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Abstract

We build the Fermi frame associated to the world-line of a reference observer, arbitrary moving in a
given space-time, and we show that local measurements can be described in terms of a gravito-
electromagnetic analogy, where the gravito-electric and gravito-magnetic fields are related to the non
inertial features of the observer’s motion and to the curvature of space-time. We apply this formalism
to the space-time of a plane gravitational wave and show that the interaction of the wave with antennas
can be explained in terms of gravito-electromagnetic forces acting on test masses. Moreover, we show
that, besides the known gravito-electric effects, on which present gravitational waves antennas are
based, gravito-magnetic effects could in principle lead to other kinds of detectors.

1. Introduction

The observation of gravitational wave (GW) signals [ 1, 2] is just one of the latest successes of Einstein’s theory of
gravitation, General Relativity (GR): as a matter of fact, its predictions were verified with great accuracy during
last century, even though challenges to the Einsteinian paradigm come from cosmological observations [3, 4].
Einstein’s theory is based on the principle of general covariance, which requires physics laws to be expressed by
tensorial equations in space-time; accordingly, physical measurements are meaningful only when the observer
and the object of the observations are unambiguously identified [5]. The measurement process develops as
follows: (i) observers possess their own space-time, in the vicinity of their world-lines; (ii) covariant physics laws
are projected onto local space and time; (iii) predictions for the outcome of measurements in the local space-
time of the observers are obtained. In practice, it is convenient for an observer to use a quasi-Cartesian
coordinates system in his neighbourhood to describe the effects of gravitation; a continuous set of quasi-
Cartesian coordinates associated to the observer’s world-line defines the so called Fermi coordinates [6]. These
coordinates have a concrete meaning, since they are the coordinates an observer would naturally use to make
space and time measurements in the vicinity of his world-line. Basic studies on Fermi coordinates refer to
geodesic [7] and accelerated [8] observers. The definition of these coordinates is relevant for measurements
performed in arbitrary space-time: in particular, in this paper we will focus on the field of a gravitational-wave.
Actually, in current literature, the interaction between gravitational waves and detectors is described in terms of
atransverse and traceless tensor, which allows to introduce the so-called TT coordinates (see e.g. [9] and
references therein for a thorough discussion on the various coordinates used to describe the interaction with
gravitational waves). Here, following the approach described by Mashhoon [10], we are going to use the gravito-
electromagnetic (GEM) analogy to describe, in Fermi coordinates, the effect of a gravitational-wave in the
observer’s frame.

Itis a well known fact (see e.g. [11]) that Einstein equations, in weak-field approximation (small masses, low
velocities), can be written in analogy with Maxwell equations for the electromagnetic field, where the mass
density and current play the role of the charge density and current, respectively. Actually, these effects are very
small, but there were many proposals in the past (see the review paper [11]) and also more recently to test them,
such as the LAGEOS tests around the Earth [12], the Gravity Probe B mission [13], the LARES mission [14—17],
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the GINGER project [18-23], the LAGRANGE proposal [24] and other space-based tests [25]. Actually, it is
possible to introduce a space-time curvature approach to gravito-electromagnetism [10] , which allows to
express the curvature effects in analogy to classical electromagnetism, and this approach can be used in arbitrary
curved space-time (see also [26, 27]). In particular, using this approach we will discuss some effects of
gravitational waves on antennas constituted by systems of test masses; moreover, we will focus on the effect on
spinning test masses that have been recently studied in [28].

The paper is organised as follows: in section 2 we briefly review the definition of Fermi coordinates, before
introducing the gravito-electromagnetic formalism; then, in section 3 we recall the basic features of the space-
time of gravitational plane wave; the interaction of the wave with antennas is explained in terms of gravito-
magnetic forces in section 4. Eventually, conclusions are in section 5.

2. GEM effects in the Fermi frame

2.1. Fermi coordinates in arbitrary space-time

In this section we will briefly review the definition of a Fermi frame, that is a set of Fermi coordinates adapted to
the world-line of an observer. In practice, one may think of a Fermi frame as the mathematical realisation of a
laboratory frame in General Relativity.

