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Abstract—The proliferation of IoT-based services for smart
cities, and especially those related to mobility, are ever becoming
more relevant and gaining attention from a number of stake-
holders. In our work, we tackle the problem of characterizing
people movements in a urban environment by using WiFi sensors
connected to the cellular network. In particular, we leverage WiFi
probe requests transmitted by people’s smartphones and a ma-
chine learning approach to detect people’s flows, while preserving
users’ privacy. We validate our approach through a proof-of-
concept testbed deployed in the proximity of our campus area.
We consider two types of devices, namely, commercial, off-the-
shelf WiFi scanners and ad-hoc designed scanners implemented
with Raspberry PIs. They provide different levels of visibility of
the captured traffic, preserving in different ways the privacy of
the people’s movements. In our current work, we investigate the
different trade-offs between mobility tracking accuracy and the
level of provided people’s privacy.

Index terms—People’s flow detection, privacy-preserving data
collection, proof-of-concept

I. INTRODUCTION

Analysing people’s movements in urban environments is
central to several critical applications related to safety, as well
as to a plethora of convenience services designed for mobile
users (e.g., car sharing, use of public transports, and store
recommendation systems). In particular, for many applications
it is essential to detect the pattern taken by people’s flows at
different times of the day/week. One of the key technologies
to achieve this goal is the Internet-of-Things (IoT) [1], [2],
as IoT devices are becoming pervasive and most of them
are equipped with a radio interface, such as WiFi, that can
conveniently connect them with other devices as well as
with the communication network infrastructure. Furthermore,
they typically consume little energy, hence they contribute to
creating sustainable communication systems, have low cost,
and pose fewer privacy issues than other devices like smart
city cameras.

In this work, we leverage the IoT technology and tackle
the problem of characterizing both people’s trajectories and
the number of people following a given path, while preserving
users’ privacy. In particular, we focus on a urban environment
and exploit both commercial sensors and such simple devices
as Raspberry PIs, equipped with a WiFi interface. Such devices
can scan the WiFi spectrum for probe requests, i.e., packets
transmitted by user hand-handled devices towards nearby
access points. Using the logs provided by these spectrum
scanners, we develop techniques to ensure that the collection
and processing of the data meets the General Data Protection
Regulation (GDPR) [3]. Importantly, we aim at developing a

solution that can cope with the serious limitations of commer-
cial or Raspberry PI-based scanners, which demands for a new
approach with respect to those proposed in prior art.

In particular, most of the existing schemes leveraging WiFi
sensors only detect probes sent by users’ smartphones, or infer
the number of users but not the path they follow, or present
experimental results rather than a full-fledged methodology for
people’s flow inference. In addition, they are typically quite
complex, as it is often necessary to cope with implementation
specifics in the periodicity of the transmissions of the probe
requests sent by user devices.

Unlike existing work, we develop an approach that can
effectively (i) cope with commercial sensors as well as simple
ad-hoc designed devices that scan the spectrum for WiFi
probes, and (ii) fully meet GDPR specifications. Further,
applying an ML-based scheme, we show how the data col-
lected through our privacy-preserving solution can be used to
characterize people’s flows. Our approach is then validated
through a proof-of-concept testbed that we developed and a
measurement campaign that we performed in the proximity of
the campus area of the Politecnico di Torino, in the city of
Turin, Italy.

The remainder of the paper is organized as follows. We
introduce the scenario under study, which is also used for our
proof-of-concept testbed, in Section II. The privacy-preserving
solution that we develop to collect anonymized data meeting
privacy constraints is described in Section III, while the ML
approach for people’s path detection is briefly described in
Section IV. Finally, we discuss some related work in Sec-
tion V, and draw some conclusions and our planned directions
for future research in Sec. VI.

II. SYSTEM AND PROOF-OF-CONCEPT SCENARIO

As depicted in Figure 1, we consider an urban area where,
e.g., pedestrians and cyclists transit from a location to another,

Fig. 1. System scenario and proof-of-concept setting.



such as from a railway/subway station to a university campus.
WiFi probe-detection scanners are deployed along streets, with
each scanner being connected to the cellular network. Scanners
receive WiFi probe request packets that are transmitted by
user devices nearby, with the purpose of swiftly discovering
access points with which they had been previously connected.
Scanners collect data carried by such probes, specifically, the
sender’s hashed MAC address and the probe timestamp.

