning strategies, however, for sake of simplicity,
they are both presented for the unstructured pruning case, where the ConvNet is

18

2.2 – Pruning

sparsified without any topology variation. It needs to be noted that this is not a
loss of generality, as the same algorithms can be easily extended also for structured
pruning cases.

• Prune once and retrain (Algorithm 1). At first, the model θ and the
binary mask M are initialized (line 1). Then the ConvNet is trained for
a fixed number of pre-training epochs epochspre, obtaining a dense trained
model (lines 2 − 4). Hence a mask M is extracted using a get_mask(·)
function (line 5), which basically sorts and selects the parameters θ according
some importance criteria. The quantity of parameters to prune is fixed by
the sparsity S. Then, the dense model is multiplied with the mask to obtain
the sparse model θs (line 6). At last, there is a fine-tuning stage for a fixed
number of post-pruning epochs epochspost (lines 7−9), to restore the original
accuracy still preserving the pruned weights in the fixed position. In this
fine-tuning stage, the gradient can flow just on the dense weights to update
them, while the sparse weights do not receive the gradient as they cannot be
updated. In this way, the sparse ConvNet can re-adapt the dense parameters
to the constrained solution space.

• Iterative pruning and retrain (Algorithm 2). At first, the model θ and
the binary mask M are initialized (line 1). Then the model is pruned and
retrained iteratively for a fixed number of epochs (lines 2 − 8). Differently
with respect to the previous strategy (2.2.3), here the procedure is driven by
two schedulers: the frequency_scheduler(·), which decides when to prune
or not prune, and the sparsity_scheduler(·), which decides how much to
prune. For each e-th epoch, after the standard train step (line 3), the
frequency_scheduler(·) checks if the model has to be pruned (line 4). If yes,
the sparsity_scheduler(·) extracts the percentage of parameters to prune S
(line 5), then it updates the mask M (line 6) to generate the sparse model θs
(line 7). The get_mask(·) function works the same way as before (2.2.3), with
the main difference that here the function is called every pruning epoch: the
purpose is to update the mask M multiple times to better learn the correct
locations of redundant weights. This is the most popular scheduling approach
in the literature, as it allows the model a smoother and softer adaption to
the induced sparsity, with no brute force changes which may be harder to
tolerate.

Frequency and Sparsity Schedulers

As introduced in the previous section, two are the main schedulers who drive the
iterative pruning and training loop: the frequency scheduler, which answers to the
question “when to prune”, and the sparsity scheduler, which answers to the question

19

Background: Overview of ConvNet Compression Techniques

Algorithm 1: Prune once and retrain.
Input: θ, epochspre, epochspost, S

1 Model Init: θ ← θ0,M = 1|W |

2 for e in epochspre do
3 train_step(θ)
4 test_step(θ)
5 M ← get_mask(θ, S) θs ← θ ⊙M // Prune
6 for e in epochspost do
7 train_step(θs)
8 test_step(θs)
9 return θs

Algorithm 2: Iterative pruning and training.
Input: θ, epochs, frequency_scheduler, sparsity_scheduler

1 Model Init: θ ← θ0,M = 1|W |

2 for e in epochs do
3 train_step(θ)
4 if frequency_scheduler(e) then
5 S ← sparsity_scheduler(e) // Get Sparsity
6 M ← get_mask(θ, S) θs ← θ ⊙M // Prune
7 test_step(θs)
8 return θs

“how much to prune”. They both operate discretely inside the training loop, being
called at each training step t (forward pass of one single batch of samples) or at each
training epoch e (forward pass of all the batches of the training data, full cycle),
the technical difference is just an implementation choice. However, to align our
description to the most popular works on this topic, the following text introduces
these two scheduling strategies in function of the training step t.

The frequency scheduler gets in input the training step t and provides a True
flag if the t-th step is a pruning step, False if it is not. During the full training
stage, this schema prunes the model starting from a t0 step and ending at tf step,
with a ∆t frequency. In this way the full set of pruning steps is defined as t ∈
{t0, t0 + ∆t, ..., t0 + n∆t}, where n is a fixed hyperparameter.

The sparsity scheduler instead indicates, each time is called, the fraction of
parameters to prune. They can be mostly of two types.

• Constant. The scheduler simply provides the target sparsity value st, as a
unique constant value through all the sparse training processes. However, it
is still zero if the step belong to pre-training stage t /∈ [to, tf].

20

2.2 – Pruning

0.0 0.5 1.5 2.5 3.5 4.5 5.0
Training Steps 1e4

0%

30%

60%
70%
80%
90%

Sp
ar

sit
y

60%
70%
80%
90%

Figure 2.4: The polynomial decay sparsity scheduler. The results are shown for 4
different sparsity levels sf ∈ {60%, 70%, 80%, 90%}, with same scheduler setting:
t0=5e3, si=30%, p=3. Each dot marker represents a pruning step, the frequency
was fixed at 1000. The light-grey area (on the left) represents the dense pre-training
stage, while the dark-gray area (on the right) indicates the mask freeze stage where
the sparsity stops to increase.

• Monotone Increase. The sparsity increases monotonically during the train-
ing process. The scheduler provides, for each pruning step t, a different spar-
sity value st following a predefined monotonic function such that tx ≤ ty
gives stx ≤ sty . The most popular example of this type of sparsity scheduling
has been introduced in [239], where the authors proposed a polynomial decay
function to modulate the increase of the sparsity, in a generic and effective
way. The proposed decay function is reported in Equation 2.9, where p is the
power of the polynomial decay, si and sf are the initial and target sparsity
values, and t, t0, n∆t are defined by the frequency scheduler.

st = sf + (si − sf)
⎛⎝1− t− t0

n∆t

⎞⎠p

(2.9)

It needs to be noted that the power p determines the shape of the monotonic
function, in fact, despite it is usually fixed at 3 for standard polynomial decay,
it can be fixed to p = 1 to generate a linear function, or to p = 0 to generate a
constant function. For sake of comprehension, Figure 2.4 provides an example
of the sparsity scheduling, where the trend of sparsity increase is shown for
different target values sf ∈ {60%, 70%, 80%, 90%}. This shows how the spar-
sity percentage gradually increases from si to sf , trying to prune rapidly in
the first epochs when the redundant connections are abundant, then slowing

21

Background: Overview of ConvNet Compression Techniques

down the sparsity rise when the model balance becomes more fragile. De-
spite this scheduler was originally proposed for unstructured pruning, hence
working on the sparsity, it can be applied also on structured granularity levels.

2.2.4 How to Prune
Selecting the Candidates

Defining the correct saliency is the real core of any pruning algorithm, as it
selects the parameters to delete. The most intuitive approach, and one of the first
explored, is to evaluate the ConvNet with and without a certain set of parame-
ters [183]. However, the leave-some-out approach is not trivial especially for larger
ConvNets, as it requires multiple training processes, one for each subset of param-
eters to evaluate. More recently, several works assessed the efficiency of a random
selection of pruning candidates [144, 17], leaving the job to recover the accuracy
loss just to the ConvNet plasticity during the fine-tuning stage. This strategy, par-
tially related to the compressive sensing theory, has been proven to be effective in
some particular settings.

However, despite there is no clear understanding of which is the most effective
strategy to select the pruning candidates under all the possible boundary conditions,
several works demonstrated that using some saliency metric is useful to drive the
procedure of candidate selection [46]. Pruning is a very explored topic in efficient
deep learning research: many different strategies have been proposed to better
accomplish the removal of redundancy from the ConvNet. Considering the elevated
number of different methods, with sensitive differences of settings (i.e., scheduling,
tasks, hyperparameters, etc.), a clear and exhaustive taxonomy of the mechanism
with a fair quantitative comparison of the effectiveness is very challenging. However
there are some works that tried to overview the strategies [84, 46], and others
that compared the different techniques in controlled conditions (i.e., with fixed
setting) [8].

In this section we provide a brief introduction to some of the most popular
strategies to drive the selection of the candidates to prune.

Magnitude ConvNets can be pruned just on the basis of their parameters. This
strategy is a data-free selection, as during the selection of the candidates it avoids
any relation with the samples. One of the simplest, but also most effective, ap-
proaches is the magnitude-based selection: it removes model parameters according
to their absolute magnitude. Various works have been published following this
concept, from the oldest [66], to the more recent and popular [67, 47, 239]. The
intuition was simple: lower magnitude means lower significance. To compute the
importance score to generate the pruning masks, usually, the saliency is computed
according to ∑︁

G |wi|, where the sum is computed for all the weights w inside a

22

2.2 – Pruning

group G (i.e., a filer, a channel, a block, or a single weight for fine-grained prun-
ing). Then the ConvNet is pruned according to ∑︁

G |wi| ≤ x, where x is a threshold
dependent by the sparsity. The magnitude-based pruning has been applied het-
erogeneously on unstructured and structured granularity. A very popular example
of the former is proposed in [67] pruning weights for a deep compression pipeline
of ConvNets, while a popular example of the latter is proposed in [119] focusing
on removing whole convolutional filters with the small absolute norm for efficient
ConvNets. Furthermore, the same pruning strategies have been also explored effec-
tively on recurrent neural networks in [150, 174]. Other works, used criteria based
on the similarity of the parameters to prune networks. It has been shown in [182]
that this approach allows merging similar neurons together with effective results,
especially on small size ConvNets.

Data-driven ConvNets can be pruned also considering the sensitivity of the
model to the training data. The key concept is that elements that do not change re-
spect the deviation of the input samples are redundant since their output is almost
constant to the input changing. Hence model parameters are pruned according to
some measure of this sensitivity. Some prior works about this strategy have been
proposed in [179, 15]. More recently the same approach has been applied to prune
convolutional filters in [135] according to how much they influences the following
layers. Other popular approaches are proposed in [226, 35, 79].

Taylor Expansion of the Training Loss Loss functions play a central role in
machine learning algorithm mapping decisions to their associated costs. Therefore,
it is realistic that estimating the impact of weights perturbation over the loss func-
tion represents a simple yet efficient mechanism to control the pruning procedure.
However, it would be prohibitively laborious to evaluate the loss function variations
directly from this definition, i.e., by deleting each parameter and re-evaluating the
loss. For this reason, the algorithms of this class of pruning leverage local models
of the training loss function and analytically predict the effect of perturbing the
parameters.

In the literature, the Taylor expansion of the training loss L is one of the most
efficient analytical tools to estimate local loss variations. During the training pro-
cess, network’s parameters θ⃗ are optimized such that the loss function is min-
imized. Hence, the pruning process tries to find the best θ∗ generic set, with
a subset of deleted parameters, that minimize the L function change |∆L| =
|L(f(x; θ∗), ζ∗) − L(f(x; θ), ζ)|. In order to solve this optimization problem, with
a reasonable computational load, the loss L change can be rewritten, using the
Taylor expansion being W a generic parameter set as in Equation 2.10.

∆L = ∂L

∂θ
∆θ + 1

2
∂2L

∂θ2 ∆θ2 + ... (2.10)

23

Background: Overview of ConvNet Compression Techniques

Usually, just the first two terms of the Taylor expansion are considered, as the
higher order ones are negligible and then ignored.

There are two sub-branches that use the Taylor expansion to drive the pruning
process.

The first branch includes the so-called gradient-based pruning techniques, which
directly use just the first term of the expansion. The intuition is to select and re-
move the weights with small variations during the learning process, focusing on the
absolute value of the gradient. These strategies assume to avoid the computation
of the second derivative term of the Taylor expansion, as they assume that the first
term tends to zero after the training completion when in the local minimum the
gradient term tends to zero ∂L

∂θ
→ 0 [147]. However, its variance is a non-zero term,

and it is possible to use it as a pruning criterion as it contains information regarding
the stability of the cost function. Hence they use the expected value (proportional
to its variance) of the first-order term of the Taylor series as a pruning control
metric because it is empirically more informative and it allows to speed up the
algorithm computation. They use the absolute value of the gradient to determine
whether a parameter should be removed or no Examples of the use of the first term
of Taylor expansion can be found in [146, 147, 118, 214, 36]. A similar approach
has been applied in a recent work presented in [173], where the authors focused on
the direction of the gradient during the learning process to prune transformer-based
models.

Involving the second term of the Taylor expansion has been largely explored
in literature. Pioneering works on pruning drove the selection with this proce-
dure: Optimal Brain Damage (OBD) [115] is an example. The authors estimated
the saliency of the parameters by evaluating the impact of their variation on the
training error; Optimal Brain Surgeon (OBS) [75] extended OBD concept with a
generalization of the model to compute the error increase due to some weight elim-
ination. They are both based on the Hessian matrix H (or Hessian) of a function
f : Rn → R, which is defined as a square n×n matrix of the f second-order partial
derivatives hi,j = ∂2f

∂xi∂xj
, if they do exist and are continuous over the domain of

the function. The Hessian is usually employed to describe the local curvature of a
n-variables function: the higher the values of hi,j, the steeper the curvature of the
function. Even though this metric was employed in the earliest pruning techniques,
specifically designed for MLPs, their functionalities represent the basis of more re-
cent approaches. Other more recent works based on these concepts are proposed
in [37, 191, 203, 69]. These approaches have strong mathematical frameworks for
pruning, however, they are based on several assumptions that make their use not
always easy.

Regularization of the Training Loss A high number of works includes the
model pruning directly on the regularization process. The concept is to add a
penalty term P (θ⃗) inside the cost function L(θ⃗) = L(θ⃗) + P (θ⃗). Several penalty

24

2.2 – Pruning

functions to drive the search of the redundant parameters to prune [242, 145, 220,
26, 126, 227]. The complexity of this type of pruning strategy is all enclosed in
the definition of P (θ⃗), as the resulting problem is often non-convex and quite chal-
lenging to solve (it is common to have additional local minima [73]). Furthermore,
additional parameters have to be included in the training loop, increasing the order
of complexity of the hyperparameters optimization.

Variance At last, ConvNet pruning can be faced as a real information theory
problem, searching the redundant elements according to their distribution. Higher
variance means a lower contribution to the inference. Given a training set S com-
posed by input data x and predictions y, with relative model parameters θ, the
Bayesian Learning theory considers a prior knowledge p(θ) of the distribution of
the weight. The Bayesian Inference process is defined as the posterior distribution
extraction, from the prior distribution defined as in Equation 2.11.

p(θ|S) = p(S|θ)p(θ)/p(S) (2.11)

The Sparse Variational Dropout presented in [145], extended the Variational Dropout
method [107] in the interest to induces sparsity inside the ConvNets. Then, a more
theoretical approach has been explored in [133], where a Bayesian compression
pipeline is adopted to prune large parts of the network through priors that induce
sparsity. The technique aims to generalize the Variational Dropout, focusing on
higher levels of granularity (filters). Other popular works using variance as a guide
to optimize ConvNets are proposed in [196, 151, 163]. The main benefits of these
strategies are the absence of the hyperparameters to tune, and the avoidance of
the fine-tuning stage; in fact at the end of the training the parameters with larger
dropout values can be cut-off from the model in one shot. However, they need
to double the parameters of the model, and their training from scratch is quite
challenging [47, 84].

Homogeneity

At last, it needs to be observed that pruning can be applied with different
homogeneity across the ConvNet layers. This means that the full model can be
pruned with uniform sparsity (or pruning rate), or instead, it can be modulated by
some layer-wise scoring.

• Global-wise. This is the most popular approach and it provides the same
uniform amount of pruned parameters across all the layers. However, it is
common to avoid pruning the first (and sometimes the last) layer, to avoid
huge accuracy losses.

25

Background: Overview of ConvNet Compression Techniques

• Layer-wise. This approach aims to find the optimal rate of sparsity inside
each layer, using some heuristic or optimization tool. For example, Varia-
tional Dropout [145] used a Bayesian technique to address a non-uniform
sparsity across the layers, with no manual intervention. This could be more
effective in very deep models, where the last layers tend to have less signif-
icant information. However discriminating which layers prune more is very
challenging, as the risk to prune important weights is high, generating pruned
models less accurate than ones optimized with the global-wise approach.

26

2.3 – Quantization

2.3 Quantization
One of the simplest ways to reduce the complexity of a ConvNet is to reduce

the numerical precision of its parameters and activations. This approach is called
quantization. The first feature to highlight is the versatility of this technique,
which can be applied equally across different models and use cases, as it does not
require generating a different model from the original one to obtain a more efficient
solution. In fact, quantization can be applied directly on the parameters of the full
precision model (both weights and activations), usually from 32bit floating-point
to fixed-point precision.

Figure 2.5 shows a generic example of quantizaton applied on the first convolu-
tional layer of MobileNet_v2 model. The left picture shows the weight distribution
with full precision (32bit floating point), while the right picture shows the weight
quantized to 8bit. It is clear to see how the distribution shape still remains the
same, but the number of levels and the occurrence change sensitively.

0.2 0.1 0.0 0.1 0.2
Values

0

200

400

600

800

1000

1200

Oc
cu

rre
nc

e

FP32

100 50 0 50 100
Values

0

1000

2000

3000

4000

5000
INT8

Figure 2.5: Before (left) and after (right) weight quantization. The example refers
to the last convolutional layer of MobileNet_v2 architecture trained on Imagenet
(with 320 input channels and 960 output channels).

The main advantages provided by quantization can be summarized as follows:

• Memory Footprint. Reducing the numerical precision means directly re-
duce by a N factor the memory footprint of the original model, where N is
the ratio between original and quantized precision. For example, with only
8-bit quantization, the memory footprint is reduced by a factor of 4×.

• Memory Bandwidth. The memory required to store intermediate com-
putations is automatically reduced when the data used to compute matrix
multiplication are with reduced numerical precision.

• Speed. The inference computation can speed up due to memory bandwidth
savings and also because many processors work faster with int8 arithmetic.

27

Background: Overview of ConvNet Compression Techniques

• Power. Moving reduced precision data is more efficient as in many archi-
tectures the memory accesses can dominate the power consumption. For
example, move 8-bit of data may require 4× less time than moving the same
data stored in 32-bit.

The quantization can be applied just on the weights or also on the activations.
If it is applied only on the weights the main benefits are on the memory footprint
reduction, while if applied also on the activations the quantization allows also a
sensitive inference speed up. Quantize also the activations allows higher processing
efficiency to reduce the inference time. In fact, during the inference stage, the int8
weights are multiplied to int8 activations, which are generated on fly just before
the computation (this is the reason of the dynamic name).

A generic scheme of quantization is the one proposed in [98]. Considering a
generic floating point variable r ∈ [rmin, rmax] which needs to be quantized to an
integer qint8 ∈ [0, N − 1] where N is the number of levels (for int8 N = 256). The
affine mapping is defined with the quantization scheme

r = S(quint8 − z) (2.12)
where S and z are the quantization parameters. S is the scale, a real positive
number who specifies the step size of the quantization; z is the zero-point, an integer
who represents the quantized value q corresponding to the real value 0, useful to
ensure common boundary operations like zero padding. Then the quantization
procedure is then defined as

qint8 = round(r
S

+ z) (2.13)

quint8 = clamp(0, N − 1, qint8) (2.14)
where qint8 ∈ [−N

2 ,
N
2] is the unsigned integer value shifted of N/2 from qint8 with

the clamp(·) operation 2.15.

clamp(a, b, x) =

⎧⎪⎪⎨⎪⎪⎩
a if x ≤ a

b if a ≤ x ≤ b

x if x ≥ b

(2.15)

This scheme is also defined as asymmetric quantization as the distribution is shifted
by a given offset z respect the zero value.

A particular case is the symmetric case, where the distribution is centered
around zero, as the zero-point z is equal to zero. In general, this solution is simpler
to implement but less accurate compared to the asymmetric case, which, however,
encompasses additional processing stages [112].

qint8 = round(r
S

) (2.16)

The de-quantization operaations is now simplified as
r = S(quint8). (2.17)

28

2.3 – Quantization

Linear vs. Non-Linear

The weights can be quantized linearly or non-linearly. A linear approach [93]
applies a uniform distance between all the quantized weights; this is the simplest
solution but yet the most suitable for general-purpose hardware, in fact, it requires
a lightweight implementation. Higher compression can be obtained with non-linear
quantization, this solution applies a particular function for mapping the full preci-
sion parameters into a discrete fixed-point space. It ensures more accurate profiling
of the original distribution, usually not uniform, guaranteeing lower accuracy losses
with higher compression rates. The most popular examples are the log-domain [117]
and clustering approaches [67] like k-means. However, it needs to be observed that
non-linear schemes require the use of hashing functions, which are commonly im-
plemented by custom hardware to improve performance [202] or, alternatively, by
software routines whose severe overhead affects latency.

Granularity

The quantization operation can be applied at different granularity levels: tensor,
layer, and channel. This means that the quantizer operation with the same settings
and rules (i.e. bit-width, zero-point, scale, ...) can be defined as fixed when equally
applied to all the parameters of the ConvNet, or variable when applied differently
according to some substructures (layer or channel) [149]. Operating at lower gran-
ularities sensitively helps to improve the final accuracy as showed in [162]. For
example, adapting the quantization at the channel level means that each convo-
lutional kernel has a different custom setting respect the others. Hence, variable
quantization is more accurate at cost of higher complexity both for conversion and
inference computation.

Radix Point

Finally, it is possible to quantize the weights using a binary radix-point scaling,
or an arbitrary linear scaling. The former uses a simple bit-shift operation for
scaling among the quantized levels [112], the latter requires additional operations.
Then the binary radix-point scaling is simpler and less accurate, while arbitrary
linear scaling is more accurate but slower as it increases the global latency [112].

2.3.1 Quantized Inference
There are two main approaches to quantize a ConvNet model for the inference

process: post-training quantization and quantization-aware training. At the end
of the process, both of them bring the model in a quantized format ready to be
deployed. A generic 8-bit quantized inference scheme for a convolutional layer is

29

Background: Overview of ConvNet Compression Techniques

shown in Figure 2.6. Both weights and input/output activations are in unsigned-
integer format (uint8) according to Equation 2.12, while biases are kept in unsigned-
integer at 32bit (uint32). Convolution uses 8-bit arithmetic operands and 32-bit
accumulator, ReLu6 uses 8-bit integer arithmetic, while bias addition only 32-bit
integer.

Post-Training Quantization

weights

output

ReLu6

conv

input

biases+
uint8

uint32

uint32

uint8

uint8

uint8

Figure 2.6: Quantized inference (uint8).

The easiest way to quantize a ConvNet is to compress the weights and eventu-
ally the activations after the training process. This approach does not insert the
quantizer operator inside the training loop but just applies the quantization once
the weights are fully trained. If the process is just applied on weights the benefit
is fully on the memory footprint reduction. If the process involves weights and
activations the quantization enhances all the benefits cited above, but it requires
a further stage of calibration to compute the dynamic ranges of activations. As
showed in [108] usually most of the accuracy loss is due to weight quantization, as
activations have not high negative influence.

The authors of [108] showed that using asymmetric post-training quantization
of both weights and activations at int8 is possible to reach close to the floating-
point accuracy for a large set of ConvNets. Usually, most large ConvNets (like
ResNets and Inception-v3) are more robust to weight quantization compared to
thinner models like MobileNets.

Quantize weights at layer granularity can influence sensitively the accuracy, es-
pecially for the smaller models like MobileNets. Activation is not affected by this

30

2.3 – Quantization

problem. This phenomenon is mainly due to batch normalization who generates
high variations in a dynamic range of the convolutional channels inside each layer.
On the other hand, use a per-layer quantization scheme to overcome this issue,
as the accuracy becomes independent from the batch-norm scaling/ A possible ap-
proach to improve accuracy loss due to batch-normalization is weight regularization
as showed in [177].

Quantization-Aware Training

FakeQuant

output

ReLu6

conv FakeQuant weights

input

biases+

Figure 2.7: Quantization-aware training

A different quantization approach to include the numerical precision approxi-
mation inside the training loop is the quantization-aware training. This scheme
provides higher accuracy especially for small-size models, at cost of higher imple-
mentation complexity.

Usually, this approach is modelized with a fake-quantization operator to insert
in the training graph, which keeps the weights and activations in full precision
floating point during backpropagation passes, while quantize them during each for-
ward propagation simulating what happens in a real inference engine. In detail, for
each training step, the weights are quantized before to be convolved with input,
while the activations are quantized at the same point of real inference that is after
the convolution operation (or linear operation for fully connected layers, or after a
bypass residual connector). During backpropagation instead, the weights are kept
floating-point to accumulate the gradient at maximum precision for the updating.
This ensures avoiding underflowing some small updates for the quantization. A
comprehensive explanation of the quantization-aware training is shown in [98] A

31

Background: Overview of ConvNet Compression Techniques

pictorial example of the working of fake quantization (FakeQuant) in the convo-
lutional layer is represented in Figure 2.7. All the process involves 32-bit floating-
point arithmetic (both variables and computations), the FakeQuant operand sim-
ulates the effect of quantization during the training step both for weights and for
the output activations.

This quantization scheme is not trivial to implement, however, it allows to close
the gap to floating-point accuracy, also for layer-wise granularity. Furthermore,
the authors of [143, 108] showed that start the quantization-aware training from a
preliminary floating-point checkpoint is better than starting to quantize the weights
from scratch, as the final accuracy is always higher. This phenomenon can be
explained considering that a generic ConvNet can reach higher accuracy when it
learns from a teacher model trained with higher degrees of freedom [83].

2.3.2 Quantize for the Edge
The first works on ConvNet quantization demonstrated that 32-bit Floating-

Point ConvNets can be quantized to 16-bit and 8-bit Fixed-Point [165] still ensur-
ing negligible accuracy loss. In these cases, the quantization provides a memory
compression proportional to the reduction of the bit-width and negligible accuracy
loss especially for over-parametrized ConvNets, like AlexNet, VGG, ResNet [165].
Then, more extreme optimization approaches tried to increase the compression go-
ing deeper with the quantization precision up to ternary [4] or binary [168] represen-
tations. Such an extreme level of bit-width reduction allows a linear compression of
the memory footprint, but mostly, it improves the memory bandwidth as multiple
operands can be written/read within single access.

Unfortunately, general-purpose MCUs support a discrete set of integer options,
e.g. 16-bit and 8-bit for the Cortex-M. Going deeper with quantization is not
straightforward: bit-width smaller than 8-bit (e.g. from 7- to 2-bit [195]) remain a
theoretic study as they need custom hardware components that are not available in
low-power cores (e.g. variable bit-width integer MAC units and/or special memory
architectures).

Some IoT platforms offer the 4-bit, e.g. the GAP-8 powered by the PULP
core [27]. For instance, a 32-bit SRAM line can host four 8-bit weights that
can be easily fed to the execution units, while the use of 9-bit weights incurs
in memory under-utilization and it requires specialized unpacking routines that
affect latency [170]. ConvNet accelerators with arbitrary bit-width arithmetic,
e.g. [210] [176] [197] (FPGA-based), are options. However, they dissipate more
power than the MCUs showed in Table 1.1, (≥ 300mW vs. tens of mW).

Not least, quantization below the 8-bit mark (e.g. from 7- to 2-bit [195]) re-
mains a theoretic study as it asks for custom hardware components that are not
available in low-power cores, e.g. variable bit-width integer MAC units and/or
special memory architectures. However, there are some low-power IoT cores able

32

2.3 – Quantization

to offer 4-bit instructions, e.g. the GAP8 [49] powered by the PULP core [27],
but up to now with no ready-to-use IoT solutions for the arbitrary bit-width scal-
ing. Moreover, there are specialized neural cores for multi-bit resolutions, like the
Imagination Series 2NX [210], but yet with a power budget of few Watts. Other
custom solutions, programmable [197] or hard-wired [176], are not very suitable for
the IoT budget cost. For general-purpose architectures, the storage of weights with
arbitrary bit widths needs the use of specialized memory allocation strategies to
store multiple operands in a single memory word. However, this may bring high-
performance degradation due to additional operations to unpack the operands and
feed regularly the execution units, as shown in [170]. Then, also solutions based
on programmable devices (e.g. FPGAs [197]) are over-budget options for IoT ap-
plications. At last, for MCU deployment CMix-NN library supports convolutional
kernels with variable bit-width (8, 4 and 2) that enables the deployment of 68%
accurate MobileNet on an STM32H7 microcontroller unit.

33

Background: Overview of ConvNet Compression Techniques

2.4 Encoding
Weight encoding (or compression) is the process to reduce the memory foot-

print of the ConvNet parameters. There are several techniques used to solve this
task, ranging from general-purpose dictionary-based coders to lossy type-specific
compression algorithms. In a generic ConNet compression pipeline the encoding
stage uses to be placed at the bottom node, in fact, it needs to take advantage of
the sparse and quantized tensors generated by the two previous compression steps:
pruning and quantization. Each sparse tensor is composed of non-zero weights and
location indices (or metadata). As the non-zero weights are hard to compress, most
of the gain be found by the compression of the metadata.

ConvNet tensors can be compressed using different encoding techniques. They
can be grouped in sparse-specific techniques, and type-agnostic techniques. The
former are designed ad-hoc to take advantage of the sparse structures, while the
latter are compression algorithms designed for a generic type of data.

2.4.1 Sparse-Specific
Each sparse-based encoding algorithms mainly focus on reducing the storage

of the metadata, while non-zero values usually cannot be compressed. Based on
the sparsity percentage there is a different optimal sparse representation scheme,
as their efficiency is strictly correlated to the sparsity.

Some of the most popular encoding schemas are:
• BitMap. This is the simplest scheme as the metadata stores 1 bit for each

weight, which value is 1 if the weight is non-zero and 0 vice-versa. This
scheme is very simple but yet effective, especially for lower sparsity levels.
Figure 2.8 shows a pictorial example of Bitmap Encoding where dense values
are colored green, while sparse ones are in white. The set of dense values is
nz-values.

