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Summary

Machine learning models are increasingly adopted in a wide range of critical
areas. However, most high-performing models lack interpretability. Especially in
critical tasks as health care, criminal justice, and finance, understanding the model
behavior is of fundamental importance.

The thesis addresses the problem of the lack of interpretability of classification
models. We propose post-hoc techniques to analyze the behavior of classifiers,
from the perspective of individual instance predictions and data subgroups. The
proposed techniques build on the notion of patterns. Patterns are conjunctions of
attribute-value pairs intrinsically interpretable. We leverage patterns to capture
relevant associations of attribute values and to define subgroups in the attribute
domain. The proposed techniques are model agnostic because they do not rely on
the knowledge of the inner workings of any classification paradigm.

At the level of individual instance predictions, we consider the lack of under-
standing of the reasons behind individual predictions for black-box models. We
propose a rule-based explanation method that explains the prediction of any clas-
sifier on a specific instance by analyzing the joint effect of feature subsets on the
classifier prediction. The approach relies on a local rule-based model to identify the
relevant patterns determining locally the prediction. The extracted local patterns
provide a qualitative understanding of the reasons behind predictions. We provide
a quantitative understanding through the notion of prediction difference. We ex-
ploit a removal-based technique to compute the influence on individual predictions
of feature values and subsets of feature values derived from patterns. We then
propose an interactive tool that leverages the rule-based explanation method for a
human-in-the-loop inspection of the reasons behind model predictions.

From the subgroup perspective, we investigate the behavior of models on data
subgroups. Specifically, we address the problem of identifying and characterizing
data subgroups in which a classification model behaves differently. The identifica-
tion of these critical data subgroups plays an important role in many applications,
for example, model validation and testing, evaluation of model fairness, and iden-
tification of bias. We introduce the notion of divergence to capture the different
behavior of the model on data subgroups with respect to the overall behavior. We
characterize data subgroups via patterns and we leverage frequent pattern mining
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techniques for their automatic extraction. We use the notion of Shapley value to
quantify the contribution to the pattern divergence of the attribute values identi-
fying a data subgroup. We also introduce a generalization of the Shapley value to
estimate the global contribution to the divergent model behavior. We then propose
an interactive system for the exploration of divergent subgroups which supports
drill-down operations and human-in-the-loop inspections of peculiar subgroup be-
haviors.

The work is supported by theoretical analysis and experimental evaluations,
showing the effectiveness of the proposed approaches to reveal the behavior of the
model at the individual instance and subgroup level.
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Chapter 1

On the need of Explainable Al:
Concepts and taxonomy

The chapter explores the relevant concepts of Explainable Artificial Intelligence
(XAI). Section 1.1 firstly illustrates the importance of interpretability in machine
learning models and its strict relations with goals and desiderata of machine learn-
ing research. In Section 1.2, we introduce notions, taxonomies, and evaluation
approaches in XAl research. Finally, Section 1.3 presents an overview of the thesis
and its main contributions.

1.1 On the need of explainability

Machine learning models are extensively adopted for a wide range of applica-
tions. This adoption includes critical areas as health care, criminal justice, finance,
and insurance. Many of the adopted models are considered black boxes which do
not disclose their internal logic yielding the prediction. In these high-stakes appli-
cations, the lack of interpretability may have serious consequences [142]. Without
the understanding of the behavior of machine learning models, the model predic-
tions cannot be legitimated and justified. Insights into how a model arrives at
its decisions allow evaluating if the model can be trusted. Only by inspecting the
reasons behind predictions, domain experts can detect if the model has learned
wrong associations or potential bias. The analysis can reveal if a disparate behav-
ior and impact is observed for different groups of observations. It may disclose the
presence of potentially discriminatory behavior towards groups characterized by
sensitive data as race or gender. Considering the important implications especially
for high-risk tasks, in recent years there is an increasing demand for transparency
and explainability of machine learning models. The call comes from multiple stake-
holders, ranging from the developers, the data scientists, the ethicists demanding
ethical Al to end-users [134].
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The demand for improving the understandability of models and their outcomes
comes also from institutions. The European Union approved the General Data
Protection Regulation (GDPR) [54], a regulation for ensuring personal data pro-
tection. Paragraph 1 of Article 15 states that the data subject has the right to
be informed of different aspects related to its data and to receive “meaningful
information about the logic involved” in case of automated decision-making [54].
The recital, which provides additional information and clarifies the intention of the
regulation, states that the data subject should have “the right to obtain [...] an
explanation of the decision reached”. For some authors, this requirement legally
mandates a “right to explanation” [64]. The extension of the “right to explanation”
is highly debated [54, 148, 165]. Authors as Wachter et al. state that the GDPR
refers to a “right to be informed” [165]. The authors additionally debate on the
scope of the right of explanation, distinguishing among ez-ante and ez-post expla-
nation. An ex-ante explanation refer to an explanation provided before the actual
use of personal data in the automated decision-making process [165]. It hence con-
cerns the functionality of the system itself as the system logic and the considered
attributes. Ex-ante explanations should provide the indication of the consequences
of the application of automatic-decision making, specifying whether a different im-
pact based on the input data of the subject is expected on the outcome function.
The ex-post explanation refers to the logic of specific decisions [165]. Therefore,
ex-post explanations should directly provide indications of the reasons behind the
predictions. Despite the debate, both forms of explanations are hard to achieve in
the case of black-box models. Since they do not disclose their inner working, data
controllers cannot directly investigate the impact of the systems on data subjects
and why individual predictions are made.

The recent demand for enhancing the comprehensibility of machine learning
models has brought to the increasing work in this direction. Explainable AT (XAI)
in an emerging field of artificial intelligence research to enable the understandabil-
ity of models and their decision to humans [12]. The research interest in XAT is
also motivated by its strict link with multiple concepts, also referred to as desider-
ata [98] or goal [12] of XAI research. These goals represent objectives of real-world
applications which are enabled or achieved with the understanding of the model
behavior. In the following part of the section, we outline the main desiderata and
their link with model understanding.

o Trust. The adoption of a machine learning model, especially in critical ap-
plications, depends on the trust of domain experts place in it. If they do not
trust it, users probably will not deploy it [138]. Several researchers consider
the understandability of model behavior as a prerequisite for trustworthi-
ness [138, 135]. Domain experts can decide if they can trust a model or its
predictions only if are able to understand it or understand why predictions
are made [138]. We can hence identify two form of trustworthiness: trust a

2



1.1 — On the need of explainability

model or trust a prediction. The former considers the understanding of the
model as a whole and trusting it will perform well in real scenarios. The latter
refers to the confidence in individual predictions and take decisions based on
them. In both cases, trusting requires a degree of understanding of the model
behavior, comparing it with the prior domain knowledge of the problem, and
decide on their coherence.

Knowledge. This desiderata is also refer to as informativeness [98], inter-
estingness [22] and scientific understanding [48]. The understanding of how
a model works can allow experts to discover new patterns and associations.
The comprehensibility of model behavior is of key importance for knowledge
discovery in data [13]. The discovered form of knowledge should have the
characteristic of being previously unknown, enough certain, and interesting
according to user measure of interest [58]. In addition, the explanations of the
model behavior should be informative for supporting the decision making [98].

Causality. Domain experts can leverage the discover knowledge capture
by a model to potentially find causality among data. While correlations do
not imply causation, correlations among the data can be in fact exploited to
search for causal relations [12]. Again, novel patterns and associations in the
data can be inspected only if users can grasp at a certain degree the reasons
behind model predictions.

Error analysis and debugging. If experts can analyze why decisions are
made they could potentially find wrong associations. These can be inspected,
studied, and potentially solved. As Ribeiro et al. illustrate, the insights of
the model behavior could be helpful “to convert an untrustworthy model into
a trustworthy one” [138]. A compelling example is discussed by Caruana et
al. in their pneumonia risk case study, where the goal was to estimate the
probability of death of patients with pneumonia [28]. The model behavior
could be analyzed only because of its interpretable nature. Patients with
high-risk conditions as asthma, chronic lung disease, or a history of chest
pain were considered by the model at lower risk of dying. Thanks to the
interpretability of the model, domain experts were able to discover these
unexpected behaviors, study them, and understand their source. Patients
with these high-risk conditions are admitted directly to the intensive care
unit and treated with greater attention, lowering their actual mortality rate.
Data scientists were then able to fix the model, by eliminating or editing the
model variables. The analysis of the model can also reveal if differences in
the model behavior occur for subgroups of data. The identification of data
subgroups in which a model performs poorly can help data scientists in model
debugging.
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o Fairness. The demand for explainable Al can be framed in the broader con-
text of the need for a more responsible Al [12]. Responsible Al research aims
to consider fairness, accountability, and privacy in the development of Al
techniques. The deployment of machine learning models in high-risk applica-
tions can negatively affect people’s lives and impact their equal participation
and treatment. Model decisions may be inherently discriminatory [18]. Ma-
chine learning models may in fact learn from biased and unfair data. Data are
collected from our society that is discriminatory and unequal. This results in
systematically learning biased models, even if unintended. Models can hence
embed pre-existing bias and re-iterate it.

The concern of potentially unfair and discriminating machine learning is also
expressed by institutions [54]. Recital 71 of the European GDPR recognizes
the urgency of ensuring fair and transparent data processing. It requires data
controllers to apply appropriate procedures and implement measures that
prevent discriminatory effects on the basis of sensitive data as ethnic origin,
political opinion, and sexual orientation [54]. Only the inspection of model
decisions can provide insights into the results and the relations influencing the
predictions. This allows users to audit the fairness of the model and perform
ethical analysis. The model understanding may reveal the presence of bias in
the model and of possible discriminatory decisions.

Societal bias [18] is a growing concern and researchers are increasingly working
on measuring and ensuring fairness. The evaluation of fairness often considers
two notions for the assessment of the disparate behavior of models: disparate
treatment and disparate impact [18]. The disparate treatment assesses if de-
cisions are (in some measure) based on sensitive and protected attributes as
race and gender [18]. In Chapter 4, we address this issue from the individ-
ual perspective. We expose the reasons behind individual predictions made
by a generic classifier. The explanation can reveal if decisions are based on
sensitive attributes and hence the disparate treatment of the classifiers.

The notion of disparate impact considers the different impact of a machine
learning model. A disparate impact occurs if the outcomes of the model dis-
advantage (or benefit) groups of people characterized by protected attributes.
To this aim, human experts are frequently required to manually identify the
sensitive attributes or subgroups that may potentially be affected by a dif-
ferent model behavior. In Chapter 6, we propose an automatic approach
to identify subgroups of data where a divergent model behavior is observed.
We audit the classifier behavior at the group level to reveal the subgroups af-
fected by a disparate behavior and the attribute values that determine it. The
identification of the potential discriminatory factors and differently treated
subgroups allows practitioners to manage the negative effects of the model,
identify appropriate solutions and turn an unfair model into a fair one [64,
98].
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o Transferability. Understanding the reasons behind predictions allows users
to assess if the model is able to generalize and it could be applied in different
scenarios [98]. The assessment of the ability of the model transferability is
particularly relevant in the case of concept drift when the properties and
relations between the input data and the target variable change over time.

o Interactivity. Another desideratum is the interaction between the model
and the users. Users should be able to actively interact with the model
by investigating their assumptions on its behavior [73, 90]. In Chapters 5
and 7, we address this desideratum by proposing two novel interactive sys-
tems that allow users to inspect the reasons behind predictions of individual
observations [127] and the behavior of the model on data subgroups, respec-
tively [130].

Other desiderata of explainable Al research are confidence [12] as a generaliza-
tion of the robustness and stability of the model behavior, privacy awareness [12,
51] and accessibility [12].

1.2 Explainability: Notions and Taxonomy

The section firstly outlines the multiple definitions proposed for explainable Al.
We then classify explainable AT approaches, illustrating their scope and arguing on
the problematic nature of interpretability assessment.

1.2.1 The notion of explainability

In the XAI literature, several terms have been proposed to refer to the under-
standing of the model behavior. The multitude of terms and the disagreement on
their use is also attributable to the subjective nature of the understanding process
itself and its strict link to humans and their cognitive ability. The term “to inter-
pret” itself comprises several definitions, from “to clarify or explain the meaning of;
celucidate” [45] to “make understandable”, “to translate”, “to have or show one’s
own understanding of the meaning of; construe” [46], “to describe the meaning
of something; examine in order to explain” [47] These definitions, despite the dif-
ferences, all involve the notion of explaining in understandable terms to someone.
Commonly used terms as interpretability, understanding, comprehensibility, and
explainability are often used interchangeably in the explainable AT literature [112,
114] and we will follow this line through the thesis. Some authors instead specifi-
cally distinguish the concepts of interpretability and explainability [12].

In the following, we outline the most commonly used terms and their definitions.

A widely adopted term is interpretability. Doshi-Velez and Kim derive its defi-
nition in the context of machine learning directly from the definition of to interpret.
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They define it as “the ability to explain or to present in understandable terms to a
human” [48]. Biran and Cotton in [23] and Miller in [112] define interpretability as
“the degree to which an observer can understand the cause of a decision”. While
in [112] the term is considered equivalent and synonym of explainability, other au-
thors differentiate it and consider it only as a synonym of model transparency [12].
In this context, interpretability is considered a passive characteristic of the model
itself and refers to its degree of understandability to humans [12].

Another commonly used term is understandability [22]. The term focuses on the
characteristic of the model behavior to be understood, by humans, in a reasonable
amount of time [22]. The time constraint is introduced because we could say that
any model could be understood in an infinite time [22]. The term comprehensibility
refers to the representation of the model behavior in a form comprehensible to
humans. Authors as Askira-Gelman focuses on the comprehensibility of the model
workings as a fundamental for knowledge discovery [13]. Other commonly used
terms are intelligibility [28] and mental fit [55, 167 that refer to a representation
of the model behavior that can be grasped and evaluated “in mind” by humans.

FExplainable and explainability are often used as synonyms of the previously
mentioned terms and put the emphasis on the ability of the model or its result
to provide an understanding of the relations between the input and the outcome
predictions in an informative and understandable way. Explanations reveal the
reasons behind the model predictions. For some authors, explainability differs from
interpretability since it is considered as an active characteristic of the model [12].
In this context, explainability refers to procedures to allow users to understand the
inner behavior of the models. It can hence be considered as a broader notion of
interpretability [12]. An interpretable model can be explained using its own ability
to present the result in understandable terms.

The outlined definitions, despite the different focus, all consider the notion
of the ability of human beings to interpret and understand the behavior of the
model. A recent definition of explainable Al specifically considers the audience for
which explainability is meant [12]. The model behavior should be provided in a
comprehensible and clear way depending on the audience [114].

1.2.2 Explainable AI approaches and their taxonomy

Explainable Al techniques to enable the understanding of the model behav-
ior can be categorized into two categories: interpretable by design and post-hoc
explainability [12].

The first line of work in Explainable Al is the definition of interpretable models.
Interpretable models, also referred to as transparent models, are models that are
interpretable by design. Considering the increasing relevance of interpretability,
recently several works consider interpretability constraints directly into the opti-
mization problem, in order to allow the model comprehensibility while obtaining
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high performance [7, 89, 113, 143]. Transparent models explain the reasons behind
their predictions to a certain degree. The level of comprehensibility and the form
of the explanations vary for the different interpretable models. An overview of
interpretable models is presented in Section 2.1.1.

The second class of approaches aims at enhancing the interpretability of clas-
sification models that are not intrinsically transparent. Post-hoc explainability
provides insight into the behavior of the classifier and is applied after model train-
ing. Considering the wide application of black-box models also in high-risk tasks
and the need to interpret their results, several approaches have been proposed to
explain the reasons behind the predictions, identifying the most relevant attributes
or an explanatory set of observations. We present an overview of these approaches
in Section 2.1.2.

Post-hoc explainability techniques can be classified according to two dimensions:
the generality and the scope.

Degree of generalizations. Some techniques are tailored to explain only some
specific classification models [12]. We refer to these approaches as model-dependent
and we outline them in Section 2.1.2. Model-agnostic solutions or model-independent
are instead designed to provide insights into the behavior of a generic classification
model. In Section 2.1.2, we provide an overview of these solutions and we illus-
trate their advantages over model-dependent ones. The approaches proposed in
this thesis belong to this category.

Scope of explainability. Global explanations aims to provides insights on the
behavior of the entire model [67]. Local explanations explain the reasons behind
individual predictions [67]. Our explanation approach LACE [129] illustrated in
Chapter 4 and the interactive tool [127] for the inspection of predictions outlined
in Chapter 5 have a local scope.

Recently, several works aim to characterize the behavior of the classifier at the
subgroup level [26, 34]. The analysis specifically targets the identification of peculiar
behaviors of the model across data subgroups. An overview of these methods is
presented in Section 2.2. In Chapters 6 we propose a novel approach [126] to identify
and describe subgroups with different classification behavior than the overall one.

1.2.3 Evaluating explainability

This section discusses the difficulties in measuring interpretability and overview
existing evaluation approaches. We first distinguish among two possible targets of
the evaluations. The former considers as target the interpretability of the repre-
sentation of the behavior of the model itself. The latter considers the evaluation of
the quality of the explanations provided by the post-hoc explainability approaches.
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The major difficulty in the definition of a measure of interpretability derives from
its subjective nature. Despite the multitude of terms, all definitions consider the
human audience as active subjects of the understanding process. The actual degree
of understanding of the model behavior depends on the background, education,
expertise, level of attention of the user [77].

Another obstacle derives from the lack of ground truth. For the evaluation
of classification performance, data scientists can leverage a multitude of different
and well-known metrics as classification accuracy, precision, recall, or F-measure.
All these metrics are based on the knowledge of the true label. True explanations
of the model behavior are normally not available. In almost all cases, the true
association between attribute values and class value is not known. Indeed, classifiers
are specifically used to capture these associations from the data.

We can identify two major approaches to evaluate explainability: functionally-
grounded evaluations and human-based evaluations [48].

Functionally-grounded evaluations. Functionally-grounded evaluations [48]
also refer to as proxy tasks [48] or heuristic approaches [22] are quantitative and
objective evaluations of interpretability that do not require human intervention.
These approaches also rely on proxies. A widely adopted heuristic measure is the
size [22, 48]. The size is considered as a proxy of the model complexity. The larger
is the size, the more the representation of the model is complex and so the less it
is interpretable. The size can be used as a proxy of interpretability at the global,
subgroups, and individual levels. At the local scope, the metric is also referred to
as conciseness [4]. For example, at the global level, it can represent the number
of nodes or the depth of a tree, at the subgroup level the number of attribute
values characterizing the group and for an individual explanation, it can be the
number of relevant attributes or the number of nodes in the path of a decision tree.
However, large sizes, especially when referring to the model itself at a global level,
make their comprehension difficult and time-consuming. We have to consider the
human limitations in understanding and processing a big amount of information,
linked to the limits of short-term memory. A popular conception in psychology
is that humans can deal with seven, plus or minus two, abstract objects in their
short memory at the same time [111]. Moreover, the interpretability of the model
behavior model is tightly linked to the ability of humans to understand it in a
reasonable amount of time. However, models with a small size, while considered
interpretable, may be also considered too simple. Users may not trust simple models
and reject them, questioning their ability to capture the complexity of the problem
under study [59]. An additional problem of the size as a heuristic measure is that it
does not allow an easy comparison between different representations of the models.
As an example, we cannot easily compare the number of nodes of a tree with the
number of neurons of a neural network or the number of non-zero weights of a
logistic regression classifier.
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The drawback of the heuristics based on proxies is that they consider only
syntactical aspects, ignoring the semantics one [22, 59].

Human-based evaluations. Considering the subjective nature of interpretabil-
ity and its strict relation to the audience, the other adopted approach is based on
human-based evaluations. Doshi-Velez and Kim further divide human evaluations
into application-grounded and human-grounded evaluation [48]. The main differ-
ence derives from the level of expertise of the audience. The application-grounded
evaluation considers the evaluation performed by domain experts, in the scenario
of real tasks and real applications. This evaluation requires designing the exper-
imental setup with great care and involve experts on the application of interest.
The human-grounded evaluation involves instead general users. Hence, the user
study should be conducted for simplified tasks, where no particular expertise or
knowledge is required. In both scenarios, the evaluation design should carefully
consider the presentation of questions, the background, and expertise of the user,
the length of the study to avoid tiredness or motivation loss.

With the rise of post-hoc explainability techniques, tailored solutions have been
proposed to assess the quality of explanations of the behavior of black-box models.
Despite the recent growth, there is no unified and agreed measure of explanation
quality. The lack of consensus is again attributable to the disagreement on the
definition of explanation of the model behavior and the lack of ground truth. For
the evaluation, we do not have a target ground truth explanation to compare with.

When the explanation is derived from a (local) interpretable surrogate model
that mimics (locally) the behavior of the classifier, an often adopted metric is the
(local) fidelity. Tt measures how good the surrogate is in approximating the behav-
ior of the original model [38, 67, 138]. In the context of individual explanation,
the evaluation is based on comparing the surrogate and the black-box predicted
labels [67]. As an alternative approach, the estimation considers a neighborhood
of the individual prediction [138]. The notion of fidelity captures the accuracy of
the surrogate model and it was also redefined to capture the precision, recall, and
Fl-score [67]. A recent framework address the evaluation of individual explanations
extracted from local linear models [4]. The linear model can be a linear surrogate
model (as in LIME [138]) or the local linear function can be derived from explana-
tion in form of feature importances (as in SHAP [104]). The evaluation considers
quality metrics as the stability of the explanation results (reiteration similarity) and
local fidelity with conciseness constraints as a measure of comprehensibility [4].

Another evaluation approach is to design the experimental setting so that the
true associations or the true explanations are known. A class of solutions considers
the usage of artificial datasets [33, 129, 153, 154]. For artificial datasets, the true
associations among the feature values and the class label are known. The explana-
tions produced by post-hoc explainability models can hence be compared with the
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true associations. These solutions have the advantage of allowing the assessment of
the ability of the models to capture the true relations among the data. However, an
explanation should capture the model behavior and so what the model has learned.
A high-quality explanation can differ from the true association if the model failed
to learn it. We will show an example of this phenomenon in Section 4.4.2. Hence,
we first need to assure the performance of the model for the true associations of in-
terest. Another class of approaches consists of knowing the model behavior itself at
the scope of interest (local, group, or global level). This can be achieved by directly
learning an interpretable model and using it as a black-box model to explain [81,
129], by controlling the behavior of the classifier [33, 126] or, for local explanations,
synthetic transparent classifiers [66]. The quality of the explanation given the true
association or explanation is then evaluated by measuring their similarity. The met-
ric used depends on the representation of the explanations themselves. Examples
of adopted metric are the cosine similarities [66, 81] and fl-score [66, 81].

1.3 Overview of the thesis and contributions

Considering the relevance and the need for interpretability for multiple objec-
tives, this thesis addresses the problem of the lack of transparency of classification
models for structured data from both the perspective of individual predictions and
subgroups. We propose post-hoc explainability approaches that leverage the notion
of patterns to capture local associations of feature values and identify subgroups.
Patterns are conditions of attribute-value pairs. We enhance the interpretability
of black-box models by exploiting the following relevant features and properties of
patterns.

o Intrinsic interpretability. Patterns are typically provided as a list of
attribute-value pairs in textual form. Hence, they are intrinsically inter-
pretable and understandable by humans. Their understanding does not re-
quire user expertise or training. Users can inspect patterns and directly un-
derstand which terms compose them.

o Capturing associations. Patterns can be used to model the associations
that occur among multiple attribute-value pairs and the class labels. In Chap-
ters 4 and 5, we leverage this feature of capturing association to derive a local
explanation of the behavior of the classification model. The explanation re-
veals the relevant associations of attribute values of an individual prediction
and the class label for the classifier.

o Interpretable data grouping. Patterns can be exploited to determine data
subgroups. A pattern identifies the data instances satisfying its conditions.
This corresponds to slicing the data in the attribute domain. The groups
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identified by patterns are intrinsically interpretable. As a result, posterior
techniques to describe the subgroups are not required. In Chapters 6 and 7,
we use the notion of pattern to identify data subgroups for which a classifier
behaves differently than overall.

Thesis outline

In the following, we outline the thesis structure and its main contributions.

Related work and background. Chapter 2 outlines existing solutions in ex-
plainable Al to enhance the understanding of the behavior of machine learning
models. The analysis reviews the techniques on the basis of the illustrated tax-
onomies. Specifically, we focus on techniques for the understanding of the model
behavior from the perspective of individual predictions and data subgroups, out-
lining limitations and needs for improvements.

Chapter 3 introduces background notions and algorithms used in the thesis.

Individual prediction perspective. Chapters 4 and 5 address the problem
of enhancing the interpretability of classification models from the perspective of
individual predictions.

Specifically, Chapter 4 describes LACE [129], an explanation method that ex-
plains the reasons behind individual predictions via a rule-based model-agnostic
approach. The explanation provides a qualitative and quantitative understanding
of prediction behavior. The qualitative insight is provided by a local model that
captures relevant associations of attribute values in terms of patterns. The quan-
titative explanation is computed by estimating the prediction change when one or
more attribute values derived by patterns are omitted. Existing state-of-the-art
techniques generally provide only one form of explanation, qualitative or quanti-
tative. The dual form of LACE explanations improves existing techniques and
provides a more complete understanding of the model prediction behavior. Exper-
imental results show the ability of the proposed approach to capture the reasons
behind predictions.

Chapter 5 presents X-PLAIN [127], an interactive tool for human-in-the-loop in-
spections of individual predictions. It exploits LACE as the underlying explanation
method. The design and purpose of the tool directly consider multiple desiderata
of explainable Al research as interactivity, debugging, and trust. X-PLAIN allows
interactive explorations of the behavior of the classification models. Through active
inspections, users can debug classifiers and assess the trustworthiness of the model
individual predictions.
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Subgroup perspective. Chapters 6 and 7 address the understanding of model
behavior from the perspective of data subgroups.

Chapter 6 describes DIVEXPLORER [126], a novel approach for inspecting data
subgroups in which a classification model exhibits peculiar (divergent) behaviors
that differ from the overall one. Data subgroups are characterized by patterns. As
a result, the identified subgroups are already interpretable and can be described by
the attribute-value pairs of the patterns themselves.

Differently from existing approaches, we propose a complete exploration of the
subgroups with adequate representation in the data. The identification of critical
subgroups is performed exploiting frequent pattern mining techniques. We show,
both theoretically and experimentally the need for a more complete exploration to
identify peculiar behaviors of the model.

Given a data subgroup with peculiar model behavior and the pattern character-
izing it, we can then be interested in understanding which are the attribute values
of the pattern that mostly contribute. We use the notion of Shapley value [150] to
determine the influence of attribute values to the subgroup peculiar behavior. We
then propose a generalization of the Shapley value to estimate the global contribu-
tion to the model divergent behavior.

In Chapter 7, we consider again the desiderata of explainable Al research for
the design of an interactive application to inspect classifier behavior in subgroups.
We propose a web app integrating the DIVEXPLORER algorithm that supports
interactive searches, explorations, and drill-down operators [124].

Conclusions ad future work. Chapter 8 draws the conclusions and outlines
future works.
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Chapter 2

Related work

The chapter outlines the main existing explainable AI techniques to enable the
understanding of machine learning model behavior. We analyze the approaches
both from the perspective of understanding the reason behind prediction and on
characterizing peculiar behaviors in data subgroups.

The chapter is organized as follows. Section 2.1 reviews the approaches to un-
derstand model predictions. We firstly outline transparent classification models and
their degree of understandability (Section 2.1.1). We also review novel approaches
for interpretability by design. We then examine the post-hoc techniques to en-
hance the interpretability of black-box models 2.1.2. The analysis considers the
two dimensions of post-hoc explainability techniques, the degree of generalization
and the scope of explainability. Section 2.2 outlines the approaches for charac-
terizing the behavior in data subgroups. We firstly review supervised techniques
that require human intervention for the identification of interesting subgroups (Sec-
tion 2.2.1). Finally, Section 2.2.2 then outlines unsupervised techniques with an
automatic identification process of the subgroups in which the model has a peculiar
behavior.

2.1 Understanding the reasons behind predictions

The section outlines techniques to understand the reasons behind model predic-
tions. We firstly outline classification approaches that are interpretable by design
and we focus on their level of understandability. We then outline post-hoc explain-
ability approaches to provide explanations of the classification behavior.

2.1.1 On the transparency of classification models

The section provides a brief description of interpretable classification models
and outlines their scope and degree of interpretability. We also review recent in-
terpretability by design solutions that consider interpretability as a target of the
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optimization process.

Interpreting classification trees

Classification tree or decision tree (DT) models construct a decision tree repre-
sentation to classify data [75]. Classification tree models partition the feature space
by splitting the data into sub-regions with respect to cutoff feature-value pairs. At
each split, the attribute and cutoff attribute value that minimize the heterogeneity
of class values in each partition is determined to obtain the best split. Each split
partitions the data into different and exclusive subsets. Hence, each instance of
the data belongs to one single partition. The data are recursively partitioned until
certain stop criteria are reached, as the minimum number of instances in a region
or the maximum depth of the whole resultant tree. The nodes of the tree structure
are categorized into the root node, internal nodes, and leaf nodes. The topmost
node in a tree is the root node and corresponds to the first split. An internal node
corresponds to a split of the feature space and denotes a test on an attribute. A leaf
node is a terminal node and it is labeled with a class or a probability distribution
over the classes, usually determined as the most common class value or the average
outcome of the instances of the training data set that fall back in that leaf. The
algorithms proposed for building trees may differ on (i) the metric to evaluate the
impurity of a node, as the Gini index, the classification error rate and entropy, (ii)
the structure of the splits and the number of edges (i.e. the number of partitions),
(iii) the stopping criteria, and (iv) how to determine the class or the probability
distribution over the classes of the leaf nodes.

Classification tree models are widely adopted for the intrinsic interpretability of
their tree graphical representations [59]. Trees allow interpreting the classification
results from the global to local perspectives. The entire tree can be inspected by
the users. Hence, they can grasp how the model globally works and observe the
whole relationships between input features and class labels learned by the tree. DT
also provides local interpretability by explaining why particular decisions are made.
The local explanation of a single prediction corresponds to the path from the root
to the leaf node. Hence, the user can inspect the reasons for an individual instance
in a more focused way.

Freitas in his position paper on the interpretability of classification models
points that, in addition to the graphical representation of a tree, another advantage
of DTs is that they often consider only a subset of the input features [59]. This
facilitates the user comprehension of the global picture of the model and the most
relevant attributes. Moreover, the hierarchical structure of the tree provides an
indication of the relevance of the attributes. Often, the attributes closer to the
root node are considered more relevant [59]. Another criterion is to consider the
relevance of an attribute as a functusion of the number of instances having the
attribute in the decision path [59]. The relevance of attribute values can be useful
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both at the global and the local scope. The former allows to understand which
attributes are mostly characterizing the model. The second refers to derive the
relative importance of the features in the decision path.

However, concerns arise on the actual global interpretability of DT when the
size of the tree increases, estimated from the number of nodes or the depth of the
tree. As illustrated in Section 1.2.3, the size is a proxy of model complexity. The
interpretability of a model decreases when its complexity increases. On one hand,
small trees are easier to interpret. However, in real applications as medical ones,
small trees are considered too simple to model the complexity of the problem of
interest. On the other hand, classification trees can be so large, deep, and with
so many nodes to make its understanding difficult and time-consuming. Hence,
despite the transparency of trees and the possibility to inspect them, their com-
plexity and large size, especially when considering real applications, may hinder
their understandability from a global perspective.

Moreover, considering the close connection between interpretability and human
beings, interpretability is highly subjective. As a result, some users may consider
decision trees less comprehensible and prefer other representations as decision tables
and classification rules [77].

Finally, the general understandability of DT predictions typically corresponds to
a lower classification accuracy [114]. This relation is known as the comprehensibility-
accuracy trade-off. As a result, classification trees are often not adopted in real ap-
plications demanding high accuracy, and other high-performing but obscure models
are applied.

Interpreting rules

Classification rules are more commonly represented as propositional if-then
rules in the form IF (condition) THEN class. The condition is a conjunction
of tests on attributes, i.e. A1 = a1, Ay = a =2,..., Ay = a; [156]. The condition is
referred to as rule antecedent while the class is denoted as rule consequent. Mul-
tiple approaches have been proposed to derive classification rules [156]. We can
firstly classify them into direct and indirect methods. Direct methods learn and
extract rules directly from the data [156]. Sequential covering approaches belong
to this class of methods. These approaches learn a single rule at the time, select-
ing it greedily. The heuristic search of the rules proceeds until the entire dataset
is covered by the rules. PRISM [30], RIPPER [36], CN2 [35], FOIL [136], and
AQ [110] algorithms are examples of sequential covering approaches. A drawback
of this class of methods is that the heuristic and greedy process of rule discovery
does not guarantee to identify the best set of rules.

