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Long short-term memory (LSTM) recurrent 
neural network for muscle activity detection
Marco Ghislieri1,2* , Giacinto Luigi Cerone2,3, Marco Knaflitz1,2 and Valentina Agostini1,2 

Abstract 

Background: The accurate temporal analysis of muscle activation is of great interest in many research areas, span-
ning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological 
patients and the monitoring of their motor rehabilitation. The performance of the existing muscle activity detectors 
is strongly affected by both the SNR of the surface electromyography (sEMG) signals and the set of features used to 
detect the activation intervals. This work aims at introducing and validating a powerful approach to detect muscle 
activation intervals from sEMG signals, based on long short-term memory (LSTM) recurrent neural networks.

Methods: First, the applicability of the proposed LSTM-based muscle activity detector (LSTM-MAD) is studied 
through simulated sEMG signals, comparing the LSTM-MAD performance against other two widely used approaches, 
i.e., the standard approach based on Teager–Kaiser Energy Operator (TKEO) and the traditional approach, used in 
clinical gait analysis, based on a double-threshold statistical detector (Stat). Second, the effect of the Signal-to-Noise 
Ratio (SNR) on the performance of the LSTM-MAD is assessed considering simulated signals with nine different SNR 
values. Finally, the newly introduced approach is validated on real sEMG signals, acquired during both physiological 
and pathological gait. Electromyography recordings from a total of 20 subjects (8 healthy individuals, 6 orthopedic 
patients, and 6 neurological patients) were included in the analysis.

Results: The proposed algorithm overcomes the main limitations of the other tested approaches and it works 
directly on sEMG signals, without the need for background-noise and SNR estimation (as in Stat). Results demonstrate 
that LSTM-MAD outperforms the other approaches, revealing higher values of F1-score (F1-score > 0.91) and Jaccard 
similarity index (Jaccard > 0.85), and lower values of onset/offset bias (average absolute bias < 6 ms), both on simu-
lated and real sEMG signals. Moreover, the advantages of using the LSTM-MAD algorithm are particularly evident for 
signals featuring a low to medium SNR.

Conclusions: The presented approach LSTM-MAD revealed excellent performances against TKEO and Stat. The 
validation carried out both on simulated and real signals, considering normal as well as pathological motor function 
during locomotion, demonstrated that it can be considered a powerful tool in the accurate and effective recognition/
distinction of muscle activity from background noise in sEMG signals.

Keywords: Deep learning, EMG, EMG-based interfaces, Gait analysis, Muscle activity, Muscle activation intervals, 
Onset-offset detection, Surface electromyography, RNN
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Background
Dynamic muscle activity can be non-invasively investi-
gated through surface electromyography (sEMG). Deter-
mining the start (onset) and end (offset) time-instants 
of muscle activations during human movements is of 
great interest in different research fields, such as gait 
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analysis [1], motor rehabilitation and sport science [2], 
myoelectric control of prostheses [3], human–machine 
interaction [4], design of biofeedback systems [5], and 
pre-processing of muscle synergy extraction [6–9]. In 
particular, the accurate temporal analysis of muscle acti-
vation in terms of burst onset, duration of the activation 
interval, and burst offset, can be useful in the assessment 
of the altered locomotion patterns of orthopedic and 
neurological patients [10, 11].

In an attempt to increase the accuracy of the temporal 
analysis of muscle activations, several methods have been 
proposed in the literature, from the simplest approaches 
based on single-threshold detectors [12] to more com-
plex approaches based on wavelet transform [13, 14], 
statistical optimal decision criteria [15, 16], or deep 
learning techniques [17–26]. One of the most widely 
used ways to detect the timing of muscle activations from 
sEMG signals is using a double-threshold detector, such 
as the double-threshold statistical detector by Bonato 
et  al. [27], specifically developed for gait analysis. The 
authors of that paper claims an estimation bias on the 
onset timing of less than 10 ms, evaluated on simulated 
signals. However, this detector requires, as a necessary 
input parameter, to set the first (amplitude) threshold, 
the background-noise power. Furthermore, to fine-tune 
the second (temporal) threshold, it is important to esti-
mate the Signal-to-Noise Ratio (SNR), i.e., through the 
algorithm described in [28]. Another standard approach 
is the single-threshold detector based on the Teager–Kai-
ser Energy Operator (TKEO) [29, 30], where the reported 
onset bias is 13  ms and 55  ms on simulated and real 
sEMG signals, respectively.

The majority of the existing threshold-based meth-
ods suffers from two main limitations. First, the selec-
tion of the muscle activation intervals is usually based 
on the extraction of some time- or frequency-domain 
features (i.e., the signal amplitude or energy, SNR, 
…) which may not be sufficient to properly detect the 
onset/offset time instants. Threshold-based algorithms 
usually rely only on the signal energy or amplitude to 
detect muscle activation intervals, while ignoring many 
other features that might lead to a more accurate tem-
poral analysis of the dynamic muscle activity. Second, 
since the amount of noise superimposed to the sEMG 
signals may vary during the recording sessions due to 
changes in the skin–electrode interface characteristics 
or in the ground reference level, the performance of the 
threshold-based approaches may be strongly affected. 
To the best of the authors’ knowledge, only a few stud-
ies have been focused on the definition of models able 
to efficiently work even at very low SNR values [13] or 
designed to deal with changes in the SNR of the sEMG 
signal over time [31]. The detection of the start and 

end time-instants of muscle activations during human 
movements can also be heavily compromised by the 
presence of spurious background spikes, both in physi-
ological and pathological conditions, which may have 
different sources, such as the hyper-excitable motor 
unit discharges characterizing stroke survivors or spi-
nal cord injury patients and a slight displacement of the 
skin–electrode interface [32–34].

