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ABSTRACT The growth in the number of connected vehicles in ad-hoc networks or VANETs enables the

use of increasingly sophisticated services and applications. One emerging application in this scenario is

Platooning, a stable stream of connected autonomous vehicles. This application improves safety, vehicle flow

on the road, energy consumption, among other variables. However, vehicles using this technology need to

share space with vehicles not connected or with other automation levels. Among the bottlenecks in scenarios

like this, Platoons formation and splits stand out, as these maneuvers involve costs and risk. Therefore, our

contribution is developing a new strategy for Platoons formation in a mixed universe of vehicles to bring

some of these desired benefits. The results show that the proposed solution achieved an accuracy of 89%

of the entire amount of platoons in the datasets. Our experiments demonstrate cases with collisions, and

the proposed solution provides a solution to a more safe operation on roads. Finally, we conclude that our

solution provides more determinism in the traffic conditions, as vehicles achieving stationary speeds with

low variation.

INDEX TERMS Mobile edge computing, vehicular ad-hoc networks, cooperative adaptive cruise control,

intelligent transportation systems, smart cities, 5G, beyond-5G.

I. INTRODUCTION

Vehiclar ad-hoc Networks (VANETs) are considered tech-

nologies formed by complex systems. Their investigation

involves several aspects from protocols, security, and phys-

ical layer of communication to final applications of traffic

monitoring, services, and leisure [1]. In this way, VANETs

allow improvements in safety and traffic management,

flow efficiency, vehicle flow, and drivers and passengers’

convenience.

VANETs involve communication aspects such as Vehicle-

to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) [2].

These networks have, as main characteristics: intense pro-

duction and consumption of local content; anonymity of

providers; and collaboration of resources that lead to changes

in the computational and network models of VANETs [3].

Besides, the evolution of communication technologies,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shajulin Benedict .

mainly involving the new generation of 5G mobile networks,

will make these networks more reliable, secure, and ubiqui-

tous, forming Vehicular Cloud Networks [4], [5].

In parallel to VANETs, the evolution of autonomous and

semi-autonomous vehicles will make their uses increasingly

present and safe [6]. Autonomous vehicles are not necessarily

connected, but combining these two technologies enables a

series of benefits and applications in urban and road traf-

fic. One of this combination’s practical applications is the

Platooning method, where vehicles interconnected in a net-

work keep moving in the synchronized queue with constant

distances and speeds. Thus, the platoon functionality brings

benefits to traffic, increasing safety and improving vehicle

flow, avoiding congestion, and saving time and resources.

Platooning represents the coordinated movement of a

group of vehicles that follows in the same direction, main-

taining the distances between them and the same speeds. This

move was originally designed for heavy-duty vehicles and

smart highways [7]. However, recent advances in wireless
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network communications, automation technologies, sensing

devices, and increases in processing capabilities have made

it possible to apply Platooning to partially automatic vehi-

cles, such as those equipped with adaptive and cooperative

cruise control capabilities, the so-called Cooperative Adap-

tive Cruise Control (CACC).

The use of the Platooning method and improving the flow

of vehicles and their safety can help prevent congestion and

provide resource savings, as the smooth and constant move-

ment of vehicles would also reduce fuel consumption and

consequent pollution [8]–[10]. In practice, it appears that

interconnected vehicles must mutually operate with vehi-

cles that do not yet have these methods and technologies

embedded. Therefore, in a universe of vehicles with different

technology and automation levels, the application of methods

such as Platooning may not yet bring the expected benefits.

Investigations on the Platooningmethod’s application have

been carried out under several aspects, such as Market Pen-

etration (MP) when investigating from which percentage of

MP Platooning becomes advantageous [11]–[13]. Algorithms

or Protocols for the operation and stability of platoons, when

investigating the main maneuvers such as junction (merge),

lane change and separation (split) between vehicles [7],

[14]; or even when investigating the impact of automated

vehicles on traffic flow [10], [15]. In more recent work, [16]

analyzed the benefits of Platooning at intersections, [17]

investigated the impact of the model on junctions on major

roads, and [18] and [19] investigated the formation of pla-

toons, analyzing different merge strategies. However, few

studies investigate criteria for forming groups of platoons,

as proposed in this research.

Dao et al. [20] had investigated a strategy for the for-

mation of platoons based on the analysis of the entrances

and exits of one-way vehicles, addressing the problem as a

linear model, and [21] use the vehicle’s speed and position as

criteria for selecting platoons treating these characteristics as

similarity metrics. In both proposals, the decentralized model

for platoons’ formation is approached and considered the

best. Nevertheless, those models are limited to the range of

vehicles and nearby platoons, leaving potential candidates out

of the grouping. Moreover, the models were tested without

other control models, making them less realistic as automated

vehicles’ market penetration would be gradual.

Thus, this work aims at developing an architecture to select

the best platoon for vehicles entering a road with several

lanes. To this end, we use an unsupervised machine learning

algorithm (namely, DBSCAN), observing the impact on the

flow of vehicles and the road’s capacity, where an Edge Com-

puting node designates vehicles to target platoons. We also

consider different levels of Market Penetration (MP). Our

simulation comprises a map representing a highway with four

lanes and the vehicles’ flow from real data collected from

taxis, the Shenzhen dataset. In this work, we also proposed a

new join protocol, which will allow the connection of multi-

ple vehicles on multiple platoons. Therefore the contributions

of this work are:

• The analysis of techniques and grouping criteria for the

formation of Platoons for their use in machine learning

models;

• Improvement of the protocol for the formation of Pla-

toons for join maneuvers (join)

• Development and validation of a real dataset to analyze

the performance of the proposed solution

This paper’s remainder is structured as follows. We

describe the most relevant related solutions in Section II.

We present our proposed architecture of platoon in section III.

We describe the validation of the propulsion mechanism and

its results in Section IV. Finally, we summarize our work and

provide direction for future works in Section V.

II. RELATED WORKS

This section describes the most recent investigations on Pla-

toons regarding their impact on the flow of vehicles and

the roads’ capacity and their relationship with the Market

Penetration (MP) used in this research.

A. IMPACT OF CACC ON VEHICLE FLOW

The impact of Connected and Automated Vehicles (CAV) on

traffic flow are numerous and address this issue in several

ways. Rios-Torres and Malikopoulos [22] propose a model

and an analytical solution to coordinate the entry of vehicles

on the road. They also analyzed the impact of this model

on traffic flow [23], where the authors considered it in two

scenarios. The first scenario involves 0% MP, that is, only

Human-Driven Vehicles (Intelligent Drive Mode - IDM).