• Coordinate sparse matrix format (COO). A very simple sparse matrix
format is COO, who stores for each non-zero value its coordinates (x, y). This
sparse representation does not allow direct arithmetic operations nor slicing,
but it ensures a very fast conversion to other sparse formats, like CSR/CSC
which, instead, allow direct operations. The main advantages of this format
are the simplicity to implement, and the facility to manage the sparse indices.
On the other hand, this format is more suitable for high sparse regimes, as
it does not always guarantee high compression rates. Figure 2.8 shows a
pictorial example of the COO format. Here the cardinality of nz-row and
nz-col indices are the same of the nz-values set.

• Compressed Sparse Matrices (CSR, CSC). These sparse representations
are designed for scientific computing, in particular for 2-dimensional sparse

34

2.4 – Encoding

COOrdinate

nz-values A B C D E F G H I

nz-row 0 0 0 1 2 2 2 3 3

0 2 3 5 1nz-col 3142

nz-values A B C D E F G H I

nz-jidx 0 2 3 5 1 2 4 1 3

0 3 4 7 9nz-iidx

Compressed
Sparse
Rows

nz-values A B C D E F G H I

nz-iidx 0 2 3 0 2 0 3 2 1

0 1 3 5 7nz-jidx 98

Compressed
Sparse
Columns

nz-values A B C D E F G H I

bitmap
1 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 1 0 1 0 0

A B C

D

E F G

H I

0 1 2 3 4 5

0

1

2

3

BitMap

Figure 2.8: Types of sparse encoding. From top to bottom: BitMap 2.4.1,
COO 2.4.1, CSR and CSC 2.4.1.

matrices. The main advantage of these sparse matrices is that they allow

35

Background: Overview of ConvNet Compression Techniques

being used directly in arithmetic operations: addition, subtraction, multi-
plication, division, and matrix power. Compressed Sparse Row (CSR) and
Compressed Sparse Columns (CSC) are very similar sparse representations
that store respectively the indices metadata from rows or columns point of
view. Figure 2.8 shows a pictorial example of both the formats. For CSR nz-
iidx counts the number of non-zero values for each row, while nz-jidx stores
the column position of each non-zero value. For CSC nz-jidx counts the num-
ber of non-zero values for each column, while nz-iidx stores the row position
of each non-zero value.

All the encoding types cited above have been presented considering weight level
granularity to induce sparsity in the ConvNet, but they can be still extended to
exploit bigger chunks of zero elements grouped in blocks or patterns. Further-
more, sparse matrices formats (COO, CSR, CSC) can be modified to store just the
delta offset of the indices between two non-zero values, with the aim to boost the
compression gain.

2.4.2 Type-Agnostic
• Run-length Encoding (RLE). This is a form of lossless compression where

sequences of equal and contiguous elements (runs) are stored as a single data
value with the size of the sequence. This type of encoding becomes more
efficient in such cases where many of these runs are present. In this particular
case of study, which is sparse quantized matrices, the runs to compress are
composed of zero values. Usually, this particular technique can be used as
a point of beginning in the design of a more complex suitable algorithm for
sparse compression and inference.

• Huffman Coding [94] is a type of optimal prefix code usually used for
generic lossless data compression. The algorithms encode source symbols us-
ing variable-length codewords to generate a table. This table is derived from
the estimated frequency of occurrence of each source symbol. This algorithm
is also an entropy-based coder, and so it uses to represent more common sym-
bols with fewer bits, while less common symbols with more bits. A popular
example of its application on ConvNet compression is showed in [68], where
the authors first prune and then quantize multiple ConvNets to maximize the
compression.

• LZ4[136]. This lossless data compression algorithm belongs LZ77 family of
byte-oriented compression schemes. The main difference between LZ4 and
other LZ77 algorithms based on DEFLATE [33] is that LZ4 does not involve
Huffman Coding in its compression pipeline, but it uses only a dictionary-
matching. This technique does not aim to reach maximum compression rates,

36

2.4 – Encoding

but instead, it focuses on decompression speed: a crucial for online decom-
pression routines. Compared to other compression algorithms, LZ4 shows a
good trade-off between compression rate and decompression speed. However,
the extreme decoding speed is certainly its main merit: up to multiple GB/s
per core, typically reaching RAM speed limits on multi-core systems.

• ZLIB[34]. This is not a simple compression algorithm, but instead a full soft-
ware library for general-purpose data compression. Its compression pipeline is
based on DEFLATE, and it stores multiple blocks composed of bytes of source
data with relative headers. It provides multiple compression configurations,
trading off between compression speed and compression rate. The maximum
compression configuration allows Zlib to reach extreme compression rates, at
cost of relatively slow decompression. Above the huge compression capability,
its main merit is the portability across platforms.

2.4.3 Inference of Encoded ConvNets
Once the ConvNet parameters are encoded in a particular format, they are

stored in the memory of the edge device memory: for example the FLASH memory
for general-purpose micro-controller units. The main issue is how to process the
model weights, as they cannot be directly multiplied for the input samples. At this
time, there are two main ways to manage the inference stage at the edge.

Direct Inference

The first approach is to direct process the data in the encoded format, which
means avoiding the decompression stage. To operate this method the inference
engine needs to be designed ad-hoc for the encoded format. This can be done both
on (i) general-purpose MCU, with specialized sparse kernels, and on (ii) hardware
accelerators, which require custom hardware components co-designed with special-
ized processing routines. In both cases, the main benefits to use direct processing
of compressed data are two: avoiding unnecessary data transfer (fast inference) and
reducing the compressed model size (tiny storage). To develop an efficient encoding
algorithm to run-time process compressed data, the crucial requirements to respect
are surely the compatibility with the inference engine and the compression rate.
In fact, the decompression speed is not relevant for this type of approach, as they
totally skip the decoding stage.

One example of sparse kernels for MCU is showed in [225], where the authors
use CSR format to on-the-fly process the encoded ConvNet layers, bypassing the
decompression phases. On the other hand, an example that exploits CSR-encoded
ConvNets of hardware-accelerator is [70]: an efficient inference engine working with
customized sparse matrix-vector multiplication and weight sharing. In [157] instead
the authors designed an accelerator architecture able to fully take advantage of

37

Background: Overview of ConvNet Compression Techniques

the sparsity of both weights and activations. In this case, the compressed format
includes, besides the standard non-zero values array, an index vector composed by
the number of dense values followed by the numbers of zeros before each value. More
recently the use of systolic tensor arrays (2-D pipelined arrays of tensor processing
elements) to accelerate general matrix multiplication (GEMM) of sparse ConvNets
inference. They apply a novel block-shaped pruning based on density, then using
a bitmap encoding on 8 elements blocks. In summary, these techniques exploit
the sparse ConvNets during edge inference with a full hardware-software co-design.
Then, thanks to this larger vision, they provide astonishing results in terms of
latency and compression, which are hardly equalized with other hardware-agnostic
approaches. Other popular works to fast inference of sparse ConvNets with custom
accelerator are proposed in [9, 207, 238, 130].

At last, it needs to be observed that similar approaches have been proposed to
manage sparse ConvNets also using sparse kernels on GPUs [38, 48], however, this
section does not overview such approaches as the focus is on the edge inference.

Run-time Decompression

The second possible approach to manage MCU inference of compressed Con-
vNets is to run-time decompress the ConvNet. This approach focuses to optimize
the ConvNet from a storage point of view, as it does not aim to directly speed
up the inference. In fact, these approaches are designed to process a dense infer-
ence: the advantage to have sparse tensors is exploited just by the reduction of the
memory footprint.

One possible approach is to layer-wise decompress the layers, which were priorly
stored in FLASH memory as separated blocks, avoiding the full model decoding.
An example is EAST [57], where block-sparse ConvNets are compressed using LZ4
algorithm and run-time processed on Arm Cortex M4 MCU. A similar strategy has
been explored in [2]. The authors extended the Viterbi-based pruning presented
in [116] with a novel encoding scheme able to compress both indices and non-zero
values. This technique allows them to build a highly parallel sparse-to-dense recon-
struction architecture, which is the key enabling to fast reconstruct the dense model
during the inference. They use a custom pruning algorithm, which selects the prun-
ing candidates according to how much they fit the Viterbi encoding; furthermore,
they need a custom architecture to process the run-time decompression during in-
ference. Using this type of strategy, above the compression rate, makes crucial the
decompression speed: in fact, this feature needs to bring negligible latency overhead
to the inference stage. For this reason, the choice of the compression algorithms
needs to be driven by its decompression speed, as too high latency overheads might
frustrate the memory footprint benefit due to compression.

A different strategy to accomplish run-time decompression is the on-the-fly gen-
eration of ConvNets during inference. Various works explored the factorization of

38

2.4 – Encoding

convolutional filters to compressed model representations, these solutions exploit
these compressed models to generate the full structure just run-time during in-
ference. One of the pioneering works is proposed in [65], which uses an auxiliary
network, called HyperNetwork, to generate the weights of each layer in the main
network. It is a relaxed form of weight sharing across layers, as it can generate
multiple networks using just an embedding of their parameters. To deterministi-
cally generate convolutional filters at run-time, the authors of [166] used a dense
combination of Fourier Bessel’s bases. While in [43, 194, 200] the bases are formed
orthogonal variable spreading factor (OVSF) binary codes. At last, in [217] the
filters are layer-wise samples from a single learnable filter. In this way the weights
are shared across different filters, enabling faster and deterministic processing of
the network.

39

40

Chapter 3

Statistical-Oriented Training and
Compression

3.1 Motivation
The pioneering works of efficient deep learning proposed post-training proce-

dures to optimized ConvNets. At first, we started to work on automatized com-
pression of ConvNets with the aim to fuse training and optimization in one unique
loop. The first statement was very simple: a smaller model requires less memory to
be stored and fewer operations to be executed. We analyzed how the distribution
of the weights of a ConvNet model can be approximated in order to reach a good
compression rate, limiting the accuracy loss. This section depicts two different
works focused on the same topic: statistical-oriented training and compression.

The first strategy we present is a compression-driven training framework that
aims to concurrently run training and optimization together [59]. It consists of an
iterative training loop with a ternary quantization: for each layer, the weights are
constrained into (−σ, 0, +σ) values. To learn the boundaries [−σ, +σ] we designed
a layer-wise approach that allows matching the characteristics of the training set.
Once the ConvNets are compressed, they show a peculiar discrete distribution of
weights that can be easily stored into very small memory blocks thanks to appro-
priate encoding routines. In particular, in this work, we applied a custom encoding
scheme inspired by the popular RLE. Furthermore, the ternary quantized layers
bring sensitive benefits to computation efficiency. Indeed, the accumulation of the
results produced by the multiplication of input operands with the constant pa-
rameters −σ and +σ can be transformed into a factorized multiplication between
the constant σ and the accumulation of (eventually sign-flipped) operands. The
proposed compression pipeline is validated both on ConvNets and Recurrent Neu-
ral Networks (RNN), the first applied on image classification (using the CIFAR-10
and CIFAR-100 data-sets), the second on text-based sentiment analysis (IMDb

41

Statistical-Oriented Training and Compression

dataset). Experimental results are promising, in fact, the achieved compression ra-
tio ranges from 35× to 95× and the total number of matrix-vector multiplications
is reduced by 99%, with an acceptable accuracy degradation: a minimum of 0.68%
loss for the more overparametrized ConvNets. However, since the accuracy loss is
unconstrained, some narrower and more fragile models experienced large accuracy
degradation, up to a maximum loss of 18.7%.

Observed these results, we worked to improve over the original training algo-
rithm presented in [59] introducing a knob to control accuracy. The second work
is a Layer-Wise Compressive Training [58]: it extends the previous compression
pipeline with the rationale to apply the σ-constrained compression only on a spe-
cific subset of layers. To address this issue we design a heuristic search to quantify
the significance of each layer, i.e., how the layer affects the classification perfor-
mance. The resulting compressed ConvNet is a hybrid model where less significant
layers (those that contribute less to the inference process) are optimized with the
compressive algorithm proposed in [59], whereas the most significant layers remain
untouched. Experimental results demonstrated that the proposed hybrid compres-
sion algorithm is very effective to outperform previous techniques achieving a better
compression-accuracy trade-off.

42

3.2 – A Compression-Driven Training Framework

3.2 A Compression-Driven Training Framework
It is well known by literature that pruned weights show a bimodal distribu-

tion [72], with positive and negative samples having similar centroids and shapes
(Figure 2.2). For this reason, it is possible to constraint the training into a sym-
metric ternary space (−σ, 0, +σ), where the σ value is learned through the SGD
algorithm (in this particular case we used Adadelta version). In this way, the
learning procedure directly searches the optimal σ. This approach (i) avoids an ex-
haustive search throughout all the possible values of σ, and (ii) allows σ to evolve
and adapt by following the minimization of the loss function. The crucial feature of
the σ learning is that one different σ centroid is computed for each layer, computed
independently on its weight distribution. A particular case of study can be applied
at coarser granularity on small-size ConvNets, merging the distribution of all the
layers together in a single instance, so working at a coarser granularity.

3UHOLPLQDU\�

7UDLQLQJ

1��

1��

UH�7UDLQLQJ

7HUQDUL]DWLRQ

:HLJKWV�

3UXQLQJ

UH�7UDLQLQJ

1��

1��

Figure 3.1: The proposed training flow.

3.2.1 Training ConvNets in a Constrained Space
Figures 3.1 summarizes the three stages of the proposed framework.
Preliminary training: a standard dense training procedure with SGD opti-

mization to learn the weights set θ. The number of training epochs N1 is a fixed
hyperparameter depending on the task. The model can be initialized as zero, or
instead from a pre-trained model by transfer learning. Once computed the N1

43

Statistical-Oriented Training and Compression

epochs, the model weights have a distribution similar to the one shown in Fig-
ure 3.2-. This particular case refers to the second layer of AlexNet ConvNet trained
on the CIFAR10 data-set. It is easy to see how the weights are shaped like a normal
distribution with a zero-placed centroid.

Pruning: a magnitude-based unstructured pruning of the trained weights. We
applied iterative pruning and training pipeline with polynomial decay scheduler to
gradually achieve the desired amount of sparsity. This stage lasts N3 epochs. It
needs to be observed that each pruning step is followed by a short retraining phase
to adapt the dense weights (remaining connections) to the new sparsity space.
This dense retraining stage lasts N2 epochs. Both N2 and N3 hyperparameters
strongly depend on the model size and the task complexity. To enable a fine-
grained exploration of the solution space, an additional parameter is leveraged to
slow down the descent by multiplying derivatives by a factor γ ≪ 1, which is
a tunable parameter that can be included in the definition of η (Section 2.1.1).
Pruning effects on weights distribution are sensitive, as shown in Figure 3.2-b for
the second layer of AlexNet.

Ternarization: the remaining weights are bounded across −σ and +σ. The
process is applied layer-wise to fully take advantage of the split weights distribution
after pruning (as reported in the previous section). The value of σ is computed
iteratively with updates defined using the back-propagation error. At each iteration,
for each layer l of the DNN: (i) σl is updated to its near-optimal value, (ii) all the
non-pruned weights are centered on the ±σl according to their signs. It needs to
be noted that the pruning masks continue to be updated also in this stage, as they
are not frozen after iterative pruning. Also here, there is a short retraining phase
after each ternarization step.

The maximum number of retraining epochs is defined as N4. In case the ternar-
ized model reaches the baseline accuracy before the pipeline stops the training
iteration through early-stopping. It is worth noticing that each retraining is aware
of the current σ-ternarization, namely, the derivatives are computed considering the
actual σ: a crucial aspect to perform a real descent and a proper accuracy-driven
σ update. This is a clear difference in respect to previous work on the subject,
where derivatives are not guaranteed to achieve an optimal value [168]. At the end
of this process, the distribution of the weights totally change respect before, as it
becomes discrete: weights are no more defined over a continuous space, but just
in two non-zero values in correspondence with the found σl. Figure 3.2-c shows
a pictorial example of the final σ-constrained weights distribution for the second
layer of AlexNet ConvNet.

Ternarization: Analytical Formulation

This paragraph provides a more formal description of the ternary quantization
(ternarization) stage.

44

3.2 – A Compression-Driven Training Framework

-0.1 -0.05 0 0.05 0.1
Values

0%

20%

40%
Oc

cu
rre

nc
e

-0.1 -0.05 0 0.05 0.1
Values

-0.1 -0.05 0 0.05 0.1
Values

Figure 3.2: The distribution of the second layer weights of AlexNet trained
on CIFAR10: after preliminary training (left), after pruning (center), after σ-
ternarization (right).

Identification of σ: at any generic iteration, and independently for each layer
l, the value of σ is computed from the statistical mean of the distribution of the
weights θ. Such mean, for each layer, is calculated as:

σ = 1
ψ

ψ−1∑︂
i=0
|θi + ∆θi| (3.1)

where ψ is the number of weights after pruning, θi are the weights, and ∆θi is the
update resulting from the back-propagation of the error function. For each iteration,
the time overhead to compute σ is negligible compared to the time required to
complete one training step. The positive and negative contributions of Equation 3.1
split, as shown in Equation 3.2.

σ = 1
ψ

⎡⎣ ∑︂
θi>0

(θi + ∆θi)−
∑︂
θi<0

(θi + ∆θi)
⎤⎦

= 1
ψ

ψ−1∑︂
i=0
|θi|+

1
ψ

⎛⎝ ∑︂
θi>0

∆θi −
∑︂
θi<0

∆θi

⎞⎠ (3.2)

Following the description reported in Section 2.1.1, where ∆θ⃗ = −η∇⃗L(θ⃗k), ∆θi
can be expressed as in Equation 3.3.

∆θi = −η ∂L
∂θi

(θ⃗k) (3.3)

Finally, at the (n + 1)-th iteration, (3.2) can be written as σ(n+1) = σn + ∆σ,
with ∆σ defined as below:

∆σ = 1
ψ

⎛⎝ ∑︂
θi>0

∆θi −
∑︂
θi<0

∆θi

⎞⎠ (3.4)

Update of σ in the constrained space: σ value is computed each iteration
from the weighted arithmetic mean of the gradient components. Hence, the partial

45

Statistical-Oriented Training and Compression

derivative of each weight would affect the value of σ as strong as that weight is
far from the optimal value. In other words, as far as using the arithmetic mean
for the first step represents a reasonable starting point, to carry out an optimum
search strategy during fine-tuning σ is updated in a constrained solution space.
This space can be seen as a semi-bisector described as in Equation 3.5, where s⃗ is
a vector having components in the form sj = sign(θj) and norm ||s|| =

√
ψ.

ê = s⃗

||s||
(3.5)

As the dense weights can be expressed in the vectorized form θ⃗, all their possible
values (thus including the optimal solutions) can be found along the tensor θ⃗ = σns⃗.
It needs to be noted that theoretically, some components of the direction could
change, as θj might invert its sign. Therefore, the solution space is the set of all
possible semi-bisectors, and the complete definition of sj takes the form reported
in Equation 3.6.

sj = sign(θj + ∆θj) (3.6)
Let us assume a generic 5× 5 array is pruned, keeping dense only two positive

weights (θx, θy) and one negative weight θz are left. Then the solution space can
be formulated as a 3-dimensional array and becomes a semi-straight line, whose
direction is s⃗ = (1, 1,−1)T . Figure 3.3 gives a pictorial representation of the solution
space taken in example. If the actual solution θ⃗ = (θx, θy, θz)T = (σn, σn,−σn)T
belongs to the attractive valley of a minimum point H, then −∇⃗L(θ⃗) will point
towards it.

� ��

����

��
�

��

��

��

Figure 3.3: Visual representation of the solution space.

However, θ⃗ can only move along s⃗, i.e., ê. This means that it is possible to find
the projection of −η∇⃗L(θ⃗) on ê to known which is the optimal ∆σ, i.e., the closest

46

3.2 – A Compression-Driven Training Framework

point to H. This is the main objective of this algorithm: adapting σ to approach
the minimum point in the best approximated way. In fact, the scalar product in
Equation 3.7 that projects ∆θ⃗ = −η∇⃗L(θ⃗) on ê can be used to update σn, obtaining
a formulation which is similar to (3.4).

∆σ = ⟨e⃗,∆θ⃗⟩ = 1√
ψ
⟨s⃗,∆θ⃗⟩ = 1√

ψ

ψ−1∑︂
i=0

si∆θi (3.7)

The difference between (3.4) and (3.7) stands in a constant factor, 1/
√
ψ, which

can be a good starting point for tuning the slowing factor γ previously described.

Multiplication savings

A factorization of σ from the matrix of weights θ can significantly reduce the
computational load. Indeed, σ can be pre-multiplied by the input x⃗ to compute
z⃗ = σx⃗, and then to calculate the dot-products θ · x⃗ using z⃗ and S, like showed in
Equation 3.8. It needs to be noted that S is the matrix whose entries belong to the
set {−1, 0, 1}.

y⃗ = θx⃗ = (σS)x⃗ = S(σx⃗) = Sz⃗ (3.8)
Thank this straightforward transformation, most of the multiplications can be re-
placed by sums.

For the sake of comprehension, the calculation for the i-th element of the output
vector y⃗ is reported in Equation 3.9, where Z = |z⃗| is the cardinality of z⃗.

yi =
Z−1∑︂
j=0

sijzj =
∑︂

∀sij=1
zj −

∑︂
∀sij=−1

zj (3.9)

Weight Encoding

DNNs obtained with the proposed σ-constrained training show very sparse ma-
trices that can be efficiently compressed using some encoding scheme. The one used
in this work is derived from the well-known run-length encoding.

As reported in Figure 3.4, the weights of each layer can be stored as a tensor
of ternary components (−1,0,1), each of them represented as a 2-bit integer, and
a common multiplicative constant σ represented as a 32-bit floating-point. The
encoding algorithm parses the matrix row by row thus generating strict alternation
of two basic elements: a counter on N bits, which replaces a sequence of zeros with
its unsigned integer length, and a non-zero weight represented with a single bit,
namely 0 for σ and 1 for −σ (please refer to Figure 3.4-b).

While a classical run-length encoding would select N s.t. the longest sequence
of zeros, i.e., M = 2N − 1, can be correctly represented, our scheme accounts for
the following observation. If only a few zero sequences are longer than M = 2N−1,

47

Statistical-Oriented Training and Compression

Figure 3.4: Weights matrix encoding: (a) pruned matrix, (b) encoding scheme, (c)
actual memory mapping.

the use of N + 1 bits is a huge waste of memory. Instead, it is possible to split
those sequences and represent them with two, or more, counters of size N . Even if
this approach breaks the strict regularity of the described pattern, this exception
can still be acknowledged by the decoder by forcing the first counter to be M . To
avoid errors, if the sequence of zeros is exactly of length M , a fake counter set to
zero must be put after the one set to M . Additionally, if two non-zero weights are
adjacent, a zero-counter must be included in between. However, this also represents
another unlikely situation when high pruning percentages are used. As an ultimate
optimization, the last counter can be omitted because the dimension of the matrix
is known.

Figure 3.4-c reports an example where N = 2. Please notice that this encoding
is independent of the precision of σ. As a final remark, two or more matrices can
be concatenated, either by rows or by columns, in order to be merged together in
a single compressed representation.

In conclusion, the adopted encoding allows storing the network structure param-
eters very efficiently, bringing most of the information in a N -bit data structure. In
this regard, to quantify the compression rates achieved by the encoding algorithm,
we introduced the value CR defined as the ratio between the actual memory size
needed by the model after the preliminary training phase, and the storage needed
after ternarization and encoding. As an example, Equation 3.10 depicts the formu-
lation of CR using the proposed encoder with a 2-bit counter: N0 is the number of
parameters after the preliminary training (defined over 32 bits); Nσ is the number
of σ constants returned after ternarization (defined on 32 bits); length is a function
returning the bit-length of the encoded array Enc.

CR = N0 · 32bit
Nσ · 32bit + length(Enc) (3.10)

48

3.2 – A Compression-Driven Training Framework

3.2.2 Experimental Results
ConvNets on CIFAR10 and CIFAR100

The CIFAR10 and CIFAR100 data-sets [109] consist of 45k images, 5k for val-
idation and 10k for testing. They only differ by the the number of classes (i.e.
labels), 10 and 100 respectively. We tested our proposed method on 5 very pop-
ular ConvNets: AlexNet [110], VGG19bn [180], ResNet18 and ResNet50 [77], and
SqueezeNet [95].

For each ConvNet we explore 2 different pruning sparsity: 80% and 90%. Ta-
bles 3.1 and 3.2 report the obtained results. For each table, from left to right,
we report the model name, the baseline (i.e. accuracy achieved with a standard
dense training), the sparsity percentage, the accuracy after the compression-driven
training with its difference w.r.t. the baseline, and at last the compression rate
CR. It is clear to see how the residual networks ResNet18 and ResNet50 provide
the best overall results: they reach up to 67× of compression with a small accuracy
loss (close to 2% in the worst case), for both CIFAR10 and CIFAR100. Remark-
able results can be observed also on the VGG19bn model: CR = 78× with 3.2%
accuracy loss. On the other hand, smaller ConvNets suffer sensitively by ternary
quantization, in fact, their accuracy loss is not negligible (> 2%). For instance,
SqueezeNet is designed to be very thin, with very small kernels. This aspect is
crucial for the effectiveness of the ternarization process: a smaller kernel means
lower resolution which is further reduced after the ternary quantization, resulting
in a substantial loss of information. However, from a compression point of view,
the ternarization is still very effective also on those thinner models: the best result,
in terms of trade-off, is achieved with AlexNet on the CIFAR10 with a CR = 67×
and about 6% of accuracy loss.

Focusing on the compression results of CIFAR10 and CIFAR100, it can be
observed how the compression rate, at the fixed sparsity level, is virtually the
same for both datasets. In fact, the ConvNet architectures used for CIFAR10 and
CIFAR100 are very similar: they basically differ just from the size of the last dense
layer, which manages a different number of classes. This demonstrates that the
proposed compressive training algorithm can achieve very high compression rates
regardless of the target application. Concerning hardware improvements, for all
considered networks the average multiplication savings is above 98.5%. (Section
3.2.1). This result clearly proves that the proposed algorithm is not only able
to reduce the model size, but also dramatically reduces the number of inference
operations.

RNN on IMDb

We also tested our algorithm on a recurrent neural network with the aim to prove
its generalization capability. In particular we used a Long Short-Term Memory

49

Statistical-Oriented Training and Compression

Model Baseline Sparsity Tern. Acc. CR
(%) (%) (%) (×)

AlexNet 77.22 80 71.02 (-6.20) 38
90 69.95 (-7.27) 67

VGG19_bn 93.34 80 90.12 (-3.22) 39
90 90.05 (-3.29) 78

ReNet19 93.02 80 92.34 (-0.68) 36
90 91.96 (-1.06) 67

ReNet50 93.65 80 91.88 (-1.77) 36
90 91.42 (-2.23) 66

SqueezeNet 90.00 80 73.54 (-16.48) 35
90 72.14 (-17.86) 69

Table 3.1: Results on CIFAR10.

Model Baseline Sparsity Tern. Acc. CR
(%) (%) (%) (×)

AlexNet 43.87 80 35.69 (-8.18) 38
90 35.21 (-8.66) 63

VGG19_bn 71.95 80 66.38 (-5.57) 38
90 64.12 (-7.83) 77

ReNet19 70.93 80 70.54 (-0.39) 36
90 70.07 (-0.86) 67

ReNet50 71.05 80 70.23 (-0.82) 36
90 70.19 (-0.86) 65

SqueezeNet 56.29 80 39.56 (-16.73) 37
90 37.59 (-18.70) 74

Table 3.2: Results on CIFAR100.

(LSTM) cell [114] on the IMDb data-set [137] benchmark, which is composed of
25 thousand textual reviews of movies with a positive (1) or negative label(0). An
abstract view of the RNN model is depicted in Figure 3.5. The cardinality of the
dataset is of 50k samples, which are equally split into 50 − 50 (25k for training
and 25k for testing). The reviews are preprocessed and each one is encoded as
in a vector V EC, which is then processed by the LSTM cell; the output of the
LSTM is averaged through a pooling layer and then fed to the logistic regression

50

3.2 – A Compression-Driven Training Framework

VEC LSTM MEAN REG
!"#$%&'(#)%

*+$%,-)+.

/'$#.#()

-)(#)*

Figure 3.5: Pictorial representation of LSTM network structure used on IMDb
dataset.

Baseline Sparsity Tern. Acc. CR
(%) (%) (%) (×)

88.59
50 88.67 (+0.08) 35
80 88.36 (-0.23) 55
90 87.21 (-1.38) 95

Table 3.3: Results for custom RNN trained on IMDb.

layer. We applied our compressive training only on LSTM layer, for sparsity∈
{50%, 80%, 90%}.

Experimental results look promising, as shown in Table 3.3. For sparsity lower
than 90% the accuracy loss is negligible (≤ 0.23%), with a compression rate that
ranges from 35× to 55× respectively for 50% and 90% of sparsity. For the highest
sparsity level (90%) instead, the compression rate reaches 95×, at cost of higher
accuracy loss (1.38%). It needs to be highlighted that with a pruning percentage of
80%, our technique is not just able to avoid any miss-classification, but it marginally
improves the dense model accuracy baseline by 0.08%.

Concerning multiplication savings, we observed that the LSTM model can be
grouped into matrices, each of them factorized by a dedicated σ value, which for this
particular case are σ1 and σ2. Since both inputs and outputs have n components
and matrices are squared, then just ϕT = 2n multiplications are needed instead of
the originally required ϕO = 8n2 multiplications. Therefore, considering that for
the specific network used in this work n is equal to 128, the total amount of saved
multiplications is the ratio ϕT/ϕO ≈ 0.2%, meaning that 99.8% of multiplications
are eliminated.

3.2.3 Conclusions
We proposed a novel compressive training algorithm for deep neural networks

able to fuse together pruning, ternary quantization, and encoding in a homoge-
nous optimization loop. The experimental analysis clearly demonstrated that our
training algorithm is able to dramatically reduce the storage needed to store the
full-precision 32-bit network ranging from 33× to 95× of compression rate. In

51

Statistical-Oriented Training and Compression

most cases the accuracy drops are negligible. To exploit the sparse and quantized
networks, we proposed a custom sparse encoding scheme able to sensitively reduce
both the memory footprint and the total amount of matrix multiplications by 99%,
thus enabling an efficient deployment of deep neural networks at the edge of the
IoT.