Alternative methods, such as deep learning approaches, 
are being explored to perform sEMG-based pattern rec-
ognition [17–25]. The topic dealt with in this paper is 
somewhat easier compared to a pattern-recognition 
problem. Indeed, we are not interested in classifying dif-
ferent movements, but simply detecting the presence or 
absence of muscle activation. Exploiting artificial intel-
ligence, such as a recurrent neural network (RNN), 
resulted a winning strategy in a wide variety of different 
applications and might be explored also for our problem. 
RNN is a powerful learning algorithm inspired by the 
biological neural networks that constitutes the human 
brain, and it is trained to present to the network a large 
number of labeled “examples” [35]. More specifically, 
long short-term memory (LSTM) neural networks are 
a widely used type of RNNs designed to recognize pat-
terns and time-dependencies in sequential data, such as 
numerical time series, texts, and audio tracks [36]. These 
neural networks were first introduced by Hochreiter 
and Schmidhuber in 1997 [37] and represent an exten-
sion of the recurrent neural networks (RNNs), allowing 
for a better assessment of the time-dependencies in long 
sequential data. Nowadays, even if LSTM recurrent neu-
ral networks represent the state of art in natural language 
processing and speech recognition problems [38], no 
studies applying these recurrent neural networks to the 
muscle activity detection problem have been published in 
the literature.

Due to the time-series nature of the sEMG signals, 
LSTM recurrent neural networks could be applied for 
identifying the muscle activity time-instants without 
relying on the selection and extraction of heuristic fea-
tures from sEMG signals.

This contribution aims at assessing the applicability 
of a novel approach for muscle activity detection, based 
on LSTM recurrent neural networks, specifically devel-
oped to overcome the main limitations of the standard 
approaches. The performance of the LSTM-based Muscle 
Activity Detector (LSTM-MAD) is evaluated and com-
pared against two of the most widely used approaches: 
a standard approach (single-threshold detector TKEO) 
[29, 30] and a statistical approach (double-threshold sta-
tistical detector Stat) [27] in terms of precision, recall, 
F1-score, Jaccard similarity index, and onset/offset bias 
both on simulated and real sEMG signals.
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Methods
First, a dataset of simulated sEMG signals was built to 
assess the applicability of the LSTM-based approach 
to muscle activity detection and to compare its perfor-
mance against the two muscle activity detectors TKEO 
[29, 30] and Stat [27]. Second, we further compared the 
performance of the three detectors on simulated sEMG 
signals, specifically highlighting the effect of the SNR of 
sEMG signals. Finally, LSTM-MAD was applied also to 
real sEMG signals, acquired from lower limb muscles 
during gait, to emphasize its advantages also in real con-
texts. Figure 1 represents the block diagram of the proce-
dure followed in this study. Each block is described in the 
following paragraphs.

Simulated data
The sEMG signals acquired during cyclic movements, 
such as walking, cycling, and running, can be modeled 
by the superimposition of two different contributions: (i) 
the electrical activity (s) generated by each muscle during 
the contraction and (ii) the background noise ( n ) mainly 
generated by the neighboring muscles, the features of the 
electrode–skin interface, and the acquisition system elec-
tronics. Under the hypothesis of cyclic contractions, the 

sEMG signal can be defined as a cyclostationary process 
[39] and, therefore, described through the superimposi-
tion of two different stationary processes [28]:

 i. The muscle activity ( s ) modeled as a Gaussian pro-
cess with zero-mean and variance σ 2

s  , as described 
in (1):

where σs was set equal to 10(SNR/20) · 1µV ;
 ii. The background noise ( n ) modeled as a zero-mean 

Gaussian process with variance σ 2
n , as described in 

(2):

where σn was set equal to 1µV .
Each realization of the muscle activity process s(t) 

was simulated assuming a time period of 1  s (i.e., the 
gait cycle duration) and a sampling frequency of 1 kHz 
[28]. Physiological muscle activity was modeled by 
time-windowing the Gaussian process s(t) through a 
single truncated Gaussian function centered at 50% 

(1)s(t) ∈ N
(
0, σ 2

s

)

(2)n(t) ∈ N (0, σ 2
n )

Fig. 1 Block diagram of the procedure followed to assess the performance of the new LSTM-MAD (LSTM-based Muscle Activity Detector) 
compared to standard and statistical approaches for muscle activity detection
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of the gait cycle [28]. Different standard deviations 
(σ) and time supports ( 2ασ ) of the truncated Gaussian 
function have been considered to simulate sEMG sig-
nals similar to those observed in leg, thigh, and trunk 
muscles during gait. More specifically, three differ-
ent values of the standard deviation ( σ = 50, 100, and 
150 ms) and four different values of the time support 
2ασ (with α = 1, 1.5, 2, and 2.4) have been tested [27]. 
Then, the background noise process ( n(t) ) was added. 
Nine different values of Signal-to-Noise Ratio (SNR) 
were simulated (SNR = 3, 6, 10, 13, 16, 20, 23, 26, and 
30  dB) [27]. For each triplet of σ , α , and SNR values, 
100 different realizations have been simulated and, 
therefore, a dataset composed by 10,800 different real-
izations (3 standard deviations × 4 time supports × 9 
SNRs × 100 realizations) was built.

The simulated sEMG signals were then band-pass 
filtered through a  4th order Butterworth digital filter 
with a lower cut-off frequency of 10  Hz and a higher 
cut-off frequency of 450  Hz [40]. Figure  2 represents 
an example of a simulated sEMG signal with the super-
imposition of the truncated Gaussian function s(t) 
used to model the physiological muscle activity.

The time-instants relative to each simulated mus-
cle activity ( s ) were defined by a binary mask ( ySim ) 
that was set equal to 1 in correspondence of the time-
instants in which the truncated Gaussian assumed val-
ues higher than 0, and it was set equal to 0 otherwise.

Real data
Gait data acquired from 20 subjects were retrospec-
tively analyzed to test the performance of the three dif-
ferent approaches when applied to real sEMG signals. 
Subjects were randomly selected from our database to 
include both healthy individuals and patients affected 
by neurological or orthopedic pathologies, during walk-
ing tasks [8, 41, 42]. This non-homogeneous group of 
subjects was specifically chosen to verify that the algo-
rithm works under different conditions. In particular, 
eight out of 20 subjects were healthy adults (healthy 
age: 38.0 ± 13.1  years, height: 164.9 ± 5.4  cm, weight: 
65.4 ± 21.2 kg) [8], six were patients after unilateral Total 
Hip Arthroplasty (THA age: 73.8 ± 8.4  years, height: 
175.5 ± 7.6  cm, weight: 86.8 ± 16.3  kg) [41], and the 
other 6 were patients affected by idiopathic normal pres-
sure hydrocephalus (NPH age: 75.7 ± 6.3  years, height: 
170.5 ± 6.3 cm, weight: 72.5 ± 10.4 kg) [42].