Associative classifiers are another class of approaches that exploits concepts of
frequent pattern mining and association rule mining to extract rules from the data.
Since these algorithms will be exploited to capture local associations in Chapters 4
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and 5, an overview of associative classification is reported in Section 3.3. Examples
of associative classification algorithms are CPAR [171], CMAR [95], CBA [99],
L? [17]. Associative classifiers tend to obtain better performance than heuristic
sequential covering approaches [171], exploring the whole search space to learn
optimal rules.

Indirect methods are a family of approaches that extract rules from classification
models [156]. Several approaches extract rules from decision trees as the C4.5
rules algorithm [156]. Considering their high classification performance, several
approaches have been proposed to extract rules from artificial neural networks [6].
Rule-based surrogate models can be trained on the predictions of a generic classifier
to understand the global behavior of the model. We denote these approaches as
interpretable global surrogate models and we review them in Section 2.1.2.

We can divide rules into decision lists and decision sets, according to the strate-
gies for combining multiple rules and dealing with overlapping rules [114]. A de-
cision list is a list of ordered rules. For classification tasks, the first rule (in the
ordered list) matching the instance to classify is applied. A decision set is a set of
unordered rules. In case the rules in the set are not mutually exclusive, a strategy
for resolving conflicts when data are classified is applied to define the class label,
like majority voting or quality measures as the confidence of the rule.

As decision trees, classification rules are widely adopted for their intrinsic in-
terpretability. They provide both global and local interpretability. Classification
rules are provided to the users in a textual representation, as an ordered (decision
list) or unordered (decision set) list of rules. Hence, the users can read the entire
list of rules to understand the global behavior. The rule or set of rules matching
the instance to predict can then be inspected to understand the reason behind the
individual prediction for the local interpretability. Each antecedent of classifica-
tion rules is a set of unordered conjunction of test on attributes. Different than
classification trees, rules have no hierarchical structure. Hence, we cannot directly
derive from rules the relevance of attribute values to the predictions. However, as
the alternative approach for decision trees, we can derive the relative importance
of each attribute by considering the number of labeled instances matching a rule
containing that attribute [59]. Considering the subjective nature of interpretability,
user studies have been conducted to assess the comprehensibility of rules compared
to other interpretable methods as decision trees [77]. The empirical results showed
that the decision table representation of rules rather than the textual one and deci-
sion trees were considered by human users as easier to use. An advantage of the rule
textual representation is their compactness [114]. On the other hand, the textual
representation may hinder the comprehensibility from the global perspective and
have a full picture of the model [59]. A global comprehension becomes increasingly
difficult when the complexity of the rules increases. For classification rules, a com-
mon measure of complexity is the number of rules themselves [59]. Additionally,
long rules are considered less interpretable [114].

16



2.1 — Understanding the reasons behind predictions

Interpreting logistic regression

A linear classifier classifies the data based on a linear combination of the input
features [76]. The classification is characterized by the dot product between a set
of coefficients (or weights) /5 and the feature vector x:

y=9gB-2)=g (Zﬂj%’) = g(Bo + Br71 + ... + Bara) (2.1)

where ¢ is a function that maps the dot product to the desired output. The linear
classifiers highly differ on how the function g and the coefficients 3 are defined and
derived. An example of a simple linear classifier consists of adopting a threshold
function as function g. In this case, for a binary classification problem, the linear
classifier determines if 3 - x is greater than a threshold 7" and the output class is
derived accordingly (e.g. the classis 1if g2 > T).

For the logistic regression, the function g is the logistic function [76]. For binary
outcomes, the logistic regression applies the logistic function to model a binary
dependent variable. The logistic function allows limiting the output of a linear
equation between 0 and 1 that can be interpreted as the output probability. The
logistic regression has the following form:

1
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where Y is the response variable, x is an instance and [3; are the coefficients of
the model. The logistic regression can be generalized for multiple (more than
two) outcomes. The multinomial logistic regression can be modeled as a set of
independent binary regressions in the form:

1
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PY=K|X=1z)= (2.3)
where K are the possible outcomes and [; is the regression coefficient vector asso-
ciated with a class .

In linear models as linear regression for regression purposes, the weights can be
straightforwardly used to interpret the results. The outcome of the regression is a
linear function of the coefficients. Each coefficient (3; indicates the expected change
in the outcome for a change of one unite of x; when all the other attribute values
are held fixed [114]. By applying the logistic function, we lose the linear influence of
weight on the output probability. Two common ways to interpret logistic regression
models are studying the effects of the attributes (i) on the logged odds and (ii) on
the odds [122]. The first interpretation directly considers the coefficients 3. The
linear coefficients are in fact equal to the logarithm of the odds (logged odds):

P(Y =1|X = z)
1-PY = 1|X = 2)
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where the odds of an event is defined as the ratio of the probability of the event
to occur and the probability that the event will not occur [76]. The effect of the
attributes on the logged odds is hence linear and additive. A change of one unit
of an attribute x; corresponds to increasing the log odds by f;, the value of the
corresponding coefficient.

The effect on the logarithm of the odds may be hard to interpret and less
intuitive due to the logarithm function [114]. As a second interpretation, we can
consider the exponential of both terms of Equation 2.4 [122]:

P(Y =1|X =z)
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As a result, the effect on the odds is multiplicative and not additive as for
the logged odds [122]. To an increase of the value of attribute x; by one unit
corresponds a change in the estimated odds by a factor eiﬁ . A coefficient ef of 1
does not influence the odds, ef > 1 increases the odds while ef < 1 decreases the
odds [122].

Logistic regression models are widely adopted, especially in medical fields and
social science for their interpretability. However, the understanding of the effect of
weights maybe not intuitive for all users. The predictive performance of logistic
regression classifiers is often lower than the one of more complex but more obscure
models. As a result, high-performing but black-box models are often preferred.

Interpreting GAMs

Generalized additive models (GAMs) are generalized linear modelS (GLMs) [118]
in which the outcome is modeled as the sum of arbitrary functions of each at-
tribute [75]. GAMs are expressed in the following form:

9(y) = Bo + Z hj(;) (2.6)

where z is a data instance and y the target outcome, ¢ is a link function and
h;’s are generic nonparametric functions. Examples of commonly used function
for h; are step functions and splines. Example of used link functions g are the
identity function for regression purposes or the logit function to model classification
problems [75].

GAMs are widely adopted for their general high performance and ability to
audit the model. GAMs are in fact considered interpretable since the relation-
ship between each attribute and the final outcome can be analyzed by examining
h; [114]. The relations can be visualized by plotting each h;(z;) as a function of ;.
The visualization reveals the contribution of a single attribute to the prediction.
However, the interpretation of GAMs becomes challenging when the number of at-
tributes increases. The number of attributes is a proxy of the model complexity.
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The higher the attributes, the higher is the number of relations of h;(x;) with the
outcomes to inspect.

Interpreting k-nearest neighbors

K nearest neighbor algorithm (KNN) is an instance-based approach that as-
signs the outcome for a new instance based on its K most similar instances in the
dataset [156]. For classification purposes, the class is usually assigned by majority
voting among the K nearest instances, often weighted according to their distance.
The interpretation of the behavior of a KNN model cannot be done at the global
level as no model is actually trained. A way to interpret locally individual pre-
dictions of the KNN classifier is represented by the K neighbors themselves. The
K closed instances represent an explanation by example of the reasons behind the
prediction [114]. The inspection of closed examples reflects how humans often mo-
tivate or justify their actions by giving examples and by analogy [98]. However, the
interpretation is challenging when the number of features increases, especially for
tabular data [114]. Moreover, explanations by example do not provide an indication
of the relevant attribute for the class assignment.

Interpreting Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier that applies the theorem
of Bayes with the naive assumption of independence between features [156]. Let x
be the instance to classify among K classes. The class label y is derived as follows:

d
y =arg min_p(c) ] p(zilc) (2.7)

=1

where p(c) is the class probability and p(z;|c) is the probability of feature x; given
the class c.

The Naive Bayes model predictions can be interpret by analyzing the proba-
bility associated with all the attributes [59]. From probabilities p(x;|c) and p(c)
learned at training time, we can derive p(c|x;) using the Bayes’ Theorem and inde-
pendence assumption, with p(c|x;) = p(c)p(z;|c)/p(x;). Each term p(c|z;) indicates
the contribution of the feature x; to the class assignment. Considering the relevance
of understanding the reason behind predictions, the probabilistic interpretation is
often applied in medical applications [92]. However, some users may not find it easy
to deal with probabilities. To increase the understandability, solutions as the vi-
sualization approach in [20] have been proposed. However, the strong assumption
of independence among features does not handle associations among attributes,
reducing the performance of the approach and hindering its applicability.
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Targeting interpretability by design

The recent widespread use of machine learning models in high-risk applications
as health care, finance, and criminal justice is prompting researchers to consider
understanding model behavior as a prerogative. A significant research direction
consists of developing interpretable models by design, overcoming the belief of the
necessary trade-off between accuracy and interpretability [142]. The goal is to
design highly accurate and inherently interpretable models. The understandability
of a models is considered earlier in the process of its definition and training. The
problem of learning an interpretable classification model is then modeled as an
optimization problem where interpretability criteria are directly included [142]. At
an high level, the optimization problem is formulated as follows [144]:

min Y _ Loss(f, z;, y;)+InterpretabilityPenalty(f),
el (2.8)
subject to Interpretability constraint(f)

where f is the target model chosen among the class of functions F', z;, y; are
the labeled data samples. Hence the objective is to minimize the loss function
while minimizing the complexity of the classifier modeled as an interpretability
penalty. The proposed approaches differentiate on the class of functions considered
(as decision trees, rules, or linear models) and on the interpretability constraints.
The latter highly depends on the target model. The interpretability criteria can be
the number of nodes in decision trees or the number of rules in rule-based models.

We note that the class of optimized functions predominantly belongs to the
existing class of transparent models that we have outlined in the previous sections.
However, these novel approaches, despite often leveraging on existing transparent
solutions, introduce a novel paradigm: consider interpretability needs directly in the
optimization problem. The models are then optimized to achieve high performance
while ensuring their interpretability, considering the human cognitive limits [111].
As a result, some of the discussed drawbacks are overcome. A detailed overview of

the principles and challenges for interpretable machine learning models is presented
in [144].

Works as [97] consider decision trees (DT) as class of function of interest. Equa-
tion 2.8 is then defined as [97, 144]:

> Loss(f,z:,y:) + A - Number of leaves(f) (2.9)

i

min
f€set of DTs

where A is a regularization parameter that control the interpretability constraints.
The number of leaves is a measure of the tree complexity. The greater the number
of leaves, the more the tree is considered complex and so hard to interpret.

Several works leverage the high understandability of rules to derive interpretable
and accurate models [7, 89, 113, 143]. The CORELS algorithm [7] derives rule lists
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and considers as interpretability constraint the number of rules in the rule list as
a measure of the size of the model and so of its complexity. Lakkaraju et al. pro-
pose interpretable decision sets, a framework to learn interpretable and accurate
decision sets, i.e. list of unordered rules [89]. In the optimization problem, they
consider multiple interpretability constraints. In their work, the interpretability of
decision sets is modeled as a function of four criteria: size, length, cover, and over-
lap. The first two metrics refer to two common criteria to measure the complexity
of rules. The size of the model is the number of rules in the decision set, while
the length considers the length of rules (i.e. number of elements in the rules). The
cover of a rule denotes its clarity and measures how many instances are covered
by the rule. Finally, the overlap estimates the overlapping among rules. The lower
is the overlapping, the more each rule covers distinct portions of the feature space
and the higher is the interpretability. LIBRE is an ensemble approach that learns
boolean rules, balancing accuracy and interpretability [113]. The approach com-
bines bottom-up weak learners that generate few and compact rules, allowing their
understandability. The results of the weak learners are combined via a union opera-
tion to improve the generalization of the model while preserving the interpretability
of the final rule set [113].

Other works introduce interpretability constraints to optimize linear classifica-
tion models as scoring systems [161]. Equation 2.8 can then be reformulated for
scoring systems as follows [144]:

min > Loss(f,x:,y;) + nonzero terms 3 (2.10)

f€linear models <

where f is a linear model and f; are its coefficients. The number of nonzero
coefficients is an indicator of the model complexity. The higher is the number of
nonzero coefficients, the less the model is considered interpretable. Other inter-
pretability constraints can be integrated by considering the coefficients as small
integers or other domain-dependent constraints [144].

Explainable Boosting Machine (EBM) is an extension of GAMs to improve
intelligibility while achieving high accuracy, based on the GA*M algorithm [101,
120, 28, 102]. A limitation of GAMs is that they do not directly consider in their
definition (Equation 2.6) the interaction among features. EBM includes pairwise
interaction terms in the formulation of GAMs:

d
9ly) = 50+Z:hj(l’j) + > hij(x, ) (2.11)

To limit the number of explored pairs of attributes, it includes an efficient method to
measure and rank the pairwise interaction [102]. As for GAMs, the contribution
of each attribute to the prediction can be visualized and inspect by plotting h;.
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Moreover, EBMs allow the inspection of the pairwise interaction via a heatmap
visualization.

2.1.2 Explanation method for enhancing interpretability

Despite the recent research efforts on designing interpretable classification mod-
els, black-box models are extensively adopted also in high-stake tasks. Given the
importance of interpretability, many algorithms have been proposed for improv-
ing the understandability of classification models. A recent and detailed survey is
provided in [67].

As illustrated in Section 1.2, we can identify two main dimensions on which
algorithms for enhancing model explainability differ: the generality and the scope.
The generality dimension divides the approaches into model-dependent solutions
and model-agnostic ones. The scope refers to the target of explanations, global
and local. In the following sections, we first present an overview of black-box
models and model-dependent solutions. We then outline global model-agnostic
approaches. Finally, we present a detailed analysis of model-agnostic solutions for
local explanations. The discussion outlines the limits of existing solutions and the
need for improvements that are addressed in this thesis.

Model dependent solutions

Model-dependent approaches are solutions to improve the model interpretabil-
ity which are applicable only for specific classification models because they rely on
how the considered classification method operates. The section outlines black-box
models and the model-dependent solutions proposed to improve their interpretabil-

ity.

Artificial neural networks. Artificial neural networks (ANN) are a class of
techniques inspired by the biological neural system of the human brain [70]. ANNs
are based on a set of weighted connected units, called artificial neurons organized in
a network. Neurons are usually structured in connected layers divided into an input
layer, one or more hidden layers, and an output layer. The output of each neuron is
a function of the weighted sum of its inputs, usually applying a nonlinear function
(the activation function). As a result, the ANN model a complex high-dimensional
non-linear function. The mapping from the data instance to the final prediction is
modeled by the collection of neurons organized in a sequence of multiple layers of
the network and the output of each neuron depends on a usually non-linear function
of the weighted sums of its inputs. Therefore, as humans, we cannot understand
the complex interactions between the data instance and the final prediction [114].
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Considering their great accuracy and advantages, a lot of work has been done
in the direction of improving neural network interpretability. In particular, many
techniques have been proposed for extracting explicit rules from ANN [149, 159]. An
overview and taxonomy of techniques for rule extraction from ANNs are presented
in [6]. Rules are considered as a good compromise since they can capture the
complexity of the problem but at the same time, they are still understandable.
Other solutions propose visualizing the neural network graph. As an example,
Tzeng and Ma [160] propose to “open the black box” to reveal the relations between
the inputs and the outputs of an ANN.

Deep learning models (DL) are increasingly adopted and approaches to explain
DL predictions have been proposed for multiple tasks as for sentiment analysis
and classification on textual data [11, 163], entity resolution [43] and image recog-
nition [119, 151, 162, 176]. For image recognition, many techniques explaining
predictions for individual images [119, 151, 162, 176]. Several techniques provide
explanations in form of saliency maps [151], showing how each pixel of a particular
image is important for class prediction. Fong and Vedaldi apply a removal-based
approach for image classification, approximating the elimination of parts of an
image with meaningful perturbations [56]. EBAnO defines interpretable features
of the input images through hypercolumn representation and cluster analysis and
exploits perturbation to measure the relevance of the extracted interpretable repre-
sentation [162]. These techniques are specifically designed for deep learning model
and deal with unstructured data as text and images. Differently, the techniques
proposed in this thesis are suitable for structured data.

Random Forest. Random Forests is an ensemble learning method that learns
multiple de-correlated decision trees using bagging and random subsampling meth-
ods [25, 75]. For classification tasks, the prediction is assigned by majority voting
among the trees. Hence, the final outcome is the class that occurs more commonly
in trees.

A random forest consists of a large number of trees. As a result, users can-
not conveniently inspect the resulting model and understand its internal process.
One way of getting insights into a random forest model was proposed by Breiman
himself, in the paper in which he describes his Random Forests algorithm, based
on the computation of the feature importance [25]. The provided explanation has
a global scope since it evaluates the relevance of each feature for the model. The
approach leverages out-of-bag estimates. Hence, it is applicable for approaches ex-
ploiting bagging, as random forests [25] and boosted decision trees [75, 60]. Several
approaches extract rules from trained random forest models [42, 72, 108].

Support Vector Machines. Support Vector Machines (SVM) are a class of
discriminative classifiers that finds the hyperplane or set of hyperplanes that better
separate the data by maximizing the margin, i.e. the separation between the classes.
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SVMs can handle classes with complex non-linear decision boundaries. Support
vector classifiers often achieve high predictive performance. However, their results
are difficult to interpret.

One possible way to interpret model is through its support vectors, the subset of
observation that lies closest to the decision boundaries [78]. Hence, support vectors
provide an explanation by example. However, support vectors are a reduction of
the number of instances to consider [78]. Hence, they do not directly explain which
are the most relevant factors that determine the prediction. Another possibility is
to visualize the hyperplanes of the SVM model in the attribute spaces. However,
this solution is appropriate only if for two or three-dimensional feature space [78].

Nomograms have been applied to explain the individual decisions of Support
Vector Machines (SVM) with linear kernels [78]. Nomograms are a visualization
technique that enables visualizing the contribution of feature values. Nomograms
have also been applied for Naive Bayes [117] and Logistic regression models [103].
As a result, the behavior of these different classifiers for the same classification
problem can be compared. This represents an advantage of the use of nomograms
for explaining the model. The comparison allows choosing the most suitable model
not only based on performance but also on the model behavior. However, nomo-
grams do not properly handle redundant and highly correlated attributes. Rule
extraction techniques have also been developed for the interpretation of SVMs [61,
107, 121]. A complete review can be found in [16]. Other works focus on visual-
izing SVMs, as the projection technique proposed by Caragea et al. [27] and the
open-box visual analysis of Ma et al. [106].

The presented methods address some specific classification algorithms. The ex-
planations of how the models work are presented by means of rules, visualizations,
nomograms, global feature importance. Thus, the different explanation approach
and form of presentation hinder the comparison among the explanations of different
classification techniques in terms of model interpretability. Through model com-
parison, it is possible to analyze the different behaviors of classifiers, understand
what the different models have learned, and, possibly, choose the best model for a
specific purpose. Several model-dependent techniques are based on the extraction
of rules from the trained model. Through the comparison of rules, it is possible to
compare the behavior of different models. However, the (many) extracted rules can
be very complex. Thus, model understanding and comparison may become difficult
anyway.

Model agnostic solutions

Model agnostic or model-independent solutions derive post-hoc explanations of
the model behavior by treating the original machine model as a black box. These
techniques are therefore applicable to any classifier, without making any assumption
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on the model behavior.

Model agnostic solutions introduce flexibility in the choice of the classifiers,
representations and allow model comparison. Ribeiro et al. identify the following
advantageous properties of model agnostic solutions [140].

e Model flexibility. Model agnostic solutions allow uncoupling model perfor-
mance and their interpretability. Often, in high-risk tasks, transparent models
are preferred over obscure ones, despite the potential lower accuracy. With
model-independent solutions, users can apply the best performing classifier
for the problem under study. They can then apply post-hoc explainability
techniques to inspect and understand the model behavior.

o Explanation flexibility. For transparent models, the form of provided ex-
planations depends on the model themselves. For example, we have the tree
graphical representation and decision path for decision rules, the set or list
of rules for rule-based techniques, and the weights for linear models. Simi-
larly, for model-dependent post-hoc solutions, the explanation type depends
on the technique itself. For example, we have feature importance vector for
the random forest [25], nomograms [78, 117] or visualization of neural net-
work graph [160]. A first drawback of the constraints on the form of the
explanations is that the degree of understandability is subjective. The level
of comprehensibility varies for different users [59]. Some users may be famil-
iar with weight or probabilities, other users may prefer to inspect rules while
others inspect the importance of each feature to the prediction. Moreover,
different forms of explanation hinder the comparison of the reason behind
predictions. With model-agnostic solutions, we can apply multiple explana-
tion techniques and derive multiple forms of explanations. As a result, data
analysts and end-users can use the most suitable form of explanation for their
application and compare explanations.

* Representation flexibility. Model agnostic solutions allow decoupling the
representation of the input feature for training the model and feature for
deriving explanations. We can hence have explanations in terms of words or
super-pixels representing a portion of an image for models trained on word
embeddings and tensors with three color channels per pixels respectively [140].

o Lower switch cost. Model agnostic approaches enable decoupling the model
and the explanation representation. The applied model can be changed over
time while keeping fixed the form of explanation representation.

e Model comparison. The comparison between models is usually performed
with respect to final quality indicators of performance. Comparing models
in terms of their behavior allows a more comprehensive evaluation and to
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decide which model to trust. However, the obscure nature of classifiers or the
multitude of forms of explanations hinder the model comparison. With model-
agnostic post-hoc techniques, users can compare the behavior of multiple
models using a uniform form of explanation.

Model agnostic solutions can have a global or local scope. In the following, we
firstly outline model agnostic solutions for global explanations. We then provide
an in-depth overview of model agnostic techniques with a local scope to explain
individual predictions.

Global solutions

Global interpretability techniques aim at explaining how a model globally works.
Global explanation methods allow understanding the entire relationship between
inputs and class labels learned by a model [69].

Interpretable global surrogate models. Some solutions try to explain the
original model globally by deriving a transparent model that mimics its behavior.

The algorithm TREPAN [38] approximates a generic model f by learning a
classification tree (DT) on the predictions of f. The approach aims at optimizing
the mimicking ability of the surrogate tree while preserving its comprehensibility.
The fidelity of the tree to the original black-box model is measured by estimating
the percentage of classification agreement of the proxy model to the original one.
The comprehensibility of the model is instead managed by controlling the number
of nodes as a proxy measure of tree understandability (Section 2.1.1).

The concern with this solution is that a simple model as a decision tree is used
as surrogate global models. It can be argued that the interpretable but simple
decision tree may not be able to mimic the complexity of non-linear and complex
models as artificial neural networks. The doubts consider the faithfulness of the
DT. In the case of a completely faithful surrogate model, we may argue that the
transparent model could be applied in the first place, avoiding the drawbacks of
obscure models. Moreover, the resulting decision tree can be so complex and large
to hamper its global understanding.

The approach of learning a surrogate model on the basis of black-box predic-
tions can be generally applied by using a generic transparent model as surrogates.
However, alike concerns may arise. The global explanations could be a too severe
approximation of the original model and fail to faithfully mimic complex models.

Partial dependence plots. Partial dependence plots (PDPs) provide the global,
average prediction behavior of a variable or a (small) set of variables, by visualizing
their marginal effect on the class probability [76]. In classification tasks, PDPs
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show the dependence of a set of input features on prediction probabilities. Let f be
a generic classification model and d the number of attributes. The dependence of
a subset of feature S on predictions can be estimated by averaging in the dataset
its marginal effect as follows:

izn: flas, oY) (2.12)
=1

where n is the number of instances in dataset, § are the other d — S features in
the dataset and zg are actual feature values from the dataset (i.e. from the i-th
instance). Intuitively, the partial dependence is the average prediction probabil-
ities when the values of the features in the considered subsets are applied while
the other features remain unchanged [114]. The partial dependence functions are
plotted as a function of the values of xg. As a result, subsets of only one feature
correspond to two-dimensional representations while subsets of two features corre-
spond to three-dimensional plots. Considering the limitations of the visualization
and human perception, the realistic maximum number of features that are consid-
ered in partial dependence functions is 2 [114]. PDPs considering one feature value
at a time show how prediction globally depends on the single input. Therefore, they
have the advantage of being very intuitive. However, PDPs have the strong lim-
itation of assuming independence among features. Moreover, partial dependence
plots represent the average effect of a feature on predictions [114]. Hence, they
may obfuscate heterogeneous relationships, as positive and negative associations.
Finally, the visual inspection of the individual feature relation with predictions may
become difficult for the user when the number of features increases [114]. In this
case, the analysis requires observing multiple graphical representations. The user
may find it challenging to grasp the relations among features and how the model
globally works.

Permutation feature importance. Permutation feature importance is a gener-
alization of the feature importance firstly proposed by Breiman for Random Forest
classifiers [25]. The approach measures the change in scores (as the accuracy, f1-
score, out-of-bag estimate performance scores) when features are permuted [114]. A
feature is considered relevant if a change in the score is observed to its permutation.
Permutation feature importance belongs to the class of explanation techniques de-
fined removal-based explanations [37]. The permutation operation can in fact be
seen as a way to approximate the removal of a feature and observing how the
model behavior changes. Permutation feature importance is intuitive and provides
a global insight into the model behavior. However, being an average of the model
behavior, they do not provide the reasons behind individual predictions.

The variety of different approaches proposed for providing global explanations
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of the model behavior are affected by theoretical concerns about the ability of sim-
ple explanation models to fully mirror the original and more complex model [69].
For global surrogate solutions [38], doubts arise about their faithfulness and trust-
worthiness. Furthermore, explanations of an entire model could be too complex
to be really understood by humans. Finally, global models may not provide the
reasons behind individual decisions.

Local solutions

Local explanation approaches, also refer to as outcome explanations [67] or
prediction explanations, aim at explaining the reasons behind individual predictions.
Model-agnostic local explanations reveal why a particular decision is made by a
generic classifier rather than its whole logic.

The explanation of single predictions is gaining interest in the research commu-
nity [68, 104, 138] because of its straightforward interpretability. The explanation
of an entire classification model may become excessively complex and difficult to
understand. Moreover, concerns arise on the faithfulness of global explanation on
capturing the global behavior, especially for complex classifiers. Furthermore, in
some cases users, do not need a global comprehension of the model. As an example,
in recommendation systems, the reasons why a particular product has been sug-
gested make the model more useful and likely to be trusted [138]. In addition, it is
not always possible to provide a global explanation also for legal and contractual
reasons. Some algorithms are proprietary and companies do not fully divulge their
inner process.

Considering the advantages of local solutions, in Chapter 4, we propose LACE
[129], a novel model agnostic approach for explaining individual predictions. In the
following, we provide an in-depth review of existing local explanation approaches.
Along the lines, we outline the need for improvement and main limitations that are
addressed by our approach [129].

Local explanation approaches differ in the way the reason behind an individual
prediction is presented. Examples of prevalent form of explanations are local feature
importance vector [104, 138, 153, 154, 155], local rules [68, 80, 139], visualization
techniques [62] and counterfactual explanations [41, 68, 86, 116, 166].

Feature importance explanations. Several approaches produce local explana-
tions in form of feature importance vectors [104, 138, 153, 154, 155]. A feature
importance vector is a local explanation of the prediction of an individual instance
x in the form t(z) = t1,ty,- -+ ,t4 where d is the number of dimensions of the in-
terpretable feature space. As discussed in the section introduction, model-agnostic
solutions have the advantage of representation flexibility. Hence, these approaches
disentangle the feature representation of the model itself and the one for deriv-
ing explanations. Fach term ¢; represents the relevance of the i-th feature to the
prediction for instance x.
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Ribeiro et al. introduce LIME, a model-agnostic method for explaining individ-
ual predictions by learning an interpretable model in the locality of the prediction
to be explained [138]. The local model is a linear model that mimics locally the be-
havior of the original model. Hence, differently than global surrogate interpretable
models that aim to capture the global behavior of the model, LIME learns an in-
terpretable model only in the locality of the instance to derive the relevant feature
for the individual label assignment. The instance locality is derived by generat-
ing perturbed samples of the instance and the locality is controlled by weighting
the samples by their proximity. LIME optimizes the fidelity of the local surrogate
model to the original one while preserving its understandability. Since the local
model applied is a linear one, the number of non-zero weights of the linear model
and so of the features used are a proxy of the model complexity. A drawback of
LIME is that the locality has a major impact on the quality of explanations and
different approaches have been proposed to derive high-quality neighborhoods [81,
91]. Moreover, the approach may suffer from instability [4, 114]. Close instances
may have different explanations and multiple and unstable explanations may be
derived for the same instance due to the random sampling neighborhood gener-
ation process [114]. Differently, we propose a novel approach that exploits the
actual neighborhood of the instance to train a rule-based surrogate model. The
local model captures the relevant association of attribute values with the class la-
bel. Our method leverages an automatic approach to select the appropriate locality
scope to obtain high-quality explanations.

Several works, referred to as removal-based explanations [37], study how a pre-
diction changes if parts of the input components are omitted [94, 104, 105, 141,
153, 154, 155]. Removal-based explanation approaches generally differ on (i) how
the feature removal is approximated, (ii) the target model behavior of interest, and
(iii) on how the contribution of the feature omission is summarized in the feature
importance vector. An in-depth overview of removal-based explanations can be
found in [37].

Lemaire et al. [94] and Robnik-Sikonja and Kononenko [141] analyze the rel-
evance of each attribute value for the prediction in the case of tabular data by
omitting one attribute value at a time. Strumbelj et al. improve this approach by
proposing IME, an individual explanation approach that considers also the omission
of more attribute values at a time [155]. In this way, they also consider attribute
interactions. The contributions of subsets of attribute values are aggregated using
as summarization function the Shapley value [150]. The Shapley value is a concept
from coalition game theory to assign a score to the players who cooperate to achieve
a certain total score [150]. In the context of prediction explanations, the attribute
values of the instance to explain are the players and the prediction probability is
the score. However, the exact estimation requires the computation of the omission
effect for the power set of the attributes. Hence, the method is affected by an
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exponential time complexity. A solution for overcoming this problem is based on
a sampling-based approximation [153]. The sampling is quasi-random and adap-
tive and it is based on a greedy approach, considering data characteristics, as the
feature variance.

SHAP is a game-theoretic approach that decomposes individual predictions
using the notion of Shapley value [104]. The authors propose two practical ap-
proximations for estimating Shapley values, KernelSHAP and TreeSHAP. Ker-
nelSHAP [104] is an approximation approach based on local surrogate models.
The estimation is based on weighted linear regression models. Despite the approx-
imation, KernelSHAP can be slow [114]. A faster but model-specific alternative is
TreeSHAP [105]. It is an efficient estimation approach designed for tree-based mod-
els as random forest and gradient boosted trees. However, the feature attribution
scores may be unintuitive due to its relying on conditional expected prediction [114]

The mentioned solutions [94, 104, 105, 141, 153, 154, 155] summarize the infor-
mation on attribute interaction in one single contribution for each attribute value.
Hence, the information on interaction relevance is lost. Our approach for indi-
vidual explanations LACE [129], illustrated in Chapter 4, separately quantifies
feature importance both for individual attribute values and relevant subset of at-
tribute values. Our method overcomes the problem of exponential time complexity
by exploiting local properties of the original model to be explained. A rule-based
local surrogate model is trained on the locality of the prediction to the relevant
associations of attribute values and their relevance is estimated via omission.

Rule-based explanations. Several works extract explanations in form of rules
[68, 80, 139]. Rule explanations are a set of rules in the form {A4; = a;, ..., Ay = ax}
— ¢ where each term A; = a; is an attribute-value pair and c is the class. They
capture the relevant association of multiple attribute values with the class label.
Anchor [139] and LORE [68] approaches both exploit the concept of locality for
obtaining local explanations. Anchor derives rules that “anchor” the prediction
locally by solving a multi-armed bandit problem [139]. An anchor rule indicates
that changes in the other feature not belonging to the rule do not alter the predic-
tion [139]. LORE derives rules by learning a decision tree as a local surrogate model.
For the two approaches, the locality is studied by generating perturbed instances
randomly in the neighborhood of the instance to be explained [139] or through a
genetic algorithm [68]. The returned local rules provide only a qualitative insight
into the reason for a prediction. In our work, described in Chapter 4, we focus our
work on detecting the different roles played both (i) separately by single attributes
and (ii) jointly by correlated attributes derived from local rules and comparing
their relevance by means of appropriate metrics. Our approach also exploits rules
to provide local prediction interpretation, but it extends with respect to previous
work by considering the role of attribute correlation in the explanation. Hence,
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our explanations are capable to capture and quantify the interaction effect when
multiple attributes influence the individual prediction. Furthermore, we capture
the locality of a prediction by means of its actual neighborhood instead of gener-
ating perturbed instances randomly [138, 139] or through a genetic algorithm [68].
Hence, only existing relationships among attribute values are studied.