Such a scenario poses a number of challenges. First, one
needs to cope with randomized MAC addresses in probe
requests, which makes user count hard since MAC addresses
across probes generated by the same user in a flow may be
different. Notice that most of the existing solutions addressing
this issue cannot be applied here, as they would need to
process the entire probe MAC header, which is not available
in commercial WiFi scanners. Second, the timing of probe
request generation may vary across different devices [4], and,
in particular in commercial scanners, they are not frequently
transmitted, which impairs the use of many of the existing
solutions. Third, scanners may have not been placed so as to
optimize geographical coverage, which may thus result into
missing or fleeting connectivity, or on coverage overlaps. The
latter, in particular, combined with the coarse time granular-
ity with which probe requests are reported, makes multiple
scanners detect the same user at the same time.

With regard to our proof-of-concept scenario, this matches
the one described above and exemplified in Figure 1. It has
been deployed nearby the Politecnico di Torino campus area, in
the city of Turin, Italy, with the help of the Turin municipality.
It includes Libellium Meshliums [5] and ad-hoc designed
sensors using WIP Raspberry PI, both scanning the WiFi
spectrum at 2.4 and 5 GHz. All the scanners are synchronized
via NTP. Libellium scanners log the collected probes just once
every 50 seconds, while in the case of the ad-hoc designed
sensors the log periodicity had to be set to at least 5 seconds, in
order to let the capturing and processing software properly run.
Further, scanners are connected to the 5G-EVE platform [6]
via the cellular network, and, through such a platform, they
upload their log to an OneM2M server [7] (see Figure 1) every
two minutes.

III. DATA COLLECTION

As first, fundamental step in our methodology, we de-
velop a privacy-preserving technique to extract data from
users’ probes. Upon detecting a probe request, scanners log
several pieces of information related to that (see Figure 2).
Specifically, (i) the received signal strength index (RSSI),
which however may lead to inaccurate estimations in outdoor

Fig. 2. Example of the log of a probe request detection provided by a WiFi
sensor.

scenarios, (ii) the interface vendor, which unfortunately does
not uniquely identify the interface and it is often set to
“unknown”, (iii) the timestamp related to the probe request
detection, and (iv) the sender’s MAC address. Given the above
issues, RSSI and interface vendor cannot be exploited.

With regard to the timestamp, due to the coarse periodicity
with which such information is logged, it is impossible to
infer an accurate probe time sequence, thus we cannot exploit
the probe arrival times to infer the heading of the movement.
Additionally, several probe requests generated by the same user
device during a 1-second sampling interval may be collapsed
by scanners into a unique record.

As for the MAC address, this is considered personal data
by GDPR [8]. Thus, in the following, we describe the privacy-
preserving techniques that we designed and implemented, in
order to leverage the MAC address information while meeting
privacy constraints, in both the cases where commercial WiFi
sensors and ad-hoc designed scanners are used.

A. Dealing with anonymized MAC addresses in commercial
WiFi sensors

Since the sender’s MAC address is considered personal data
[8], in commercial scanners it is anonymized by digesting the
device MAC address with an SHA-224 function.

Given such collected information, we tried to identify the
most common paths followed by the users in the considered
area, and the effect of MAC randomization on the accuracy
of the performed analysis. To do so, we considered a trace
taken in our proof-of-concept testbed area, during one week in
October 2019. This trace includes over 190,000 distinct MAC
addresses. Due to MAC randomization, hence the fact that
a user device may send multiple probes with different MAC
addresses, such a number is just an upper bound on the number
of users traversing the considered area. To evaluate the impact
of MAC randomization, we leveraged our knowledge of over
34,000 MAC addresses of WiFi devices owned by students,
professors and administrative employees of Politecnico di
Torino. Notice that such MAC addresses are not randomized,
as they are collected after a device had associated with an
AP on campus; however, for the sake of privacy, they were
anonymized with the same hash function used by the scanners.
In so doing, we could identify the subset of MAC addresses
of Politecnico di Torino users that appeared in the trace.