Gait data were recorded through a multichan-
nel acquisition system (STEP32, Medical Technology, 
Italy) [8, 43, 44]. SEMG signals were acquired through 
active probes (configuration: single differential, size: 
19  mm × 17  mm × 7  mm, Ag-disks diameter: 4  mm, 
interelectrode distance: 12  mm, gain: variable in the 
range from 60 to 86 dB) placed over the following 4 mus-
cles of the lower limb: rectus femoris (RF), lateral ham-
string (LH), lateral gastrocnemius (LGS), and tibialis 
anterior (TA). Active probes were positioned according 

Fig. 2 Example of a simulated sEMG signal (blue line) with the indication of the truncated Gaussian function (black line) used for the simulation 
of the muscle activity. The SNR is set equal to 20 dB, the standard deviation of the truncated Gaussian (σ) is equal to 100 ms, and the time support 
(2ασ) is obtained for α = 1.5
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to the guidelines suggested by Winter [45]. Details on the 
sEMG sensor placement are described in a previous work 
by Agostini et al. [44]. The dominant lower limb (i.e., the 
leg used to kick the ball or to start walking) was analyzed 
for healthy subjects, while the clinically most affected 
limb was selected for pathological patients. Before apply-
ing the tested detectors, the acquired sEMG signals were 
band-pass filtered through a  4th order Butterworth digital 
filter with a lower cut-off frequency of 10 Hz and a higher 
cut-off frequency of 450 Hz [40].

For each subject, 5 gait cycles were randomly selected 
from the whole walking task to build the real dataset. 
Therefore, a dataset composed of 400 different sEMG 
signals (20 subjects × 5 gait cycles × 4 muscles) was 
obtained. The time-instants relative to each real-muscle 
activation were visually segmented by three experienced 
operators through a custom MATLAB® GUI (graphical 
user interface). More specifically, a binary mask ( yReal ) 
was set equal to 1 in correspondence of the time-instants 
in which the majority of the expert operators (at least 
two out of three) detected a muscle activity and to 0 
otherwise.

Standard approach: Teager–Kaiser Energy Operator (TKEO)
One of the most commonly applied standard approaches 
for muscle activity detection is the Teager–Kaiser Energy 
Operator (TKEO), which has been demonstrated to 
increase the accuracy of the simple linear envelope 
approach [29, 30].

More specifically, a single-threshold was applied to the 
sEMG signals after the computation of the TKEO (ψ), 
defined as in (3):

where x represents the sEMG time-series and n the 
sample number. The single threshold was defined as 
described in (4):

where µn , σn and j represent the mean of the background 
noise, the standard deviation of the background noise, 
and a multiplicative constant, respectively. In this study, 
the constant j was set equal to 7 as suggested in [29, 46]. 
Since the average ( µn ) and the standard deviation ( σn ) 
of the background noise are required as inputs of this 
approach, the time-instants corresponding to the noise 
were automatically selected considering those that were 
simulated or segmented as background noise for the sim-
ulated and real sEMG signals, respectively.

(3)ψx(n) = x(n)2 − x(n+ 1)x(n− 1)

(4)Th = µn ± j × σn

The output of this detector was finally defined as a 
binary mask ( ̂yTKEO ) that was defined as follows:

• ŷTKEO = 1, if ψx(n) ≥ Th;
• ŷTKEO = 0, if ψx(n) <Th.

Statistical approach: double threshold statistical detector 
(Stat)
The statistical approach used in this study is the double-
threshold statistical detector proposed in [27]. The prin-
cipal computation steps are the following:

 i. An auxiliary sequence zi is computed from the 
sEMG signals as the sum of the squared values of 
two successive samples (5) 

where xi and xi+1 represent two consecutive sam-
ples of the sEMG time series;

 ii. A first (amplitude) threshold ζ is applied on a slid-
ing detection window defined by m consecutive 
samples of the auxiliary sequence zi;

 iii. Muscle activation is detected if at least r0 (tempo-
ral threshold) out of m consecutive samples of the 
sliding detection window are equal to or above the 
first threshold ζ.

In this study, the length of the observation window (m) 
was set equal to 5, while the temporal threshold r0 was set 
equal to 1 [27].

The output of this detector was finally defined as a 
binary mask ( ̂yStat ) that was defined as it follows:

• ŷStat = 1, if zi ≥ ζ for at least r0 out of m samples;
• ŷStat = 0, otherwise.

Deep learning approach: LSTM‑MAD
An LSTM recurrent neural network model is generally 
composed of the following architecture:

 i. An input sequence layer;
 ii. One or more LSTM layers used to learn the time-

dependencies within the sequential data;
 iii. A fully connected layer used to convert the out-

put size of the previous layers into the number of 
classes to be recognized;

 iv. A softmax layer used to compute the belonging 
probability to each class;

 v. A classification output layer used to compute the 
cost function.

(5)zi = x2i + x2i+1
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In this study, several LSTM recurrent neural network 
models were tested to assess the applicability of the pro-
posed approach for muscle activity detection, consider-
ing direcly sEMG signals, without any feature extraction 
step. To define the best LSTM model for muscle activity 
detection, each of the two datasets of simulated and real 
sEMG signals was divided into 3 different sets: training 
set (70%), validation set (15%), and test set (15%), respec-
tively. The training set was used to train the LSTM mod-
els, while the validation set (or development set) was 
used to evaluate the network performance and to avoid 
the overfitting of the training data. More specifically, the 
validation set was used to stop training automatically 
when the validation accuracy stopped increasing to avoid 
overfitting [35]. Finally, the test set was used for the final 
validation and the comparison of LSTM-MAD with the 
other two detectors.