Visualization-based explanations. Visualization techniques provide insight
into the model prediction behavior by means of graphical representation [69]. In-
dividual Conditional Expectation (ICE) plots are a novel adaptation of partial
dependence plots (PDPs) for the local inspection of the model inner working [62].
While PDPs capture the global behavior by averaging the effect of each feature
on prediction, ICE depicts how the model behaves for a single observation [62].
An ICE visualization shows the dependence of a feature on the prediction for each
individual instance separately. Hence, we have one line per instance that indicates
how the prediction changes as the value of the feature changes. Despite their in-
tuitiveness, ICE, as PDPs, require users to inspect multiple visualizations, one per
feature. Moreover, the visualization of individual dependencies in the same plot
may hinder the understanding of the reason behind individual predictions, help-
ing more in providing an indication of the average partial relationship. Our work
LACE, described in Chapter 4, provides the relevance of each input feature and
relevant subsets of input features to the prediction of an individual instance using
a bar plot representation. The bar plot visualization is very simple and intuitive,
helping users in focusing on the relevant relation of input features and the prediction
outcome.

Example-based explanations. Explanation by examples consists in providing
a data instance or a set of data instances to explain the model behavior [114].
Example-based explanations can be provided in multiple forms as prototypes, coun-
terfactual explanations, and adversarial examples. Prototypes are representative
instances of the individual prediction to explain or representative data instances of
all the data for a global understanding of the model behavior [114]. Explanation by
data examples reflect how we as human think and justify our actions by examples
and analogy [98]. However, the model behavior from examples may be difficult
to interpret in the case of tabular data, especially when the number of features
increases [114]. Several approaches derive counterfactuals to provide insight into
the model behavior [41, 68, 86, 116, 166]. Counterfactual explanations of an indi-
vidual prediction describe the slightest change to the feature values of the instance
that changes the prediction outcome [114]. Counterfactual instances represent the
observations closed to the instance of interest that have a different outcome [164].
An overview of approaches for counterfactual explanations is presented in [164].
The notion of counterfactual has been recently explored also for graph classifiers
to produce counterfactual graphs which are structurally similar to the explained
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graphs but are assigned to a different class [1]. An interesting case of counterfactual
examples is represented by adversarial examples. Adversarial examples are coun-
terfactual instances where the small changes are applied to fool machine learning
models rather than interpret them [114].

Counterfactual explanations are intuitive since they indicate changes that change
the prediction. However, they do not directly provide the reasons behind the pre-
diction but the reason that enables it to change it. Moreover, for a given instance,
we may have multiple counterfactual explanations. Therefore, their interpretation
can be challenging for users.

2.2 Understanding the model behavior in sub-
groups

The outlined approaches characterize the behavior of the model at the individual
or at the global level. A relevant step in the explanation of the outcome of machine
learning algorithms is the characterization of the model behavior in data subgroups.
Subgroup analysis of classification models provides an understanding of the model
at the data subset granularity. The model may show a different, and potentially
anomalous, behavior across data subgroups. The identification of peculiar behaviors
of data subgroups finds important applications in the KDD pipeline, such as model
validation and testing [34], error analysis [85, 169] and the evaluation of model
fairness [26]. In particular, societal bias [18] is becoming a growing concern and
researchers are increasingly working on measuring and ensuring fairness in machine
learning.

In Chapters 6 and 7, we propose DIVEXPLORER [126, 124], a novel model-
agnostic approach to characterize the behavior of classification models in data sub-
groups. Specifically, we aim to identify and describe the data subsets that show a
peculiar and different behavior than the overall dataset.

In the following, we outline the related work to DIVEXPLORER [126] for the
identification of peculiar behaviors in data subgroups. Existing techniques for an-
alyzing data subgroups include both supervised and unsupervised techniques. The
former refers to user-defined subgroups and human-in-the-loop identification ap-
proaches. The latter are a class of approaches for the automatic identification of
the subgroups of interest. Our approach belongs to this latter category.

2.2.1 Supervised techniques for subgroup analysis

Data grouping solutions often rely on domain experts to identify the relevant
attributes or subgroups of interest.
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Classification performance. Several approaches audit the behavior of classifi-
cation models on user-defined data subsets evaluating whether differences in classi-
fication performance occur [5, 19, 85]. In the TensorFlow Model Analysis (TFMA)
library [5, 19], the users specify the input features on which to partition the data
used for classification performance evaluation. The library provides an overview
of the statistics and classification performance metrics associated with the user-
specified slices of data. MLCube [85] is an interactive and explorative visualization
technique that estimates aggregate statistics and performance metrics over sub-
groups defined by users. The slices can be identified using multiple conditions on
features and further interactively inspected using drill-down operations.

Fairness. Many efforts have been devoted to detecting and mitigating bias in
classification tasks. For model fairness, the subgroup diagnosis concentrates on
evaluating if a different treatment or performance occur on groups determined by
some sensitive or protected attributes (e.g., gender, ethnicity, sexual orientation,
degree of disability) [21, 146]. Several works [50, 57, 87, 115] consider fairness for
an intersection of multiple sensitive attributes, known as intersectional fairness.

Recently, researchers focused their attention on fairness in other tasks beyond
classification as in rankings [174]. Rankings are widely adopted for multiple appli-
cations as job recruiting, school admissions, potential friend or partner searches.
Fairness concerns arise since ranking systems often score and rank individuals. It
is hence urgent to detect if different behaviors of a ranking or scoring system oc-
cur across data subgroups. Different works propose measures and mechanisms to
audit ranking outputs and mitigate bias over protected groups [29, 170, 173, 175].
Protected groups can be pre-defined or defined over a single or an intersection of
sensitive attributes. When the number of sensitive attributes increases the fairness
evaluation of all subgroups defined over protected attributes may be hard since
their number is exponential. To address this issue, a recent work proposes an auto-
matic approach to partition into groups over the sensitive attributes to obtain the
most unfair partitioning with respect to the scoring function [52].

The analysis of group fairness generally assumes that the sensitive attributes
that define protected groups are known or specified a priori. However, the enumera-
tion of all the attributes that characterize a potentially biased group can be incom-
plete and not exhaustive due to proxy phenomena. Other attributes, not directly
evident, may be proxies of sensitive attributes [18], as the residential neighborhood
can be a proxy attribute for the race.

The identification of problematic attributes might not be straightforward. Su-
pervised approaches largely depend on the domain expertise of users and their
knowledge of the data and the classification problem. Requiring human interven-
tion, the process of subgroup selection can be time-consuming. Moreover, it may
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prevent identifying previously unknown subgroups of interest or unexpected behav-
iors.

2.2.2 Unsupervised techniques for subgroup analysis

Unsupervised techniques automatically identify interesting data subgroups with
peculiar model behavior. Recently, several approaches have been proposed to di-
rectly detect subsets of data showing different classification performance [26, 33,
145, 169]. These works are close to our approach DIVEXPLORER.

Slice Finder. Slice Finder [33, 34] is an interactive framework that automatically
identifies large data slices in which the model performs poorly, defined as “problem-
atic” slices. The approach is model agnostic and can be used to detect problematic
data slices for a generic classification model. The behavior of the classifier on
data slices is compared with their counterparts (i.e. the reciprocals). Slice Finder
identifies top-k slices of interest using a top-down lattice search in a breadth-first
traversal. The lattice search is controlled by statistical techniques that measure the
significance and magnitude of performance discrepancy on subgroups. To identify
large and interpretable subgroups, the breadth-first traversal does not proceed if
the considered data group is already statistically significant and the model performs
sufficiently poorly.

However, the metrics commonly used for assessing model performance on sub-
groups as error rate, accuracy, false positive, and negative rates are typically non-
monotone. As a result, the grade of discrepancy of a group provides no indication
on the behavior of its super/sub-groups. In this case, subgroups may have a higher
or lower discrepancy given by phenomena of compensation effects can be observed.

We propose a more thorough exploration of the lattice, considering all data
slices, identified by itemsets having support greater than a given threshold. Fre-
quency constraints allow us to identify data subsets (i.e., slices) large enough to
be of interest. To improve interpretability, concepts of coalition game theory are
exploited to characterize subgroup divergence.

SliceLine. SliceLine [145] identifies the top k data slices with adequate repre-
sentation for which a model performs significantly worse than the entire dataset.
As our work DIVEXPLORER, the approach leverages the monotonicity properties
of the subgroups. Moreover, the search of data slices is optimized for a specific
error metric. As a result, it also considers monotonicity properties of errors and
resulting scores of problematicness for effective pruning. The approach leverages a
linear-algebra-based enumeration algorithm, which, together with pruning, allows
for parallelization and scalability. In our work, we aim at providing an in-depth
understanding of the model behavior at the subgroup level. First, we provide the
divergence scores for all the subgroups with adequate representation. Hence, we are
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able to identify not only the most divergent subgroups with worse performance (i.e.
the top k) but also the subgroups in which the model behaves equal or better than
the average. We then use the notion of Shapley value to understand the attribute
values characterizing a subgroup that mostly contribute to the peculiar subgroup
behavior of the model.

FairVIS. Cabrera et al. in [26] propose FairVIS to audit the fairness of ma-
chine learning models in data subgroups. FairVIS [26] is a visual analytics system
to discover intersectional bias in classifiers using a model-agnostic approach. The
subgroups are automatically generated by applying clustering techniques. To ob-
tain an interpretable representation of the subgroups, FairVIS uses feature entropy
to derive the dominant feature of each identified group having significant statistical
similarity. The performance metrics are evaluated on the clusters and users can
interactively perform drill-down operations on specific subgroups. Differently from
FairVIS, DIVEXPLORER identify data subgroups directly by slicing attribute do-
mains. As a result, the identified subgroups are already interpretable and no addi-
tional post-hoc techniques to derive interpretable representation as feature entropy
are needed. Moreover, the notion of Shapley value and interactive visualizations
allow us to further improve the transparency of slices characterized by multiple
attributes.

Errudite. Data grouping is exploited in Errudite [169] for NLP error analysis to
improve and understand NLP models. A domain-specific language is proposed to
systematically group instances. Moreover, Errudite enables systematic counterfac-
tual analysis to understand why the model fails for certain data subgroups. Despite
the system suggestions and guidance to formulate group queries, data grouping
highly depends on users. Differently from [169], DIVEXPLORER deal with struc-
tured data and we automatically slice the dataset with respect to the actual at-
tribute domains.

There are other lines of work related to the problem of identifying interest-
ing behavior of classification models in data subgroups. These approaches, rather
than characterizing the model behavior in subgroups, identify and characterized
data subgroups themselves. Subgroup identification techniques can be consid-
ered as building blocks of approaches for understanding the model behavior in
subgroups. Several of the introduced approaches so far and DIVEXPLORER itself
leverage data exploration techniques. For example, FairVIS [26] exploits clustering
analysis, SliceFinder [34] uses lattice search while our approach integrated frequent
pattern mining algorithms.

Exploratory data analysis. Clustering analysis is a class of unsupervised tech-
niques that groups data instances so that instances in a group are similar and
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different from the ones in other groups [156]. Multiple algorithms have been pro-
posed to derived data clusters, such as centroid models as K-means [100], density
models as DBSCAN [53] and OPTICS [9], unsupervised neural networks, and con-
nectivity models as hierarchical clustering. The target of clustering is to group
similar data. Differently, we aim to characterize the behavior of classification mod-
els, highlighting peculiar behavior as classification performance or labeled class
distributions. Moreover, clustering algorithms generally do not provide directly
the reasons behind the grouping, as the relevant features of each clustered data or
each cluster. Therefore, post-hoc techniques to characterize the clusters should be
applied to interpret the results. Clustering techniques can be a step in the pipeline
to understand the model behavior in subgroups. As mentioned, FairVIS [26] firstly
applies clustering techniques as K-means, DBSCAN, and OPTICS to group data
and exploit feature entropy as a post-hoc technique to derive the most dominant
feature of the clusters. In [33], clustering is considered as an alternative solution to
the lattice search to identify problematic subgroups.

Frequent pattern mining (FPM) is a data exploration technique that finds pat-
terns that occur frequently in a dataset. An overview of FPM techniques is re-
ported in Section 3.2. FPM algorithms as FP-growth [70], Apriori [3] prune the
search space over the lattice of attribute values using the anti-monotonicity prop-
erty of frequency. The data slices identified are already interpretable since FPM
techniques slice in the attribute domain. We leverage these techniques in our ap-
proach DIVEXPLORER (Chapters 6 and 7) to derive frequent subgroups where a
classification model shows peculiar behaviors different than the overall one.

Online Analytical Processing (OLAP) tools allow users to select, extract and
inspect multidimensional data [63]. Slicing is a key OLAP operation and enables
users to slice the data by specific dimensions. Techniques as Smart Drilldown [84]
aim to automatically provide the most interesting data slices. Smart Drilldown is
a novel operator which extends the drill-down operator and it derives the top-k
most interesting slices in form of rules. While in OLAP systems, the targets of
slicing are generally the count or sum aggregates of numerical measures, we focus
on characterizing the model behavior.

Local and global explanations. As reviewed in Section 2.1.2 techniques as
LACE [129] (described in Chapter 4), LIME [138] and SHAP [104] allows to un-
derstand the reasons behind individual model predictions [67]. Differently, expla-
nations at the subgroup scope focus on studying the disparate statistical behavior
of a classifier on data subgroups. Multiple individual explanations could be poten-
tially aggregated to derive understanding at the subgroup level. However, it would
require the intervention of users to group explanation in a supervised scenario or
additional post-hoc data grouping as clustering in an unsupervised one. Rather
than understanding individual predictions, DIVEXPLORER provides an analysis of
the entire dataset by characterizing the subgroups in which a different behavior
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than overall is observed.

As the works [153, 155] and SHAP [104], DIVEXPLORER exploits the concept
of Shapley value from coalition game theory. In SHAP, the Shapley value is used
to compute the contribution of each feature value to the prediction for a single
instance. In our work, the notion of Shapley value is adopted to characterize the
contribution of each attribute value to the subgroup different behavior, hence char-
acterizing a subgroup rather than a specific instance. Furthermore, we generalize
the notion of Shapley value to estimate the global contribution to divergent behav-
ior of each attribute value over the entire dataset.

Forms of global explanations as rules and decision tree can provide insights
into the behavior of the classifier for subgroups of data. Individual rules and paths
indicate the reason behind the predictions of the instances they represent. However,
these form of explanations is limited to transparent rule and tree-based models as
discussed in Section 2.1.1. On the other hand, as outlined in Section in 2.1.2, model
agnostic solutions that extract explanations in form of rules or trees may fail to
fully mimic the global behavior of the model. In Chapter 6, we propose a model
agnostic solution to directly study the different behavior of a generic classification
model in data subgroups.

Data coverage. The work of Asudeh et al. [14] studies the lack of adequate
coverage in a dataset. Inadequate representation may cause errors in predictions
and undesirable outcomes such as algorithmic racism. Uncovered patterns are in-
troduced to identify attribute space regions not adequately covered by the data.
Data subgroups, as in our work DIVEXPLORER, are identified by attribute value
combinations. However, [14] addresses a different problem, because the target at-
tributes and classification outcome are not considered in the coverage problem,
while we explicitly consider classification performance and identify subgroups in
which a classification model performs differently with respect to the overall popu-
lation. Furthermore, differently from [14] which considers underrepresented groups,
we consider subgroups with adequate representation selected by a frequency thresh-
old.
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Chapter 3

Background

This chapter introduces preliminary definitions and concepts that are used
throughout the thesis. We firstly characterize the data structure under analysis
and recall key definitions of machine learning (Section 3.1). Then, we review basic
concepts of frequent pattern mining. We provide the definitions of pattern and its
related terminologies (Section 3.2). We illustrate the key features of algorithms for
frequent pattern extraction. Finally, we present an overview of associative classifiers
(Section 3.3).

3.1 Preliminary definitions

We firstly provide the definition of basic concepts exploited in the thesis.

3.1.1 Dataset and Itemsets

We consider a dataset D, whose schema is given by d distinct attributes and
a class label. Let A be the set of attributes over which D is defined, with A={
Ay, Ag, ..., Ay } and |A| = d. The domain of each attribute A; € A, defined as Dy,
can be discrete or continuous. In this thesis, we will focus on classification problems
for structured data with a categorical class label. An instance x € D is a set of
attribute-value pairs such data z(A;) € D, for each A; € A. For each instance in
the training set, the class label y is known.

A classifier is a relation f,(x) that maps an instance x to a class label y. Given
a set of n labeled training instances of the form {(z1,v1), ..., (xn, yn)}, a classifier
algorithm learn a function f. : X — Y, where X is the attribute space with
schema A and Y is the target label space. Many classifiers can be represented as a
scoring function f : X — R. Given an instance, they predict a probability score or
confidence score associated with each class label. The function f. is then derived
from f as the y value that maximizes f: f.(r) = argmax, f(x,y), where the argmax
operator returns the class that maximizes f(x,y).
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Definition 3.1.1. Item An item « is an attribute equality A; = ¢ for A; € A and
cE DAi'

We say that an instance z is covered by the item « : A; = ¢, referred as = | a, if
x(A;) = c¢. Thus, covering is the equivalent of the logical notion of satisfaction. We
denote with attr(«) the attribute to which an item refers, so that attr(A4; = ¢) = A;.

Definition 3.1.2. Itemset (pattern) An itemset is a set of items I = {a1, ..., ax}
that refer each to a distinct attribute, i.e., such that attr(c;) # attr(e;) for all
1 <i<j<k Anitemset I ={ay,...,ax} can be represented as the conjunction
aq N -+ Ay of its items.

In the thesis, we will use the terms itemset and pattern interchangeably.

An instance x € D is covered by an itemset I, written x = I, if = = «; for
1 <i<k If x| 1, wewill say that the instance = satisfies (or matches) I.

The length of an itemset is the number of items contained in it. The length can
range between 0, for the empty itemset, and d, the number of attributes. We refer
to [-itemsets as the itemset with length {. We denote by attr(I) = U,e; attr(a) the
set of attributes included in an itemset. For a subset of attributes B C A, we write
Ip = {I | attr(I) = B} for the itemsets over attributes B. In particular, the set
T4 consists of the itemsets that contain all attributes of our dataset.

The support set D(I) = {x € D | x |= I} of an itemset I consists of the
instances that satisfy I. The support count refers to the number of instances that

contains a particular itemset. The support count of an itemset [ is the cardinality
of D(I), given by sup_count(I) =| D(I) |.

Definition 3.1.3. Support The support of I is the fraction of instance in the

dataset that satisfies I and it is given by sup(l) = “Tl(?l\)l'
(

Definition 3.1.4. Frequent pattern. An itemset (or pattern) I is defined fre-
quent if sup(I) is greater a given threshold s.

The support threshold s is also referred to as minimum support.

The algorithms for extracting frequent patterns were originally designed for
transactional design. As a consequence, patterns need to be defined over attributes
with a discrete and finite domain. Where attributes are continuous, we firstly
apply a discretization function discr that discretizes them. We hence obtain a set
of discretized feature A? for each A; € A, with A¢ = discr(4;) if A; is continuous,
A¢ = A; otherwise. Hence, each attribute A¢ € A? can take a discrete, finite set
D 44 of values, and we let m 44 = D gal.

Definition 3.1.5. Association rules. An association rule is a implication in the
form A — B , where A and B are disjoint itemsets, with AN B = @& [156]. A is
referred to as rule body or rule antecedent while B as rule head or rule consequent.
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To evaluate the quality of an association rule, the support and confidence metrics
are commonly exploited. Similarly to Definition 3.1.3, the support of a rule s(A —
B) is the fraction of instances in D that satisfies both A and B, with s(A — B) =
s(AUB). Intuitively, the support of a rule determines how often a rule is applicable
to a given data set. The confidence of a rule conf is the fraction of instances that
satisfies A U B over the number of tuples that A, with conf = S(:z:f ) Intuitively,
the confidence of a rule determines how frequently items in B appear in instances
that contain A.

3.2 Algorithms for frequent patterns mining

Frequent pattern mining is a data exploration technique that finds relation-
ships that occur frequently among items in a dataset by extracting frequent item-
sets [156, 157]. Frequent patterns are combinations of attribute values that have a
frequency of co-occurrence to be considered significant. These patterns may hence
represent interesting relations among instances in the dataset. As presented in
Definition 3.1.4, the significance of the frequency of the itemset is determined with
respect to the minimum support frequency threshold s. Several algorithms for
mining frequent items have been proposed [3, 70, 172]. In the following, we will
review two well-known and broadly applied mining techniques, the Apriori [3] and
FP-growth algorithms [70].

Apriori algorithm. Apriori is a frequent pattern mining algorithm that exploits
the support threshold to limit the search space [3]. The approach is based on the
Apriori principle that states the following: ‘if an itemset is frequent, then all of
its subsets must also be frequent’ [3]. It holds due to the antimonotone property
of the support measure. Given two arbitrary itemsets A and B, if A C B then
sup(A) > sup(B).

Apriori consists in a bottom-up and level-wise search, from frequent itemsets of
only one item to the longest (i.e. highest number of items) of frequent itemsets.
The level-wise search consists of two main operations, the candidate generation and
the candidate pruning [3]. In the candidate generation, the k-frequent itemsets are
used to generate candidate itemsets of length k41. The process starts with itemset
candidates of length 1. In the candidate pruning phase, candidate k-+1-itemsets
are pruned according to the Apriori principle. All candidate itemsets of length k41
which are a superset of an infrequent k-itemset are pruned. Then, the support of
the pruned candidate k+1-itemsets is computed and candidates below the support
threshold are pruned.

One of the major drawbacks of the Apriori approach is that multiple datasets
scans are performed, one for each iteration. In particular, if [ is the length of the
longest frequent pattern, the total number of scans is [4+1. Moreover, the candidate
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generation phase generates a large number of candidates and it may be especially
critical for 2-itemset candidates.

FP-growth algorithm. FP-growth algorithm performs a depth-first search, scan-
ning the dataset only twice and without candidate generation [70]. The key concept
of FP-growth is its encoding of the dataset in a compressed representation called
Frequent Pattern tree, FP-tree. Frequent itemsets are directly extracted from FP-
trees. The dataset is scanned only twice. The first scan computes the support
count of each item. Frequent items are then sorted in descending order. During the
second scan, the FPtree is constructed. For each data instance x in the dataset,
the items in x are sorted according to the support. The items are then inserted in
the FP-tree using an existing path if the prefix is shared or creating a new path if
not. The extraction of frequent patterns is performed by recursively visit the FP-
tree in a bottom-up fashion applying a divide-and-conquer approach. FP-growth
algorithm is generally faster than Apriori algorithm thanks to its recursive search
on the compact representation of the FP-tree [70].

3.3 Association Analysis

In this section, we first outline the concept of association rule mining. We then
illustrate the definition of associative classifiers. Finally, we present an overview of
relevant algorithms for deriving associative classification models.

3.3.1 Association rule mining

Association rule mining is one of the most popular and applied techniques of
frequent pattern mining. It is an exploratory approach that models correlations in
forms of association rules defined as Definition 3.1.5. Association rule mining tech-
niques are widely adopted in multiple fields such as manufacturing [2, 32, 39], food
industry [10, 158], and energy consumption [44] also for their intrinsic transparency.

The problem of association rule mining consists in the extraction of all the
association rules having rule support greater than the minimum support threshold
s and confidence greater than a minimum confidence min_conf threshold [156].
The thresholds allow controlling the statistical relevance of the extracted rules. The
process of association rule mining is often decomposed in two steps [156].

The first step is the computation of frequent itemsets. This is also the step most
computationally expensive and the frequent pattern mining techniques outlined in
Section 3.2 are applied. The second step is the generation of association rules from
frequent itemsets. Let be [ a frequent itemset. The rule generation step consist
in firstly deriving all the disjoint itemsets A and B from [ such that I = AU B.
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Then, the rule A — B is generated if the confidence conf(A — B) is greater or
equal the confidence threshold min_ conf.

3.3.2 Associative classifiers

Associative classifiers are classifiers that learn association rules for classification
purposes. In this context, association rules are denoted as class association rules.

Definition 3.3.1. Class Association Rules (CARs). A class association rule
(CAR) is an association rule A — B where B is a class label. CARs highlight the
subsets of attribute values that are associated with the class label.

As discussed in Section 2.1.1, one of the main advantages of associative classifiers
is their interpretability. CARs are easy to understand and they allow to have both
a global and prediction-based understanding of the model behavior. The overall
extracted CARs represent the global logic of the model. By inspecting instead the
rule or rules determining the prediction, the user can inspect the reason behind the
class labeling for an individual instance.

Several algorithms have been propose to extract accurate associative classifiers
as CBA [99], CPAR [171], CMAR [95], iCAEP [178], L* [17]. The process of
deriving high-quality CARs can be divided into three main steps [157]: (i) frequent
pattern extraction, (ii) generation of CARs, and (iii) pruning the CARs.

The first step consists in the extraction of frequent patterns similarly to frequent
pattern mining and association rule mining as discussed in Section 3.2. Note that
differently than association rule mining, the class label must be part of the itemsets
under analysis since, in CARs, the label is the consequent of the rule. During
the second step, CARs are generated from the frequent patterns based on quality
thresholds as the min_ conf confidence threshold. Finally, the generated CARs are
pruned to obtain a selection of high-quality rules. The number of rules generated
can be large, with drawbacks in terms of quality of results, size, and efficiency.
Rules are pruned to remove redundancy and misleading rules that may introduce
incorrect classifications [157]. Rules are also ranked, generally preferring rules with
large support and confidence values.

Existing techniques strongly differ on the applied pruning approaches. Some
methods, as CMAR [95], prune rules using the chi-square testing, evaluating cor-
relations among the rule body and the class label. CBA [99] uses pessimistic error
rate. Both approaches then consider database coverage for pruning, firstly intro-
duced by the CBA approach. The generated rules are tested against the training
data. If a training data instance is covered by at least A rules, the instance is re-
moved from the training data. The rules that cover at least a training instance are
considered. CBA [99] and CMAR [95] differ on the coverage threshold. For CBA
A =1 while for CMAR A > 1 (usually A =1).
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The approach L? introduced the concept of lazy pruning to select high-quality
rules [17]. L? will be exploited in Chapter 4 to derive a local surrogate interpretable
model. Hence, in the following, we will briefly outline the L? main concepts.

L3 classifier. Live and Let Live, L3, is an associative classifier that relies on a
compact representation, similar to FP-growth, and on a lazy pruning approach [17].
The intuition of pruning is to avoid disregarding useful rules. Only rules that may
be ‘harmful’, i.e. that may introduce classification errors, are removed. In the rule
selection process, CARs are categorized into three sets: used, spare and harmful
rules. Harmful rules are rules that wrongly classify the training dataset. Intuitively,
those rules do not increase classification accuracy.

Used rules or level 1 rules are CARs that correctly classify at least one instance
of the training set. These rules are considered firstly in the classification process
for assigning the class label. Spare rules or level 2 rules are instead rules that do
not cover any instance in the training set but are also not harmful. Hence, they
might be useful in classifying data. Level 2 rules are considered only if no level 1
rule matches the instance to be classified. L? differs from CBA [99] and CMAR [95]
also on how the pruned rules are ranked. In the case of rules with the same support
and confidence, the more specific rule, with greater length, is preferred to the more
general one. The intuition is that a specific rule covering the same training points
(i.e. same support) can be considered more specialistic and accurate. Hence, the
learned classification model consists of two sets of ranked rules, the level 1 and
level 2 rules [17]. Being an associative classifier, classification results can be easily
interpreted (i) globally by inspecting the sets of rules and (ii) locally by analyzing
the rules that match the prediction of a particular instance.
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Chapter 4

LACE: Explaining Black Box
Models by means of Local Rules

This chapter illustrates LACE (Local Agnostic attribute Contribution Expla-
nation), a novel method to explain classifier predictions on single instances [129].
This methodology is model-agnostic. Hence, it is applicable to any classification
method without making any assumption on its internal logic. The explanation
highlights the subset of relevant features and feature values that play a role in the
prediction provided by a specific classifier for a particular instance. The explanation
is based on the knowledge of the local behavior of the model in the neighborhood
of the instance, captured by an interpretable local model. The approach features
an automatic technique to select the appropriate locality scope.

The chapter extends the work presented in [129] and is organized as follows.
Section 4.1 describes the proposed explanation method. Section 4.2 proposes an
estimation of the approximation introduced by the local model and illustrates the
heuristic algorithm for the automatic selection of the locality scope. Section 4.3
introduces the experimental setting and the explanation validation measures. Sec-
tion 4.4 presents experimental results and compares the explanations provided by
our method with the prediction explanations given by different existing approaches.
Finally, Section 4.5 draws the conclusions.

4.1 LACE explanation method

LACE is a model-agnostic explanation method to explain classifier predictions
of individual instances for structured data [123, 128, 129]. LACE explanations
provide the relevance of each attribute value and significant sets of attribute values
of a particular instance for the prediction of its class label.

Given the particular prediction that we want to explain, LACE omits one
or more attribute values at a time and measures how the prediction probability
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changes. A change in the probability implies that the omitted attributes are signif-
icant for the prediction. In our work, we estimate the attribute influence in terms
of prediction difference, by computing the difference of prediction probabilities with
respect to a particular target class.

With respect to previous approaches [104, 138, 153, 154, 155], we are interested
in providing explanations highlighting not only how each single attribute value is
significant for the prediction, but also its interaction with the others. An attribute
value can determine the prediction only if it is in conjunction with others. In this
case, we need to observe how the prediction changes for sets of attribute values.
LACE directly estimates which combinations of attributes are relevant for the par-
ticular prediction and computes the prediction difference only for the relevant ones.
Without this key characteristic, computing the most relevant attribute configura-
tion would require estimating the prediction difference for all the possible subsets
of attribute values as discussed in Section 2.1.2. This step has an exponential time
complexity, because it requires the power set computation, making it unfeasible in
real applications. In our work, the relevant attribute subsets for the prediction are
extracted a priori by a local interpretable model, trained in the neighborhood of
the prediction to be explained. The local model provide also a qualitative under-
standing of the reason behind the prediction in form of patterns.
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Figure 4.1: The main step of the LACE explanation method.

Figure 4.1 outlines LACE main steps. Let f be a generic trained classification
model and z the instance whose prediction made by model f we want to explain.
Firstly, LACE captures the locality of z by means of its K neighbors in the training
set. The selected instances are labeled by model f and exploited as training data
for learning a local model. In this way, the local model studies what model f has
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4.1 — LACE explanation method

learned in the locality of z. The local model provides a set of local rules from which
the relevant patterns, i.e. subsets of feature values are extracted. They represent
the subsets of attribute values that jointly determine the prediction for instance .
Next, the contribution to the prediction is estimated for each (i) attribute value and
(ii) relevant patterns, in terms of prediction difference. The scope of the studied
locality impacts the local rules and, thus, on the explanation itself. Hence, we
propose an instance-based automatic approach to detect the appropriate number of
neighbors K, which iterates until a good approximation of the prediction difference
is reached. Finally, the prediction difference is visualized by means of a bar plot
representation. In the following the steps of LACE approach are presented in
detail.

4.1.1 Capturing the Locality by means of Local Rules.

The first step of LACE is the investigation of the locality of the individual
prediction for the instance z to be explained made by classifier f. The goal is to
capture the local behavior of the original model f in the locality of x. The intuition,
firstly proposed by Ribeiro et al. in LIME [138], is to approximate the model f
with an interpretable model in the locality of the prediction. While a simpler and
interpretable model may fail to approximate the model globally, the local model
can faithfully mimic the behavior in the locality of the prediction and hence derive
locally faithful explanations.

We train a local interpretable model able to extract local rules. Local rules
provide a qualitative understanding of the model behavior. From local rules, we
derive the patterns as the subsets of attribute values that are relevant for the
prediction. The relevant subsets are the only sets of attribute values considered for
the prediction difference estimation.

Firstly, we derive the locality as data samples in the neighborhood of the in-
stance. These samples are used as training dataset to fit an interpretable model to
mimic the local behavior of the original model f. In the following, these two stages
are illustrated.