52

3.3 – Boosting Compression via Layer-Wise Strategy

3.3 Boosting Compression via Layer-Wise Strat-
egy

This work improves over the original algorithm described in the previous sec-
tion 3.2, introducing a knob to control accuracy. It consists of a two-stage flow:
first, layers are sorted by means of heuristic rules according to their significance;
second, a modified stochastic gradient descent optimization is applied on less signif-
icant layers such that their representation is collapsed into a constrained subspace.

3.3.1 A Greedy Approach for Compressive Training
This section gives a step-by-step description of a new greedy strategy
This section illustrates step-by-step how the proposed greedy strategy com-

presses the layers during training. The flow is reported in Figure 3.6. At a glance,
the algorithm is composed of three main stages denoted with different colors: pre-
training (light red), setup (yellow), and optimization (blue). The numbered boxes
serve as an index for the detailed description.

53

Statistical-Oriented Training and Compression

Trained CNN Model

Pruning

Layers Sorting

Compression

Validation

C2

Update

re-Training

Condition 1: Accn > Acc0 - ε
Tolerance: ε

Accuracy: Acc0
Epoch: 0

Accuracy: Accn
Epoch: n

Ternary Layers Counter: N += ΔN
CounterStep: ΔN

C1

Condition 2: n = n_max
Epochs Number: n_max

Metric: Sparsity %

Full Precision
re-Training

Layerwise
Ternarization

0

1

2

3

4

5

6

7

8

Granularity: Weights
Metric: Magnitude

PRE-TRAINING

SETUP

OPTIMIZATION

Y

N

N

Y

Figure 3.6: The proposed net compression pipeline.

Pre-Training

Step 0—Trained ConvNet Model. The input of the proposed flow is rep-
resented by the trained model of the ConvNet that needs to be optimized. Our
solution is designed to work on classical floating-point ConvNet models; however,
it can be also applied to quantized ConvNets. It can work equally on top of pre-
trained floating-point ConvNet models, or on clean models, after a standard training
process.

Setup

Step 1—Pruning. It consists of a standard magnitude-based pruning applied
to both convolutional and fully connected layers. In detail, we applied pruning

54

3.3 – Boosting Compression via Layer-Wise Strategy

with layer-wise homogeneity (see Section 2.2.4): the weights of all the layers are
included in a unique set, in order to be pruned all together, computing a unique
importance score, with no distinction between which layer they belong. In this
way, the user specifies an a priori value for the desired percentage of the sparsity
of the net, and since such a value is unique for the entire ConvNet, each layer may
show a different pruning percentage. This allows representing the ConvNet model
with a non-homogeneous inter-layer sparsity. We decided to follow this direction
under the assumption that each layer influences the knowledge of the ConvNet
differently, i.e., each layer provides a specific contribution to the final prediction.
For this reason, the layers do not all keep the same amount of information, but
the knowledge is spread heterogeneously among the layers, and hence they keep
different percentages of redundant parameters.

Step 2—Layers Sorting. It is known that some layers are more significant
than others. That means the compression of less significant layers will marginally
degrade the overall performance classification. The most significant layers, instead,
should be preserved in their original form. As a rule of thumb, we selected the
intra-layer sparsity as a measure of significance. More in detail, we argue that layers
with lower intra-layer sparsity are those that play a major role in the classification
process, whereas those with a higher intra-layer sparsity can be sacrificed to achieve
a more compact ConvNet representation. In other words, we base our concept of
significance on the number of activated neurons.

A significance-based sorted list of layers is generated at first. All layers are
processed as they appear in the original model, and then pruned and sorted based
on their weights distribution according to the rule higher-sparsity first-compressed.
A graphical example is reported in Figure 3.7, where (i) the top-most pictures
represent the original weight distribution of each layer (numbered L1 to L8) of the
AlexNet model trained on the CIFAR10 dataset; (ii) the plots in the middle depicts
the weight distribution after pruning; and (iii) the down-most plots report the
layers sorted according to their significance, namely, less important layers are those
with a smaller standard deviation, which is directly correlated to their sparsity.

55

Statistical-Oriented Training and Compression

Figure 3.7: AlexNet on Imagenet, layers after the sorting algorithm; the sparsity
value S is reported for each layer.

Optimization

Step 3—re-Training The retraining phase is applied in order to recover the
accuracy loss due to pruning. The retraining is applied after pruning at first, and
then after each optimization loop.

Step 4—Compression It is the compressive training described in Section 3.2.
The weights are projected in a sub-dimensional space composed by just three values
for each layer, i.e., (−σ, 0,+σ), with σ defined layer-wise.

Step 5— Validation The model is validated in order to quantify the accuracy
loss due to compression, and thus to decide if it is worth continuing with further
compressions. Validation is a paramount step for the greedy approach as it actu-
ally enables an accuracy-driven optimization. The accuracy Accn is evaluated and
stored after each compression epoch n.

Step 6—Condition 1 (C1) The accuracy recorded during the n-th epoch
(parameter Accn) is used to determine if the ConvNet model can be further com-
pressed, as in Equation 3.11. The accuracy of the pre-trained model (Acc0) works
as a baseline, whereas the parameter ϵ represents the user-defined accuracy loss tol-
erance:

Accn > Acc0 − ϵ. (3.11)
It is worth noticing that the higher the ϵ, the higher the compression of the

ConvNet model1. The framework takes a larger execution time for small values of
ϵ; this is due to the increased complexity in selecting a good combination of layers

1The optimal value of epsilon can be found through several hyperparameter optimization tech-
niques. However, in this work, we fixed the ϵ value at 1%, considering significant solutions just
the ones with negligible accuracy loss.

56

3.3 – Boosting Compression via Layer-Wise Strategy

that allows matching the user’s constraints. However, both the execution time and
the power consumption of the inference stage are totally uncorrelated to the ϵ value.

C1 can lead to two possible branches: if Equation 3.11 holds true, then the
algorithm goes to step 7; otherwise, the quit condition C2 is evaluated.

Step 7—Update This stage is applied if Equation 3.11 is verified. The counter
N indicates how many layers of the sorted list can be compressed. Each and every
time C1 is evaluated as true, and N is incremented by ∆N . The latter represents
another granularity knob, hence on the speed of the framework; ∆N is mainly
defined by the network size: the larger the ConvNet model, the larger the ∆N .

Step 8—Condition 2 (C2) This last condition is based on the maximum
number of epochs nmax, a user-defined hyperparameter. At the n-th iteration, if
more than nmax epochs are elapsed, the algorithm stops, else the flow iterates over
step 3.

Figure 3.8 shows the accuracy evolution during the optimization loops, reporting
the validation accuracy both after an entire training epoch (blue line) and inside
the optimization loop of the network (red line), that is retraining and compression.
To better understand the behavior of the model during its compression, we recall
that, for each loop, the algorithm first runs a full precision dense training step that
updates the weights to recover the accuracy (Step 3), and then it compresses the
weights into the σ-constrained solution space (Step 4). This last step is the main
cause of the accuracy drop (i.e., the gap between red and blue lines). As the plot
suggests, the accuracy loss is recovered within each retraining phase. The peak of
loss reflects the addition of a new layer in the compressible subset list. There are
layers that influence more the performance drop, but in general, after some epochs,
the network reconstructs the information lost.

57

Statistical-Oriented Training and Compression

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Step4
Step3 + Step4

Figure 3.8: Accuracy evolution during the training of VGG-19 architecture on
CIFAR10 dataset. The plot shows all the details of the optimization loop. The blue
line is the accuracy after each training epoch (Step4), which is the accuracy of the
compressed model (one value for each training epoch). The red dotted line depicts
the accuracy evolution inside a full training step (Step3 + Step4) to highlight how
the model is able to rapidly recover the accuracy loss after each compression step,
using just one epoch of retraining.

3.3.2 Experimental Results
The objective of this section is to quantify the effectiveness of our compression

training w.r.t. other state-of-the-art solutions. We focus on some of the most
popular ConvNets models and datasets.

ConvNet models—The adopted ConvNet models are trained from scratch or
retrained from the Torchvision package of PyTorch [158]. More specifically, we
adopted the following ConvNets: AlexNet [110], VGG [180], and several residual
networks with increasing complexity [77].

All the models are trained and tested using PyTorch [158] (version 0.4.1). The
training epochs of the compressive algorithm are fixed to 100, with a batch size of
128 and an initial learning rate of 1 × 10−3, which is scaled every 33 epochs by a
factor of 0.1.

Datasets—We used three different datasets for the experimental analysis: CI-
FAR10, CIFAR100 [109], and Imagenet [110]. As the datasets are composed of im-
ages with different sizes, each architecture has been adapted to the input dataset,
in particular to the size of its samples.

CIFAR10 and CIFAR100 are two large-scale image recognition benchmarks that,
as their names suggest, differ for the number of available labels. Both are made
up of 60k RGB images. The raw 32 × 32 data are pre-processed using a standard
contrast normalization. We applied a standard data augmentation composed of a
4-pixel zero-padding with a random horizontal flip. Each dataset is equally split

58

3.3 – Boosting Compression via Layer-Wise Strategy

into 50k and 10k images for training and validation, respectively. The intersection
between the training set and the validation set is void. Tested ConvNets are:
AlexNet [110], VGG [180], and residual networks [77].

ImageNet (ILSVRC-2012) represents a ultra-large image dataset. Being com-
posed of about 1.2 M images for training and over 50k ones for validation, it ac-
counts for a total of 1k different classes. We followed the original data augmenta-
tion reported in [110]: the original raw images with size 256× 256 are cropped into
224× 224 patches with a global contrast normalization. For the training stage, the
transformation is applied randomly together with a horizontal flip; during valida-
tion, a center crop manipulation is applied. AlexNet [110] and ResNet18 [77] are
the two tested ConvNets.

Performance

For the validation of the proposed technique, we consider the trade-off between
the accuracy loss and the compression ratio. The two performance metrics are
described in Equations 3.12 and 3.13. The former represents the accuracy loss and
is defined as the difference in terms of accuracy percentage between the original
full-precision model (ModelFP) and the compressed one (ModelC). The latter
describes the compression rate (CR) defined as the ratio between the memory
storage needed to save the original model parameters and the storage needed for
saving the compressed model after the encoding. Various evaluation metrics are
used to quantify the performance of a classifier; the choice of the correct one depends
on the context and by the application. However, regarding Image Classification,
the most used metric is certainly the classification accuracy, which is the number
of the corrected classified input samples divided by the total number of samples.
For this reason, the trade-off between the accuracy loss (minor is better) and the
compression rate (higher is better) can be used as the measure of the quality of the
model compression, as largely employed in the literature [67]. On each compressed
layer, we apply the weights encoding illustrated in [59], using a 4-bit counter. In the
original model, all the weights (N0) have to be saved in 32-bit; for the compressed
model, only the different Nσ values (one per each compressed layer) and the total
number of weights of the full-precision layers NFP need 32-bit precision.

AccuracyLoss [%] = Accuracy(ModelFP)− Accuracy(ModelC), (3.12)

CR [×] = N0 · 32bit
NFP · 32bit + Length(Enc) · 1bit +Nσ · 32bit

. (3.13)

We first focus on the performance on CIFAR10 and CIFAR100 datasets with
AlexNet, V GG19bn, and ResNet110. Tables 3.4, 3.5 summarize the obtained re-
sults. In both tables, the first row reports the name of the ConvNet model with the
baseline accuracy in parentheses; the second row reports the experimental results in

59

Statistical-Oriented Training and Compression

Model Baseline Accuracy CR
(%) (%) (×)

AlexNet 77.22 76.44 (-0.78) 26.4 ×
VGG19_bn 93.02 92.20 (-0.82) 6.7 ×
ResNet110 93.81 93.32 (-0.49) 8.0 ×

Table 3.4: Experimental results on CIFAR10. For each ConvNet model, the accu-
racy loss is referred to the baseline accuracy and it is reported in parentheses. The
compression rate is abbreviated to CR.

Model Baseline Accuracy CR
(%) (%) (×)

AlexNet 44.01 43.47 (-0.54) 26.4 ×
VGG19_bn 71.95 71.62 (-0.33) 6.5 ×
ResNet110 71.14 70.80 (-0.34) 7.3 ×

Table 3.5: Experimental results on CIFAR100. For each ConvNet model, the accu-
racy loss is referred to the baseline accuracy and it is reported in parentheses. The
compression rate is abbreviated to CR.

terms of Top-1 accuracy and accuracy loss; the last row describes the compression
rate after weights encoding for each different ConvNet model. Obtained numbers
refer to a user-defined accuracy loss of < 1%. The numbers suggest not only that
the accuracy constraint is successfully met, but they also indicate that a very large
compression rates (e.g., 26.4× for the AlexNet model) are easily achieved. This
proves the adopted rationale is sound and also applicable to very complex ConvNet
model; it allows to preserve useful information just removing redundant, or less
significant, parameters on the less significant layers.

To further understand our approach, we detail two network structures before and
after the greedy compressive training. Table 3.6 shows the ResNet20 architecture
on CIFAR10: the two first columns show the layers ID and their input size; the
next columns show the intra-layer sparsity percentage and the bit-width adopted to
represent the weights, both for the full precision model (FP) and the compressed
model (CM). The last rows report the sparsity of the resulting net, the compression
rate w.r.t. the original model, and the final accuracy. Table 3.7 shows the same
kind of metrics for AlexNet trained on CIFAR100.

Since our framework applies automatic decisions on the number of layers to
compress, for each ConvNet and each dataset adopted, the results may change sub-
stantially, also depending on the accuracy constraint and the number of iterations
run.

60

3.3 – Boosting Compression via Layer-Wise Strategy

FP CM
Layer Input Shape Sparsity Width Sparsity Width

[%] [Bit] [%] [Bit]
Conv1 (16,3,3,3) 0 32 41 32
Conv2 (16,16,3,3) 0 32 18 2
Conv3 (16,16,3,3) 0 32 45 32
Conv4 (16,16,3,3) 0 32 23 2
Conv5 (16,16,3,3) 0 32 24 2
Conv6 (16,16,3,3) 0 32 31 2
Conv7 (16,16,3,3) 0 32 37 2
Conv8 (32,16,3,3) 0 32 32 2
Conv9 (32,32,3,3) 0 32 45 2
Conv10 (32,16,1,1) 0 32 29 32
Conv11 (32,32,3,3) 0 32 44 2
Conv12 (32,32,3,3) 0 32 50 2
Conv13 (32,32,3,3) 0 32 53 2
Conv14 (32,32,3,3) 0 32 62 2
Conv15 (64,32,3,3) 0 32 44 2
Conv16 (64,64,3,3) 0 32 58 2
Conv17 (64,32,1,1) 0 32 50 32
Conv18 (64,64,3,3) 0 32 70 2
Conv19 (64,64,3,3) 0 32 87 2
Conv20 (64,64,3,3) 0 32 90 2
Conv21 (64,64,3,3) 0 32 94 2

Fc1 (10,64) 0 32 39 32
Final Sparsity 0.00% 68.16%
Compression Rate - × 6.1×
Accuracy 93.02% 92.47%

Table 3.6: Analysis of the sparsity and bit-width variation across the layers, before
and after the compressive greedy training. On the left, the full precision model
(FP), on the right the compressed model (CM), both referring to ResNet20 ConvNet
trained on CIFAR10 dataset. The input shapes of the layers are (n, cin, kh, kw), and
(n, cin) respectively for convolutional (Conv) and fully-connected layers (Fc). The
height and the width of the kernels are defined as kh and kw, the number of input
channels as cin, and the batch-size as n.

Comparison with the State-of-the-Art

The analysis includes some of the most popular works on aggressive ConvNet
compression: Xnor-Net [168], by Rastegari et al., where both filters and feature

61

Statistical-Oriented Training and Compression

FP CM
Layer Shape Sparsity Width Sparsity Width

[%] [Bit] [%] [Bit]
Conv1 (64,3,11,11) 0 32 39 32
Conv2 (192,64,5,5) 0 32 57 2
Conv3 (384,192,3,3) 0 32 68 2
Conv4 (256,384,3,3) 0 32 55 2
Conv5 (256,256,3,3) 0 32 66 2

Fc1 (10,256) 0 32 18 32
Final Sparsity 0.00% 60.61%
Compression Rate -× 26.7×
Accuracy 44.01% 43.47%

Table 3.7: Analysis of the sparsity and bit-width variation across the layers, before
and after the compressive greedy training. On the left, the full precision model
(FP), on the right the compressed model (CM), both referring to AlexNet ConvNet
trained on CIFAR100 dataset. The input shapes of the layers are (n, cin, kh, kw),
and (n, cin) respectively for convolutional (Conv) and fully-connected layers (Fc).
The height and the width of the kernels are defined as kh and kw, the number of
input channels as cin, and the batch-size as n.

maps are compressed in a binary space; Ternary Weights Network (TWN) [41]
where Li and Liu et al. overcame the binary solution space adding the zero
value as a third quantized instance; Trained Ternary Quantization (TTQ) [237],
where Zhu et al. propose a new ternary quantization procedure able to use just
2-bit weights (with relative scaling factors) during ConvNet inference; DoReFa-
Net [236], where Zhou el al. explored hybrid ConvNets with different quantization
widths for weights, gradients, and activations type with binary weights and 32-bit
activations; we focus on the 1-32-32 DoReFa-Net in particular. For all the com-
parisons, the baseline is the accuracy obtained with full-precision models found in
the PyTorch repository. In the following text, we use the accuracy loss as the main
metric for comparison. Indeed, the results reported in the previous works do im-
plement any encoding scheme, and comparing the compression rates might result
in being quite unfair.

Let us first consider the results of the CIFAR10 dataset. The first row in
Table 3.8 describes the ResNet20 and ResNet56 baseline accuracies; each column
reports the obtained results. For the first ConvNet model, our technique is able
to outperform TTN’s solution with just 0.55% of accuracy loss, whereas, for the
ResNet56, the solution is closer to the baseline. However, for both networks, we set
up the accuracy tolerance ϵ at 1%, reaching a considerable compression rate (6.1×

62

3.3 – Boosting Compression via Layer-Wise Strategy

Model Baseline Technique Accuracy (%) CR (×)

ResNet20 93.02% OUR 92.47 (-0.55) 6.1
TTN [237] 91.13 (-1.89) -

ResNet56 93.65% OUR 93.04 (-0.61) 6.9
TTN [237] 93.56 (-0.09) -

Table 3.8: State-of-the-art comparison of our technique with TTN work [237] with
CIFAR10 dataset. For each ConvNet model, the accuracy loss is referred to the
baseline accuracy and it is reported in parentheses. The compression rate is ab-
breviated to CR, and it is reported just for our solution. For each comparison, we
report in bold the solution with higher accuracy.

Model Baseline Technique Accuracy (%) CR (×)

Alexnet 56.55%

OUR 55.20 (-0.55) 10.9
TTN [237] 57.50 (+0.95) -
TWN [41] - -
XNOR-Net [168] 44.20 (-12.35) -
DoReFa [236] 53.90 (-2.65) -

ResNet56 69.76%

OUR 67.90 (-1.86) 3.6
TTN [237] 66.60 (-3.16) -
TWN [41] 61.80 (-7.96) -
XNOR-Net [168] 51.20 (-18.56) -
DoReFa [236] - -

Table 3.9: State-of-the-art comparison of our technique with TTN work [237] with
Imagenet dataset. For each ConvNet model, the accuracy loss is referred to the
baseline accuracy and it is reported in parentheses. The compression rate is ab-
breviated to CR, and it is reported just for our solution. For each comparison, we
report in bold the solution with higher accuracy.

and 6.9×).
Table 3.9 reports the experimental results obtained with the Imagenet dataset.

We can see that, for AlexNet, the best solution is that achieved with TTN. In
fact, they claim to be able to improve over the full precision model. Their solution
consists of a ternary weights ConvNet model (with relative scaling factors), except
for the first and last layers, which are kept on float32 precision. Our solution
outperforms all the other solutions, e.g., a 12.35% delta w.r.t. XNOR-Net. On the
other hand, with the ResNet18 architecture, our model is able to outperform all
considered state-of-the-art techniques, reaching just 1.86% of accuracy loss. For
this set of experiments, considering the 1k-labels dataset complexity, we fixed the

63

Statistical-Oriented Training and Compression

accuracy tolerance ϵ at 2%, reaching compression rates of 10.9× for AlexNet and
3.6× for ResNet18.

Regarding the computational effort, all these techniques have negligible over-
heads compared to a standard training step. In fact, involving a compression stage
based on extreme quantization brings negligible rises of the computation effort and
time, which instead are strongly dominated by the backpropagation algorithm.

3.3.3 Conclusions
In this work we explored a layer-wise compressive training able to significantly

boost the compression on ConvNets, still guaranteeing minimal accuracy losses
(below 1%). The main contribution is to leverage a heuristic search to select and
compress the most appropriate layers, in terms of accuracy and compression ben-
efits. Experimental analysis shows promising results, as our technique overcomes
the limitation of more agnostic pruning approaches, enabling a smarter strategy
to drive the ConvNet compression. Despite the remarkable achievements shown
in the paper also compare our technique with other state-of-art solutions, there is
much room for improvement. First, the pruning algorithm used to induce sparsity
in the selected layers can be extended with more complex patterns and/or with
additional parameters with the aim to furtherly increase the accuracy vs. compres-
sion trade-off. Second, the setup of hyperparameters can be optimized, as there
may exist an optimal setting that is strictly dependent on both the dataset and
the architecture. Finally, the use of weight quantization represents an orthogonal
knob to the proposed technique, able to brings additional savings in terms of both
memory storage and computational resources.

64

Chapter 4

Hardware-Driven Training and
Compression

4.1 Motivation
The migration from cloud services to low-cost IoT applications is challenging as

it requires a full comprehension of the hardware characteristics and requirements.
To effectively tackle this task the compression pipeline needs to be hardware-aware,
a feature not entirely accomplished by the previously cited statistical-oriented
strategies. As highlighted in Chapter 2, the main limitations of low-power IoT
devices are the lack of capacious memory and storage, which have to be the focus
of the design of a hardware-oriented compression and training pipeline. For exam-
ple, considering the Cortex-M MCUs by ARM (Figure 4.1), the available RAM is
up to 512kB, a severe bottleneck to process state-of-the-art ConvNets which usu-
ally require 104Mops 2. On the other hand, the on-chip storage does not exceed
2MB, and off-chip memory supports are usually not integrated and when avail-
able they affect negatively several processing metrics (latency, energy, integration
cost, endurance, reliability). Considering these two gaps, the ConvNets need to be
compressed fusing the optimization for both sides. This requires a more conscious
pipeline able to address the hardware requirements still preserving the accuracy.
The main difference between this kind of compression strategy respect aforemen-
tioned is that here the compression faces real deployment problems, which may
not appear in theoretical compression strategies. The tools used are still the same
as before, ranging from pruning, quantization, and weight encoding, but here the
hardware device becomes the center of the compression pipeline. In this chap-
ter, we present three different strategies to train and compress a ConvNet from a
hardware perspective. The first work analyzes and assesses the memory-accuracy
solution space fusing filter pruning and quantization, the second introduces a novel
technique to compress ConvNets under memory (RAM) constraint, while the third
proposes a novel strategy to compress ConvNets under storage (FLASH) constraint.

65

Hardware-Driven Training and Compression

M0

M3
M4

RAM

P
o
w
e
r

4 – 32 KB

5.3 uW/MHz

11 uW/MHz

32 – 128 KB

12.26 uW/MHz

33 uW/MHz

128 – 256 KB
256 – 512 KB

M7

Figure 4.1: Cortex-M family: Active power and on-chip RAM size.

Among all the possible techniques to compress a ConvNet filter pruning and
weight quantization have become standard strategies to reduce both memory and
storage requirements. They are usually used in combination to store a lighter model
with fewer operations. While filter pruning directly reduces the cardinality of the
tensors of each layer, weight quantization reduces the numerical precision of the
parameters. It needs to be observed that these techniques are usually accuracy-
driven, in fact, they should provide solutions able to guarantee the highest memory
compression with the lowest accuracy loss, ideally zero. However, how to fuse
these two techniques is not trivial: there may be an optimal solution between the
number of parameters to prune and the bandwidth to use for scaling their precision.
However, there is a lack of a closed-form solution able to describe the dynamics of
the learning flow, which makes the optimization loop with pruning and quantization
uncertain and slow. Furthermore, an additional level of complexity is brought by
the hardware constraints, which rise the complexity of the problem. This aspect
becomes crucial in real-life scenarios applications, like the ones deployed on RISC
cores. Since the optimization function is unknown, the selection of the best solution
able to respect the user-defined constraint is blind. Intuitively, there may be two
optimized models with the same accuracy but different memory footprints, and vice
versa there may be two models with the same compressed memory but sensitively
different accuracy levels. Hence, an optimization loop that does not consider these
aspects might result in poor in finding the best solution able to meet a defined
constraint, like return a compressed model with no accuracy loss but still not fitting
the target memory. Finding the right balance between pruning and quantization is
still an open issue, as they both affect the same source of information.

This may suggest that design space exploration would be more reliable than
multi-objective optimization, but an exhaustive search is impractical due to the
huge number of hyper-parameters to tune. This calls for the use of smart heuris-
tics. At last, it needs to be remembered how quantization below 8-bit remains a

66

4.1 – Motivation

theoretical approach, as not suitable for most of the off-the-shelf low-power devices,
as highlighted in Chapter 1. In view of the above considerations, it is clear how the
accuracy-driven unconstrained compression presents several gaps to meet the needs
of IoT real-cases scenarios. To overcome this issue we studied the distance between
theoretical and practical ConvNet implementations [56] (Section 4.2). In particular,
we assess the optimality of the optimization of compressed ConvNet to deploy on
MCUs under memory constraints. To perform this analysis we design a novel two-
stage pipeline composed of pruning and quantization: Prune-and-Quantize (PaQ).
The key feature of the optimization pipeline is a novel memory-driven heuristics
able to explore the memory-accuracy solution space efficiently. The framework
is tested on three real-case scenarios tasks for IoT domain: Image Classification
(IC) on CIFAR10 [109], Keyword Spotting (KWS) on Google Speech Command
Dataset [208] and Facial Expression Recognition (FER) [16]. For the hardware
validation, we used two commercial MCUs powered by Cortex-M cores: NUCLEO-
F412ZG (M4-256kB), NUCLEO-F767ZI (M7-512kB).

As previously discussed in Chapter 1, n-ary quantization is largely applied on
over-parametrized ConvNets [236, 168, 237, 41]. These extreme quantization tech-
niques allow achieving a compression proportional to the reduction of the bit-width
used to quantize the model, usually with negligible accuracy loss [165]. However,
as largely highlighted in Chapter 1, the generic n-ary quantization schemes do
not consider the actual hardware specification, which instead is crucial for real-
life applications. This gap strongly motivates our work [160] (Section 4.3), which
proposes a novel memory-bounded compression pipeline called Virtual Quantization
VQ. Given a target device, with fixed memory (RAM) and instruction-set (8- or
16- bit for Cortex-M), VQ compresses a ConvNet with the same RAM footprint
of the theoretic n-ary quantized model Q, where n is the maximum bit-width to
meet the RAM constraint. In fact, to meet the memory constraint, VQ enables to
compress and deploy a n-ary quantized ConvNet on general-purpose IoT MCUs,
emulating the availability of n-ary instruction-set. The technique allows reaching
the target using the bit-width supported by the instruction set by pruning some
filters from the original model. Both VQ and Q allow to reach the memory target,
but only VQ can be executed on-chip efficiently. Furthermore VQ allows reaching
higher accuracy values compared to VQ, which usually needs to reduce drastically
the bit-width n in order to meet the target. The experimental analysis has been
conducted on the same three IoT tasks of previous work: IC, KWS, FER. The
board used for the validation belongs to the Cortex-M family by ARM.