Using the Deep Learning Toolbox of MATLAB® release 
R2020b (The MathWorks Inc., Natick, MA, USA), 720 
different LSTM models were tested. All the LSTM mod-
els had a sequence input layer consisting of 1 unit (i.e., the 
dimension of a single simulated or real sEMG signal) and 
a fully connected output layer consisting of 2 units (i.e., 
the number of classes to be recognized). Different num-
bers of LSTM hidden layers (n), numbers of hidden units 
for each LSTM hidden layer ( nunits ), learning rate ( α ) val-
ues, and drop period ( δ ) values were tested to achieve the 
LSTM architecture with the highest performance. More 
specifically, two different number of LSTM hidden lay-
ers ( n = 1 and 2), nine different numbers of hidden units 
for each LSTM hidden layer ( nunits = 100, 125, 150, 175, 
200, 225, 250, 275, and 300), five different learning rates 
( α = 0.01, 0.015, 0.02, 0.025, and 0.03), and eight different 
drop rate values ( δ = 10, 15, 20, 25, 30, 35, 40, and 45) 
were tested [35]. The adaptive moment (ADAM) opti-
mization algorithm was adopted in this work to train all 
the tested LSTM models [47]. The performance of each 
LSTM model was assessed considering the simulated (or 
real) test set by computing the overall classification accu-
racy, defined as the number of correctly classified sEMG 
samples normalized to the total number of sEMG sam-
ples within the test set.

The training process was performed on a workstation 
with a 3.2  GHz six-core CPU, 32  GB of RAM memory, 
and a 64-bit Windows operating system.

The ySim , extracted from the truncated Gaussian func-
tions, and the yReal , manually defined by the expert oper-
ators through the MATLAB® GUI, were used as target 
(or ground truth) to train and test each LSTM model for 
the simulated and real datasets, respectively.

The output of the LSTM approach was computed as a 
binary mask ( ̂yLSTM−MAD ) that was defined as it follows:

• ŷLSTM−MAD = 1, if the sEMG time-instant was classi-
fied as muscle activity (class 1);

• ŷLSTM−MAD = 0, if the sEMG time-instant was classi-
fied as background noise (class 0).

Post‑processing
A post-processing step was applied to the output of each 
detector (i.e., standard, statistical, and deep learning 
approach) to reject the erroneous transitions due to the 
stochastic nature of the sEMG signal. Since it is gener-
ally accepted that a muscle activation shorter than 30 ms 
does not affect the kinetics and the kinematics of gait [48], 
all the muscle activations lasting less than 30  ms were 
discarded [27]. Figure  3 illustrates this concept. In par-
ticular, Fig. 3A shows a sample realization of a simulated 
sEMG signal modulated by a truncated Gaussian func-
tion (SNR = 16  dB, σ = 100  ms, and α = 1.5). Figure  3B 
represents the output of the standard approach ( ̂yTKEO ) 
without any post-processing step, while Fig. 3C shows the 
effect of the post-processing on the detector’s output.

Performance evaluation
The muscle activations detected by the three differ-
ent approaches ( ̂yTKEO , ŷStat , and ŷLSTM−MAD ) were 

Fig. 3 Example of post-processing applied to the standard approach 
output ( ̂yTKEO ). A Sample realization of simulated sEMG signal (blue 
line) with the superimposition of the truncated Gaussian function 
used to modulate the muscle activity (black line). The SNR is set 
equal to 20 dB, the standard deviation of the truncated Gaussian (σ) 
is 100 ms, and the multiplicative constant (α) of the time support 
is 1.5. B The output of the standard approach ( ̂yTKEO ) without any 
post-processing. C The output of the standard approach after 
rejecting all the activations shorter than 30 ms (post-processing step)
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quantitatively compared against the ground truth in 
terms of precision, recall, F1-score, Jaccard similar-
ity index, and onset/offset bias. More specifically, the 
indexes were defined as it follows:

where TP represents the True Positive (i.e., number of 
sEMG time-instants correctly classified by the detectors 
as muscle activity), FN  describes the False Negative (i.e., 
number of sEMG time-instants incorrectly classified by 
the detectors as background noise), and FP represents 
the False Positive (i.e., number of sEMG time-instants 
incorrectly classified by the detectors as muscle activ-
ity). y represents the binary mask computed by the i th 
detector ( i = 1: standard approach with TKEO, i = 2: 
statistical approach with the double-threshold statistical 
detector, i = 3: novel approach with LSTM-MAD), and ŷi 
represents the ground truth of the simulated (or real) test 
set. Finally, N  is the number of estimates, t̂i is the esti-
mate of the onset/offset time-instants obtained through 
the i th detector, and t represents the true onset/offset 
timings.

Effect of SNR on muscle activity detection
The effect of sEMG signals’ SNR on the performance of 
the three tested muscle activity detectors was assessed 
considering the simulated test set by computing the per-
formance parameters above-mentioned, separately for 
each of the nine SNR values (SNR = 3, 6, 10, 13, 16, 20, 
23, 26, and 30 dB).

Statistical analysis
The hypothesis of normality of the distribution of the 
computed performance parameters was tested through 
the Lilliefors test (“lillietest” MATLAB® function) 
setting the significance level (α) at 0.05. If the nor-
mality hypothesis was satisfied, one-way analysis of 
variance (ANOVA) for repeated measures (α = 0.05) 

(6)precision =
TP

TP + FP

(7)recall =
TP

TP + FN

(8)F1− score =
2× (recall × precision)

(recall + precision)

(9)Jaccard =

∣∣̂yi ∩ y
∣∣

∣∣̂yi ∪ y
∣∣

(10)Bias =
1

N

∑N

i=1

(
t̂i − t

)
was performed to assess significant differences in the 
performance of the three tested approaches and to test 
the effect of SNR on detectors’ performance, otherwise 
the Friedman’s test (α = 0.05) was implemented. Then, 
post-hoc analysis with Tukey’s adjustment for multiple 
comparisons was performed. The effect size of the sta-
tistically significant differences was calculated through 
the Hedges’ g statistic [49] including the correction 
for small sample sizes. The statistical analysis was per-
formed using the Statistical and Machine Learning 
Toolbox of MATLAB® release R2020b.

Results
First, we present the results supporting the applicability 
of the LSTM-based approach for muscle activity detec-
tion, considering only simulated sEMG signals. Second, 
we further compare the performance of the three tested 
approaches (standard, statistical, and deep learning 
approach) on simulated sEMG signals, highlighting the 
effect of the SNR. Finally, we present the architecture 
and the performance of the LSTM-MAD model applied 
on the real sEMG signals.