Deriving the locality of a prediction

The locality of the instance z is the a set of instances N(z) which are similar
and close to z. It is used by the local model to learn the local decision boundary. In
our work, the locality of x is captured by means of the K instances in the training
set that are nearest to the instance x that we want to explain.

More specifically, let D be our training set and p a distance measure. The
neighborhood of z is defined as N(z) C D such that |[N(z)| = K and Vz € D\ N(x),
plx,z) > nax, p(x,y). Each point not in N(z) is at least as far away from z as the

furthest point in N(x). The K neighbors are then labeled by the original model f.
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We refer to the labels of N(z) as Yy,. We obtain a local training dataset (N(z),
Yy,) that represent the local behavior of f in x.

Existing approaches study the locality by generating perturbed instances ran-
domly in the locality of the instance [138, 139], through a genetic model [68] or
based on local intrinsic dimensionality of the instance [81]. However, in this way
also non-existing configurations of attribute values may be generated and then stud-
ied by the local model. Considering the neighborhood of instance z in the dataset
instead of generated perturbations enables training a local model only on existing
attribute value configurations. We remark that the local model is used specifically
to extract the set of attribute values that are relevant for the individual predic-
tion in form of local rules. Hence, in our context, it is particularly relevant that
the instances N(x) to train the local classifier are indeed possible and observed
configurations of feature values. While the access to the actual neighborhood is
relevant to capture real associations, in some scenarios we may not have access to
the data but only the instance to explain itself. In these situations, we have to
opt for generated local samples via data perturbations or generation techniques to
retrieve the neighbors and produce explanation with LACE.

The choice of parameter K for capturing the neighborhood determines the lo-
cality scope. We propose a heuristic instance-based algorithm for the automatic
selection of K. To tune K value, we consider the changes it induces on the local
model. A detailed description of the algorithm is presented in Section 4.2.2.

Deriving Local Rules

The K labeled neighbors (N(z), Yy,) of instance z are used for training the
local model. The local model provides the local association of feature values with
the predicted label. We use an associative classifier that extracts classification rules
from the training data.

Let Ay, A, ..., Aq be the set of attributes characterizing instance x. We recall
from Section 3, that an itemset I (or pattern) of length [ < d is a collection of
items in the form {4; = @, 4; = qj, ..., Ax = ax}, where |I| = [ (Definition 3.1.2).
An associative classifier extract CARs in the form A — B, where A is an itemset,
and B is a class label [99]. We refer the reader to Section 3.3 for an overview of
associative classifiers.

In our implementation, we use the L7 associative classifier [17], but any other
associative classifier can be used for the same purpose. The associative classifier is
trained with the K neighbors of the instance x that we want to explain and yields
local rules.

Definition 4.1.1 (Local Rule). Let I be an itemset of length [ < d defined on the
attribute set { Ay, As, ..., Aq } and c a class label. A local rule is a CAR in the form
I — c returned by an associative classifier model learned in the locality of instance
x where x is covered by I, x = 1.
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Local rules are derived from the CARs extracted by the local model. We select
the CARs where the instance x satisfies the rule antecedent I, i.e. if z | «; for
1< <.

Each local rule body is a conjunction of items in the form (attribute=value).
Thus, each rule gives the indication of which configuration of attribute values to-
gether determines the prediction.

From the selected local rules, we retrieve patterns, i.e. the subsets of significant
feature values. Instead of computing the contribution of each possible subset of
z, as done in [155], we consider only the relevant subsets highlighted by the local
model. From each local rule, we derive its corresponding relevant pattern. We will
refer to relevant patterns also as relevant subsets (of attribute values).

Definition 4.1.2 (Relevant Pattern). Let {4 = a;, 4; = a4, ..., Ax = ax} be an
itemset of length [. Let r : I — ¢ be a local rule. Its corresponding relevant pattern
S, is the subset of (attribute=value) A; = a;, A; = a;, ..., Ay, = ay.

The local model may return multiple local rules. In this case, the prediction of
instance £ may be determined by more than one rule. By considering only one rule,
we might not observe the complete effect of all the different factors affecting the
prediction. We represent the presence of multiple rules by considering the union of
all the corresponding rule bodies. We will denote the set of subsets extracted from
all the local rules as U in the following.

Definition 4.1.3 (Union Itemset). Let { r,72,...,7, } be a set of local rules in
the form r7 : I, — ¢; be a local rule. The union itemset U is the union of the
relevant patterns S,,,Sy,...,S;,, U = U;=1__ 5 Sr,- The union itemset U is then a
set of attribute values in the form (attribute=value).

From the local rules, we obtain the relevant patterns and the union itemset, if
any. Instead of computing the contribution of each possible subset of z, we consider
only the relevant subsets highlighted by the local model for the prediction difference
evaluation illustrated in the following section.

4.1.2 Prediction difference

The explanation of the single prediction z made by black-box model f highlights
the contribution of each relevant (i) attribute value and (ii) subset of attribute
values in the prediction of the class label. The estimation of these contributions is
driven by the relevant feature subsets provided by the local rules. The influence
of an attribute value or of a relevant pattern on a prediction is estimated in terms
of prediction difference. The prediction difference expresses how the prediction
changes when one or more attribute values are omitted.

Most classification models require all the features as input for making predic-
tions. Hence, we cannot directly provide to classifiers a subset of the features and
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observe how the prediction changes. Several approaches have been proposed to
simulate the feature removal and summarize their contribution [40, 93, 104, 132,
147, 155, 176]. As outlined in [37], these approaches differ on three dimensions:
feature removal, model behavior, and the summary technique. The feature removal
dimension refers to the method used to approximate the omission of features. The
second choice regards what model behavior to analyze. Finally, the methods differ
in the way it is used to summarize the contribution of features.

In the following, we firstly outline preliminary definitions and we review the
approaches for removal-based explanations. We then outline and motivate the
strategies chosen in this work over the three dimensions. Finally, we illustrate the
notion of prediction difference over individual features and relevant subsets.

Preliminaries and overview. Let X = (Xy4,, X4,,..., X4,) be the attribute
space with schema A over which our classifier f is defined (refer to Section 3 for the
detailed definitions). X4, denotes a random variable while x4, denotes its values.
Let S denote a subset of attributes S C A and S its complement, with S = D\ S.
The term xg = {x4, : A; € S} is defined over the subsets of features S.

We denote with F' a function defined over subsets of attributes that models the
prediction of the classifier f [37]. F(xzg) depends only on the attributes in S and
it is invariant to S. We note that F'(z) = F(x4) = f(x). Hence, the output of F
when all features are available is equal to the output of the model f(z) itself.

Existing removal-based explanation methods vary on how F' is defined [37].
Several approaches approximate the feature omission by simply setting them to
zero, with F(zs) = f(xg,0) [132, 176] . Other approaches substitute the features
to be removed with default values [40, 138]. For example, LIME for image data
substitutes super-pixels by means of grey pixels [138]. Another solution consists
on marginalizing with marginal [37]. The features to be removed are marginalized
using their join marginal distribution p(Xg). As a result, F(x,) = E[f(z,, X3)].
Examples of explanation using this solutions are KernelSHAP [104] and the per-
mutation tests defined by Breiman [25]. Intuitively, the omission of feature values
is approximated by sampling values from the feature’s marginal distribution. Re-
cent studies as [79] examined the benefits of this approach over other solutions
that marginalize using the feature conditional distribution. We, therefore, consider
this solution of marginalizing with marginal as the method used to simulate the
omission of features in our work.

Removal-based explanation methods then may differ on the target of model
behaviors [37]. While some approaches consider the loss of the model [105, 147],
most of the methods directly analyze the prediction of the model and its probability
for the instance = [104, 155, 176, 179]. In this scenario, the target function is F'(x)
itself. Our work can be categorized among these approaches that consider the
prediction as the target function. In our definition, we explicitly consider a multi-
classification scenario. Let ¢ be a class value of our target class label y. We are
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interested in the probability of the instance z to belong to the target class c¢. Hence,
we consider f(y = c|z) and F(y = c|zg) as our target prediction function.

The last dimension of interest is how to summarize the influence of the features
estimated via omission. Some approaches estimate the importance of each individ-
ual feature by removing it. The importance of an attribute A; is then estimated
as the difference of the target function when all the attributes are considered and
when the attribute A; is omitted [93, 147, 176, 179]. However, removing individ-
ual features does not consider how the feature interacts with the others. Other
approaches estimate the feature value importance by also omitting subsets of at-
tribute values in order to consider feature interactions. Works as IME [155] and
SHAP [104] use the notion of Shapley value that satisfies different properties as
symmetry and efficiency [150]. However, this summarization technique may be
computationally challenging since it requires the estimation of the omission for
many subsets S of features. The “exact” computation of the Shapley value in
fact requires the complete exploration of all 2¢ subsets of features. To overcome
the exponential time complexity of the problem, several approximations have been
proposed. These methods exploit sampling strategies [153], linear regression mod-
els [104] or dynamic programming algorithms [105].

These solutions summarize the information on attribute interaction in one con-
tribution for each attribute value. Hence, the information on the interaction of
attribute values is lost. Differently, we explicitly consider the relevant association
of attribute values and we estimate the feature omission for those subsets of at-
tributes. Our approach (i) estimates the influence of each attribute value for a
particular prediction, and (ii) highlights separately each relevant attribute interac-
tion. We overcome the problem of exponential time complexity by considering only
the relevant attribute values derived from the local rules.

Prediction difference. We denote the observed change in the classification
outcome when attribute values are omitted as prediction difference, using f(y = c|x)
and F(y = c|zg) as our target function.

To estimate the influence of a single attribute value, we consider the omission of
a single attribute at a time. The prediction difference §; with respect to attribute
A; is computed as follows:

0a, = Fly = clz) = Fly = cleaa) = fly = clz) = Fly = cz 5,) (4.1)

We recall that, by definition, F'(y = c|x) = f(y = ¢|z) and corresponds to the
probability of the instance z to belong to the target class ¢ for the classifier f. The
second term F'(y = c|zp\4,) is defined as the probability of the instance z to belong
to the target class ¢ when attribute A; is omitted. As mentioned, in our work the
approximation of this quantity when the attribute A; is omitted is computed via
marginalization [37]. In the following, when clear from the context, we will refer to
04, also as 9; to refer to prediction difference when the i-th attribute is omitted.
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Equation 4.1 allows us to compute how the prediction for instance z changes
when a single attribute value is omitted, i.e., §;(x), for all the attributes Ay, A,, ...,
Aq. For each attribute A;, d;(x) shows its relevance in the definition of the class
label.

Attributes may contribute jointly to a class prediction. Considering the omission
of more attributes at a time allows us to quantify how these attributes jointly
influence the prediction. Hence, we are interested in estimating if attribute values
together are significant for a prediction. To estimate the omission of more attribute
values at a time, we use again F'(y = c|z\s). The jointly influence of the attributes
S for the prediction of the class ¢ for the instance x is computed as:

0s = F(y = clz) — F(y = clzas) (4.2)

Differently from existing works, we explicitly consider only the relevant attribute
values derived from the local rules. We compute the prediction difference (Equa-
tion 4.2) for (a) each relevant pattern S, derived by the local rules and (b) the
union itemset U. Considering only the local behavior captured by the local rules
allows us to deal with hA+1 subsets instead of 27 (i.e., the cardinality of the power
set P(X)), where h is the number of local rules and h+1 < | P(X) |.

Each §(z) term represents the influence of (i) a single feature, or (ii) jointly more
feature values together in the determination of the class label for the prediction on
a single instance z made by the black box model f. It ranges from -1 to +1. The
larger the value of influence, the more the corresponding attribute values influence
the class assignment. A positive contribution means that the attribute values have
a positive influence in assigning the class label. A negative one, instead, means
that the attribute values are against the assignment of the considered class label.

Evaluating the neighborhood.

To evaluate how well the extracted local rules are able to capture the locality of
the prediction, we compare the prediction difference for the union of all rule bodies,
dy(x), with the prediction difference when all the attribute values are removed.
If the variation is low, it means that removing all rule bodies entails removing
all the relevant information from instance z. In this case, the local model is a
good approximation in the locality of the prediction. A detailed description of the
computation of the approximation is presented in Section 4.2.1. On the contrary,
the entire process is repeated varying the value of K. The detailed descriptions of the
computation of the approximation of the locality scope and of the instance-based
heuristic algorithm for selecting parameter K are presented in Section 4.2.

4.1.3 Visualization

Visualizing the contributions of relevant attributes and subsets enables inspect-
ing quantitatively the relevance of the different factors of an explanation.
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All the §(x) terms can be visualized through a bar plot representation. The vi-
sualization allows users to understand in a simple and uniform way the motivations
driving the prediction for instance z made by model f. An example of visualization
is the bar plot to the right in Figure 4.1.

Each representation is built to explain the prediction of a target class ¢ per-
formed by a model f for a particular instance x. The single attributes with their
corresponding value and all the relevant attribute subsets are shown on the vertical
axis. The prediction difference d(z) of each element with respect to the target class
is plotted on the horizontal axis. More specifically, the diagram plots the corre-
sponding d(x) term for each attribute A;, for each relevant pattern S, and, finally,
if the prediction is performed by more than one rule, the §y(x) term encompassing
the contribution of all relevant subsets (bottom row in the plot).

4.2 Estimation of the neighborhood

The local model has a great impact on the prediction explanations. Only the
relevant subsets determined by the local model are considered, instead of the com-
plete power set.

The locality of the instance is controlled by parameter K. The K nearest
neighbors of the instance to explain labeled by f are the only input of the local
associative classifier. We devise a heuristic approach to automatically tune the
parameter K. The proposed technique selects the appropriate locality scope by
evaluating the quality of the extracted local rules to capture the local properties of
the instance. In the following sections, we first illustrate the notion of faithfulness of
the local rules to capture the relevant associations. The intuition is that removing
the relevant local associations entails removing the information of the instance
itself. We use this notion to assess the approximation introduced by the local rules
in capturing the locality. We then propose a heuristic approach that leverages
this evaluation of the approximation introduced by the locality scope to adapt the
number of samples for the neighborhood.

4.2.1 Approximation evaluation

Through the local model, we obtain local rules. These rules should capture the
local behavior in a neighborhood of instance x. From the local rules, we derive
the relevant subsets, i.e., the sets of attribute values, that are actually relevant in
determining the prediction. These rules are the ones that determine the class for
the instance x. Hence, omitting the corresponding subsets of attribute values would
be like omitting the complete information of the instance z. Instead, omitting the
subsets not belonging to the relevant subsets should not be significant.

We define II as the prediction difference 4 = 04, 4,,..4, When all the attribute
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values of the instance are omitted, i.e. when the complete information is removed.
It is computed as:

I =04, 45,4, =
= fy=clz) = F(y = clzaay a,.,44) = (4.3)
= f(y =clz) — F(y = c|zp)

By applying Equation 4.2, 04, 4,4, can be written as a difference of two terms.
The first term is the probability of instance z for the classifier f to belong to class
c. The second term approximates the class probability when all the attributes A;,
..., Ay are removed. This term corresponds to the probability of belonging to the
class ¢ when no information is available.

To approximate the omission of the complete information, we omit all relevant
subsets by omitting the union itemset U(x). We define I, p0x as:

Happrox = 5U =
)= Fly =clzaw) = (4.4)

where S, , Sy,..., Sy, are the relevant patterns derived from the local rules { ry, ro, ..., 71 }.
It represents the prediction difference of the union itemset U. The attributes con-
sidered in U are a subset of Ay, ..., Ag.

The terms II and II,p,., are used to estimate the absolute locality approxima-
tion. It is the deviation between the exact value and its approximated value:

€= |H - Happrox| =
= |p(y = clz) — p(y = c|z\ A1, Az, 43, ..., Ag) — du] (4.5)

ey

The locality approximation e quantifies the capability of the local rules to capture
the local behavior of the original model f in the locality of z. If the approxima-
tion value € is low, the local rules actually determine the prediction. The locality
approximation can be used to tune parameter K, i.e. the number of neighbors, as
presented in the following section.

4.2.2 Automatic Locality Definition

We estimate and visualize how the prediction changes only for the relevant
subsets determined by the local model. If the local model captures the behavior
in the locality of the instance to explain, the relevant subsets are also the most
meaningful ones, in terms of prediction difference. The selection of parameter K
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Algorithm 1: Compute Contributions selecting a suitable K

Input: data, x, K, f
Output:

1 oldRules = {};

2 for (K=SK; K < mazK; K=K+SK) do

3 rules=getLocalRules(data, K, x, f);

4 if rules == oldRules &¢ K! = SK then

5 ‘ continue;

6 end

7 oldRules=rules;

8 rules=removeOverfittingRules(rules);

9 d(z)=computePredictionDifference(data, z, rules);
10 e=computeLocality Approximation(data, deltas, z);
11 if € < e Threshold then
12 | return §(z);

13 end
14 if K!=SK then

15 if € > ¢ old then
16 | return 6_old(x);

17 end
18 end
19 €_old=e;

20 d_old(z)=0(x);
21 end
22 return §(z);
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determines the locality degree for the instance explanation. If K is too low, the K
neighbors used for training the local model may be too few and the resulting local
model may not be able to capture the local behavior. Larger values of K reduce
the effect of noise and outliers. However, if K is too large, the K neighbors will not
represent the locality of the instance z anymore. The local model in this case may
not be able to correctly mimic the local behavior. For these reasons, choosing an
optimal K is of key importance.

The proposed methodology to tune the value of parameter K aims at yielding
a model that captures the locality of the instance to be explained. We estimate
the quality of the resulting model by means of the locality approximation e defined
in the previous section. The selected value of K should yield a low approximation
value.

The baseline value for K, SK, is defined by using heuristics already exploited
to choose parameter K for the K Nearest Neighbor classifier. In particular, we
consider K equal to \/n, where n is the training dataset size for large datasets [49].
Otherwise, K is proportional to the size, in the original training dataset, of the
particular target class [82]. In this way, for larger classes, more nearest neighbors
are used. Then K is progressively increased until one of these stopping criteria is
reached:

e the approximation value is lower than a predefined threshold

+ a local minimum is found (i.e., the new approximation value is greater than
the old one),

o value K is too large, thus the K neighbors will not represent the locality of z
anymore.

This heuristic technique is outlined in Algorithm 1. The inputs are the training
dataset and the baseline K value denoted as SK. The training dataset is used to
compute the neighbors. SK value is set using the heuristics already mentioned.

In Line 2, starting with K as SK, K is progressively increased with a step
SK until a stopping criterion is satisfied. The incremental step SK is a value
greater than one, which depends on the cardinality and properties of the particular
dataset from which instance z is extracted. Instead, increasing K value by a step
of one would entail adding each time only one instance to the training data for the
local model. Being the training data only slightly changed, the local model would
probably capture the same local behavior and same local rules as before.

In Line 3, the local model is trained using as training dataset the K neighbors
of instance z labeled by model f and the local rules are returned. From the second
iteration, we check if the extracted rules are equal to the ones obtained with the
previous value of K. In this case, the terms d () are not re-estimated. The local rules
are the same and thus the § (z) terms. Moreover, in Line 8, if existing, an over-fitting
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rule (i.e., a rule describing the instance x itself) is detected and discarded. This
rule does not represent interesting information. An explanation should highlight
which are the components of the input that are major determining the predictions.
Of course, the instance itself is relevant for the prediction but it does not explain
which are the most significant terms.

In Line 9, the terms 0 (z) are estimated for each single attribute value, for each
relevant subset and for all the relevant subsets together using Equation 4.2. In
Line 10, the locality approximation € is computed as discussed in Section 4.2.1.

Next, stopping criteria are checked. In Line 11, we check if the obtained approx-
imation value € is lower than a predefined threshold representing the approximation
we are willing to accept. In the positive case, the local rules and their prediction
difference are considered a good approximation of the behavior in the locality of the
predictions, and the algorithm returns the 0 (z). Otherwise, in Line 15, if the new
approximation value is greater than the previous one, a local minimum is reached.
We return the previous values of 0 (z), derived from the local rules obtained with
the previous value of K. If no stopping condition is met, the values of the old
approximation value and old local rules are updated in Lines 19-20. The heuristic
search continues until a stopping criterion is satisfied.

4.3 Experimental Setup

LACE has been developed in Python, exploiting the scikit-learn [131], pan-
das [109] and numpy [74] libraries. We use the level-1 rules of L? associative clas-
sifier to capture the local behavior in the neighborhood of the prediction [17] and
its Python implementation [15]. In the following, we will introduce the dataset
exploited and their pre-processing, and the experimental setup. The source code
and data for all the experiments are available .

Data sets

We ran the experiments on both artificial and real-world data sets. The main
features of the datasets used in our experiments are reported in Table 4.1.

Artificial data sets are data sets for which the relationship between attributes
and the class value is known. Hence, it is possible to validate explanations, by
comparing them with the true relationships among attributes. For the artificial
dataset, we use the chess [141], cross [141], groups [141] and monks [96] dataset.
The chess, cross and groups data sets are composed of four attributes [141]. The
first two attributes X and Y define the class. The other two attributes, R1 and
R2, take random values and are unrelated to the class. The visualization of the

https://lacexplain.github.io/
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dataset | |[D| | |A] | [Alcont | [Alcat

adult 45,222 | 11 4 7
COMPAS | 6,172 6 2 4
chess 10,000 | 4 4 0
Cross 10,000 | 4 4 0
group 10,000 | 4 4 0
group__10 | 10,000 | 10 10 0

Table 4.1: Dataset characteristics. A, is the set of continuous attributes, A.,; of
categorical ones.
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Figure 4.2: Visualization of the two relevant attributes X and Y in the chess, cross
and groups datasets.

two important attributes of these threes artificial dataset are shown in Figure 4.2.
The X and Y attributes take the form of a 4x4 chessboard for the chess data set
and the class labels are 0 and 1 (Figure 4.2a). The X and Y attributes in the
cross dataset draw a cross with two possible labels on the diagonal (Figure 4.2b).
In the group data set, X and Y are disposed in groups and instances are divided
into three possible classes (Figure 4.2¢). The monks-1 data set is composed by 6
discrete attributes a, b, ¢, d, e, f and the class label can take value 0 or 1 [96].
The relationship between the attributes and the class value is known. The class
is 1 if a=b or if e=1, 0 otherwise. To evaluate the impact on explanations of the
number of attributes, we propose an extended version of the group dataset [141].
We extend the group artificial data set by adding a total of 8 random attributes to
the two relevant ones X and Y for a total of 10 attributes. We will refer to this
extended version as group 10 dataset.

The real-world tabular data sets we used are adult and COMPAS. The UCI
adult data set task is to predict whether the income of a person exceeds 50K per
year based on census data [96]. The COMPAS data set from Propublica consists
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of demographic information labeled with criminal recidivism risk scores [8].

Data processing

L? associative classifier used for learning local models and our computation of
the prediction difference work with discrete data. Asin LIME [138], the continuous
attributes of the labeled neighbors N(x) are discretized to derive the local model.
For the artificial data sets chess, cross and groups, we used the prior knowledge of
the problem for selecting the number of intervals, as done in [141]. We set the
number of intervals to 2 for the cross, 3 for the groups and 4 for the chess data sets
and used discretization with equal width of intervals. For continuous attributes of
real-data sets, we used equal-frequency discretization. We note that this step is for
explanation purposes only and the classifier can be generally defined on continuous
attributes.

For the COMPAS data set we use the following features: sex, age cat, race,
priors_ count, c¢_charge degree and length of stay. We considered two classes
of risk of recidivism score, “Low-Medium” and “High”. For the adult data set
we used sex, workclass, education, race, marital-status, occupation, relationship,
capital-gain, capital-loss, hours-per-week, age.

Each data set is split into training set and explain set. Training data set is used
to train classification models. LACE explanations are produced for instances in
the explain set.

Experimental setup

We consider three different models: Random Forest (RF), Naive Bayes (NB),
and Multilayer Perceptron artificial neural networks (MLP). We use the imple-
mentations and default parameters of scikit-learn [131] unless otherwise specified.
Support and confidence thresholds of the associative classifier are set to the default
values, i.e., 1% and 50% respectively. The locality approximation that we are will-
ing to accept in the automatic approach for tuning parameter K is set to 0.02. The
explanations are generated considering the predicted class as the target class unless
otherwise stated. The experiments were performed on Ubuntu 16.04.1 LTS 64 bit,
16 GB RAM, Intel Core i7.

4.3.1 Explanation evaluation

We evaluate the quality of explanations by measuring how explanations are close
to the true explanations. Let €p(x) the explanation provided by an explanation
method M for the instance x with respect to a generic classifier f and e(z) the true
explanation.

We consider two forms of explanation: feature importance vector and rule ex-
planations. A feature importance vector is an explanation in the form t=tq, to, ..., t4
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where t; is the importance of the feature A;. Rule explanations are provided as a set
of local rules r (Definition 4.1.1) in the form I — ¢ where I is a set of attribute-value
pairs and c is the class values.

The form of the explanation é,,(z) depends on the explainer M. The explainers
SHAP and LIME provide the explanations only in the form of feature importance
vectors. Anchor provides explanations in form of rules. As discussed in Section 4.1,
LACE provides explanations in form of both feature importance vector and as a
set of local rules.

We evaluate the quality of feature importance explanations and of the set of
local rules by measuring its adherence with the true explanations adopting the
following metrics [66, 81].

For feature importance explanations, we measure the quality of explanation by
means of two metrics: the feature similarity f-sim and the fl-score f1-feature [81].

Let be #(x) the feature importance vector provided by the explanation method
M and t(x) the true feature importances for instance z.

Feature cosine similarity - f-sim. The feature similarity f-sim measures the
similarity of feature importance vectors using the cosine similarity:

f-sim = cosine(t(z),t(z)) = ‘

i(z) - t(x) L6
Ha)| [It) H o

where #(x) - t(z) is the dot product of the two explanation vectors and || is the
I?>-norm [81]. The closer f-sim is to 1, the closer #(z) is to t(x) and so the higher
the quality of #(z).

We consider also the case of binary explanations [81]. A binary explanation
highlights if the features are relevant or not for the prediction. In this case, #;(z),
ti(z) € {0,1}, where t;(x) is 1 if the feature i is relevant while it is 0 is it does not
influence the prediction. For binary explanation, we use the fl-score.

F1-score of feature importance vectors - f1-feature. We refer to the fl1-
score of explanation vectors as f1-feature and it is defined as follow.

fl-feature = fl-score(t(z),t(z)) =
t(z),t(z)) * precision(t(z), t(x)) (4.7)
).t

~ 2xrecall(t(x),t(
recall(t(z), t(x)) + precision(t(z), t(z))

where the recall(t(x), t(x)) measures how many features that are considered as rele-
vant by the explainer M are truly important and the precision(t(x),t(z)) measures
how many features that are truly important are correctly identified by #(z) [81].
We note that any numerical explanation t(x) (with ¢;(x) € R) can be mapped to a
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binary explanation by setting to 1 the relevant terms (with abs(¢;)(z) > 0) and 0
otherwise [66].

F1l-score of rule explanations - f1-rule. We use the fl-score also for the
evaluation of the quality of explanations in form of local rules [66, 81]. Let be
71, ..., 7, the set of h rules provided by the explanation method M and rq, ..., 7 the
set of k true rules for instance x. We map each rule to a binary vector representing
the presence or absence of a feature in the rule. We then use the fl-score to
measure the quality of rules. The f1-score(b(7;(x)),b(r;(x))) measures the quality
of the binarized rule 7;(z) with respect to the true rule r;(x), where b(-) is the
operator that maps the rule to the binary vector representations. We will refer to
the fl-score for the estimation of rule quality as fl-rule.

Rule hit - r-hit. We also introduce the notion of rule hit r-hit to understand
the behavior of rule-based explainers. The rule hit r-hit € {0,1} assesses if true
rules are captured by the set of rules provided by the explanation method M. It is
1 if the true rules r are also in 7, ..., 7, 0 otherwise. We also evaluate if the true
rules are partially covered by the explanation rules. Let be r; a true rule that finds
not matching in 7y, ..., 7,. We distinguish two cases: a subset match and a superset
match. We say that an explanation rule 7 is a subset of r; if all the items composing
it appear in r;: Va; € 71 o € r;, with |r;|>|7|. For example, rule {a, b} is a subset
of {a,b,c}. Correspondingly, we say that an explanation rule 7 is a superset of r;
if: Yo € rii a; € 7, with |r;|<|F|. The r-sub-hit € {0,1} and r-sup-hit € {0,1}
assess the type of match, subset and superset match respectively.

The illustrated metrics leverage the knowledge of the true explanations behind
model predictions. As discussed in Section 1.2.3 the true explanations to evaluate
prediction explanations are unfortunately normally not available. In almost all
cases, the true association between attribute values and class value is not known.
For these reasons, we use the following approaches, illustrated in Section 1.2.3, to
evaluate the quality of the provided explanation. On one hand, we consider artificial
data sets to validate our explanation method since their true association is known.
For real datasets, we consider two settings to known the true explanations a priori.
As a first approach, we control the classifier behavior by injecting associations
into the data. The classifier will learn the injected associations as relevant for the
predictions. We then use the relations with the class label as the true explanation.
As a second setting for real datasets, we use white box classifiers to derive ground
truth explanations and we exploit them to evaluate the local explanations as used
in [66, 81, 129].
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4.4 Experimental results

The set of experiments analyzes individual explanations to assess the quality of
LACE explanations and highlights LACE ability to provide insights on the reason
behind individual predictions. We will firstly qualitatively discuss the results of
LACE and compare them with state-of-the-art techniques via a running example
with the monks dataset. We will then extensively quantitatively evaluate the expla-
nation methods by comparing the extracted explanation with the true explanations.
We then evaluate the effect of the instance-based automatic approach for detecting
the locality on the explanations.

4.4.1 Running example with monks dataset.

d=COMPAS p(class=1|x)=1.00 d=COMPAS p(class=1|x)=0.99
Ypred=1 Ytrue=1 Ypred=1 Ytrue=1
a=31 a=3 |
b=3 1
b=3 - |
c=2 A
d=2 - c=2 |
e=11] d=2 |
f=1 1
e=1 |
Rule_1 -
Rule_U - f=1 |
0.0 Ojl Oj2 Oj3 Oj4 Oj5 OiO Ojl Oj2 Oj3 0i4
6 target class=1 6 target class=1
(a) MLP. (b) NB.

Figure 4.3: LACE explanation of a MLP (a) and NB predictions of the monk-1
dataset. Local rules for the MLP prediction: Rule 1: {a=3, b=3} — class=1,
Rule_2: {e=1} — class=1, Rule_U: {a=3, b=3, e=1} — class=1.

We present and discuss the explanations produced on the monk-1 data set [96].
The monk-1 data set is composed by 6 discrete attributes a, b, ¢, d, e, f and
the class label can take value 0 or 1. Being the data set artificial, the relationship
between the attributes and the class value is known. The classis 1 if a=borif e=1, 0
otherwise. Thus, it is possible to validate the results of our explanation method, by
comparing the provided explanations with the true relationships among attributes.

In Figure 4.3a we report the explanation provided by LACE for a multilayered
feed-forward artificial neural network (MLP). The explanation is provided for in-
stance © = (a=3, b=3, ¢=2, d=2, e=1, f=1) of the monk-1 data set. The true class
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for x is 1 because e=1 and a=b. Thus, e and both a and b play an important role
in the prediction. The MLP correctly predicts the class label as 1 with probability
p(class=1|z) equal to 1. LACE local model returns the following CARs:

{e=1} — class=1
{a=3, b=3} — class=1

These local rules, based on our knowledge of the monk-1 data set, actually capture
the true explanation for instance x.

Given the relevant subsets obtained by the local rules, the prediction differences
are shown in Figure 4.3a. The . has a small contribution, while the other ¢ terms
for single attributes and the 0, () term have a null contribution. For this instance,
the joint effect of attributes a, b, e drives the label assignment. For example, if both
a and b are removed together, the class label is still predicted as 1 because of
e. Consequently, also d,, 0y, 0. and 0,5 are nearly 0. When removing the three
attributes a, b, e, the prediction probability drastically changes. This is captured
by the union itemset:

{a=3, b=3, e=1}

Hence, 0, allows us to effectively quantify the interaction of the three attributes
that drives the label assignment.

Consider now Figure 4.3b, which reports the explanation for the same instance z
and class 1, but classified by the Naive Bayes classifier. LACE local model returns
a single relevant rule:

{e=1} = class =1

Hence, only the value of attribute e is considered relevant for the prediction. The
Naive Bayes classifier assigns correctly the instance x to class 1, but only because
e=1. The local model and the explanation highlight that the Naive Bayes classifier
has not learned the association that if a=0 then class=1. The Naive Bayes classifier,
because of its assumption of independence between features, is not able to learn the
importance that a and b jointly have. Hence, LACE local model and explanation
in this case successfully reflect the model behavior.