Another possible direction of optimization is to compress ConvNets under lim-
ited storage constraints. Given a fixed FLASH memory as input, the objective is
to compress a ConvNet meeting the storage target possibly with no accuracy loss.
The lack of storage space in low-cost microcontroller units is a common issue, in
fact as seen in Chapter 1 even the smallest size ConvNets require more than a few
MBs of parameters, while general-purpose MCUs usually provide less than 2MB

67

Hardware-Driven Training and Compression

60 65 70 75 80 85 90 95 100
Sparsity (%)

60

70

80

90
Ac

cu
ra

cy
 (%

)
112KB 80KB 48KB

40KB
32KB

24KB
20KB

16KB

12KB

Dense
Sparse

Figure 4.2: Sparsity vs. Accuracy of a compressed 9-layer ResNet under different
memory constraints (the labeled numbers). The net is trained on CIFAR-10, then
compressed via weight pruning and encoding. The blue dash-dotted line marks the
accuracy of the original dense version (140kB).

of non-volatile storage. Furthermore, it needs to observe that some of the FLASH
memory space can be occupied by other routines (e.g. data pre-processing pipelines
or operating systems). At last, it is not rare to have edge devices that run multi-task
applications, which hence needing to store multiple ConvNet models, one for each
different task. Besides filter pruning and quantization, as mentioned above, there
is another technique very popular to compress ConvNet model size: weight pruning
or sparsification. Sparse training used in combination with 8-bit quantization and
lossless encoding is very effective to reduce the memory footprint of a generic Con-
vNet. The main step to reduce the storage needed to store the model parameters is
the encoding, which takes advantage of the sparse and quantized array, as largely
explained in Chapter 2. It is well known by literature how sparse training is very
effective but still fragile. As a rule of thumb, the sparsity is proportional to the
compression rate. However, under stringent constraints, i.e. a few tens of KBs,
the technique becomes harder to manage as the ConvNet tolerance to the sparse
format collapses quickly. This phenomenon can be clearly seen in Figure 4.2, which
shows an example of standard iterative weight pruning applied on 9-layer ResNet
ConvNet trained on CIFAR-10. The Blue dotted line is the dense baseline, the red
line groups the sparse solutions for different memory constraints. Each star has a
different memory target. It is easy to see how there is a tolerance boundary close
to 90% percent of sparsity (around 48kB of storage): over this limit, the model
suffers sudden and unrecoverable accuracy losses. This sudden drop of the accu-
racy loss is hard to manage and to predict, making state-of-the-art weight pruning
not very suitable for compression under stringent memory constraints. This issue

68

4.1 – Motivation

poses a new challenge: how to manage sparsity to increase compression yet preserv-
ing accuracy?. Our work comes exactly in this direction: EAST (Encoding-Aware
Sparse Training) is a novel optimization strategy able too boost compression for
stringent storage-constraints. It is intuitive that at the same compression rate,
would be preferable a less sparse ConvNet, as being more accurate. This can be
done by focusing on the zero placement in the model arrays. The zero placement in
sparse arrays is a serious issue for an accuracy-driven compression pipeline, where
the encoding benefit constraints are underestimated. EAST aims to exploit this
feature, it prunes blocks of neighboring weights rather than pruning single connec-
tions. In this way, a proper encoding scheme is able to reduce the sparsity needed
to meet the memory target. EAST implements a sparse training procedure able
to drive model compression by an encoding perspective. The main objective is
to meet a given target FLASH memory, with minimum sparsity. This is done by
forcing encoding benefits avoiding performance degradations due to extreme spar-
sity percentage. The crucial tool of EAST is an adaptive pruning strategy able to
modulate the block size adapts to the memory constraint, minimizing the amount
of sparsity needed. To encode the sparse arrays EAST uses the LZ4 [136] com-
pression algorithm, which is a very suitable solution for MCUs as it guarantees
extremely fast decompression and it requires a lightweight routine of few bytes of
memory. However, EAST working is independent of the compression algorithm,
as other encoding schemes can be seamlessly applied. We tested EAST on Arm
Cortex-M4 MCU using a state-of-the-art 9-layer ResNet trained on the CIFAR-10
dataset. State-of-the-art comparison respect a standard weight pruning compres-
sion (using the same LZ4 scheme) proves EAST can achieve higher accuracy (up
to 8.73%) when the available memory is very limited (12KB of FLASH).

69

Hardware-Driven Training and Compression

4.2 Optimality Assessment of Memory-Bounded
ConvNets

The total memory footprint Mc need to store a generic ConvNet is the sum of
all its parameters Np, namely weights and bias, each one represent with a fixed
bit-width b. Given a target memory, Mt, is the actual on-chip memory that can
be allocated. It needs to be noted that Mt can be lower than the physical memory
available on-chip as other applications may run in the background. A memory-
bounded ConvNet is a compressed version of the original floating-point ConvNet
such that Mc ≤Mt and the accuracy loss L is minimized. For different values of Mt

there exists a set P of pairs {Np, b} that match Mt. Within P , a pair {Nopt
p , bopt}

is said optimal if it minimizes L; a pair {N ′
p, b

′} is said hardware-compliant if can
be ported on a physical device. bopt can be of any integer value, while b′ must
be supported by a proper instruction set, i.e. b′ ∈ {8, 16} for our case study. An
optimal pair is hardware-compliant if bopt turns out to be 8- or 16-bit.

To assess the memory-accuracy solution space we developed an evaluation frame-
work able to (i) compress the memory-bounded ConvNet combining pruning (to
reduce Np) and quantization (to reduce b), and to (ii) emulate and deploy the
compressed ConvNets.

4.2.1 PaQ: Prune and Quantize
Figure 4.3 shows the proposed framework. The toolchain starts with a floating-

point ConvNet (FP) trained within a standard dense training and it provides as
output (i) the accuracy assessment of the compressed ConvNets that match the
memory constraint (i.e. those with {Np, b} ∈ P) and (ii) the .c description of
the compressed ConvNets that are hardware-compliant ({N ′

p, b
′} ∈ P). The .c is

assembled using the CMSIS-NN [112] by ARM, then compiled and flashed on the
target device. To assess those compressed models not able to meet the memory
target (i.e. those with {Np, b} ∈ P , b /= b′) we used an in-house fixed-point em-
ulator; the same emulator is used to drive the fine-tuning stages (more details in
Sec. 4.2.1). The optimization kernel, called Prune and Quantize (PaQ hereafter),
consists of two main stages: (i) quantization-aware (Q-aware) filter pruning; (ii)
model quantization using a FX representation of b bits (b-Quantization). Both
stages receive the parameter b as an internal constraint. We used the same uni-
form bit-width across all the model layers. This latter aspect has an impact on the
compression speed, that is, quantization removes information at a faster pace. It is
intuitive that removing a single filter on a layer is less intrusive than reducing the
bit-width of all the weights of all the layers. A more interesting aspect is that there
exists a circular dependence between pruning and quantization which frustrates
the optimization. In fact, the value of b and the number of removable filters are
connected.

70

4.2 – Optimality Assessment of Memory-Bounded ConvNets

Q-aware Pruning
- Filter Selection
- Fine-Tuning

b-Quantization
− Fixed-Point Conversion
− Fine-Tuning

Porting

PaQ

CMSIS-NN

Mt [KB]

.c { }

RAMalloc

</>

HW model

Constraint

𝓟
{𝑵𝒑′, 𝒃′}

ISA

Emulator{𝑵𝒑, 𝒃}

bit-width b

Figure 4.3: Framework overview.

The physical RAM required in the inference processing is estimated through a
model file containing the memory allocation strategy of the target architecture (RA-
Malloc). The proposed framework has been designed to work for any commercial
MCU, as long as the HW-model and the neural-kernels library are available.

Memory Model

During each forward pass, a fixed quantity of on-chip RAM is allocated to pro-
cess the input samples through the ConvNet layers, this amount depends on the
implementation of the compute kernels, which in turn are directly correlated with
the underlying hardware architecture. Our memory model is designed on top of
the open-source CMSIS-NN library Cortex-M cores (v.5.4.0) by ARM [112], but
can be extended to operate with other libraries and/or architectures. To describe
the model we refer just to the convolutional layers, both because they are the most
expensive in terms of memory utilization and considering the most recent Con-
vNets limit the number of fully connected layers to reduce the memory accesses.
The Cortex-M family of MCUs are equipped with a flash memory used to perma-
nently store the parameters of the ConvNet. At run-time, both weights and biases
are loaded in blocks in RAM, in particular, in a portion referred to the Weight
Buffer (WB). The partial results of each computation are temporarily stored in the
remaining part of the RAM, which is taken by the Activation Buffer (AB).

71

Hardware-Driven Training and Compression

Within a ConvNet, the structure of layers differs sensitively for the number of
channels and for the size of each kernel, hence each layer requires a different quantity
of memory to be processed. This value is proportional to the size of its input and
output tensors. As ConvNets are processed layer-by-layer, AB is time-shared and
its size is defined by the largest layer.

At last, during the processing of convolution operations, part of memory is used
to store temporarily needed data, which are included in our memory model. These
operations are implemented as generic matrix multiplications by the CMSIS-NN,
where the multidimensional tensors are converted to 2-D array, namely Toeplitz
matrix [199]. Then this matrix is processed by the im2col, which stores the results
of the multiplication in a dedicated region of the RAM, the im2col buffer (I2CB).
Similar to AB, the I2CB is time-shared among layers and its size is defined by the
largest layer as well. To manage the inference stage on memory-bounded cores,
a partial im2col routine is commonly adopted. To reduce I2CB at the cost of
some performance overhead, these routines expand a selected portion of the input
generating two columns of the Toeplitz matrix at a time.

The overall RAM footprint is then provided by the sum of the three buffers:
Mc = WB+AB+I2CB. Equation 4.1 gives the analytical model for a b-quantized
ConvNet composed of L layers:

Mc = b×
[︃
Np + max

i∈L
(Ii +Oi) + max

i∈L
(im2coli)

]︃
(4.1)

The first term (Np) is the total number of parameters of the ConvNet and it
refers to the WB buffer. For convolutional layers, the total number of weights is the
product between the number of output channels, the number of input channels, and
the size of kernels (height×width), while the number of biases equals the number of
output channels. In this work, the output channels are considered the convolutional
filters. For fully connected layers, the number of weights is the product between the
input and the output dimensions, while that of biases is the same as the dimension
of the activation. The second term (max(Ii +Oi)) refers to the AB buffer, where Ii
and Oi are respectively the input and output sizes of the activations of the layers.
At last, the (max (im2coli)) term is for the I2CB buffer. During the filter-by-
filter processing by the im2col routine, the total sum of the memory needed for a
convolutional layer is provided by the product of the three dimensions of a filter
(height× width× depth), multiplied by a 2 (two columns of the Toeplitz matrix).
Also, in this case, the max operator takes the largest contribution among all the
layers. As a side note, the contribution due to I2CB is usually negligible, while
the WB contribution is the most significant. At last, the AB strongly depends on
the model topology; if the ConvNet is designed with small size kernels, like those
adopted into embedded applications, AB contribution is not negligible (ranging
from 15% to 30% the overall RAM).

72

4.2 – Optimality Assessment of Memory-Bounded ConvNets

Q-Aware Pruning

PaQ removes filters from the ConvNet until the target memory Mt is met.
To select the correct number of filters to remove, the pruning stage needs to be
aware of the bit-width b used for quantization, ad the final memory Mc depends
on the numerical precision of the model. Removing one filter from the i-th layer
simultaneously influences other several parameters of Equation 4.1: the cardinality
of both the i-th and i+1-th convolutional layers (WB), the cardinality of the output
activations of the i-th layer Oi (AB), the memory needed by the im2col to process
the (i+1)-th layer (I2CB).

The pseudo-code of Algorithm 3 describes the details of the iterative procedure
of Q-aware pruning. To sort the filters by the importance we adopted the ℓ1-norm of
its weights. This metric is a good importance estimator both for the low complexity
(it is just computed on weights, avoiding the activations) and for the ability to
identify the more redundant filters inside a layer [119], that are the ones who less
affect the prediction accuracy. For these reasons, ℓ1-norm is a good compromise
between quality-of-results and complexity of the optimization loop. However, it
needs to be noted that PaQ framework adapts also to other criteria of importance.

The loop iterates until the memory constraint Mt is met (line 2). The memory
model introduced in the previous section is the main core of the memory estimation
stage, in particular, it is embedded into the RAMalloc procedure. The estimation
of the memory footprint is based on the physical bit-width b. However, to give
to pruning a proper awareness of quantization the model is not quantized until
reaching this stage.

Once the model is properly pruned, the fine-tuning stage is crucial to recover
the accuracy loss (line 7). This stage consists of a set of re-training epochs (50 in
our experimental set-up) during which the model re-adapts the weights to its new
topology, using a standard error back-propagation scheme.

B-Quantization

After the Q-aware pruning, the model undergoes the actual quantization us-
ing a b-bit representation. As already motivated in Section 4, the choice fell upon
the most hardware-friendly quantization: (i) symmetric scheme, (ii) linear inter-
vals [165], (iii) per-layer power-of-two scaling. Adopting a per-layer radix-point
scheme brings higher accuracy without performance overhead. Even though asym-
metric quantization might provide more accurate results, it has significant overhead
when the model is run on low-power IoT architectures, up to 20% [112]. Finally,
a binary radix-point can be implemented with a simple bit-shift operation. The
optimal choice is found through iterative optimization, different position of the
radix-point are tried.

Also after the quantization process, there is fine-tuning stage to recover the

73

Hardware-Driven Training and Compression

Algorithm 3: Q-aware pruning algorithm.
Input: ConvNet [FP-32], Target Memory Mt, Bit-width b
Output: Compressed ConvNet

1 Mc = RAMalloc(ConvNet[FP-32], b)
2 while Mc > Mt do
3 Layer = Pick layer with lowest ℓ1-norm
4 Filter = Pick filter of Layer with lowest ℓ1-norm
5 Remove Filter
6 Update Mc

7 Fine-Tuning
8 return Compressed ConvNet

accuracy loss (totally or partially depending on the actual constraints). We imple-
mented a custom fine-tuning stage iterated for 50 epochs: the forward-propagation
is done with fake quantization (i.e., the weights are emulated to fixed-point represen-
tation), while the back-propagation kept the weights in floating-point full precision
format to allow better re-adaption also with small updates. At last, at the end of
each epoch, the weights are quantized through stochastic rounding.

To emulate fixed-point arithmetic on GPUs we developed an in-house emulator
to leverage the fake-quantization method introduced in [64]. It consists of a software
wrapper that converts activations and weights (stored in fixed-point) to the 32-bit
floating-point; after being processed, results are converted back to fixed-point.

Porting and Emulation

Once compressed, the optimized ConvNet is translated in .c code using the
custom kernels optimized for the target device. This work leverages the CMSIS-
NN [112] library developed by ARM. It is a collection of optimized routines im-
plementing the most common layers of deep neural networks and targeting the
Cortex-M architecture. As already mentioned, the porting can be accomplished
only for those bit widths and memory budgets that meet the hardware constraints
({N ′

p, b
′}). The framework provides emulation also for the other bit-width and

memory constraints with the aim to estimate the distance between optimal and
hardware-compliant solutions, which is one of the objectives of this work. The
emulator is the same used within the PaQ flow.

4.2.2 Experimental Results
We used the proposed PaQ-based flow to explore the memory-accuracy space.

The analysis has two main objectives: (i) assess the optimality of hardware-compliant

74

4.2 – Optimality Assessment of Memory-Bounded ConvNets

implementations, (ii) quantify the distance, in terms of accuracy, between these
hardware-compliant solutions and the theoretical ones.

This section is organized as follows. First, we introduce the ConvNets and
relative datasets used to benchmark the assessment. Second, we describe the hard-
ware set-up, in particular the boards used as test-bench. Third, we present the
collected results discussing the key findings. Finally, we provide additional insights
to validate PaQ and justify the selected optimization strategies. For the sake of
comprehension, we summarized all the notations used throughout the text in Ta-
ble 4.1.

Notation Description
Mc Memory footprint of the ConvNet
Mt Memory Target
Np Number of network parameters (weights and biases)
b Bit-width (from bmin = 2 to bmax = 16, step 1-bit)
Mb Memory footprint of the ConvNet (b-bit, w/o pruning)
P Set of pairs {Np, b} that matches Mt

L Top-1 accuracy loss
Lmax Top-1 accuracy loss boundary (= 0.5%)
T Pleateau area collecting the {Np, b} pairs s.t. L ≤ Lmax
Px Best-accuracy point
Pn Pareto points in the memory-accuracy space (n ∈ N)

PaQ-8 PaQ solutions (8-bit)
PaQ-16 PaQ solutions (16-bit)

∆ Accuracy difference (optimal vs. HW-compliant)

Table 4.1: Table of abbreviations.

Benchmarks, Datasets and Training

To validate our technique on real-case scenarios of the IoT domain, we selected
three different tasks: Image Classification (IC), Keyword Spotting (KWS), Facial
Expression Recognition (FER). All of them find application in several domains, like
healthcare, robotics, human-machine interface, and retail.

Each task is powered by a different ConvNet model which has been carefully
selected among those that can be realistically deployed on IoT devices. For each
task, we carefully selected a proper ConvNet model based on state-of-the-art. Ta-
ble 4.2 reports the topology of the models together with the relative baseline (top-1
classification accuracy achieved using the original full precision model with no op-
timization). Results are consistent with those available in the literature. For both
the training and inference stages, we used the popular deep learning framework

75

Hardware-Driven Training and Compression

IC KWS FER
Dataset CIFAR-10 [109] Speech Commands [208] FER2013 [16]
Input 3× 32× 32 1× 32× 40 1× 48× 48

C
on

vN
et

To
po

lo
gy

Conv (32,5,5) Conv (64,20,8) Conv (32,3,3)
MaxPool (3,3) MaxPool (1,3) Conv (32,3,3)
Conv (32,5,5) Conv (64,10,4) Conv (32,3,3)
MaxPool (3,3) MaxPool (1,1) MaxPool (2,2)
Conv (64,5,5) FC (32) Conv (64,3,3)
MaxPool (3,3) FC (128) Conv (64,3,3)
FC (10) FC (12) Conv (64,3,3)

MaxPool (2,2)
Conv (128,3,3)
Conv (128,3,3)
Conv (128,3,3)
MaxPool (2,2)
FC (7)

Top-1 Acc. 82.80% 86.75% 66.48%

Table 4.2: Overview of the benchmark. Each model is composed by three types
of layers: Convolutional (Conv) of shape (cout, kh, kw), max-pooling (MaxPool) of
shape (kh, kw), and fully-connected (FC) of shape (cout). The height and the width
of the kernels are defined as kh and kw, while the number of output channels is
defined as cout.

PyTorch [158] (version 0.4.1). For all three tasks we used the same training setup.
Each model is trained for 150 epochs with Adam optimization [106], and batch-size
of 128 samples. The learning rate starts from 0.001 and follows a linear decay
scheduler of 0.1 every 50-epochs.

Board Core RAM Flash Frequency
NUCLEO-F412ZG [152] Cortex-M4 256kB 1MB 100MHz
NUCLEO-F767ZI [154] Cortex-M7 512kB 2MB 216MHz

Table 4.3: List of the development boards adopted to assess the compressed Con-
vNets.

Image Classification (IC). It is the extraction of information classes from
a generic raw image. We used the popular CIFAR-10 dataset [109]: it includes
60k 32×32 RGB images, divided in 10 different classes. The samples are split into
45k samples for training, 5k for validation, and 10k for testing. For this task,

76

4.2 – Optimality Assessment of Memory-Bounded ConvNets

we used a ConvNet model composed of three convolutional layers interleaved with
max-pooling and one fully-connected layer. The ConvNet is taken from the Caffe
framework [99], following the example showed in [112].

Keyword Spotting (KWS). A well-known application in the field of speech
recognition, which is hard to deploy on low-power devices. However, considering
the real-case IoT scenario, the KWS task is usually simplified to simple command
detection (used as triggers), e.g. “Yes”, the task achieves an affordable level of
complexity1. We used the popular Google Speech Commands Dataset [208], which
is composed of 65k 1s-long audio samples collected during the repetition of 30
different words by thousands of different people. The goal is to recognize 10 specific
keywords, i.e. “Yes”, “No”, “Up”, “Down”,“Left”, “Right”, “On”, “Off”, “Stop”,
“Go”, out of the 30 available words. Samples that do not belong to the 10 categories
are labeled as “unknown”. An additional “silence” class is made up of background
noise samples (i.e. pink noise, white noise, and human-made sounds).

The samples are divided into training and test sets, respectively with 56196
and 7518 samples. The adopted ConvNet model is the cnn-trad-fpool3, used on
the same task in [171]. The topology includes two convolutional layers, two max-
pooling layers, and three fully-connected layers. The raw audio samples need a
pre-processing stage to be classified by the ConvNet. In details, we followed the
pipeline introduced in [171]: the recorded audio samples are converted to spectro-
gram samples of shape time × frequency = 32 × 40. No data augmentation has
been used.

Facial Expression Recognition (FER). It is the understanding of the emo-
tional state of people from their facial expressions. Quite popular in the field of
visual reasoning, this task is very challenging as many face images might con-
vey multiple emotions, hence it is difficult to isolate the correct label. We used
the Fer2013 dataset provided by the the Kaggle competition [16]. It includes
32297 48×48 grayscale facial images, divided into 7 categories: “Angry”, “Dis-
gust”, “Fear”, “Happy”, “Sad”, “Surprise”, “Neutral”. The training set counts of
28708 samples, while the remaining 3589 are kept as the test set. We used a cus-
tom ConvNet architecture2 composed of nine convolutional layers evenly spaced by
three max-pooling layers and one fully-connected layer.

Hardware Specifications and Tools

The proposed framework is validated on two off-the-shelf boards powered with
Cortex-M cores by ARM: NUCLEO-F412ZG [152] and NUCLEO-F767ZI [154].
The former is equipped with 256kB of RAM and 1MB of FLASH, while the latter

1https://www.tensorflow.org/tutorials/sequences/audio_recognition
2Inspired by https://github.com/JostineHo/mememoji

77

https://www.tensorflow.org/tutorials/sequences/audio_recognition
https://github.com/JostineHo/mememoji

Hardware-Driven Training and Compression

is equipped with 512kB of on-chip SRAM and 2MB of FLASH. Further details are
reported in Table 4.3. For the compute kernels we used the CMSIS-NN library
v.5.4.0 provided by ARM. The .c source file is compiled using the GNU Arm
Embedded tool-chain (version 6.3.1). The PaQ tool is tuned for the ARM Cortex-
M integer unit.

To validate the classification accuracy after the PaQ optimization, we used the
emulator described in Section 4.2.1. The hardware-compliant ConvNets, i.e. the
only ones able to be run on MCU, are validated directly on-board. Contrarily,
to assess the solutions that cannot be flashed into the ARM cores we used the
simulator. Figure 4.3 depicts an overview of this validation mechanism. Both
training and simulated inference experiments were run on a GP-GPU workstation
powered with a Titan GTX-1080 Ti by NVIDIA.

The RAMalloc memory model is cross-validated with the results provided by the
gcc compiler (all the variables are statically allocated) and those returned by track-
ing the memory usage at run-time (feature available with the mbed-os operating
system3, version 5.11.0).

4.2.3 Across the Memory-Accuracy Space
The exploration is run for a discrete set of memory constraints, i.e. Mt ∈

[Mbmin ,Mbmax], bmin=2, bmax=16, step one bit; Mb refers to the memory footprint of
the ConvNet quantized with b bits w/o any pruning (e.g. M2 is the memory after a
2-bit quantization). For intermediate memory constraints, i.e. Mt ∈ (Mbi

,Mbi+1),
the accuracy is interpolated (more details in Section 4.2.3).

The collected results of the three applications are illustrated in Figures 4.4a, 4.4b
and 4.4c. The surf plots show the top-1 accuracy for every solution point ({Np, b} ∈ P).
The b-Quantization only solution (label Q), which is the only one without pruning,
is highlighted in yellow. Over the yellow line, there is a transparent region with
trivial solutions, in fact, all these implementations (Mt > Mb) are dominated by
quantization. Since the Q-aware pruning skips the filter pruning as soon as the Mt

is met, there might be memory-compliant solutions that belong to this line, e.g. in
Figure4.4a the 2-bit quantization alone meets the memory constraint of 33kB.

Weakness of accuracy-driven optimizations. There is a plateau T (hatched
area in the plot) where the accuracy gets very close to that of the original full pre-
cision model, namely pruning and quantization impact accuracy marginally. With-
out loss of generality, we assume that a pair {Np, b} belongs to T if the accuracy
drop with respect to the best-accuracy point (Px, marked with the green cross in
the plots and reported in the first row of Table 4.4) is less or equal than 0.5%.

3https://os.mbed.com/blog/entry/Tracking-memory-usage-with-Mbed-OS/

78

4.2 – Optimality Assessment of Memory-Bounded ConvNets

Target M
emory M

t [k
B]

33
49

66
82

98
115

131
147

164
180

196
213

229
245

262

Bit-width b
2345678910111213141516

Top-1 Accuracy

45%
50%
55%
60%
65%
70%
75%
80%

85%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (245, 15, 83.10)
P1: (115, 7, 82.64)
P2: (98, 7, 81.99)
P3: (82, 6, 81.49)
P4: (66, 6, 80.42)
P5: (49, 5, 78.17)
P6: (33, 5, 71.85)

Px

P1P2
P3

P4
P5

P6
55

60

65

70

75

80

(a) IC

Target M
emory M

t [k
B]

76
114

152
190

228
266

304
342

380
418

456
494

531
569

607

Bit-width b
2345678910111213141516

Top-1 Accuracy

60%

65%

70%

75%

80%

85%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (494, 13, 86.80)
P1: (266, 8, 86.32)
P2: (228, 8, 85.87)
P3: (190, 7, 85.46)
P4: (152, 8, 84.52)
P5: (114, 6, 83.51)
P6: (76, 6, 81.51)

Px

P1P2
P3P4

P5
P6

65

70

75

80

85

(b) KWS

79

Hardware-Driven Training and Compression

Target M
emory M

t [k
B]

164
246

327
409

491
572

654
736

817
899

981
1062

1144
1226

1307

Bit-width b
2345678910111213141516

Top-1 Accuracy

20%

30%

40%

50%

60%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (1062, 14, 66.84)
P1: (899, 12, 66.45)
P2: (572, 11, 65.90)
P3: (491, 7, 65.53)
P4: (409, 9, 65.17)
P5: (327, 8, 64.86)
P6: (246, 7, 63.22)
P7: (164, 5, 55.17)

Px

P1

P2

P3P4
P5
P6

P7 30

40

50

60

(c) FER

Figure 4.4: Solutions provided by PaQ flow showed in the memory-accuracy space
for the three tasks under analysis (a) IC, (b) KWS, (c) FER. The green cross marker
(Px) shows the solution with higher accuracy, while the hatched area enclosed by
the white dotted curve highlights the plateau region (T), where the solutions have
the accuracy loss L ≤ 0.5 w.r.t Px. The yellow line (Q) indicates the solutions ob-
tained applying only b-quantization. The red dash-dotted lines define the hardware-
compliant solutions generated by PaQ, respectively using 8- (PaQ-8) and 16-bit
PaQ-16; these are the implementations deployed on the physical device. The green
dotted line connects the Pareto points (P) in the memory-accuracy space, i.e. all
the solutions that have superior accuracy w.r.t. all the other points with the same
target memory Mt. At last, all the absolute coordinates of the Pareto points and of
Px are collected on the right-side box, for each solution reporting (target memory,
bit-width, top-1 accuracy). The right box collects the absolute coordinate of Px
and each Pareto point in the format (target memory, bit-width, top-1 accuracy).

The existence of T is nothing new as ConvNets are often redundant due to over-
parametrization [67]. The area of T may depend on the complexity of the task or
the network topology.

The accuracy-driven compression techniques proposed in the literature, e.g. [195],
search for an unique combination of pruning and quantization which ensures the
largest compression within a given accuracy loss Lmax. Assuming a realistic con-
straint, e.g. Lmax = 0.5%, which is the same value used to define T , the solution
they return can be identified in our formulation as {Np, b} ∈ T s.t. Mc is mini-
mized. This solution represents the lower right corner of the plateau T , denoted

80

4.2 – Optimality Assessment of Memory-Bounded ConvNets

Pareto PaQ-8 PaQ-16
Mt P b Top-1 b Top-1 ∆ b Top-1 ∆

245 Px 15 83.10 8 82.85 0.25 16 82.86 0.24
115 P1 7 82.64 8 82.44 0.20 16 77.31 5.33
98 P2 7 81.99 8 81.40 0.59 16 72.52 9.47

IC 82 P3 6 81.49 8 80.79 0.70 16 65.21 16.28
66 P4 6 80.42 8 78.85 1.57 16 54.85 25.57
49 P5 5 78.17 8 71.64 6.53 16 53.00 25.17
33 P6 5 71.85 8 54.68 17.17 16 50.00 21.85
494 Px 13 86.80 8 86.38 0.42 16 86.20 0.60
266 P1 8 86.32 8 86.32 0.00 16 83.80 2.52
228 P2 8 85.87 8 85.87 0.00 16 83.48 2.39

KWS 190 P3 7 85.46 8 85.28 0.18 16 81.60 3.86
152 P4 8 84.52 8 84.52 0.00 16 73.11 11.41
114 P5 6 83.51 8 83.00 0.51 16 70.42 13.09
76 P6 6 81.51 8 75.16 6.35 16 70.78 10.73

1062 Px 14 66.84 8 65.34 1.50 16 65.23 1.61
899 P1 12 66.45 8 65.34 1.11 16 65.59 0.86
572 P2 11 65.90 8 65.48 0.42 16 63.47 2.43

FER 491 P3 7 65.53 8 64.75 0.78 16 58.43 7.10
409 P4 9 65.17 8 64.61 0.56 16 55.92 9.25
327 P5 8 64.86 8 64.86 0.00 16 - -
246 P6 7 63.22 8 63.03 0.19 16 - -
164 P7 5 55.17 8 - - 16 - -

Table 4.4: Optimal vs. hardware-compliant solutions under different memory tar-
gets Mt. From left to right there are three main groups of columns: Pareto, PaQ-8,
and PaQ-16. The first details the Pareto points P, the second details the hardware-
compliant solutions provided by PaQ flow using 8-bit, and the third details the
hardware-compliant solutions provided by PaQ flow using 16-bit. All these so-
lutions are the same shown in the plots of Fig. 4.4. For the hardware-compliant
solutions (PaQ-8, and PaQ-16) we reported also their accuracy distance (lower is
better) to the optimal points in the column ∆. Solutions with too high accuracy
losses (≪50%) have not been reported.

with P1 (second row of each benchmark in Table 4.4).
An accuracy-driven, memory-unconstrained optimization of this kind might re-

turn ConvNets that do not fit into the physical memory. Let’s consider FER for
instance, the optimal implementation would take 899kB of RAM using 12-bits, a
configuration that is simply too large for our target devices. The focus of this

81

Hardware-Driven Training and Compression

works is to explore the solutions placed in the deep memory space, that is the re-
gion below such theoretic optimum. One may argue that other meta-heuristics, like
Bayesian Optimization, can be guided towards this region of interest by integrat-
ing the memory footprint in the cost function. That is true in general, but those
methods perform better in optimization rather than fine exploration. Moreover,
the multi-objective function may result biased by the importance weights adopted.

