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Abstract—This paper presents a new approach for the design
of a class-E resonant dc-dc converter. The small number of passive
components featured by the considered topology allows to exactly
solve the differential equations regulating the circuit evolution,
and to develop a semi-analytic design procedure based on the
differential equations solution. This represents an important
breakthrough with respect to the state-of-the-art, where class-E
circuit analysis is always based on strong simplifying assumptions,
and the exact circuit design is achieved by means of numerical
simulations after many time-consuming parametric sweeps.

I. INTRODUCTION

The need for high-efficiency dc-dc power converters op-
erating at increasing switching frequencies (up to the VHF
range, 30–300 MHz), with better transient performance and
bandwidth, and allowing the use of fully integrated air-core
magnetics (with remarkable benefits in terms of both size and
cost), leads to the design of new architectures aiming at the
minimization of the switching losses [1].

In this paper we focus on class-E resonant power converters
[2], [3], [4], [5]. These circuits exploit the so called soft-
switching technique in order to reduce the switching losses.
Conversely from classic (class-D) switching converters, char-
acterized by rectangular waveforms, class-E converters embed
a resonant circuit that, roughly speaking, shapes the drain-to-
source voltage VDS and the drain current IDS of the MOS
switch with a sinusoidal-like form, synchronizing the zero-
crossing instants of VDS and IDS with the turn-on instant of
the MOS switch. These approaches are known, respectively,
as zero-voltage switching (ZVS) and zero-current switching
(ZCS), and they are used to reduce the voltage-current product
of the MOS at the switching instants, thus lowering (ideally,
down to zero) the energy-loss-per-cycle, reducing the device
stress and relaxing the constraints on the switch turn-on and
turn-off response times. In other words, these approaches allow
the desired increase in the switching frequency.

However, the design of a class-E converter is not a trivial
task. In fact, the state-of-the-art methodology is based on the
simplifying assumption that the circuit can be conveniently
separated into a class-E inverter [6], followed by a class-
E rectifier [7]. Then, assuming to address the connection
between the inverter and rectifier sections by means of a
high-Q low-pass LC network, the rectifier can be designed
by considering the inverter as a sinusoidal voltage source
and the inverter is designed by replacing the rectifier with
its equivalent input impedance. In this way one can split the
whole converter design into two simplified procedures, but
at the cost of accuracy. To achieve the desired behavior, the
obtained design is usually refined by means of additional time-
consuming transient simulations and extensive sweeps across
circuit parameters.

+

−Vin
Vout

n1: n2

VCi
(t) VCr

(t)

ILi
(t) ILr

(t)

Ci Cr

Lrec

CL RL
IDS(t)

D

S

(a)

+

−Vin Vout

VCi
(t) VCr

(t)
IDS(t)

ILr
(t)

Ci Cr

Lr

CL RL

Li

Lx

S

D

(b)

Fig. 1. (a) Schematic of the proposed isolated class-E resonant dc-dc
converter; (b) Equivalent circuit of the converter referred to the primary side.

The purpose of this work is to present a new semi-analytic
design methodology for the particular class-E dc-dc power
converter topology of Fig. 1. Given the low part-count of the
considered architecture, the differential equations regulating
the circuit behavior can be studied and analytically solved for
all possible circuit configurations, i.e., all possible sequences
of states in which active devices (transistor and diode) can
be found. Then, the converter evolution can be appropriately
written as a piece-wise combination of the achieved solutions.
Finally, given the exact analytic expression for the converter
evolution, it is possible to numerically find the parameters
values (in particular of circuit passive elements) ensuring both
the requested ZVS/ZCS operating conditions and the desired
specifications such as output voltage, switching frequency, etc.,
without the need of any additional parameter trimming.

The paper is organized as follows. Section II includes the
description of the considered converter topology. Section III
delineates how to compute the exact analytic expression of the
circuit evolution, while in Section IV we exploit this expression
for circuit design purposes with an example of a 30 MHz
resonant converter. Finally, we draw the conclusion.