The second scenario involves 100% MP, all CAV having a

parameter of analysis of the flow of vehicles on the roads.

In these two studies, vehicle join microscopic traffic, and

indicators such as vehicle consumption, travel times, and flow

densities are collected, showing that CAVs, especially with a

large flow of vehicles, improve traffic flow, mitigating traf-

fic flow congestion. However, the models adopt centralized

controls to coordinate vehicle flows and not measured if the

current set of vehicles form the best grouping.

Lioris et al. [16] analyzed the platoon problem in inter-

sections. The authors adopted approach involves Adaptive

Cruise Control (ACC) and Cooperative and Adaptive Cruise

Control (CACC), verifying impacts formation Platoons in the

crossroads flow. They analyze the queue size and vehicle

flow using the ACC and CACC models and conclude that the

formation of Platoons can improve vehicles’ flow at intersec-

tions two to three times. Nevertheless, this work considers a

100% MP for the analysis.

Shladover et al. [13] proposed a different approach from

these previous works. They consider MP a set of vehicles

equipped with CACC, ACC, and manually driven. How-

ever, they varied and analyzed them exclusively. We can see

in [24]–[27] an effort to collect data from real drivers in

vehicles equipped with ACC and CACC technologies. These

traces serve as base values for parameterizing models and

inputs to microscopic simulation. The results showed that
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vehicles equipped with ACC technology did not significantly

impact the vehicles’ flow. On the other hand, CACC equipped

vehicles impacted throughput, increasing from 2,000 to

4,000 vehicles per hour, as the MP ranged from 0% to 100%.

Thus, CACC showed as a mechanism to improve traffic

quality.

In work of Liu et al. [28], addressed a mix of the previ-

ous analyzes, based on the parameterizations of [13], which

present a more sophisticated and realistic model created to

simulate more complex scenarios. As in [23], they add the

scenario of an entrance ramp to the model, but the similarity.

In [28] also studied the impact of joining an entrance ramp in

a scenario with a vehicle chain using CACC technology. They

consider different MP values for vehicles that use CACC

technology in conjunction with human-driven vehicles, start-

ing to add onlymore traffic lanes and a lane change algorithm.

This study reached a flow rate of around 3,080 vehicles per

hour per lane for an MP of 100% of vehicles with CACC.

They found that the road’s capacity increased quadratically

concerning the MP of vehicles with CACC technology. ACC,

a chain of vehicles, managed to neutralize waves of move-

ments and stops of vehicles.

Liu et al. [29] proposed the Anticipatory Lane Change

(ALC) algorithm, improving flexibility and overcoming the

shortcomings of the Mandatory Lane Change (MLC) and

Discretionary Lane Change (DLC) algorithms. In addition to

the ALC maneuver, the authors included the concept of Man-

aged Lane (Managed Lane - ML) as a specific lane for CACC

vehicles, which only made sense to be implemented, from a

limit of 20% of MP. This article also added a ramp scenario

to the model that defines the parameters and the algorithm

for carrying out this maneuver. Similar conclusions show an

increase of a lower limit of 20% MP with CACC technology.

The road’s capacity increased in a quadratic way as theMP of

the CACC technology also increased. Below this lower limit

of 20% MP, the improvement was not significant. Another

important conclusion from them was the significant improve-

ment that the ML additions provided in the low MP values.

Hence, we consider in our proposal exclusive lanes for CACC

as evidence for baseline in road design.

Finally, Kreidieh et al. [30] used Reinforcement Learning

(Reinforcement Learning - RL) on vehicles using VANETs

purely to dissipate the stop waves in a vehicle stream. Based

on the concept that even without interference, drivers cannot

keep their vehicles’ speed and distance from other vehicles

constant, creating instabilities in the so-called ‘‘walk-and-

go wave’’ in the flow of vehicles, generating congestion,

according to [31]. In Kreidieh et al. [30] approach, the authors

proposed the training of machine learning models with con-

nected autonomous vehicles (CAV) in a simulated environ-

ment, assuming a closed network. To this end, the authors

used Reinforcement Learning (RL) based on the use of tech-

niques of Markov Decision Problem (MDP) and Transfer

Learning (TL). They used the Flow framework [32] as a

platform and SUMO for microscopic traffic generators and

performed experiments to evaluate RL. By adopting these

techniques, they demonstrated an almost complete dissipa-

tion of the ‘‘walk-and-go wave’’ with an MP of only 10%.

Moreover, they observed a decrease of those waves’ fre-

quency and magnitude after an MP of 2.5%.

B. FORMATION OF PLATOONS

Studies on the Platoons formation process, that is, on how to

direct vehicles to a given Platoon, can be classified according

to a centralized [21] or distributed [20], [33], [34]. These stud-

ies may have different optimization objectives, such as max-

imizing the duration or size of the Platoon [20] chain or fuel

economy, which is especially important for cargo transport

vehicles such as those discussed in [35], which propose an

opportunistic pairing of trucks, to optimize consumption.

Thomas and Vidal [34], proposed a optimization of the

formation of Platoon. In this approach, they assume that the

vehicles that are candidates for the formation of the vehicle

chain follow the same route in the same time window. There-

fore, with a training proposal ad-hoc, they use a game strat-

egy to define who leads and who follows. In this approach,

a kind of all-against-all tournament, based on the scenario of

Iterate Prisoner Dilemma [36], forming the Platoon queue.

The work’s objective is to propose a decentralized alternative

so that the process is computationally more efficient than a

centralized model for coordinating training.

Another decentralized model that also does not define the

optimization goal is presented by Hardes and Sommer [33],

which proposed a strategy for the formation of Platoons

in urban centers. In this approach, the vehicles verify their

similarity of routes to form a vehicle chain during stop time

at a red beacon. The conclusions are similar to [16], that

Platoons at intersections, but focusing on analyzing the flow

of vehicles and not on the formation criterion.

In the work of Dao et al. [20], the objective is to direct

the vehicle to a Platoon. To this end, the vehicle remains

in this Platoon until it reaches its point of exit from the

road, seeking to optimize Platoons’ duration. The idea is to

minimize the difference between the Platoon’s leader’s fate

and his followers’ future. For this, they use a decentralized

approach and adopt, as premises, the use of a Global Posi-

tioning System (Global Positioning System - GPS) as a single

available sensor and vehicle to vehicle communication (V2V)

in a vehicular network ad-hoc networks. Hence, all vehicles

have a GPS receiver and an on-board processor to process

the Platooning algorithms and exchange information vehi-

cle by vehicle. For inter-vehicular communication, the IEEE

802.11p standard was adopted, allowing a communication

radius of around 300m for a speed of 200 km/h [37].

