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Impact of magnetic X-points on the vertical stability of tokamak plasmas
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! DISAT, Polytechnic University of Turin, Torino 10129, Italy
2KTX Laboratory, School of Nuclear Science and Technology,
University of Science and Technology of China, Hefei, 230022, China
3 Institute for Fusion Studies, University of Texas at Austin, USA
(Dated: June 18, 2021)

The ideal-MHD theory of axisymmetric modes with toroidal mode number n = 0 in tokamak
plasmas is developed. These modes are resonant at the magnetic X-points of the tokamak divertor
separatrix. As a consequence, current sheets form along the separatrix, which profoundly affect the
stability of vertical plasma displacements. In particular, current sheets at the/magnetic separatrix
lead to stabilization of n = 0 modes, at least on the ideal-MHD time scale, adding an important
ingredient to the mechanism of passive feedback stabilization.

Tokamak experiments adopt magnetic divertors [1] in
order to access high plasma confinement (H-mode [2])
regimes, and to reduce the adverse effects of plasma-wall
interactions. In divertor configurations, nested magnetic
flux surfaces are bounded by a separatrix with one or
more X-points. Closed flux surfaces inside the separatrix
are separated from open ones, where plasma-edge interac-
tions dominate. Divertors also create elongated plasmas,
which are prone to an instability, initiated by a plasma
axisymmetric mode with toroidal mode number n =0,
leading to Vertical Displacement Events (VDE), where
the entire plasma shifts vertically until it touches the vae-
uum chamber. Uncontrolled VDEs must be avoided, as
they lead to the abrupt termination of the tokamak dis-
charge. Therefore, conducting structures are'embedded
in a tokamak device as a way to stabilize n'= Oumodes,
which, in the ideal magneto-hydro-dynamic (MHD) limit,
would otherwise grow on Alfvén time scales. The passive
stabilization mechanism is the development, of image cur-
rents in these structures and on the wall. Aetive feedback
stabilization, by means of currents in c¢oils outside the
vacuum chamber, is used to suppress the residual growth
on the slower time scale associatedswith wall resistiv-
ity [3, 4].

While there is consensus that VDEs are triggered by
n = 0 modes, there is no theory that eonnects this in-
stability with the X-point magnetie.topology. A generic
n = 0 perturbation is singular at the X-point(s) of the
divertor separatrix, where the poloidal component of the
equilibrium magnetic field Beq vanishes and Beq - k =
0, with k the perturbation wavevector. Consequently,
axisymmetric current sheet$ localized along the separa-
trix are likely to form. Such process has been studied in
the context of astrophysical plasmas [5, 6], as well as in
connection with fundamental laboratory plasma experi-
ments (e.g., Ref. [7]),/and is well known to researchers
working in‘fhagnetie fusion (e.g., Refs. [8 11]). However,
the resonant interaction between n = 0 modes and the X-
point(s) of the divertor separatrix has been overlooked by
the tokamak eommunity, in spite of the importance of di-
vertors for the successful operation of fusion experiments.
One notable exception is Ref. [11], where the stabilizing
property of separatrix current sheets is noted in analogy

with the stabilizing'surface currents associated with ex-
ternal kinks. However;Ref. [11] falls short of developing
the analytic theory of the X-point resonance for n = 0
modes. There.is experimental evidence, not yet satisfac-
torily explained, ofn = 0 perturbations and of current
sheets at divertor X-points in tokamaks such as the Joint
European Torugy(JET) [12-15]. Also, current sheets are
observed in numerical simulations of the vertical instabil-
ity'with advanced codes that treat correctly the X-point
geometty, such as M3D-C!, NIMROD, and JOREK [16—
18].| However, an analytic understanding of why these
current sheets form, and more importantly, the impact
they have on the stability of vertical displacements, is
not available.

The aim of this article is to remedy this situation, by
providing a fully analytic, normal mode analysis of n = 0
modes within the framework of the ideal-MHD model.
Our main finding is that, whenever the plasma extends
to the magnetic separatrix, the frozen magnetic flux con-
straint on the resonant X-point field line gives rise to
current sheets, which can lead to stabilization of verti-
cal displacements on ideal-MHD time scales, adding an
important ingredient to the mechanism of passive feed-
back stabilization. We also find ideal-MHD stable n = 0
modes that oscillate with a frequency below the poloidal
Alfvén frequency, and as such are unaffected by con-
tinuum damping, which opens the possibility that these
modes interact with energetic particles, leading to a new
type of fast ion instability in tokamak plasmas [19).