Let us consider a congruence of observers in arbitrary motion in a gravitational field [29, 30]. In the
background space-time describing the gravitational field, we choose a set of coordinates x*'; accordingly, the
world-line x"(7) of a reference observer as function of the proper time 7 is determined by the following equation

Dx#
dr
where D stands for the covariant derivative along the world-line, a dot means derivative with respect to 7and a*
is the four-acceleration. To define a set of Fermi coordinates for the reference observer, we proceed as follows®:
in the tangent space along the world-line x(7) we define the orthonormal tetrad of the observer e(’é,) (7) such
that e(‘é) (7) is the unit vector tangent to his world-line and e(’i‘) (1) (fori= 1,2, 3) are the spatial vectors
orthogonal to each other and, also, orthogonal to e(‘(;) (7). In summary, we have

_ . '\ eveo
=al — ¥+ Th _xVx° = at, (€))]

¢y (7)) (T) = Ty 3y @
where 1), 5, is the Minkowski tensor. The equation of motion of the tetrad is
I
% = *Qlwelz(a')r (3)
where
QW = ahx” — @'t 4 5, Qe 4)

In the above equation Q2“ is the four-rotation of the tetrad. In particular, we notice that for a geodesic (a* = 0)
and non rotating (2“ = 0) tetrad we have Q*” = 0: consequently, in this case the tetrad is parallel transported.
IfQ2 = 0and a# = 0, the tetrad is Fermi-Walker transported; indeed, Fermi-Walker transport enables to define
the natural non rotating moving frame for an accelerated observer [29].

Itis then possible to define a set of Fermi coordinates: the observer along the congruence measures time
intervals according to his proper time, so the time coordinate is defined by T = T; to define the spatial
coordinates, let us consider a point P along the world-line, corresponding to a given value of the proper time 7,
and a space-like geodesic starting at P and defined by its unit tangent vector n*, whose components, with respect
to the orthonormal tetrad are n® = n;) = 1, e(‘l—‘) (1), and n® = 0. Let s be the distance parameter along this
space-like geodesic: we define the Fermi coordinates X* of an arbitrary point Q along this curve as
(cT, X, Y, Z) = (c1, s nD, s n®, s n), orin vector notation (cT, X) = (c7, sn). We point out that the
explicit form of the transformation from the background coordinates system x* to Fermi coordinates X" can be
found for instance in [30], or [28] where the case of a congruence of spinning test particles is considered.
Accordingly, using Fermi coordinates, it is possible to parametrize the space-time in the vicinity of the reference
world-line: in fact, since every point is reached by one space-like geodesic, it is possible to define its Fermi
coordinates as above. Indeed, these coordinates are well defined in a neighbourhood of the world-line since, far
away, it could be possible that space-like geodesics intersect, due to the space-time curvature.

In summary, Fermi coordinates are defined within a cylindrical space-time region of radius R, in the
vicinity of the reference world-line, where R is the space-time radius of curvature. These coordinates have a
direct and operational meaning since, from the viewpoint of the reference observer, they measure proper times

Greek indices refer to space-time coordinates, and assume the values 0,1,2,3, while Latin indices refer to spatial coordinates and assume the
values 1,2,3, usually corresponding to the Cartesian coordinates x, y, z.
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and distances away from the reference world-line. Here and henceforth, we will use Fermi coordinates only; as a
consequence, for the the sake of clarity, we drop the brackets from tetrad indices. The observer’s reference frame,
equipped with Fermi coordinates, is our Fermi frame. Moreover, we will use bold-face symbols like W to refer to
vectors in the Fermi frame.

In order to study the effect of the gravitational field in the Fermi frame, we need the expression of the space-
time metric in the vicinity of the reference world-line. For geodesic world-lines the metric in Fermi coordinates
is given by (see e.g. [7, 29])

ds? = —(1 + Rojo;X'X/)c%dT? — %RoﬁkxixkchdX" + (6,»,- - %R,»kﬂxkxl)dxidxi. 5)

The above expression is valid up to quadratic displacements | X’| from the reference world-line. Notice that
R3,6(T) is the projection of the Riemann curvature tensor on the orthonormal tetrad of the reference observer:

Rupys(T) = Rapys(T) = Rupo e(lé) (1) e(?}) (1) e(g/) (1) e(%) (1), (6)

and it is evaluated along the reference geodesic, where T = Tand X = 0.

As an example of geodesic frame, we may think of satellites around the Earth or the Earth-centered Inertial
(ECI) frame [31]. However, in actual experimental situations, the frame is in general non geodesic and,
moreover, its axes are not Fermi-Walker transported: this is the case of terrestrial laboratories, which are fixed
on the Earth surface, hence cannot be geodesic and, because of the daily motion, their axes are rotating and are
not Fermi-Walker transported.

The space-time metric around the world-line of observers in accelerated motion with rotating tetrads is
discussed in [30, 32, 33]. In particular, up to quadratic displacements | X’| from the reference world line, the
metric turns out to be* [30]

2
ds* = [(1 +2 ZX) - iz(n AX)? + RoinXin]Cszz + [1(9 A X); — %Roﬁkxka]chdXi
c c C

+ (@j - %Rikﬂxkx’)dxfdxf. 7)

In the above equation X is the position vector in the Fermi frame. The metric (7) encompasses both the
gravitational effects, deriving from the curvature tensor, and the inertial effects, due to world-line acceleration a
and the tetrad rotation 2.