Next, to identify the different paths, we looked at the
temporal sequence of probe captures: [(ti, si)]i, i = 0, 1, . . .,
where ti denotes the probe detection time and si the scanner
that performed it. We then created sub-sequences thereof, by
grouping consecutive samples within a time span shorter than
or equal to 4 minutes. Each sub-sequence models a different
mobility pattern and has been translated into a representative
string reporting the sequence of scanner identifiers. For in-
stance, a string “s1” means that the user was detected only by
scanner s1 within a time span of 4 minutes, while “s1 s2 s1”
corresponds to a user that in the same time span has been
detected by s1, s2, and then s1 again. All cases where a
user was simultaneously under the coverage of (hence it has
been detected by) multiple scanners have been denoted with a
special symbol.
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Fig. 3. Process pipeline implemented in the ad-hoc designed WiFi sensors using Raspberry PI devices.

B. A Privacy-preserving technique in ad-hoc designed WiFi
sensors

We now consider ad-hoc designed WiFi scanners imple-
mented using Raspberry PI devices. In this case, it is possible
to get detailed information about the captured WiFi probe
request packets, but clearly this violates user’s privacy since
the MAC address is considered to be personal information. At
the same time, a MAC address cannot be anonymized as soon
as the probe request packet is received, otherwise it will be
impossible to understand if the address belongs to the range
of randomized addresses.

Thus, we apply a de-randomization scheme to the received
probe request, just for the sake of local processing. We
consider the de-randomization scheme proposed in [9], which
was designed to count people on public transportation systems.
Such scheme exploits the temporal correlation of the data
included in the WiFi probe request headers, e.g., increasing
sequence numbers, to identify MAC addresses that would
likely correspond to the same device.

Figure 3 describes the processing pipeline which we have
implemented on Raspberry PI. The traffic is captured on the
WiFi interface through tshark and stored in a temporary
buffer through the “rolling capture” feature. Batches of traces
are removed from the rolling buffer after being completely
processed. The original MAC address is thus stored just for
few seconds on the local storage of the Raspberry PI. The
original WiFi header is then processed by the de-randomization
algorithm, which computes a score of the MAC address to
understand if it can be associated with a recently seen address.
The score is proportional to the probability that two or more
randomized MAC addresses correspond to the same device,
based on the approach proposed in [9]. The higher the score,
the more likely that the two MAC addresses relate to the
same device. Specifically, we adopt a threshold-based scheme:
whenever the score is above a fixed threshold, the MAC
corresponds to a recently seen MAC and it must be associated
to a same device.

After being processed by the de-randomization module,
the MAC is anonymized through the SHA-224 hash function
and, if the score is above threshold, it is stored locally on a
temporary list of MACs, with the remaining part of the original
header. This list reports the set of MACs (now anonymized)
that have been considered estimated as “distinct” based on the
score and each MAC is associated univocally with a device.
Notably, storing the original WiFi header with the anonymized
MAC address allows us to compute the score for the address
of new incoming probe request packets, and, at the same time,

keep the original one confidential.

Finally, the list of recent anonymized MAC addresses is
used to compute the total number of distinct MAC addresses,
as an estimation of the number of devices currently under
coverage, and it is fed to the ML scheme described next, for
the detection of the flow’s path.

IV. ML-BASED PATH DETECTION

Besides detecting the number of users belonging to a flow,
we leverage the collected anonymized data to identify the flow
trajectory, i.e., the path they follow. To do so, we draw on our
previous work in [10] and apply an ML-based technique.

We start by classifying paths based on some preliminary
experiments, thus obtaining a catalogue of possible paths that
will represent our ground-truth. For each path, the catalogue
also includes a set of possible footprints, i.e., a sequence of
probe requests sent by a user following that path. Then, we
compare the sequence of probe requests transmitted by a user
(and captured by the scanners) against the paths’ fingerprints,
and match it with the path for which the vectors’ Euclidean
distance is minimized. In case of ties, we select the path with
the maximum number of minimum distance footprints. If no
unique path can yet be identified, then the sequence is labelled
as not traceable.