Memory-accuracy Pareto curve. There is a Pareto curve in the deep mem-
ory space, which is highlighted with a green dotted line in the plots. As already
discussed, P1 corresponds to the solution {Np, b} inside T with the smallest mem-
ory footprint. Instead, the remaining Pareto points lay outside T and represent
those implementations able to meet lower memory constraints at the cost of higher
accuracy losses, L > 0.5%. The existence of these points can be intuitive, but
a quantitative analysis may reveal interesting trends. The exact values of target
memory Mt and bit-width b are reported in Table 4.4 together with the top-1 accu-
racy they achieve. As the numbers suggest, for many configurations, the obtained
accuracy gets very close to the best accuracy, yet ensuring substantial memory re-
duction. For instance: KWS shows a small accuracy drop of 1.34% (from 86.80%
to 85.46%) with 62% of memory compression (from 494kB to 190kB); FER goes
even better by showing 46% memory reduction (from 1062kB to 572kB) within a
negligible accuracy loss of < 1% (from 66.84% to 65.90%). Similar conclusions can
be inferred from the comparison among the other Pareto points.

Optimality of hardware-compliant solutions. A more interesting analysis
concerns the distance, in terms of top-1 accuracy, between the implementations on
the Pareto curve (theoretical solutions) and the hardware-compliant implementa-
tions (practical solutions), i.e. the pairs {N ′

p, b
′} with b′ ∈ [8, 16] highlighted with

the red dash-dotted curves in the plots (labels PaQ-8 and PaQ-16 respectively).
The top-1 accuracy for PaQ-8 and PaQ-16 are given in Table 4.4, together with
the distance from the Pareto curve (column ∆). The results show that PaQ-8 out-
performs PaQ-16 (smaller ∆). There are only two exceptions, i.e. IC at Mt =
245kB and FER at Mt = 899kB, yet with a mere distance (0.25% in the worst
case). The actual reason is that under the same memory budget, the 8-bit model
has more remaining filters, hence the accuracy of 8-bit model is higher than the cor-
responding 16-bit one. In other words, the 8-bit models stop pruning earlier than
16-bit. This can also be proved by looking at numbers collected in Table 4.4, FER
benchmark under a memory constraint Mt = 327kB: the 16-bit model is so highly
pruned that the accuracy falls down to impractical values, while the 8-bit model
meets the memory constraint with fewer filters pruned and hence lower accuracy
loss. The key insight is that a bit-width below the 8-bit mark is needed just for very
tight constraints. For instance, KWS under Mt = 76kB memory constraint, where
the PaQ-8 implementation shows ∆ ≥ 1%, or FER under Mt = 164kB memory
constraint, where PaQ-8 do not provide reasonable accuracy loss. The conclusion
is that arbitrary bit-widths are really needed just in few specific cases and the

82

4.2 – Optimality Assessment of Memory-Bounded ConvNets

0

3
8

7
6

1
1
4

1
5
2

1
9
0

2
2
8

2
6
6

3
0
4

3
4
2

3
8
0

4
1
8

4
5
6

4
9
4

5
3
1

5
6
9

6
0
7

Memory Mc [KB]

60%

70%

80%
T
o
p
-1

 A
c
c
u
ra

c
y

Filter-Pruning, b=8

Filter-Pruning, b=16

Figure 4.5: Memory footprint vs. Top-1 accuracy for KWS.

adoption of specialized architectures needs to be assessed carefully.

Validation of PaQ

Efficacy of the proposed memory-driven compression. As described in
Algorithm 3, the proposed version of filter pruning is memory-driven, in fact, the
optimization loop stops the filter removing as soon as the memory constraint is met.
To motivate this stopping criterion, we provide the analysis of a pruning strategy
where the constraint is given in a direct form, i.e. number of filters to be pruned;
once pruned, the models are quantized and then fine-tuned to recover the accuracy
loss. Then, the use of the number of filters as a control knob enables to span of
the entire memory range. Figure 4.5 shows the results for KWS; the plot collects
the achieved both with 8- and 16-bit. It is interesting to observe how the lines
follow a pseudo-monotone trend: compressed memory accuracy decreases together.
Negligible ripples are due to the noise introduced by fine-tuning. These results fully
justify our choice: to stop the search as soon as the constraint Mt is met gives the
highest accuracy for that specific Mt. Despite Figure 4.5 shows just one example
for the sake of readability, the same trend is clearly visible for every bit-width used
in our experiments. Furthermore, the linear interpolation adopted to estimate the
accuracy when Mt ∈ (Mbi

,Mbi+1) is also validated. Indeed, the plot shows that
accuracy is a piece-wise linear function of memory. The same considerations hold
for the other ConvNet benchmarks.

On the scalability of the proposed hardware-driven optimization. The
adopted PaQ scheme is hardware-friendly, as the memory compression automati-
cally improves latency too. We refer to this kind of scheme as latency proportional.
Figure 4.6 shows the average latency for one feed-forward pass of the ConvNet used
in KWS. The analysis is conducted under different memory constraints (the same
reported in Table 4.4).

As PaQ-8 dominates PaQ-16, as described in the previous section, we reported

83

Hardware-Driven Training and Compression

76 114 152 190 228 266 304

Target Memory Mt [KB]

0

50

100

150

200

250

300

L
a
te

n
c
y
 [

m
s
]

48

92

141

185

235

10
23

37
50

66
79

94

NUCLEO-F4

NUCLEO-F7

Figure 4.6: Average inference time per sample of PaQ-8 solutions on KWS.

the latency results just for 8-bit quantized ConvNets. The execution time is mea-
sured using the timer API provided by the mbed-os operating system and averaged
over the entire test set. The experiments were run on both the boards reported in
Table 4.3, labeled as NUCLEO-F4 and NUCLEO-F7 for brevity. The NUCLEO-F4
board has a maximum RAM of 256kB, therefore larger models cannot be deployed.

Adopting pruning and quantization schemes that preserve the regularity on the
ConvNet topology is the key to achieve a direct proportionality between inference
time and memory footprint. The choices implemented in the proposed framework
go in this direction as they have been conceived (i) to cut the number of memory
accesses, (ii) to alleviate the cost of the im2col procedure, and (iii) to reduce
the number of operations as the memory footprint gets smaller. The result is the
linearity shown in the plot. The same trend holds for the other benchmarks.

Execution Time. The PaQ flow takes a few minutes for each fine-tuning
stage (50 epochs each). The actual execution time may vary depending on the
complexity of the ConvNet and the memory constraint. The worst case is the
largest benchmark (FER): 25 minutes on average for each {Mt, b} pair, 80% spent
for the fine-tuning stages. A significant reduction can be achieved limiting the
number of retraining epochs: early stopping policies may be adopted to solve this
issue, similarly as it has been done in other works to prevent over-fitting [164] or
accelerate the training stage [6]. While the speed-up of the PaQ flow is out of the
scope of this work, Table 4.5 supports our claim showing the number of fine-tuning
epochs after which PaQ is already able to reach the highest top-1 accuracy.

Collected numbers refer to the average over all the pairs {Mt, b} of the explo-
ration space. For the three benchmarks, both pruning and quantization converge
much earlier than the 50-epoch threshold we set for safety, revealing the potential
margins.

84

4.2 – Optimality Assessment of Memory-Bounded ConvNets

Q-aware Pruning b-Quantization
IC 30.7 22.1

KWS 27.7 15.4
FER 18.7 13.5

Table 4.5: Training time needed (expressed as the number of epochs) to reach the
baseline accuracy for each task.

4.2.4 Conclusions
The overall outcome of the assessment enables three main achievements. First,

PaQ demonstrates that the implementation of practical ConvNets is not just
accuracy-driven, but instead, the actual memory constraint plays a crucial role.
Second, our analysis enumerates the optimal configurations in the memory-accuracy
solution space when the memory target is very very tight. Third, PaQ quantifies
the actual distance between optimal (theoretical) configurations and the practical
ones, which are the closest implementations deployable on low-power MCUs.

85

Hardware-Driven Training and Compression

4.3 Arbitrary Bit-width ConvNets on IoT MCUs
Among the possible compression strategies, n-ary fixed-point quantization has

proven to be very effective in reducing both computational effort and memory
footprint, with high resilience to accuracy loss. However, as described in Section 2.3,
its use requires custom components and special memory allocation strategies, which
are not available and burdensome to implement on low-power MCUs. To bridge
this gap, we proposed Virtual Quantization (VQ), a hardware-friendly compression
method that enables equivalent n-ary ConvNets on general-purpose instruction-set
architectures.

Virtual Quantization

The aim of VQ is to devise a ConvNet model tuned for a target bit-width H
s.t.: (i) the resulting memory footprint is the same that would have been obtained
through a classical n-bit quantization, being n < H; (ii) the classification accuracy
is larger or equal than that of the theoretic n-bit model. Given H as the bit-width
supported by the instruction set of the target core, the model obtained with VQ
does emulate the n-ary model while preserving hardware compliance.

8-bit

RAM
Q

32-bit FP

VQ

2-bit

RAM

32-bit FP

Figure 4.7: A pictorial representation of the comparison between the standard n-
ary Quantization (left) and our proposed method, Virtual Quantization (right).
The different depths of colors refer to the bit-width.

86

4.3 – Arbitrary Bit-width ConvNets on IoT MCUs

Flow Overview

VQ is implemented through the optimization flow depicted in Figure 4.8. The
framework is fed with a floating-point ConvNet model (FP) trained with any stan-
dard deep-learning library (e.g. PyTorch, TensorFlow); it generates a .c description
of the equivalent n-bit quantized fixed-point model (FX-H), with n the equivalent
bit-width provided as input. The high-level description of the network is translated
into a low-level code using a neural network library (NN library) optimized for
the target hardware (deployment stage in Figure 4.8). In this work, we adopted
the CMSIS-NN by ARM for the Cortex-M architecture [112]. The CMSIS-NN is
a collection of optimized neural kernels which cover the most common operators:
convolutions, fully-connected, activation and, pooling functions. The final output
is a .c file that can be compiled and flashed on the target MCU. A memory model
file describes the memory allocation strategy used to estimate the physical RAM
needed at inference time. It is worth emphasizing that the RAM usage drives the
compression; this is a distinctive feature w.r.t. classical accuracy-driven compres-
sion methods.

Memory-aware Compression
- Filter Pruning
- Incremental Training

H-bit Quantization
− Fixed-Point Conversion
− Incremental Training

Deployment

[FP]

NN
Library

[FX-H]

.C

Memory
Model

VQ

Equivalent
bit-witdh [n]

Bit-witdh [H]

Figure 4.8: The Virtual Quantization flow.

The core of VQ consists of two main stages: (i) memory-aware compression; (ii)
H-bit model quantization, with H as the bit-width supported by the instruction-
set of the target core. As long as both the memory model and the neural network
library are available, the VQ flow does apply to any micro-controller. Since the

87

Hardware-Driven Training and Compression

target of our work is the ARM Cortex-M architecture, we built a memory model
for the CMSIS-NN library and we assume H = 8. The next sections give a detailed
overview of the VQ steps, with a preliminary description of the memory allocation
model.

Memory Model

Typical state-of-the-art ConvNets are directed acyclic graphs whose scheduling
is input-independent, hence the memory allocation can be done statically. One
can precisely compute the memory footprint just by knowing the network topology
and the linked neural library (the CMSIS-NN by ARM in this work). The data
structures needed for the feed-forward execution of neural networks include: (i)
a buffer storing the network parameters (weights and biases); (ii) a buffer for
the input and output features; (iii) a buffer storing partial data used by neural
networks routines. Since low-power MCUs, e.g. Cortex-M, have a very simple
memory hierarchy, all the three buffers reside in RAM. The overall RAM space is
thereby computed as the sum of the three contributions [112]. For what concerns
the ConvNet parameters (i), they are permanently stored in the flash memory and
then block-loaded in RAM at run-time thus avoiding the overhead of accessing the
flash memory. Regarding the feature (ii) and internal (iii) buffers, the ConvNet
layers are executed sequentially, therefore the corresponding memory can be time-
shared between different layers.

The memory model is obtained from the GNU linker [51] and cross-validated
with the statistics collected at run-time (we installed the lightweight mbed-os op-
erating system for this purpose, v. 5.9.7). To estimate the memory footprint of
the theoretic n-bit model, we extended the embedded memory model to arbitrary
bit-widths assuming an ideal word size equal to n. To notice that this is a theoretic
model as in real hardware the minimum word is usually greater, i.e. H > n; for
instance, H = 8 in the Cortex-M architecture.

4.3.1 Memory-Aware Compression
A ConvNet with a fixed number of layers has two potential sources of redun-

dancy: (i) the number of parameters within each layer; (ii) the arithmetic precision
of the weights within each filter. The key observation over which VQ is built is
that standard n-bit quantization operates on the second term only. Meeting a
tight memory constraint would, therefore, require a bit-width n too small (usually
much smaller than the minimum bit-width H made available by common HW). To
overcome this issue, VQ implements a layer-wise compression which is based on a
memory-aware filter pruning.

The iterative procedure of the memory-aware compression is described in the
pseudo-code of Algorithm 4. At each iteration, the least important filter from the

88

4.3 – Arbitrary Bit-width ConvNets on IoT MCUs

Algorithm 4: Memory-aware compression algorithm.
Input: FP-Model, Bit-width H, Equivalent bit-width n
Output: Compressed Model

1 Target Memory = Memory of FP-Model at n-bits)
2 Current Memory = Memory of FP-Model at H-bits)
3 while Current Memory > Target Memory do
4 Layer ranking
5 Pick less important layer
6 Filter ranking
7 Remove less important fitler
8 Update Current Memory
9 Incremental training

10 return Compressed Model

least important layer (lines 4–8) is dropped. As a ranking criterion, we used the
sum of the absolute weights, i.e. the ℓ1-norm of the parameters. Weights with
lower ℓ1-norm have less impact on the output features [119]. The loop iterates
until the memory constraint is met (line 3). The memory estimation is run us-
ing the memory model introduced in the previous section (lines 1–2). As already
discussed, it accounts for all the data structures used at the inference stage, not
only the network parameters. It is worth emphasizing that the memory footprint is
estimated depending on the physical bit-width of the target hardware, i.e. H, but
the model is not quantized yet at this stage. This gives to the compression stage
the proper awareness of quantization.

The model compression might degrade the quality of results. To recover the
accuracy loss, we leveraged an incremental training procedure (line 9).

H-bit Quantization

After memory-aware compression via pruning, the model undergoes the actual
quantization to H-bits. The CMSIS-NN library offers fixed-point neural kernels
with a per-layer dynamic scheme based on power-of-two scaling. Adopting a per-
layer radix-point brings better results as different layers show different dynamic
ranges. Even though more complex scaling techniques, e.g. asymmetric quantiza-
tion, might result more accurate, they might increase the execution time when the
ConvNet is deployed on low-power MCUs, up to 20% according to [112]. The accu-
racy drop induced by quantization can be recovered (totally or partially depending
on the actual constraints) using an incremental re-training procedure. The latter
has the following main characteristics: the forward-propagation is run with fixed-
point emulation; during back-propagation weights are kept in a floating-point for-
mat thus to allow small weight updates; weights are quantized at every epoch using

89

Hardware-Driven Training and Compression

stochastic rounding. In order to emulate fixed-point arithmetic on general-purpose
GPUs, we also implemented an in-house tool that leverages the fake-quantization
method introduced in [63]. It consists of a software wrapper that converts activa-
tions and weights (stored in fixed-point) to the 32-bit floating-point; after being
processed, results are converted back to fixed-point.

4.3.2 Experimental Results
Benchmarks, Datasets and Training

We tested the VQ framework on three popular tasks: Image Classification
(IC), Keyword Spotting (KWS), Facial Expression Recognition (FER). Different
lightweight ConvNets suited for tiny cores are deployed for each task; details re-
ported in Table 4.6. Such ConvNets are trained for 150-epochs in PyTorch (version
0.4.1) using Adam optimization [106] (learning rate 1e − 3, linear decay 0.1 every
50-epochs, batch-size 128).

IC KWS FER
CIFAR-10 [109] Speech Commands [208] FER2013 [16]

Input: 3× 32× 32 Input: 1× 32× 40 Input: 1× 48× 48

Conv2d (32,5,5) Conv2d (64,20,8) Conv2d (32,3,3)
MaxPool2d (3,3) MaxPool2d (1,3) Conv2d (32,3,3)
Conv2d (32,5,5) Conv2d (64,10,4) Conv2d (32,3,3)
MaxPool2d (3,3) MaxPool2d (1,1) MaxPool2d (2,2)
Conv2d (64,5,5) FC (32) Conv2d (64,3,3)
MaxPool2d (3,3) FC (128) Conv2d (64,3,3)
FC (10) FC (12) Conv2d (64,3,3)

MaxPool2d (2,2)
Conv2d (128,3,3)
Conv2d (128,3,3)
Conv2d (128,3,3)
MaxPool2d (2,2)
FC (7)

Table 4.6: Summary of the ConvNets used to validate VQ. Each model is composed
by three types of layers: Convolutional (Conv) of shape (cout, kh, kw), max-pooling
(MaxPool) of shape (kh, kw), and fully-connected (FC) of shape (cout). The height
and the width of the kernels are defined as kh and kw, while the number of output
channels is defined as cout.

For IC we used the ConvNet delivered within the Caffe framework [99] according

90

4.3 – Arbitrary Bit-width ConvNets on IoT MCUs

to the experimental set-up reported in [112]. The data-set is the popular CIFAR-
10 [109], made up of 60k 32× 32 RGB images labeled with 10-classes. Concerning
KWS, we followed the experimental procedure introduced in [171], which makes
use of the cnn-trad-fpool3 ConvNet [171] to classify 10 keywords belonging to the
Speech Command Dataset [208]. The training-set and test-set data are composed
of 56196 and 7518 spectrograms respectively (time×frequency = 32×40). For the
FER task we resorted to a VGG-like ConvNet which recognizes the facial emotion
dataset provided by [16]. The dataset has 48× 48 grayscale facial images classified
by 7 labels; training and test set consist of 28708 and 3589 instances respectively.

Deployment and Emulation

We validated the VQ framework (Figure 4.8) for the Cortex-M family by ARM.
Tests were run on the NUCLEO-F767ZI board by ST Microelectronics using the
CMSIS-NN library v.5.4.0 provided by ARM. The GNU Arm Embedded tool-chain
(version 7.3.1) was used to compile the .c level model. In order to emulate the n-bit
quantization (for which there’s no HW available) and to ensure a fair comparison
with the VQ method, the inference accuracy of the three applications is measured
through the fake-quantization tool mentioned in Section 10. Such a tool is made run
on a GPU workstation powered with a Titan GTX-1080 Ti by NVIDIA and it offers
several settings that adapt to different fixed-point HW units. For what concerns this
work, the tool is tuned for the ARM Cortex-M integer unit. Extensive emulation
runs show fake-quantization achieves 100% match with the results computed on
the actual boards.

Results

Table 4.7 collects the results obtained with a standard n-bit quantization (Q)
where models are scaled to an arbitrary fixed-point (FX) bit-width n. For a fair
comparison, the adopted Q scheme consists of the same procedure deployed in the
VQ flow during the H-bit Quantization stage. For each benchmark, the first row
collects the classification accuracy of the original 32-bit floating-point model (FP).
The next seven rows quantify the figures of merit of the n-bit quantization with
n ∈ [2− 8]. The column RAM shows the n-th model memory footprint computed
with the memory model introduced in Section 4.3 (inline with results in [112]).
As an additional piece of information, the Core column reports the smallest ARM
Cortex-M with enough RAM to host and run the ConvNet. The Top-1 column
collects the top-1 accuracy achieved by each model.

As demonstrated in previous works (e.g. [165]), 8-bit quantization reaches al-
most the same accuracy of the original FP model. This is also confirmed by our
experiments (the worst-case loss is 1.14% for FER). Lower bit-widths show a sub-
stantial degradation of quality: e.g. with 3 − bit the accuracy loss ranges from

91

Hardware-Driven Training and Compression

Task D-Type n-bit RAM (KB) Core Top-1 (%)

IC

FP 32 n/n None 82.80
8 131 M4 82.85
7 115 M3 82.64
6 98 M3 81.79

FX 5 82 M3 80.05
4 66 M3 78.60
3 49 M3 70.24
2 33 M3 44.14

KWS

FP 32 n/n None 86.75
8 304 M7 86.38
7 266 M7 85.68
6 228 M4 85.41

FX 5 190 M4 81.90
4 152 M4 77.19
3 114 M3 61.70
2 76 M3 9.07

FER

FP 32 n/n None 66.48
8 654 None 65.34
7 572 None 64.59
6 491 M7 65.03

FX 5 409 M7 62.41
4 327 M7 57.65
3 246 M4 18.22
2 164 M4 17.44

Table 4.7: VQ performance obtained on the three benchmarks under analysis.

12.56% (for IC) to 48.26% (for FER). The results confirm that weight quantiza-
tion is an effective compression strategy. For instance, for FER, the 6-bit model
would fit in cores with 512kB RAM (e.g. the M7) still guaranteeing a reasonable
accuracy loss (1.45%). This analysis does not consider the lack of proper hardware
architectures to process workloads with less than 8-bit. As already discussed, there
are alternative software patches, but they proved to be very impractical [170].

Figure 4.9 highlights the key results obtained with the proposed VQ as it gives
a fair comparison w.r.t. n-bit quantization Q, our baseline. For the sake of com-
pleteness, VQ is also compared against a classical pruning methodology (label P)
whose details are introduced later. The bars show the top-1 accuracy loss, which
is defined as the difference between the top-1 accuracy of the original FP model

92

4.3 – Arbitrary Bit-width ConvNets on IoT MCUs

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%
T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

2
8

.1
2

1
1

.1
6

3
.9

5

2
.0

1

1
.4

0

0
.3

6

-0
.0

5

3
8

.6
6

1
2

.5
6

4
.2

0

2
.7

5

1
.0

1

0
.1

6

-0
.0

5

3
2

.8
0

2
9

.8
0

2
7

.9
5

1
7

.5
9

1
0

.2
8

5
.4

9

3
.9

9

Image Classification

VQ Q P

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

1
1

.5
9

3
.7

5

2
.2

3

1
.4

7

0
.8

8

0
.4

3

0
.3

7

7
7

.6
8

2
5

.0
5

9
.5

6

4
.8

5

1
.3

4

1
.0

7

0
.3

7

1
5

.9
7

1
6

.3
3

1
3

.6
4

5
.1

5

3
.2

7

2
.9

5

2
.1

0

Keyword Spotting

VQ Q P

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%

60%

70%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

4
9

.9
8

5
.6

0

1
.7

5

1
.8

7

1
.7

3

1
.0

0

1
.1

4

4
9

.0
4

4
8

.2
6

8
.8

3

4
.0

7

1
.4

5

1
.8

9

1
.1

4

4
9

.9
3

4
9

.9
3

1
9

.5
3

1
0

.5
6

8
.0

5

3
.0

1

1
.7

8

Facial Expression Recognition

VQ Q P

Figure 4.9: Top-1 accuracy loss in the three different applications (lower is better).
The baseline accuracies are the same reported in Table 4.7.

93

Hardware-Driven Training and Compression

(first row of each benchmark in Table 4.7) and that achieved after the compression.
Each bit-width is associated with a different memory footprint, those obtained with
the theoretic fixed-point n-bit quantization (i.e. those in Table 4.7). For the three
applications and all the equivalent bit-widths, VQ converges to solutions that meet
the same memory footprint of Q, yet achieving much lower losses (e.g. 7.08% less
for FER at 4-bit). In other words, VQ makes pure theoretic n-ary quantization
a practical solution even on general-purpose MCUs. Some exceptions might exist,
like FER with 6-bit, where the VQ loss (1.73%) is larger than that of Q (1.45%).
However, the gap is small (0.28%). The greedy nature of the heuristic and the
statistic retraining stages are the first sources of such mismatch. Even more inter-
esting, there are cases where VQ outperforms Q using fewer bits. For instance,
KWS compressed with VQ set to 4-bits shows a loss (2.23%) that is smaller than
that of Q with 5-bit (4.85%). The same holds for FER, which is the benchmark
with the highest complexity and the largest memory footprint: VQ with 3 bits
(5.60%) vs. Q with 4-bits (8.83%). That’s due to the quantization-aware compres-
sion method integrated into VQ: it is aware of the underlying hardware constraints,
hence it runs a well-balanced filter reduction.

One may argue that “memory-equivalence” can be achieved with any standard
compression method (e.g. any standard accuracy-driven pruning) enhanced with
the ability to meet a specific memory constraint. For such reason, Figure 4.9
also reports the result obtained with a “blind” pruning (label P) where filters
are dropped one-by-one (ℓ1-norm as a ranking criterion) till the ConvNet fits the
same RAM of that obtained with Q. Differently from VQ, the pruning strategy
does not involve any quantization awareness, and filters are kept to maximum
precision (16 bits for this case of study). The results clearly show that P meets
the memory constraint of any equivalent bit-width but it gets worse in terms of
accuracy. Moreover, its efficacy reduces with tight memory constraints. The worst-
case is for FER with 3-bit, where the accuracy loss is 44.33% larger than that of
VQ. The main reason is that pruning alone removes the filters at a too fast pace
to reach the target memory footprint; this has dramatic effects on the classification
accuracy.

As a final comment, we noticed that models which undergo the VQ flow get
faster with the reduction of the equivalent bit-width. This is a direct effect of the
compression method which, unlike quantization, reduces the number of memory
accesses (both read and write) and the number of operations without requiring any
extra code or special routine. Considering KWS for instance, with an accuracy loss
of 1% (equivalent to 6-bit Q) the ConvNet model takes 25% less memory and is
1.4× faster.

94

4.3 – Arbitrary Bit-width ConvNets on IoT MCUs

4.3.3 Conclusions
We proposed a compression method for embedded ConvNets called Virtual

Quantization VQ, whose main objective is to emulate a n-ary quantization on
memory-bounded MCUs. We demonstrated that our technique allows to compress
a ConvNet under the same memory target of a state-of-the-art n-ary quantization
VQ, but with higher accuracy. This enables the deployment of the compressed Con-
vNet on general-purpose architectures without the need for custom components or
special memory allocation strategies, which instead would be required using stan-
dard n-ary quantization. The feasibility of VQ has been proved on three different
IoT real-case scenarios (IC, KWS, FER).

95

Hardware-Driven Training and Compression

4.4 EAST: Encoding-Aware Sparse Training
Several recent works investigated aggressive optimization techniques for memory

compression. Among them, quantization via fixed-point representation is now con-
sidered a mandatory step. The use of 8-bit integers is a common choice for general-
purpose MCUs [112] as it reduces the memory footprint up to 4× w.r.t. 32-bit
floating-point with no, or negligible, accuracy loss. Furthermore 8-bit quantization
does not require custom kernels or particular allocation strategies, as described
in Chapter 2. However, quantization alone might be not enough to fit stringent
memory requirements. Sparse training via weight pruning [72][239] is an additional
strategy that can improve the compression if combined with some encoding scheme
and/or when quantization is jointly applied [68][195].

Inducing sparsity and quantization in ConvNets aids the compression by lossless
encoding schemes as their weight tensors have repetitive and simple patterns, like
long chains of zeros or repeated values. As a rule of thumb, the higher the sparsity,
the larger the compression rate. However, as aforementioned in Section 4, there is a
sparsity boundary over that this rule is difficult to exploit, as ConvNets experience a
sudden, catastrophic degradation of accuracy. In fact, under stringent constraints,
in the deep memory space, the level of sparsity that will let encoding schemes meet
the constraint is extremely high, much higher than what ConvNets may tolerate.

The new challenge faced by this works is to achieve higher compression rates
with lower sparsity to preserve accuracy. The rationale is simple, yet effective: find
blocks (or groups) of adjacent weights to be pruned rather than pruning single con-
nections. EAST (Encoding-Aware Sparse Training) implements a sparse training
procedure based on adaptive pruning, minimizing the amount of sparsity needed to
meet the constraint.

4.4.1 Storage-Aware Compression
Flow Overview

The optimization flow encompasses three stages: (i) sparse training, (ii) quanti-
zation, and (iii) encoding. The first trains the sparse network under a user-defined
storage memory constraint. The second, quantization, reduces the arithmetic pre-
cision of the model to a given bit-width (8-bit in this work). The last, encoding,
compresses the model size leveraging favorable patterns made available through the
sparse training. The EAST strategy implements the first stage.

EAST

Encoding-Aware Pruning. Accuracy-driven weight pruning algorithms re-
turn tensors with sequences of zeros much longer than in the original dense model.
Although this helps to increase the compression rate of the encoding scheme, there

96

4.4 – EAST: Encoding-Aware Sparse Training

(a) (b)

Figure 4.10: Weight pruning (a) vs. block pruning (b). Colored weights denotes
zero-values.

is no direct control on the position of the zeros, which is ruled by accuracy. The
EAST technique is based on the assumption that a weight pruning that is aware
of the encoding scheme could make better use of sparsity. A pictorial view of this
principle is given in Figure 4.10, which illustrates how multi-dimensional tensors
are transformed into a 1-D array that can be processed by standard general-purpose
cores. Figure (a) shows a standard weight pruning, while Figure (b) is for a block
pruning with block shape bs ∈ R1×4. In both cases, the picture refers to a channel-
last layout organization (the same scheme used by the inference library adopted in
this work). The colored items represent the pruned weights. While for the stan-
dard method the pruned weights are often placed far away as the selection is just
accuracy-driven (smaller weights pruned first), with a block pruning the proximity
of the pruned weights is forced by the size of the group itself. This brings to clear
advantages. Indeed, even if both cases show the same sparsity (59%), block pruning
gets 55% higher compression ratio (using LZ4, see Section 4.4.1). The savings get
larger when considering tensors of higher size.

It is thereby intuitive that the block shape serves as a control knob to reach
the best trade-off between accuracy, sparsity, and compression rate. When the
available memory is extremely small, blocks of larger size may help to achieve
higher compression with lower sparsity, hence preserving accuracy more. With a
too-small group shape, e.g. bs ∈ R1×4 as for standard weight pruning, the amount
of sparsity needed by the encoding algorithm to meet the memory constraint would
be too large, with negative effects on the accuracy. The EAST strategy implements
a memory-driven adaptive block sizing during the sparse training procedure. As
EAST groups the weights just on the second dimension of the channel-last layout,
from hereafter we consider the block size as the m size of the generic block shape
bs ∈ Rn×m (in this work n is always fixed to 1).

