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ABSTRACT 

The aim of this work is to evaluate the influence of the pier-abutment-deck interaction on the seismic 

response of bridges isolated by single concave sliding pendulum isolators (FPS) through a comparison 

with the results of the seismic response of isolated bridges without considering the presence of the 

rigid abutment (i.e., isolated viaducts). Two different multi-degree-of-freedom (mdof) models are 

properly defined to carry out this comparison. In the both mdof models, five vibrational modes are 

considered to describe the elastic behavior of the reinforced concrete pier and an additional degree of 

freedom is adopted to analyze the response of the infinitely rigid deck isolated by the seismic devices. 

The FPS isolator behavior is described through a widespread velocity-dependent model. By means 

of a non-dimensional formulation of the motion equations with respect to the seismic intensity, a 

parametric analysis for several structural properties is performed in order to investigate the 

differences between the two mdof models in relation to the relevant response parameters. The 

uncertainty in the seismic input is taken into account by means of a set of natural records with different 

characteristics. Finally, multi-variate non-linear regression relationships are provided to estimate the 

optimum values of the sliding friction coefficient able to minimize the pier displacements relative to 

the ground as a function of the structural properties considering or neglecting the presence of the 

abutment.  

 

KEYWORDS: seismic friction pendulum isolators; bridges; pier-abutment-deck interaction; 

viaducts; non-dimensional form; optimal friction coefficient. 

 

1 INTRODUCTION 

Seismic isolation of bridges allows to uncouple the deck from the horizontal components of the 

earthquake motion, leading to a substantial reduction of the deck acceleration and, consequently, of 

the forces transmitted to the pier in comparison to non-isolated bridges as widely demonstrated in 

many studies dealing with both elastomeric (LRB) and frictional (FPS) isolators [1]-[8]. Jangid [9], 

assuming a stochastic model of the earthquake ground motion, considered the seismic performance 

of a bridge equipped with LRB devices, illustrating that there exists an optimal value of the yield 

strength for which the root mean square absolute acceleration of the deck can be minimized. Closed-

form expressions for both the optimum yield strength of the LRBs and corresponding response of the 

isolated bridge system are proposed. Tongaonkar and Jangid [10] evaluated the effects of soil-

structure interaction on the peak responses of a three-span continuous deck bridge isolated by the 

elastomeric bearings showing their influence to assess the bearing displacements at abutment 

locations. The results of [11] demonstrate that the isolation can have beneficial effects even for 

bridges located in medium soil types. A deterministic analysis carried out by [12] examined the 

influence of coupled vertical and horizontal ground motions on the response of a 3D isolated bridge 

considering soil-pile-superstructure interaction effects. Considering the soil-structure-interaction 

effects for seismic-isolated bridges, the study [13] presents a procedure for the selection of optimal 

intensity measures under the combined strong horizontal and vertical component seismic excitations 
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with respect to different critical engineering demand parameters. Contextually, friction pendulum 

system (FPS) devices have been often employed for their capability to provide an isolation period 

independent of the isolated mass as well as to assure high dissipation and recentering in addition to 

their longevity and durability properties [14]-[16]. Several experimental and numerical researches 

have explored the behavior of the FPS isolators [17]-[24]. In [25]-[29], with reference to equivalent 

multi-degree-of-freedom models, respectively, for base-isolated building frames and isolated bridges 

with single or double FPS devices, a nondimensionalization of the motion equations for different 

isolator and system properties has been proposed. The seismic response of isolated multi-span 

continuous deck bridges is investigated in [31] confirming the effectiveness of simplified models in 

relation to the flexibility of the deck and of the piers. The seismic response of a bridge isolated with 

FPS isolators has been analyzed by Kim and Yun [32] highlighting the positive effects of a double 

concave friction pendulum system on the bridge response. Eröz and DesRoches [33]-[34] studied the 

effect of modeling parameters and the influence of the design parameters on the response of a three-

dimensional multi-span continuous steel girder bridge model seismically isolated by the FPS 

bearings. Moreover, other works have been more oriented to develop design approaches for the 

isolators. In this respect, the seismic reliability-based design (SRBD) approach has been proposed 

and widely discussed in [35]-[37] as a new methodology useful to provide design solutions for seismic 

devices taking into account the main uncertainties relevant to the problem.  

This work aims to evaluate the influence of the pier-abutment-deck interaction on the seismic 

response of bridges isolated by single concave sliding pendulum isolators (FPS) through a comparison 

with the results of the seismic response of isolated bridges without considering the presence of the 

rigid reinforced concrete (RC) abutment (i.e., isolated viaducts). Indeed, two different multi-degree-

of-freedom (mdof) models representative, respectively, of a single-column bent viaduct [29] and a 

multi-span continuous deck bridge [7],[15] are properly defined. Specifically, a six-degree-of-

freedom model is used to represent the dynamic behaviour of the both isolated bridge systems. In the 

both mdof models, five vibrational modes are considered to describe the elastic behavior of the RC 

pier and an additional degree of freedom is adopted to analyze the response of the infinitely rigid RC 

deck isolated by the FPS devices. If considered, the presence of the RC abutment is assumed rigid. 