More in details, given a physical path, we compute a
possible corresponding footprint as follows. We assign to every
scanner covering that path a numerical weight. Then we let a
user follow the path and we collect the sequence of probe
requests captured by the scanners. We divide the time taken to
go through the entire path and divide it into n intervals. For
each interval, we look at the probes detected by the nearby
scanner(s) and calculate the average weight across the scanners
that reported a user probe in that interval. This allows us to
characterize the geographical trajectory of the user. Finally, to
better account for the user’s movement direction, we compute
the slope of the best fitting linear interpolating function of the
probe samples over the path. Experimental results validating
this approach can be found in [10].

V. RELATED WORK

The problem of monitoring user mobility using WiFi
probes has been widely addressed in the literature. Some of
the existing studies focus on specific scenarios, with, e.g.,
[11] targeting a university campus, and [12] a railway station.
Interestingly, the methodology proposed in [12] exploits the
knowledge of the number of people with an active WiFi



interface. Pedestrian users in a more general urban scenario are
considered in [13], where a methodology leveraging the time
difference between probes and that between probe sequence
numbers is proposed. On the contrary, GPS is used in [14]
to characterize locations along the paths followed by users
as well as their mobility. We remark that our goal is to use
WiFi commercial, or simple ad-hoc designed, sensors instead
of GPS, and that such sensors are unable to provide the type
of information used in [13]. Further, it is worth noting that
WiFi probes allow for the measurement of the received signal
strength indicator, which can be exploited for detecting the user
distance from the WiFi sensor [15]. However, this approach has
been proved to work well indoors, while it may exhibit low
accuracy in outdoor scenarios [16].

Relevant to our work is also the experimental study in
[2], which presents a system design as well as extensive
experiments, and shows heat maps describing people’s density.
We stress that, unlike [2], our focus is on a privacy-preserving
mechanism to collect data so as to implement an ML-based
approach for people’s flows detection.

Finally, we mention that a first step towards the devel-
opment of our proof-of-concept testbed can be found in [10],
where we also detailed the ML-approach for path detection that
complements the privacy-preserving methodology presented in
the present paper.

VI. CONCLUSIONS AND FUTURE WORK

We tackled privacy-preserving people’s flows detection in
urban environments, using commercial/off-the-shelf and ad-
hoc designed WiFi scanners. We designed a methodology
to guarantee user privacy, while collecting and processing
the information carried by probe requests generated by WiFi
user devices. In particular, we designed techniques specif-
ically tailored for the considered WiFi scanners, namely,
commercial/off-the-shelf sensors and ad-hoc designed ones
implemented in Raspberry Pi. Such collected data allowed us
to count the number of people belonging to a flow, and to apply
a machine learning-based approach for identifying the flow
trajectories. We implemented our solution through the proof-
of-concept testbed we developed, thus validating the approach
and its ability to cope with the serious challenges posed by
practical scenarios.

A. Discussion on future work

The detection of flow mobility patterns, as described in
Sec. IV, requires to correlate spatially the MAC addresses
observed at different WiFi scanners. While this is already
implemented and fully working with Libellium Meshliums
sensors, in the case of our solution based on Raspberry
PI, the MAC addresses are stored locally as anonymized.
The actual stored identifier depends on the de-randomization
process. Thus, it may happen that the same MAC address
can be stored with different anonymized MAC addresses at
different scanners. This would prevent to correlate spatially
the detection of the same user device at different scanners,
limiting the accuracy of the proposed approach.

To address this issue, we are devising a centralized solution
in which the table with the recent distinct anonymized MAC
addresses is shared across all the scanners. In this way, all

the scanners can access this table and de-randomize the MAC
addresses coherently with the others. Thanks to a consistent
identifier across all the scanners, the MAC addresses would
be associated to the same device, enabling the analysis of
the spatial correlation across multiple sensors. Notice that this
approach requires to send anonymized data from a central
server to the WiFi scanners, and, hence, it does not violate
users’ privacy.
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