Sparse Training. State-of-the-art sparse training strategy adopted different
strategies to manage the sparsity during the optimization loop. As described in

97

Hardware-Driven Training and Compression

Chapter 2, one of the most common approaches to gradually increase the sparsity
during training is the polynomial decay scheduler proposed in [239]. However,
EAST is storage-driven, hence needs to explore different scheduling strategies to
adapt the block size and the sparsity to meet the storage constraint. In EAST,
both sparsity and block size are gradually increased during the training loop until
the storage constraint is met. In the beginning, the sparsity is low and the block
size is set to one, hence EAST behaves like a standard weight pruning. If the
storage constraint is not satisfied, sparsity and block size are updated following a
pre-defined schedule. The sparse training iterates for a new bunch of epochs and if
the storage memory constraint is still not met, sparsity and group size are newly
updated. The larger the group size, the faster the memory reduction. Therefore,
block pruning helps to converge faster attaining the target memory with a lower
sparsity. The block selection is driven by the ℓ2-norm: blocks with lower norm
are removed first. However, they can be restored later during the training steps
that follow, in fact, these weights can still receive gradient updates during following
training epochs. Once the target is met, the sparsity and block size updates are
stopped, the pruned weights are frozen, and the training iterates for the last set of
epochs adjusting the remaining weights in order to maximize accuracy.

Hyperparamters. Block pruning is applied at the end of each epoch, namely
after a complete iteration over the entire training set. The initial target sparsity is
fixed at 30% with an increased step of 1% every epoch; the step is halved at epochs
20 and 50. The initial block size is set to one; starting from epoch 20, it increases
with a step of 1 every 10 epochs.

Quantization & Encoding

After the sparse training, the 32-bit floating-point ConvNet is quantized to 8-
bit. The effect of the quantization is (i) to reduce the memory footprint ensuring
marginal accuracy loss, (ii) to increase the frequency of repeated weights, (iii) to
accelerate the inference time. We opted for a binary-point quantization scheme that
is fully compliant with the inference library used for on-board deployment (CMSIS-
NN [112]), therefore tailored for the target MCU (the Cortex-M by ARM).

As the very last stage, the quantized model is compressed. EAST can operate
different encoding algorithms, but we found the LZ4 algorithm is a good choice
for resource-constrained MCUs due to its lightweight routine that ensures high
decoding speed. On-board measurements validated this qualitative analysis. The
implemented compression strategy is layer-wise, namely, layers are compressed as
separate blocks. This solution allows more efficient management of the available
SRAM as it avoids one-shot full model decoding. In fact, layers are processed in
sequence during inference, therefore each layer block can be decoded independently
and temporarily stored in the SRAM using time-shared buffers.

98

4.4 – EAST: Encoding-Aware Sparse Training

FP32 Q8 Q8+LZ4
Top-1 91.10% 91.01% 91.01%
Memory 558kB 140kB 140kB

Table 4.8: Top-1 accuracy on CIFAR-10 and weight memory of the dense ResNet-9
after 32-bit floating-point training (FP32), after quantization (Q8), and after LZ4
compression (Q8+LZ4).

4.4.2 Experimental Results
Benchmarks, Datasets, and Training

We used as benchmark a 9-layer ResNet [193] (ResNet-9) for image classifica-
tion on the CIFAR-10 dataset. ResNet-9 currently holds the first position in the
DawnBench Competition [25]. In our implementation, we removed 75% of the fil-
ter from each convolutional layer. As it is already optimized for fast training and
inference, this ConvNet represents a challenging test-case to assess the efficiency of
different compression pipelines.

The dataset is split in training (45K images), validation (5K), and test (10K)
set. The model with the highest accuracy on the validation set is selected for
evaluation. For data augmentation, we applied padding with random crop, random
horizontal flip, and cutout. The same setting is used for both dense and sparse
training. The training is driven by SGD for 200 epochs with batch-size 128. The
learning rate follows a cosine annealing schedule with an initial value of 0.1. All
the experiments have been run in Pytorch 1.2.

For what concerns quantization, the fixed-point position is determined by a
heuristic that minimizes the mean squared error between the floating-point and
the 8-bit values. For the intermediate activations, the statistics have been collected
on a sub-set of the validation set (size 100 samples).

Table 4.8 reports the top-1 accuracy on the test set and the memory size of
the network. The reported values refer to a standard training (i.e. EAST off).
Results confirm the efficiency of quantization (column Q8) that gets 4× memory
reduction with negligible accuracy losses (0.09%) w.r.t. the floating-point ConvNet
(column FP32). Applying the LZ4 compression to the quantized model does not
show significant savings: just a few bytes of memory reduction (column Q8+LZ4).

EAST opens the deep memory space

Table 4.9 reports the comparison between a standard sparse training via weight
pruning (WP) and the proposed flow built upon EAST. The two are compared
for different target memories (Mt), which indicate the size of non-volatile memory
(FLASH) where the model parameters are stored. The WP is trained using the

99

Hardware-Driven Training and Compression

Mt CR SWP SEAST AWP AEAST ∆A
112 5.0× 58.5% 49.5% 89.80% 89.46% -0.34%
80 7.0× 76.0% 60.5% 88.67% 88.61% -0.06%
48 11.6× 89.5% 74.8% 87.51% 87.44% -0.07%
40 14.0× 92.0% 79.0% 86.80% 86.82% 0.02%
32 17.4× 94.0% 83.3% 85.30% 86.11% 0.81%
24 23.3× 96.0% 87.8% 82.33% 83.65% 1.32%
20 27.9× 96.8% 90.0% 79.63% 81.11% 1.48%
16 34.9× 97.5% 91.8% 74.16% 78.45% 4.29%
12 46.5× 98.3% 94.0% 55.59% 64.32% 8.73%

Table 4.9: Comparison between state-of-the-art weight pruning (WP) and EAST in
terms of Top-1 Accuracy (A) and Sparsity (S). The first column Mt indicates the
set of FLASH memory constraints used to compress the ConvNets from the original
dense version. The value of the final compression rate (CR) needed to meet the
target is reported in the second column.

same sparsity schedule of EAST (see Section 4.4.1). For each Mt, the table collects
the compression ratio (CR) achieved after quantization and encoding, the sparsity
reached after training (columns SWP and SEAST), the top-1 accuracy measured on
the test-set (AWP and AEAST) and the relative accuracy distance (∆A) between
EAST and WP. As demonstrated by previous works, when the storage constraint
is met with low sparsity, weight pruning guarantees marginal accuracy losses. For
instance, at Mt = 112kB the accuracy loss is only 1.21% lower than the dense
8-bit ConvNet (89.80% vs. 91.01%). In this region of memory, EAST reaches
similar accuracy levels than weight pruning, 0.34% lower in the worst case (Mt =
112kB). However, in the deep memory space (Mt ≤ 40kB) weight pruning starts
experiencing dramatic accuracy degradation. The reason is that very high sparsity
(> 90%) is needed to reach the desired storage constraint, therefore the model
loses its expressive power as only a few weights remain up. In this region EAST
outperforms WP; the encoding-aware pruning enables better control of the sparsity
indeed (SEAST < SWP), preserving the same amount of information within the
same amount of memory. On the extreme corner, Mt = 12kB, EAST is 8.73%
more accurate than WP due to a lower sparsity (94% vs. 98.3%). To emphasize
the role of EAST, one can consider that with the same amount of sparsity (e.g.
94%) the model optimized with EAST is 2.7× smaller (row 12kB vs. 32kB).

100

4.4 – EAST: Encoding-Aware Sparse Training

0 20 40 60 80 100 120 140 160 180 200

Epochs

25

50

75

100

125
M
em

o
ry

(K
B
)

WP

EAST

Figure 4.11: Comparison between the speeds of EAST and weight-pruning to meet
the target. The line plot shows the Memory trend according to the training epochs
for weight pruning (blue line) and EAST (red line). The memory target is fixed at
Mt = 32kB (dashed line). Each black dot marker indicates one increment of the
block size.

EAST accelerates the memory compression

Figure 4.11 shows the evolution of the memory footprint during the training
epochs for both WP (blue line) and EAST (red line) under the same storage con-
straint Mt = 32kB. During the first 20 epochs, when the block size is one (as set by
the training schedule, see Section 4.4.1), EAST follows the same trend of WP. Every
time the group size gets increased (events indicated with black dots), the memory
compression accelerates quickly. As a result, EAST reaches the target memory
(indicated with the dashed black line) 43 epochs sooner than WP. These findings
suggest that the block size works as an effective knob to boost the compression rate
without seeking additional sparsity.

Efficient deployment of sparse ConvNets

We validated the optimization flow on a STM32 NUCLEO-F412ZG [153] board
powered with an Arm Cortex-M4 core running at 100MHz, 1MB of FLASH memory,
and 512kB of SRAM. As the inference engine, we adopted the CMSIS-NN library.
The original dense ConvNet takes 28kB of SRAM to store intermediate activations
and classifies a single image in 28492ms. The sparse ConvNets needs 884B of flash
for the LZ4 routine, which thereby has a negligible impact on the compression
rates achieved. Furthermore, an additional SRAM buffer of 28kBkB is needed to
store the decompressed weights. Since this buffer is time-shared among different
layers, its size is given by the biggest layer. However, the buffer can be dynamically
allocated just before the execution of the ConvNet.

101

Hardware-Driven Training and Compression

The total execution time is function of the storage memory constraint Mt: the
larger the Mt, the longer the decompression stage. For ResNet-9 generated with
EAST, the execution time ranges from 482ms at Mt = 12kB to 497ms at Mt =
112kB. At the lowest memory, the decompression only accounts for 6ms; in all
cases, the network layers execute faster than the dense counterpart as the weights
resides in the SRAM instead of flash.

4.4.3 Conclusions
This work opens new paths towards the optimization of ConvNets in memory-

bounded cores. EAST is particularly suited for the deep memory space, where it
outperforms state-of-the-art sparse training. Nevertheless, further investigation is
needed to bridge the accuracy gap with dense nets at extreme constraints. First,
we plan to consider other proxies than the ℓ2-norm to drive the block selection.
Second, group size and sparsity follow relative straightforward scheduling during
the training; in order to achieve better trade-offs between sparsity, block size, and
the position of the pruned groups, future works will explore the adoption of smarter
hyper-parameter tuning techniques (e.g. Bayesian optimization or reinforcement
learning) that might help EAST to reach global optima in the sparsity-memory-
accuracy space.

102

Chapter 5

Latency-Quality Scalable
ConvNets

5.1 Scalable ConvNets and Their Knobs
Recently, the design of ConvNets did not focus on the search for new topolo-

gies to improve prediction accuracy, but rather it was mostly concerned with the
scalability of the existing well-known architectures. In particular, there is a set
of ConvNets used by the designer patterns to rescale and resize to improve the
accuracy vs. efficiency trade-off (e.g., VGG [180], MobileNets [85], ResNets [76]).

5.1.1 Static Scalability
Scaling up the size of the models is a widely used strategy to improve accuracy.

However the accuracy is not the only agent, in fact, the model efficiency is crucial.
For this reason, the scaling process is often not fully accomplished by the various
works, as there are many ways to do it focusing on different aspects. There are three
main knobs used to scale the ConvNet architectures: depth, width, and resolution.

Depth. The prior and most used approach is the depth scaling, firstly explored
in [77] and followed by many works [87, 185]. The intuition is simple: a deeper
model has more chance to capture more complex features from the input images.
Hence, increasing the number of convolutional layers would help the model to raise
its prediction capability for a given task. However, a deeper ConvNet is also more
complex to train for vanishing gradient [228]. Despite skip connections [77] and
batch normalization [96] can alleviate the issue on more complex training, the
correlation between depth and accuracy gain rapidly slows with a high number of
layers.

Width. Another very popular approach is the width scaling [228], where stan-
dard practice is to use a width multiplier to scale the number of channels inside
each convolutional layer. This multiplicative factor refers to the ratio of channels

103

Latency-Quality Scalable ConvNets

that respect the baseline model. This approach is commonly used for small size
models [85, 172, 188]. It is well known that wider networks, i.e. with a high num-
ber of channels, tend to have a major ability to capture fine-grained features from
samples, and faster training convergence [228]. However, there is a boundary over
which wider networks become less capable to extract higher-level features, rapidly
saturating their accuracy gain due to extremely large width.

Resolution. Then, a more recent approach is resolution scaling, which modu-
lates the size of the input images. Samples from ILSVRC-2012 (Imagenet) bench-
mark [110] from original 224×224 were scaled up to 229×229 in [186] and to
331×331 to increase the prediction accuracy. Furtherly, a more recent work reached
the resolution of 480×480 to achieve the state-of-the-art accuracy of Imagenet [90].
For object detection task the resolution scaling reaches higher resolutions, up to
600×600 [78, 125]. Similar to the previous case of width scaling, extremely rising
up much the resolution brings a slowing of the relative accuracy gain.

5.1.2 Dynamic Scalability
However, all these strategies are very effective but they focus just on the static

scaling of ConvNets, which means that a model after being trained and deployed
on a device, cannot be re-scaled anymore. To overcome this limitation, more recent
approaches tried to explore dynamic strategies to scale ConvNets with the aim
to trade accuracy for speed at run time, optimizing the average resource usage.
This new branch of scalable architectures can enable many vision applications,
which may benefit to have multiple solution points in the latency vs. accuracy
space. One example is always-on systems that require continuous monitoring of
input samples, but at different priority levels: they need to employ less effort to
quickly recognize some suspicious event, and more effort with slower processing to
classify the type of event. Another example, in a more deterministic scenario, is to
adapt the inference task to different latency constraints to meet the timing budget
imposed at the system/application level for balancing the workload. This new class
of scalable ConvNets are defined as Run-time Scalable ConvNets [201, 190, 223].
Also for the dynamic ConvNets, the set of scaling knobs is the same as the static
case, but with the different aim to scale in the design space yet using a unique
model.

Depth. Dynamically scaling the network depth means changing the number of
layers traversed by the forward pass. This can be driven by the complexity of the
current input pattern as a knob, or more pragmatically by a system-defined latency
constraint. One common and simple strategy is the involvement of gating blocks,
like in [205], which are modules that are embedded and trained in the ConvNet
graph implementing a dynamic routing strategy, eventually with the addition of an
early-exit branch [241]. The underlying full-depth model is the main contribution
for the storage, in addition to the extra modules for controlling the depth.

104

5.2 – Motivation

Width. The dynamic version for scaling the number of channels (proportionally
to a width multiplier [172]) has been firstly proposed in Slimmable Networks [223].
The authors introduced the concept of switchable batch-norm enabling a reliable
training procedure for dynamic width scaling. This training strategy has been
furtherly extended in [221], to execute slimmable networks at arbitrary width. The
authors introduced two novel techniques, namely the the sandwich rule and the in-
place distillation, with the aim to enhance the training process and boosting final
accuracy. To enable to run all the possible configurations, however, these solutions
need to store the full dense model on the device, despite it utilizes only a sub-set
of the parameters at a time.

Resolution. Extending the resolution knob to a dynamic level is still an open
issue. However very recent works propose interesting approaches to adapt ConvNet
at different input sizes switching the sub-network to use. A general method to train
a ConvNet able to switch resolution at run-time has been proposed in [206], en-
abling to switch running speed to meet different latency constraints. The ConvNet
parameters are shared across the sub-networks, but they are still kept separate be-
tween batch normalization layers. A more advanced approach has been proposed
in [215], where the authors proposed a width-resolution mutual learning strategy to
dynamically adapt the ConvNet to different accuracy-efficiency trade-offs. At last,
the dynamic scalability can be addressed also reusing a single set of quantization
terms (i.e., the same set of nonzero bits in values), rather than sharing the weight
values, as recently shown in [230].

5.2 Motivation
Despite the relative ease of implementation and the ability to switch settings

at run-time during the inference stage, operating on the topology of the model
can only offer a coarse-grained control of latency and accuracy. Moreover, it does
not alleviate the pressure of the storage memory. Indeed, these strategies require
storing the full model configuration, namely, the one at the maximum width, depth,
or resolution. This may require more than a few MBs, which might not meet the
stringent constraint of non-volatile memory (FLASH) of the edge devices. This calls
for the accomplishment of a finer control knob able to modulate both the latency
and the ConvNet footprint, and the sparsity is a good candidate. As reported in
Chapter 2, sparse pruning has been proved to be more effective than structured
pruning, as it guarantees lower accuracy losses at the same compression rates.
The memory footprint of the sparse models can be effectively reduced with proper
lossless encoding schema [67].

However, the use of sparsity as a dynamic knob is not trivial. The authors
of [213] proposed a learning strategy to train a single ConvNet model able to work

105

Latency-Quality Scalable ConvNets

at different sparsity levels. The reported results are positive, but they limit the anal-
ysis on Recurrent Neural Networks for Automatic Speech Recognition (ASR) [213],
known to be highly over-parametrized models and hence more resilient to prun-
ing [150]. We experimentally tested that this technique is quite frail when applied
to lightweights ConvNets for computer vision tasks, where it brings substantial ac-
curacy losses. Moreover, the authors do not deep into the real deployment and edge
processing of these dynamic sparse ConvNets, which cannot be underestimated. In
fact, this dynamic sparse training needs to store on the FLASH memory both the
unique set of weights and a set of binary masks, one for each sparsity level. This
can be a severe impediment to practical implementations on resource-constrained
devices, where the non-volatile memory is often less than a few MBs.

However, deploying a dynamic sparsity model on general-purpose, low-power
cores may guarantee latency-proportional processing. This issue, never discussed
before, in addition to the limited results presented in [213] motivates our work:
Run-time Scalable ConvNets via Nested Sparsity.

106

5.3 – Run-time Scalable ConvNets via Nested Sparsity

5.3 Run-time Scalable ConvNets
via Nested Sparsity

This work contributes to the state-of-art with a novel training and compression
pipeline for building Nested Sparse ConvNets. A Nested Sparse ConvNet consists of
N nested weight-sets with programmable gradual sparsity, trained and compressed
to facilitate the deployment and maximize the scaling efficiency. Specifically, we
introduce:

• a novel gradient masking technique to route the learning signals between
the nested sparse weight-sets, achieving better quality than existing dynamic
pruning methods;

• a new sparse matrix compression format with dedicated compute kernels that
fruitfully exploit the nested structure of the weight-sets, avoiding decompres-
sion stages that might impede the dynamic scaling mechanism.

To validate our proposal, we collected an extensive set of results using as bench-
marks ResNet9 [76] and two instances of MobileNet (V1 and V2) [85, 172] for two
tiny vision tasks, i.e., image classification and object detection, ported onto a com-
mercial embedded system powered with an ARM Cortex-M7 MCU 1. With such
use-cases, the Nested Sparse ConvNets achieved an accuracy comparable to that
of independently trained sparse models and outperformed state-of-the-art scalable
ConvNets obtained via dynamic sparsity [213] and layer width scaling [223], thus
proving Pareto efficiency in the accuracy vs. latency space.

5.3.1 Building Nested Sparse ConvNets
Training

Training a Nested Sparse ConvNet means learning one weight-set θ and N
binary masks. Each i-th pruning maskM si serves a given sparsity level si and all the
masks are nested, that is, more sparse masks are encapsulated in less sparse masks.
Therefore, for a pre-defined set of sparsity levels S = {s1, s2, ..., sN}, there is a set
M = {M (s1),M (s2), ...,M (sN)} that defines the N sparse weigh-sets θ(si) = θ◦M (si)2

nested in the whole weight-set Θ. In other words, θ can be seen as the weight-set
of a super-network containing a set of sub-networks with multiple sparse nested
weight-sets θ(si).

In the adopted training strategy, the sub-networks are sequentially evaluated
with an increasing order of sparsity, from low to high, with the weight-set θ and

1https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
2◦ indicates the element-wise product between two matrices, i.e., the Hadamard product.

107

Latency-Quality Scalable ConvNets

Weight-SetWeight-SetWeight-Set Weight-Set

g(D)

Gradient

L

Dense Gradient

L

Gradient

L

Gradient

L

g(D)

g(s1)

g(s2)

g(s3)

s1 s2 s3

g(D)

g(s1)

g(D)

g(s1)

g(s2)

Figure 5.1: Training step: full weight-set (θ) and the sub-nets (θsi) sorted with an
increasing order of sparsity from left to right (i.e s1 < s2 < s3).

the masks M updated only at the end of each training step. It turns out that the
weights are ranked (by magnitude) just once, and all the sub-networks can share
the same ordered list of weights during the pruning stage. This ensures that the N
masks M (si) are nested:

s1 < s2 < ... < sN ⇒ θ(s1) ⊃ θ(s2) ⊃ ... ⊃ θ(sN) (5.1)

The concurrent training of multiple sparse sub-networks within a single model
raises several issues, among which the most critical concerns how to collect and com-
pose the contributions coming from (and directed to) different sub-networks. The
authors of [213] applied a simple average, without considering that sub-networks
with different sparsity share bunches of non-pruned weights, and that the learning
of such shared weights must be balanced in a proper manner. For instance, a less
sparse sub-net may require a smother update compared to that of a sub-net with
a higher sparsity. To accommodate this requirement, we thereby introduce a novel
technique, named gradient masking, to guarantee a more stable and effective rout-
ing of the learning signals among the nested sub-networks. The gradient masking
is integrated as part of a training loop built upon the basic structure of classical
pruning and is enhanced with in-place knowledge distillation (KD). More technical
details are given in the next sub-sections.

Gradient Masking A pictorial representation of one training step is reported
in Figure 5.1, which depicts the dynamics of the gradient masking. Each frame
shows a consecutive evaluation of a different sub-network, consisting of forward
(solid line) and backward (dashed line) passes. L indicates the training loss. The
first frame on the left (labeled as Dense) is for the full weight-set θ (i.e., s = 0%),
while the following ones refer to sub-networks θ(s1), θ(s2), and θ(s3), with s1 <
s2 < s3; the number of pruned weights increases from the left to the right. With
gradient masking, the weights pruned within a given θ(si) no longer contribute to
the next stages, neither to the forward pass nor to the backward propagation; this
is graphically depicted in Figure 5.1 with the shadowed gray regions. For instance,

108

5.3 – Run-time Scalable ConvNets via Nested Sparsity

the gradient computation from the sub-network with sparsity s2 (g(s2)) does not
interfere with the gradients previously computed for the less sparse sub-networks.
The effect is twofold: first, to allow the less sparse (and possibly more accurate)
sub-networks to influence the weights of the more sparse and weaker ones; second,
to shield more sparse (and hence less accurate) sub-networks, preventing abrupt
changes in the learning curve. This flow improves both the quality and stability of
the training.

The gradient masking can be described more formally as follows. During the
forward pass of each input x with label y, the local gradient for the sub-network
with sparsity si is computed according to the SGD algorithm as:

ĝ(si) = 1
b
· ∇θ(si) ·

∑︂
j

L(f(x(j), θ ◦M (si)), y(j)) (5.2)

where L(·, ·) is loss function, f(·, ·) the forward evaluation of the network, and b
the number of samples in the mini-batch. The local gradient ĝ(si) is then merged
to the other gradient contributions through the masking operation:

Ĝ =
∑︂
s

M (si) ◦ ĝ(si) (5.3)

The same pruning mask M (si) is used to remove the contribution of the pruned set
of parameters from the forward pass in Equation 5.2 and from the computation
of the global gradient Ĝ in Equation 5.3, which is then used to update the full
weight-set θ.

Training Loop The pseudo-code of the proposed Nested training loop is re-
ported in Algorithm 5. It follows the basic structure of a classic block pruning
procedure [72, 239] where a model is gradually pruned with a granularity of a m×n
block until a target sparsity level is reached.

The procedure takes as main inputs the set of sparsity levels S, and the block
shape, and it returns the weight-set θ and the set of masks M s containing the
N nested mask, one for each sparsity s ∈ S. The training loop alternates dense
training stages (line 3-5) with the pruning stages (line 6-13). For each epoch e,
forward and backward passes are first performed for the dense model (lines 3-5),
then the weight-set θ is updated (line 14) using the gradient value, eventually
after the pruning stage. During the pruning stage (line 6-13), for each sparsity
level (line 7), a mask is generated through the getMask function and then applied
to the weight-set θ (lines 8-9); the getMask computes the binary mask based on
a L2 magnitude policy using a given block shape. The forward and backward
passes are run to compute the local gradient from the current sparse sub-network
(lines 10-11), then the local gradient is masked and merged with the previous
gradient contributions (line 12). To notice that the predictions of the dense model

109

Latency-Quality Scalable ConvNets

Algorithm 5: Nested Sparse Training.
1 Input: epochs, S, block_shape
2 for e in epochs do
3 Ĝ = 0
4 soft_labels = forward(θ)
5 Ĝ += backward(θ)
6 if pruneEpoch(e) then
7 for s in S do
8 M s = getMask(θ, s, block_shape)
9 θs = θ ◦M s

10 forward(θs, soft_labels)
11 ĝs = backward(θs)
12 Ĝ += M s ◦ ĝs // Gradient Masking
13 end
14 θ = update(θ, Ĝ)
15 end
16 M = { getMask(θ, s, block_shape) for s ∈ S }
17 Output: θ, M

0
1
2
3

0 1 2 3 4 5 6 7

0

6 4

2 0 6

6 0

1 0 0

1 1 0

1 1 1

1 0 1

nz-values nz-iidx nz-jidx

NestedCSR

N

s3

s2

s1

Figure 5.2: Example of the proposed storage format NestedCSR applied to a 1× 2
block sparse matrix that can work in three sparsity levels S = {s1, s2, s3}.

are used as soft labels, as a form of in-place distillation [221]. At last, the final
weight-set and the list of nested masks are returned as the main outcome (lines 16-
17).

Compression

Figure 5.2 illustrates an example of the proposed sparse matrix compression
format, named NestedCSR, for a nested model trained with three generic sparsity

110

5.3 – Run-time Scalable ConvNets via Nested Sparsity

levels s1 < s2 < s3 and using a block shape bs ∈ R1×2. It is worth emphasizing the
compression format is general and can be used with any number of sparsity levels
or block sizes. At the lower sparsity (s1), the matrix comprises the red, green, and
blue non-zero blocks; at the medium sparsity (s2), the red and green blocks; at
high sparsity (s3) the red blocks. As shown in the figure, the three configurations
can be seen as a composition of three disjoint sparse matrices, and this is exactly
the property exploited by NestedCSR. Each sparse sub-set is compressed using a
block CSR format [225]: the nz-values array stores the values of the non-zero blocks
in row-major order, the nz-iidx the number of non-zero blocks on each row, and
the nz-jidx the column position of each non-zero blocks. The three arrays of each
sparse sub-set are concatenated row-wise, from the most sparse to the least sparse
(from red to blue in the example of Figure 5.2).

The footprint of a block-sparse matrix W of dimensions R × C encoded with
NestedCSR depends on the size of the three arrays, defined as follows:

|nz-values| = (1−smin)·|W |, (5.4)
|nz-iidx| = N ·R, (5.5)

|nz-jidx| = (1−smin)· |W |
n·m

; (5.6)

where N is number of sparsity levels, or nested configurations, n and m the dimen-
sions of the non-zero block. As the main advantage of such a format, the amount of
storage memory is weakly affected by the number of nested configurations. In fact,
the size of nz-iidx is usually negligible compared to those of the other two arrays,
and hence the overall footprint is set by the least sparsity adopted.

To accelerate the processing of a nested and compressed sparse layer on a
general-purpose core, we implemented a custom compute kernel that follows the
organization of the NestedCSR format3. Specifically, the kernel iterates over each
row of the N sparse sub-sets selecting only those needed by the actual sparsity
value, then it performs a sparse matrix multiplication [225].

5.3.2 Experimental Results
Experimental Set-up

Tasks, Datasets, and ConvNets. The proposed method was evaluated on im-
age classification (IC) and object detection (OD) using the following data-sets.
CIFAR-10/100 (IC) [109]: 60k 32× 32 RGB images annotated with 10/100 labels
and split into 45k samples for training, 5k for validation, and 10k for testing.

3The kernel works for convolution-as-GEMM implementation of the convolutional layers [225,
112].

111

Latency-Quality Scalable ConvNets

PASCAL VOC (OD) [40]: 15870 RGB images picked from the 2007 and 2012 PAS-
CAL Visual Object Classes Challenge, counting of 37813 objects annotated with
20 different labels. As suggested in [128], VOC07 and VOC12 trainval data were
used for training, while VOC07 was dedicated to testing. We limited the number
of different classes to the top-10 classes recognized by the full-scale model. The
image resolution was re-scaled to 160 × 160 with a bi-linear interpolation; this is
mandatory due to the strict memory constraints of the target MCU (512KB of
RAM, 2MB of FLASH).

As ConvNet benchmarks we opted for lightweight architectures suitable for
the IoT segment: a 9-layer ResNet (ResNet9) [76] for IC on CIFAR-100; Mo-
bileNetV1[85] for IC on CIFAR-10; MobileNetV2 [172] as backbone for a Single
Shot Detector (SSD) [128].

Training. The training procedure for the IC task was driven by the SGD opti-
mizer (momentum 0.9, weight decay 0.0005) for 300 epochs with batch size 128.
The learning rate followed a cosine annealing schedule starting from 0.05. The
same procedure was adopted for the SSD training, except for the batch-size set to
32. Images were flipped and rotated for data augmentation on the IC task, while
for OD we followed the same strategy presented in [128]. Each training experiment
was run three times with different seeds, and the average accuracy is reported. To
train the sparse networks, both single and nested, the block shape is taken to 1× 2
unit pruning with a uniform sparsity all the layers, except the first layer following a
similar scheme to [38]. After 8 warm-up epochs, the sparsity levels start to increase
with a polynomial decay schedule [239]. The training algorithm was implemented
within the PyTorch framework (v1.5.1) and accelerated with a single consumer
graphic card by NVIDIA (Titan Xp).