This experiment highlights that different models work differently. This differ-
ence may not be directly visible from the prediction, because the predicted class is
the same. The careful analysis of the prediction provided by LACE explanation
allows understanding in depth the local behavior of different classifier models.

We compared LACE explanations with the three state-of-the-art approaches
LIME [138], Anchor [139] and SHAP [104]. As LACE, these methods are model-
agnostic prediction explainers, hence applicable for explaining the prediction of any
classification model.
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LIME SHAP value
Local explanation for class 1
a=31 I =
b=31 [] =
c=2 | =
d=21 | d=2
f=11 | f=1
0.0 0.2 0.4 0.6 o 1 2 3 4 5 6
Class 1 Class 1
(a) LIME. (b) SHAP.

Figure 4.4: LIME (a) and SHAP (b) explanations of a MLP prediction of the
monk-1 dataset.

LIME learns a linear model in the locality of the instance z to explain. Differ-
ently from LACE, the locality is given by random local perturbations of instance
z. An explanation is derived directly from the linear model, in form of weights
for each feature value. As LACE, an explanation is provided with respect to a
target class, by quantifying the relevance of attribute values for the prediction of
the target class.

Consider the same instance z = (a=3, b=3, ¢=2, d=2, e=1, f=1) of the monk-1
dataset. Figure 4.4a shows the explanation of the (same) prediction of the MLP
model provided by LIME for class 1 2. The largest weight is given to term e=1,
while terms a=3 and b=3 provide a very small contribution. LIME linear local
model is not able to clearly capture the joint relevance of a=3 and b=3 for the
prediction. Similar considerations hold for the explanations provided by LIME for
predictions performed on different instances of the monk-1 dataset. LIME is not
able to highlight the information on the joint effect of feature values a=0b. Hence,
all predictions are only explained by the term e=1 or e # 1, while for the terms a
and b it detects a limited contribution.

SHAP [104] leverages the concept of Shapley value from coalition game the-
ory [150]. The Shapley value is used to compute the contribution of each feature

value to the prediction for a single instance. Figure 4.4b shows the explanation
of the (same) prediction of the MLP model provided by SHAP for class 1 2. The

2We use a shared bar plot representation for ease of comparison.
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explanation properly capture that the term e=1 is relevant to the prediction, fol-
lowed by the terms a=3 and b=3. The contribution to the prediction that subsets
of attribute values jointly have is combined in the SHAP values. However, this
summarization of the attribute value contribution does not allow us to clearly un-
derstand the relevant association of attribute values. From the explanation, we
cannot derive that the term e=1 alone contributes to the prediction while the
terms jointly @ and b contribute. The local rules derived by LACE instead allow
to clearly capture the associations.

We now qualitatively compare our explanation with Anchor [139]. Anchor ex-
plainer is an extension of the work in [138]. The explanations are provided in form
of decision rules. An anchor is a rule that “anchors” locally the prediction and,
thus, determines the prediction. Changes to the feature values not belonging to
the rule do not change the final prediction [139]. We explain again the prediction
performed by the MLP classifier for instance z of the monk-1 dataset. Anchor
explainer provides the following rule: {¢ = 1} — 1. The rule meets the Anchor
definition. A change of the other terms, thus also of a=3 and b=3, does not cause
a prediction change. However, the Anchor explanation, being a single rule, is not
able to capture the complete behavior of the model, which is also driven by the
joint values of attributes a and b.

4.4.2 Explanation validation

We evaluate LACE explanations in terms of cosine similarity, f1-score and rule
hit, defined in 4.3.1. We compare the results in terms of cosine similarity and the f1-
score of feature importance vector f1- feature with LIME [138] and SHAP [104] and
in terms of the fl-score of rule explanation f1-rule and rule hit with Anchor [139].
We firstly discuss the results for artificial datasets. We then evaluate explanations
for real dataset by comparing the results for injected behaviors and using white-box
classifiers to derive ground truth explanations.

Explanation validation with artificial datasets

We run the experiments for the artificial datasets chess, cross, group and group
10 with the MLP and random forest (RF') classifiers. We omit for this set of exper-
iments the Naive Bayes classifier. As observed in Section 4.4.1, Naive Bayes may
fail to capture the true associations within the dataset because of its assumption
of independence between features. A good explanation should reflect the behavior
of the classifier for the prediction under analysis. As a consequence, the true re-
lationships cannot be considered also as the true explanations if the classifier fails
to learn them. On the other hand, we observed a high accuracy on the test set of
the artificial datasets for the MLP and RF classifiers. Therefore, we included only
the MLP and RF classifiers and we used the true relationships of the datasets as
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true explanations. LACE, Anchor [139] and LIME [138] discretize the dataset to
produce explanation results. To enable a fair comparison that is not dependent on
the internal discretization, for the following set of experiments we firstly discretize
the dataset in a shared way.

We train the dataset on the training set. We then evaluate performance and
explanations on the explain set. In particular, we randomly select N=100 instances
of the explain set and generate explanations.

dataset classifier | LACE LIME SHAP
chess d RF 0.99996 0.86489 0.99956

- MLP 0.99996 0.86451 0.99784

cross d RF 0.99998 0.98791  0.99980

— MLP 0.99998 0.98793 0.99905
groups_d RF 1.0 0.97709  0.99987
— MLP 1.0 0.97711  0.99973
groups_10_d RF 0.98250 0.69973 0.99451
- MLP 1.0 0.72695 0.99783

Table 4.2: Average feature similarity f-sim for N=100 explanations of the RF and
MLP predictions of the artificial datasets.

dataset classifier | LACE LIME SHAP
chess d RF 1.0 0.6667 0.6720

- MLP 0.9240 0.6680 0.6973

cross d RF 1.0 0.6667 0.6667

- MLP 0.9460 0.6667  0.6667
groups_d RF 1.0 0.6680 0.6680
— MLP 0.9280 0.6680  0.6693
eroups_10_d RF 0.3345 0.3346 0.3345
— MLP 0.6600 0.3343 0.5002

Table 4.3: Average feature fl-score f1-feature for N=100 explanations of the RF
and MLP predictions of the artificial datasets.

We first evaluate the quality of the feature explanation vectors returned by
LACE and compare it with LIME and SHAP in terms of feature similarity f-sim
and fl-score f1-feature. We recall from Section 4.3 that the artificial datasets
are designed with 2 relevant features X and Y while the other attributes are com-
pletely random and not associated with the class label. We consider both features
equally important. Hence, the true explanation in form of feature vector is rep-
resented by t=[0.5, 0.5, 0, 0] for the 4-dimensional dataset cross, chess and group
and t=[0.5,0.5,0,..., 0] with [t|=10 for the group_ 10 dataset, where the first two
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LIME SHAP value d=COMPAS p(class=0|x)=1.00

Local explanation for class 0 Yprea=0 Ytrue=0
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(a) LIME. (b) SHAP. (c) LACE.

Figure 4.5: LIME (a), SHAP (b) and LACE (c) explanations of a RF prediction
of the cross dataset. Rule_ 1={X>0.5, Y>0.5} — 0.

LIME SHAP value
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Figure 4.6: LIME (a), SHAP (b) and LACE (c) explanations of a RF prediction
of the group_ 10 dataset. Rule_1={X<0.333, Y>0.666} — 2.

elements of ¢ refer to the attributes X and Y. To compute the fl-score f1-feature,
we map t to its binary representation where we have a one for each not-null element
and zero otherwise.

The average cosine feature similarity f-sim for the N explanations is reported
in Table 4.2. The average feature similarity for LIME ranges from 0.7 to 0.99.
LACE and SHAP instead generally correctly identify the relevant features as the
ones with the highest relevance for all the considered datasets. For both explainers,
the f-sim is high, ranging from 0.98 to 1. In particular, LACE slightly outperforms
SHAP in 7 out of 8 experiments.

Table 4.3 shows the average fl-score f1-feature. LACE generally outperforms
SHAP and LIME in the identification of the two relevant attributes. For the eval-
uation of the f1-feature scores, we map each not null term ﬂ(a:) to 1. Hence, even
small contributions are mapped to 1 in the binary explanation. This is the reason
for the lower performance in terms of f1-feature of the three explainers, compared
to the similarity-based evaluation.

To clarify this point, consider Figures 4.5 and 4.6 showing the explanations
for two example instances of the cross and group 10 dataset respectively for the
LIME, SHAP and LACE. Even if LIME correctly identifies the attributes X and Y
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as the most relevant terms, it assigns a (still significant) contribution also to other
random features (Figures 4.5a and 4.6a). On the other hand, SHAP and LACE
identify as only relevant terms the attributes X and Y (but we note that they as-
sign a really small and negligible feature importance to the random terms R_ 1 and
R_2). However, differently than SHAP, LACE provides in addition to the feature
importance vector also the local rules associated to the predictions. For the predic-
tion reported in Figures 4.6¢ and 4.6¢, we can observe that LACE also successfully
identifies that the attributes X and Y together are relevant for the prediction. It
identifies that {X>0.5, Y>0.5} — 0 and {X<0.333, Y>0.666} — 2 are the rele-
vant rules for the prediction of the cross (Figure 4.5¢) and group_ 10 (Figure 4.6¢)
datasets respectively. Moreover, LACE also quantifies the prediction difference of
the local rules and their values are reported in the bar plots (Figures 4.6¢ and 4.6¢).

dataset classifier | LACE Anchor
chess d RF 1.0 0.85667
— MLP 1.0 0.88467

cross d RF 1.0 0.87733
— MLP 1.0 0.87733
groups_d RF 1.0 0.87600
— MLP 1.0 0.87800

groups 10_d RF 1.0 0.65959
— MLP 1.0 0.69481

Table 4.4: Average rule fl-score fl-rule for N=100 explanations of the RF and
MLP predictions of the artificial datasets.

Feature hits Feature hits
100 o

801

60 -

40

Percentage %
Percentage %

20 -

LACEanchor  LACEanchor LACEanchor LACEanchor LACEanchor LACEanchor LACEanchor LACEanchor
chess cross groups groups_10 chess cross groups groups_10

(a) RF. (b) NN.
Figure 4.7: Rule hit percentage of LACE and Anchor visualization for the artificial
datasets for the RF (a) and MLP (b) classifiers

We then evaluate the ability of LACE to capture the true associations in form
of local rules. We compare the results with Anchor using the notions of fl-score
of rule-based explanation f1l-rule and rule hit defined in Section 4.3.1. For the
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artificial datasets, the true explanation in form of rule is represented by r={X =
z;,Y = x;}— csince the class is determined by X and Y. To compute the f1l-rule,
we map rule r to its binary representation, where we have a one for the features
present in the rules. As a result, b(r)=[1,1,0,0] for the 4-dimensional dataset cross,
chess and group and b(r)=[1,1,0,..., 0] with |r,|=10 for the group 10 dataset. We
similarly map the explanation rules 7 obtained by LACE and Anchor, setting to
one the feature belonging to the returned rules and zero otherwise. To characterize
rules, we compute the rule hit r-hit to evaluate if the rules highlighted by the
explainers match completely or partially the true explanations. In the latter case,
we expose if each rule is a subset or superset of a true explanation. For the artificial
datasets, an explanation rule 7 as a r-hit=1 if it is composed by the attributes X
and Y. A rule 7 is a subset of r if it identifies only X or only Y as relevant terms.
Finally, a rule # composed by X and Y and one or more random attributes is a
superset of the true explanation r.

Table 4.4 shows the average fl-rule for N = 100 explanations for the RF and
MLP predictions of LACE and Anchor. The results show that LACE outperforms
Anchor in the identification of the true rules. To better characterize the type of rules
determined by the two explainers, we summarize the type of match in Figure 4.7.
The bar plot representation shows the average rule hit r-hit and the partial rule hits
r-sup-hit of the N explanations for the RF and MLP classifiers. LACE successfully
captures the relevant associations. It identifies the attributes X and Y for all the
N explanations with a average percentage r-hit of 100% for all the experiments.
On the other hand, the average r-hit of Anchor ranges from 19% to 52% for the
RF classifiers and from 19% to 48% for the MLP classifiers, with an average value
of 41.75% and 39.25% respectively. The approach Anchor for about half of the
explanations finds supersets of the relevant features (r-sup-hit). The erroneous
identification of supersets of the true explanation rules is increased for the dataset
groups _10. In this artificial dataset, the number of attributes is higher.

The experimental results on the artificial dataset show that LACE identifies the
relevant associations. Differently from Anchor, it additionally provides the results
in form of feature relevance. LACE combines the strengths of feature relevance-
based explanations and rule-based ones, achieving accurate results.

4.4.3 Explanation hit for real datasets

We evaluate the quality of explanations on the real dataset COMPAS. Being a
real dataset, the true explanations is not known a priori. Hence, we cannot directly
validate explanations with the metrics illustrated in Section 4.3.1. For validation
purposes, we design two experimental settings. The first analysis consists of in-
jecting a controlled behavior in the classifier. We can then compare the injected
associations with explanations. In the second study, we consider a white-box clas-
sifier as model f to explain. The ground truth explanation can then be derived
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directly from the white-box model. In the following, we discuss the results for the
two listed sets of experiments.

Injecting a controlled behavior in classifiers.

We performed a controlled set of experiments in which we artificially injected a
controlled behavior in classifiers. Specifically, let be I={«;;, ..., a}} an itemset and
G the subgroup of instances satisfying I. In the training set, we modify the class
labels of the subgroup Gy, setting them to a target class c¢. As a result, the trained
model will learn the association of the attribute values «y, ..., a; and the class c.
For all the instances to explain matching I, we consider o, ..., o as the attributes
values in the true explanation vector t and I — c as the true local rule r. For the
feature explanation vector, we consider the attributes in I to be equally important.

For the evaluation, we used the COMPAS dataset and the RF classifier. We re-
peated the process for 20 random itemsets of length 2 to 3. For each experiment, we
generate the explanations for N=100 random instances of the explain set matching
the itemset I. We compute the cosine similarity and fl-score for the feature vector
and the fl-score and the rule hits for the rule explanations and we averaged the
results for the 20 experiments.

f-sim
LACE LIME SHAP
min 0.81 0.44 0.69
max 0.98 0.95 0.97
mean 0.93 0.75 0.89
75% 0.96 0.84 0.95
std 0.05 0.14 0.07

Table 4.5: Summary of cosine similarity results f-sim for the 20 injected behaviors
for N=100 feature vector explanations of COMPAS dataset (RF classifier).

f1-feature
LACE LIME SHAP
min 0.51 0.5 0.5
max 0.73 0.5 0.5
mean 0.60 0.5 0.5
75% 0.64 0.5 0.5
std 0.06 0.0 0.0

Table 4.6: Summary of f1-score f1-feature for the 20 injected behaviors for N=100
feature vector explanations of COMPAS dataset (RF classifier).
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precision recall
LACE LIME SHAP | LACE LIME SHAP
min 0.35 0.33 0.33 0.98 1.0 1.0
max 0.58 0.34 0.33 1.0 1.0 1.0
mean 0.43 0.33 0.33 1.0 1.0 1.0
75% 0.47 0.33 0.33 1.0 1.0 1.0
std 0.06 0.00 0.00 0.01 0.0 0.0

Table 4.7: Summary of precision and recall for the 20 injected behaviors for N=100
feature vector explanations of COMPAS dataset (RF classifier).

The summary of the results for the feature cosine similarity f-sim is reported
in Table 4.5. Specifically, the summary illustrates the minimum, maximum, av-
erage, 75% percentiles, and standard deviation of the average f-sim for the 20
experiments. The results show that LACE outperforms LIME and SHAP. Our
approach has the highest minimum, average and 75% percentiles value for both the
f-sim. LACE has also the lower standard deviation. The evaluation demonstrates
the effectiveness of LACE in identifying the correct features that determine the
prediction.

The summary of the results in terms of fl-score f1-feature is reported in Ta-
ble 4.6 . For the explainers, the f1-feature ranges from 0.5 to 0.73. To better
understand the (on average) low f1-feature we also report the summary of the
results for the precision and recall (Table 4.7). All three explainers recognize the
injected terms as relevant, with a recall on average of 1. On the other hand, they
also consider others terms as important for the prediction. We remark that we
controlled the behavior for only one subset of features, leaving the rest unaltered.
Hence, other features may still be considered relevant for the prediction by the
classifier.

LACE Anchor
min 0.93 0.81
max 1.00 1.00
mean | 0.99 0.94
75% 1.00 1.00
std 0.02 0.06

Table 4.8: Summary of fl-rule for the 20 injected behaviors for N=100 feature
vector explanations of COMPAS dataset (RF classifier).

We now evaluate the ability of the LACE and Anchor of capturing the true
(injected) associations in form of local rules. The summary of the results for N =
100 explanations for the 20 experiments in terms of fl-score f1-rule are reported in
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explainer r-hit  r-sup-hit r-sub-hit r-total
min | 58.00 0.00 0.0 95.00

max | 100.00 25.00 26.0 100.00

LACE mean | 85.70 9.15 4.9 99.75
std | 10.04 6.82 7.6 1.12

min | 28.00 0.00 0.00  95.00

Anchor max | 100.00 72.00 42.00 100.00
mean | 77.35 19.95 2.40  99.70

std | 23.96 24.10 9.34 1.13

Table 4.9: Rule hits statistics for 20 injected behaviors for the COMPAS dataset
(RF classifier).

Table 4.8. LACE achieves the best results, with the highest average f1-rule (0.99%
compared to 0.94%). We also evaluate the rules in terms of rule hit to understand
the type of rules returned by the two explainers. The summary of the results in
terms of r-hit, r-sup-hit and r-sub-hit are reported in Table 4.9 (the last column
r-total is the sum of the three terms). LACE, on average, more often identifies
fully the injected behavior, with a mean r-hit equal to 85.7% (compared to 77.35%)
and lower standard deviation (10.04% compared to 23.96%). The explainer Anchor
tends more than LACE to recognize a superset of the true local rules as important,
with a r-sup-hit on average higher (19.95 compared to 9.15). Hence, our approach
identifies with a higher rate all and only the terms in the true local rules.

Evaluation with white-box models.

For the following experiments, we leverage the decision tree as classifier f. For
this model, the actual explanation of the prediction is already available, because
it is the decision path from the root to the leaf node. Hence, we can compare the
explanations provided by different explanation methods with the actual path in the
tree, which is the correct explanation for this model.

As discussed in Section 2.1.1, the interpretability of a decision tree highly de-
pends on its size [59] since it is a proxy of model complexity. The greater is the
size, the less the model is considered understandable. For classification decision
trees, the size can be estimated by the number of nodes or by their depth. Hence,
in the experiments, we limited the depth of the decision trees and we studied the
impact of the depth on explanation quality.

Specifically, we train a decision tree classifier with default parameters and a
maximum depth dep on the training set. We then explain N=100 instances of the
explain set. For each explanation, we consider as true explanation its decision path
from the root to the leaf node. In particular, for estimating the fI-score for an
instance z, we considered as relevant attributes the ones appearing in the decision
path. We consider the true explanation ¢ as a binary explanation vector indicating
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the presence or absence of the attribute as in [81]. Hence, for this analysis, we do
not consider the cosine similarity of feature vectors. Hence, the true explanation is
a binary explanation t(x) = t1, ..., ty where ¢; is 1 if the i-th attribute belong to the
decision path, and 0 otherwise. For the rule hit, the decision path itself is consider
as the true local rule r. The number of relevant features and the length of the local
rule can be at most dep.

LACE LIME SHAP
1.0 0.418 0.870
1.0 0.514  0.810
1.0 0.573 0.572
1.0 0.688 0.688
1.0 0.777  0.775

S UL W

Table 4.10: Average feature fl-score f1-feature for N=100 explanations of decision
tree predictions for the COMPAS varying the depth of the tree.

LACE Anchor
2| 0.866 0.857
3| 0.872 0.812
4| 0.729 0.642
5| 0.768 0.665
6| 0.772 0.687

Table 4.11: Average rule fl-score f1l-rule for N=100 explanations of decision tree
predictions for the COMPAS varying the depth of the tree.

We repeat the experiments varying the depth size dep from 2 to 6. The average
results for the N=100 explanations with respect to the fl-score f1-feature are
reported in Table 4.10. LACE outperforms LIME and SHAP in all experiments in
terms of f1-feature. The results show that LACE is the best performing algorithm
in capturing the relevant features belonging to the decision path.

We now compare LACE with Anchor in terms of the fl-score of the rule-based
explanation and rule hit. Table 4.11 shows the average f1-rule for N explanations
for each evaluated depth size. The average results varying the depth size in terms
of r-hit, r-sup-hit and r-sup-hit are shown in Table 4.12 and the last column r-total
is the sum of the three terms. Our approach outperforms Anchor both in terms of
fl-rule (Table 4.11) and r-hit (Table 4.12).

Consider the decision tree classifier (DT) trained with depth=3 and a random
instance z={age__cat=25 - 45, c_charge_degree=F, race=Other, sex=Male, pri-
ors__count=8, length_of stay=1.0} of the ezplain set. The true explanation of
the prediction is derived from decision path itself. For instance z the path is the
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depth r-hit r-sup-hit r-sub-hit r-total
2 65 15 19 99
3 60 9 29 98
4 30 8 60 98
LACE 5 26 9 63 98
6 16 9 75 100
avg | 39.40 10.00 49.20 98.60
2 63 17 20 100
3 42 26 32 100
4 13 16 71 100
Anchor | 8 12 80 100
6 9 1 90 100
avg | 27.00 14.40 58.6 100.0

Table 4.12: Rule hit results for N=100 explanations of decision tree predictions for
the COMPAS varying the depth of the tree.

LIME

Local explanation for class Recidivate

SHAP value

d=COMPAS p(class=Recidivate|x)=0.63
Ypreg=Recidivate yie=Recidivate

age_cat=25 - 45 [l age_cat=25 - 45 age_cat=25-45{__ ]
c_charge_degree=F | c_charge_degree=F ¢_charge_degree=F
race=Other
race=Other | race=Other
sex=Male
sex=male1 (I sex=Male priors count=8{ ]
priors_count > 4.00 I:' priors_count=8.0 length_of_stay=1.0
length_of_stay <= 1.00 | length_of stay=1.0 Rule_1
0.0 0.1 0.2 03 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.00 0.05 0.10 0.15 0.20
Class Recidivate Class Recidivate 6 target class=Recidivate
(a) LIME. (b) SHAP. (c) LACE

Figure 4.8: LIME (a), SHAP (b) and LACE (c) explanations of a DT prediction
of the COMPAS dataset. Rule_1={age=25 - 45, #priors=8} — Recidivate.

following: #priors>2.5 & #prior<=8.5 & age!=Greater than 45 then class = ‘Re-
cidivate’. From the path we derive that priors count=8 and age_cat=25 - }5 are
the attribute values with not-null importance in the feature important vector ¢(x)
and {age=25 - 45, #priors=8} — Recidivate is the only true rule r(z).

The explanations of the DT prediction of z for LIME, SHAP and LACE are
reported in Figures 4.8a, 4.8b, 4.8c respectively. The Anchor rule for the same
instance is the following: #priors > 4.00 AND age = 25 - /5. LIME identifies
the count of prior offenses as relevant but it assigns a negative contribution to the
age between 25 and 45. SHAP correctly identifies that both the number of prior
and the age between 25 and 45 are significant to the prediction, while it assigns a
real small contribution to the term sexr=~Male that do not belong to the decision
path. However, SHAP does not clear highlight the relevance that the age and the
prior count have together. This is captured by both Anchor and LACE methods.
Again, LACE is able to provide both information. Our method identifies the true
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path in form of local rule Rule 1={age=25 - /5, #priors=8} — Recidivate and
the terms age=25 - 45 and #priors=8§ are the only relevant ones for the prediction
difference (Figure 4.8c).

4.4.4 Analysis of the neighborhood tuning.

RF NN NB
cross  discrete diff ¢ 100.00 100.00 99.50
— mean (min-maz) | 5.91 (5-7) 5.91 (5-7) 5.91 (5-7)
diff ¢ 0.00 0.00 24.82
chess_d mean (min-mazx) | 1.0 (1-5) 1.0 (1-5) 1.99 (1-5)
rouns d diff ¢ 83.00 83.00 84.58
STOUPs_ mean (min-maz) | 1.83 (1-2)  1.83 (1-2)  1.85 (1-2)
diff 0.27 0.00 0.05
groups_10_d | (min-maz) | 9.0 (1-16) 1.0 (1-16)  1.65 (1-16)
monks diff 9.41 9.82 27.27
mean (min-maz) | 5.35 (1-9) 5.46 (1-9) 5.87 (1-9)
adult diff 37.62 39.15 68.90
mean (min-maz) | 21.33 (2-35) 20.98 (2-35) 26.11 (2-35)
diff 74.09 86.35 77.05
COMPAS mean (min-maz) | 8.65 (1-13) 9.6 (1-13) 11.61 (1-13)

Table 4.13: Impact of the automatic tuning approach on the locality approximation
and on the number of iterations.

We analyze the impact of the neighborhood on explanation results. We con-
sider the 5 artificial datasets and the 2 real datasets adult and COMPAS. We
apply LACE on N=100 randomly selected instances of the explanation sets and
we evaluate the improvement in terms of local approximation e introduced by the
heuristic approach. Table 4.13 summarizes the results. For each data set, the av-
erage (mean), minimum and maximum (min-maz) number of iterations required
by the automatic approach for tuning the value of K are reported. The number of
iterations depends on the dataset and the classifier to explain.

The table then reports the effect of the automatic tuning approach on the local-
ity approximation. We compare the average approximation obtained when only the
heuristic approaches for selecting the parameter K is applied with the one obtained
with the proposed automatic approach. For each data set, we report the average
difference, referred in Table 4.13 as diff.. The automatic tuning approach yields
an average locality approximation value reduction equal to 47.8%.
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4.5 Remarks and conclusions

In this chapter, we have presented LACE, a model-agnostic explanation method
to explain individual predictions of any classifier [129]. The original classification
model is treated as a black box. The influence of both single attributes and at-
tribute subsets on the prediction for specific instances is quantified by omitting
attribute sets and measuring the prediction change. We overcome the exponential
time complexity that derives from the computation of the power set of the feature
values by learning a local model. The local model is an associative classifier that is
learned in the locality of the instance whose prediction is to be explained. It returns
the subsets of feature values that are relevant for that particular prediction. Only
these subsets are omitted.

The LACE explanations are in form of feature importance vectors and local
rules. The feature importance provides a quantitative understanding of the model
behavior indicating how each attribute value individually influences the predic-
tion. The local rules capture the relevant association of feature values to the class
assignment.

We conducted a wide range of experiments to assess the quality of the provided
explanations. Experiments performed both on synthetic and real-world datasets
highlighted the ability of the LACE explanation method to capture the relevant
attribute subsets that jointly contribute to a single instance prediction.
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Chapter 5

X-PLAIN: An interactive
framework to inspect model

behavior

Machine learning models are increasingly adopted to assist human experts in
decision-making. Especially in critical tasks, understanding the reasons behind
model predictions is essential for trusting the model itself. Investigating model be-
havior in an interactive way can provide actionable insights. For example, experts
can test their hypothesis on the model inner working, detect model wrong behav-
iors and actively work on model debugging and improvement. Unfortunately, the
black-box nature of most high-performance models hinders the exploration and the
understanding of model behavior.

This chapter presents X-PLAIN [127], an interactive tool that allows human-
in-the-loop inspection of classifier reasons behind predictions. X-PLAIN leverages
on LACE, illustrated in Chapter 4, as explanation method [129] and exploits its
properties to enable a comprehensive analysis of model behaviors. X-PLAIN directly
addresses relevant desiderata of explainable Al research outlined in Section 1.1 as
interactivity. Its support for the local analysis of individual predictions enables
users to inspect the local behavior of different classifiers and compare them. The
interactive exploration of prediction explanation provides actionable insights for
both trusting and validating model predictions and, in case of unexpected behav-
iors, for debugging and improving the model itself.

The chapter is organized as follows. Section 5.1 outlines the specification of the
interactive tool. Section 5.2 illustrate the key functionalities of X-PLAIN. Finally,
Section 5.3 draws the conclusions.
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5.1 Tool specifications

The X-PLAIN tool is implemented as a web app [127]. The source code is avail-
able at !. The back-end, which implements the data access layers and the analysis
of model behavior, is written in Python. It relies on the Flask framework [65].
The analysis operations are implemented on top of the Pandas library for dataset
processing [109], and the scikit-learn library for data mining [131]. X-PLAIN tool
leverages on LACE as explanation method and on its Python implementation [129].
The front-end is written using React.js [137], a JavaScript library for building user
interfaces.

X-PLAIN E3Datasets # Classifiers j Show Instances |,

Select a dataset
Zoo
Adult
Monks
Monks-extended

COMPAS

Dataset name Select ‘

Figure 5.1: Dataset

The X-PLAIN [127] interactive tool focuses on local interpretability for struc-
tured (i.e., tabular) data. As a first step, the users specify the structured dataset
they want to analyze by selecting an existing one or uploading it, as depicted in
Figure 5.1. We have already included in X-PLAIN several datasets so that the users
can easily try the tool. As a second step, we have the specification of the classifier.
X-PLAIN is model agnostic. Hence, it provides explanations and local inspection
for individual predictions of any arbitrary classifier. X-PLAIN requires to access to
classifiers to inspect its predictions since the model is used as an oracle. The user
can specify the classifier and perform the training. In this case, data set is split
into training and explain set. The training set is used to train classification models.
Explanations are produced for instances in the explain set. Alternatively, the user
can upload a trained classification model (in pickle format) and the dataset will be
considered as ezplain set. As a result, X-PLAIN shows the data instances and the
labels predicted by the classification model.

https://github.com/elianap/X-PLAIN-Demo
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5.2 — Key functionalities of X-PLAIN

The user can hence start with the analysis of the behavior of the classification
model. The X-PLAIN UI for the selection of the analysis to perform is shown in
Figure 5.2. In the following section, we illustrate the key functionalities of X-PLAIN.

X-PLAIN EEDatasets ¢ Classifiers j S lih Analyses

Select the analysis to perform
3 Explain the prediction
Q Mispredicted analysis
0 Target class explanation comparison
s Explanation comparison
A& User defined rules
= What If analysis

@ Explanation metadata

Figure 5.2: X-PLAIN UI - Selection of the dataset.

5.2 Key functionalities of X-PLAIN

X-PLAIN is an interactive tool that supports local inspection of individual pre-
dictions of any classifier for structured data. X-PLAIN can help data analysts and
domain experts in understanding the reasons behind specific predictions, inspect-
ing incorrect or unexpected behaviors, and comparing what different classifiers have
learned for each different class of the problem under analysis. In the following the
key functionalities of the X-PLAIN interactive tool are presented.

Explanation of an instance prediction. X-PLAIN allows the evaluation of at-
tribute value importance for the prediction of each class label, both for correct
and mispredicted instances. This feature also enables the comparison of the local
behavior for multiple target classes and classifiers.

Human-in-the-loop model analysis. Users may actively speculate and analyze
their assumptions on the local model behavior based on their prior domain knowl-
edge and perform what-if analysis by tweaking attribute values of single instances.

Explanation metadata analysis. The explanations provided by X-PLAIN provide
actionable metadata that can be collectively exploited to characterize the global
model behavior.
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5.2.1 Explanation of an instance prediction

d=zoo p(class=bird|x)=1.00 d=zoo p(class=fish|x)=0.47
ypred=b|rd Ytrue=b|rd yp,ed=fish ym,e=mammal
hair=0 - =0 1
feathers=11 featrt]grlsr=8-
egas s=1 1 eggs s=01 ——1
k=01 k=14 C———— ]
airborne=0 A airborne=0 A 0
aquatic=0 - aquatic=1 - I
predator=1 1 predator=1 1 1
toothed=0- [ toothed=1 1 I
backbone=1 backbone=1 -
breathes=1 breathes=1 1
venomous=0 - venomous=0 - 0
flns 0 fins=1 - 1
legs=211 legs=0 - 1
tail=1 - tail=1 1 L1
domestic=0 - domestic=0 A 0
catsize=0 1 catsize=1 1 —/
Rule_1 ] Rule_1 4 — 1
00 02 04 06 08 -02 00 02 04
6 target class=bird 6 target class=fish
(a) NB example of correct prediction (b) NB example of incorrect prediction

Figure 5.3: Example of explanations for the NB correct prediction of the instance
x=kiwi (a) and incorrect prediction y=porpoise (b) of the zoo dataset with respect
to the predicted class.

d=zoo p(class=mammal|x)=0.44 d=zoo p(class=mammal|x)=0.80
Yprea=fish ytrue=mammal Yprea=mammal y¢rue=mammal
hair=0 - | hair=01 ]
feathers=0 1 - feathers=0 { O
99R=9 — Sadezy |
aborne=l  ————- airborne=0 1 !
predator=1 1 | E— aqcthattlc % 0
toothed=1 { — N sethod=1 1 —
backbone=1 ] backbona—1 | i
breathes=1 1 — breathes=1 | ]
venomare= (1): |—j venomous=0 1 I
legs=01 [ fins=1 1 -
tail=1 1 0 legs=0 - 0
domestic=0 1 O tail=1 -
catsize=1 1 I domestic=0 -
Rule_1 1 — catsize=1 1 1
-04 -02 00 02 00 01 02 03
6 target class=mammal 6 target class=mammal
(a) NB (b) RF

Figure 5.4: Example of explanation comparison for the prediction of the instance
y=porpoise of the zoo dataset for the NB (a) and RF (b) classifiers with respect to
the mammal class.

