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Information Rate Optimization for Joint Relay and
Link in Non-Regenerative MIMO Channels∗

Giorgio Taricco

Abstract—The optimization of the Relay Transform Matrix
(RTM) in a two-hop relay network with an average relay power
constraint and perfect channel state information at the relay is
addressed in this paper. The study considers the most general
case in terms of number of transmit and receive antennas at
the source, relay, and destination, with arbitrary correlation of
the received noise at all terminals. The optimization problem
is reduced to a manageable convex form, which is solved
by linear algebra transformation and the KKT equations. A
parametric solution is given, which yields the power constraint
and the capacity achieved with uncorrelated transmitted data.
The solution is shown to be amenable to a water-filling-like
algorithmic implementation, which extends earlier literature
results addressing the case without the direct link. Simulation
results are reported concerning a Rayleigh relay network where,
in particular, the role of the direct link SNR is precisely assessed.

Index Terms—Relay networks. Information rate, Relay Trans-
form Matrix. Convex Optimization. Water-filling.

I. INTRODUCTION

The use of relays in wireless communications has been
considered for several decades as an important tool to extend
the coverage of radio networks. Relaying helps to combat the
effects of fading and shadowing which prevent the signal to
reach the destination in harsh environments. From an informa-
tion theoretical point of view, the basic three-terminal channel
model (source-relay-destination) was introduced by [1], [2]
who studied the achievable rate under several operating con-
ditions. More recent results, mostly based on single-antenna
systems, have been proposed in this framework [3], [4]. Relay-
ing based on Multiple-Input Multiple-Output (MIMO) wireless
terminals has been studied in [5], [6]. Specifically, joint
transmission and reception at the relay has been studied in [5]
but, as pointed out in [6], this approach exposes the system to
unwanted side effects determined by the fact that, typically,
the transmitted signal power at the relay overshadows the
power of the received signal. As a result, a more practical
approach consists of keeping the reception and transmission
processes at the relay orthogonal with respect to each other.
As an example, time-orthogonality can be implemented by
operating the system in a two-hop mode.

As far as it concerns the nature of the signal transmitted by
the relay, alternative approaches have been proposed, which
can be classified as regenerative or non-regenerative. The
former are labeled as decode-and-forward (DF) and the latter
as amplify-and-forward scheme (AF) schemes. For single-
antenna systems, it has been observed that AF schemes are ad-
vantageous in terms of achievable diversity order with respect
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to DF schemes while the situation is not clearly understood as
far as capacity is concerned. Nevertheless, non-regenerative
AF schemes present a number of benefits that make them
worth of being considered rather than DF schemes [6]. More
recently, it has been pointed out that the AF schemes enables
to retain the soft information of the transmitted signal and
guarantees a limited signal delay at the same time [7]. An
important role in the relaying performance is played by the
Relay Transform Matrix (RTM), which transforms the received
signal into the transmitted signal by a matrix multiplication.

According to the classification presented in [6], there are
three basic operating modes for a MIMO relay system: i)
Direct Link without Relay; ii) Relay without Direct Link; and
iii) Relay with Direct Link. The optimal RTM (in terms of
capacity optimization) was obtained for the second operating
mode in [6]. The optimal RTM for the more comprehensive
third operating mode was claimed to be unknown in [6,
p.1400] and was derived in [7] in order to maximize the overall
Signal-to-Noise Ratio (SNR).

In this work we present an algorithm to derive the RTM
optimizing the capacity of the two-hop relay channel network.
The case considered here is more general than [6], [7] for
several reasons. First of all, we allow the number of transmit
and receive antennas at the relay to be different. Moreover,
we consider the case of correlated noise at the receivers (not
addressed in [6]). Finally, the solution presented here applies
to the joint link and relay transmission case (labeled as “Case
(C) Relay With Direct Link” in [6]), recognized as an open
problem by the authors of [6]. The solution is parametric and,
for a given relay power constraint, can be obtained by a water-
filling-like algorithm, bearing some similarity with the one
presented in [6, Sec.IV] (which is nevertheless not applicable
to this case). We compare the results obtained by numerical
simulation with those from [6, (B) Relay Without Direct Link]
by forcing the direct link channel matrix to the all-zero matrix.