Our analysis is based on the standard reduced ideal-
MHD model [20]. The magnetic field is B = e, X
Vi + Bg ey, where ey is the unit vector along the ig-
norable toroidal direction, and By is nearly constant.
Toroidal curvature effects are neglected. The plasma flow
is v = ey x Vy. The magnetic flux function, v, and the
stream function, ¢, obey the dimensionless equations:
8{9/) + [Lp7 ’(r,)] =0; 8,V - (Q le) + [Lp7 U] = [’(rb7 ']]a where
[x;n = ey - Vx x Vn, J = V%) is the current density,
and U = V2p is the flow vorticity. Space and time are
normalized as 7 = r/rg, where 7o = ab/[(a? + b?) /2]'/?
is an equilibrium scale length, with @ and b (a < b) the
semi-axes of a convenient elliptical flux surface (see be-

low), and £ = t/74, where T4~! = B} /(4w gm)1/2 is the
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relevant Alfvén time, with B/ the on-axis radial deriva-
tive of the equlhbrlum poloidal field. The dimensionless
fields are z,/) ¥/(Byry), ¢ = (ta/ro®)p. The plasma
density is 6 = p,,,/ Omo, with g,,0 its on-axis value, and
the current density is J = (4n/ ¢B})Js. In order to sim-
plify the notation, over-hats are dropped.

At equilibrium, fields are stationary and flows are ab-
sent. We adopt a relatively simple, "straight tokamak”
equilibrium [21, 22|, which, nonetheless, is able to cap-
ture the essential physics of the X-point resonance. Ex-
ternal currents are schematically represented as placed
symmetrically along the vertical y-axis, at y = =l.
The equilibrium current density, Je4, is uniform up to
an elliptical flux surface with semi-axes a and b, and
drops to zero beyond that surface. Since at equilibrium
[Yeq, Jeq] = 0, the relevant solution is Jeq = Jeg(Veq) =
2H (¥, — 1eq), where H(z) is the unit step function, and
V2eq = Jeg(1Peq). We introduce elliptical coordinates
(u,0), z = Asinh(u)cos(f), y = Acosh(u)sin(f), and

= v/b%2 — a2. The convenient elliptical flux surface cor-
responds to pu = up, where a = Asinh pp, b = A cosh pup,
and eq = Yy = 1/2.

We introduce the ellipticity parameter, e = (b* —
a?)/(b? +a?). As shown in [21], the solution for the equi-
librium flux, in the limit e, < 12/(a?+b?), is represented
as follows. For p < pp, and ¢eq = dr;} < i, the solution
of V2, = 2 is P, (x,y) = ¥ - (¢?/a® + y2/b?). For
p> py and Peq = Vf, > U, the solution of V2, =0
such that the flux and its normal derivative are contmu—
ous across the elliptical surface is:

52,0) = Yyt {p =y + < sinh [2(u — o)) cos(28)

(1)
where o? = (1 — e2)"'/2.  Magnetic flux._surfaces,
Yeq(p,0) = const, exhlblt a magneti¢ separatrix for
Yeq(1,0) = Yx = a?uy, with X-points located at p =

ux = 2up and 6 = 0x = /2,37 /2-(along the vertical
y-axis). This solution is valid up to/|z| and |y| < [,
including the separatrix. B

Let ¥(,0,t) = theq(n, 0) + Wy, 0) e¥4and o(u,0,t) =
?(p,0) et where the over-tilde denotes small perturba-
tions. To first order in perturbed quantities,

'Y‘Z’ + [‘ﬁﬂ/)eq] =0, (2)
YV - (0egVP) = ['/;, Jeq] it [‘/’emj] . 3)

The case where the equilibrium plasma density also
drops to zero at the elliptical flux surface is analyzed in
Ref. [19], where agreement is found with the standard
result of Ref. [23]:0In this case, the plasma does not ex-
tend to the separatrix and the X-points have no impact
on n = 0modes. It is shown in [19] that a rigid-shift ver-
tical displacement, ¢ = v&z, with £ = const, is the exact
analytic solution of Egs. (2)-(3). In elliptical coordinates,

@(u,0) = v & Asinh pcos 6. (4)

2
The solution for the perturbed flux is
- ~ &coshp
d} (#,0) - b COSh/_Lb Sln07 (5)

and, in the vacuum region, if no wall is present,
U (p,0) = —(€/b)e (# #)sinh. Thus, a perturbed cur-
rent sheet on the elliptical boundary is found, J(w,0) =
J6(0)8( — ps), where d(z) is the delta funetion.s A sim-
ple calculation [19] determines the funetion j, () and the
mode growth rate. If the wallis present, passive feedback
stabilization is obtained [19] by appropriate modification
of the vacuum flux solution.