Simulated data
LSTM model definition
The best LSTM model was selected among all the 
tested networks as the one with the highest overall clas-
sification accuracy on the simulated test set, discarding 
those networks with a difference between the training 
and validation accuracy higher than 4% (to avoid over-
fitting of the training data).

Table 1 shows the properties of the LSTM model that 
achieved the highest overall classification accuracy 
(96.8% ± 4.3%) on the test set.

Table 1 Properties of the best LSTM model

LSTM long short-term memory

LSTM layers Properties

Sequence input layer 1 input feature

LSTM layer #1 275 hidden units
Bi-directional sequence-to-sequence 
architecture

LSTM layer #2 138 hidden units
Bi-directional sequence-to-sequence 
architecture

Fully connected layer 2units

Softmax layer Softmax activation function
(threshold = 0.5)

Classification output layer 2 classes
(1 = muscle activity, 0 = background noise)
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Performance evaluation
The performance of the three different muscle activ-
ity detectors was assessed and compared in terms of (i) 
precision, (ii) recall, (iii) F1-score, (iv) Jaccard similarity 
index, and (v) onset/offset bias:

 i. Precision: An average precision of 0.92 ± 0.10, 
0.98 ± 0.09, and 0.95 ± 0.08 was found on the sim-
ulated test set, considering the standard, the sta-
tistical, and the deep learning approach, respec-
tively. Friedman’s test followed by post-hoc analysis 
revealed significant differences between each pair 
of detectors (p < 0.0001, g > 0.34);

 ii. Recall: On average, a recall of 0.86 ± 0.20, 
0.53 ± 0.39, and 0.96 ± 0.08 was found on the sim-
ulated test set, considering the standard, the sta-
tistical, and the deep learning approach, respec-
tively. Friedman’s test followed by post-hoc analysis 
revealed significant differences between each pair 
of detectors (p < 0.0001, g > 0.66);

 iii. F1-score: On average, an F1-score of 0.87 ± 0.14, 
0.76 ± 0.25, and 0.95 ± 0.06 was found on the sim-
ulated test set, considering the standard, the sta-
tistical, and the deep learning approach, respec-
tively. Friedman’s test followed by post-hoc analysis 
revealed significant differences between each pair 
of detectors (p < 0.0001, g > 0.54);

 iv. Jaccard similarity index: An average Jaccard index 
of 0.80 ± 0.19, 0.52 ± 0.38, and 0.91 ± 0.10 was 
found on the simulated test set, considering the 
standard, the statistical, and the deep learning 
approach, respectively. Friedman’s test followed by 
post-hoc analysis revealed significant differences 
between each pair of detectors (p < 0.0001, g > 0.72);

 v. Onset/offset bias: The onset/offset bias averaged 
over the simulated test set for each tested muscle 
activity detector are represented in Table  2. Con-
sidering the onset bias, Friedman’s test followed by 
post-hoc analysis revealed significant differences 
between each pair of detectors (p < 0.0001, g > 0.48). 
Even considering the offset bias, statistically sig-
nificant differences were tested through Friedman’s 

test between each pair of detectors (p < 0.0001, 
g > 0.58);

Figure  4A compares the performance of the three 
tested detectors (standard, statistical, and deep learn-
ing approach) in terms of precision, recall, F1-score, 
and Jaccard similarity index. The average values and 
standard errors of these parameters were estimated on 
the simulated test set. Asterisks highlight statistical dif-
ferences (p < 0.05) between each pair of detectors.

Effect of SNR on muscle activity detection
The effect of the SNR on the detector performance was 
assessed by extracting from the simulated test set the 
above-mentioned performance parameters (precision, 
recall, F1-score, Jaccard similarity index, and onset/off-
set bias), separately for each simulated SNR-value.

Figure  5 represents, for each muscle activity detec-
tor, the average values (and standard errors) of preci-
sion (Fig.  5A), recall (Fig.  5B), F1-score (Fig.  5C), and 
Jaccard similarity index (Fig.  5D), for each simulated 
SNR-value. For all these parameters, LSTM-MAD 
revealed a higher performance consistency across the 
different SNR values, suggesting a lower effect of SNR 
on muscle activity detection compared to the other two 
approaches. As expected, the approach more affected 
by the SNR was the Stat, with an evident decrease in 
the performance parameters for simulated sEMG sig-
nals with SNR values lower than 20 dB.

Table  3, instead, shows the onset/offset bias values 
averaged over the simulated test set for each simulated 
SNR value. Even considering the onset and offset bias, 
LSTM-MAD revealed higher performance across the 
different SNR values with (absolute) onset/offset bias 
values significantly lower compared to the other two 
approaches. Among the three testes approaches, the 
worst performance was achieved by the Stat approach 
which revealed a significant increase in the (absolute) 
onset/offset bias values for simulated sEMG signals 
with SNR values lower than 20 dB.

Table 2 Onset/offset bias averaged over the simulated/real test set, for each muscle activity detector

Values of parameters are reported as mean ± standard error over the simulated (and real) test set

TKEO Teager–Kaiser Energy Operator, Stat detector statistical double threshold detector, LSTM-MAD long short-term memory muscle activity detector

Onset bias (ms) Offset bias (ms)

TKEO Stat detector LSTM‑MAD TKEO Stat detector LSTM‑MAD

Simulated test set 24.3 ± 1.2 56.2 ± 2.2 4.0 ± 0.8 − 22.4 ± 1.2 − 65.1 ± 2.2 0.03 ± 0.7

Real test set − 4.5 ± 16.1 35.6 ± 9.8 4.1 ± 2.2 19.2 ± 5.1 − 33.7 ± 12.1 − 5.8 ± 2.3
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Real data
The same procedure described for the simulated data-
set was followed to define and select the best LSTM 
model considering real sEMG data. In the following, 
the results obtained from the real dataset for the three 
different approaches are detailed.