II. SYSTEM MODEL

We consider a MIMO relay network consisting of three
nodes: the source (S) equipped with t transmit antennas; the
destination (D), equipped with r receive antenna; and the relay
(R), equipped with u transmit and s receive antennas. The
channel matrices corresponding to the three different links
of interest are labeled as H0 (S→D), H1 (S→R), and H2

(R→D). The system operates in two-hop relaying mode: the
source transmits during the first hop and the relay during the
second hop. The average power transmitted by the source and
the relay are upper bounded by P1 and P2, respectively. We
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Fig. 1. System block diagram. Transmission occurs in two time/frequency
slots (hops) so that the received signal at the destination arrives alternately
from the source and from the relay.

assume that the relay applies a u × s Relay Transformation
Matrix (RTM) X to the received signal before forwarding it
to the destination in the second hop. The resulting channel
equations are given as follows:

y0 = H0x +z0 (Hop 1, S→D)
y1 = H1x +z1 (Hop 1, S→R)
y2 = H2Xy1 +z2 (Hop 2, R→D)

= H2XH1x +H2Xz1 + z2

(1)

The received noise vectors are distributed as1

zi ∼ CN (0,Ri), i = 0, 1, 2,

with positive definite correlation matrices and R0 = R2. As
far as the overall information transmission from source to
destination is concerned, the equivalent joint vector channel
equation is given by

y =

(
H0

H2XH1

)
x+

(
z0

H2Xz1 + z2

)
(2)

The noise correlation can be removed by pre-multiplying the
Gaussian vectors by their own covariance matrices, so that we
get the equivalent uncorrelated channel equation:

ỹ =

(
H̃0

H̃2X̃H̃1

)
x+

(
z̃0

H̃2X̃z̃1 + z̃2

)
(3)

where we defined

H̃i , R
−1/2
i Hi i = 0, 1, 2

X̃ ,XR1/2
1

z̃i , R
−1/2
i zi ∼ CN (0, Ir) i = 0, 2

z̃1 , R−1/2
1 zi ∼ CN (0, Is)

with R0 ≡ R2. After decorrelating the second hop noise
components, the channel equation can also be written as
follows:

ỹ =

(
H̃0

(H̃2X̃X̃
HH̃H

2 + Ir)
−1/2H̃2X̃H̃1

)
x+ z̃ (4)

where z̃ ∼ CN (0, I2r). This channel equation leads directly
to the equation representing the capacity of the relay network
reported in the following eq. (5).

1The notation z ∼ CN (µ,Σ) is associated to the circularly-symmetric
complex Gaussian distribution of the random vector z and the corresponding
pdf is defined by fz(z) = det(πΣ)−1 exp[−(z − µ)HΣ−1(z − µ)].

III. RTM OPTIMIZATION

In this section we address the calculation of the optimum
RTM based on the assumption that the relay knows all the
channel matrices involved in eq. (1). Specifically, we look for
the RTM which maximizes the two-hop relay channel capacity.

A. Optimum RTM

In the absence of Channel State Information at the Transmit-
ter (CSIT), the capacity is achieved when x ∼ CN (0, P1

t It)
and is given by

C = log2 det

{
It +

P1

t

[
H̃H

0 H̃0 + H̃
H
1 X̃

HH̃H
2

(Ir + H̃2X̃X̃
HH̃H

2 )
−1H̃2X̃H̃1

]}
(5)

The average power constraint at the relay can be expressed
in terms of X̃ and the channel matrices as follows:

tr

{
XR1X

H +
P1

t
XH1H

H
1X

H

}
= tr

{
X̃

(
Is +

P1

t
H̃1H̃

H
1

)
X̃H

}
≤ P2. (6)

The optimum RTM (maximizing the capacity (5) under the
constraint (6)) is given by the following Theorem.