The FPS isolator behavior is described through a widespread velocity-dependent model. By means 

of a non-dimensional formulation of the motion equations with respect to the seismic intensity, 

proposed in [25],[28] and herein extended, a parametric analysis for several structural properties is 

performed in order to investigate the differences between the two mdof models in relation to the 

relevant response parameters. The uncertainty in the seismic input is taken into account by means of 

a set of non-frequent natural records with different characteristics [28]. Finally, multi-variate non-

linear regression relationships are provided to estimate the optimum values of the sliding friction 

coefficient able to minimize the pier displacements relative to the ground as a function of the 

structural properties and of the seismic input intensity considering or neglecting the rigid presence of 

the abutment (i.e., single-column bent viaduct and multi-span continuous deck bridge). These non-

dimensional expressions can be employed for the preliminary design or retrofit of both single-column 

bent viaducts and multi-span continuous deck bridges, located in any site, with the purpose to define 

the optimal friction properties of these seismic devices aimed at assuring an adequate seismic 

protection.  

2  NON-DIMENSIONAL MOTION EQUATIONS FOR BRIDGES ISOLATED BY FPS 

DEVICES 

In the case of a single-column bent viaduct (or neglecting the presence of the abutment) [29], an 

equivalent 6-degree-of-freedom (dof) model having 5 degrees of freedom for the elastic RC pier and 

1 degree of freedom for the rigid RC deck mass equipped with FPS devices is adopted as shown in 

Fig.1(a). The motion equations, in terms of drifts between the different degrees of freedom, governing 

the seismic response when the isolated system is subjected to the seismic input along the longitudinal 

direction,  gu t , are: 
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 (1) 

where du  denotes the horizontal displacement of the deck relative to pier, 1, 2, 3, 4, 5p p p p pu u u u u  are the 

pier displacements relative between two consecutive dof, 1 2 3 4 5, , , , ,d p p p p pm m m m m m  respectively the 

mass of the deck and of each dof of the pier, 1, 2, 3, 4, 5p p p p pk k k k k  and 1, 2, 3, 4, 5p p p p pc c c c c  respectively the 

stiffness and inherent viscous damping coefficient of each dof of the pier, dc  the bearing viscous 

damping factor, t  the time instant, the dot differentiation over time, and the FPS bearing force 

 FPSF t  [38]-[39] (Fig.1(g)-(h)) applies as follows: 

       sgnFPS d d d d dF t k u t u m g u +       (1) 

where / /d dk W R m g R  , g  is the gravity constant, R is the radius of curvature of the FPS device, 

  du t  the sliding friction coefficient, which depends on the bearing slip horizontal velocity  du t

[37], and sgn(∙) denotes the sign function. Eq.(2) is based on the hypothesis of neglecting the vertical 

displacement component as well as for high values of R [37]. As reported in [16], the fundamental 

vibration period of an isolated bridge, 2 /dT R g , corresponding to the pendulum behaviour 

component, depends only on the radius of curvature R.  

According to [18]-[21], the sliding friction coefficient of teflon-steel interfaces can be expressed by 

the following equation: 

      max max min expd du u          (3) 

where max  and min  represent, respectively, the maximum value of sliding friction coefficient 

attained at large velocities and the value at zero velocity. In this study, it is considered that 

max min3   with the exponent   equal to 30 [25].  

As also discussed in [37], considering the maximum value of the sliding friction coefficient, the 

effective stiffness of the FPS bearings max(1/ / )e ff dk W u   (Fig.1(h)) as well as the corresponding 

effective isolated period d,effT  [40],[41] (Fig. 1(h)) can be computed depending on the displacement 

demand. 

Note that Eq.(1) is representative of the dynamic behaviour of a single-column bent viaduct as long 

as the bridge is straight and consists of a large number of equal spans and piers of equal height or 

stiffness and with a superstructure (deck) that can be assumed to move as a rigid body [42]. 



By simply dividing Eq. (1) with respect to the deck mass dm , the following equations apply: 
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and the following ratios are introduced: 

 1, , , ,
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The first two terms denote, respectively, the circular frequency of vibration of the isolated deck and 

of the i-th lumped mass of the pier; d  is the damping factor of the isolated deck, pi  is the damping 

factor corresponding to the i-th dof in which the pier has been discretized. The last term represents 

the i-th mass ratio between the i-th lumped mass of the pier and the deck mass. 

With the aim to extend the non-dimensionalization with respect to the seismic intensity proposed by 

[25]-[26],[28], let us introduce the time scale dt  , in which /d d dk m   is the fundamental 

circular frequency of the isolated system with infinitely rigid superstructure, and the seismic intensity 

scale 0a , so that 0( ) ( )gu t a  , where ( )  is a non-dimensional function of time describing the 

seismic input time-history, the following non-dimensional equations (i.e., normalised with respect to 

the seismic intensity) can be obtained: 
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describe the peak dynamic response of the deck and of pier, respectively. Moreover, from Eq.(6), it 

is possible to observe that the five non-dimensional   terms [25]-[26],[28],[43]-[44] that control the 

system non-dimensional response are: 
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in particular, i  represents the i-th frequency ratio, pi  is the i-th mass ratio as previously defined, 

pi  and 
d

  are the inherent viscous damping related to the i-th dof of the pier and to the 

isolator/deck, respectively. Regarding the control parameters of the pier, indeed, the parameters pi  

are related to the fundamental vibration pulsation p  (the first vibration mode) as well as the sum of 

the mass ratios is related to the overall mass ratio 
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    and, finally, all the damping 



factors are assumed equal to 
p p   . The term   denotes the isolator strength, which depends on 

both the friction coefficient  d   and the seismic intensity. Since the sliding friction coefficient is 

a velocity-dependent parameter,   is considered in its stead as follows [25]: 
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Fig. 1. 6dof model of a bridge isolated by FPS bearings without pier-abutment-deck interaction (i.e., viaduct) (a); 6dof 

model of a bridge isolated by FPS bearings considering pier-abutment-deck interaction (b); 8dof models (c)-(d); 2dof 

models (e)-(f); FPS parameters (g) and response (h).  