II. CLASS-E CONVERTER TOPOLOGY

The circuit we consider in this paper is the class-E resonant
converter depicted in Fig. 1, either in its isolated or non-
isolated configuration as, respectively, in Fig. 1(a) and 1(b). For
the sake of simplicity, but without loss of generality, we focus
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Fig. 2. Class-E converter voltage waveforms with angular time line division
based on switching devices ON/OFF state.

on the circuit of Fig. 1(b), keeping in mind that this circuit
topology is perfectly equivalent to the isolated one when the
transformer is replaced by an equivalent “T” inductor network
and when all the elements connected to the secondary side
are replaced with the equivalent ones referred to the primary
side. Here the inductance Li represents the leakage part of
transformer primary inductance, that can be expressed as Li =
1−k
k Lx where k is the well known coupling coefficient, and
Lr is the equivalent of two actual inductances, the secondary
windings leakage one and the rectifying inductance Lrec of
Fig. 1(a).

The key feature of this topology is the minimal reactive
components (i.e., capacitors and inductors) count. In fact,
the main differences between the converter of Fig. 1 and
conventional ones is the absence of the usually employed RF
choke inductor at the converter input [3] and of any kind
of additional filtering/matching network between inverter and
rectifier [1], [3], [5]. This has a twofold advantage. First, it
makes this solution very appealing for high power density
circuits or when the aim is circuit integration. Furthermore, it
allows us, as detailed in the following sections, to develop an
exact and semi-analytic procedure to achieve the proper design
of reactive elements that ensure low-loss (i.e., ZVS and ZCS)
operation.

Note that the purpose of this work is limited to define
a procedure for the converter power section design. The
employment of either a self-resonant gate driver network to
reduce the so-called gating loss, or a proper feedback control
circuitry to cope, for example, with a variable load RL, will
not be discussed.

III. DIFFERENTIAL EQUATION ANALYSIS

In this section, we provide a piecewise analytical de-
scription of the circuit behavior based on the exact solution
of differential equations. This approach, despite commonly
adopted in other application fields, has never been applied to
resonant converters, being always considered a cumbersome
and unfruitful task [8].

The first assumption we make is that all components
are ideal, i.e., that active semiconductor devices are ideal
switches with zero ON-resistance and infinite OFF-resistance
and reactive elements have an indefinitely high Q factor. As
additional hypothesis, we assume that the capacitor CL is large
enough to keep the voltage Vout constant, thus allowing to
replace the RL−CL network with an ideal dc voltage source.
The only non-ideality we consider is that the diode has a
forward voltage drop equal to VDON.

By modeling the active devices as ideal switches, one
can distinguish four different configurations for the overall
circuit, depending on the MOS and diode ON/OFF state. These
configurations, referred to as zones, are actually four different
linear systems that can be studied with the four state variables
given by the voltage signals VCi

and VCr
across Ci and Cr

and the currents ILi
and ILr

flowing through Li and Lr.
These signals are also highlighted in Fig. 1(b). The differential
equations for all configurations can be achieved by considering
the Kirchhoff Voltage Laws (KVLs) around both inverter and
rectifier closed loops as follows:




ω (Li + Lx)
dILi

(ωt)

dωt
+ ωLx

dILr
(ωt)

dωt
+ VCi

(ωt)− Vin = 0

ωLx
dILi

(ωt)

dωt
+ ω (Lr + Lx)

dILr
(ωt)

dωt
+ VCr

(ωt)− Vout = 0

(1)
where ωt = 2πfs t (fs is the switching frequency). Further-
more, while the MOS switch is ON, the node connecting the
drain terminal with the capacitor Ci is shorted to ground

VCi(ωt) = 0 (2)

while, during the MOS OFF-state period, we have

ILi
(ωt) = ωCi

dVCi
(ωt)

dωt
(3)

When the rectifying diode is ON, the voltage VCr is fixed by
the diode forward drop

VCr(ωt) = −VDON (4)

while, when the diode is OFF, the following relation holds

ILr
(ωt) = ωCr

dVCr
(ωt)

dωt
(5)

The evolution of each zone is regulated by a different set of
equations taken among (1), (2), (3), (4) and (5).