In this article, we consider the more relevant scenario,
where the equilibrium plasma density is uniform, but ex-
tends to the magnetic separatrix, o = H(¢)x —teq), while
keeping J,, = 2H (yg=1).,). Perturbed currents are now
allowed to flowsalong the separatrix, and correct treat-
ment of the X-peoint resonance becomes essential. With
reference to Fig. 1, we indicate with € the region inside
the elliptical flux.surface, with A the region between the
elliptical surface and the separatrix, and with Vi the
vacuum regions:

The rigid-shift for the stream function, @, given by
Eqs(4), is'still the exact and unique analytic solution of
Eqgs. (2)-(3), its validity now extending all the way to the
separatrix. Consequently, the perturbed flux in region Q2
is stillgiven by Eq. (5), while, in region A,

§ sinh(p — 2u1)

valn,0) = b sinh

sin 6 (6)
involves only one harmonic in the elliptical angle 6,
and satisfies the ideal-MHD constraint at the X-points,
w(u x,0x) = 0. Moreover, v is continuous at the ellipti-
cal surface, but its first derivative is discontinuous, and so
a perturbed current sheet is still present there: the term
[eq, J] in Eq. (3) generates a delta function, §(u — pp),
at the elliptical surface, which is exactly ~ca,ncelled by the
other delta-function term arising from [¢), Je,).

b= +00 w0 v = —00

v — —0C u >0 v = +oo

FIG. 1. Equilibrium magnetic structure. Note that the y-axis
has been rotated by 90°.

Since the separatrix is not a p = const surface, several
f-harmonics couple into the vacuum solution. The lat-
ter must decay to zero at infinity and can be expressed

Page 2 of 5
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as Yy, (1,0) = 3 em exp(—mp) sin(mf). Unfortunately,
the analytic evaluation of the coefficients c,, is an inher-
ently intractable problem. This difficulty is resolved if ¢
in regions A and V3 is expressed in flux coordinates

u=a [V, (1,0) — ¥x] (7)
v="0— g + %0 cosh[2(u — ) ]sin(20)  (8)

where 1/, is given by Eq. (1). Since V?u = 0 and pu =
—0,v, coordinates (u, v) are orthogonal in regions A and
V.. The separatrix corresponds to v = 0 and, at the
X-points, v = 0, 7. On the elliptical boundary, u = u;, =
—up + (€0/2) sinh(2u) and v = 0 — /2 + (eo/2) sin(26).
With reference to Fig. 1, u is negative in regions A, V_
and V'_, and positive in regions V, and V', ; v ranges
from —o00 to 4+00. In region A, V295 = 0 has solution

oC

% Z [am cosh(mu) + B, sinh(mu)] cos(mw)

m,odd
(9)
The summation involves odd integers only. Note that, at
the X-points, Ya(u=0,v =0,7) x Y a,;, =0.

The elliptical surface between regions Q and A is spe-
cial, since both g = pp and u = u < 0 are constant there.
We exploit this fact to obtain explicit expressions for the
coefficients a,,, and B3,,. Let us use ¥a (up, v) = YA (15, 6)
and the identity (8y¥a)u, = (B#JA)M(I + eg cos 260) 1
Also, set a,, = am + b, B = —am + by, Wefind

"Z’A(uvv) =

emuy b . meg
o 2 (+9) 720 (750)

—mauy

e b . meg
b= T 2 (5 -9) 722 (Fh, o0

where J,(z) are integer-order Bessel functions [24].

The perturbed flux is a periodic function of v only in
region A. In the Vi vacuum regions, suitable represen-
tations for 9, solutions of V) = 0, that decay at large
values of |ul, are

Ay = —

by, (u,v) = %/OOO dte""a(t) sin [t (g —v)] (12)

By (u,0) / db e §(t) c88(ts) (13)
Symmetry considerations yield similar representations in
regions V.

Flux continuity at the separatrix, u = 0, provides a re-
lationship"between the functions a(t) and S(t). The per-
turbed flux, ¢y, (0,v) = (€/b) [;° dta(t)sin{t[(m/2) —
v] }, takesron different forms for different interval val-
ues of v, namely: 1Zvv+ (0,v) = Pa(0,v) for 0 < v < m,
1,ZV+(0,‘v) =), (0,v) for —oo < v < 0, and z,/;VJr(O,v) =
Py £(0,v) for 7 < v < 400. The inverse Fourier-Sine

transform of these relations gives

a(t) =% cos( ) l / - t'2€(:"2
- i %:5 +sm( )B(t (14)

where we used [ B(t) = >0, = 0.