Referring to a multi-span continuous deck bridge (e.g., three-span continuous deck bridge) [7],[15], 

the presence of the rigid RC abutment is considered (Fig. 1(b)), so, the dimensional equations that 

govern the motion of this new system change because of the term related to the isolator on the 

abutment, as follows: 
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where the FPS properties are recognized by the subscript “a” and “p” with reference to abutment and 

pier, respectively, and their forces apply: 
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where ( )aF t  is the reaction force associated to the isolator placed over the abutment and ( )pF t  is the 

same of Eq.s (1)-(2), with the only difference that the deck mass supported by the isolator on the pier 

is the half of the total one. Furthermore, note that, differently to the reaction force of the seismic 

device on the pier, the reaction force as well as the friction coefficient related to the abutment isolator 

depend on both the horizontal velocity and displacement [37] of the deck with respect to the ground.  

By dividing Eq. (7) by the mass deck dm , the following equation system is obtained: 
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in which the terms are the same expressed in Eq. (4).  

Similarly to Eq. (6), and assuming that the radii of curvature Ra and Rp are equal, the non-dimensional 

equations taking into account the presence of the rigid abutment can be derived as follows:  
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Note that, the non-dimensional parameters, that derive from Eq.(12), are the same of Eq.s (6)-(7) with 

a distinction as follows. The normalized friction coefficients for the FPS devices on the pier and on 

the abutment apply, respectively: 
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and since these parameters depend on the response through the corresponding velocities, each one is 

used in its stead as follows:  
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It is worth underlining that even if the two FPS devices are equal, 
* *

p a    , during the dynamic 

response the terms of Eq.(13) depend on different velocities. 

Note that, for the both configurations, the stiffness contribution of non-structural elements, such as 

kerbs, parapet walls and wearing coat, is neglected. Similarly, the soil-structure interaction as well as 

the vertical component and bi-directional or asynchronous effects of the earthquake ground motions 

are neglected [7],[15]. All these effects are worthy to be investigated in future developments adopting 

specific assumptions as widely commented in [12],[13]. 

3 RECORD-TO-RECORD VARIABILITY AND INTENSITY MEASURE 

3.1 Seismic records 

In this analysis, the record-to-record variability is considered using 30 non-frequent [28],[45]-[46] 

seismic records selected from 19 seismic different events [47]-[49]. Table 1 reports the details of the 

earthquakes used for the study. 

Table 1. Seismic records used and them characteristics. 

# Year Earthquake Name 
Recording Station 

Name 

Vs30 

[m/sec] 

Source            

(Fault Type) 

M 

[-] 

R 

[km] 

PGAmax           

[g] 