Theorem 1 Given the two-hop MIMO relay network de-
scribed by eqs. (1) with average source and relay power
constraints P1 and P2, the optimum (capacity-maximizing)
RTM X is given by

X = ŨBΛ̃
−1/2
B Λ̃1/2ŨH

AR
−1/2
1 , (7)

where we define the matrices

A , H̃1

(
t

P1
It + H̃

H
0 H̃0 + H̃

H
1 H̃1

)−1

H̃H
1

B , H̃H
2 H̃2, C , Is +

P1

t
H̃1H̃

H
1 ,

and calculate the following “thin” unitary diagonalizations
(UD’s) [8, Th. 7.3.2]:2

A = ŨAΛ̃AŨ
H
A, B = ŨBΛ̃BŨ

H
B .

Here, Λ̃A is the diagonal matrix of positive singular values of
A and Λ̃B is the diagonal matrix of positive eigenvalues of
B. We also denote ρB , rank(B) ≤ min(u, r). The matrix
Λ̃ is obtained by solving the convex optimization problem

min
x≥0

−
ρ∑
i=1

ln

{
1− αi

1 + xi

}
s.t.

ρ∑
i=1

βixi ≤ P2, xi ≥ 0, i = 1, . . . , ρ

(8)

2Throughout this paper, we assume that the diagonal elements of UD’s are
always sorted in nonincreasing.



where ρ , min(s, ρB) and

αi , |(Λ̃A)i,i|2, βi ,
(UH

ACUA)i,i

(Λ̃B)i,i
, i = 1, . . . , ρ

x , (x1, . . . , xρ)
T, Λ̃ , diag(x1, . . . , xρ, 0, . . . , 0︸ ︷︷ ︸

ρB−ρ

).

Proof: The proof of this theorem is not included for space
limitations.

B. Parametric and Water-Filling solution

It is interesting to note that the optimization problem con-
sidered in Theorem 1 is amenable to a closed-form parametric
solution based on a positive independent variable ξ. This
solution is illustrated by the following equations. First, we
define the auxiliary functions

ϕi(ξ) ,

{
αi
2
− 1 +

√
α2
i

4
+
αiξ

βi

}
+

(9)

where {·}+ , max(0, ·). These functions yields the compo-
nents of the vector x defined in Theorem 1, i.e., xi = ϕi(ξ),
which are required to build the optimum RTM. Based on
this definition, we obtain two parametric equations (with
real parameter ξ > 0) for the average relay power and the
corresponding capacity:

P2 =

ρ∑
i=1

βiϕi(ξ) (10)

C = log2 det

{
It +

P1

t
(H̃H

0 H̃0 + H̃
H
1 H̃1)

}
+

ρ∑
i=1

log2

{
1− αi

1 + ϕi(ξ)

}
(11)

The two expressions are obtained by solving the KKT
equations corresponding to optimization problem (8). Their
derivation is given in App. A.

In order to solve eq. (10), one could divide the positive real
line by the thresholds ξi , (1 − αi)βi and use the fact that
xi = 0 whenever ξ ≤ ξi. This approach is closely related
to the water-filling algorithm for orthogonal additive Gaussian
channels [11].

IV. NUMERICAL RESULTS

In this section we collect some numerical results to illustrate
the theory.

A. Validation of the results

Here, for the purpose of validation, we compare our results
with [6, Figs. 3 and 4]. We assume that t = r = u = s =
M = 4 and plot the ergodic capacity by corresponding to
iid normalized Rayleigh channel matrices (all the entries of
H1,H2 are iid and CN (0, 1) distributed while H0 ≡ 0).

In accordance with [6], the received noise vectors are un-
correlated with covariance matrices Ri = σ2

i IM for i = 1, 2,
and we define the SNR’s as

ρ1 ,
P1

Mσ2
1

, ρ2 ,
P2

Mσ2
2

.
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Fig. 2. Plot of the ergodic capacity vs. ρ1 (denoted SNR1) with ρ2 = 10
dB, iid Rayleigh fading and two types of Relay Transfer Matrices. i) OPT:
optimum RTM. ii) NAF: Naive Amplify and Forward.

Accordingly, the capacity (5) simplifies to

C = log2 det

{
IM +

P1

P2
ρ2H

H
1X

HHH
2(

IM +
P1

P2

ρ2
ρ1
H2XX

HHH
2

)−1

H2XH1

}
(12)

and the relay power constraint to

tr

{
X

(
Is + ρ1H1H

H
1

)
XH

}
=M

P2

P1
ρ1. (13)

Equations (12) and (13) show that the relay-power constrained
capacity is independent of P1, P2 for given values of ρ1, ρ2.