One of the essential mathematical aspects of this solu-
tion is that the perturbedimagneticflux develops a sin-
gularity at the X-points. Indeed, let us consider

= g id m cos(mv) (15)

approaching the upper X-point at v = 0 along the
separatrix./»The leading asymptotic behavior of the
Fourier coefficients for large values of m is a,, ~ by,
p/m3/2gwhere p = [ sinh®(up) tanh (2u)] /2 = a[(a2+
b2)/ma?]'/2e ®uis a positive constant [24]. Thus, the
Fourier spectrum for the perturbed flux along the sep-
aratrix never decays exponentially for m — oo, which is
indicative of singular behavior. Indeed, consistently with
i~ pJm3/2, one obtains ¥ (0,v) ~ —p(7v/2)"/? and
(DubAVu=0 ~ (p/2)(m/20)'/2 as v — 0F. This behavior
can_also be found by direct expansion of ¥a for u =0
and small v, using Eqgs. (7) and (8).

The same type of behavior must hold for (6utl;vi)u:0
as |v| — 0. Analysis of Eq. (14) shows that this requires

B(t) ~ t3/2 +0o(t™%?%) as t— o0 (16)
o0t G- o (5) G o) (5)
+o(t™?%) as t— oc. (17)

Another mathematical aspect that is central to our
analysis, and that leads to the determination of the con-
stant parameter ¢ in Eqgs. (16)-(17), is that the perturbed
flux along the separatrix, 1/;v+ (0,v), in the vicinity of the
upper X-point at v = 0, can be written as the sum of even
and odd functions of v, Yy, (0,v) = Yeven(v) + Yoda(v),
where the even and odd parts, related to the terms in
Eq. (17) proportional to sinnt/2 and coswt/2, respec-
tively, can be considered as independent solutions, which
can be discussed separately. Asymptotic analysis for
small of v reveals that, for the even mode, ¢ = p/2, while
for the odd mode, ¢ = —p/2. Analogous conclusions are
obtained if the X-point at v = 7 is considered instead.

Having determined the perturbed flux in regions A and

+ (the latter at least in the vicinity of the X-points),
we are ready to evaluate the perturbed current density,
which, in flux coordinates, is obtained from J(u,v) =

|Vu|2(82 + 82)3). Clearly, J vanishes everywhere except
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that at the separatrix. Let J(u,v) = jx(v)d(u). It fol-
lows that, for both even and odd modes, near the upper
X-point, where |Vu|?(0,v) ~ |v],

. 2e
]X(v)rv—a—l;)\/g(g+q) %|v|1/2 as v—0. (18)

A straightforward procedure determines the dispersion
relation for the eigenfrequency 2. In regions A and Vi,
Eq. (3) is written as YV - (o V@) = V- (J e, x Vib,). We
integrate with respect to u over a narrow interval across
the separatrix between regions A and V., in the vicinity
of the upper X-point, where v is positive and small:

du .

. - = djx dy.
2y . a

all}mo . du |Vu|™*V - (Je, x Vipe,) = & du |,

(19)

du
Jimy [ Va7V (096) = ~2(0up)uso-
u—0 Su
1/2 3,3/2

L 28a T +

7% 2ol/2 v as v— 07, (20)

0

where we have used Eq. (4) for the stream function. Note
that a consistent behavior is found, as both terms in
Eqs. (19) and (20) are proportional to v~'/2. Balane-
ing the two terms, we obtain

Ta 1/2
=[5 (a4 ) (- el) el )

where ws = 7, ' and dimensions have been reintroduced.

The following conclusions can be drawn at this stage.
For the odd-parity solution, ¢ = —p/2,/then = 0 mode is
neutrally stable with v = 0 and no current.sheet develops
at the magnetic separatrix. This solution can be eonsid-
ered merely as a redefinition of the equilibrium, with the
current-carrying plasma shifted vertically by aidistance &
and the equilibrium current density modified by current
sheets at the elliptical flux surface = ;.