1 1994 Northridge Beverly Hills - Mulhol 356 Thrust 6.7 13.3 0.52 

2 1994 Northridge Canyon Country-WLC 309 Thrust 6.7 26.5 0.48 

3 1994 Northridge LA – Hollywood Stor 316 Thrust 6.7 22.9 0.36 

4 1999 Duzce, Turkey Bolu 326 Strike-slip 7.1 41.3 0.82 

5 1999 Hector Mine Hector 685 Strike-slip 7.1 26.5 0.34 

6 1979 Imperial Valley Delta 275 Strike-slip 6.5 33.7 0.35 

7 1979 Imperial Valley El Centro Array #11 196 Strike-slip 6.5 29.4 0.38 

8 1995 Kobe, Japan Nishi-Akashi 609 Strike-slip 6.9 8.7 0.51 

9 1995 Kobe, Japan Shin-Osaka 256 Strike-slip 6.9 46 0.24 

10 1999 Kocaeli, Turkey Duzce 276 Strike-slip 7.5 98.2 0.36 

11 1999 Kocaeli, Turkey Arcelik 523 Strike-slip 7.5 53.7 0.22 

12 1992 Landers Yermo Fire Station 354 Strike-slip 7.3 86 0.24 

13 1992 Landers Coolwater 271 Strike-slip 7.3 82.1 0.42 

14 1989 Loma Prieta Capitola 289 Strike-slip 6.9 9.8 0.53 

15 1989 Loma Prieta Gilroy Array #3 350 Strike-slip 6.9 31.4 0.56 

16 1990 Manjil, Iran Abbar 724 Strike-slip 7.4 40.4 0.51 

17 1987 Superstition Hills El Centro Imp. Co. 192 Strike-slip 6.5 35.8 0.36 

18 1987 Superstition Hills Poe Road (temp) 208 Strike-slip 6.5 11.2 0.45 

19 1987 Superstition Hills Westmorland Fire Stat. 194 Strike-slip 6.5 15.1 0.21 

20 1992 Cape Mendocino Rio Dell Overpass 312 Thrust 7.0 22.7 0.55 

21 1999 Chi-Chi, Taiwan CHY101 259 Thrust 7.6 32 0.44 

22 1999 Chi-Chi, Taiwan TCU045 705 Thrust 7.6 77.5 0.51 

23 1971 San Fernando LA - Hollywood Stor 316 Thrust 6.6 39.5 0.21 

24 1976 Friuli, Italy Tolmezzo 425 Thrust 6.5 20.2 0.35 

25 1980 Irpinia Bisaccia 496  6.9 21.3 0.94 

26 1979 Montenegro ST64 1083 Thrust 6.9 21.0 0.18 

27 1997 Umbria Marche ST238 n/a Normal 6.0 21.5 0.19 

28 2000 South Iceland ST2487 n/a Strike-slip 6.5 13 0.16 

29 2000 South Iceland (a.s.) ST2557 n/a Strike-slip 6.5 15.0 0.13 

30 2003 Bingol ST539 806 Strike-slip 6.3 14.0 0.30 

3.2 Intensity measure  

The intensity scale factor, 0a , of both Eq.s (6) and (12) represents the seismic intensity measure (IM) 

in line with the performance-based earthquake engineering (PBEE) [50],[51]. In this study, the 



abovementioned term is set equal to the spectral pseudo-acceleration,  ,A d dS T  , corresponding to 

the isolated period of the bridge 2 /d dT    with the damping ratio 
d d   . As also observed in 

[25]-[29], since the spectral acceleration is related to the spectral displacement 

   2, ,A b d d d d dS T S T   , if all the records are normalized with respect to  ,A d dS T  , the 

normalized displacement and force of the isolated bridge deck, in the hypothesis of both a rigid 

substructure (pier) and absence of the sliding friction, are equal to 1 for each record without any 

record-to-record variability. Note that, in the following analyses, the damping ratio d  is set equal to 

zero [25],[28],[37],[52] and the corresponding IM is hereinafter denoted to as IM=a0=  A dS T . 

4  PARAMETRIC STUDY  

In this study, the seismic performance of isolated bridges is assessed considering the effects of the 

higher order modes due to the flexibility of the elastic RC pier and also of the pier-abutment-deck 

interaction. This section describes the results of the parametric study carried out on the two systems 

of Fig. 1 to evaluate the performance of bridge isolated with FPS bearings for different structural 

properties. The first subsection deals with the response parameters relevant to the seismic 

performance, the second subsection reports the preliminary analysis for increasing dof in relation to 

the pier to demonstrate the effectiveness of the 6dof model in representing the bridge system response 

with and without the rigid RC abutment. The final subsection illustrates the parametric study results. 

4.1 Non-dimensional response parameters relevant to the seismic performance assessment 

The following response parameters relevant to the seismic performance assessment of isolated 

bridges are considered: the peak deck displacement relative to the pier for the model of Fig. 1(a) as 

well as the peak deck displacement relative to the pier or to the abutment for the model of Fig. 1(b), 

,d peaku  (important for the design of both the FPS isolator and of the seismic joint deck-abutment), 

the peak pier displacement 
5

,

1

( )
peak ip p peak

i

u u


   (related to the internal forces in the bridge 

substructure) for the both models. All these relevant response parameters can be defined in non-

dimensional form, in line with Eq.s (6) and (12), as follows: 

 

2

,

0

peak

d

d d

u

u

a


    ,    

,

5
2

2

1

0 0

( )
i

peak

p

p peak d
p d i

u

u
u

a a


  


 (15a,b) 

Eq.s (6) and (12) are repeatedly and numerically solved in Matlab–Simulink [53] computing a set of 

samples for each response parameter for the two structural models. As also described in 

[25],[26],[28],[52],[54], the response parameters are modeled in probabilistic terms: the generic 

response parameter D (i.e., the extreme values 
du , 

pu  of Eq. (15)) can be fitted by a lognormal 

distribution estimating the sample geometric mean,  GM D , and dispersion,  D , defined, 

respectively:  

   1 ...N
NGM D d d     (16) 

    
     

2 2

1

ln

ln ln ...... ln ln

1

         
 



Nd GM D d GM D
D D

N
    (17) 

in which dh is the h-th sample realization of D, and N represents the total number of samples (i.e., 

ground motions): h=1,…,N. The kth percentile of the response parameter D can be evaluated as: 



 exp[ ( ) () )( ]kd f kGM D D   (18) 

where ( )f k  is a function that assumes the following values (50) 0f  , (84) 1f   and (16) 1f    

[55], for the 50th, 16th and 84th percentile, respectively.  

4.2 Preliminary analysis for increasing dof with respect to the pier 

This section describes a preliminary analysis with increasing dof in relation to the pier for the two 

structural configurations (i.e., single-column bent viaduct and multi-span continuous deck bridge). 

Specifically, the following mdof systems are compared: 2dof, 6dof and 8dof system (Fig.1(c)-(f)). 