The Platoon type designation task’s formulation can be

defined by a Linear Programming problem solved by the [38]

simplex method. Considering a road with ne entrance ramps

and nd exit ramps and the route is discretized in segments,

each one going from the entrance i to the next entrance ramp

i+ 1. In this case, the optimization problem is solved in real-

time. Considering the moment the vehicle is positioned on the

entrance ramp, according to the following algorithm:
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• When arriving at the road’s entry point, the vehicle must

communicate with all the Platoons on the road and with

all free agent vehicles (vehicles on the entrance ramp

that have not yet been assigned to any Platoon) within

the R range. Platoon is considered within scope if its

leader is within range;

• The assignment routine is processed and defines which

vehicle from the entrance ramp goes to which Platoon,

based on the information exchanged between the vehi-

cles of the groups and the free agents; and

• The vehicles then stop being free agents, leave the

entrance ramp, and go to their Platoons. Once assigned

to a Platoon, the vehicle will not call the assignment

routine again.

To guarantee the stability of the Platoons, some policies

have been defined: the first policy indicates that the vehicle

must remain on the same Platoon throughout its journey on

the road; the second policy is related to the maximum size of

the Platoon, which must have a maximum of γ vehicles. The

third policy concerns Platoon vehicles’ destination, which

must not exceed a r limit, which represents the ‘‘range of des-

tinations’’. A fourth policy concerns the ordering of vehicles

in the queue Platoon. The vehicles are in the reverse order of

exit of the road; that is, the Platoon leader is the last to leave,

and the previous vehicle in the queue be the first to abandon

Platoon. The fifth policy states that if a vehicle cannot find a

Platoon, it will become the new Platoon Leader.

Based on the experiments, varying the number of vehicles

and the sizes of the rows, it was possible to verify that the

larger Platoons bring more benefit, the primary indicator

being the increase in the road’s capacity, reaching a capacity

of up to 4,880 vehicles/h in these conditions.

In this study, despite not indicating, the author assumes

that 100 % of the vehicles are connected, which in practice

distances a little from a closer scenario, where connected

vehicles will coexist with vehicles that do not yet have this

technology. Finally, the author did not define the vehicle

control model used, making it difficult to reproduce the work.

In more recent work, [21] aims to compare the two

approaches, centralized and decentralized, using the same

optimization criterion for both, here called the similarity

criterion. In this case, the vehicle’s speed and position were

used as similarity metrics to avoid the junction of the vehicle

with Platoons that were distant.

This study formulated the problem as a linear equation

where the cost (fi(x)) of Platoon formation is calculatedwhere

a i vehicle with each x vehicle in the neighborhood, this cost

function being a function of the differences speed (ds) and

distance (dp) between vehicles multiplied by a bias. In this

case, the vehicles are represented by a set given by:

{id, des, pos}, (1)

where id represents the vehicle identifier, des the desired

speed and pos the current position of the vehicle. The objec-

tive is to find the best Platoon candidate x for each vehicle

i, maximizing their similarities. And the function to calculate

the cost of the vehicle i to join the vehicle or Platoon x is given

by

fi(x) = α · ds(x, i)+ β · dp(x, i), (2)

where α, β ∈ [0, 1], α + β = 1.

Once the join maneuver is successfully performed, the i

vehicle will be part of the Platoon with the x vehicle. Once the

Platoon is formed, the vehicles remain in it until they reach

their destinations. In this article, the authors assume that all

vehicles have the same destination.

In the centralized approach, the optimization problem is

realized for all vehicles present in the scene simultaneously.

Once all combinations have been calculated, the algorithm

selects the best ones based on the slightest deviations of fi(x),

eliminating the others. Each i vehicle performs this analysis

with its neighbors in the distributed approach, following a

similar algorithm. In this case, vehicles are made aware of

their neighborhood by sending beacons. In a neighborhood

table, each vehicle stores the set of information required to

calculate the function fi(x).

The simulations take place on a highway, throughout 30 km

with four lanes and an additional lane for vehicles’ entry and

exit. All simulations are performed on the PLEXE / VEINS /

SUMO platform. In addition to the two scenarios, centralized

and decentralized.

When executing the simulations and comparing the

approaches and the base scenario, the author concluded that,

in the centralized process, there is a lower occurrence of

aborted Joins since the centralized version filters out unviable

options. However, the distributed version manages to form

larger Platoons, leading to a more significant deviation in

the speed similarity indicator, which is one of the similarity

criteria of the optimization function.With larger groups, more

vehicles need to adjust to a single leader. Finally, like the

previous one, this study is based on an MP of 100 % and that

all vehicles have the same destination.

C. SUMMARY

Our literature review reveals that the Cooperative Adaptive

Cruise Control (CACC) can improve the vehicle’s throughput

on roads; however, most related works present isolated or too

specific results. Differently, we are using real traces to study

the influence of market penetration in the Intelligent Trans-

portation System with realistic scenarios. We also see the

need for approaching the platoon formation as a network

function, allowing us to offload it to the mobile edge com-

puting (MEC) facility. Our system view has an inherent dis-

tributed architecture, enabling vehicles to report sensor data

to the edge. Thus, the grouping Virtual Network Function

(VNF) has access to the road’s global state and makes better

decisions, both in the accuracy and response-time aspects.

We organized related works in four criteria, as shown

in Table 1. It enables us to objectively state the differences in

our work when compared to them. Our solution is a hybrid

between centralized and distributed. The platoon grouping

function is centralized, benefiting from making decisions
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TABLE 1. Related works summarization for platoons in vehicular
networks.

from a global state view of the road. On the other hand, it

has a distributed architecture, as vehicles send information

to the MEC and receive configuration to platoon forming.

We focus on the platoon duration, as we considering small

vehicles inside Smart Cities. Fuel consumption is a crucial

metric for trucks, so we do not consider it in this work.

Unlike others, we provide a mix of market penetration but do

not analyze the impact of CACC in stop-and-go waves. We

use managed lanes and include maneuvers for merging and

splitting into/from platoons.