Figs. 2 and 3 show the ergodic capacity vs. the SNR ρ1
(resp. ρ2) with ρ2 = 10 dB (resp. ρ1 = 10 dB) and iid
Rayleigh fading channel matrices. Two types of RTM’s are
considered: i) Optimum RTM (OPT) and ii) Naive Amplify
and Forward (NAF), corresponding to X = αIM for properly
calculated α. The results are in perfect agreement with the
corresponding curves reported in [6, Figs. 3 and 4].

B. Example with direct link

Here we extend the scenario considered in Section IV-A to
the case obtained by adding the direct link to the previous
scenario. Again, we assume that t = r = u = s =M = 4 and
plot the ergodic capacity by corresponding to iid normalized
Rayleigh channel matrices (but in this case all the entries of
H0,H1,H2 are iid CN (0, 1) distributed). The received noise
vectors are uncorrelated with covariance matrices Ri = σ2

i IM
for i = 0, 1, 2, and we define the SNR’s as

ρ0 ,
P1

Mσ2
0

, ρ1 ,
P1

Mσ2
1

, ρ2 ,
P2

Mσ2
2

.

In this case, the capacity (5) can be written as

C = log2 det

{
IM + ρ0H

H
0H0 +

P1

P2
ρ2H

H
1X

HHH
2(

IM +
P1

P2

ρ2
ρ1
H2XX

HHH
2

)−1

H2XH1

}
(14)
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Fig. 3. Plot of the ergodic capacity vs. ρ2 (denoted SNR2) with ρ1 = 10
dB, iid Rayleigh fading and two types of Relay Transfer Matrices. i) OPT:
optimum RTM. ii) NAF: Naive Amplify and Forward.

and the relay power remains the same as in eq. (13). Again, we
notice that the relay-power constrained capacity is independent
of P1, P2 for given ρ0, ρ1, ρ2.

Fig. 4 illustrates the ergodic capacity behavior vs. the SNR
ρ2 with ρ1 = 10 dB and different values of direct link SNR
ρ0: −10,−5, 0, 10 dB. Again, the OPT and NAF RTM’s are
considered. It is interesting to note that, when ρ0 takes on
its lowest values, −10 dB, the results are very close to those
reported in Fig. 2 (and, obviously, [6, Fig. 3]). In fact, this
corresponds to having a weak signal on the direct link while
most of the power arrives through the relay.

However, the situation changes radically when we increase
ρ0, as illustrated by the curves. Therefore, the results presented
allow to assess more clearly the trade-offs implied by the
availability of even a weak power component coming through
the direct link, instead of disregarding it completely. This is
one of the key values of this contribution.

Fig. 5 illustrates the ergodic capacity vs. ρ0 with ρ1 = 10 dB
and different values of ρ2 from 0 to 30 dB. The curves show a
monotonic increase of the capacity vs. the direct link SNR ρ0.
As expected, the curves saturate when the relay-to-destination
SNR ρ2 grows sufficiently high.

These numerical results are useful to assess whether the
RTM optimization is worth being pursued in a two-hop relay
network or rather the relay should just amplify and forward
the received signal vector. Under the stated assumptions, there
is a sizable advantage, as long as the link SNR, ρ0, is within
10 dB and the relay-to-destination SNR, ρ2, is within 20 dB
(while ρ1 = 10 dB).

V. CONCLUSIONS

In this work we considered the optimization of the Relay
Transformation Matrix (RTM) in a two-hop relay network with
an average relay power constraint. The problem was already
addressed in the literature, in a more limited form. A solution
for the case of a pure relay network (without the direct link)
was given in [6]. The complete relay with direct link network
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Transfer Matrices. i) OPT: optimum RTM. ii) NAF: Naive Amplify and
Forward.
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Transfer Matrices. i) OPT: optimum RTM. ii) NAF: Naive Amplify and
Forward.

was assessed in [7] but the optimization criterion was that
of maximizing the OSTBC capacity, which corresponds to
maximizing the equivalent receiver SNR.