For each mdof system, the first dof corresponds to the response of the deck whereas, the other degrees 

of freedom correspond to the different dof used to discretize the pier into a lumped mass system in 

order to take into account the effects of the higher order modes. In fact, although within the following 

parametric study, very low values of the vibration period of the pier are selected, a more accurate 

evaluation of the pier response needs a mdof system as also demonstrated in [29]. The following 

values have been considered: Tp =0.2s, Td =2s and 4s, l=0.2, 5%
p p    , 0%

d d     and 

the normalised friction coefficient varying in the range: 
* 0, , 2  . Considering the presence of 

the abutment, the same FPS devices are assumed on the pier and on the abutment: 
* * * 0, , 2p a       .  

In Fig.s 2-3, the median values of the normalized pier displacement are greater in the model with only 

pier, but with increasing values of the isolation period Td,  
puGM   decreases especially when the 

presence of the abutment is considered. As for the dispersion, the model which considers the pier-

abutment-deck interaction presents higher values, and  
pu   increases with increasing dT .  

With the increase of the degrees of freedom,  
puGM   increases but  

pu   generally decreases. 
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Fig. 2. Normalized pier displacement vs. 

: median value ((a): analysis with only pier; (c): analysis with the pier-

abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s, l=0.2 and Td =2s.  
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Fig. 3. Normalized pier displacement vs. 

: median value ((a): analysis with only pier; (c): analysis with the pier-

abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s, l=0.2 and Td =4s.  
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Fig. 4. Normalized deck displacement vs. 

: median value ((a): analysis with only pier; (c): analysis with the pier-

abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s, l=0.2 and Td =2s.  
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Fig. 5. Normalized deck displacement vs. 

: median value ((a): analysis with only pier; (c): analysis with the pier-

abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s, l=0.2 and Td =4s.  

In Fig.s 4-5, the median values of normalized deck displacement are greater in the configuration with 

the pier-abutment-deck interaction, and with the rise of the isolation period Td,  
duGM   increases. 

As for the dispersion of normalized deck displacement: the model which considers only the pier is 

characterized by higher values, and  
du   increases with increasing dT . With the increase of the 

degrees of freedom,  
duGM   generally increases and  

du   decreases.  

The results have demonstrated the effectiveness of the 6dof systems for the both structural models 

since the results are very similar to the ones achieved for the 8dof systems. The choice of the 6dof 

systems represents a tradeoff between the computational effort and the accuracy of the results. 

Therefore, in the following parametric analysis the 6dof systems are employed for the two structural 

configurations (i.e., single-column bent viaduct and multi-span continuous deck bridge). 

4.3 Comparison and parametric study: non-dimensional results  

In this section, the results of the parametric study for the two structural configurations developed on 

the equivalent 6dof systems, for the different structural properties and 30 ground motion records, are 

illustrated and commented. Specifically, in line with [1],[10],[15],[32]-[33],[56]-[59], the parameters 

d d    and 
p p    are assumed respectively equal to 0% and 5%, the isolation period Td varies 

in the range between 2s, 2.5s, 3s, 3.5s and 4s, the elastic RC pier period Tp from 0.05s to 0.2s with a 

step of 0.05s,     between 0.1, 0.15 and 0.2, 
*

  between 0 and 2. The latter one is related to 

the FPS device on the pier for the model without the abutment and to the FPS isolators, assumed 

equal, on the pier and on the abutment for the model of Fig. 1(b): 
* * *

p a      . Indeed, high 

*

  values are considered to take also into account the very low values of the IM at very high isolated 

periods (i.e., Td=4s) depending on the seismic hazard [60]. For each parameter combination and for 



the two structural configurations, the differential motion equations (Eq.s (6) and (12)) have been 

repeatedly and numerically solved adopting the Bogacki-Shampine and Runge-Kutta-Fehlberg 

integration algorithm available in Matlab-Simulink [53]. After that, for each normalized response 

parameter, the geometric mean, GM, and the dispersion, , have been evaluated by means of Eq.s 

(16) and (17) and are illustrated in Fig.s 6-13 for the both structural models. Each figure contains 

different meshes as many as the values of  : the arrow indicates the increasing values of  .  

Note that for the configuration with the pier-abutment-deck interaction (i.e., multi-span continuous 

deck bridge), the peak normalized deck displacement, showed in Fig.s 6-9, has always been the one 

between the deck and the abutment. This is because of the elastic response of the pier that reduces 

the relative displacement between the deck and itself.  

In Fig.s 6-9,  
duGM   is quite perfectly equal to unit for 

* 0   and pT = 0.05s because of the very 

reduced influence of the pier behaviour. For 
* 0  ,  

duGM   increases slightly for increasing dT  

because of the period elongation. Obviously,  
duGM   decreases significantly as 

*

  increases 

showing an hyperbolic trend while it is not heavily influenced by  . The dispersion  
du  , for 

high dT , increases for increasing values of 
*

 , as a result of the reduction of the efficiency of the 

IM.  
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Fig. 6. Normalized deck displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.05s and for different values of l.  
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Fig. 7. Normalized deck displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.1s and for different values of l.  
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Fig. 8. Normalized deck displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.15s and for different values of l.  
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Fig. 9. Normalized deck displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s and for different values of l. 
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Fig. 10. Normalized pier displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.05s and for different values of l. 
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Fig. 11. Normalized pier displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.1s and for different values of l. 
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Fig. 12. Normalized pier displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.15s and for different values of l. 
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Fig. 13. Normalized pier displacement vs. 
and Td: median value ((a): analysis with only pier; (c): analysis with the 

pier-abutment-deck interaction) and dispersion ((b): analysis with only pier; (d): analysis with the pier-abutment-deck 

interaction) for Tp =0.2s and for different values of l. 