The set of sparsity levels S used to collect the results cover three values: {70%,
80%, 90%}. How to find the optimal set S to achieve the best accuracy, latency,
and storage trade-off is out of the scope of this work.

In the remaining sections we refer to Dense as the dense baseline network,
Single Sparse as the model optimized for a single sparsity level [72], Nested Sparse
Networks for our proposal, Slimmable as the dynamic model obtained by layers
width scaling [223], and DSNN as the dynamic sparse model [213]. For Slimmable,
we adopted the official implementation4, whereas for DSNN we used an in-house
implementation as no open-source code was available at the time of writing.

Deployment. The inference latency was measured on a NUCLEO-F767ZI pow-
ered by an ARM Cortex-M7 MCU operating at 216MHz. The board hosts 512KB
of on-chip SRAM and 2MB of FLASH. The CMSIS-NN library v.5.6.0 [112] was

4https://github.com/JiahuiYu/slimmable_networks

112

5.3 – Run-time Scalable ConvNets via Nested Sparsity

extended by the sparse matrix multiplication kernels described in the previous sec-
tion, with a block-shaped set to 1 × 2 to exploit the Single Instruction Multiple
Data media accelerator of the M7 core [225]. To comply with the arithmetic re-
quirements of the CMSIS-NN library, the ConvNets under analysis were quantized
to 8-bit using a layer-wise symmetric binary scaling [97]. We adopted the GNU
Arm Embedded Toolchain (version 6.3.1) for cross-compilation.

Nested Training Assessment

To assess the quality and generalization properties of the proposed nested train-
ing, we analyzed the accuracy achieved over the IC tasks by ConvNet architectures
of decreasing capacity, that is, reduced by a width scaling factor w ∈ {1.00, 0.75, 0.50, 0.25}.
Such scaling should not be confused with the dynamic width scaling of [223], which
is discussed later (Section 5.3.2). The results are collected in Tables 5.1 and 5.2.

Nested vs. Single Sparse ConvNets Training a network for a single sparsity
level should be considered as the best case because the parameters are optimized
just for that specific sparsity. Contrarily, the training of a Nested Sparse Con-
vNet has to concurrently optimize multiple sub-networks while trying to drive each
of them towards the highest accuracy. Despite the multi-objective nature of the
optimization, Nested ConvNets actually perform better than individually trained
sparse models in several cases, and when they achieve inferior accuracy, the gap is
rather small. Considering the nested training with in-place distillation (KD), the
(worst case) accuracy drop is 0.31% for MobileNetV1 and 0.96% for ResNet9.

The gradient masking technique enables less sparse sub-networks to trans-
fer knowledge to the more sparse ones improving accuracy. The single sparse
MobileNetV1@w0.25 with s=90% shows a drastic quality drop, whereas the Nested
Sparse model is 20.32% more accurate, closing the gap with the less sparse configu-
rations. To notice that the joint training does not only benefit configurations with
higher sparsity, but it also improves the least sparse ones thanks to the presence of
the dense model in the training loop. For instance, Nested Sparse ResNet9@w0.75
at the lowest sparsity (s=70%) is ≈ 1% more accurate than the single sparse model,
hence much closer to the dense model.

The in-place knowledge distillation (KD) contributes effectively pushing Nested
Sparse ConvNets towards higher accuracy, with an average improvement of 0.79%
for MobileNetV1 and 1.41% for ResNet9. The most significant improvements can
be observed on networks with a smaller width (w={0.50, 0.25}), where KD leads
up to 2.22% of accuracy gain for MobileNetV1 and up to 2.06% for ResNet9.

Nested vs. Dynamic Sparse ConvNets While the training of DSNNs [213]
has proven stable on RNNs for ASR, our results reveal it performs worse on
tiny ConvNets for computer vision tasks. As the worst-case, a DSNN is 3.40%

113

Latency-Quality Scalable ConvNets

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 90.08 89.35 88.32 85.31

Single Sparse
70 89.70 88.56 87.27 83.32
80 89.02 88.13 87.04 73.22
90 88.81 86.02 75.20 57.88

DSNN [213]
70 86.30 86.21 84.09 78.84
80 86.42 85.96 83.69 76.10
90 85.49 84.62 81.78 72.22

Nested Sparse ConvNets

w/o
In-place KD

70 88.43 87.87 86.57 81.07
80 88.27 87.57 86.56 80.90
90 87.84 86.85 85.10 77.61

w/
In-place KD

70 89.90 88.48 87.55 83.29
80 89.20 88.24 86.95 82.12
90 88.50 87.03 85.86 78.20

Table 5.1: MobileNetV1 - CIFAR-10. Best results for each sparsity level are high-
lighted in bold.

less accurate than the single sparse configuration on MobileNetV1 and 13.65% on
ResNet9. Except for ResNet9@w1.00 with s=90%, Nested Sparse ConvNets out-
perform DSNNs, getting better for more compact networks with lower width and
higher sparsity. Recalling the notation introduced in Section 5.3.1, the training
of DSNNs computes the global gradient as the sum of the local gradients, i.e.,
Ĝ = ∑︁

s ĝ
(si); we empirically demonstrated that such strategy is a source of gradi-

ent instability. In fact, our gradient masking technique overcomes this drawback
thanks to a proper and selective routing of the learning signals, which has the effect
of amplifying the gain brought by the joint training strategy.

Compression Pipeline Evaluation

Table 5.3 reports the storage profiles for ResNet9 and MobileNetV1, showing
Nested Sparse ConvNets achieve substantial savings: three sparse configurations of
ResNet9@w1.00 require as low as 1016kB (54% smaller than the dense baseline),
while MobileNetV1@w1.00 fits into 1464kB (53% smaller). Interestingly, a Nested
Sparse ConvNet takes almost the same storage of its least sparse configuration.
For instance, encoding a 70% sparse model with block CSR [225], calls for 1014KB

114

5.3 – Run-time Scalable ConvNets via Nested Sparsity

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 73.78 72.24 69.66 63.05

Single Sparse
70 72.93 71.09 68.29 58.90
80 72.61 70.90 67.72 57.40
90 72.15 69.98 65.04 52.15

DSNN [213]
70 72.9 70.48 63.38 45.25
80 72.83 69.70 62.48 44.69
90 71.62 67.56 60.15 40.92

Nested Sparse ConvNets

w/o
In-place KD

70 72.09 70.36 67.35 57.04
80 71.72 69.97 66.91 56.53
90 69.90 67.45 63.86 52.37

w/
In-place KD

70 73.56 72.04 68.82 58.70
80 72.94 71.05 68.38 57.30
90 71.19 69.59 65.92 52.93

Table 5.2: ResNet9 - CIFAR-100. Best results for each sparsity level are highlighted
in bold.

in the case of ResNet9@w1.00 (a mere 2kB less than NestedCSR) and 1458kB
for MobileNetV1@w1.00 (6kB less than NestedCSR). The models centered on the
other widths follow similar trends, confirming the effectiveness of the NestedCSR
format across a wide set of topology configurations.

Thanks to custom-designed compute kernels, not just memory but also latency
takes advantage of the NestedCSR format. Figure 5.3 reports a comparative anal-
ysis for ResNet9 and MobileNet V1, both dense and sparse, using a classical CSR
and the proposed NestedCSR. As it was expected, the sparse kernels introduce a
remarkable speed-up w.r.t. the dense versions, but even more remarkable, Nested
Sparse ConvNets reach comparable performance to single sparse ConvNets. For
ResNet9, the multi-sparse kernels perform slightly better than single sparse kernels
(1.83% on average) at high width (w=1.00 and w=0.75), and show more overhead
at low width (4.04% in the worst case). For MobileNetV1, the multi-sparse kernels
perform moderately worse (10.91% slower on average), and the overhead increases
more notably (up to 14.08% in the worst case) for more sparse and smaller net-
works. Although the use of multi-sparse kernels incurs such latency penalty, it still
preserves the advantage brought by dynamic sparsity and much lower storage. Mul-
tiple single sparse networks, in fact, would require storing all weight-sets on-device,

115

Latency-Quality Scalable ConvNets

1.00 0.75 0.50 0.25

Width

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
o
rm

a
li
ze
d
L
a
te
n
cy

204 ms 126 ms 65 ms 24 ms

-

Dense s=70% s=80% s=90% CSR NestedCSR

(a) MobileNetV1- CIFAR10

1.00 0.75 0.50 0.25

Width

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
li
ze
d
L
a
te
n
cy

1093 ms 630 ms 292 ms 84 ms

-

Dense s=70% s=80% s=90% CSR NestedCSR

(b) ResNet9 - CIFAR100

Figure 5.3: Latency values normalized for each width to the NestedCSR@s=70%.
The latency of the dense model at w=1.00 is not shown as it exceeds the FLASH
memory of the adopted device (2MB).

an unfeasible requirement for many tiny end-nodes.
As a side note, the latency reduction due to higher sparsity lowers down for

smaller width multipliers as (i) the convolutional layers contribute less to the over-
all inference latency, and (ii) the lower number of channels decreases the data-reuse

116

5.3 – Run-time Scalable ConvNets via Nested Sparsity

20 50 100 150 200 250

Latency [ms]

78

81

84

87

90

T
op

1
[%

]

Slimmable

Nested s70%

Nested s80%

Nested s90%

Width

1.00

0.75

0.50

0.25

(a) MobileNetV1- CIFAR10

50 200 400 600 800 1000 1200

Latency [ms]

52

58

64

70

76

T
op

1
[%

]

Slimmable

Nested s70%

Nested s80%

Nested s90%

Width

1.00

0.75

0.50

0.25

(b) ResNet9 - CIFAR100

Figure 5.4: Latency-accuracy scaling for Slimmable ConvNets and Nested Sparse
ConvNets. Grey area shows the unfeasible solution space for the adopted MCU,
i.e., FLASH footprint > 2MB.

opportunities exploited by the sparse computational kernels. Moreover, the perfor-
mance of ResNet9 and MobileNetV1 differ due to the topology of the two architec-
tures. In MobileNetV1, there are many convolutional layers, but only the point-wise
1× 1 are sparsified. Whereas, in ResNet9, there are fewer convolutional layers, but
they are all sparse, and they have a higher number of channels with larger kernels
(3× 3). Such architectural differences lead to dissimilar performances of the sparse

117

Latency-Quality Scalable ConvNets

Model Method Sparsity Storage [KB]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 3132 1774 800 208
MobileNetV1 Single 70 1458 834 384 106

Nested {70, 80, 90} 1464 839 387 108

Dense 0 2232 1259 562 143
ResNet9 Single 70 1014 575 260 68

Nested {70, 80, 90} 1016 576 260 68

Table 5.3: Storage footprint of ResNet9 trained on Cifar100 and MobileNetV1
trained on CIFAR10.

and multi-sparse kernels.

Latency-Quality Scaling

Figure 5.4 depicts the latency vs. accuracy trade-off achievable by Nested Sparse
ConvNets. The best dynamic behavior is observed at the highest width. Looking
at MobileNetV1@w1.00, an increase of sparsity from 70% to 90% has a minimal
effect on accuracy (1.4%), but the speed-up is remarkable: 51% of latency reduc-
tion. ResNet9@w1.00 follows the same trend (Figure 5.4b), where a higher sparsity
improves latency by 62% with a moderate effect on accuracy (2.37% loss). Re-
ducing the model width makes the trade-off slightly worse as smaller ConvNets
are less resilient to pruning. As a result, when the model gets smaller, the ac-
curacy gap increases, and the latency speed-up gets lower. Still, for the smallest
nets (width=0.25) an accuracy drop of 5.09% (5.77%) for ResNet9 (MobileNetV1)
corresponds to a latency savings of 52% (31%).

To compare the sparsity knob with other architectural knobs, Figure 5.4 also
reports the dynamic behavior for Slimmable networks [223]. Slimmable networks at
maximum width w=1.00 do not satisfy the FLASH constraints (≤ 2MB), and only
the three smaller but weaker configurations can be deployed on-device. Thanks
to sparse encoding instead, Nested Sparse ConvNets of maximum width get still
deployable. Except for the smallest width (w=0.25), Nested Sparse ConvNets at
s=70% and s=80% turn out to be both more accurate and faster than the slimmable
models. A Nested Sparse ConvNet presents a moderate scaling capacity compared
to a slimmable model, which is intuitive as the sparsity acts as a fine-grain control
knob on both accuracy and latency. Nevertheless, its low storage footprint paves
the way to an attractive hybrid solution, where the width multiplier serves as an
orthogonal static knob. The Pareto analysis of Figure 5.4 reveals that the three
Nested Sparse ConvNets, i.e., width {0.75, 0.50, 0.25}, made scaling over the three
sparsity levels, outperform the slimmable counterparts, originating eight Pareto

118

5.3 – Run-time Scalable ConvNets via Nested Sparsity

Training
w=0.50 w=0.35

Sparsity mAP Storage Latency mAP Storage Latency
[%] [%] [kB] [ms] [%] [kB] [ms]

Dense 0 68.32 869 1549 63.42 523 998

Single
70 66.01 508 1080 60.58 329 752
80 62.72 407 972 55.20 274 689
90 29.40 306 862 23.06 219 625

Nested Sparse ConvNets

w/
In-place KD

70 68.30
514

1225 63.12
334

883
80 66.37 1103 61.03 807
90 60.33 951 55.84 712

Table 5.4: SSD-MobileNetV2. Best results for each sparsity level are highlighted
in bold.
optimal implementations which stored together still consume less storage than a
slimmable model. Precisely, 904kB for ResNet9 and 1334kB for MobileNetV1,
respectively 28% and 25% less than the deployable configurations of the slimmable
models (width ≤ 0.75).

Object Detection

To prove the generalization capability of our approach, we evaluated a Nested
MobileNetV2 on a bounding-box detection task. Since we already demonstrated
Nested Sparse ConvNets achieves better performance, in Table 5.4 we omitted the
results for DSNNs for the sake of space. The results are for w={0.50, 0.35}, which
are the only fitting into the FLASH of our target MCU. The Nested Sparse object-
detector gets more accurate than the sparse models trained as separate instances.
More in detail, for the most sparse configurations (i.e., s=90%), it is 31.85% more
accurate (average over the two widths), confirming the stability of the proposed
training. As suggested in the previous subsection, a hybrid solution is still possible
here: combining width scaling with nested sparsity enables scalability across a wide
latency-accuracy range (∆Top-1/∆L = 12.46(%)/368(ms)) while cumulatively oc-
cupying 848kB, which is still less than the single dense model at w=0.50.

5.3.3 Conclusions
To enable the run-time scalability on low-power IoT applications we proposed

Nested Sparse ConvNets: a novel class of scalable models conceived to trade-off
latency with accuracy at run time, leveraging sparsity as the dynamic knob. A

119

Latency-Quality Scalable ConvNets

novel training procedure ensures high accuracy, while a custom compressed storage
format together with custom compute kernels enable the deployment on tiny off-
the-shelf devices. An extensive experimental assessment demonstrated that Nested
Sparse ConvNets outperform state-of-the-art dynamic strategies while occupying
a smaller storage footprint, making them a promising solution for expanding the
adoption of adaptable computer vision tasks at the edge of the IoT.

120

Chapter 6

Conclusions and Future Directions

Deep neural networks have revolutionized our lives, bringing astonishing im-
provements in AI applications for the IoT domain. However, they require high
computation and memory to be run, making very challenging their deployment
on embedded systems with low power budgets and limited resources. Nowadays,
there is a wide consensus among the research community that the development
of near-sensor accelerators will be the enabling technology to sustain the rising
computational needs of the IoT ecosystem. The hardware migration of deep learn-
ing algorithms from the cloud to the edge, however, is not trivial. The limited
resources available of the tiny devices set a strong limit to the complexity of the
neural networks. Such premise motivates this dissertation: making deep learning
algorithms fit low-power IoT end-nodes. The aim of this dissertation is to explore
new techniques and strategies to compress neural networks with hardware aware-
ness. Reducing the requirements of memory and storage to optimize the processing
of deep neural networks on embedded devices. The research has been focused on
the software level optimization of these models, with the aim to explore new com-
pression strategies able to take into consideration all the points of interest of an
efficient edge inference.

At first, we presented a comprehensive overview of the most popular compression
techniques used in literature. Ranging from pruning, quantization, and encoding.
Describing the technical details of these strategies, we highlighted how they can
be combined together to maximize optimization effectiveness. Then, we proposed
several novel strategies to boost the compression of ConvNets enabling the real
deployment on low-power MCUs. This aspect has been crucial, as our proposals
aim to be mature for real AI applications for the IoT edge, which is an often lacking
feature in previous literature.

In the context of statistically oriented compression, we focused on how to ap-
proximate the distribution of the weights to optimize ConvNets from the storage
point of view. We proposed a compression-driven training framework able to op-
timize a ConvNet during the learning phase. The model is trained in a ternary

121

Conclusions and Future Directions

constrained space, where each layer learns a different boundary to approximate its
distribution of weights. With a proper encoding scheme the compressed ConvNet
reaches impressive benefits in terms of storage reduction and computation savings.
We then extended the prior compressive training with a heuristic search to quan-
tify the layer-wise significance of the ConvNet. The concept is that layers can be
discriminated in terms of classification importance and in terms of memory foot-
print. The solution is a hybrid compression strategy that selects a subset of layers
to compress, while leaves the others untouched. The resulting is compression boost
due to the resilience of the less significant layers at the accuracy loss.

Concerning the hardware awareness in the model optimization, we studied how
to design compression algorithms conscious of the hardware resources. Given a tar-
get device, the compression strategies need to accomplish all the relative hardware
constraints, guaranteeing negligible accuracy losses. We first explored the memory
vs. accuracy solution space to assess the optimality of ConvNet compression. With
a novel hardware-conscious tool, namely PaQ, we showed that most of the solutions
are centered on specific parameter settings that are challenging to run on low-power
cores. Then we proposed a novel compression pipeline for memory-bounded Con-
vNets, called VQ. This technique enables the use of n-ary quantized ConvNets on
general-purpose MCU, emulating the availability of n-ary instruction-set. At last,
we presented EAST, a novel sparse training for storage-bounded ConvNets. The
ability of this technique is to adapt the block size and the sparsity to maximize the
compression rate of the weight encoding scheme.

Regarding the scalability of the ConvNets, we explored a new strategy capable
to run-time scale a model in terms of latency vs. quality. State-of-the-art solutions
for ConvNet scalability require multiple models to reach multiple configuration
points, which can be challenging to deploy on tiny devices. To overcome this
issue, we proposed a novel training and compression pipeline for building Nested
Sparse ConvNets, a class of scalable networks that require one single nested set
of parameters. The use of nested sparsity as a dynamic knob enables to run-time
modulate accuracy and latency. A new custom matrix encoding with proper sparse
kernels ensures efficient processing and run-time scaling of the nested weights sets.
Experimental results demonstrated that nested sparse ConvNets outperform state-
of-the-art dynamic strategies, yet occupying a smaller storage footprint, making
them suitable for IoT applications on tiny-devices

The compression techniques presented in this dissertation offer useful insights
for the optimization of the deep learning inference at the edge. It remains future
work to explore the limits of model compression: what is the minimum storage
needed to solve a given task, what is the minimum amount of memory to process
a set of samples, and how much time the model employs to provide a correct
prediction. These are some of the questions that future works may address. There
is also the need to generalize these concepts beyond inference to training. The
learning process of the model parameters is computation demanding and it requires

122

Conclusions and Future Directions

continuous fine-tuning to manage the perturbation of the source. There is the
chance to improve the efficiency of the training process, like, for example, to learn
the parameters in a high sparsity regime from the beginning, to reduce the training
time and costs. Furthermore, concerning the IoT domain scenarios, there is an
urgent need to design new strategies to continue the learning process at the edge.
User-based customization of pretrained parameters, model knowledge readjustment
to environment changing, incremental learning based on user experience, are some
of the improvements that would be provided by the enabling of continuous learning
on the edge devices, together with a higher guarantee of privacy.

Hardware and software co-design may be the key paradigm to open up more
space for the artificial intelligence rise in the future of technology industries, but
especially in everyone’s lives.

123

List of Publications

This appendix lists all the publications produced during the Ph.D. years.

International Journals

• Grimaldi, M., Peluso, V. and Calimera, A., 2019. Optimality assessment of
memory-bounded convnets deployed on resource-constrained risc cores. IEEE
Access, 7, pp.152599-152611.

• Grimaldi, M., Tenace, V. and Calimera, A., 2019. Layer-Wise Compressive
Training for Convolutional Neural Networks. Future Internet, 11(1), p.7.

Proceedings of International Conferences

• Grimaldi, M., Peluso, V. and Calimera, A., 2020, March. EAST: Encoding-
Aware Sparse Training for Deep Memory Compression of ConvNets. In
2nd International Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE.

• Peluso, V., Grimaldi, M. and Calimera, A., 2019, October. Arbitrary-
Precision Convolutional Neural Networks on Low-Power IoT Processors. In
2019 IFIP/IEEE 27th International Conference on Very Large Scale Integra-
tion (VLSI-SoC) (pp. 142-147). IEEE.

• Grimaldi, M., Pugliese, F., Tenace, V. and Calimera, A., 2018, October. A
compression-driven training framework for embedded deep neural networks.
In Proceedings of the Workshop on INTelligent Embedded Systems Architec-
tures and Applications (pp. 45-50). ACM.

• Grimaldi, M., Mocerino, L., Cipolletta, A. and Calimera, A., 2021, October.
Run-time Scalable ConvNets on Tiny Devices via Nested Sparsity. Under
review.

125

Bibliography

[1] url: https://os.mbed.com/platforms.
[2] Daehyun Ahn et al. “Double Viterbi: Weight encoding for high compression

ratio and fast on-chip reconstruction for deep neural network”. In: Interna-
tional Conference on Learning Representations. 2018.

[3] Jorge Albericio et al. “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3 (2016),
pp. 1–13.

[4] Hande Alemdar et al. “Ternary neural networks for resource-efficient AI
applications”. In: 2017 international joint conference on neural networks
(IJCNN). IEEE. 2017, pp. 2547–2554.

[5] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Structured pruning of
deep convolutional neural networks”. In: ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC) 13.3 (2017), pp. 1–18.

[6] Bowen Baker et al. “Accelerating neural architecture search using perfor-
mance prediction”. In: arXiv preprint arXiv:1705.10823 (2017).

[7] Colby Banbury et al. “MicroNets: Neural Network Architectures for De-
ploying TinyML Applications on Commodity Microcontrollers”. In: arXiv
preprint arXiv:2010.11267 (2020).

[8] Davis Blalock et al. “What is the state of neural network pruning?” In: arXiv
preprint arXiv:2003.03033 (2020).

[9] Yoonho Boo and Wonyong Sung. “Structured sparse ternary weight coding
of deep neural networks for efficient hardware implementations”. In: 2017
IEEE International workshop on signal processing systems (SiPS). IEEE.
2017, pp. 1–6.

[10] Léon Bottou. “Large-scale machine learning with stochastic gradient de-
scent”. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[11] Leo Breiman. Classification and regression trees. Routledge, 2017.
[12] Han Cai, Ligeng Zhu, and Song Han. “Proxylessnas: Direct neural architec-

ture search on target task and hardware”. In: (2018).

126

https://os.mbed.com/platforms

BIBLIOGRAPHY

[13] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. “An analysis of
deep neural network models for practical applications”. In: arXiv preprint
arXiv:1605.07678 (2016).

[14] Alessandro Capotondi et al. “CMix-NN: Mixed low-precision CNN library
for memory-constrained edge devices”. In: IEEE Transactions on Circuits
and Systems II: Express Briefs 67.5 (2020), pp. 871–875.

[15] Giovanna Castellano, Anna Maria Fanelli, and Marcello Pelillo. “An iterative
pruning algorithm for feedforward neural networks”. In: IEEE transactions
on Neural networks 8.3 (1997), pp. 519–531.

[16] Challenges in representation learning: Facial expression recognition chal-
lenge. url: http://www.kaggle.com/ (visited on 05/08/2019).

[17] Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. “The power of
sparsity in convolutional neural networks”. In: arXiv preprint arXiv:1702.06257
(2017).

[18] Changan Chen et al. “Constraint-aware deep neural network compression”.
In: Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 400–415.

[19] Guobin Chen et al. “Learning efficient object detection models with knowl-
edge distillation”. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. 2017, pp. 742–751.

[20] Yu-Hsin Chen et al. “Eyeriss: An Energy-Efficient Reconfigurable Acceler-
ator for Deep Convolutional Neural Networks”. In: IEEE Journal of Solid-
State Circuits 52.1 (2017), pp. 127–138.

[21] Wenlin Chen et al. “Compressing neural networks with the hashing trick”.
In: International Conference on Machine Learning. 2015, pp. 2285–2294.

[22] An-Chieh Cheng et al. “Searching toward pareto-optimal device-aware neu-
ral architectures”. In: Proceedings of the International Conference on Computer-
Aided Design. ACM. 2018, p. 136.

[23] Yu Cheng et al. “An exploration of parameter redundancy in deep networks
with circulant projections”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2015, pp. 2857–2865.

[24] Aakanksha Chowdhery et al. “Visual Wake Words Dataset”. In: arXiv preprint
arXiv:1906.05721 (2019).

[25] Cody Coleman et al. “Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark”. In: ACM SIGOPS Operating Systems Re-
view 53.1 (2019), pp. 14–25.

[26] Maxwell D Collins and Pushmeet Kohli. “Memory bounded deep convolu-
tional networks”. In: arXiv preprint arXiv:1412.1442 (2014).

127

http://www.kaggle.com/

BIBLIOGRAPHY

[27] Francesco Conti et al. “PULP: A ultra-low power parallel accelerator for
energy-efficient and flexible embedded vision”. In: Journal of Signal Pro-
cessing Systems 84.3 (2016), pp. 339–354.

[28] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binarycon-
nect: Training deep neural networks with binary weights during propaga-
tions”. In: Advances in neural information processing systems. 2015, pp. 3123–
3131.

[29] Shail Dave et al. “Hardware Acceleration of Sparse and Irregular Tensor
Computations of ML Models: A Survey and Insights”. In: arXiv preprint
arXiv:2007.00864 (2020).

[30] Lei Deng et al. “Gated XNOR Networks: Deep Neural Networks with Ternary
Weights and Activations under a Unified Discretization Framework”. In:
arXiv preprint arXiv:1705.09283 (2017).

[31] Lei Deng et al. “Model compression and hardware acceleration for neural net-
works: A comprehensive survey”. In: Proceedings of the IEEE 108.4 (2020),
pp. 485–532.

[32] Misha Denil et al. “Predicting parameters in deep learning”. In: Advances
in neural information processing systems. 2013, pp. 2148–2156.

[33] Peter Deutsch. RFC1951: DEFLATE compressed data format specification
version 1.3. 1996.

[34] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format specifica-
tion version 3.3. Tech. rep. RFC 1950, May, 1996.

[35] Xiaohan Ding et al. “Centripetal sgd for pruning very deep convolutional
networks with complicated structure”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 4943–
4953.

[36] Xiaohan Ding et al. “Global sparse momentum sgd for pruning very deep
neural networks”. In: arXiv preprint arXiv:1909.12778 (2019).

[37] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. “Learning to prune deep
neural networks via layer-wise optimal brain surgeon”. In: arXiv preprint
arXiv:1705.07565 (2017).

[38] Erich Elsen et al. “Fast sparse convnets”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020, pp. 14629–
14638.

[39] Dave Evans. “The internet of things: How the next evolution of the internet
is changing everything”. In: CISCO white paper 1.2011 (2011), pp. 1–11.

[40] Mark Everingham et al. “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2 (2010), pp. 303–338.

128

BIBLIOGRAPHY

[41] B. Liu F. Li B. Zhang. “Ternary Weight Networks”. In: arXiv preprint
arXiv:1605.04711 (2016).

[42] Javier Fernandez-Marques et al. “On-the-fly deterministic binary filters for
memory efficient keyword spotting applications on embedded devices”. In:
Proceedings of the 2nd International Workshop on Embedded and Mobile
Deep Learning. 2018, pp. 13–18.

[43] Javier Fernández-Marqués et al. “BinaryCmd: Keyword spotting with de-
terministic binary basis”. In: Proc. Conf. Syst. Mach. Learn.(SysML). 2018.

[44] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks”. In: arXiv preprint arXiv:1803.03635
(2018).

[45] Jonathan Frankle et al. “The Lottery Ticket Hypothesis at Scale”. In: arXiv
preprint arXiv:1903.01611 (2019).

[46] Trevor Gale, Erich Elsen, and Sara Hooker. “The State of Sparsity in Deep
Neural Networks”. In: arXiv e-prints arXiv:1902.09574 (2019). url: https:
//arxiv.org/abs/1902.09574.

[47] Trevor Gale, Erich Elsen, and Sara Hooker. “The state of sparsity in deep
neural networks”. In: arXiv preprint arXiv:1902.09574 (2019).

[48] Trevor Gale et al. “Sparse GPU kernels for deep learning”. In: arXiv preprint
arXiv:2006.10901 (2020).

[49] GAP8 Hardware Reference Manual. url: https://gwt-website-files.
s3.amazonaws.com/gap8_datasheet.pdf (visited on 08/08/2019).

[50] Stéphane Gervais-Ducouret. “Next smart sensors generation”. In: 2011 IEEE
Sensors Applications Symposium. IEEE. 2011, pp. 193–196.

[51] GNU Arm Embedded Toolchain. url: https : / / developer . arm . com /
tools-and-software/open-source-software/developer-tools/gnu-
toolchain/gnu-rm (visited on 05/08/2019).

[52] Andres Gomez, Francesco Conti, and Luca Benini. “Thermal image-based
CNN’s for ultra-low power people recognition”. In: Proceedings of the 15th
ACM International Conference on Computing Frontiers. ACM. 2018, pp. 326–
331.