III. PINION: A PLATOON GROUPING FUNCTION

OFFLOADING FOR VANETS

In this section, we describe PINION: a Platoon GroupIng

FuNctIon Offloading for VANETs. PINION resembles a

mechanism allowing the cooperation of two gears to transfer

power between the systems; in our case, the V2V CACC

protocol and the grouping Virtual Network Function (VNF)

offloaded to the Beyond-5GMobile Edge Computing (MEC).

Hence, it performs vehicle groupings based on the machine

learning algorithms and requests computing in MEC centers.

The main components of the architecture conceived and

developed to support this research’s approach are found

in Figure 1. Following a centralized approach to Platoon’s

formation, the initial module is called Controller and can be

executed in a Road Side Unit (RSU), in our case a Beyond-5G

Mobile Edge Computing (MEC). We consider Mobile and

Multi-access edge computing are equivalent to our purpose.

It monitors vehicles and Platoons in its coverage region to

direct vehicles with CACC technology to the Platoons present

on the road.

The Client module, hosted on vehicles equipped with

CACC in its On-Board Unit (OBU), is responsible for identi-

fying the target vehicle and requesting a Platoon so that it can

join it. As a basic assumption, all V2I communication with

the Controller module is carried out via 5G in the region’s

coverage area, and V2V communication will take place via a

wireless network interface cards with IEEE 802.11p.

Algorithm 1 describes the Controller module’s function

that aims to locate a Platoon for a requesting vehicle. The

Controller monitors the vehicles on the road, processes

FIGURE 1. PINION architecture.

Algorithm 1 Controller - Find Platoon

InputVehicle_Id, Vehicle_Location, Vehicle_Destination

Output Platoon_Id, Status

max_size_platoon← 10

max_distance_platoon← 600m

1: FindPlatoon Vehicle_Id; Vehicle_Location,

Vehicle_Destination {

2: Nearby_Platoons← FILTER(Vehicle_Location)

3: if Nearby_Platoons is empty then

4: Platoon_Id← Vehicle_Id

5: Return Platoon_Id, ‘‘LEADER’’

6: else

7: Ongoing_platoons ← UPDATE(DBSCAN,

Nearby_Platoons, Vehicle_Destination,

max_size_platoon)

8: Platoon_Id ← GET_PlatoonID(Ongoing_platoons,

Vehicle_Id)

9: Return Platoon_Id, ‘‘JOINER’’

10: end if

}

the requests received and sends the commands to vehi-

cles and Platoons communicating with it. When a vehicle

requests a Platoon, the Controller checks the requesting vehi-

cle’s data and performs an initial filter, selecting only the

Platoons within the distance range (line 2). The parameter

max_distance_platoon specifies the distance criterion

for a given platoon to be considered a candidate for the

requesting vehicle. By doing so, it is possible to check if

there are target platoons. At the very first request, there is

no platoon available to join. In such a case, the request-

ing vehicle will become a leader (lines 3, 4, and 5).

Otherwise, the Controller updates the current platoons in

progress by maximizing the platoon time considering the

candidates’ destination. The cost function is the Platoon

lifespan, consisting of a maximization function. Thereby,

the task takes nearby vehicles’ destinations (constrained by

53940 VOLUME 9, 2021



R. N. Kamoi et al.: Platoon Grouping Network Offloading Mechanism for VANETs

FIGURE 2. Intelligent transportation system scenario: B5G infrastructure,
smart-roads, platoons, and vehicles.

the max_distance_platoon parameter) and tries to find

the better group for that instant (lines 7 and 8). Our approach

allows different grouping functions and settings. In this paper,

we adopt DBSCAN. Finally, the Controller maps the vehi-

cles’ identification to the target platoon as a response to the

initial request, and the status is updated (line 9).

The client module, a system hosted on the OBU of the

CACC vehicle, is responsible for the platoon forming oper-

ation. The platoon protocol is a V2V communication that

carries out the necessary Join and Split maneuvers. As the

Controller sends the configuration settings via the B5G

(beyond-5G) link, the communications happens in V2I.

The platoon has a well-defined life cycle, including its

creation and termination, and is persisted locally by the

Controller service. As this process is dynamic and real-time,

the persistence occurs in a Key-Value database in a Hash

Table. Each platoon has a unique identification code, coin-

ciding with the leader code. Thus, the Controller has the lists

of all platoons with the vehicles’ identification that compose

them, respectively. The record comprises a tuple of roles

(each vehicle being a leader or follower), platoon size, and

location (road and lane).

As shown in Figure 2, we are assuming a scenario where:

• Policies or protocols for the formation of the Platoons

in managed roads. For example, the lanes and extension

of the road for the Platoons, the maximum number of

vehicles per Platoon, and maximum platoon time;

• An Intelligent Transportation System (ITS) - will man-

age the system, deployed in a B5G vertical service;

• Upon entering the managed lane, the vehicle starts

exchanging V2I messages with the lane system;

• Each vehicle with CACC technology, in its V2I com-

munication, will follow the defined protocol and, upon

receiving the Platoon, to which it should join, it will start

communicating V2V with the other vehicles;

• The join in Platoon will always be at the end of the group

and in the inverse sequence of the exit, that is, the last

vehicle in the queue will be the first to leave Platoon

(Last-In First-Out queuing policy);

FIGURE 3. Extended version of the PLEXE’s simple join protocol, allowing
multiples joiners and platoons.

• After designation to one Platoon, the communication

becomes V2V. The vehicle will start the join maneuvers,

after, the maintenance actions will be carried out by the

Platoon ( Split, in the example shown in Figure 2, where

the vehicle requests merge on Platoon P1); and

• All vehicles in a Platoon are considered to be equipped

with CACC technology and have defined destinations.

A. MANY TO MANY JOIN PROTOCOL

The join protocol’s state machine is based on the existing

protocol in PLEXE (Figure 3) that met a simple Join protocol

at the back from a vehicle to a Platoon. We extended it by

adding new modules and states.

Among the primary adjustments, we highlight the removal

of the new Joiners release lock while the leader is in the

process of maneuvering with the current Joiner. Given the

time required to perform a complete join maneuver, it is not

feasible to wait for the entire previous scheme to finish before

starting a new one in the context of multiple vehicles are

joining to multiple platoons, or simply Multiple Joiners. This

process requires a concurrency control among themaneuvers.