Then, the behavior of the overall converter can be achieved
by combining the evolution of the four zone in the order in
which, once the steady state is achieved, every zone follows
each other. Despite the fact that this order is not known a
priori since the diode is a non-controlled switch, we limit
ourselves to consider the most commonly observed one that
corresponds to the sequence depicted in Fig. 2. The horizontal
axis, representing the angular time ωt, is divided into the four
zones

Zj = {ωt | θj ≤ ωt < θj+1} j = 1, 2, 3, 4

with θ1 = 0 and θ5 = 2π, while the vertical axis shows the
typical VCi

and VCr
waveforms.

Then, referring to the state variables in each zone with the
notation below





I
(j)
Li

(ωt) = ILi
(ωt) : ωt ∈ Zj

I
(j)
Lr

(ωt) = ILr(ωt) : ωt ∈ Zj
V

(j)
Ci

(ωt) = VCi
(ωt) : ωt ∈ Zj

V
(j)

Cr
(ωt) = VCr

(ωt) : ωt ∈ Zj

the converter evolution is obtained as follows.
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For ωt ∈ Z1 equations (1), (3) and (4) hold, giving rise to
the third order system




ω2Ci (Li + Lx)
d2V

(1)
Ci

(ωt)

d(ωt)2
+ ωLx

dI
(1)
Lr

(ωt)

dωt
+ V

(1)
Ci

(ωt)− Vin = 0

ω2CiLx

d2V
(1)

Ci
(ωt)

d(ωt)2
+ ω(Lr + Lx)

dI
(1)
Lr

(ωt)

dωt
− VDON − Vout = 0

(6)
subject to the initial conditions





V
(1)

Ci
(0) = 0

dV
(1)

Ci
(ωt)

dωt

∣∣∣∣
ωt=0

=
I

(1)
Li

(0)

ωCi
=

I 0
Li

ωCi

I
(1)
Lr

(0) = I 0
Lr

(7)

where I 0
Li

and I 0
Lr

are unknowns to be determined. The
equations (6) can be easily decoupled by substitution into the
following second and first order differential equations:

ω2Ci

(
Li + Lx −

Lx
2

Lr + Lx

)
d2V

(1)
Ci

(ωt)

d(ωt)2
+ V

(1)
Ci

(ωt)− Vin +
Lx

Lr + Lx

(
VD

ON + Vout
)
= 0

(8)
dI

(1)
Lr

(ωt)

dωt
=

1

ω(Lr + Lx)

(
−ω2CiLx

d2V
(1)

Ci
(ωt)

d(ωt)2
+ VD

ON + Vout

)

(9)
The generic solution for (8) is

V
(1)

Ci
(ωt) = c11 cos (β1 ωt) + c12 sin (β1 ωt) + k11 (10)

where β1 =
√

Lr+Lx

ω2Ci(LiLx+LrLx+LiLr)
is obtained by solving

the associated homogeneous characteristic equation, k11 =
(Lr+Lx)Vin−Lx(VD

ON+Vout)
Lr+Lx

and c11, c12 are coefficients that
depend on the initial conditions (7). At this point, a solution
for (9) can be easily obtained as

I
(1)
Lr

(ωt) = I 0
Lr

+ k12β1 (c11 sin (β1ωt)− c12 cos (β1ωt)) + k13ωt (11)

where k12 = ωCiLx

Lr+Lx
, and k13 = VD

ON+Vout

ω(Lr+Lx)
.

At ωt = θ2 the rectifier current falls down to zero, the diode
turns-off and Z2 starts. The value of θ2 can be (numerically)
computed from (11) by solving I

(1)
Lr

(θ2) = 0 under the
constraint 0 < θ2 < θ3, while the evolution of the zone is
regulated by (1), (3) and (5), constituting the fourth order
system of differential equations





ω2Ci (Li + Lx)
d2V

(2)
Ci

(ωt)

d(ωt)2
+ ω2CiLx

d2V
(2)

Cr
(ωt)

d(ωt)2
+ V

(2)
Ci

(ωt)− Vin = 0

ω2CiLx

d2V
(2)

Ci
(ωt)

d(ωt)2
+ ω2Cr(Lr + Lx)

d2V
(2)

Cr
(ωt)

d(ωt)2
+ V

(2)
Cr

(ωt)− Vout = 0

(12)
subject to the initial conditions





V
(2)