2.2. Gravito-electromagnetic approach
We suggest here that a deeper insight into the meaning of the various terms of the space-time metric (7) can be
obtained by using an analogy with classical electromagnetism. Indeed, since in actual physical situations, such on
the Earth and, more in general, in the Solar System, we deal with weak inertial and gravitational fields, the above
metric (7) turns out to be a perturbation of the flat space-time Minkowski tensor. However, as a matter of fact,
the application of general relativity is not limited to this scenario since, for instance, when we deal with black
holes or study the large scale structure of the Universe, a more accurate description of the space-time metric is
required.

We assume that acceleration a and rotation {2 do not depend on time. In practice, neglecting the terms g;;
related to the spatial curvature, the above metric (7) can be written in the form [10]

ds? = —(1 — 23;)(:2de — é(A - dX)dt + 6;dX'dX/. (8)
c Cc

in terms of the gravito-electromagntic (GEM) potentials (®, A): this allows to introduce the corresponding
formalism. To begin with, we may separate the inertial contributions (those deriving from a and €2) from the
gravitational ones (those deriving from the curvature tensor R,3.s). Accordingly, we define the gravito-electric
(GE) ® = ®(T, X) and gravito-magnetic(GM) A = A(T, X) potentials:

(T, X) = ®/(X) + OXT, X), A(T, X) = A(X) + AY(T, X), ©)]
where in the GE potential (T, X)

1(a-X)?
PX)=-a-X— —
X) S o

+ %[IQPIXIZ — (@ X)) (10)

4 . . .
We neglect here higher order terms, proportional to the product of curvature tensor and the tetrad rotation 2.
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is the inertial contribution, while

DT, X) = = Rof (XX (an
is the curvature contribution; similarly, for the GM potential A(T, X) we have the inertial contribution
AlX) = —(% A X) (12)
and the curvature contribution:
c 1 ik
A (T, X) = gROjik(T)X]X . (13)
The gravito-electric and gravito-magnetic fields E and B are defined in terms of the potentials by
E=-Vd — li(lA), B=V x A (14)
c0T\2
In particular, using the definitions (14) we obtain for the GM field (up to linear order in | X'[)
El = a(l +2 'ZX) + QA @@AX), EF(T, X) = c?Roij(T)X. (15)
c
As for the GM field, we get
2 .
B' = Q¢ BSf(T,R) = —%qijJk a(DX (16)

Starting from the above definitions the gravito-electricmagnetic fields are written in the form
E=EF + E° B=B'+B" 17)

Itis possible to show (see e.g. [ 10]) that the curvature part of the GEM fields defined before can be combined in
the GEM Faraday tensor

Egs= —CZRagol‘Xi (18)
where Fy; = —Ef and Fj = e B¢ . Hence, Maxwell’s equations Fapy = 0and F "3 5= 47" J are satisfied to
linear order in | X| with

47 871G 1 ’
—JalT, 0) = —Roq = ——| Toa — =10, T’ ), (19)
c? ct 2

along the reference world-line which, indeed, justifies the name of GEM fields. Consequently, it is possibile to
define the stress-energy tensor, in analogy with electromagnetism:
1

T8 — pove G(Fca,Fﬁ7 - ig"ﬂﬂ,ém), 20)
T

or, in terms of the components of the curvature tensor

ToB — ﬁ(R a"/OiR ﬁwoj _ inaﬂR”f&OiR 76 o )Xin. (21)
Notice that along the reference world-line both the Faraday tensor and the stress-energy tensor vanish: this is
ultimately a consequence of Einstein’s principle of equivalence. Indeed, as discussed in [10], a coordinate-
independent measure of the stress-energy content of the gravitational field can be obtained by an averaging
process in the vicinity of the reference world-line.

The analogy with electromagnetic fields can be exploited also for for describing the motion of free test
masses. More precisely, this is the motion of free test masses relative to a reference mass, at rest at origin of the
Fermi frame. This motion is determined by the geodesics of the space-time metric (7). In particular the motion
of free test particles in the Fermi frame can be written in the form of a Lorentz-like force equation [10]

dXX

\Y

up to linear order in the particle velocity V = j—); (which is indeed the relative velocity with respect to the
reference mass). In the Lorentz-like force equation, g, = —m is the GE charge, and g, = —2m is the GM one
(the minus sign takes into account that the gravitational force is always attractive). As a consequence, the
Lorentz-like force equation becomes
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2
md—X = —mE — 2mX X B. (23)
dT? c
In particular, if we consider the inertial fields E!, B! only, the equation of motion of the test particles,
equation (23) becomes
dXX ( a- X)
— = —a|l + —QANQAX) —2QAV. 24
a7 = ( ) (24)

The above expression is the same used in classical physics for describing the motion of free particles in a non
inertial frame, except for the factor (1 + ac—z(), which is due to a redshift effect and, hence, is a purely
relativistic term.