Another necessary adjustment was to create a vector of

Joiners on the leader’s side to send the correct messages and

contexts to each Joiner in approaching maneuver. Finally,

on the side of the Joiner, it was necessary to adjust the context

to know which is the reference vehicle for its approach in

Platoon, which will not always be the last in the current

Platoon queue. But, eventually, it may be another Joiner that

is still in the maneuvering phase.
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B. THE PLATOON GROUPING FUNCTION

Considering that the objective of this research is to optimize

the vehicle’s permanence time on the Platoon, it is necessary

to select the best Platoon for vehicles entering a road with

several lanes, aiming, in this way, to obtain improvements in

the vehicle flow and the capacity of the streets. Thus, two

main characteristics were selected as inputs for the machine

learning model, the vehicles’ destinations and the time win-

dow when these vehicles are present in the simulation.

We modeled this problem as a clustering task in the

Machine Learning framework. Specifically, clustering means

grouping vehicles with the maximum destination likelihood.

Therefore, the unsupervised machine learning model fits that

purpose. We use the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) because it can identify

clusters and is extensively employed algorithm for this goal.

We structured our model as [40]:

a: TASKS

Group vehicles according to their destination.

1) Grouping Criteria:

a) Target range; and

b) Possibility in the timeline.

2) Restriction:

a) Maximum group size = 10;

b) The road must support Platoons; and

c) CACCvehicles share the same origin, entry-point.

b: HYPERPARAMETERS

The DBSCAN machine learning model basically uses two

hyperparameters ε and MinPts [41], where ε represent the

maximum range of the platoon (600m) and MinPts the num-

ber of vehicles in platoon. In the case, MinPts was defined

with a value equal to two (MinPts = 2), defining Platoons

with a minimum size equal to two vehicles. The ε hyper-

parameter is a user-dependent choice (we evaluate different

values to it in Section IV).

IV. PERFORMANCE EVALUATION AND METHODOLOGY

In this section, we present a case study to prove the effi-

ciency of the proposed approach. We describe our simulation

engine, detailing configuration, criteria, levels, parameters,

and metrics in the first part. Then, we show the data prepara-

tion and themachine learningmodel’s training, specifying the

origin of the data, its preparation, and pre-processing. Finally,

we test our using the Shenzhen taxi dataset (dataset avail-

able at https://github.com/c2dc/pinion), real-world collected

mobility traffic.

A. THE IMPLEMENTATION OF PINION

We developed our solution using the PLEXE simulation

library. The Client module is implemented in the PLEXE

App routines and its protocol in the Maneuver routines. The

server is developed partly in PLEXE and partly in Python

routines; the former for the Controller deployment platform,

TABLE 2. Factors and levels for experiments.

and the latter for the DBSCAN implementation, scenarios,

Traffic modules. Finally, all data exchange between the two

stacks is carried out via text files.

B. SIMULATION ENVIRONMENT

The study of vehicle platooning can involve several com-

plexity levels, and the market penetration is an issue to

consider. In a real situation, vehicles with different capa-

bilities levels should co-exist. Regarding communication,

vehicles have or have not the functionality to connect to

the infrastructure and, in more advanced cases, features to

establish inter-vehicle communication. Another influencing

factor is the automation levels such as Cruise Control (CC),

Adaptive Cruise Control (ACC), and Cooperative and Adap-

tive Cruise Control (CACC).

For example, [39] demonstrated that with the MP factor of

vehicles equipped with CACC below 40%, there is no impact

on traffic, and it is not possible to avoid traffic shockwaves

in the flow of vehicles. However, in a more recent study,

[30] found that with an MP factor of only 10% autonomous

vehicles, it is already possible to dissipate these waves. The

big difference between these works is that in [39], the exe-

cution of lane change maneuvers is taken into account so

that vehicles with CACC form the Platoon only then causing

the effects on traffic, while in [30] the study is carried out

solely with the presence of autonomous vehicles in traffic,

maintaining the flow of vehicles.

Our experiment design includes three factors: market pen-

etration (MP), the number of vehicles on the road, and the

DBSCAN range (ε). Table 2 shows the levels for each factor.

We varied the MP factor level in the simulation with the

values of 25% and 75%; that is, considering two scenarios,

(i) one with the predominance of vehicles in the Intelligent

Driver Model (IDM – human driven vehicles) and (ii) the

other with vehicles equipped with CACC. In addition to the

Market Penetration factor (MP), the other factor considered

was the Number of Vehicles (NoV) in the simulation. The

impact of vehicles’ volume may vary, depending on the

road components (number of lanes, access and exit ramps,

the section length). For the clustering algorithm, we changed

the range of the cluster (ε ∈ [0.01− 0.15], increased by 0.1).

We adopted the PLEXE library for platooning formation,

built on top of the VEINS (The Vehicles in Network Simula-

tion) framework. It is a discrete-event simulation engine that

uses OMNET++ to implement networking functionalities

and SUMO (Simulation of Urban Mobility) to realize the

road traffic. The simulation platform’s configuration involved

integrating these frameworks and their libraries so that the

experiments could simulate vehicles’ dynamics on maps,

responding according to their interactions in V2V or V2I
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TABLE 3. Parameters for the intelligent driven model (IDM) and CACC.

TABLE 4. 802.11p link simulation configuration.

communication.We represented a road with four lanes and an

extension of 18 km, with access and exit routes and replicat-

ing the model used by [29]. The SUMO IDM control model

parameters were based on the work of [42] and the control

model CACC [43]. Table 3 summarizes this set up.

The Market Penetration factor (MP) specifies the number

of vehicles with communication modules. We vary it by

two levels of percentage: 25% and 75%, representing CACC

vehicles’ presence. The remaining vehicles implemented the

Intelligent DriverModel (IDM), which represents the human-

driven vehicle behavior. The total volume of cars in the

simulation was adjusted to the levels of 300 and 500 vehicles

to verify the flow of vehicles and the road’s capacity.

All combinations of the Market Penetration factor (MP)

with the Number of Vehicles factor (NoV) represent exper-

iments in the simulations. For each MP versus NoV level,

the maximum capacity reached in the road lanes and the

vehicle flow’s average speed were measured. For the other

parameters, we use [44] as a reference; therefore, the bit

rate in the MAC layer is 18Mbit/s, and the transmission

power is 2.2mW, which in the Two-Ray Ground propagation

model, provides a Communication Ratio (CR) of 300 meters,

as shown in Table 4.

In addition to the communication configuration parame-

ters described above, there are specific parameters for the

Platoon settings. The maximum size of Platoon (τmax) used in

this research was fixed in 10 vehicles because, as explained

in [17], the ideal size should be between 10 and 20 vehicles.