For the even-parity solutionyg = +p/2; a current sheet
develops at the separatrix, and evidently this is sufficient
to stabilize the n = 0 modey Wwhich in'this case oscillates
with a real frequency w = +iy ~ eywa (on account of
parameter p ~ eé/ ?). Since.w, is the Alfvén frequency
based on the poloidal.magnetic field and ey < 1, the
mode frequency falls below\the Alfvén continuum spec-
trum and therefore.i§ unaffected by continuum damp-
ing. The even-parity mode can be destabilized by the
resonant interaction with fast particle orbits [19] and be-
comes a possible candidate for the interpretation of finite-
amplitudesn = 0 fluctuations recently observed in JET
experiments [14,,15].

As we have seen, current sheets always form at the
plasma boundary, where the density drops to zero. How-
ever,; when the boundary coincides with the separatrix,
the nature of the current sheet changes significantly. The
following argument clarifies the situation. Suppose that

4

ellipticity is small and the density drops to zero in region
A, at a magnetic flux surface, © = u. <04 between the
elliptical surface at © = u; and the separatrix at v = 0.
The ”standard case”, with u. = up, and.in.the absence of
the wall, is unstable [19]. Evidently, the nature of the cur-
rent sheet that develops at the plasma boundary u = u,
turns from destabilizing to stabilizing as w, approaches 0.
Consider the perturbed magnetie flux on the boundary.
From ECI' (9), 11)A(Ucyv) = (é/b) E:,odd Ym (UC) cos(mv),
where 7,, (u.) = a,, coshmug+p3,, sinh mu,. The Fourier
coefficients decay exponentiallynfor,large m, namely,
Y (Ue) ~ € ™/ Mmaz for 'S muyar(te) ~ |ue| 1. There-
fore, the Fourier series defining J)A(uc,v) represents an
analytic function of v, that.becomes non-analytic as
u, — 0. We also” know that the coefficients a,,, Bm,
can be expressed ‘insterms of Bessel functions of argu-
ment meg/2. Therefore, for small ellipticity, such that
eo < myL, ~ |ugl, the m = 1 component dominates
the Fouriex'§eries, .., ¥ (uc, v) &~ (£/b)y1(uc) cosv. In
the same limit, the/current sheet at v = u. can be ex-
pressed‘as J(u.,v) = j.(v)d(u — u.), with j. o< —coswv.
Repeating the procedure that led to Eq. (21), but now
with'the boundary at u., we find that the sign of —v?2
depends on the sign of the second derivative of j.(v) near
v =/0. Thus, we reach the following conclusion. For a
fixed value of ey < 1, the sign of d%j./dv? at v = 0 is
positive, resulting in an unstable n = 0 mode, as long
as the plasma boundary is located in region A a finite
distance from the separatrix, i.e., |u.| > eg. In the limit
|uz] = 0, je(v) = jx(v) o< —|v|'/2, whose second deriva-
tive is negative near v = 0, and the n = 0 mode is sta-
bilized. The change in the stability properties occurs for
values of |u.| < eg, as more and more terms in the Fourier
representation of ¥z (., v) become important.

The theory discussed in this article presents analogies
with the physics of current sheet formation from the evo-
lution of internal kink modes [8, 9], and with the mag-
netic island coalescence problem [10]. In these works,
the ideal-MHD constraint causes magnetic flux to pile
up near the X-points, leading to perturbed localized cur-
rents and a stabilizing effect in the ideal-MHD limit. For
the island coalescence problem, it was found that a chain
of magnetic islands becomes ideal-MHD unstable when
the island width exceeds a critical threshold. In any case,
flux pile up prevents any further nonlinear evolution for
both unstable internal kinks and island coalescence, un-
less the ideal-MHD constraint is relaxed, e.g., by resis-
tivity. In our problem, vertical displacements are found
to be linearly stable in the ideal-MHD limit, when the
mode resonance at the equilibrium X-points of the diver-
tor separatrix is properly taken into account.

In conclusion, the resonant behavior of n=0 modes at
divertor X-points is an ideal-MHD phenomenon. There-
fore, it is reasonable that it must be treated first accord-
ing to the ideal-MHD model. Future work will consider
extended-MHD effects, but this article represents the
starting point for future developments. We have found
that, when the plasma density extends to the magnetic
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separatrix and n = 0 perturbations resonate at the mag-
netic X-points, vertical displacements are stable, at least
on ideal-MHD time scales, without any need for passive
stabilization elements. The stabilization mechanism is a
direct consequence of the ideal-MHD flux-freezing con-
straint on the X-points, which generates current sheets
localized along the magnetic separatrix, exerting a force
capable of pushing back the plasma in its vertical motion.
This also suggests that plasma electrical resistivity in a

narrow boundary layer along the magnetic separatrix, in
addition to wall resistivity, may have a profound impact
on the stability of n = 0 vertical displacements.
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