Obviously, in the reference situation corresponding to 
* 0   and pT =0.05s, the dispersion is zero 

for all the values of dT  and of   considered. The mass ratio   does not affect significantly the 

response dispersion, especially in the case of high pT  values. Although the trends of the both statistics 

are similar for the two configurations, it is possible to observe that the values of  
duGM   are larger 

in the case of the model without the pier-abutment-deck interaction. Differently, higher values of 

 
du   are achieved for the model with the pier-abutment-deck interaction. 

Fig.s 10-13 show the response statistics of the normalized pier displacement 
pu . For the both 

structural configurations,  
puGM   decreases for higher values of dT  and of   as well as for 

decreasing values of pT ; whereas it first decreases and then increases for increasing values of 
*

 . It 

follows that there is an optimal value of 
*

  able to minimize the geometric mean of the pier 

displacement. This optimal value varies in a range that depends on the values of pT , dT ,   and on 

the structural configuration. In fact, as can be observed, the sagging zones of the meshes related to 

the case with the pier-abutment-deck interaction (i.e., multi-span continuous deck bridge) are larger, 

leading to higher values of these optimal ranges. This happens because the seismic device on the pier 

slides with a velocity lower than the one of the device on the abutment. Note also that for not optimal 

values of 
*

 ,  
puGM   is not so high. Conversely,  

puGM   presents higher values for the 

structural configuration without the pier-abutment-deck interaction (i.e., single-column bent viaduct). 

The values of the dispersion  
pu   are very low for low 

*

  values due to the high efficiency of 



the IM used in this work, and attain their peak for values of 
*

  close to the optimal ones. The other 

system parameters have a reduced influence on  
pu   compared to the influence of 

*

 . Higher 

values are achieved for the structural configuration with the pier-abutment-deck interaction (i.e., 

multi-span continuous deck bridge). 

As observed in similar studies [25]-[29],[61]-[64], the existence of an optimal value of the friction 

coefficient derives from a combination of three effects depending on the value of the sliding friction 

coefficient: the dissipated energy, the isolator forces and displacements demand.  

5 OPTIMAL VALUES OF THE SLIDING FRICTION COEFFICIENTS WITH REGRESSION 

ANALYSIS  

From the results defined in the previous section, for each parameter combination (i.e.,   dT  and 

pT ) and structural model (i.e., single-column bent viaduct and multi-span continuous deck bridge), 

the optimal values of the normalized sliding friction coefficient, 
*

,opt , that minimize the median 

(50th percentile) normalized pier displacements 
pu  have been computed and are reported in Fig. 14. 

Minimizing the pier displacements relative to the ground represents a notable design requirement for 

the safety of bridges in order to assure an adequate seismic protection and avoid any inelastic 

response. Fig. 14 reports the variation of 
*

,opt  with  and pT  for each dT  and in relation to the 

two structural models (Fig. 14a,b,c,d,e -1-2). According to [9], the optimal values of the sliding 

friction coefficient slightly increase for decreasing dT , especially for low pT , and this is valid for the 

both configurations. It is also observed that, especially for high dT  values, 
*

,opt  increases by 

increasing   and pT  to dissipate more energy and the friction coefficient attains its peak when all 

the three parameters (i.e., dT , pT  and  ) are considered with their maximum values together.  
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 Fig. 14. Optimal values of normalized friction that minimize the 50th percentile of the normalized pier displacements 

vs. land Tp, for Td =2s (a), Td =2.5s (b), Td =3s (c), Td =3.5s (d) and Td =4s (e). The column-1 reports the analysis 

with only pier; the column-2 reports the results for the analysis with the pier-abutment-deck interaction. 
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Fig. 15. Optimal values of normalized friction that minimize the 84th and 16th percentiles of the normalized pier 

displacements vs. land Tp, for Td =2s (a), Td =2.5s (b), Td =3s (c), Td =3.5s (d) and Td =4s (e). Column-1 reports the 

analysis with only pier; column-2 reports the results for the analysis with the pier-abutment-deck interaction. 

 

Between the two configurations, it is possible to see that for the model with pier-abutment-deck 

interaction (i.e., multi-span continuous deck bridge), the values of 
*

,opt  are higher than the ones of 



the other model (i.e., single-column bent viaduct). This result is in compliance with the responses 

previously obtained when the pier-abutment-deck interaction is considered.  

In order to assure a higher safety level, it might be of interest to define the values of 
*

,opt  that 

minimize others response percentiles [52]. Fig. 15 shows the optimal values of the normalized friction 

coefficients that minimize the 84th and 16th percentiles of the normalized pier response for the 

different values of   pT , dT regarding the two structural models (Fig. 15 a,b,c,d,e -1-2). In the case 

of the only pier model (i.e., single-column bent viaduct), 
*

,opt  is not significantly affected by 

neither pT  nor  , for both the percentiles. In the case of the pier-abutment-deck interaction (i.e., 

multi-span continuous deck bridge), the optimal coefficient of friction able to minimize the 84th 

percentile of the response tends to increase when increasing values of   are considered, especially 

for higher values of the isolation period dT . On the other hand, as for the 16th percentile of the 

normalized pier response, the meshes show a more constant trend with respect to both pT  and  . In 

terms of magnitude, the comparison between the two models shows higher values for the optimal 

normalized friction coefficient useful to minimize each percentile of the response, when the pier-

abutment-deck interaction is considered (i.e., multi-span continuous deck bridge), and this is as more 

relevant for higher values of dT .  