Bigger Platoons affect Join’s maneuvers, and smaller ones

end up canceling their benefits. These simulation parameters

are presented in Table 5.

Another parameter used in the simulation was the r range

for selecting the compared Platoons so that the vi vehicle

could join the Platoon. In this research, a range of r = 600m

was used, taking into account that we use the centralized

model to control the Platoons’ formation.

TABLE 5. Platoons parameters.

A benefit of the centralized approach to control the

Platoons’ formation is the possibility of choosing vehicles

with similar destinations. Wherefore, for each new incoming

vehicle, analyzing the managed route and ones around the

reach of r . However, this alternative is more complicated

because, in addition to requiring more analysis attributes,

such as the distance between the vehicle (Joiner) and the

active Platoons on the road, the Platoon training protocol also

becomes more complex.

As the platoon’s minimum size is 2 (two), we define the

DBSCAN parameterMinPts to 2 accordingly.

Indicators—The following indicators were calculated in

the simulations: Cmax the lane traffic capacity in vehicles/

lane/hour, where the speed v is in km/h, the separation time

between Platoons th in seconds, and the distance h between

Platoons and the mean vehicle size s both in meters.

We can define the platoon’s influence on the maximum

capacityCmax in vehicles/lane/hour of a road according to the

maximum size of Platoon τmax ; the steady speed of vehicles v

in km/h; the separation time between groups th in seconds; the

average size of the vehicle s in meters; the average distance

between the groups h; and can be given by

Cmax =
3600τmaxv

3.6 [(τmax − 1) h+ s]+ thv
. (3)

With the parameters defined for this research work

(Table 5) we have Cmax = 2, 991 vehicles/range/hour. From

this reference [20], it was possible to measure whether the

proposed approach reached the road’s maximum capacity at

some point in the simulation.

The size of the Platoon τmax allowed us to verify the

success rate of the formation of the Platoons because, if a

vehicle was unable to join any Platoon, it followed its path to

the destination without forming a new one. We assume that

all vehicles start the simulation at the road’s same entry-point

position and the joiners stream arrives after platoons, so not

all Platoons reached their potential maximum size.

VOLUME 9, 2021 53943



R. N. Kamoi et al.: Platoon Grouping Network Offloading Mechanism for VANETs

TABLE 6. Pre-processing vehicles characteristics for clustering.

Finally, we also measured the vehicles’ average speed Vm
to verify the road behavior as the number of vehicles grew.

It reveals the impact of the platoons on the vehicle’s flow.

C. DATA PRE-PROCESSING AND EXECUTION OF THE

MACHINE LEARNING MODEL

We pre-processed the data to enable its use in the machine

learning model before running the simulation. The Python

programming language, version 3.8, was used to develop and

execute the model. We used Pandas and Numpy libraries for

data analysis and pre-processing and ScikitLearn for cluster-

ing with DBSCAN.

As a heuristic, we adopted the vehicle’s longitude destina-

tion and the entry-time in the road to defining the best platoon.

Thus, at a given simulation time, vehicles more distant tend to

form a platoon. We tested our approach against two datasets:

a randomly created and Shenzhen’s taxi dataset. We used

the attributes listed in Table 6. Using a uniform distribution,

we generated latitude, longitude, and time fields. And the pro-

jection field according to Equation 4 explained below. On the

other hand, the actual dataset comprises data collected from

taxis in the city of Shenzhen in China, loaded by companies

in real-time, periodically measuring taxis’ status (GPS and

occupation) [45].

Considering the dataset has more than ten million records,

we divided it into ten files with one million records. By visual

inspection of the concentrations of taxi routes in the city

(Figure 4), we could identify the area with a highest vehicle

concentration (Figures 4a and 4b). We chose Binhe Blvd as

a reference for our simulation because of its several lanes

and a great taxi flow concentration (detailed in Figure 5).

Figure 5a contains a representation of the traffic concentra-

tion, and Figure 5b a highlighted in the boulevard. Finally,

in Figure 5c, it is possible to see a satellite view of the region

and, in Figure 5d, the road with its lanes, junctions, and

access and exit ramps, in one region delimited by the coor-

dinates (22.543145, 114.071804), (22.543145, 114.111372),

(22.530162, 114.071804), and (22.530162, 114.111372).

We pre-processed Shenzhen dataset as described in

Algorithm 2.

Considering the average latitude for the Binhe Blvd

is 22.543145 and the reference longitude is 114.111372,

we compute projection by

projv = (longdest − longorig) · 111, 12 · cos(lat). (4)

All taxis with negative projection were excluded from

processing, as they do not pass through the simulation area.

FIGURE 4. Taxi movement profile in Nanshan district, Shenzhen, China.

Algorithm 2 Shenzhen Dataset Pre-Processing

Input CSV-file with Shenzhen dataset.

Output CSV-file to DBSCAN.

1: for taxi input file do

2: sort entries ascending by timestamp

3: Origin latitude and longitude← first latitude and lon-

gitude

4: Destination latitude and longitude← last latitude and

longitude

5: timestamp← most frequent timestamp

6: projection ← computeProjection(reference latitude

and longitude, destination longitude)

7: Save in output CSV-file

8: end for

Finally, the reference time used in step 5 was the most fre-

quent timestamp in the dataset.

DBSCAN is an unsupervised clustering algorithm and has

two main hyperparameters ε and MinPts [41]. In the case

of this work, MinPts was defined with the value 2 (two),

meaning the minimum platoon size. However, we varied ε

to find the better configuration.

D. STUDY CASE

To compare results and obtain improvements in the vehicle

flow and the road’s capacity, we carried out a case study

involving a scenario composed of a four-lane road section

with ramps for entry and exit. In this scenario, the insertion

of vehicles in the simulations followed a negative exponential

distribution, dividing them into three distinct groups:

• platoons;

• joiners, composed of vehicles using the Cooperative

Automated Cruise Control (CACC) model; and
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FIGURE 5. Sequence of the binhe blvd region to represent in our
simulation.

• human-driven vehicles, using Intelligent Driver Model

(IDM).

According to the Market Penetration levels aforemen-

tioned, these two Control Models (i.e., Car-following

Models) concurrently present in the simulation.

Similar to [17], we use a Managed Lane—ML with a

platoon-exclusive lane. Thus, we assigned vehicles with

CACC that lane. In case of saturation, the adjacent lanes

receive the surplus contingent as they get overloaded. Using

the SUMO framework, we mapped Binhe Blvd and verified

our approach using the platoons formation algorithm and

the join protocol algorithm. This map was composed of a

four-lane traffic lane and a pattern of entry and exit ramps,

as shown in Figure 6.