Ci
(θ2) = V

(1)
Ci

(θ2)

V
(2)

Cr
(θ2) = −VDON

dV
(2)

Ci
(ωt)

dωt

∣∣∣∣
ωt=θ2

=
I

(2)
Li

(θ2)

ωCi
=
I

(1)
Li

(θ2)

ωCi

dV
(2)

Cr
(ωt)

dωt

∣∣∣∣
ωt=θ2

=
I

(2)
Lr

(θ2)

ωCr
=
I

(1)
Lr

(θ2)

ωCr

(13)

By defining V(2)(ωt) = {V (2)
Ci

(ωt), V
(2)

Cr
(ωt)}ᵀ, and consid-

ering the equivalent matrix form for (12)

M
d2V(2)(ωt)

d(ωt)2
= K ·V(2)(ωt) + k2

with M,K ∈ R2×2, and k2 ∈ R2, one can write the system
solution as

V(2)(ωt) =
2∑

j=1

(
aj cos (β2,j(ωt− θ2)) +

bj
β2,j

sin (β2,j(ωt− θ2))
)
wj + k2

with β2,j =
√
−λj , j = 1, 2 , {λj ,wj} representing the

eigenpairs of the matrix M−1 · K, and aj , bj coefficients
depending on the initial conditions (13).

The zone Z3 begins at ωt = θ3, when the MOS switch is
externally turned-on. The evolution is regulated by the third
order system given by (1), (2) and (5):




ω(Li + Lx)
dI

(3)
Li

(ωt)

dωt
+ ω2CrLx

d2V
(3)

Cr
(ωt)

d(ωt)2
− Vin = 0

ωLx

dI
(3)
Li

(ωt)

dωt
+ ω2Cr (Lr + Lx)

d2V
(3)

Cr
(ωt)

d(ωt)2
+ V

(3)
Cr

(ωt)− Vout = 0

subject to the initial conditions




V
(3)

Cr
(θ3) = V

(2)
Cr

(θ3)

dV
(3)

Cr
(ωt)

dωt

∣∣∣∣
ωt=θ3

=
I

(3)
Lr

(θ3)

ωCr
=
I

(2)
Lr

(θ3)

ωCr

I
(3)
Li

(θ3) = I
(2)
Li

(θ3)

(14)

The solutions can be easily achieved from (10) and (11) due
to the circuit symmetry
{
V

(3)
Cr

(ωt) = c31 cos (β3(ωt− θ3)) + c32 sin (β3(ωt− θ3)) + k31

I
(3)
Li

(ωt) = ILi(θ3) + k32β3 (c31 sin (β3(ωt− θ3))− c32 cos (β3(ωt− θ3))) + k33ωt

with β3 =
√

Li+Lx

ω2Cr(LiLx+LrLx+LiLr)
, k31 =

(Li+Lx)Vout−LxVin

Li+Lx
, k32 = ωCrLx

Li+Lx
, k33 = Vin

ω(Li+Lx)
, and

c31, c32 depending on the initial conditions (14).

Finally, Z4, where both switching devices are ON, begins
at ωt = θ4 when the forward voltage of the diode reaches
the threshold VD

ON. The value of θ4 can be computed by
solving V (3)

Cr
(θ4) = −VDON, with θ3 < θ4 < 2π. The circuit

evolution is given by (1), (2) and (4), that can be reduced to
the second order system




ω (Li + Lx)
dI

(4)
Li

(ωt)

dωt
+ ωLx

dI
(4)
Lr

(ωt)

dωt
− Vin = 0

ωLx

dI
(4)
Li

(ωt)

dωt
+ ω (Lr + Lx)

dI
(4)
Lr

(ωt)

dωt
− VDON − Vout = 0

subject to the initial conditions
{
I

(4)
Li

(θ4) = I
(3)
Li

(θ4)

I
(4)
Lr

(θ4) = I
(3)
Lr

(θ4)

The solution is made of two straight line waveforms
{
I

(4)
Li

(ωt) = I
(4)
Li

(θ4) + k41(ωt− θ4)
I

(4)
Lr

(ωt) = I
(4)
Lr

(θ4) + k42(ωt− θ4)
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with angular coefficients k41 = Vin

ω(Li+Lx)
−

Lx

ω(LiLx+LrLx+LiLr)

(
V ON
D + Vout − Lx

Li+Lx
Vin

)
,

k42 = Li+Lx

ω(LiLx+LrLx+LiLr)

(
V ON
D + Vout − Lx

Li+Lx
Vin

)
.