There are other analogies that can be borrowed from classical electrodynamics for the GEM fields. A charged
spinning test particle has a magnetic moment p = ﬁs, where m, g, S are its mass, charge and spin,

respectively. The magnetic dipole in an external magnetic field B undergoes atorque 7 = g x B. Takinginto
account the GEM analogy, we may say that a test spinning particle with mass #2 and spin § has a gravito-

magnetic charge gy = —2m and, as a consequence, it possesses a gravito-magnetic dipole moment p, = —? [10].
Hence, in an external gravitomagnetic field B, its evolution equation is
ds 1 1
— = XB=——8SXxB=-B xS8. (25)
dr He c c

Furthermore (see e.g. [34]) due to the coupling with the gravito-magnetic field, the spinning particle
undergoes a force”

Fs= V(- B) = —%V(S .B) = —%(s . V)B. (26)

Notice that this force depends on the inhomogeneity of the gravitational field: in other words, a uniform field
does not produce such a force.

Before going on and studying the effects of the field of a GW in the Fermi frame in terms of GEM fields, let us
briefly comment on the operational meaning of the equation of motion (23). From the viewpoint of the
reference observer, this equation describes the evolution of a test mass; in other words how its spatial coordinates
X, Y, Z (which, by construction, measure proper distances away from the reference world-line) change due to the
action of inertial and gravitational fields. This action can be simply described in the Fermi frame in terms of
Newtonian GEM forces; of course, if other forces are present (such as mechanical or electromagnetic ones) they
should be added to the equation of motion.

In what follows we are interested in the description of the effects of a GW in the Fermi frame in terms of the
GEM fields; hence, we will not consider inertial effects and, moreover, we will focus on the Riemann curvature of
the wave neglecting the contributions due to local gravitational fields (such as the one of the Earth), whose effects
could be in any case linearly added, since in actual experimental situations (at least in the Solar System) they are
small perturbations of flat space-time.

3. Gravito-electromagnetism in the gravitational wave space-time

We start by briefly recalling the basic features of the space-time describing the field of a plane GW. To this end,
we remember that plane GWs are solutions of the vacuum linearised Einstein’s equations

Ohy, = 0. (27)

In order to obtain the above equations, we start from Einstein’s field equations

387G

G#,, - 7 T#V (28)

and suppose that the space-time metric g isintheform g , = 7, + hy., where |y, | < lisasmall

perturbation of the Minkowski tensor 7),, of flat space-time. Setting b = by — %nw,h, with h = h/

10

Einstein’s field equations (28) in the Lorentz gauge Qfl,,,u = O turn outto be

. 167G
Ohy =~ T 29)

Consequently, in vacuum we obtain equations (27). Exploiting the gauge freedom and using the so-called
transverse—traceless coordinates (TT) x* = (ct, x, y, z) (see e.g. [9]), if we suppose that the plane GW

a

5 . c . 3 : g . .
Indeed, this the projection of the spin-curvature force F* = — %R B 158" onto the Fermi frame, where u” is the four velocity and S* is

the spin tensor.
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propagates along the x axis, a solution of (27) can be written in the form

h = —(htel, + e, (30)
where
ht = At sin(wt — kx), h* = A%cos(wt — kx) (31)
and
000 O 0000
aefpoetl w-fione
000 —1 0010

are the polarisation tensors of the wave. In the above definitions, A", A* are the amplitude of the wave in the two
polarisation states, while w s its frequency and k the wave number, so that the wave four-vector
iski = (<, k, 0, 0).
Accordingly, in TT coordinates the gravitational field of the wave is described by the line element
ds? = —c2dt? + dx* + (1 — hHdy? + (1 + ht)dz? — 2h.dydz. (33)

We work in linear approximation in the perturbation #,,, and, consequently, in the amplitude A", A* of the
wave. In this approximation, the Riemann tensor is given by the following expression (see e.g [29]):

1
Rijoi(x) = E(aoajhil — 000ihj + 010;hjo — 010jhio). (34)
In particular, since hjy = 0 in the TT metric, the above expression of the Riemann tensor simplifies to
1
Rijoi(x) = E(aoajhil — 090ihj). (35)