FIGURE 6. Exit- and entry-ramp used in the simulation.

TABLE 7. Distribution policy for IDM and CACC vehicles.

The proportion of IDM and CACC vehicles for each lane

follow the policy shown in Table 7. Lanes 1 and 2 are

CACC-exclusive, whereas Lane 3 is a mix of IDM and

CACC, and Lane 4 is IDM-exclusive. However, in border

cases of MP, this policy has been disabled. Thus, for 0%MP,

all tracks were made available for vehicles of the IDM type,

and, in the case of 100% MP, the first two tracks were made

available for platoons, and the CACC vehicles occupied other

lanes. In this way, it mitigated the risk of vehicles performing

extreme lane-change maneuvers, generating an unnatural dis-

turbance in vehicles’ flow at the simulation commencement,

which would not occur in a real situation.

The simulation requires two files containing platoons and

joiners. They form four sets of vehicles, resulting from the

combination of market penetration (with and without CACC)

and amount of vehicles (300 and 500). Together they consti-

tute all vehicles in the simulation. The set of vehicles using

the CACC model for the platoons file had the following

attributes: identifier (id), destination, latn and longn, and

the platoon (pltId). Before the simulation, we run DBSCAN

to assign a vehicle (id) to the target platoon (pltId). Thus,

the vector of characteristics of each vehicle in the CACC

model presented the format

Vv = [id, latd, longd, pltId]. (5)

On the other hand, the joiners file has two attributes, the tar-

get platoon id and the vehicle code (id).

Two different scenarios were considered in this research

and defined based on the r range parameter. In the first

scenario, r = 600m was used, equaling twice the V2V

transmission radius. In the second scenario, r = ∞, the entire

set of road groups. The difference between these two sce-

narios was that, in the first, once a platoon was received to

join, the candidate vehicle had to send a join request to

the designated platoon queue. In the second scenario, the join

algorithm used an initial approach protocol indicated by the
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FIGURE 7. The Shenzhen taxi’s run approximates to Pareto distribution by
Distance.

FIGURE 8. Pareto distribution by destination (longitude).

control service so that the vehicle and the Platoon stayed in

their communication range to start the V2V protocol then.

To simplify the join and split strategy for vehicles in the

target platoons in the simulations:

1) The join maneuvers occur at tail only, and the vehicles’

queue follows the last-in, first-out (LIFO) policy;

2) Vehicles join once to their target platoon, staying in the

line until the departure point; and

3) New vehicles could join a platoon at any time, as long

as they respect the previous rules.

1) VEHICLES PROFILING IN DATASET

The Shenzhen taxis dataset, made initially available with

GPS position information over 24 hours, was processed and

transformed into a set of sources and destinations in the for-

mat: {id, origin latitude, origin longitude, destination latitude,

destination longitude, projection, timestamp}.

In Figure 7, it is possible to see the Pareto distribution of the

projections, indicating that most vehicle trips (almost 80%)

are on short distances (almost 20% of the routes), between

13 km and 16 km, which indicates the possibility of a constant

change of vehicles in the platoons.

In Figure 8, there is, therefore, an approximate Pareto

distribution of vehicles to their destination longitudes. As we

can see, it is possible to verify regions with the most sig-

nificant movement, which helps to infer that some stretches

throughout Binhe Blvd will have a greater vehicle flow. Thus,

the final vector of the vehicle attributes was in the following

format: {id, origin latitude, origin longitude, destination lati-

tude, destination longitude, projection, timestamp, platoon},

and the platoon attribute indicates the target the vehicle must

proceed. The output file contains 2,996 records, divided into

two datasets, one with 300 vehicles and another with 2000 for

input in the DBSCAN. For the simulations, we grouped

records by 300 and 500 vehicles.

2) DBSCAN BEHAVIOR ANALYSIS

The randomly generated dataset contains platoons with a size

of ten or less. The disposition of vehicles to join follows a

FIGURE 9. Clusters as platoons — generated by DBSCAN.

uniform distribution. Comparing the results of the clusters

created by the DBSCANmodel’s processing with the original

Platoons of the data cluster, it is seen in Figure 9 that the mod-

els are similar. The graph on the left (Figure 9a) corresponds

to data from the uniform distribution, according to attributes

described in Table 6. The graph on the right (Figure 9b) to

the DBSCAN model with ε = 0.07, chosen for generating

clusters with the maximum of 10 vehicles, the allowed size

by platoons.

Fragmentation in clusters yielded by DBSCAN is sim-

ilar to those randomly generated, and outliers follow the

same pattern in both clusters, dispersing about 10% of

the number of vehicles. However, we can better visualize

the difference between the models a three-dimensional view,

from the same graph (Figure 10), including the dimension

of the generated clusters, both by traditional programming

(Figure 10a from the left) and the one generated via Learning
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FIGURE 10. 3D-view of the clusters as platoons — generated by DBSCAN.

Machine (Figure 10b on the right). DBSCAN generated

sparse Platoons, whereas the traditional one generates pla-

toons more efficiently.

The analysis of the model’s application to the Shenzhen

data (Figure 11) indicated a different behavior from themodel

generated by the uniform distribution. There are more outliers

in the Shenzhen dataset than those in uniform distribution.

Concerning the platoon formation constrained by the max-

imum size as the hyperparameter (ε) goes to the limit refer-

ence, we see a vehicles’ loss in the group of about 50% due to

outliers. That was the case for the full dataset (1004 outliers)

and the reduced one with 158 outliers.

When comparing the Figures 10b (uniform, ε = 0.07) and

11 (Shenzhen ε = 0.13), distributions seem different. How-

ever, as the former has sparser vehicles, DBSCAN achieve a

better performance in clustering them, whereas in the latter

there are concentration on some regions which makes harder

the platoon forming task. Finally, when analyzing metrics

(outliers, Number of clusters, and Maximum size of cluster)

and the three clustering variations (datasets: uniform and

Shenzhen reduced and complete—346 and 2005 vehicles,

respectively), we observed a different behavior insofar as the

ε hyperparameter varies.

We observed two effects in Figure 12 a significant decrease

of outliers in the initial stages of variation of the parameter ε

FIGURE 11. 3D-view of platoon formation using DBSCAN with Shenzhen
dataset.