X-PLAIN leverages on LACE to generate explanations [129]. Hence, given an
instance = belonging to the explain dataset it provides the prediction explanation
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with respect to any arbitrary target class c¢. The explanation captures what model
f has learned in the locality of z for class ¢ in terms of local rules and prediction
difference.

X-PLAIN exploits two important properties of LACE to provide explanation-
based analyses. The first property is that the explanations are class-dependent. As
a result, for an instance x we can observe which are the relevant attribute values
and subsets of attribute values for each target class of interest. This is particularly
interesting during the validation phase of a classification model for misclassified
instances. Varying the target class from the predicted to the true class, we can
study why the instance was incorrectly classified. The second property is the model
agnostic nature of LACE. Hence, we can compare the explanations of the same
instance for multiple classifiers.

In the following, we outline the variety of explanation-based analyses offered by
X-PLAIN.

Explanation of correctly classified instances

The explanation of a correctly predicted instance highlights why the classifier
has made that particular choice. Users can inspect the motivation behind the
prediction. Hence, X-PLAIN supports GDPR compliant (ez-post) explanations by
providing “meaningful information about the logic involved” [64]. Furthermore, the
user can compare the explanation with her prior domain knowledge and determine
if the model is “right for the right reasons”.

An example of inspection of the reasons behind a correct prediction is presented
in Figure 5.3a for the prediction of instance z=Fkiwi of the zoo dataset made by a
Naive Bayes (NB) classifier. The zoo data set belongs to the UCI repository [96].
The classification task is the identification of the biological class of animals, based
upon its 16 variables. The NB classifiers correctly assign the animal kiwi to the
bird class. The only local rules is {hair=0, feathers=1, eggs=1, milk=0, toothed=0,
backbone=1, breathes=1, venomous=0, fins=0, legs=2, tail=1} — class=bird. The
confidence of the rule is 100% with support equal to 0.24. Hence, 24% of instances in
the locality of the prediction are characterized by these attribute values and for all
of them the predicted class is the bird class. In terms of individual attribute value
contribution, we can observe from the prediction difference reported in Figure 5.3a
that having feathers, being toothless, and having two legs are the terms that mostly
contribute to the assignment of the bird class.

Explanation of mispredicted instances

The X-PLAIN tool allows interactively inspecting the classifier behavior for
misclassified instances. The explanation highlights the reasons why the classifier
wrongly assigned the class label to a particular instance. The user can interactively
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select an incorrect prediction to inspect and target class ¢ and the corresponding
explanation is presented. Domain experts can inspect it and detect if the model
has learned wrong associations. Hence, explanations (a) allow experts to compre-
hend why decisions are made, (b) enable model debugging and (c) foster model
improvements in the case of model incorrect behaviors.

An example of misprediction inspection is presented in Figure 5.3b for the pre-
diction of instance y=porpoise of the zoo dataset made by the Naive Bayes (NB)
classifier. The porpoise is an aquatic mammal. However, the NB classifier in-
correctly assigns instance y=porpoise to class fish. By exploiting X-PLAIN, users
can inspect the reasons behind the wrong assignment. The extracted local rule
is {hair=0, feathers=0, airborne=0, aquatic=1, toothed=1, backbone=1, fins=1,
legs=0, tail=1} — class="fish’. The quantitative explanation, reported in Fig-
ure 5.3b, highlights that the assignment to the fish is driven by having fins and not
legs, followed by being an aquatic animal with no hairs.

Compare the behavior for multiple target classes

X-PLAIN leverages the property of LACE of providing class-dependent expla-
nations to inspect the model behavior of the classifier for multiple target classes.
Explanations of instance z prediction provided by the same model f for different
target classes can be visually compared. Users can inspect and compare the sub-
sets of attribute values that are critical and significant for each analyzed target
class. The analysis is particularly interesting, during the phase of model valida-
tion, in case of misclassified instances. The explanation with respect to the true
label highlights which attribute values have a negative influence on the true label
assignment.

Consider again instance y=porpoise. A user may be interested in investigat-
ing why the NB classifier does not assign instance y to the mammal class. By
interactively selecting the different target classes, users can obtain the explanation
computed with respect to mammal class. The explanation, reported in Figure 5.4a,
highlights as terms that have the most negative influence in the assignment to class
mammoal the characteristics of having fins and no legs and being aquatic. The
characteristic of producing milk, one of the main distinctive features of mammals,
has a positive influence on the mammal class. However, the NB classifier does not
assign to this attribute value enough importance to drive the prediction. Hence,
a user can carefully inspect the motivations for different classes and evaluate if
the model under analysis indeed captures the distinguishing characteristics of the
studied problem.

Compare the behavior for multiple classifiers

X-PLAIN, as its integrated explanation method LACE, is model agnostic. Hence,
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it provides local inspection for individual predictions of any classifier. Explanations
of the same instance x made by different classifiers allow users to easily compare
what the different models have learned. The comparison of the local behaviors may
be exploited by domain experts to select the model that best fits a specific purpose.
Users may also select which model prediction to trust based on their prior domain
knowledge of the problem.

As an example, we consider the prediction of instance y = porpoise by a Ran-
dom Forest model (RF). The RF model correctly identifies instance y as belonging
to class mammal. Figure 5.4b shows the explanation of instance y for the pre-
dicted class. The local rule highlighted by X-PLAIN is {feathers=0, eggs=0, milk=1,
toothed=1, backbone=1, breathes=1, venomous=0} — class=mammal. The term
with the highest positive prediction difference is the animal characteristic of pro-
ducing milk. On the other hand, having no hair has a negative influence on the
mammal class assignment. Based on our knowledge of the biological class mammal
we can say that RF has captured distinctive characteristics of the mammal class.

5.2.2 Human in the loop explanation

Human-in-the-loop inspections allow users to test their assumptions on the
model internal behavior by actively investigating the classifier behavior as follows.

User rule definition

A user may interactively obtain the prediction relevance of additional, user-
defined, rules. Based on prior domain knowledge, a user may expect a combination
of attribute values to be important for the considered prediction. X-PLAIN directly
estimates the prediction difference for the new user rule(s) and includes the new
terms in the bar plot representation.

By adding and quantifying the relevance of rules based on domain expert knowl-
edge, domain specialists can confirm if the model has learned the important associa-
tions behind the prediction. A small user-rule prediction difference instead indicates
that the user-defined subsets of feature values do not drive the prediction. Domain
experts can inspect the reasons behind the prediction highlighted by explanations.
By investigating them, they can decide if trusting the prediction or not. Moreover,
experts may discover new patterns and associations from the motivation highlighted
by explanations. As an example, consider again the prediction of the NB model
for instance y=porpoise. We may be interested in investigating if NB, despite the
wrong assignment, has learned some discriminant characteristics of the mammal
class. Following the definition of the mammal biological class, we interactively de-
fine the new user rule {toothed=1, backbone=1}. X-PLAIN directly estimates the
relevance of the subset, which is equal to 0.15. The value is slightly larger than the
prediction difference of the two terms when considered alone. Hence, it shows that,
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in the NB model, this attribute value combination has a (small) positive influence
on the mammal class assignment.

What-if analysis on attribute values

d=zoo p(class=mammal|x)=1.00
Ypree=mammal yyye=mammal

hair
feathers
eggs

. rnﬁk
airborne
aquatic
predator
toothed
backbone=
breathes=
venomous=
fins=

1 —

HROR ROOHRRFHOOHO00

domestic=
catsize=
Rule_1 1

]
0.0 0.2 0.4 0.6
6 target class=mammal

Figure 5.5: Example of what-if analysis. Explanation of tweaked instance y of the
zoo data set for the NB prediction for mammal class.

What-if analysis allows users to examine how and why the prediction of x could
change if some of its attribute values were different. Users can interactively change
the value of one or more attributes at a time. X-PLAIN directly provides the expla-
nation of the prediction for the instance with the perturbed attribute values. Users
can inspect the changes in (i) predicted class label, (ii) local rules, and (iii) predic-
tion differences of the perturbed instance. Hence, they can explore model f labeling
behavior when the attributes of interest are replaced with user-defined values.

Consider again instance y=porpoise and the NB model. We analyze how the
prediction and corresponding explanation would change if the three most discrim-
inant negative terms highlighted by explanation in Figure 5.3b were different. We
tweak the fins, legs and aquatic attributes, setting them to 0, 4 and 0 respectively.
The resulting explanation computed for class mammal is reported in Figure 5.5
with local rule {feathers=0, eggs=0, milk=1, toothed=1, backbone=1, breathes=1,
venomous=0, fins=0} — ‘mammal’. The prediction and the explanation drastically
changes. The perturbed instance is assigned to class mammal. The explanation
shows that milk=1 and eggs=0 are the only terms that individually influence pos-
itively the prediction.
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5.2.3 Explanation metadata

Multiple local explanations generated by X-PLAIN may provide global insights
on the model by highlighting which attributes and subsets of attribute values char-
acterize the class assignment.

Explanation metadata provides a global understanding of the model behavior
by averaging local explanations. Multiple local explanations can be combined to
derive global insight into the model behavior [105, 138]. SHAP values in [105] are
combined to obtain global explanations as average values for global feature impor-
tances, SHAP-based partial dependence plots, and summary plots. In [138], a global
insight is provided through a submodular pick algorithm that selects a significant
set of instances and their corresponding explanations. Unlike existing solutions, we
propose multiple views of the model behavior from individual attributes to patterns.

Explanation metadata are generated by computing prediction explanations of
model f for N instances of the explain dataset, considering as target class the
predicted one, and stored in a knowledge base. Then, the average prediction dif-
ference is computed for (i) each attribute, (ii) attribute value, and (iii) pattern
derived from local rules, separately for each target class. Finally, attribute value
subsets are ranked based on average prediction difference. High-ranked combina-
tions provide a description of the global model behavior for a given target class.
By exploiting the metadata provided by a collection of prediction explanations,
X-PLAIN may reveal which attribute, individual attribute values, or subsets are
overall most discriminating for each class.

In the following, we formally illustrate the three views of the global model
behavior: attribute, item (attribute value), and local rules views.

Attribute view. The attribute view provides the indication of which attributes
are mostly considered for the prediction of a particular target class. The attribute-
based metadata, denoted as attribute-meta, is computed by averaging the predic-
tion differences with respect to a target class c:

1 X
attribute-meta. = A > (z)) (5.1)

¢ j=1

where N, is the number instances randomly sampled from the explain dataset as-
signed to the class ¢ and 6(z;) is the prediction difference for the instance z; com-
puted with respect to class c¢. d(x;) is the d-dimensional vector (where d is the
number of attributes Ay, ..., Ay) that indicates the influence of each attribute val-
ues for the prediction of ;. The d-dimensional vector attribute-meta. provides the
relevance of each attribute A; to the prediction.

As an example, consider the explanation metadata of the zoo dataset for a
NB model and set N as the cardinality of the explain dataset. Two examples of
attribute view metadata are reported in Figure 5.6, where only the top-15 terms
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d=zoo d=zoo
milk 4 [ ] fins 4 [ ]
hair - [ ] legs 1 [ ]
catsize A ] aquatic - [
eggs 1 hair -
breathes 1 1 toothed 1 1
legs 1 1 predator - 1
tail 4 1 tail 4 C1
feathers 1 ] airborne A O
airborne 1 ] venomous 1
backbone - 1] domestic |
Venomous - ] feathers 1
fins - [ breathes [
predator{ [] catsize - L ]
toothed{ ] milk1 C_——— ]
aquatic{ [ eggs1 [ ]
0.00 0.02 0.04 0.06 o0.08 -0.10 -0.05 0.00 0.05 0.10
A target class=mammal A target class=fish
(a) Attribute view - mammal (b) Attribute view - fish

Figure 5.6: Example attribute view for the predictions of the zoo dataset for the
NB classifier with respect to the mammal and fish classes.

are shown for visualization purposes. When selecting as target class the mammal
one, X-PLAIN indicates that the most distinctive attribute is milk, followed by hair
while the attributes aquatic and toothed have in general a negative contribution
(Figure 5.6a). If we select fish as target class (Figure 5.6b), we obtain that fins
and legs are the most distinctive attributes while eggs and milk have a negative
influence.

Item view. The item view reveals which attribute values are relevant for the
prediction of a specific target class c.

Let ma, = |Dy,| be the cardinality of the domain of each attribute A; €
{A;,...,As}. In the case of continuous domain, the attributes are discretized be-
fore the item view is computed. We are interested in understanding which attribute
values drive the prediction. Hence, focusing on ranges of attribute values instead
of distinct numerical values can help the user exploration on only the distinctive
terms. We remark that the discretization is only for explanation analysis purposes
and that the classifiers and the explanations are defined on the original continuous
domain. Each prediction difference vector é(z;), with j = {1,..., N}, is mapped
to a mp-dimensional vector, where mp=[[4,c4 ma,. We refer to the mapped pre-
diction difference as ¢’. As a result, the not null terms of §'(z;) correspond to the
attribute values that are relevant for the prediction of the instance x;. Finally,
we average the mapped prediction difference 0" for N explanations of the explain
dataset to obtain the item view item-meta with respect to the target class c:

item-meta, = ]\1[ > 8 (x5) (5.2)
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where again N, refers to the prediction assigned to the class ¢ randomly sampled
from the ezplain dataset. The item view shows the average contribution of attribute
values with respect to the class c.

Consider again our running example. The item view for the NB classifier for the
mammal and fish class are shown in Figure 5.7 (only the top-15 items are reported
to ease the visualization). The most distinctive items for the mammal class are
milk=1, followed by the term hair=1 while being toothless and laying eggs have a
strong negative contribution (Figure 5.7a). If the user selects the target class fish, X-
PLAIN indicates that having fins, no legs, and being aquatic are the most distinctive
terms, while not laying eggs and producing milk have a negative contribution to
the assignment to the fish class (Figure 5.7b).

d=zoo d=zoo0
milk=1 1 1 fins=1 { I
hair=11 I legs=0 1 I
eggs=0 — aquatic=1 - I
catsize=11 I hair=0 { —
legs=4 | toothed=1 A 1
breathes=1 - 1 predator=1 1 C 1
tail=1 1 1 tail=1 { 1
feathers=0 1 ] airborne=0 - 0
airborne=0 1 ] venomous=0 0
backbone=1 1 ] domestic=0 0
venomous=0 - ul feathers=01
predator=1 1 O catsize=1 1 I
aquatic=1 A | breathes=1 -
eggs=11 milk=17 [
toothed=01 I eggs=01 I
—0.15 -0.10 —-0.05 0.00 0.05 -0.3 -0.2 -0.1 0.0 0.1
A target class=mammal A target class=fish
(a) Item view - mammal (b) Item view - fish

Figure 5.7: Example of item view for the predictions of the zoo dataset for the NB
classifier with respect to the mammal and fish classes.

Local rule view. The local rule view indicates which local rules mostly drive the
assignment. It reveals which association of attribute values are generally associated
with the class label. The local rule view is computed by averaging the prediction
difference separately for each extracted local rule. The meta local rules are then
sorted with respect to the highest average prediction difference and the top-K are
shown to the user.

For our example for the zoo dataset, the most determining subset of attribute
values for the mammal class are {eggs=0, breathes=1, venomous=0, backbone=1,
feathers=0, toothed=1, milk=1, hair=1} and {breathes=1, venomous=0, backbone=1,
feathers=0, milk=1, hair=1}. For the fish target class, { hair=0, backbone=1,
feathers=0, aquatic=1, legs=0, tail=1, airborne=0, toothed=1, fins=1 } is the most
characterizing subset.
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5.3 Remark and conclusions

The chapter illustrates X-PLAIN, an interactive framework to inspect model be-
havior via a comprehensive analysis of explanations of individual predictions [127].
X-PLAIN integrates LACE [129] as explanation method and it exploits its key
features for analyzing predictions. The proposed tool enables the inspection of lo-
cal explanations. The analysis of explanations can be performed with respect to
multiple target classes and multiple classifiers for structured data. This enables un-
derstanding the key aspects learned by a generic classifier for each different target
class. Moreover, domain experts can leverage the tool during the validation of the
classification model itself for model testing and debugging.

X-PLAIN supports human-in-the-loop inspections of the model predictions. The
users can actively query the model behavior by testing their assumptions on asso-
ciations of attribute values and by performing what-if analysis. Finally, X-PLAIN
summarizes multiple local explanations to derive explanation metadata. The ex-
planation metadata provides global insights on the model behavior at different
granularity, from the importance of attribute to subsets of attribute values. Hence,
the interactive tool can help data scientists and domain experts to understand and
interactively investigate individual decisions made by black-box models.
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Chapter 6

DivExplorer: Understanding
subgroup divergence via patterns

The chapter focuses on enhancing the understanding of model behavior from the
data subgroup perspective. We present DIVEXPLORER [126], a novel approach that
identifies and characterizes data subgroups in which a model behaves differently.

We introduce the notion of divergence to estimate the different classification
behavior in data subgroups with respect to the overall behavior. A subgroup is a
subset of the data characterized by a pattern, i.e. a conjunction of attribute-value
pairs. The divergence of the subgroup measures the difference in statistics such as
false positive and false negatives on the subgroup compared to the entire dataset.
We use the classification performance as a proxy of the behavior of classification
models.

The identification of data subgroups in which a machine learning model per-
forms differently is relevant in many applications such as model validation and
testing [33, 145], model comparison [33, 85], error analysis [169] and evaluation of
model fairness [26, 33]. The analysis of divergent subgroups provides indications of
model behavior in data subgroups. Moreover, divergence exploration can reveal in
which subgroups a model performs poorly, helping data scientists in model debug-
ging. It may also reveal if divergence from the overall behavior occurs for sensitive
attributes.

As an example, consider the COMPAS dataset [8] containing demographic in-
formation and criminal history of defendants. For each criminal defendant, the
COMPAS score of recidivism risk assesses the defendant’s likelihood of committing
another offense in a period of two years. COMPAS scores are determined by a pro-
prietary algorithm and we do not have access to its inner workings. We compare the
predicted recidivism rate with the actual one. The overall false positive (FPR) and
false negative (FNR) rates are 0.088 and 0.698, where the positive class indicates
being a recidivist. However, the rates are different when subgroups are consid-
ered (see Table 6.1). The subgroup identified by pattern (age=25-45, #prior>3,
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[temset

age=25-45, #prior>3, race=African-Am, sex=Male FPR=0.308
age>45, race=Caucasian FNR=0.929
race=African-Am, sex=Male FPR=0.150
race=African-Am, sex=Male, #prior>3 FPR=0.267
race=African-Am, sex=Male, #prior=0 FPR=0.097

Table 6.1: Example of patterns in the COMPAS dataset, along with their FPR or
FNR. The overall FPR and FNR are 0.088 and 0.698.

race=African-American, sex=Male) has a FPR equal to 0.308. Instances belonging
to this data subset tend to be wrongly assigned to high risk of recidivism with a
rate higher than the dataset overall. On the other hand, the FNR of the pattern
(age>45, race=Caucasian) is 0.929, indicating that Caucasians with age greater
than 45 tend to be wrongly labeled with a low risk of recidivism more than in the
dataset overall.

Several existing approaches that explore differences in subgroup behavior [19,
85] require users to specify the attributes or attribute values of interest. An overview
of these approaches is presented in Section 2.2.1. They require human expertise, and
this may hinder the identification of unexpected and previously unknown critical
subgroups. Instead, our approach belongs to automatic subgroup detection tech-
niques also refer to as unsupervised techniques. An overview of these approaches
is illustrated in Section 2.2.2. Differently from existing methods [26, 33, 83|, we
introduce algorithms that allow us to efficiently estimate the divergence in classifier
behavior for all subgroups with the condition of being sufficiently represented in
the dataset. Furthermore, our approach is model agnostic. Hence, it treats the
classification model as a black box, without knowledge of its internal working.

The contributions of the approach outlined in this chapter are both theoretical
and algorithmic and are implemented in the DIVEXPLORER package [124]. On the
theoretical side, we introduce the notion of divergence over itemsets, and we provide
a way of measuring its statistical significance that is informed by Bayesian statistics.
Next, we introduce the use (and generalization) of Shapley values to analyze the
contribution of atomic patterns (single-attribute patterns such as sex=Male) both
within larger patterns, and overall in the dataset.

Recall our example dataset COMPAS. Once we determine that the pattern
(age=25-45, #prior>3, race=African-American, sex=Male) has high divergence,
one might wonder about the relative contribution to divergence of the four members
of the pattern, to which we refer as items. The problem of measuring individual
contributions to a collective outcome has been considered in game theory, and
the celebrated notion of Shapley value [150] answers precisely this question. We
propose to apply Shapley values to divergence analysis. This will enable us to
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determine that the item contributing most to the divergence is #prior>3, followed
by race=African-American, with sex=Male giving only marginal contribution (see
Figure 6.2).

In a dataset such as COMPAS, one is often interested not only in analyzing
particular patterns where divergence is high (of which there are many; see Table 6.2
and Figure 6.7), but also in understanding what is the role of each item in leading to
divergence across all patterns. The simplest approach is to measure the individual
divergence of the item in isolation. We propose to extend the notion of Shapley
value to measure the contribution to divergence of each item, in the context of
all other items. The result, which we call global divergence, measures how much
an item contributes to increasing the divergence when added to patterns. We
prove that our generalization satisfies the fundamental axioms of Shapley values,
stated in our modified context. Individual and global item divergence have different
properties. We argue that among the two, global divergence is often a better
measure of the effect of an item on divergence. In fact, individual item divergence
is often unable to capture divergence that results from the association of multiple
items. Global item divergence captures such associated contributions, due to its
basis in the team-analysis underlying Shapley values (see Figure 6.4).

The second class of contributions is algorithmic, and they rest on the realiza-
tion that item and pattern divergences can be computed efficiently by augmenting
well-known frequent pattern mining algorithms [156] ( illustrated in Section 3.2 ).
This enables us to efficiently compute the divergence of all patterns whose support
(frequency in the dataset) is above a specified threshold. A boundary on support
is reasonable, as patterns with small support are less relevant, due to the few data
instances they affect, and measurements on them are more affected by statisti-
cal fluctuations. We provide experimental results on multiple real-world datasets
showing that our algorithms enable full exploration up to the support threshold
typically in a matter of seconds (see Figure 6.6).

The need for a complete exploration derives from the consideration that the con-
sidered metrics to estimate differences in classification performance are not mono-
tone. Therefore, from the divergence of a pattern, we cannot make assumptions on
the divergence of the patterns that are contained in it. Let G and H be two data
subsets of dataset D, with H C G C D. The divergence of H can be higher, equal,
or lower than that of its superset G.

Previous approaches, such as [33] illustrated in Section 2.2.2, adopted heuristics
to prune the search, stopping when divergence reaches sufficient values, or when
a prescribed number of divergent patterns has been found. Our complete explo-
ration not only enables the measurement of metrics such as global divergence, but
also makes visible phenomena that might be invisible under pruning. One of the
most intriguing is the notion of corrective items, which are items that reduce the
divergence when added to patterns.

In summary, our main contributions, implemented in DIVEXPLORER are as
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follows.

o Divergence. We introduce the notion of divergence and we characterize each
relevant data subgroup by its divergence. We estimate the local contribution
of each attribute value to the subgroup divergence through the notion of
Shapley value.

o Global item divergence. We generalize the notion of Shapley value to estimate
the global contribution to divergence of each attribute value.

o Corrective attribute value. We introduce the notion of corrective attribute
values, which tend to renormalize the divergence.

o Bayesian treatment of statistical significance. We propose a way to measure
the statistical significance of the results that can be applied to black-box
classifications.

o Divergence computation algorithm. We propose an efficient algorithm to auto-
matically extract and explore all divergent subgroups with sufficient support.

The chapter is organized as follows. Section 6.1 provides our main definitions of
divergence and statistical significance. Section 6.2 uses the notion of Shapley value
to define local and global item contribution to divergence. Section 6.3 introduces
our algorithm, and Section 6.4 presents experimental results on several real-world
datasets, reporting running times and divergence results. Section 6.5 shows how the
notion of divergence and its analysis can be generalized to multiple tasks beyond
classification. Finally, Section 6.6 draws the conclusions.

6.1 Itemset Divergence

In this section, we firstly introduce basic concepts and definitions. We then
define the notion of pattern divergence.

Background. We consider a structured dataset D consisting in a set of instances
over a set with schema A. We assume that every attribute a € A can take a discrete,
finite set D, of values, and we let m, = |D,|. An instance x € D assigns value x(a) €
D, to every attribute a € A. We only consider discretized attributes; continuous-
valued attributes are discretized before our analysis techniques are applied.

6.1.1 Outcome Function and Itemset Divergence

Consider a dataset D with schema A, alongside a function h : 2P + IR. The
function h represents a statistic that can be computed over (subsets of) the dataset,
such as the false positive or negative classification rates. For an itemset I, we write
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for brevity h(I) for h(D(I)), denoting h evaluated on the set of instances that
satisfy 1.

We define the h-divergence over an itemset I as the difference between the
statistics h as measured on I, and as measured on the complete dataset.

Definition 6.1.1. (itemset divergence). Let I be an arbitrary itemset in dataset
D and h : 2P — IR a function defined over subsets of the dataset. The h-divergence
of itemset [ is:

An(I) = h(I) = h(D) (6.1)

We do not provide h directly to DIVEXPLORER. Rather, we specify h as the
outcome rate of an outcome function. This will be instrumental in allowing the
efficient algorithmic computation of itemset divergences.

Definition 6.1.2. (outcome function and positive outcome rate). Given a dataset
D, an outcome function is a function o : D +— {T,F, L}. The positive outcome rate
ho(X) of 0 over a set of instances X C D is defined as
() — [z € X Loz =) 62)
{z € X |o(x) # L}

Thus, instances x with o(x) = L are not considered in the computation of the
positive rate. In the thesis, we concern ourselves with classifiers and inspecting their
behavior. Therefore, the outcome o(x) will indicate whether = is a false-positive,
or false-negative, instance in the classification. In Section 6.5, we introduce a
generalization of the notion of divergence to multiple scenarios as scoring and ranker
systems.

In classification tasks, if v : D — {T,F} is the ground truth, and if v : D —
{T,F} is the classification outcome, to study the false-positive rate we use

T if u(z) A —v(x);
o(x) =<qF if —u(z) A —w(z); (6.3)
1 if u(x).

An outcome function reflecting the false-negative rate can be similarly defined.
If we wish to study the positive rate of the ground truth, we can obviously set
o(z) = v(x) for z € X. The classification outcome u can be the output of a generic
classification model, making the approach model agnostic.

We will refer to Ay(7) as the h-divergence of I. When o is the false positive
outcome, we will call this the false positive divergence of I, and so forth. When h
is generic or can be understood from the context, for brevity we omit it by using
the notation A(7).

By relying on a Boolean outcome function, we can apply DIVEXPLORER to
classifiers as black boxes, without the need for accessing their internal loss or clas-
sification probability, as would be needed for real-valued outcome functions. As
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Figure 6.1: Individual item divergence for false-positive rate of prior attribute
value of the COMPAS dataset where the attribute is discretized in 3 (a) and 6 (b)
intervals (s=0.05.)

we shall see in Section 6.4.1, the focus on Boolean outcome functions also allows
efficiently exploring itemsets and measuring their divergence.

The DIVEXPLORER tool supports multiple metrics to assess classifier perfor-
mance, such as accuracy, misclassification error, positive predictive value, true pos-
itive and negative rates, false discovery, and false omission rates. We will mostly
focus on false positive and false negative rates as our measures h of interest. This
allows us to study the different classification behavior of the classifier in data sub-
groups.

The h-divergence satisfies the following property.

Property 6.1.1. (divergence is not hidden by finer discretization). Let X be a
set of instances, and let Xy, .., X,, be a partition of X, so that U ; X; = X and
X;iNX;=0for1<i<j<n. For any h-divergence measure, there is at least one
subset X;, 1 <1 <n, with h-divergence equal or greater than X in absolute value.

The property holds because the divergence of X is simply the weighted average of
Xy,...,X,, where the weight of X; is the number of instances with non-bottom
outcome function in X, for 1 <7 < n. The property has an important implication
for the discretization of continuous-valued attributes. If we refine a discretization,
for every divergent itemset in the coarser discretization there is at least one finer
itemset that has equal or greater divergence. In other words, a finer discretization
never hides divergence. This is illustrated in Figure 6.1: when the item #prior>3
is split into the two finer ones #prior=/[4-7] and #prior>7, the finer #prior>7 has
greater divergence than #prior>3.
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6.1.2 Statistical Significance

Once an itemset with high divergence is identified, the question arises as to
whether the divergence is statistically significant, or whether it originates from
statistical fluctuations due to the finite size of the itemset. We can exploit the fact
that the outcome function is Boolean, and follow an approach based on Bayesian
statistics.

Our aim is to estimate the precision in the knowledge of the positive rate. We
reason as follows. Consider a Bernoulli trial (a coin toss) with outcomes T with
probability Z, and F with probability 1 — Z. In our setting, the Bernoulli trial is
the evaluation of the outcome function o over an instance in the itemset, and Z is
the positive rate in the itemset. Before any trial is carried out, Z is not known,
and it is natural to assume a uniform prior, which is the least information prior,
Pr(Z = z) =1 for 0 < z < 1. If we then perform trials and we observe k™ T
outcomes and k£~ F ones, that is, if

Fr=lolzTho@) =1}, k ={a|zk1Ao()=F}
we can use Bayes’ rule to obtain the posterior distribution for the positive rate Z:
Pr(Z =2) = k2" (1—2)" = Beta(k* +1, k= +1)(2) ,

where 2z € [0,1], Beta(a, 3)(z) = k2*71(1 — 2)P~! is the Beta distribution with
parameters «, 5, and k is a normalization constant ensuring the distribution’s in-
tegral in [0,1] is 1. This states the well-known fact that the Beta distribution is
the posterior distribution that results from carrying Bernoulli trials starting from
a uniform prior. We can then measure the mean and variance of our positive rate
Z via the mean p; and standard deviation v; of the Beta distribution:

_ ke (kT +1)(k” +1)
okt k42 " etk + 22 (kT + bk +3)

" (6.4)

Once mean and variance are known, we can compare the positive rate on I to the
positive rate on the whole dataset using Welch’s t-test:

_ pr = pol

Vvi+tuvp

The advantage of the form (6.4) with respect to simply considering the mean and
variance of the outcome function includes numerical stability when k™ + k= = 0,
which happens when the outcome function is L on the itemset (e.g., if we are
measuring the FPR in an itemset where all instances have ground-truth v = T).

t
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6.1.3 Frequent Itemsets and DivExplorer

The number of itemsets in a dataset is exponential in the number of attributes.
Many itemsets may have very small or empty support, and these itemsets are of
lesser interest for divergence analysis, for two reasons. First, in itemsets with small
support, the measure of the positive rate of o will be affected by statistical fluctu-
ations, as discussed. Second, it is reasonable to assume that divergence affecting a
larger portion of the dataset is more consequential than divergence affecting only a
smaller portion of it. For these reasons, DIVEXPLORER will only consider frequent
itemsets, that is, itemsets I whose support size sup(I) is above a given threshold s
specified at the outset of the exploration.

The problem of finding all frequent itemsets in a dataset is a fundamental one in
data mining, and much effort has been devoted to developing efficient algorithms
for this task; see, e.g., [3, 70]. An overview of these approaches is proposed in
Section 3.2. DIVEXPLORER will leverage those algorithms, augmenting them so
that the performance statistics h can be computed for all frequent itemset. The
detailed algorithms are presented in Section 6.3.