Actually, as we have seen before, the effects of the curvature tensor in the observer frame can be described in
terms of the GEM fields E¢, BC. Ssince we consider a geodesic and non rotating frame, from equation (17) we
simply have E = E¢ and B = BC, so that the GEM fields are due to the curvature tensor only. In order to
evaluate these fields, we should in principle calculate the expression of the Riemann tensor in Fermi coordinates.
However, in weak field approximation—that is to say up to linear order in h,,, - the Riemann tensor is invariant
with respect to coordinate transformations, hence it has the same expression in terms of the new coordinates.
Consequently, we may use the TT values for the perturbations k,,, given by equation (33), and express them in
Fermi coordinates. Notice that, according to what we have discussed in section 2.1, in order to define the gravito-
electrogmagnetic fields, we need the projection of the Riemann tensor along the observer’s tetrad (6). Since we
are dealing with GWs, we have also to consider that the extension of our frame should not be comparable with
the wavelength, otherwise the spatial variation of the wave field should be taken into account.

Using the set of unit vectors uy, uy, uy in the Fermi frame, the field gravito-electric field (15) is
E = Exux + Eyuy + E,uz, where

2 2
Ey=0, E, = —%[A+ sin(WT)Y + A*cos (wT)Z], E, = —%[AX cos (WT)Y — A* sin (WT)Z].
(36)

The gravito-magnetic field (16) is B = Byuyx + Byuy + B,uy, where

2 2
By =0, By= —%[—AX cos(WT)Y + A*sin(wT)Z], B, = —%[A+ sin (wT) Y + A< cos (W) Z].
(37)

Notice that both fields are perpendicular to the propagation direction: the GW, like an electromagnetic one,
is transverse. Moreover, it is easy to check that E - B = 0, in other words the two field are perpendicular (see also
figures 1 and 2) and [E> — |B|* = 0.

Atafixed time T, the components of the gravito-electric and gravito-magnetic fields are plotted in figures 1
and 2 respectively. We see that, for both fields, the A* components are obtained from the A* with a rotation
of /4.

On the basis of the GEM analysis, and taking into account the definition of the stress-energy tensor (20), we
may define the Poynting vector

P— - ExB. (38)
4G
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Figure 1. The gravito-electric field E: on the left, we suppose that the GW has just the A" polarisation; on the right, we suppose that
the GW has just the A* polarisation. Notice that the two polarisations differ by a rotation of 7r/4.
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Figure 2. The gravito-magnetic field B: on the left, we suppose that the GW has just the A™ polarisation; on the right, we suppose that
the GW has just the A* polarisation. Notice that the two polarisations differ by a rotation of 7/4.

In particular, for a circularly polarised wave, since AT = A = A, we obtain
WA
167G

The above expression describes the energy per unit time and unit of surface, which the wave transports along its
direction of propagation. If we consider a circular detector of radius L, orthogonal to the propagation direction,
the energy per unit time is then

(Y% + ZH)uy. (39)

dE _ ¢ apeps (40)
dT ~ 32G

4. Detection of gravitational waves and gravito-electromagnetic fields

According to Press and Thorne [35], gravitational waves can be thought of as a ‘field of (relative) gravitational
forces propagating with the speed oflight’. This definition gets an operational meaning in the Fermi frame,
where physical quantities, such as displacements, are relative to the reference world-line; in our GEM approach,

7



10P Publishing

J. Phys. Commun. 4(2020) 055013 M L Ruggiero and A Ortolan

this is emphasised by the fact that the gravito-electric and gravito-magnetic fields are position depending, so that
they act differently on test masses located at different locations in the frame, thus producing tidal effects. Then,
the passage of a GW provokes a space-time deformation which, in the Fermi frame, can be described in terms of
forces due to the GEM fields. Accordingly, we may thought of a GW as a field of stresses: a gravitational waves
antenna (GW-antenna) or detector is a physical system on which the wave acts producing displacements and
motion, relative to the reference world-line. Stresses produce strains, which can be evidenced by suitable devices,
acting as sensors.

In this section we are going to see how the effects of GWs on antennas can be described in terms of GEM
fields. A thorough analysis of different kinds of GW receivers can be found in the already cited review paper [35]
which, even though is not updated with the recent technological developments, gives a very accurate description
of the basic principles of GWs detection. Indeed, all detection methods described in the aforementioned review
paper are essential based on the effect of the gravito-electric field; however, we have shown that in the GEM
approach also the gravito-magnetic field is present, so we are going to suggest some detection processes based on
the action of the gravito-magnetic field.