FIGURE 12. Metrics for the Shenzhen full dataset.

and settling after it reaches 0.06 for the complete dataset clus-

tering result. The same characteristic applies to the reduced

one (Figure 13). For the uniform dataset (Figure 14), this drop

occurs more gradually with a smoother andmore linear slope.

Regarding the number of clusters, the three have a gradual

reduction as the ε varies, and in the uniform dataset, the num-

ber of clusters has tiny variation compared to Neps. About

the cluster’s size, the complete Shenzhen dataset and uniform

dataset presented the phenomenon known as percolation, for

the same ε = 0.14. After this limit, there was an almost

complete connection in both models, drastically reducing

the number of clusters with the exponential increase in the

platoon’s size, connecting all vehicles to the same platoon.

3) PLATOON’S FORMATION IN THE SIMULATION

We calculated the road capacity metric according to

Equation 3 and found 2, 967 vehicles/h/banner is the max-

imum throughput, considering our simulation parameters

(Table 5). The road finds its maximum utilization depend-

ing on three conditions when platoon sizes tend to 10

(maximum), vehicle joins as soon as possible its target pla-

toon and leaves as near as possible from its exit ramp.

We used DBSCAN to verify the performance on the two

datasets: 1,000 and 2,005 vehicles from uniform distribution

and Shenzhen. We compare the number of platoons formed
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FIGURE 13. Metrics for the Shenzhen reduced dataset.

FIGURE 14. Metrics for the uniform-generated dataset.

FIGURE 15. Comparison of the Platoons generated by DBSCAN on the
grouping of data generated by normal distribution versus the actual
grouping of data from Shenzhen.

by PINION against the number of platoons in the uniform

dataset, labeled when produced. Results are on Figure 15.

PINION reached 16% of the number of platoons. When

using ε at the percolation limit (meaning all vehicles can form

a single platoon), results show PINION distributes vehicles

in small platoons. On the other hand, when grouping vehicles

by longitude and restricting the platoon to ten participants,

it yields 81% of possible platoons in the dataset (uniform-

generated). We call this approach baseline.

The PINION model’s result using the Shenzhen real

data cluster shows a significant improvement, as shown in

Figure 16. We see that PINION achieves a concentration

of 89%, against a 77% from the baseline; that is, a difference

FIGURE 16. Comparison of Platoons generated by DBSCAN x Via
programming using the grouping of real data from Shenzhen.

FIGURE 17. Comparison of the Platoons generated by PINION x Via
programming using the grouping of Shenzhen Real data.

of 12%. Comparing the results from two data clusters and fix-

ing the PINION algorithm, the difference is evident, as shown

in Figure 17.

Formation of the Platoons did not significantly impact the

flow of IDM vehicles, that is, for a Market Penetration with

a value of 0 (zero). It can be verified numerically in Table 8,

with detailed statistical data with means, standard deviations,

quartiles, and medians. We see a stationary behavior with low

variation, a mean of 27.78 mph, as the median and quartiles

are the same. Also, for grouping 300 or 500 vehicles andMar-

ket Penetration levels of 25% and 75%, our experiments yield

the same pattern. We conclude that the ITS can incorporate

the CACC without compromising operations.

E. JOIN PROTOCOL EVALUATION

To evaluate the Join protocol, in the many-to-many relation-

ship among Joiners and Platoons, we use three performance

indicators: Speed, Distance, and Acceleration. To clarify the

use these indicators and their relationship with the protocol,

Figure 18 shows, as a counterexample, an accident generated

by a flawed protocol, where two vehicles (Joiners), using the

CACC control model, clash.

The vehicles involved in the accident are represented by

nodes one and two, and the zero nodes indicate a vehicle that

followed its trajectory without problems. Figure 18a shows

the speed indicator where it is already possible to verify that

the vehicle (two) has a discrepancy with the other Joiners
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TABLE 8. Dispersion of the speed in Binhe Blvd during our simulation scenarios.

FIGURE 18. Trace of an accident during the join maneuver.

FIGURE 19. Performance indicators for a successful join maneuver.

going much faster. Figure 18b, it is possible to identify the

cause of this high speed. Due to the protocol failure, this

vehicle had amore significant acceleration than the other sim-

ulation’s other Joiners. Finally, in Figure 18c, it is possible to

see the consequence of this failure with the collision between

vehicles one and two.

Following the same diagram as above, the execution of the

protocol in the Shenzhen scenario with the reduced number

of vehicles (346) for three randomly selected Joiners is shown

in Figure 19. In this Figure, it is possible to verify the same

pattern of behavior between the three vehicles in all stages

of the maneuver, as much as the Speed shown in Figure 19a,

as well as the Acceleration shown in Figure 19b, as well as

the Position with different trajectories throughout the simu-

lation shown in Figure 19c. The same occurs with the other

simulated scenarios.

V. CONCLUSION

In this paper we present PINION: a Platoon GroupIng

FuNctIonOffloading for VANETs. It resembles amechanism

allowing the cooperation of two gears to transfer power

between the systems; in our case, the V2V CACC protocol

and the offloading of the grouping Virtual Network Func-

tion (VNF) into the B5G Mobile Edge Computing (MEC).

We implemented it as a clustering task in the machine learn-

ing framework and demonstrated our solution’s efficiency

using realistic traces from Shenzhen taxis’ flow. Moreover,

we explore scenarios with different levels of Market Penetra-

tion in a road design with managed lane. Such a setup allows

us to analyze feasible scenarios to happen in the next ten

years.

We demonstrate the performance difference when com-

paring dense (the Shenzhen dataset) and disperse scenarios

(randomly-generated dataset). PINION achieve an accuracy

of 89% of the entire amount of platoons in the datasets.

Depending on the hyperparameters configuration, the perfor-

mance can change considerably. Therefore, we see a need to

dynamically adapt those values as the road condition changes

from one state to another.We also evaluate an extension of the

PLEXE join protocol equipping it with multiple joiners vs.
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multiple platoons functionality. Our experiments demonstrate

cases with collisions, and we provide a solution to a more safe

operation on roads. Finally, our solution did not improve the

overall road speed; however, the results show a settled speed

(stationary and low dispersion), where users can experience

a more deterministic traffic condition.

As future work, we plan to implement other functions

for the grouping VNF: different clustering algorithms and

modeling vehicles using complex networks. In the latter case,

implement a graphical neural network to this end. Another

point of improvement considers the extensive use of other

datasets and verifies their impact on the algorithms, allowing

us to analyze how suitable hyperparameters are to dynamic

adaptation.
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