Through a multivariate nonlinear regression analysis, expressions are obtained for estimating 
*

,opt  

and up  as a function of the structural properties  , dT , pT  and of the percentile level (i.e., 50th, 16th 

and 84th) for the both structural models. The expressions for 
*

,opt  and up  are derived by fitting in 

Matlab [53], respectively, the following second-order polynomial expressions: 

* 2 2 2

, 1 2 3 4 5 6 7 8 9 10opt p d p d p d p dc c T c T c c T T c T c T c T c T c                      (19) 

2 2 2

1 2 3 4 5 6 7 8 9 10up p d p d p d p dc c T c T c c T T c T c T c T c T c                     (20) 

In Eq.s (19) and (20), ci, i=1,…,10, are the regression coefficients, whose values are reported in Tables 

2-5, respectively, as a function of the different percentile levels and for the two models (i.e., single-

column bent viaduct and multi-span continuous deck bridge). It is noteworthy that simple polynomial 

expressions have been adopted for a preliminary design of the FPS characteristics and a preliminary 

definition of the peak displacement of the pier.  

Eq. (19) can be used to design the optimum FPS properties for isolated bridges in order to reduce a 

percentile of the response as a function of the safety level required and given an IM level  A dS T  

corresponding to a seismic ultimate limit state [60] (i.e., near-collapse limit state). In fact, according 

to Eq.s (8) and (14), the non-normalized optimum friction coefficient (at high velocity) can be easily 

calculated for the device on the pier and/or on the abutment as 
 *

,opt

max,opt

A dS T

g




 
 . This means 

that the (non-normalized) optimum friction coefficient increases linearly with the IM level and so 

depends on the seismic intensities corresponding to the limit states. The regression R-squared value 

is higher than about 0.93 for the model with the pier-abutment-deck interaction. For the other model, 

R-squared value is higher than 0.90 for the 50th percentile whereas for the other two percentiles R-

squared value is higher than 0.7.  

Eq. (20) can be used to estimate the peak pier’s displacement for isolated bridges depending on the 

seismic intensity level  A dS T  as shown by Eq. (15(b)). In this way, it can be easily calculated as 



, 2

( )
p

peak

u A d

p

d

S T
u




 . Similarly to max,opt , 

, peakpu  increases linearly with the IM level and depends on 

the seismic intensities, too. The regression R-squared value is higher than about 0.96 for the both 

structural configurations. 

Table 2. Coefficients of multi-variate non-linear regression - 
*

,opt  (structural model with pier-abutment-deck 

interaction). 

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

50th percentile  0.6504 -0.1530 -0.2512 -3.0175 0.2160 5.7600 1.0025 -0.6333 0.0229 0.1000 

84th percentile  1.1202 -3.3907 -0.5135 -3.6625 1.3280 12.3000 1.1825 -1.7667 0.0533 0.9500 

16th percentile  6.0058 24.7573 -3.6519 -19.5525 -6.0040 -12.2400 2.9325 -4.8000 0.5910 35.8000 

Table 3. Coefficients of multi-variate non-linear regression - up  (structural model with pier-abutment-deck 

interaction). 

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

50th percentile  0.0280 0.1813 -0.0157 -0.1376 -0.0378 -0.3327 0.0267 1.0472 0.0022 0.2258 

84th percentile  0.0499 0.1720 -0.0300 -0.1769 -0.0463 -0.1329 0.0342 2.1290 0.0045 0.2411 

16th percentile  -0.0076 0.0785 0.0069 -0.0371 0.0006 -0.1652 0.0002 0.2391 -0.0014 0.1225 

Table 4. Coefficients of multi-variate non-linear regression - 
*

,opt  (structural model with only pier). 

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

50th percentile  0.3332 -0.7983 -0.0561 -1.2850 0.1833 3.4000 0.2100 0.5666 0.0056 1.6000 

84th percentile  0.5089 -2.3606 -0.1615 -1.5625 0.6066 7.5400 0.4025 1.4333 0.0162 0.5500 

16th percentile  0.4750 -0.7423 -0.1696 -0.5075 0.1707 2.4200 0.3025 -0.4667 0.0209 -2.3499 

Table 5. Coefficients of multi-variate non-linear regression - up  (structural model with only pier). 