4.1. Gravito-electric effects

4.1.1. Free-mass or almost free-mass GW-antennas

The simplest GW-antenna is made of two free masses, which are at rest before the passage of the wave; in
particular, we suppose that one of them is at the origin of the Fermi frame, so we are interested in the motion of
the other mass, due to the passage of the wave.

Before going on, it is useful to stress the limits of our approximation: we work at first order in the wave
amplitude, so we have to deal with equations in a self-consistent way. GW-antennas are physical systems made of
test masses, which may possess also spin. If we suppose that V is the velocity of a test mass before the passage of
the wave, the latter provokes a change V(T) = V° + §V(T), where the variation § V(T) is of the order of the
wave amplitude A: 6V(T') = O(A). Asa consequence, since we work in linear approximation, in the equation of
motion (23) we can neglect the contribution of the gravito-magnetic field if the test masses are at rest before the
passage of the wave; things are different if we consider masses in motion before the passage of the wave, or if we
consider spinning test masses (see below).

Accordingly, the test mass is acted upon by the gravito-electric field only, and its equation of motion is

2
% - —E (41)

Let us suppose that the polarisation of the wave is such that A* = 0 (as we have seen before, the effect of the A*
polarisation is qualitatively the same); according to equations (36) the gravito-electric field is given by

2 2
Ex=0, E, = —%[AJr sin(WT)Y], E,= %W sin (WT)Z]. (42)

Let the location of the mass before the passage of the wave be X, = (0, L, 0), so that the physical distance
between the two masses is L. Then, the the solution of equation (41) up to linear order in the wave amplitude, is

X(T)=0, Y(T)= L[l - A7+sin(wT)], Z(T) = 0. (43)

The distance between the two masses changes with time. Indeed, the possibility of having two free masses is quite
complicated unless they are located in space: this is the case of the proposed space mission LISA (Laser
Interferometer Space Antenna) [36], which is based on a constellation of three satellites, orbiting around the
Sun. The variation of the distance between the satellites will be measured using laser interferometry. In Earth-
based experiments, such as LIGO[37]and VIRGO[38], the masses are held by suspensions and allowed to
oscillate at the passage of the wave; also in this case, the distance variations are measured by interferometric
techniques.

4.1.2. Resonant GW-antennas

Resonant GW-antennas are important from an historical viewpoint, since they were the first detectors
developed for the search of GWs and, also, because of the works of Weber [39, 40] who, since 1969 observed
coincident excitations of two resonant antennas. The Weber experiments and the problems raised by the
interpretation of its results in terms of characteristic of the GWs and their sources, are discussed in [35]. The
basic principle is the mechanical resonator: when a GW reaches a mechanical resonator, the normal modes are
excited. A toy model is a damped spring-mass system which, in our approach can be described considering the
elastic and damping forces, besides the gravitational force —mE. As a consequence, we have the equation of
motion
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Figure 3. Two identical dumbbells are made by test masses m; = m, = m; = m, = mat fixed distance R, and rotated by /2 with
respect each other. They independently rotate with frequency wy, before the passage of the wave.

d’y dy ) w?
m— + my— + mwi(Y — Yy) = m—A*t sin(wT) Y, 44
ar? VdT ol ) 5 (WT) Y, (44)

In the above equation, yis the damping constant, wy is the proper frequency of the system, and we suppose that
the rest length is Y,,. The solution of the above equation is

ATw?Y, sin(wT — )
2 \/,YZWZ + (W(Z) _ w2)2

Y(T) =Y, + , (45)

. . . . . . e .
where ¢ = arctany/(w§ — w?). The amplitude of the induced oscillation reaches it maximum A%’Y“ in

resonance condition, i.e. whenw = wj

Also the so-called heterodyne antenna [41, 42] is based on the resonance principle. In this case the GW-
antenna is a quadupolar system, made of two dumbbells crossed at an angle of /2, with length R. They
independently rotate in the plane orthogonal to the propagation direction with the same frequency wj. Let us
suppose thatat T = 0 the configuration of the dumbbells is that of figure 3, i.e. the four masses
m; = my = m3 = my = marealong the axes Yand Z. The coordinates of the mass #1,, whose positionat T = 0
is Xo = (0, 0, R), are

X;=0, Y =RsinwyT, Z;=RcoswyT. (46)
We suppose that the wave is circularly polarised, so that A* = A* = A, and taking into account the expression
of the gravito-electric field (36), the gravito-electirc force acting on the mass is Ff = —mE
2AR ’AR .
fo =0, ny = % cos(w — wy) T, Ffz = 7% sin(w — wy)T. 47)