LSTM model definition
The same 720 different LSTM models considered for 
the simulated dataset were tested considering the real 
data. The best LSTM model that achieved the highest 
overall classification accuracy (90.1% ± 14.28%) on the 
test set revealed the same architecture and properties 

Fig. 4 Comparison of the performance of the three muscle activity detectors (standard TKEO by Li et al. [29], statistical double-threshold detector 
by Bonato et al. [27], and LSTM-MAD) estimated considering (A) the simulated and (B) the real dataset. Average values and standard errors are 
represented. Statistically significant differences are indicated by asterisks (***p < 0.0001)

Fig. 5 Values of A precision, B recall, C F1 score, and D Jaccard similarity index, averaged on the simulated test set, for each value of SNR and for 
each muscle activity detector. Each colored bar represents the average performance of a specific detector (TKEO by Li et al. [29] in red, Stat detector 
by Bonato et al. [27] in orange, and LSTM-MAD in green). Error bars represent the standard errors
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as the one selected considering the simulated data (see 
Table 1).

Figure  6 shows an example of a real sEMG signal 
acquired from the TA muscle of a healthy subject of 
the sample population with the superimposition of the 
ground truth ( yReal ) and the outputs of the three detec-
tors ( ̂yTKEO , ŷStat , and ŷLSTM−MAD ) after the post-pro-
cessing step.

Performance evaluation
The performance of the three different muscle activity 
detectors on the real testset was assessed considering the 
same five parameters described for the simulated sEMG 
signals:

 i. Precision: An average precision of 0.63 ± 0.15, 
0.92 ± 0.11, and 0.95 ± 0.11 was found on the 
real test set, considering the standard, the sta-
tistical, and the deep learning approach, respec-
tively. Friedman’s test followed by post-hoc analy-
sis revealed significant differences between the 
standard and the statistical approach (p < 0.0001, 
g = 2.20), and between the standard and the deep 
learning approach (p < 0.0001, g = 2.43), while no 
difference was found between the statistical and 
the deep learning approach (p = 0.92);

 ii. Recall: On average, a recall of 1.00 ± 0.00, 
0.71 ± 0.31, and 0.90 ± 0.15 was found on the real 
test set, considering the standard, the statistical, 

Table 3 Onset/offset bias averaged over the simulated test set for each value of SNR and for each muscle activity detector

Values of parameters are reported as mean ± standard error over the simulated test set

TKEO Teager–Kaiser Energy Operator, Stat Detector statistical double threshold detector, LSTM-MAD long short-term memory muscle activity detector, SNR signal-to-
noise ratio

SNR Onset bias (ms) Offset bias (ms)

TKEO Stat detector LSTM‑MAD TKEO Stat detector LSTM‑MAD

30 dB − 4.5 ± 0.8 1.1 ± 1.4 0.8 ± 0.2 7.8 ± 1.0 − 10.7 ± 1.6 0.6 ± 0.3

26 dB − 2.3 ± 0.73 10.6 ± 2.3 − 0.2 ± 0.4 3.2 ± 1.0 − 20.6 ± 2.3 0.1 ± 0.4

23 dB 0.2 ± 1.1 23.2 ± 2.9 − 0.72 ± 0.7 0.7 ± 1.1 − 29.8 ± 2.6 − 0.6 ± 0.6

20 dB 2.8 ± 1.3 36.4 ± 3.4 1.1 ± 0.9 − 4.8 ± 1.3 − 46.4 ± 3.5 − 2.2 ± 0.9

16 dB 15.4 ± 2.1 67.1 ± 4.7 2.9 ± 1.5 − 13.9 ± 1.9 − 76.5 ± 4.5 2.5 ± 1.7

13 dB 21.0 ± 2.6 105.0 ± 5.6 1.5 ± 2.0 − 20.5 ± 2.7 − 109.9 ± 5.9 − 0.4 ± 1.9

10 dB 33.0 ± 3.2 129.0 ± 7.5 3.4 ± 2.6 − 35.1 ± 3.3 − 139.8 ± 7.88 − 2.8 ± 2.2

6 dB 59.1 ± 4.2 200.3 ± 21.8 6.6 ± 3.3 − 55.6 ± 4.4 − 202.2 ± 21.8 4.5 ± 3.3

3 dB 86.3 ± 5.6 171.3 ± 19.3 20.8 ± 4.4 − 83.9 ± 5.3 − 196.6 ± 15.3 − 1.9 ± 3.5

Fig. 6 Example of real sEMG signals (blue lines) acquired from the TA muscle of A a healthy subject, B a patient affected by idiopathic Normal 
Pressure Hydrocephalus (NPH), and C a patient who underwent a unilateral Total Hip Arthroplasty (THA). The output of the standard (red lines), 
statistical (orange lines), and LSTM-MAD approach (green lines) are represented along with the indication of the ground truth (black lines) manually 
segmented by expert operators. All the muscle activities shorter than 30 ms have been rejected by means of the post-processing step for all the 
approaches
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and the deep learning approach, respectively. Fried-
man’s test followed by post-hoc analysis revealed 
significant differences between each pair of detec-
tors (p < 0.04, g > 0.78);

 iii. F1-score: On average, an F1-score of 0.76 ± 0.11, 
0.74 ± 0.26, and 0.91 ± 0.11 was found on the real 
test set, considering the standard, the statistical, 
and the deep learning approach, respectively. Fried-
man’s test followed by post-hoc analysis revealed 
significant differences between the standard and 
the deep learning approach (p < 0.0001, g = 1.36), 
and between the statistical and the deep learning 
approach (p < 0.0001, g = 0.85), while no difference 
was found between the standard and the statistical 
approach;

 iv. Jaccard similarity index: An average Jaccard index 
of 0.63 ± 0.15, 0.65 ± 0.27, and 0.85 ± 0.16 was 
computed from the real test set, considering the 
standard, the statistical, and the deep learning 
approach, respectively. Friedman’s test followed 
by post-hoc analysis revealed significant differ-
ences between the standard and the deep learn-
ing approach (p < 0.0001, g = 1.42), and between 
the statistical and the deep learning approach 
(p < 0.0001, g = 0.90), while no difference was found 
between the standard and the statistical approach;

 v. Onset/offset bias: The onset/offset bias averaged 
over the real test set for each tested muscle activ-
ity detector are represented in Table 2. Considering 
the onset bias, Friedman’s test followed by post-hoc 
analysis revealed significant differences between 
the standard and the statistical approach (p = 0.04, 
g = 0.48) and between the standard and the deep 
learning approach (p = 0.02, g = 0.57), while no dif-
ference was found between the statistical and the 
deep learning approach (p = 0.74). Considering the 
offset bias, statistically significant differences were 
tested between each pair of detectors (p < 0.0001, 
g > 0.21).