6.1.4 Summarizing divergent itemsets

To provide a compact representation of pattern divergence, we present a post-
exploration pruning approach. A pattern [ is pruned if there exists an item o € [
whose absolute marginal contribution is lower than a threshold e, i.e. |A,(I) —
Ap(I'\{a})| <e. The pattern I\ « captures the divergence of pattern I, since the
inclusion of item « only slightly alters the divergence (slightly with respect to the
threshold €). In Section 6.4.3, the impact of the € input parameter on the number
of resulting itemsets is studied.

6.1.5 Owur Running Example: COMPAS

As a running example to illustrate the previous definitions, we again consider
the COMPAS dataset. We compare the predicted recidivism rate with the actual
rate, defined as the new occurrence of a misdemeanor or felony offense over a two-
year period. For an instance (a person) x, we let v be the ground truth, with
v(z) = T iff recidivism occurred, and v(x) = F if none occurred. The classification
outcome u(z) corresponds to the output of the COMPAS system. We let u(z) =T
if COMPAS classifies person x as being at high recidivism risk, and F otherwise.

Table 6.2 shows the most divergent patterns with respect to the false posi-
tive rate (FPR), false negative rate (FNR), error rate (ER) and accuracy (ACC)
for a support threshold s=0.1. The pattern with highest false-positive rate di-
vergence is I} = (age=25-45,#prior>3, race=African-American, sex=Male) with
Appr(11)=0.220. The model tends to be biased towards African-Americans with

96



6.2 — Item Contribution to Divergence

Itemset Sup AFPR t
age=25-45, #prior>3, race=Afr-Am, sex=Male 0.13 0.22 7.1
age=25-45, #prior>3, race=Afr-Am 0.15 0.211 74

age=25-45, charge=F, #prior>3, race=Afr-Am 0.11 0.202 6.2
Sup Apng t

age=25-45, stay<week, #prior=0 0.15 0.236 12.1
charge=M, stay<week, #prior=|[1,3] 0.10 0.233 12.2
age>45, race=Cauc 0.10 0.231 10.3
Sup Agr t
age<25, stay<week, race=Afr-Am 0.10 0.098 4.7
age<25, stay<week, sex=Male 0.13 0.095 5.2
age<25h, race=Afr-Am, sex=Male 0.11 0.090 4.5
Sup AACC t
stay<week, #prior=0, race=Cauc 0.12 0.141 8.4
charge=M, stay<week, #prior=0 0.15 0.133 8.6
charge=M, #prior=0 0.16 0.129 8.5

Table 6.2: Top-3 divergent patterns with respect to FPR, FNR, error rate (ER)
and accuracy (ACC) for the COMPAS dataset. The support threshold is s = 0.1.

age in the range 25-45 that have a high number of prior offenses. These three items
are shared for all the top-3 FPR divergent patterns. Another influencing item is
having been convicted of a felony (charge=F).

The results also indicate that the model has a higher false negative rate for
people with fewer than 3 prior offenses, short stays in jail (stay<week), and having
a prior conviction of a misdemeanor charge (charge=M) rather than a felony. Cau-
casians with age greater than 45 also have higher-than-overall FNR. We note that
the model has a higher error rate for African-American defendants with age lower
than 25 and short stays in jail. The model tends to be more accurate for Caucasian
defendants with short stays in jail and no prior offenses.

6.2 Item Contribution to Divergence

Once itemsets with large divergence are identified, such as those of Table 6.2,
the question arises as to which of the items appearing in the itemsets are most
responsible for the divergence. We introduce methods both for attributing the
divergence of an itemset to its items and for estimating the overall impact of an
item on divergence. Our definitions are based on the notion of the Shapley value
of a player in a coalition.
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6.2.1 Shapley Value

The Shapley value [150] is defined in the context of a cooperative N-player game.
Let v(o) be the value that can be attained by a coalition o C {1,..., N} of players.
When all players cooperate, they can achieve the value v({1,...,N}) = v*. The
Shapley value measures the contribution (i) of each player to v*, in such a way
that SN, #(i) = v*. The Shapley value of player i, for 1 < i < n, is given by:

b(i) = (Z )v(a[:i]Jr) —v(o:]7) (6.5)
=y AT G ) ).

dC{L,...N}\{i}

where 7(1, ..., N) is the set of permutations of 1,..., N, and where, for a permuta-
tion o, o: i]T is its prefix up to i included, and of[: 9|~ is its prefix up to i excluded.
The Shapley value is the unique value assignment that satisfies the four properties
of symmetry, efficiency, linearity and null player:

o Symmetry: all players are treated the same, that is, for 1 < i < j < N, if
06U {i}) = 06U {}) for all 6 C {1,.... N}i. 7}, then o(i) = 5()).

o Efficiency: all value is subdivided:

> o) =v({1,...,N}). (6.6)

1<i<N

o Linearity: If two games with value functions v, w are combined yielding a
single game with value function v + w, the Shapley value of each player is
given by v + .

o Null Player: if a player does not contribute, i.e., if v(¢ U {i}) = v(¢) for all
¢ CA{L,...,N}\ {i}, then 0(i) = 0.

6.2.2 TItem Contribution to Itemset Divergence

The notion of Shapley value directly yields a way to measure the (local) contri-
bution of an item to the divergence of an itemset.

Definition 6.2.1. (item contribution to itemset divergence). Given an itemset [
and an item « € I, the contribution A(a | I) of « to the divergence of [ is:

SN =[] = 1)!

Ala | 1) = Z 1]

JEIN{o}

A(JUa) - AW)]. (6.7)

98



6.2 — Item Contribution to Divergence

Arpr(all) Arnr(afl)
#prior>3 - | #prior=0 - |
race=Afr-Am 4|
stay<week -
age=25-45 {]
sex=Male {] age=25-45 ‘D
0.00 0.05 0.10 0.0 0.1

Figure 6.2: Contributions of individual items to the divergence of the COMPAS
frequent patterns having greatest false-positive and false-negative divergence.

In (6.7), if I is a frequent itemset, then all the itemsets appearing in the for-
mula are frequent, being subsets of I. Therefore, we can compute the local item
contributions to frequent itemsets on the basis of the exploration performed by
DIvEXPLORER, which is limited to frequent itemsets.

Consider again the COMPAS dataset. Figure 6.2 gives the item contributions to
the divergence of the frequent itemsets with largest false-positive and false-negative
divergence. The item with the greatest influence on the false-positive divergence
of the itemset is whether the person has at least 3 prior criminal charges. This
is followed by belonging to the African-American race. The sex=Male item gives
only minor contribution. For the divergence in false-negative rate, the greatest
contribution is given by not having prior convictions. In general, we see that the
items’ contribution to itemset divergence can be quite different.

We note that the Shapley value tends to under-estimate the contribution to
divergence of correlated items appearing jointly. For example, consider two fully-
correlated items a and f in itemset I U {a, 8}. When appearing jointly, o and
[ are attributed only part of the contribution to divergence that they receive in
isolation.

This effect is intrinsic to the way in which the Shapley value attributes contri-
bution symmetrically. In DIVEXPLORER, users can explore the lattice around any
divergent itemset (see Section 6.4.4). The lattice would show that the divergence
of I U{a, B} was already present in I U {«a} and I U {S}. Users can appreciate
the contribution of the items a and [ by looking at their contributions to these
shorter itemsets. Furthermore, this situation is mitigated by the redundancy prun-
ing described in Section 6.1.4. According to this pruning, the itemset I U {c, 8} is
omitted from the output, since it is no more divergent than its subsets / U{a} and

1U{B}.
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6.2.3 Corrective Items

Divergence is not monotonic: I C J does not imply A(I) < A(J) for itemsets
I, J. We call items that decrease divergence when added to an itemset corrective
items.

Definition 6.2.2. (corrective item and corrective factor). Given an itemset I and
an item a ¢ I, we say that « is a corrective item for I if |A(1 U a)| < |A(I)|. The
corrective factor of o w.r.t. Iis |A(I)] — |A(L U a).

By performing an exhaustive exploration of all frequent itemsets, DIVEXPLORER
can identify the corrective items.

I corr. item  A(I) A(lU«a) c_f ¢
FPR
race=Afr-Am, sex=Male #prior=0 0.062 0.009 0.053 2.8
race=Afr-Am #prior=0 0.051 -0.001 0.0513.4
stay<week, #prior=0 race=Afr-Am -0.044 -0.003 0.041 3.1
FNR
charge=F, race=Afr-Am, .
e Tl #prior=[1,3] -0.123 -0.011 0.1123.8

charge=F, race=Afr-Am #prior=[1,3] -0.113 0.004 0.109 4.3
race=Afr-Am, sex=Male charge=M  -0.090 -0.001 0.089 3.3

Table 6.3: Top corrective items for FPR and FNR of COMPAS dataset.

race=Afr-Am 1
sex=Male A 1]
#prior=0 - =

0.050.00 0.05

Figure 6.3: An itemset where an item has a negative divergence contribution.

Table 6.3 shows the top corrective items for false-positive and false-negative di-
vergence in COMPAS. The FPR-divergence of itemset I3=(race=Afr-Am, sex=Male)
drops from 0.062 to 0.009 when item #prior=0 is included, with a corrective factor
of 0.053. The absence of prior convictions tends to lower the wrong assignments of
African-American male defendants to the recidivist class to a similar FPR rate to
the overall.

Figure 6.3 shows that the corrective effect of having no prior convictions is
also reflected in the item contributions to the divergence of the corrected itemset,
measured according to the Shapley value.
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6.2.4 Global Item Divergence

Given an individual item «, there are two ways of measuring the effect of «
on divergence. One is via its divergence A(«a) defined in (6.1). This individual
measurement is the most common way of measuring the effect of an item on di-
vergence. For example, when studying the effect of race = African-American on
classification, we can measure the false-positive or false-negative divergence for this
item, to see if the classifier behaves differently for people in the support-set of the
item compared to people at large.

Another way of measuring the effect of an item on classification is to consider
the effect of adding the item to other itemsets. As this measures the effect of the
item on all itemsets, it provides a global measurement of the effect of the item.
Roughly, the global divergence of an item will tell us whether the item « tends
to skew the classification in every possible context. The definition is based on the
notion of Shapley value, adapted to account for the fact that only items for different
attributes can be part of the same itemset.

Definition 6.2.3. (global itemset divergence). Let D be a dataset with schema A,
and let A be the divergence of its itemsets measured for a given outcome function.
We define the global divergence A9(I) of an itemset I of D as:

A= Y [BIN(A] = |B] = )} > [agun-AW)]. (6.8)

|
BCA\attr(I) ’A| HbGBUattr(I) my Jelp

The definition parallels (6.5), except for the additional factor 1/(ITye puattr(r) %)
which is necessary to normalize the sums, accounting for the number of different
itemsets with given attributes. The following theorem gives the properties of the
above notion of global divergence. Together, these properties formalize the fact
that (6.8) is the generalization of Shapley value to the itemset case.

Theorem 1. (properties of global divergence). Consider a dataset D with set A of
attributes, alongside a divergence A for its itemsets. The global divergence defined
as in (6.8) satisfies the following properties:
o Efficiency:
1
Y>> Aa=c) = T > A(I). (6.9)
a€A ceD, |Zal I€Za
o Null items: if there is an attribute a € A such that, for all ¢ € D, and all
itemsets [ € Z with a ¢ attr(), A(I) = A(I U{a = c}), then AY(a = ¢) = 0.
Furthermore, under the above hypotheses, removing a from A does not affect
the value of A9(I) for any itemset I not containing a.

o Symmetry: if for two itemsets I, I’ we have A(JUI) = A(JU!l') forall J € T
with attr(J) Nattr(7) = 0 and attr(J) Nattr(I’) = 0, then AI(I) = AI(I").
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e Linearity: If two notions of divergence A, Ay : 2% = IR are combined into a
single one A = ;A1 + A, via a linear combination, for every item I we will
have AY(I) =y A{(I) + 1 AJ(I), where A9 is computed from A, and A{, AJ
from Ay, Ag, respectively.

These properties are the generalization of the corresponding properties of Shap-
ley values. The difference in the forms is due to the fact that there is more than
one complete itemset.

Accounting for support lower bound. In DIVEXPLORER we cannot use (6.8)
directly, as it involves the consideration of all itemsets. Rather, we opt for an
approximation of (6.8), in which we limit the summation to frequent itemsets,
whose support is at least s. Let Zj; be the set of frequent itemsets with attributes
B. We define the global divergence approximated to support s via:

A9(I,s) = (6.10)
3 | B|'(|A] — |B] — |1])!

|
BCA\attr(I) ‘A| . HbeBUattr(I) mMp J:JUIGI}*BUM“(I)

A(JUT) = A()].

If I is frequent, the summations can be computed in terms of frequent item-
sets only, and the approximation can be computed on the basis of the output of
DIvVEXPLORER, which only outputs frequent itemsets.

6.2.5 Global vs. Individual Item Divergence

For an item «, we can measure both the individual divergence A(a) defined
by (6.1), and the global divergence A9(cv, s) defined by (6.10). The individual di-
vergence A(a) is independent of the support threshold (provided the item itself is
above the threshold). The global divergence A%(a, s), on the other hand, depends
on the support threshold s chosen for its analysis.

The value of global divergence lies in its ability to highlight the role of items in
giving rise to divergence via association with other items. For instance, assume that
in a dataset there are two items «, 5 that cause divergence in the itemset {«, 5},
but less so in isolation. The individual divergence of a and 8 may be low, masking
the effect of the items when jointly present. On the other hand, global divergence
is able to capture the effect of @ and 3 on divergence, provided the itemset {«, 5}
has support above the threshold. We make this observation precise via a theorem,
and via an example on an artificial dataset.

Theorem 2. (individual and global divergence do not coincide). There is a dataset
D with schema A, a minimum support s > 0, and items a = ¢ for a € A, ¢ € D,,
such that A(a =c¢) =0 but AY(a =¢,s) # 0.
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To illustrate how global item divergence is able to capture the role of items
that cause divergence when joint with other items, we constructed an artificial
10-dimensional dataset, denoted artificial, with 50,000 instances and attributes
a,b,c,...,7 with domain {0, 1}.

We construct the dataset, and a classifier, so that the itemsets a =b=c =1
and a = b = ¢ = 0 are divergent. To this end, we create the instances by setting
each of their attributes a, . . ., j randomly and independently to values 0 and 1, with
equal probability. We first train a classifier with respect to a class label that is T
when @ = b = ¢ and F otherwise. Then, to simulate classification errors, during
test, we flip the class label for half of the instances in a = b = ¢ (without retraining
the classifier).

The global and individual item divergence for the false positive rate, analyzed
with minimum support s = 0.01, are given in Figure 6.4. We see that individ-
ual item divergence is unable to capture the role of a,b,c, together, to cause
high divergence. The divergence of a = b = ¢ is completely masked by statisti-
cal fluctuations in the overall dataset, to the point that unrelated items such as
g=20,9g=1h=0,h =1 have much larger individual divergence that items for
attributes a, b, c. On the other hand, the global divergence is clearly able to identify
the attributes a, b, ¢ as those causing divergence when appearing together.

For the COMPAS dataset, Figure 6.5 compares the global and individual false-
positive divergence for items. Global divergence assigns more importance to racial
factors: for instance, being African American introduces almost as much bias to an
itemset as having been convicted more than 3 times. This indicates how race plays
a role jointly with other factors in creating highly divergent itemsets.

6.3 The DivExplorer Algorithm

The DIVEXPLORER algorithm extracts frequent subsets of attribute values and
estimates their divergence. The computation is embedded in the frequent pattern
extraction process, and DIVEXPLORER can leverage any frequent pattern mining
(FPM) technique [156] to extract frequent subsets. More specifically, when the
support of an itemset is estimated, the outcome function o and outcome rate h are
also computed. Hence, the performance of DIVEXPLORER directly depends on the
efficiency of the selected FPM algorithm, because the dataset is accessed as many
times as the selected underlying FPM method does.

FPM algorithms require discrete data. Thus, continuous attributes (if any)
are firstly discretized. This discretization is only performed after the classification
process. In particular, DIVEXPLORER does not require the classification algorithm
to rely on discretization.

Algorithm 2 outlines the main steps of DIVEXPLORER. Given the input data
set D, the ground truth v, the classification outcome u, the outcome function o, and
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Figure 6.4: Relative magnitudes of A9 (+, s) and individual item divergence, for false-
positive rate in the artificial dataset. The attributes a, b, ¢ give raise to divergence
when appearing together: global divergence captures this.
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Figure 6.5: Relative magnitudes of global Shapley value and individual item diver-
gence, for false-positive rate in the COMPAS dataset with s = 0.1

outcome rate of interest h, the algorithm returns the divergence coefficient for all
frequent itemsets. The algorithm requires the definition of the minimum support
threshold s as its (single) input parameter.
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Algorithm 2: The DIVEXPLORER algorithm.
Input: D, u, v, 0, h, s
Output: FP divergence F'Pa
o(D) = computeOutcomeFunction(D, o, h);
Tp, Fp, Lp = OutcomeOneHot Encoding(o(D));
FI_withOutcomes = [[;
for step; in Frequent Pattern Mining steps do
Itep, = extractitemsets(D, step;);
for I in Is.p, do
T, Fr, L = cardinalityOutcomesI(I, (Tp, Fp, Lp));
if (T[ + Fr + J_[)/len(D) > s then
| FI_withOutcomes.append(I, (T1,Fy, L1));
end
end
end
F Py, = evaluateFunctionh(F1_withOutcomes, h);
F Py, = divergence(F Py, h(D));
return F'Py,

© 00 N O Uk W N =

-
o

e
DR W N R

The first step (Line 1) of Algorithm 2 computes the outcome function on all
instances * € D (see Section 6.1.1). The outcome function results are then the
inputs to the OutcomeOneHotEncoding function that maps each outcome to a one-
hot representation. More specifically, for each instance x € D, T,, F, and 1, are
estimated, with T, equal to 1 if o(z) = T and 0 otherwise (F, and L, are computed
analogously). This representation enables us to tally the outcome function values
simply by adding the one-hot representations. The results are Tp, Fp and 1n
one-hot representations of outcome function o(z) for dataset D.

Next, for each step; of a generic FPM technique, itemsets are extracted (Line 5).
The general function eztractltemsets extracts the itemsets to be evaluated for sup-
port threshold at step; and varies depending on the FPM algorithm of choice. For
example, step; could be level 7 iteration in level-wise approaches such as Apriori [3],
or the recursive step performed by FP-growth [70] on the FP-tree compressed repre-
sentation. We implemented both an Apriori-based and an FP-growth-based version
of DIVEXPLORER.

The cardinalities T;, F;, L of each itemset I extracted at step; are then esti-
mated, with T, = {z |2 E I Ao(z) = T}|, F; = [{z | * = I Ao(x) = F}| and
1=Kz |z EINo(zr) = L}|. Note that function cardinalityOutcomesl does not
require access to the dataset D, because it is integrated into the FPM algorithm.
T;, Fr and L; are computed as the sum of the Tp, Fp and j_D terms that satisfy I.
The sum of T;, F; and L represents the support count of itemset I, i.e. | D(I) |.
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Hence, it is exploited to estimate if I is frequent, i.e. with a support greater or
equal than s (Line 8). Frequent itemsets and their cardinality outcomes are stored
in FI_withOutcomes (Line 9).

Once all frequent itemsets are extracted, the outcome rate of outcome function h
is estimated for all frequent itemsets with evaluateFunctionh (Line 13). Finally, the
h-divergence (Equation 6.1) of all frequent itemsets is computed (Line 14) and re-
turned (Line 15). The extracted frequent itemsets can be ranked according to many
different metrics, such as their statistical significance, support, or h-divergence. In
this work, we rank itemsets according to h-divergence, to identify subgroups where
the classification behavior diverges strongly. Users can choose their preferred rank-
ing according to the problem, and to their desired analysis goals.

It is straightforward to extend Algorithm 2 to efficiently compute the h-divergence
of multiple outcome functions simultaneously.

Theorem 3. (Soundness and completeness) Algorithm 2, called with minimum
support s, is sound and complete:

o Sound: If Algorithm 2 outputs an itemset I along with h-divergence Ay (1),
then there is an itemset I in the dataset with support above s and with
divergence Ay (7).

o Complete: If there is an itemset I with support above s and with divergence
Ay (I), the itemset I along with its divergence will be part of the output.

We note that completeness does not hold for Slice Finder, since the search for prob-
lematic itemsets is pruned whenever sufficiently problematic itemsets are found, so
that longer (more specific) itemsets, even if more problematic, can be missed. This
will be illustrated later in Section 6.4.5.

6.4 Experimental results

dataset | |[D| | |A] | [Alcont | [Alcat

adult 45,222 | 11 4 7
bank 11,162 | 15 6 9
COMPAS | 6,172 6 2 4
german 1,000 | 21 7 14
heart 296 13 ) 8
artifictal | 50,000 | 10 0 10

Table 6.4: Dataset characteristics. A, is the set of continuous attributes, A.q; of
categorical ones.

106



6.4 — Experimental results

We present here results on the running time of DIVEXPLORER, on its ability to
extract and summarize divergence information on real-world datasets, and on the
visualizations and explorations that can be created on the basis of its output. We
also outline the main differences between our approach and Slice Finder [33].

The main features of the datasets used in our experiments are reported in Ta-
ble 6.4. The cardinalities are reported after standard preprocessing steps (e.g.,
removing instances with missing values). For most of our experiments, we used the
COMPAS dataset [8], already introduced in Section 6.1.5, and the adult dataset [96].
The adult dataset includes census data and the prediction of individual incomes,
divided into two classes “<50K” and “‘>50K”. In our analysis, we used the age,
workclass, education, marital-status, occupation, relationship, race, sex, capital-
gain, capital-loss, hours-per-week features. For the performance experiments, we
also used the German Credit Data, Bank Marketing, and heart datasets [96]. The
German Credit Data (german) dataset is devoted to the prediction of an individ-
ual’s credit risk using loan application data, according to attributes as age, sex!,
checking account, credit_amount, duration, purpose, etc. The Bank Marketing
(bank) dataset contains information related to a direct marketing campaign of a
Portuguese banking institution. The heart dataset contains data to detect the
presence of a heart disease in patients. Its features describe the demographical
and health information (as serum cholesterol, resting blood pressure) of patients.
Finally, we also used the artificial dataset already described in Section 6.2.5.

D1vEXPLORER has been developed in Python. The source code and all the
datasets used in our experiments are available 2, together with the description of
all performed preprocessing steps. In all the reported experiments, DIVEXPLORER
is coupled with FP-growth (illustrated in Section 3.2) as frequent pattern mining
technique to extract frequent itemsets [70].

6.4.1 Performance analysis

We evaluated the efficiency of DIVEXPLORER by measuring the execution time
required to (i) extract all frequent itemset and (ii) estimate their divergence and
statistical significance. We repeated each experiment 5 times and reported the
average execution time. The experiments were performed on a PC with Ubuntu
16.04.1 LTS 64 bit, 16 GB RAM, 2.40GHzx4 Intel Core i7. For all the datasets,
except COMPAS and the artificial dataset (for which the class label is already
provided), we used a random forest classifier with default parameters to provide
the classification outcome u.

'From the the original features, we derived “sex” and “civil-status” from the “personal-status”
attribute.

Zhttps://divexplorer.github.io/
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Figure 6.6: DIVEXPLORER execution time when varying the minimum support
threshold.

Figure 6.6 shows DIVEXPLORER execution time as a function of the support
threshold. The higher the support threshold, the lower the running time. Note that
the execution time depends on the FPM algorithms used for the extraction of the
itemsets (FP-growth in the reported experiments). For all considered datasets, ex-
cept german, the execution time is below 20s, even for minimum support thresholds
as low as 0.01. For the german dataset the worst-case execution time is anyway
lower than 150s. The execution time required to compute itemset divergence and
statistical significance is negligible (<7%) compared to the time required for itemset
extraction.

The number of frequent itemsets extracted by DIVEXPLORER when varying
the minimum support is reported in Figure 6.7. For low support thresholds, the
number of extracted patterns for the german dataset is very high, thus impacting
the execution time, as shown in Figure 6.6. For this dataset, a support threshold
equal to 0.01 is rather low, as it corresponds to 10 records only (see Table 6.4).
Nevertheless, the ability of DIVEXPLORER to find divergent itemsets with very
low levels of support enables the analysis of under-represented group behavior in
the dataset.

6.4.2 Exploring dataset divergence

In this section, we demonstrate the capability of DIVEXPLORER to (a) detect
the itemsets that mostly contribute to misclassifications, (b) provide a “drill-down”
analysis to highlight most influential items in an itemset divergence, and (c) explore
the global contribution of single items to divergence. We focus on the adult dataset,
as similar results for COMPAS have been presented throughout the chapter. A
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Figure 6.7: Number of frequent itemsets when varying the minimum support thresh-

old.

complete report of the experimental outcome for all the datasets under analysis is
available [124].

Itemset Sup Appr t

gain=0, status=Married, occup=Prof, race=White 0.05 0.469 25.8
gain=0, loss=0, status=Married, occup=Prof 0.05 0.462 26.6
loss=0, status=Married, occup=Prof, race=White 0.06 0.458 25.3

Sup AFNR t
age<28, gain=0, hoursXW <40, status=Unmarried 0.17 0.61 21.8
gain=0, loss:O,.edu:HS, hoursX'W <40, 0.14 061 282
status=Unmarried
gain=0, loss=0, status=Unmarried,
relation=0wn-child

0.12 0.61 18.9

Table 6.5: Top-3 divergent itemsets for FPR and FNR. adult dataset, s = 0.05.

Table 6.5 shows the top divergent itemsets for adult, both for the FPR and
FNR rate, with s = 0.05. The reported itemsets show some degree of overlap,
which will be discussed in Section 6.4.3. Figure 6.8 reports the item contributions
to the top divergent itemsets of Table 6.5. Figure 6.8(a) shows that the most
relevant items which contribute to the higher-than-overall misclassification rate for
the high-income class are being married and working as a professional. The items
gain=0 (capital gain) and race=White have instead a very small influence. For the
top FNR itemset (Figure 6.8(b)), we observe that age < 28, capital gain = 0, and
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Figure 6.8: Contributions of individual items to the divergence of the adult frequent
patterns having greatest FPR (Line 1 of Table 6.5) and FNR (Line 4 of Table 6.5)
divergence.
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Figure 6.9: Relative magnitude of global Shapley value (a) and individual item
divergence (b), for FPR, adult dataset, s = 0.05. Top 12 global item positive
contributions are reported.

being unmarried are the most important items, while number of hours per week <
40 provides a limited contribution.

Figure 6.9 shows the relative magnitude of global and individual item contribu-
tion to FPR divergence, again for adult; for conciseness, only the 12 items with the
largest positive contribution are shown. Consider the item edu = Masters. While its
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individual divergence is the highest overall, its global divergence is markedly lower,
indicating its limited role in giving rise to divergence via association (in longer
itemsets). Indeed, edu = Masters does not appear in the top divergent itemsets of

Table 6.5.

6.4.3 Summarizing divergent itemsets

Itemset Sup  Aprppr t

status=Married, occup=Prof 0.07 0434 26.1
occup=Prof, relation=Husband 0.06 0423 234
edu=Bachelors, status=Married 0.09  0.413 29

Table 6.6: Top-3 divergent itemsets for FPR with redundancy pruning. adult
dataset, e = 0.05, s = 0.05.

As seen in Table 6.5, the top divergent itemsets often include some level of re-
dundancy. DIVEXPLORER can reduce such redundancy via the heuristic pruning
approach discussed in Section 6.1.4, which eliminates itemsets that are not signif-
icantly more divergent than their shorter subsets. We report in Table 6.6 the top
FPR-divergent itemsets for the adult dataset when applying a redundancy thresh-
old € = 0.05. Comparing this result with Table 6.5, we note how pruning helps in
presenting more diverse, and thus relevant, information. The most FPR-divergent
itemset in Table 6.6 is status=Married, occup=Prof (occupation=Professional),
with a slightly lower divergence and similar statistical significance. The impor-
tance of these two items was already shown by Figure 6.8(a), in which they were
providing the most relevant contribution to the itemset divergence. On a global
scale, for the FPR-divergence, the total number of extracted itemsets drops from
4534 to just 40.

Figure 6.10(a) and 6.10(b) report a quantitative evaluation of the impact of
the pruning parameter €, and minimum support s on the number of divergent
itemsets returned, for FPR-divergence in COMPAS and adult. We see how the
heuristic post-pruning, even with relatively small values of €, leads to an effective
summarization of divergent itemsets.

6.4.4 Lattice visual exploration

DivEXPLORER allows the interactive exploration of divergent patterns by means
of a visual representation of the itemset lattice. In this lattice, nodes correspond
to frequent itemsets and edges to subset relationships between itemsets. Given a
divergent pattern of interest I, the itemset lattice shows all its subsets and their
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Figure 6.10: Number of frequent itemsets varying redundancy pruning threshold e
for FPR divergence of COMPAS and adult datasets.

divergence coefficient. The root represents the empty subset (with A,=0 by defi-
nition) and the last level the pattern I itself. Figure 6.11 reports a portion of the
lattice for the adult dataset. The itemset lattice may be actively navigated. The
visualization allows the identification of the items driving divergence increases, i.e.,
items that, when added to a subset, increase the divergence. Furthermore, the user
may interactively select a divergence threshold 7'. The lattice nodes with divergence
coefficients larger than the threshold are highlighted.

The itemset lattice can also be exploited to explore corrective behaviors. The
visualization highlights the subsets (i.e., nodes in the lattice) in which a corrective
phenomenon is observable. An example of corrective phenomenon visualization is
reported in Figure 6.11. The example shows the lattice for the FNR divergence
of itemset 1,=(loss=0, workclass=Private, edu=Bachelors, gain=0) in the adult
dataset. Item edu=DBachelors is a corrective item for pattern I,=(loss=0, work-
class=Private, gain=0). The FNR divergence drops from 0.17 for itemset I, to
-0.03 for itemset I, when the item edu=Bachelors is included. Besides pattern I,
item edu=DBachelors introduces a corrective effect for all the itemsets including it
in the lattice. Hence, the exploration of the itemset lattice also allows a deeper and
more comprehensive analysis of corrective behaviors.
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Figure 6.11: Lattice showing a corrective phenomenon for FNR divergence on the
adult dataset. Nodes showing a corrective phenomenon appear as rhombus in light
blue. Nodes with FNR divergence > T' = (.15 are squares in magenta.

6.4.5 Comparison with Slice Finder

Slice Finder [33] is close to our approach DIVEXPLORER. It identifies slices
of the data, denoted by conjunctions of literals, i.e., itemsets, in which the model
performs poorly. Slice Finder measures how “problematic” a slice is by comparing
the classifier loss on the slice, and on the remainder of the dataset. This notion
is similar to our notion of divergence, with two differences. First, Slice Finder
measures classifier loss, while DIVEXPLORER is based on an outcome function that
encodes metrics such as FPR and FNR. Second, Slice Finder measures the differ-
ence between an itemset and its complement, while DIVEXPLORER measures the
difference between the itemset and the whole dataset. The main difference between
Slice Finder and our approach, however, is that Slice Finder’s search is not exhaus-
tive: the exploration of an itemset is stopped (no larger itemsets are considered)
when a sufficiently large deviation is found, and the overall exploration stops once
a prescribed number of itemsets has been found. We can afford to perform an ex-
haustive search due to our reliance on efficient frequent pattern mining algorithms.
Our exhaustive search allows us to study item contributions to individual item-
sets and global divergence. The exhaustive search also enables the identification of
corrective items.

It is difficult to provide a comparison of Slice Finder and DIVEXPLORER on
a general dataset, because the two tools drive their exploration differently (effect
size and bound on result size for Slice Finder, support size, and divergence for
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DIvEXPLORER). For this reason, we use an artificial dataset for validation pur-
poses. We use the artificial dataset of Section 6.2.5, where the divergent itemsets
a=b=c=0and a =0=c=1 are well characterized and drive both explorations
equally. Unless differently specified, we executed Slice Finder with its default pa-
rameters. We use the predicted and class labels as inputs to DIVEXPLORER. We
used a Random Forest classifier with default parameters to provide the loss func-
tion required by Slice Finder. DIVEXPLORER minimum support is set to 0.01. For
Slice Finder, we set degree to 3 to obtain itemsets of length 3.

Since DIVEXPLORER does not enforce parallel execution, for a fair comparison
we turned it off in Slice Finder. In this case, DIVEXPLORER mean execution time
is 4s, 4.5 times faster than Slice Finder. If parallel execution is turned on (max-
workers=4), DIVEXPLORER is 3.5 times faster than Slice Finder.