We see that if wy = w/2, the above expression becomes

mw?AR

24
MAR s, pE = AR G @ (48)
2 : 2 2

E _ E __
Fl,X_()’ Fl,Y_

This force has a constant magnitude, and it is always orthogonal to the dumbbell: the mass experiences a force of
mw?AR
2
opposite direction. Hence, due to the action of the GW, a constant torque 7, = —mw?AR%uy acts on the

dumbbell, with the effect of accelerating its rotation. Now, if we use the same approach with the other dumbbell,
we see that it is acted upon by a constant torque 734 = mw?AR*uy, with the effect of decelerating its rotation. In
summary, with this choice of the rotation frequency, one dumbbell is accelerated and the other is decelerated, so
that the masses come closer: the angular separation 6 between the two dumbbells evolves with time with the law
AONT) = % — 80(T) = % - %szTz, which is independent of the length R. We obtain the following
estimate:

constant magnitude |FF| = . It easy to check that the other mass m, undergoes an equal force, directed in
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2 2
_ of w A T )
00(T) =5 x 10 (103HZ) (10721)(10% (49)

4.2. Gravito-magnetic effects
4.2.1. Gravito-magnetic resonance in hetorodyne antenna
Besides the effect described above and discussed in [41, 42] as possible candidate for a GW-antenna, if we
consider the same double-dumbbell device in figure 3, there is an additional effect, due to the action of the
gravito-magnetic field on the rotating masses.

Starting from the expression of the gravito-magnetic field (37), the force acting on a mass moving with speed
V,is FF = 72m¥ x B. Since we are working at linear order in the wave amplitude, we use in this expression the
velocity of the system before the passage of the wave.

Let the rotation frequency be w/2: the gravito-magnetic field acting on the the mass m; is

2 2
w‘AR . w w?AR w
Bx =0, By=-— sin—T, By =— cos—T (50)
2 2 2 2
We see that gravito-magnetic field has constant magnitude, and it is always directed toward the center; the mass
43 2
m; undergoes the force FY = m““z#ux. The other mass m, undergoes to the same force, so that the total force
B mw3AR?

acting on the first dumbbell is Fy, = uy. If we consider the other dumbbell, using the same approach we

3 2
see that it undergoes a total force F%, = — %ux. The first dumbbell moves in the direction of propagation of

the wave, while he other one moves in the opposite direction: accordingly, their distance d changes with time

accordingto d(T) = @ T?2. We obtain the following estimate:

3 2 2
e (G
d(T) =3 x 10 m(103Hz)(10*21) Im/ \10% (1)

4.2.2. Gravito-magnetic spin precession

As we have shown in section 2, the gravito-magnetic field acts on spinning test masses too; up to now, we have
just considered the effect of the gravito-electromangetic fields on test masses, described in terms of Lorentz-
force. However, a spinning test particle undergoesa torque 7 = p x B inagravito-magnetic field, so that its
evolution equation is

s 1

T :B x 8 (52)
We explicitly obtain the following equations
dSX Wz . 000 0c0 0c0 0c0
T —[A* sin (WT)(YSy — Z9S9) + A* cos (wT) (Y 'Sy + Z°S)], (53)
Cc
2
% = — YA sin (wT)YOSY + A cos (wT)Z0S%], (54)
Cc
2
% = —;’—[AX cos (wT) YOSy — A" sin (wT)Z°SY] (55)
C

In order to have a simple interpretation of the spin evolution, let us suppose that $° = (S°, 0, 0); moreover,
we suppose that the wave is circularly polarised, so that A* = A* = A, and the location of the spinning particle
is X% = (0, 0, Z°). Since at the location (0, 0, Z°) the GM field (37) becomes

W2 W2
By =0, By= —7A sin(wlZ°% B, =— TA cos (wT)Z°, (56)
from the equations (53)—(55) we obtain the following solutions

Sx(T) = S, (57)
Sy(T) = fziA sin (WT)Z°S°, (58)

c
S,(T) = —ZKA cos (WT) 208", (59)

c

In this configuration the spin vector rotates around its initial direction: we see that the Sy component is
unchanged, while the spin gets a component in the plane orthogonal to the wave S| = Syuy + Syuy, which
rotates with the wave frequency. We may evaluate the effect of the GW by considering the ratio:

10
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S _ @ yz0_ a2 (60)
s 2 A
We see that the precession relative to the reference spin at the origin of the frame depends on the distance, so it
can be increased by using a large separation Z°, which needs to be in any case smaller than wavelength \. In any
case, if we set ZTO = 107!, we obtain a relative spin variation lz—tl ~ 1072, withA~10"?".
Possibile candidates for measuring such a small effect could be the optical magnetometers: in particular
GNOME (Global Network of Optical Magnetometers for Exotic Physics) [43] is based on synchronous
measurements of optical-magnetometer signals from several devices operating in magnetically shielded
environments in distant locations: by synchronously detecting and correlating magnetometer signals, transient
events of global character may be identified. These devices are accurate magnetic field sensors, and their
measurements can be related to spin dynamics. Another possibility is the use of a ferromagnetic sample: in fact,
since a GW induces spin precessions, the magnetization due to electron spins in ferromagnetic samples will
change after the passage of the GW. On the other hand, if we consider mechanical gyroscopes, in terms of angles,
the gravitational wave induces a precession angle of 10> rad; by comparison, remember that in the Gravity
Probe B mission [13] the (1-year) Lense-Thirring effect was 10~° rad, hence it seems very difficult to use these
devices to measure the effect of the gravitational waves.

4.2.3. Gravito-magnetic effect on spinning particle motion
If the gravito-magnetic field is not homogeneous, the spinning particle is acted upon by the force

Fs = —l(s - V)B (61)
c

According to equation (61), the behaviour of spinning and spinless particles at rest before the passage of the wave
is different. These features have been investigated for instance in [44, 45] and also in [28]: indeed, GWs carry
angular momentum and, hence, spinning particles interact with GWs differently from non spinning ones.
According to our approach, up to linear order in the wave amplitude, while spinless particles are only acted upon
by the gravito-electric force F¥ = g, E = —mE, since the gravito-magnetic contribution in the Lorentz force
(23) is negligible, spinning particles, on the contrary, are subjected to the total force

Ff + FS = —mE — %(S - ' V)B, so that their equations of motion turns out to be

d2xX 1
— =—-E—- —(S:V)B. 62
a2 C( ) (62)

Since we work up to linear order in A, the GEM fields are evaluated at the initial position which is supposed to be
X% = (0, Yy, Zy); for the same reason, we consider for the spin vector its initial value $°. We suppose the the
wave is circularly polarised, so that At = A* = A.

From equations (36) and (37) we obtain the following expressions for the gravito-electric force F in the
plane of the wave

E WA .
Fy = mT[sm (wT) Yy + cos(wT)Zyl, (63)
2
FE = m%[cos (WI)Yy — sin(wT)Zy). (64)
and the spin force F°
2 0 0
F§ = ﬂ[sin WI)Z — cos (wT)S—Y], (65)
2 c c
2 0 0
F§ = ﬂ[cos WD)Z + sin (wT)S—Y]. (66)
2 c c
Then, the equations of motion (62) explicitly read
2 20 0 0
&Y A @) ¥ + 2| + coswn)| 2o — 32| |, (67)
dT? 2 [ mc mc
dZ—Z = ﬂ_cos (wWwh)| Yy + S—g — sin(wWT)| Zy — 8—19 (68)
dTr? 2 | T e O e )|
The wave-driven solutions are
[ 0 0
Y(T) = —é (Yo + S—Z]sin(wT) + (Zo — S—Y) cos(wT)], (69)
2 i mc mc

11
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0 0
Z(T) = —é (YO + S—Z] cos (wT) — (Zo — S—Y) sin (wT) |. (70)
2 mc mc

So we see the difference between spinning particles and spinless ones. The terms in the form % are, for electrons,
ofthe order of 10~ "> m.

5. Conclusions

In this paper, we have considered the construction of the Fermi frame for observers arbitrary moving in space-
time and we have shown that it is possible to describe the effects of both inertial and gravitational fields in terms
of a gravito-electromagnetic analogy. Consequently, the motion of test masses in the Fermi frame can be
explained in terms of gravito-electromagnetic forces, in analogy to what happens in classical electrodynamics.
Then, we have applied this formalism to the case of the space-time of a plane gravitational wave; we have shown
that the passage of a gravitational wave provokes a space-time deformation which, in the Fermi frame, can be
described in terms of forces due to the gravito-electric and gravito-magnetic fields. Current gravitational waves
antennas are designed to measure gravito-electric effects only, and we have shown how they can be described in
our formalism. In addition, we have emphasised that the gravito-magnetic part of the wave field acts on moving
or spinning test masses; as for the gravito-magnetic spin precession, we have preliminarily suggested an
experimental setup based on the use of optical magnetometers or ferromagnetic samples. More in general, we
have given some rough and preliminary estimates for these new gravito-magnetic effects due to the presence of a
gravitational wave. The effects are very small, as expected since we are dealing with gravitational waves:
consequently, the actual possibility of projecting and performing dedicated experiments deserves careful
analysis, which is beyond the scopes of this paper. However, we believe that our formalism could be useful to
investigate new effects, connected with the passage of a gravitational-wave.
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