Considering the real test set, Fig.  4B compares the 
performance of the three detectors (standard, statisti-
cal, and deep learning approach) in terms of precision, 
recall, F1-score, and Jaccard similarity index. The aver-
age values and standard errors of these parameters are 
reported, as well as asterisks to highlight statistical dif-
ferences (p < 0.05) between each pair of detectors.

Additional details on the performance assessment con-
ducted considering real data can be found in the sup-
plementary material (see Additional file 1). In particular, 
data (accuracy, precision, recall, F1 score, and SNR) are 
reported, separately, for each subject of the sample popu-
lation (labeled as “healthy”, “THA”, or “NPH”) and each 

muscle analyzed (RF, LH, LGS, and TA). Bar diagrams 
comparing the three detectors are also provided consid-
ering separately sample populations (Additional file  1: 
Figure S1) and muscles (Additional file 1: Figure S2).

Discussion
Results presented in this work demonstrated that mus-
cle activity detection during gait can be successfully 
performed using the novel approach based on Long 
Short-Term Memory (LSTM) Recurrent Neural Net-
works (RNNs). The newly introduced LSTM-MAD 
was proven to outperform the tested state-of-the-art 
approaches and effectively separate activation intervals 
from background noise, with an overall classification 
accuracy of 97% (simulated data) and 90% (real data). 
More specifically, LSTM-MAD clearly exhibits better 
performance than both the alternative approaches tested 
(standard approach using the Teager-Keiser Energy 
Operator (TKEO) [29], and double-threshold statistical 
detector (Stat) [27]).

In the last decades, the extraction of the onset/off-
set timing of the muscular activity from sEMG signals 
has found a great interest in different research areas, 
including neurorobotics and myoelectric control of 
prostheses [3], motor rehabilitation and sport science 
[2], and human–machine interaction [4]. Accordingly, 
several approaches have been proposed in the literature 
to extract the onset and offset time-instants of muscle 
activations during human movements [12, 15–26]. The 
majority of the published detectors are threshold-based 
approaches, such as the single-threshold detector based 
on the Teager–Kaiser Energy Operator [29, 30] and the 
double-threshold statistical detector proposed by Bonato 
et al. [27]. However, these methods suffer from two main 
limitations: (i) the extraction of the onset/offset time 
instants rely on the extraction of time- and frequency-
domain features which may not be sufficient to properly 
assess dynamic muscle activity and (ii) their performance 
are strongly affected by the amount of noise superim-
posed to the sEMG signal. Even if different studies pro-
posing models able to efficiently work even at very low 
SNR of sEMG signals have been published in the last 
years [13, 31, 50], these methods still suffer from the first 
of the above-mentioned limitations (i.e., the necessity of 
a feature extraction step before muscle activation interval 
detection).

In the last years, Long Short-Term (LSTM) and Gated 
Recurrent Units (GRU) [17, 51–54] Recurrent Neural 
Networks (RNNs) have been proposed, in addition to the 
traditional approaches, to classify and recognize human 
movements starting from sEMG signals by exploiting 
the ability of these networks to recognize patterns and 
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time-dependencies in long sequential data. Even if GRU 
recurrent neural networks require less computational 
cost compared to the LSTM recurrent neural networks, 
several studies demonstrated that LSTM-RNNs out-
perform the GRU-RNNs [51–54]. The detection of the 
start and end time-instants of muscle activations during 
human movements can be considered itself a classifica-
tion problem, where each sample of the sEMG signals 
should be classified as active (presence of muscle activa-
tion) or non-active (absence of muscle activation). The 
application of LSTM (or GRU) neural networks to the 
muscle activation detection problem could result in bet-
ter performance compared to the previously published 
approaches by taking advantage of their ability to learn 
time dependencies in long sequential data (e.g., sEMG 
signals).

In this work, a novel approach, based on a LSTM-RNN 
model, for the detection of muscle activation intervals 
was presented and validated on both simulated and real 
sEMG signals to overcome the main limitations of the 
previously published approaches. The newly introduced 
muscle activity detector (LSTM-MAD) was proven to 
effectively separate activation intervals from background 
noise considering both simulated and real sEMG sig-
nals. The performance of the three tested approaches 
on the real sEMG signals was tested against a ground 
truth defined by three expert operators that visually 
segmented the real data through a custom MATLAB® 
GUI. Although it is acknowledged that the visual defini-
tion of the onset/offset timing is not optimal and highly 
subjective [12], to the best of the authors’ knowledge, it 
currently provides the only gold-standard procedure 
that allows for comparing the performance of different 
approaches considering real sEMG data. Moreover, sev-
eral studies demonstrated the inaccuracy of the visual 
onset/offset determination to be lower than ± 5–10  ms 
[55–58]. Our study confirmed this finding on the opera-
tors’ performance, highlighting the great potential of 
the proposed LSTM-MAD method. Indeed it allows 
for obtaing a performance comparable to that of expert 
operators, without the need for cumbersome and time-
consuming sessions of manual segmentation.

Considering simulated sEMG signals, all the per-
formance parameters introduced (precision, recall, 
F1-score, Jaccard similarity index, and onset/offset bias) 
showed remarkably better values for LSTM-MAD when 
compared to the Stat approach. Furthermore, greater val-
ues of recall, F1-score, and Jaccard similarity index were 
found for LSTM-MAD when compared to the TKEO 
detector, and only a slightly worst precision. However, 
while LSTM-MAD shows an excellent balance between 
precision and recall, the same cannot be said for the 
TKEO detector, which displays a very high precision 

(i.e., low number of false-positive classifications), but a 
very low recall (i.e., high number of false-negative clas-
sifications). In other words, the TKEO detector revealed 
a reduced probability of detection and an increased 
number of false-negative classifications compared to the 
deep learning approach. Indeed, this “optimal balance” 
between precision and recall is incorporated in the defi-
nition of the other two parameters (F1-score and Jaccard 
similarity index), which are broadly used in literature 
specifically to take into account this important aspect.