The optimum RTM has been derived as the solution of
a convex optimization problem combined with a number of
linear algebra transformations based the unitary diagonaliza-
tion of certain matrices. The optimization problem has been
solved by the resorting to the corresponding KKT equations. A
complete parametric solution has been derived which provides
the average relay transmitted power constraint and the relay
network capacity as two functions of a single scalar positive
parameter. For a given average relay transmitted power, this
solution leads to a water-filling-like implementation.

Simulation results have been presented to compare the
capacity achieved by the optimum RTM and by the straight-
forward “naive” implementation consisting in letting the relay
forward the received signal without alteration. It turns out that



there is a considerable advantage entailed by RTM optimiza-
tion in a range of SNR values of practical interest.

APPENDIX A
PARAMETRIC SOLUTION OF OPTIMIZATION PROBLEM (8)

Referring to the definition of the optimization problem
reported in eq. (8) of Theorem (1), we obtain the relevant
KKT equations by defining the Lagrangian function of the
problem as follows:

L(x,λ0, λ1, . . . , λρ) = −
ρ∑
i=1

ln

{
1− αi

1 + xi

}

+ λ0(β
Tx− P2)−

ρ∑
i=1

λixi.

where 0 < αi < 1, βi > 0, i = 1, . . . , ρ. The KKT equations
are obtained according to [10, Sec. 5.5.3]. First, we take the
partial derivatives of the Lagrangian function with respect to
the variables xi, for i = 1, . . . , ρ:

∂L
∂xi

=
1

1 + xi
− 1

1− αi + xi
+ λ0βi − λi

Then, we have the following KKT equations:

βTx− P2 ≤ 0

λ0(β
Tx− P2) = 0

λ0 ≥ 0

−xi ≤ 0 i = 1, . . . , ρ

λixi = 0 i = 1, . . . , ρ

λi ≥ 0 i = 1, . . . , ρ

∂L
∂xi

= 0 i = 1, . . . , ρ

We can see that the objective function

f(x) , −
ρ∑
i=1

ln

{
1− αi

1 + xi

}
is convex for x ≥ 0 because

∂2f

∂x2i
=

αi(2− αi + 2xi)

(1 + xi)2(1− αi + xi)2
≥ 0.

The mixed derivatives ∂2f/(∂xi∂xj) = 0 for all i 6= j.
Therefore, we have a convex optimization problem. We can see
that Slater’s condition is satisfied, so that the KKT equations
are sufficient for optimality.

The constraint βTx−P2 ≤ 0 is achieved with equality since
f(x) is decreasing with every xi. Therefore, we have λ0 ≥ 0.

Finally, we obtain from the gradient equations:

1

1− αi + xi
− 1

1 + xi
= λ0βi − λi, i = 1, . . . , ρ.

For a given λ0 ≥ 0, recalling that λi ≥ 0, xi ≥ 0, λixi = 0,
there are two possible cases

• λi = 0, which implies that the equation is equivalent to

x2i + (2− αi)xi + 1− αi −
αi
λ0βi

= 0

Since 0 < αi < 1, a solution xi > 0 exists only if

1− αi −
αi
λ0βi

< 0 =⇒ λ0 <
αi

(1− αi)βi
and is given by

xi =
αi
2
− 1 +

√
α2
i

4
+

αi
λ0βi

.

• λi > 0, which implies that xi = 0 to satisfy the KKT
condition λixi = 0. Hence,

1− αi −
αi

λ0βi − λi
= 0

and
λ0 =

αi
(1− αi)βi

+
λi
βi

>
αi

(1− αi)βi
,

Summarizing, we can write the solution as

xi =

{
αi
2
− 1 +

√
α2
i

4
+

αi
λ0βi

}
+

where {·}+ , max(0, ·). The unknown λ0 ≥ 0 can be found
by solving the nonlinear equation

P2 =

ρ∑
i=1

βi

{
αi
2
− 1 +

√
α2
i

4
+

1

λ0βi

}
+

A unique solution always exists because the rhs is a mono-
tonically decreasing function of λ0, which is identically equal
to 0 when λ0 ≥ max1≤i≤ρ

1
(1−αi)βi

. Setting ξ , 1/λ0 yields
the parametric solution reported in eqs. (9) to (11).
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