[53] Ariel Gordon et al. “Morphnet: Fast & simple resource-constrained struc-
ture learning of deep networks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 1586–1595.

[54] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recog-
nition with deep recurrent neural networks”. In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013, pp. 6645–
6649.

129

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm

BIBLIOGRAPHY

[55] Scott Gray, Alec Radford, and Diederik P Kingma. “Gpu kernels for block-
sparse weights”. In: arXiv preprint arXiv:1711.09224 3 (2017).

[56] M. Grimaldi, V. Peluso, and A. Calimera. “Optimality Assessment of Memory-
Bounded ConvNets Deployed on Resource-Constrained RISC Cores”. In:
IEEE Access 7 (2019), pp. 152599–152611.

[57] Matteo Grimaldi, Valentino Peluso, and Andrea Calimera. “EAST: Encoding-
Aware Sparse Training for Deep Memory Compression of ConvNets”. In:
2020 2nd IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS). IEEE. 2020, pp. 233–237.

[58] Matteo Grimaldi, Valerio Tenace, and Andrea Calimera. “Layer-wise com-
pressive training for convolutional neural networks”. In: Future Internet 11.1
(2019), p. 7.

[59] Matteo Grimaldi et al. “A compression-driven training framework for embed-
ded deep neural networks”. In: Proceedings of the Workshop on INTelligent
Embedded Systems Architectures and Applications. 2018, pp. 45–50.

[60] Luis Guerra et al. “Switchable Precision Neural Networks”. In: arXiv preprint
arXiv:2002.02815 (2020).

[61] Yiwen Guo, Anbang Yao, and Yurong Chen. “Dynamic network surgery for
efficient dnns”. In: arXiv preprint arXiv:1608.04493 (2016).

[62] Suyog Gupta et al. “Deep learning with limited numerical precision”. In:
International Conference on Machine Learning. 2015, pp. 1737–1746.

[63] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. “Hardware-oriented
approximation of convolutional neural networks”. In: arXiv preprint arXiv:1604.03168
(2016).

[64] Philipp Gysel et al. “Ristretto: A framework for empirical study of resource-
efficient inference in convolutional neural networks”. In: IEEE transactions
on neural networks and learning systems 29.11 (2018), pp. 5784–5789.

[65] David Ha, Andrew Dai, and Quoc V Le. “Hypernetworks”. In: arXiv preprint
arXiv:1609.09106 (2016).

[66] Masafumi Hagiwara. “Removal of hidden units and weights for back propaga-
tion networks”. In: Proceedings of 1993 International Conference on Neural
Networks (IJCNN-93-Nagoya, Japan). Vol. 1. IEEE. 1993, pp. 351–354.

[67] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding”. In: arXiv preprint arXiv:1510.00149 (2015).

130

BIBLIOGRAPHY

[68] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huff-
man Coding”. In: 4th International Conference on Learning Representations,
ICLR 2016. 2016.

[69] Song Han et al. “Dsd: Dense-sparse-dense training for deep neural networks”.
In: arXiv preprint arXiv:1607.04381 (2016).

[70] Song Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural
Network”. In: Proceedings of the 43rd International Symposium on Computer
Architecture. ISCA ’16. Seoul, Republic of Korea: IEEE Press, 2016, pp. 243–
254. isbn: 9781467389471. doi: 10 . 1109 / ISCA . 2016 . 30. url: https :
//doi.org/10.1109/ISCA.2016.30.

[71] Song Han et al. “EIE: efficient inference engine on compressed deep neural
network”. In: Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on. IEEE. 2016, pp. 243–254.

[72] Song Han et al. “Learning both weights and connections for efficient neural
network”. In: Advances in Neural Information Processing Systems. 2015,
pp. 1135–1143.

[73] Stephen Hanson and Lorien Pratt. “Comparing biases for minimal network
construction with back-propagation”. In: Advances in neural information
processing systems 1 (1988), pp. 177–185.

[74] Soheil Hashemi et al. “Understanding the impact of precision quantiza-
tion on the accuracy and energy of neural networks”. In: 2017 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2017,
pp. 1474–1479.

[75] Babak Hassibi, David G Stork, and Gregory J Wolff. “Optimal brain surgeon
and general network pruning”. In: IEEE international conference on neural
networks. IEEE. 1993, pp. 293–299.

[76] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[77] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[78] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 2961–2969.

[79] Yang He et al. “Filter pruning via geometric median for deep convolutional
neural networks acceleration”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 4340–4349.

131

https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30

BIBLIOGRAPHY

[80] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel pruning for accelerat-
ing very deep neural networks”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 1389–1397.

[81] Yihui He et al. “Amc: Automl for model compression and acceleration on
mobile devices”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 784–800.

[82] Marti A. Hearst et al. “Support vector machines”. In: IEEE Intelligent Sys-
tems and their applications 13.4 (1998), pp. 18–28.

[83] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in
a neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[84] Torsten Hoefler et al. “Sparsity in Deep Learning: Pruning and growth
for efficient inference and training in neural networks”. In: arXiv preprint
arXiv:2102.00554 (2021).

[85] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861
(2017).

[86] Hengyuan Hu et al. “Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures”. In: arXiv preprint arXiv:1607.03250
(2016).

[87] Gao Huang et al. “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

[88] Gao Huang et al. “Multi-Scale Dense Networks for Resource Efficient Image
Classification”. In: International Conference on Learning Representations.
2018.

[89] Yanping Huang et al. “Gpipe: Efficient training of giant neural networks
using pipeline parallelism”. In: Advances in neural information processing
systems 32 (2019), pp. 103–112.

[90] Zehao Huang and Naiyan Wang. “Data-driven sparse structure selection
for deep neural networks”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 304–320.

[91] Itay Hubara et al. “Binarized neural networks”. In: Advances in neural in-
formation processing systems 29 (2016), pp. 4107–4115.

[92] Itay Hubara et al. “Quantized neural networks: Training neural networks
with low precision weights and activations”. In: arXiv preprint arXiv:1609.07061
(2016).

132

BIBLIOGRAPHY

[93] Itay Hubara et al. “Quantized neural networks: Training neural networks
with low precision weights and activations”. In: The Journal of Machine
Learning Research 18.1 (2017), pp. 6869–6898.

[94] David A Huffman. “A method for the construction of minimum-redundancy
codes”. In: Proceedings of the IRE 40.9 (1952), pp. 1098–1101.

[95] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360
(2016).

[96] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. PMLR. 2015, pp. 448–456.

[97] Benoit Jacob et al. “Quantization and Training of Neural Networks for Effi-
cient Integer-Arithmetic-Only Inference”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2018.

[98] Benoit Jacob et al. “Quantization and training of neural networks for efficient
integer-arithmetic-only inference”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 2704–2713.

[99] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature em-
bedding”. In: Proceedings of the 22nd ACM international conference on Mul-
timedia. ACM. 2014, pp. 675–678.

[100] Xiaojie Jin et al. “Training skinny deep neural networks with iterative hard
thresholding methods”. In: arXiv preprint arXiv:1607.05423 (2016).

[101] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor
processing unit”. In: arXiv preprint arXiv:1704.04760 (2017).

[102] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor
processing unit”. In: arXiv preprint arXiv:1704.04760 (2017).

[103] Nal Kalchbrenner et al. “Efficient neural audio synthesis”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 2410–2419.

[104] Ye-Hoon Kim et al. “Nemo: Neuro-evolution with multiobjective optimiza-
tion of deep neural network for speed and accuracy”. In: ICML 2017 AutoML
Workshop. 2017.

[105] William F Kindel, Elijah D Christensen, and Joel Zylberberg. “Using deep
learning to reveal the neural code for images in primary visual cortex”. In:
arXiv preprint arXiv:1706.06208 (2017).

[106] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

133

BIBLIOGRAPHY

[107] Diederik P Kingma, Tim Salimans, and Max Welling. “Variational dropout
and the local reparameterization trick”. In: arXiv preprint arXiv:1506.02557
(2015).

[108] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for
efficient inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[109] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Tech. rep. Citeseer, 2009.

[110] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet clas-
sification with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[111] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Communications of
the ACM 60.6 (2017), pp. 84–90.

[112] Liangzhen Lai, Naveen Suda, and Vikas Chandra. “Cmsis-nn: Efficient neu-
ral network kernels for arm cortex-m cpus”. In: arXiv preprint arXiv:1801.06601
(2018).

[113] Ya Le and Xuan Yang. “Tiny imagenet visual recognition challenge”. In: CS
231N 7 (2015).

[114] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
nature 521.7553 (2015), p. 436.

[115] Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”.
In: Advances in neural information processing systems. 1990, pp. 598–605.

[116] Dongsoo Lee et al. “Viterbi-based pruning for sparse matrix with fixed and
high index compression ratio”. In: International Conference on Learning
Representations. 2018.

[117] Edward H Lee et al. “Lognet: Energy-efficient neural networks using loga-
rithmic computation”. In: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2017, pp. 5900–5904.

[118] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. “Snip: Single-
shot network pruning based on connection sensitivity”. In: arXiv preprint
arXiv:1810.02340 (2018).

[119] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint
arXiv:1608.08710 (2016).

[120] He Li, Kaoru Ota, and Mianxiong Dong. “Learning IoT in edge: deep learn-
ing for the internet of things with edge computing”. In: IEEE Network 32.1
(2018), pp. 96–101.

[121] Xiang Li et al. “Selective kernel networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2019, pp. 510–519.

134

BIBLIOGRAPHY

[122] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. “Fixed point quan-
tization of deep convolutional networks”. In: International conference on
machine learning. 2016, pp. 2849–2858.

[123] Ji Lin et al. “MCUNet: Tiny Deep Learning on IoT Devices”. In: Annual
Conference on Neural Information Processing Systems (NeurIPS). 2020.

[124] Ji Lin et al. “Runtime neural pruning”. In: Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems. 2017,
pp. 2178–2188.

[125] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 2117–2125.

[126] Baoyuan Liu et al. “Sparse convolutional neural networks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 806–814.

[127] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable
Architecture Search”. In: International Conference on Learning Representa-
tions. 2018.

[128] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference
on computer vision. Springer. 2016, pp. 21–37.

[129] Zechun Liu et al. “Metapruning: Meta learning for automatic neural network
channel pruning”. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2019, pp. 3296–3305.

[130] Zhi-Gang Liu, Paul N Whatmough, and Matthew Mattina. “Systolic tensor
array: An efficient structured-sparse GEMM accelerator for mobile CNN
inference”. In: IEEE Computer Architecture Letters 19.1 (2020), pp. 34–37.

[131] Zhuang Liu et al. “Learning efficient convolutional networks through net-
work slimming”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 2736–2744.

[132] Antonio Loquercio et al. “Dronet: Learning to fly by driving”. In: IEEE
Robotics and Automation Letters 3.2 (2018), pp. 1088–1095.

[133] Christos Louizos, Karen Ullrich, and Max Welling. “Bayesian compression
for deep learning”. In: arXiv preprint arXiv:1705.08665 (2017).

[134] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse
Neural Networks through L_0 Regularization”. In: International Conference
on Learning Representations. 2018.

[135] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. “Thinet: A filter level pruning
method for deep neural network compression”. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 5058–5066.

135

BIBLIOGRAPHY

[136] LZ4. url: https://lz4.github.io/lz4/.
[137] Andrew L Maas et al. “Learning word vectors for sentiment analysis”. In:

Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1. Association for Compu-
tational Linguistics. 2011, pp. 142–150.

[138] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. “Fog
computing: A taxonomy, survey and future directions”. In: Internet of ev-
erything. Springer, 2018, pp. 103–130.

[139] Huizi Mao et al. “Exploring the regularity of sparse structure in convolu-
tional neural networks”. In: arXiv preprint arXiv:1705.08922 (2017).

[140] Manu Mathew et al. “Sparse, quantized, full frame cnn for low power embed-
ded devices”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. 2017, pp. 11–19.

[141] H Brendan McMahan et al. “Communication-efficient learning of deep net-
works from decentralized data”. In: arXiv preprint arXiv:1602.05629 (2016).

[142] MEMS and Sensors - STMicroelectronics. url: st.com/en/mems- and-
sensors.html (visited on 05/08/2019).

[143] Asit Mishra and Debbie Marr. “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy”. In: arXiv preprint
arXiv:1711.05852 (2017).

[144] Deepak Mittal et al. “Recovering from random pruning: On the plasticity of
deep convolutional neural networks”. In: 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE. 2018, pp. 848–857.

[145] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. “Variational dropout
sparsifies deep neural networks”. In: arXiv preprint arXiv:1701.05369 (2017).

[146] Pavlo Molchanov et al. “Importance estimation for neural network pruning”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2019, pp. 11264–11272.

[147] Pavlo Molchanov et al. “Pruning convolutional neural networks for resource
efficient inference”. In: arXiv preprint arXiv:1611.06440 (2016).

[148] Bert Moons et al. “An energy-efficient precision-scalable ConvNet proces-
sor in 40-nm CMOS”. In: IEEE Journal of solid-state Circuits 52.4 (2017),
pp. 903–914.

[149] Bert Moons et al. “Energy-efficient convnets through approximate comput-
ing”. In: 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE. 2016, pp. 1–8.

[150] Sharan Narang et al. “Exploring sparsity in recurrent neural networks”. In:
arXiv preprint arXiv:1704.05119 (2017).

136

https://lz4.github.io/lz4/
st.com/en/mems-and-sensors.html
st.com/en/mems-and-sensors.html

BIBLIOGRAPHY

[151] Kirill Neklyudov et al. “Structured bayesian pruning via log-normal multi-
plicative noise”. In: arXiv preprint arXiv:1705.07283 (2017).

[152] NUCLEO-F412ZG. url: https://www.st.com/en/evaluation-tools/
nucleo-f412zg.html (visited on 08/08/2019).

[153] NUCLEO-F412ZG. url: https://www.st.com/en/evaluation-tools/
nucleo-f412zg.html (visited on 05/08/2019).

[154] NUCLEO-F767ZI. url: https://www.st.com/en/evaluation-tools/
nucleo-f767zi.html (visited on 08/08/2019).

[155] Nucleo-F767ZI. url: https : / / www . st . com / en / evaluation - tools /
nucleo-f767zi.html.

[156] G. Ottavi et al. “A Mixed-Precision RISC-V Processor for Extreme-Edge
DNN Inference”. In: 2020 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). 2020, pp. 512–517. doi: 10.1109/ISVLSI49217.2020.000-
5.

[157] Angshuman Parashar et al. “Scnn: An accelerator for compressed-sparse
convolutional neural networks”. In: ACM SIGARCH Computer Architecture
News 45.2 (2017), pp. 27–40.

[158] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W.
2017.

[159] Valentino Peluso and Andrea Calimera. “Scalable-effort convnets for multi-
level classification”. In: 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE. 2018, pp. 1–8.

[160] Valentino Peluso, Matteo Grimaldi, and Andrea Calimera. “Arbitrary-Precision
Convolutional Neural Networks on Low-Power IoT Processors”. In: 2019
IFIP/IEEE 27th International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE. 2019, pp. 142–147.

[161] Valentino Peluso et al. “Enabling energy-efficient unsupervised monocular
depth estimation on armv7-based platforms”. In: 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2019, pp. 1703–
1708.

[162] Antonio Polino, Razvan Pascanu, and Dan Alistarh. “Model compression via
distillation and quantization”. In: arXiv preprint arXiv:1802.05668 (2018).

[163] Adam Polyak and Lior Wolf. “Channel-level acceleration of deep face repre-
sentations”. In: IEEE Access 3 (2015), pp. 2163–2175.

[164] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55–69.

137

https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.1109/ISVLSI49217.2020.000-5

BIBLIOGRAPHY

[165] Jiantao Qiu et al. “Going deeper with embedded fpga platform for convolu-
tional neural network”. In: Proceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. 2016, pp. 26–35.

[166] Qiang Qiu, Xiuyuan Cheng, Guillermo Sapiro, et al. “Dcfnet: Deep neural
network with decomposed convolutional filters”. In: International Confer-
ence on Machine Learning. PMLR. 2018, pp. 4198–4207.

[167] Maithra Raghu et al. “On the expressive power of deep neural networks”.
In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org. 2017, pp. 2847–2854.

[168] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using binary
convolutional neural networks”. In: European conference on computer vision.
Springer. 2016, pp. 525–542.

[169] Frank Rosenblatt. “The perceptron: A probabilistic model for information
storage and organization in the brain”. In: Psychological review 65.6 (1958),
p. 386.

[170] Manuele Rusci et al. “Quantized NNs as the definitive solution for inference
on low-power ARM MCUs? work-in-progress”. In: Proceedings of the Inter-
national Conference on Hardware/Software Codesign and System Synthesis.
2018, pp. 1–2.

[171] Tara N Sainath and Carolina Parada. “Convolutional neural networks for
small-footprint keyword spotting”. In: Sixteenth Annual Conference of the
International Speech Communication Association. 2015.

[172] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2018, pp. 4510–4520.

[173] Victor Sanh, Thomas Wolf, and Alexander M Rush. “Movement pruning:
Adaptive sparsity by fine-tuning”. In: arXiv preprint arXiv:2005.07683 (2020).

[174] Abigail See, Minh-Thang Luong, and Christopher D Manning. “Compres-
sion of neural machine translation models via pruning”. In: arXiv preprint
arXiv:1606.09274 (2016).

[175] Lorenzo Seidenari et al. “Deep artwork detection and retrieval for automatic
context-aware audio guides”. In: ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMM) 13.3s (2017), p. 35.

[176] Hardik Sharma et al. “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural networks”. In: Proceedings of the 45th
Annual International Symposium on Computer Architecture. IEEE Press.
2018, pp. 764–775.

138

BIBLIOGRAPHY

[177] Tao Sheng et al. “A quantization-friendly separable convolution for mo-
bilenets”. In: 2018 1st Workshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications (EMC2). IEEE. 2018,
pp. 14–18.

[178] Weisong Shi et al. “Edge computing: Vision and challenges”. In: IEEE in-
ternet of things journal 3.5 (2016), pp. 637–646.

[179] Jocelyn Sietsma. “Neural net pruning-why and how”. In: Proceedings of In-
ternational Conference on Neural Networks, San Diego, CA, 1988. Vol. 1.
1988, pp. 325–333.

[180] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[181] Richard Socher et al. “Parsing natural scenes and natural language with re-
cursive neural networks”. In: Proceedings of the 28th international conference
on machine learning (ICML-11). 2011, pp. 129–136.

[182] Suraj Srinivas and R Venkatesh Babu. “Data-free parameter pruning for
deep neural networks”. In: arXiv preprint arXiv:1507.06149 (2015).

[183] Kenji Suzuki, Isao Horiba, and Noboru Sugie. “A simple neural network
pruning algorithm with application to filter synthesis”. In: Neural processing
letters 13.1 (2001), pp. 43–53.

[184] Vivienne Sze et al. “Efficient processing of deep neural networks: A tutorial
and survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[185] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[186] Christian Szegedy et al. “Rethinking the inception architecture for com-
puter vision”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 2818–2826.

[187] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for
convolutional neural networks”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 6105–6114.

[188] Mingxing Tan et al. “Mnasnet: Platform-aware neural architecture search for
mobile”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 2820–2828.

[189] Hokchhay Tann et al. “Hardware-Software Codesign of Accurate, Multiplier-
free Deep Neural Networks”. In: Proceedings of the 54th Annual Design Au-
tomation Conference 2017. ACM. 2017, p. 28.

139

BIBLIOGRAPHY

[190] Hokchhay Tann et al. “Runtime configurable deep neural networks for energy-
accuracy trade-off”. In: 2016 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS). IEEE. 2016, pp. 1–10.

[191] Lucas Theis et al. “Faster gaze prediction with dense networks and fisher
pruning”. In: arXiv preprint arXiv:1801.05787 (2018).

[192] Philippe Tillet, HT Kung, and David Cox. “Triton: an intermediate lan-
guage and compiler for tiled neural network computations”. In: Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. 2019, pp. 10–19.

[193] TorchSkeleton. url: https://github.com/wbaek/torchskeleton (visited
on 05/08/2019).

[194] VW-S Tseng et al. “Deterministic binary filters for convolutional neural
networks”. In: International Joint Conferences on Artificial Intelligence Or-
ganization. 2018.

[195] Frederick Tung et al. “CLIP-Q: Deep network compression learning by in-
parallel pruning-quantization”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 7873–7882.

[196] Karen Ullrich, Edward Meeds, and Max Welling. “Soft weight-sharing for
neural network compression”. In: arXiv preprint arXiv:1702.04008 (2017).

[197] Yaman Umuroglu, Lahiru Rasnayake, and Magnus Själander. “Bismo: A
scalable bit-serial matrix multiplication overlay for reconfigurable comput-
ing”. In: 2018 28th International Conference on Field Programmable Logic
and Applications (FPL). IEEE. 2018, pp. 307–3077.

[198] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. “Improving the speed
of neural networks on CPUs”. In: Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop. Vol. 1. Citeseer. 2011, p. 4.

[199] Aravind Vasudevan, Andrew Anderson, and David Gregg. “Parallel multi
channel convolution using general matrix multiplication”. In: Application-
specific Systems, Architectures and Processors (ASAP), 2017 IEEE 28th In-
ternational Conference on. IEEE. 2017, pp. 19–24.

[200] Stylianos I Venieris, Javier Fernandez-Marques, and Nicholas D Lane. “un-
zipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights
Generation”. In: 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE. 2021, pp. 165–
175.

[201] Swagath Venkataramani et al. “Scalable-effort classifiers for energy-efficient
machine learning”. In: Proceedings of the 52nd Annual Design Automation
Conference. 2015, pp. 1–6.

140

https://github.com/wbaek/torchskeleton

BIBLIOGRAPHY

[202] Sebastian Vogel et al. “Efficient hardware acceleration of CNNs using loga-
rithmic data representation with arbitrary log-base”. In: Proceedings of the
International Conference on Computer-Aided Design. ACM. 2018, p. 9.

[203] Chaoqi Wang et al. “Eigendamage: Structured pruning in the kronecker-
factored eigenbasis”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 6566–6575.

[204] Kuan Wang et al. “Haq: Hardware-aware automated quantization with mixed
precision”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2019, pp. 8612–8620.

[205] Xin Wang et al. “Skipnet: Learning dynamic routing in convolutional net-
works”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 409–424.

[206] Yikai Wang et al. “Resolution switchable networks for runtime efficient im-
age recognition”. In: European Conference on Computer Vision. Springer.
2020, pp. 533–549.

[207] Zhisheng Wang, Jun Lin, and Zhongfeng Wang. “Hardware-oriented com-
pression of long short-term memory for efficient inference”. In: IEEE Signal
Processing Letters 25.7 (2018), pp. 984–988.

[208] Pete Warden. “Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition”. In: arXiv preprint arXiv:1804.03209 (2018).

[209] Wei Wen et al. “Learning structured sparsity in deep neural networks”. In:
arXiv preprint arXiv:1608.03665 (2016).

[210] Why the PowerVR Series2NX NNA is the future of neural net acceleration.
url: https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-
the-future-of-neural-net-acceleration/e (visited on 04/08/2019).

[211] Bichen Wu et al. “Fbnet: Hardware-aware efficient convnet design via dif-
ferentiable neural architecture search”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 10734–
10742.

[212] Carole-Jean Wu et al. “Machine learning at facebook: Understanding infer-
ence at the edge”. In: 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE. 2019, pp. 331–344.

[213] Zhaofeng Wu et al. “Dynamic sparsity neural networks for automatic speech
recognition”. In: arXiv preprint arXiv:2005.10627 (2020).

[214] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. “Autoprune: Auto-
matic network pruning by regularizing auxiliary parameters”. In: Advances
in neural information processing systems 32 (2019).

141

https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration/e
https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration/e

BIBLIOGRAPHY

[215] Taojiannan Yang et al. “Mutualnet: Adaptive convnet via mutual learning
from network width and resolution”. In: European Conference on Computer
Vision. Springer. 2020, pp. 299–315.

[216] Tien-Ju Yang et al. “Netadapt: Platform-aware neural network adaptation
for mobile applications”. In: Energy 41 (2018), p. 46.

[217] Yingzhen Yang et al. “Fsnet: Compression of deep convolutional neural net-
works by filter summary”. In: arXiv preprint arXiv:1902.03264 (2019).

[218] Penghang Yin et al. “Quantization and Training of Low Bit-Width Convolu-
tional Neural Networks for Object Detection”. In: arXiv preprint arXiv:1612.06052
(2016).

[219] Zhonghui You et al. “Gate decorator: Global filter pruning method for accel-
erating deep convolutional neural networks”. In: arXiv preprint arXiv:1909.08174
(2019).

[220] Dong Yu et al. “Exploiting sparseness in deep neural networks for large
vocabulary speech recognition”. In: 2012 IEEE International conference on
acoustics, speech and signal processing (ICASSP). IEEE. 2012, pp. 4409–
4412.

[221] Jiahui Yu and Thomas S Huang. “Universally slimmable networks and im-
proved training techniques”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 1803–1811.

[222] Jiahui Yu and Thomas S Huang. “Universally slimmable networks and im-
proved training techniques”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 1803–1811.

[223] Jiahui Yu et al. “Slimmable Neural Networks”. In: International Conference
on Learning Representations. 2018.

[224] Jiecao Yu et al. “Scalpel: Customizing dnn pruning to the underlying hard-
ware parallelism”. In: ACM SIGARCH Computer Architecture News. Vol. 45.
2. ACM. 2017, pp. 548–560.

[225] Jiecao Yu et al. “Scalpel: Customizing dnn pruning to the underlying hard-
ware parallelism”. In: ACM SIGARCH Computer Architecture News 45.2
(2017), pp. 548–560.

[226] Ruichi Yu et al. “Nisp: Pruning networks using neuron importance score
propagation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 9194–9203.

[227] Ming Yuan and Yi Lin. “Model selection and estimation in regression with
grouped variables”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68.1 (2006), pp. 49–67.

142

BIBLIOGRAPHY

[228] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In:
arXiv preprint arXiv:1605.07146 (2016).

[229] Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701 (2012).

[230] Sai Qian Zhang et al. “Training for multi-resolution inference using reusable
quantization terms”. In: Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems. 2021, pp. 845–860.

[231] Ying Zhang et al. “Deep mutual learning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 4320–
4328.

[232] Ying Zhang et al. “Deep mutual learning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 4320–
4328.

[233] Yundong Zhang et al. “Hello edge: Keyword spotting on microcontrollers”.
In: arXiv preprint arXiv:1711.07128 (2017).

[234] Hao Zhou, Jose M Alvarez, and Fatih Porikli. “Less is more: Towards com-
pact cnns”. In: European Conference on Computer Vision. Springer. 2016,
pp. 662–677.

[235] Hattie Zhou et al. “Deconstructing Lottery Tickets: Zeros, Signs, and the
Supermask”. In: Advances in Neural Information Processing Systems. Ed.
by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url: https://
proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-
Paper.pdf.

[236] Shuchang Zhou et al. “Dorefa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients”. In: arXiv preprint arXiv:1606.06160
(2016).

[237] Chenzhuo Zhu et al. “Trained ternary quantization”. In: arXiv preprint
arXiv:1612.01064 (2016).

[238] Maohua Zhu et al. “Sparse tensor core: Algorithm and hardware co-design for
vector-wise sparse neural networks on modern gpus”. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
2019, pp. 359–371.

[239] Michael Zhu and Suyog Gupta. “To prune, or not to prune: exploring the effi-
cacy of pruning for model compression”. In: arXiv preprint arXiv:1710.01878
(2017).

[240] Wei Zhu et al. “Scale-equivariant neural networks with decomposed convo-
lutional filters”. In: arXiv preprint arXiv:1909.11193 (2019).

143

https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf

BIBLIOGRAPHY

[241] Xinqi Zhu and Michael Bain. “B-CNN: branch convolutional neural network
for hierarchical classification”. In: arXiv preprint arXiv:1709.09890 (2017).

[242] Tao Zhuang et al. “Neuron-level Structured Pruning using Polarization Reg-
ularizer”. In: Advances in Neural Information Processing Systems 33 (2020).

[243] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: arXiv preprint arXiv:1611.01578 (2016).

[244] Barret Zoph et al. “Learning transferable architectures for scalable image
recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 8697–8710.

144

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

	List of Tables
	List of Figures
	Deep Learning at the Edge
	Need for Model Compression
	How to Compress a ConvNet
	Objectives and Contributions

	Background: Overview of ConvNet Compression Techniques
	Generic Notation
	Training

	Pruning
	Basic Terminology
	What to Prune
	When to Prune
	How to Prune

	Quantization
	Quantized Inference
	Quantize for the Edge

	Encoding
	Sparse-Specific
	Type-Agnostic
	Inference of Encoded ConvNets

	Statistical-Oriented Training and Compression
	Motivation
	A Compression-Driven Training Framework
	Training ConvNets in a Constrained Space
	Experimental Results
	Conclusions

	Boosting Compression via Layer-Wise Strategy
	A Greedy Approach for Compressive Training
	Experimental Results
	Conclusions

	Hardware-Driven Training and Compression
	Motivation
	Optimality Assessment of Memory-Bounded ConvNets
	PaQ: Prune and Quantize
	Experimental Results
	Across the Memory-Accuracy Space
	Conclusions

	Arbitrary Bit-width ConvNets on IoT MCUs
	Memory-Aware Compression
	Experimental Results
	Conclusions

	EAST: Encoding-Aware Sparse Training
	Storage-Aware Compression
	Experimental Results
	Conclusions

	Latency-Quality Scalable ConvNets
	Scalable ConvNets and Their Knobs
	Static Scalability
	Dynamic Scalability

	Motivation
	Run-time Scalable ConvNets via Nested Sparsity
	Building Nested Sparse ConvNets
	Experimental Results
	Conclusions

	Conclusions and Future Directions
	List of Publications
	Bibliography