Considering real signals, all the performance param-
eters showed remarkably better values for LSTM-MAD 
compared to the TKEO detector. Furthermore, greater 
values of precision, F1-score, and Jaccard similarity index 
were found for LSTM-MAD when compared to the 
TKEO detector. Only the recall was higher in the TKEO 
detector compared to our approach. Again, it should be 
noted that LSTM-MAD is characterized by an excellent 
balance between precision and recall, while this is not 
true for the TKEO and Stat detectors. Indeed, the TKEO 
detector shows a very good recall to the detriment of very 
poor precision. The Stat detector, instead, showed a dif-
ferent behavior, revealing a very high Precision (similar to 
the one obtained considering the LSTM-MAD approach) 
to the detriment of a very poor recall. In other words, 
the Stat detector demonstrated a reduced probability of 
detection and an increased number of false-negative clas-
sifications compared to the LSTM-MAD approach.

Overall, LSTM-MAD revealed a smaller variability in 
the detector’s performance, especially compared to the 
TKEO approach. Although a thorough analysis of this 
aspect is beyond the scope of this work, this reduced 
variability can be qualitatively appreciated in Fig. 4, when 
comparing the small error bars obtained for LSTM-MAD 
compared to those obtained for TKEO.

The novel approach introduced in this work revealed 
increased robustness of the detector’s performance 
compared to the effect of the SNR, suggesting the appli-
cability of the LSTM-MAD to a wider range of noise con-
ditions compared to the other two tested approaches. 
Indeed, while it is evident that decreasing SNR inevitably 
diminishes the detection performance of each approach, 
LSTM-MAD is the least affected one (see Fig. 5). In par-
ticular, focusing on the parameters recall, F1-score, and 
Jaccard similarity index, we found a remarkable worsen-
ing of the performance of the Stat detector with decreas-
ing SNR. The situation is even more dramatic considering 
the TKEO detector. On the contrary, the LSTM-MAD 
detector shows a limited worsening of the performance 
with decreasing SNR. Indeed, even at very low SNR val-
ues (e.g., 3 or 6  dB), the performance of LSTM-MAD 
never degrades too much (recall is always greater than 
0.88, F1-score is always greater than 0.87, and Jaccard 
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similarity index is always greater than 0.78). For what 
concerns the parameter precision, none of the three 
detectors showed a drastic decrease of performance with 
decreasing SNR value. The analysis about how a poor 
SNR can eventually degrade detectors’ performance was 
carried out on simulated sEMG signals only. This was 
chosen to study the above-described phenomenon in a 
more controlled condition, i.e., to have a precise knowl-
edge (a priori) about the SNR itself (since sEMG signals 
were simulated at each specific SNR level). Indeed, con-
sidering real signals one would have needed to apply 
some additional algorithms to estimate the SNR value.

Another valuable attribute and distinctive qual-
ity of the LSTM-MAD approach is that it does not 
require any additional input parameters, such as the 
background-noise power, SNR, and signal energy or 
amplitude. Our algorithm directly works on “raw” 
sEMG signals, the only pre-processing step being the 
usual bandpass filtering (between 10 and 450  Hz) 
[40], applied in all three approaches, in the same man-
ner. On the contrary, the double-threshold statistical 
detector requires, as a necessary input parameter, the 
knowledge of the background-noise power and the 
SNR. The estimation of background-noise power and 
SNR is usually obtained by analyzing 30  s-windows 
of sEMG signal through dedicated algorithms, such 
as the one proposed by Agostini et  al. [28]. However, 
since LSTM-MAD does not require any additional 
input parameter (e.g., background-noise power or 
SNR), it is intrinsically more adaptable to eventual 
SNR variations arising during signal acquisition.

A further advantage of the proposed approach is that it 
allows for obtaining a more accurate and precise detec-
tion of the muscle activity timing in terms of onset and 
offset (absolute) bias compared to the other two tested 
threshold-based approaches. In particular, LSTM-MAD 
revealed an average estimated bias lower than 6 ms in the 
onset/offset of muscle activation intervals, on both sim-
ulated and real sEMG signals, suggesting the method’s 
applicability to both basic research and clinical practice 
[12, 27].

The detection of the muscle activation intervals dur-
ing human movements can also be strongly affected by 
the presence of spurious background spikes, in particu-
lar considering pathological conditions, such as a paretic 
forearm and hand [32–34]. However, due to the lack of 
availability in our database of sEMG signals acquired 
from stroke survivors or spinal cord injury patients 
(whose sEMG signals are often characterized by this 
kind of background noise), no specific analyses were per-
formed in this work on this aspect. Further studies could 
be focused on the assessment of the effect of the spuri-
ous background noise on the performance of the newly 

introduced muscle activity detector by analyzing its 
ability to distinguish between voluntary sEMG spurious 
spikes.

There are two main limitations in this study. The first 
one is the small sample size (20 subjects) of the real data-
set used to assess the applicability of the LSTM-based 
approach to gait analysis, while the second is that only 
sEMG signals acquired during walking were considered. 
However, a further step could be the application of this 
novel approach on sEMG signals acquired during move-
ments other than walking (e.g., non-cyclical movements) 
and from subjects with different musculoskeletal or 
neurological disorders (e.g., Parkinson’s disease or post-
stroke) to assess its applicability also in different patho-
logical conditions.

Conclusions
We proposed and validated, both on simulated and real 
sEMG signals, a Long Short-Term Memory approach for 
muscle activity detection. The presented approach clearly 
outperforms alternative detectors (the standard approach 
based on Teager–Kaiser Energy Operator (TKEO) and 
the double-threshold statistical detector (Stat)), reveal-
ing an onset/offset (absolute) bias smaller than 6  ms, 
and a good performance even for signals with low to 
medium SNR. The results of this work demonstrated 
that the proposed detector can be considered a valuable 
tool, suitable to all the applications requiring an accurate 
and effective recognition/distinction of muscle activ-
ity from background noise in sEMG signals, such as gait 
analysis, motor rehabilitation, and myoelectric control of 
prostheses.
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