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

50th percentile  0.0609 0.5394 -0.0328 -0.3743 -0.1093 -1.1436 0.0664 1.2904 0.0046 0.7472 

84th percentile  0.0976 0.5598 -0.0519 -0.5027 -0.1137 -0.9082 0.8677 2.0739 0.0072 0.8888 

16th percentile  0.0374 0.4756 -0.0204 -0.2818 -0.0944 -1.0857 0.0524 0.7358 0.0029 0.5901 

 

These two nondimensional regressions, useful for the preliminary design or retrofit of both single-

column bent viaducts and multi-span continuous deck bridges located in any site and in relation, 

especially, to the seismic ultimate limit states for the non-frequent ground motions selected, can be 

used as follows. Known the geometry and dynamic characteristics (i.e.,  , dT , pT ) of the structural 

system, fixed a seismic ultimate limit state according to the location and code and considering, 

especially, the 50th or 84th percentiles, Eq.(19) can be employed and consequently 
max,opt  can be 

computed. After that, considering the same percentile, Eq.(20) can be employed and consequently 

, peakpu  can be computed. Successively, within the same percentile and for the optimal value 
*

,opt  

previously achieved, the non-dimensional results in Fig.s 6-9 together with Eq.(18) can be used to 

estimate the nondimensional seismic demand to the deck and isolators, and consequently 

, 2

( )
d

peak

u A d

d

d

S T
u




  can be computed. In this way, it is possible to achieve the design information with 

respect to the FPS isolators, pier, deck and seismic joint deck-abutment. 

Finally, it is also worth underlining that the optimal properties of the FPS devices have been estimated 

considering only the seismic loads, but during the design phase of bridges, other serviceability actions 

such as thermal movements [65] have to be absolutely considered. These factors, in fact, can influence 

the design and the costs of piers and of foundations when high values of the fiction coefficient are 

necessary under earthquake events. For these situations, a cost-effectiveness analysis considering all 



the different actions could be useful to reduce the construction costs provided that the same safety 

level is assured. Moreover, the deterioration of the sliding surface of the isolator can be taken into 

account by means of the property modification factors, as discussed in [66]. 

 

6 CONCLUSIONS 

This paper describes the seismic performance of bridges and viaducts isolated with single concave 

friction pendulum system bearings in order to evaluate the influence of the pier-abutment-deck 

interaction and define the optimal isolator friction properties taking into account the uncertainty in 

the seismic input. By means of a nondimensionalization of the motion equations with respect to the 

seismic intensity, a wide parametric analysis for several structural properties has been carried out by 

monitoring the response parameters of interest regarding both an isolated bridge where only the pier 

response is considered and an isolated bridge where the interaction between pier and abutment is 

taking into account (i.e., single-column bent viaduct and multi-span continuous deck bridge, 

respectively). The behavior of these systems is modelled by employing a six-degree-of-freedom 

system accounting for the effects due to the higher modes of the elastic pier. A preliminary analysis 

among a 2dof, 6dof and 8dof model has also been illustrated to demonstrate that the equivalent 6dof 

model is very effective in estimating the deck and pier response for the both structural configurations.  

With reference to the deck response, the geometric mean of the normalized deck displacement 

increases slightly for increasing isolation period because of the period elongation and it decreases 

significantly as the normalized friction increases. The dispersion increases for increasing both 

isolation period and normalised friction coefficient. The other structural parameters do not 

significantly affect the deck response statistics. Regarding the model accounting for the pier-

abutment-deck interaction (i.e., multi-span continuous deck bridge), the geometric mean of the 

normalized deck displacement tends to be lower than the outcomes of the model with only pier (i.e., 

single-column bent viaduct). An opposite result is obtained regarding the dispersion. 

With reference to the pier response, the geometric mean of the normalized displacement decreases 

for increasing values of isolation period and of mass ratio as well as for decreasing values of pier 

period, whereas it first decreases and then increases for increasing values of normalized friction. Thus, 

there exists an optimal value of normalized friction coefficient such that the pier displacement is 

minimized. This optimal value varies in the range between 0.1 and 0.3 depending on the other system 

properties. The opposite trend is observed for the dispersion that increases for increasing values of 

both the pier period and isolation period and for decreasing values of the mass ratio. In the case of 

pier-abutment-deck interaction model (i.e., multi-span continuous deck bridge), lower values of the 

geometric mean are observed for any pier’s period with a reduced influence of both the isolation 

period and the mass ratio; higher values of the optimal normalised friction coefficient are required to 

minimize any response percentile. Regarding the dispersion, higher values are observed for the pier-

abutment-deck interaction model. This happens because the seismic device on the pier slides with a 

velocity lower than the one of the device on the abutment. 

Finally, multi-variate regression expressions are defined in order to estimate the optimal values of the 

normalized friction coefficient able to minimize the 50th, 16th and 84th percentiles of the pier response, 

as a function of the structural properties and for the both structural models herein investigated. Higher 

optimum friction coefficients are required, when the pier-abutment-deck interaction (i.e., multi-span 

continuous deck bridge) is taken into account. Furthermore, when all the structural parameters   

pT , dT  are picked with their maximum values, larger values of the optimum friction coefficient are 

required to increase the energy dissipation. Furthermore, note that friction pendulum properties that 

are "optimal" for a given seismic intensity, are not "optimal" for the other intensities corresponding 

to other sites and limit states. In addition, a regression expression is also provided to estimate the 

corresponding response of the pier.  

These proposed nondimensional regressions can be very useful for the preliminary design or retrofit 

of both single-column bent viaducts and multi-span continuous deck bridges with the scope to 



estimate the optimal friction coefficient in order to reduce a percentile of the pier response as a 

function of the safety level required and given an intensity measure related to a seismic ultimate limit 

state in a specific site. 
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