DIvEXPLORER successfully identifies (a=0,b=0,c=0) and (a=1,b=1,c=1) as
the itemsets with the highest FPR divergence. Slice Finder finds all 6 subsets of
length 2 of ( a=0,b=0,c=0) and (a=1,b=1,c=1). These subsets are already highly
“problematic” (in our terms, they have high divergence). Hence, Slice Finder’s
search stops. The stopping criterion based on “problematicity” fails to identify the
two itemsets that are the true source of divergence, returning their many subsets
instead. If the threshold of the effect size is increased to 1.65, Slice Finder identifies
the true source of divergence. This search requires 18s with 1 worker.

6.4.6 User study

Hits and partial hits
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Figure 6.12: User study results. Percentage of hits for the injected bias according
to the provided information.

We conducted a user study to assess how useful is the information provided by
D1vEXPLORER in helping users identify data subgroups with anomalous behavior.
The study compared the information provided by DIVEXPLORER, Slice Finder,
and LIME [138], as a relevant representative method from the Explainable Al
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domain. The latter can be considered as a semi-supervised approach. The human-
in-the-loop identification is aided by the information of the behavior of individual
predictions. For the study, we considered the COMPAS dataset. We performed a
controlled experiment in which we artificially injected bias in a subgroup, and we
measured how well the information provided by the different tools allowed users to
identify the injected bias. Specifically, in the training set, we injected bias in the
subgroup characterized by the pattern {age cat>45, charge degree=M}, changing
all outcomes to recidivate, and we trained a (biased) multi-layer perceptron neural
network on such modified dataset. We then analyzed the misclassifications of such
a biased classifier on the (unmodified) testing dataset with DIVEXPLORER, Slice
Finder, and LIME.

The study involved 35 undergraduate computer science students, who had some
knowledge of the notions of classifiers, and false positive and negative errors. We
divided the users into four groups. Group 1 was shown examples of correctly and
misclassified instances drawn uniformly at random. The other groups were shown
the same information as group 1, and in addition:

o Group 2: the top 6 itemsets and their Appr computed by DIVEXPLORER
with s = 0.05, and the global item divergence.

e Group 3: the itemsets computed by Slice Finder and their impact factors,
with degree=3 and default parameters.

o Group 4: LIME explanations for 8 correctly classified and 8 mis-classified
instances drawn uniformly at random.

The amount of information received by groups 2, 3, and 4, was similar, amounting
to a couple of pages in PDF format. We asked the participants to select the top
5 itemsets that are most affected by errors. We consider the following metrics in
evaluating the user answers: hit and partial hit. The metric hit € {0,1} is 1 if
the user included the injected bias itemset {age_cat>45, charge degree=M}, and
0 otherwise. The metric partial hit € {0,1} is 1 if the user included the items
{age_cat>45} or {charge degree=M}, and 0 otherwise.

Figure 6.12 summarizes the percentage of hits and partial hits for each user
group. The information provided by DIVEXPLORER was the one that led the users
most directly to identify the injected bias, with a combined hit rate of 88.89%. In
group 1, 20% of the users completely or partially identified the biased subgroups
by carefully inspecting the misclassified instances. In group 3 (Slice Finder), most
of the users only partially selected the biased itemset. Slice Finder with default
parameters identifies the two items composing the itemset as already highly ‘prob-
lematic’, and prunes the search. Finally, in group 4 the explanations provided by
LIME led to a combined hit rate of 37.5%. Interestingly, the supervised approach
using the explanation provided by LIME had more full hits than Slice Finder, in
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spite of LIME’s goal being to provide classification explanations, rather than iden-
tifying critical subgroups.

6.5 Identifying divergent subgroups in scoring and
rankings

DivEXPLORER allows to understanding peculiar behaviors of classification mod-
els in data subgroups. In this context, DIVEXPLORER is a post-hoc model agnostic
explainability technique to enhance the interpretability of classification models at
the subgroup level. The notion of divergence and the DIVEXPLORER approach
can be extended to other critical scenarios beyond classification purposes [125]. In
the following section, we propose a generalization of DIVEXPLORER for scoring
functions, ranking systems, as well as general quantitative prediction functions as
in regression problems.

6.5.1 Generalization of divergence

We are interested in identifying subgroups of data that behave differently, com-
pared to the overall dataset, with respect to statistical measures. In rankings, we
are interested in data subgroups where the average rank deviates from the global
one. In scoring, we want to identify the subgroups with an average score that differ
from the average one for the entire data.

The definition of divergence proposed in Definition 6.1 is already generally de-
fined for any generic function h : 2° — IR defined over subsets of the dataset.
However, for classification performance measures, we specify h as the outcome rate
of a boolean outcome function.

We propose a redefinition of the outcome function introduced in Section 6.1.
The redefined outcome function captures the statistic of interest.

An outcome function o : X — {L} UIR associates with each instance either a
do-not-consider value L, or a real number. For an itemset I, we define the outcome
ho(I) on I via:

ho(I) = E{o(x) | x = 1,0(x) # L} . (6.11)
If I is empty, ho(()) is the outcome of the complete dataset. We use h,(I) with
respect to outcome function o to define the divergence as in 6.1:

A]’Lo(]) = ho([) - ho((b) : (612)

The divergence of an itemset captures the difference in behavior between the item-
set, and the entire dataset, with respect to the outcome function under considera-
tion.
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With this redefinition of the outcome function, we can apply all the explorations
and analyses previously described. The generalization involves only two minor
adaptations of the DIVEXPLORER approach. The first regards the DIVEXPLORER
algorithm for the extraction of patterns and their computation of divergence de-
scribed in Section 6.3. For boolean outcome function we still leverage Algorithm 2.
For the other definitions, the implementation is very straightforward and consists
of substituting the one-hot encoding of the boolean outcome function to consider
the o(x) # L terms. The second adaptation regards the statistical significance
computation. For non-boolean outcome functions, we directly use Welch’s t-test.

6.5.2 Scenarios of pattern divergence

The definition of the outcome function of an instance o(z) varies considering the
task of interest. In the following, we show how different outcome functions enable
the analysis of the divergence for scoring function and ranking systems.

As a running example to better illustrate the scenarios and the corresponding
outcome functions we use the law school dataset. The Law School Admission Coun-
cil conducted a survey across 163 law schools in the United States in 1998 [168].
The resulting Law School Dataset contains information on 21790 law students such
as their entrance exam scores (LSAT), their grade-point average (GPA) collected
prior to law school, and their normalized first-year average grade (ZFYA), in addi-
tion to their race and sex. We use the dataset as prepared by [88]. In this dataset,
we study how the average ZFYA score, and the average rank of students after the
first year, vary across subgroups. In the experiments, we set the minimum support
threshold s to 0.005 and it corresponds to about 100 students. The extraction of
frequent patterns and the estimation of divergence take than a second (0.3s).

Score divergence.

In numerous scenarios, the outcome of an instance can be a quantitative at-
tribute associated with the instance itself. The quantitative value can be derived
in multiple ways. It can be a quantitative intrinsic characteristic of the instance
itself. For example, in the Law School Dataset, the outcome can be the normalized
first-year average of each student. It consists in taking o(z) = ZFY A(x).

More generally, the outcome can be derived by a generic function w : A — IR
that assigns a score for each instance given the attribute space of input. The score
can also be an integer or a binary attribute.

Scoring functions are adopted in a wide range of scenarios as online job mar-
ketplaces, school admissions, risk assessment, and quality evaluation. The under-
standing of subgroups of data in which the scores differ from the overall behavior
is particularly relevant considering the fairness concerns. Scoring functions are
often applied to rate and rank individuals. For example, students are rated for
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school admissions or potential employees are ranked in online job marketplaces.
In these contexts, it is compelling the assessment if divergent behaviors occur in
data subgroups. Several existing works directly study group fairness over protected
attributes. The fairness evaluation is performed by using predefined groups [152],
by considering single attributes [31, 71] or by automatically partitioning on the
protected attributes allowing the identification of groups over any combinations of
protected attributes [52]. Differently, we do not leverage predefined sensitive at-
tributes and we conduct the exploration for all the attributes in input. The domain
experts can decide to provide as input a selection of the attributes to focus only on
the attribute they consider of interest.

Itemset Sup Agzpya t

LSAT>41.0, UGPA>3.5, race=White, sex=Female 0.03 0.4115 11.1
LSAT>41.0, UGPA>3.5, race=White 0.07 0.4063 16.8
LSAT>41.0, UGPA>3.5, race=White, sex=Male 0.04 0.4025 13.0
LSAT>41.0, UGPA>3.5, sex=Male 0.04 0.3812 12.6
LSAT>41.0, UGPA>3.5 0.08 0.3761 15.9
LSAT<33.0, race=Black, sex=Male 0.02 -1.0257 21.2
LSAT<33.0, UGPA<3.0, race=Black, sex=Male 0.01 -1.0049 17.5
LSAT<33.0, race=Black 0.05 -0.9787 33.3
LSAT<33.0, UGPA<3.0, race=Black 0.03 -0.9757 27.2
race=Black, sex=Male 0.02 -0.9665 22.3

Table 6.7: Top-5 itemsets with highest and lowest ZFYA divergence for the Law
School Dataset. The support threshold is s = 0.005.

Consider the Law School Dataset and the normalized first-year average of each
student as outcome function o(x). Table 6.7 lists the five itemsets with the greatest
positive and negative divergence, among those with support at least s = 0.005,
which corresponds to about 100 students. The table reports also the t-value of
the divergence, computed according to Welch’s t-test. From the results, we see
that the itemset with the greatest positive divergence is {LSAT>41.0, UGPA>3.5,
race=White, sex=Female}, for which the ZFYA-divergence is 0.41. The itemset
with the greatest negative divergence is {LSAT<33.0, race=Black, sex=Male}, for
which the ZFYA score is on average lower by 1.03 compared with the dataset
average.

Figure 6.13 reports the contribution of each item to the divergence for the
itemset with the greatest negative divergence. We see that race=Black is the pre-
dominant factor, with LSAT<33.0 giving a minor contribution, and sex=Male a
negligible one. The predominant role of race stands out as a warning signal, indi-
cating that this negative score divergence merits further investigation.
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Figure 6.13: Contributions of individual items to the divergence of the frequent
patterns having lowest ZE'YA divergence for the law dataset (s = 0.005).

Ranking divergence.

A ranking is a permutation of the instances [174]. In a ranking system, every
instance x has a rank i(zr) € Ny, where ¢ = 1 is the top rank. Often rankings
are derived from scores and scoring functions. In this scenario, we refer to them as
score-based rankings [174]. Alternative, rankings may be derived using supervised
learning methods [174].

A natural and intuitive way to define the outcome function o for rankings is
via a rank valuation function 7 : N5g — IR, where ~y(i) represents the value, to an
instance, of being ranked in position . We define the outcome of instance x € X
via:

o(x) = y(r(z)) (6.13)
The outcome h,(I) of an itemset I then corresponds to the average value an in-
stance in I receives from being ranked. The use of rank-value function v allows the
applicability also in contexts where the score or value associated with the ranking
is not available and only the instance permutation is known.

We can consider, as an example, the admission process to university. Often
applicants are ranked according to a certain scoring function and the top k are
admitted. A possible rank evaluation function can be (i) = 1 for i < k and
v(7) = 0 otherwise. The outcome h,(I) corresponds to the admission rate of I, that
is, the fraction of applicants in I that are admitted. The divergence A (1) then
represents how more, or less, likely applicants in [ are to be admitted, compared
with the general population.

Another rank evaluation function to model the relation between rank and benefit
is with (i) = i®. This function is common in search applications, with a = —0.1.

Consider again the Law School Dataset and consider for example internship
applications. Student internship applications may be scored using the first-year
average grade (ZFYA) of the students. The applications are then displayed to
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[temset Sup A, ot

LSAT>41.0, UGPA>3.5, race=White, sex=Female 0.03 0.0206 8.7
LSAT>41.0, UGPA>3.5, race=White 0.07 0.0196 13.0
LSAT>41.0, UGPA>3.5, race=White, sex=Male 0.04 0.0189 9.9
LSAT>41.0, UGPA>3.5, sex=Female 0.03 0.0185 8.3
LSAT>41.0, UGPA>3.5 0.08 0.0183 12.6
LSAT<=33.0, race=Black, sex=Male 0.02 -0.0283 25.6
LSAT<=33.0, UGPA<=3.0, race=Black, sex=Male 0.01 -0.0280 21.0
LSAT<=33.0, UGPA<=3.0, race=Black 0.03 -0.0278 31.4
LSAT<=33.0, race=Black 0.05 -0.0277 37.1

LSAT<=33.0, UGPA<=3.0, race=Black, sex=Female 0.02 -0.0276 24.6

Table 6.8: Top-5 itemsets with highest and lowest divergence for the Law School
Dataset, for the internship example, with (i) = i7%!. The support threshold is

s = 0.005.

internship hosts sorted according to their rank. This scenario is common for job
applications, document and search relevance, and product rating.

Table 6.8 shows the itemsets with top and bottom divergence with respect to
the rank evaluation function (i) = i~%! where student applications are ranked
according to the ZF'YA. We see that the itemset that derives the most benefit out
of internships would be {LSAT>41.0, UGPA>3.5, race=White, sex=Female}, and
the one deriving the least benefit would be {LSAT<33.0, race=Black, sex=Male}.

We can use the global Shapley value defined in 6.10 to inspect which are the
most influencing terms to the y-divergence. The results are reported in Figure 6.14.
The most influencing terms to a higher than average ranking are the high scores
of LSAT and UGPA. Correspondingly, a low LSAT score has a negative influence
on high positions in the rankings. Worryingly, all ethnicities that differ from the
Caucasian one (“race=White” in the dataset) have negative contributions. These
ethnicities have generally a lower than average position in the rankings. The global
Shapley value confirms the concerns firstly aroused by the local Shapley value
(Figure 6.13) and the need for further assessments on the predominant role of race
on the ranking.

The divergence analysis can reveal if the ranking impacts differently subgroups
identified by protected attributes values. The automatic identification can hence
be a tool for the evaluation of group fairness in rankings.

We remark that the generalization of divergence still includes classification tasks.
We propose a redefinition of the boolean outcome function in Equation 6.3 so that
it can be applied in the Definition 6.11 of outcome of an itemset I h,(1).

120



6.6 — Remarks and conclusions

LSAT=>41.0 -
UGPA=>3.5 A
LSAT=(37.0-41.0]
race=White -
sex=Male -
UGPA=(3.3-3.5] 1
race=0ther -
LSAT=(33.0-37.0]
UGPA=(3.0-3.3] 1
sex=Female A
race=Puertorican -
race=Hispanic -
UGPA=<=3.0 A
race=Asian -
race=Mexican -
race=Black -
LSAT=<=33.01 |

HHHHHHUDDD .
DDDHHH<

—0.002 -0.001 0.000 0.001 0.002

Figure 6.14: Global contributions via global Shapley values of items to y-divergence
for the Law School Dataset ranked with respect to the ZFYA score, with v = i=%!
(s = 0.005).

Given a classifier, let p(x) € {T, F} be the predicted value for an instance z, and
let t(x) be the true value (ground truth). To capture the divergence of the false
positive rate, we redefine the outcome function:

1L ift(x)=r1
o(x) =40 ift(xr)=Fandp(x)=F
1 ift(x) =Fand p(x) =T

for x € X. The outcome L is used to exclude from the statistic computation the
true positives. In this way, the outcome h,(I) of an itemset I is its false positive
rate. Outcome functions for capturing classification performance as accuracy, false
negative rate, true positive rate, can be similarly defined.

6.6 Remarks and conclusions

In this chapter, we propose the notion of divergence over itemsets as a measure
of different classification behaviors in subsets of a given dataset. A solid theoretical
foundation, based on Shapley values, is proposed to quantify divergence contribu-
tions, both for pattern and dataset. The concept of divergence also allows capturing
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interesting item behaviors, for example, corrective items. An efficient algorithm for
divergence computation is provided and an extended experimental evaluation shows
the effectiveness and efficiency of the proposed approach. Finally, we show how the
notion of divergence can be generalized to multiple contexts as scoring and ranking
systems.

Given the generality of the divergence notion, as future work, we plan to study
its extension to other data science tasks, including, e.g., the preprocessing tasks.
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Chapter 7

DivExplorer interactive system

This chapter illustrates the DIVEXPLORER interactive system for the interactive
inspection of classifiers behavior in data subgroups and its functionalities [130]. The
interactive tool leverages the DIVEXPLORER algorithm for classification tasks, pre-
sented in Chapter 6. The tool enables users to analyze the behavior of a classifier
over a dataset, and to identify the portions of the dataset on which the classi-
fier behaves in an anomalous fashion, for example, by exhibiting particularly high
false-positive or false-negative rates. If the underlying data has ethical implica-
tions, DIVEXPLORER tool can be used to identify subgroups of data for which the
behavior of the classifier is problematic, and to analyze the factors that contribute
to the problematic performance.

The chapter is organized as follows. Section 7.1 specifies the tool implementation
details and illustrates the analysis setup. Section 7.2 presents the tool functionali-
ties. Finally, Section 7.3 draws the conclusions.

7.1 The DivExplorer tool

In this section, we outline the tool specification and the analysis setup.

7.1.1 Tool Implementation

DIVEXPLORER is implemented as a web app, and it can be deployed on any
cloud that provides services for running containerized web services. Our hosting
relies on Google Appengine !. The back-end, which implements the data access
layers and analysis algorithms, is written in Python, and relies on the py4web
web framework [133]. The dataset analysis operations are implemented on top of
the Pandas library for dataset processing [109], and the scikit-learn library for data,

!Source code available in our project page http://divexplorer.github.io
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mining [131]. The front-end is written using the vue.js Javascript framework, which
enables dynamic visualizations and explorations of the dataset. Data is stored in a
cloud SQL database. In particular, we use Google Cloud Mysql and Google Cloud
Storage.

7.1.2 Analysis Setup

DivEXPLORER analyzes datasets in tabular form. Rows represent dataset in-
stances, and columns are the attributes. The DIVEXPLORER tool assumes that
continuous attributes are discretized. Hence, attributes that are continuous in na-
ture, such as age, or income, need to be discretized into fixed ranges prior to the
dataset being input to DIVEXPLORER. However, the classifier itself can use the
original, non-discretized data to build its model. Discretization is used only for data
exploration, not for classification. We are considering, as future work, integrating
the discretization step directly in DIVEXPLORER. Finally, DIVEXPLORER requires
users to identify two columns: the true class of each instance, and the predicted
class of each instance as output by the classifier.

Before analyzing a dataset with the DIVEXPLORER system, the dataset is up-
loaded and the two attributes (columns) corresponding to the predicted class and
the ground-truth class are identified. The only parameter to be configured is the
support threshold. DIVEXPLORER analyzes the behavior of the classifier on all
itemsets whose support is above a specified support threshold s. As discussed in
Section 6.1.3, specifying a support threshold has two related purposes. First, it ex-
cludes from the analysis itemsets with few instances, on which the analysis would
be affected by statistical fluctuations. Second, it reduces the number of itemsets
under consideration, leading to a tool output of manageable size.

As running example, we use as in Chapter 6 the COMPAS dataset [8]. COM-
PAS contains demographic information and criminal history of defendants. We
recall that for each defendant, the dataset provides a score (called the COMPAS
score), produced by a classifier, and intended to reflect the likelihood that the de-
fendant will commit crimes in the future (recidivate). The dataset also contains
ground truth information on which defendants actually recidivated. For the follow-
ing example, we set the minimum support threshold to 0.05. Thus, only itemsets
supported by 5% or more of the dataset instances are considered.

7.2 DivExplorer tool functionalities

The DIVEXPLORER interactive features allow users to dynamically explore the
behavior of a classifier on an arbitrary dataset. The overall goal of the implementa-
tion of the Ul is to allow users to dynamically explore the behavior of the classifier
on the dataset.
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Adjustments: Prune Redundancy by ~ 0 « Show Corrective Values © Reset
© Clear A Edit Columns
Support Itemset A_fpr - t_fp A_Fnr t_Fn A_error t_error A_acc FPR FNR Acc Error
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Figure 7.1: DIVEXPLORER main UI.

DivEXPLORER first provides global information, such as the list of itemsets
where the classifier behavior most deviates from the average ( Section 7.2.1). Next,
users can drill into specific regions of data — specific itemsets, and explore the roles
of individual attributes in affecting the classifier behavior, both considering specific
itemsets ( Section 7.2.2) and on a global scale over the dataset ( Section 7.2.3).

7.2.1 Divergent itemsets

DIvEXPLORER analyzes the dataset and computes the divergence of item-
sets with respect to error metrics such as false-positive, false-negative, and error
rates [126]. DIVEXPLORER computes the divergences for all itemsets above the
specified support size and displays them in a table that can be sorted according to
any characteristics, as depicted in Figure 7.1.

Many of the most divergent itemsets in Figure 7.1 are quite similar. To obtain a
more insightful summarization, DIVEXPLORER enables users to prune (redundant)
itemsets by specifying a threshold e. It leverages the heuristic pruning approach
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defined in 6.1.4. If two itemsets I and I U{A} have divergences closer than €, only
the smaller itemset [ is included in the output. In this example, summarizing with
e = 0.02, the total number of patterns is reduced from 313 to 51.

7.2.2 Measuring the Role of Items in Itemset Divergence

On DIvEXPLORER divergence table, the users can select the individual diver-
gence values for detailed inspection. In Figure 7.1, the user has selected Apppg
for the top itemset {age=25-45, #prior>3, race=Afr-Am, sex=Male}. Thus, the
details for the FPR-divergence for this itemset are displayed at the bottom.

On the bottom left is a bar graph indicating the extent to which the individual
items contributed to the divergence of the itemset. The contributions are derived
using the notion of Shapley values, as defined in Section 6.2.1. Most of the diver-
gence of this itemset (most of the excess false-positive rate) is due to having more
than 3 prior offenses, with race=Afr-Am as the second most important factor.

On the bottom right, similar information is conveyed via the lattice of subsets
of the selected itemset. Each subset is labeled with its own divergence, and by
hovering on it, the user can see which of the itemset’s items appear in the subset.
The lattice view is particularly useful when items are correlated. In this case, the
Shapley value splits the contribution among correlated items. The itemset lattice
shows the precise effect of each item in each context.

0.0
(©)
0.005 0.131 -0.061
/8 /@
sex=Male m age=>45
0.135 -0.06 0.001
® o o

0.003
#prior=>3, age=>45, sex=Male

Figure 7.2: Lattice showing a corrective phenomenon for FNR divergence on the
COMPAS dataset (rhombus nodes).

The lattice visualization is also useful for studying the role of corrective items,
which are items that, when added to an itemset, reduce the divergence. For in-
stance, Figure 7.2 shows that adding the age>45 item to the {#prior>3, sex=Male}
itemset reduces the false-negative divergence from 0.13 to 0.003. This indicates that
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the bias corresponding to {#prior>3, sex=Male}, upon closer inspection, affects
only people below 45.

7.2.3 Item Influence on the Entire Dataset

The DIVEXPLORER system also enables users to examine the influence of each
item on the divergence of the entire dataset. This can be done in two different
ways, both illustrated in Figure 7.3. The simplest measure, named the individual
divergence of an item, is simply the divergence of an item in isolation (Section 6.2.1).
The global divergence of an item is a generalization of the Shapley value to the entire
set of all items (Section 6.2.4). Intuitively, the global divergence summarizes how
much an item increases the divergence when added to any itemset with which it is
compatible (i.e., with which it does not share any attribute). From Figure 7.3, we
see that the top item for global false-positive divergence, #prior>3, is part of the
itemset that has overall greatest divergence.

Ad
Afpr Arpr

#prior>3 -
age<25 A
stay>3Months -
stay=1w-3M -
race=Afr-Am -
charge=F
sex=Male -
age=25-45 +
race=Hispanic -
#prior=[1,3] 1
sex=Female
stay<week -
race=0ther -
race=Cauc
charge=M -
#prior=0 +
age>45

HHHDDDDDDDDHHHHH

O_
-
o
-

(@) (b)

Figure 7.3: Relative magnitudes of global Shapley value and individual item diver-
gence, for false-positive rate in the COMPAS dataset with s=0.05.

7.2.4 Drill-down and interactive searches

The global Shapley value reveal that age<25 and stay>3Months have a high
contribution to the false-positive divergence. Interestingly, these two items do not
belong to the most divergent itemsets (reported in Figure 7.1). To examine more
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<week)
»
Globals Compute Global FPR Values Compute Global FNR Values Compute Global Error Values 195
Computation:

Figure 7.4: Search functionality of DIVEXPLORER tool.

closely their role, the user can use the search function in DIVEXPLORER and ex-
amine the itemsets in which these items appear. Figure 7.4 shows the results of the
search for the 1-length pattern age<25.

The DIVEXPLORER tool offers the possibility of searching over supersets of an
itemset of interest /. The system automatically selects and shows all the supersets
(i.e. itemsets that contain I) and their relative divergence score and statistics.
Figure 7.1 shows the button search for supersets for the most divergent itemset.

7.3 Remarks and conclusion

In this chapter, we present the DIVEXPLORER web app, a tool that enables
users to explore datasets and find subgroups of data for which a classifier behaves
in an anomalous manner. These subgroups, denoted as divergent subgroups, may
exhibit, for example, higher-than-normal false positive or negative rates. The web
application leverages on the DIVEXPLORER [126] algorithm described in Chapter 6.

Users can upload their labeled dataset coupled with the predictions made by
a generic classifier. Hence, the approach is model agnostic. The DIVEXPLORER
system automatically runs the identification of the divergent patterns. Users can
interactively inspect the identified subgroups by analyzing the local contribution
via Shapley values, visualizing the lattice graph, selecting supersets, and searching
specific subgroups.

DIvEXPLORER can be used to analyze and debug classifiers. If the data has
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ethical or social implications, DIVEXPLORER can be also used to identify bias in
classifiers. As future work, we plan to extend the support for multiple scenarios as
scoring ranking and systems and preprocessing tasks.
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Chapter 8

Conclusions and future work

The research activity described in this thesis addressed the lack of transparency
of classification models. Black-box models are adopted in multiple high-stake ap-
plications despite their inability to disclose their inner workings. Especially in
high-stake areas as health care, criminal justice, and insurance, understanding the
model behavior is essential. Through model explainability, data scientists and do-
main experts can assess fundamental properties of the model as its trustworthiness
and its fair and not-discriminatory decision-making process. We propose post-hoc
explainability techniques to enhance the interpretability of classifiers from both the
individual and subgroup perspectives. The proposed techniques leverage the notion
of patterns. Patterns are conjunctions of attribute-value value pairs intrinsically
interpretable which allow us to capture relevant associations of attribute values
and identify subgroups in the attribute domain. The proposed methods focus on
structure data and are model agnostic, applicable to a generic classification model.

In Chapter 1, we debate the need for explainability and its related concepts and
desiderata. Chapter 2 outlines the related work while Chapter 3 illustrates basic
background notions and algorithms that are used through the thesis.

Chapter 4 focuses on enhancing model interpretability from the individual in-
stance perspective. We propose LACE [129] an explanation method to explain the
reasons behind individual predictions. The approach exploits a removal-based tech-
nique to quantify the influence on the prediction of individual feature values and
relevant subgroups of feature values. We use the notion of prediction difference to
compute the prediction change when one or more feature values are omitted. The
relevant subsets of attribute values are determined using a local surrogate model.
The local model is an associative classifier learned in the neighborhood of the indi-
vidual prediction to explain. It captures relevant association of attribute values in
form of local rules that provide a qualitative understanding of the reasons behind
the prediction. The local model allows overcoming the exponential time complexity
of the enumeration of all possible subsets of feature values for the removal-based
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estimation. We quantify the relevance through the prediction difference only of the
patterns, i.e. subsets of attribute values, extracted by the local rules. Experimental
results show the ability of LACE to capture the reasons behind individual predic-
tions, identifying the feature values and relevant patterns that determine them.

Interactivity is one of the goals and desiderata of explainable Al research [12].
The interaction between the model and the users allows them to investigate their
assumptions on the model behavior. In Chapter 5, we propose X-PLAIN [127]
an interactive tool for human-in-the-loop inspections of the reasons behind model
predictions. The tool, which leverages on LACE as explanation method, allows
users to actively speculate on the model behavior, to perform what-if analysis and
it extracts explanation metadata characterizing the model behavior.

Chapter 6 addresses the understanding a model peculiar behavior from the sub-
group perspective. We propose DIVEXPLORER [126], a novel approach to identify
and characterize subgroups of data in which a classification model behaves differ-
ently. The identification of these critical subgroups is relevant in many applications
as model validation and debugging and the assessment of the model fairness. Con-
sidering the use of machine learning models in high-stake tasks involving individ-
uals, increasing concerns arise on the potential discriminating behavior of models
over data subgroups. The analysis of peculiar behavior in subgroups may reveal
if they are characterized by sensitive attributes as ethnicity and gender. We in-
troduce the notion of divergence to capture the different behavior of the model on
subgroups with respect to the overall behavior. We propose an automatic identifi-
cation of all subgroups with adequate representation in the data. The exploration
leverages frequent pattern mining techniques for the complete analysis of subgroups
with adequate frequency. We use the notion of Shapley value to characterize each
data subgroup and understand the feature values most influencing the pattern
divergence. We also propose a generalization of the Shapley value for the global
computation of divergence. Global item divergence indicates the feature values that
mostly contribute to the divergent behavior of the classifier. Theoretical analyses
and experimental evaluations show the effectiveness of DIVEXPLORER in revealing
the peculiar behavior of classification models in data subgroups. We also show
how the notion of the divergence and DIVEXPLORER can be generalized to other
contexts beyond classification tasks as scoring and rankings.

Considering again the desiderata of interactivity, in Chapter 7 we propose a web
app that leverages DIVEXPLORER [124] for the interactive exploration of classifier
behavior in data subgroups. The interactive system supports drill-down operations,
interactive searches, and human-in-the-loop inspection of subgroups of data for
which a classifier behaves in an anomalous manner.
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8.1 Future work

This section outlines enhancements and opportunities for future work.

The individual explanations provided by our explanation approach highlight the
single features and subsets of attribute values that are relevant for the prediction.
The explanations are hence provided both in form of feature importance and local
rules. Another interesting explanation form is represented by counterfactual expla-
nations which express small changes in the attribute values of individual instances
that change the prediction. We plan to exploit the inner computations of the pre-
diction difference based on feature omission to derive changes in the prediction
outcome and hence deriving counterfactual explanations.

The proposed local pattern explanations reveal the statistical associations for
the observed instance and the class label learned by the classier. However, asso-
ciations do not reveal the causal dependencies among the observed variables and
the class. In multiple contexts, the assessment of causality is a mandatory require-
ment. Several approaches have hence been proposed to reveal causal relationships
and structures among the data as for discrimination discovery [24, 177]. We are
thus interested in exploring the link between the concept of pattern explanations
and causal reasoning to identify causality.

We then consider extending the approach to deal with very large data sets for
big data applications. In this domain, considering the intrinsic sparsity of the data,
the local nature of the approach could be suitable in highlighting local feature
values and specific associations.

The automatic approach for the identification of divergent subgroups leverage
discretized structured data. We firstly plan to propose an automatic method to
derive a proper discretization of continuous attributes that consider divergence
criteria. The goal of the discretization algorithm is to highlight the attribute slices
that produce the highest and lowest divergence, to inspect both most and less
problematic behaviors.

We then envision to propose a novel identification approach that can directly
handle continuous attributes. We also consider alternatives to data slicing in the
attribute domain as by exploring the notion of examples as descriptors of subgroups.

DIVEXPLORER is currently designed for a single node and in memory. To
improve scalability, we plan to extend the algorithm for an efficient distributed
parallelization in a cluster of nodes.

We show how the notion of divergence can be generalized to multiple applica-
tions of machine learning beyond classification as rankings. We will continue to
work in these contexts and we plan to specifically consider ethical concerns and
algorithmic bias.

The results provided by our approach DIVEXPLORER provide useful insights on
the model behavior at the subgroup level and its potential discriminating behavior.
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The automatic identification of divergent data subgroups and their characterization
can in fact reveal if a different model behavior is observed for sensitive attributes.
We are firstly interested in studying the relations of the notion of divergence with
existing metrics for fairness assessment. We then plan to work on the design of
mitigation strategies of algorithm bias using divergence analysis and exploiting
D1vEXPLORER results.

Finally, we plan to extend the notion of divergence and its analysis for unstruc-
tured data as images and text. Specifically for text, as the first extension, we plan
to apply our technique to textual datasets by considering words as target items. We
then plan to propose to develop approaches that can cope with the sparsity nature
of text data. Another interesting line of work consists in including the notion of
semantic and taxonomy. The idea is to firstly capture high-level abstractions of the
data. We then leverage data abstractions to group the data and identify divergent
subgroups.
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