The zone Z4 ends at ωt = 2π when the MOS switch is
turned-off and the described behavior is repeated periodically.

The above procedure allows us to get exact expressions for
all voltage and current signals of the converter. Interestingly,
the achieved expressions depend only on twelve parameters,
i.e., the initial conditions ic =

{
I 0
Li
, I 0
Lr

}
, the converter

specifications r =
{
Vin, Vout, VD

ON, ω, θ3
}

and the values of
the reactive elements x = {Ci, Cr, Li, Lx, Lr}.

IV. DESIGN METHODOLOGY

The target of the design procedure is to find the complete
set of design parameters that, once steady state is achieved,
satisfies the ZVS, ZCS and output power operating conditions.
Thanks to the piecewise mathematical model provided in the
last section we can formalize the aforementioned operating
constraints with the following system of non-linear equations





I
(4)
Li

(2π)− I 0
Li

= 0 (15a)

I
(4)
Lr

(2π)− I 0
Lr

= 0 (15b)

V
(2)

Ci
(θ3) = 0 (15c)

I
(2)
Li

(θ3) = 0 (15d)

Pout +
Vout
2π

(∫ θ2

0

I
(1)
Lr

(ωt) dωt+

∫ 2π

θ4

I
(4)
Lr

(ωt) dωt

)
= 0 (15e)

Equations (15a) and (15b) ensure steady state operation,
achieved when the values of the current signals at ωt = 2π
match ic (note that a similar condition for the voltage signals
is implicitly satisfied). Optimum class-E operation is accom-
plished assuring (15c) and (15d) at the end of Z2, that represent
respectively ZVS and ZCS. Lastly, (15e) is the constraint
on the output power at full load, that can be computed by
integrating the output current −ILr(ωt) over a period. Note
that, since in Z2 and Z3 this current is flowing through the
capacitor Cr, that is assumed ideal, we do not have any
contribution to the output power in these zones, and only Z1

and Z4, when the current is flowing through the diode, have
to be considered.

To exemplify our procedure, let us consider the design of a
5W output power converter based on the schematic of Fig. 1(a)
with fs = 30MHz and featuring a 1:1 coupling transformer.
Let us assume that r is completely specified with Vin = 3.3V ,
Vout = 5V , VDON = 0.7V , ω = 2πfs = 188.5 × 106 rad/s,
θ3 = π rad (i.e. 50% duty cycle). There are seven design
parameters to be determined, given by ic and x, and only five
constraints according to (15). This means that, among ic and
x, five parameters are constrained while two are actually free
design parameters to be set by the designer. In our example,
the value of Li is linked, as explained in Section II, to the
value of Lx by means of the coupling coefficient k, that is
assumed k = 0.95. The last degree of freedom is exploited
setting Lr = Lx. With the above defined specifications, we are
able to solve (15) with Wolfram Mathematica software, leading
to Ci = 1.61 nF, Cr = 899 pF, Lx = 19.25 nH, I 0

Li
= 4.44A,

I 0
Lr

= −2.14A and the diode turn-off and turn-on instants
θ2 = 0.98 rad, θ4 = 4.45 rad. The resulting voltage and
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Fig. 3. Class-E converter waveforms obtained following the proposed analysis
and design methodology.

current waveforms, according to the developed mathematical
model, are depicted in Fig. 3. As clearly observable, both the
steady state and ZVS/ZCS conditions are perfectly achieved.

V. CONCLUSION

This paper presents an accurate design methodology based
on a differential-equation analysis for a class-E resonant dc-
dc power converter topology. The small number of passive
elements allows to develop a semi-analytical design procedure,
that, unlike previous design methods, is not based on any
kind of approximation and permits to get the whole circuit
design without requiring time-extensive parametric sweeps
across circuit parameters. A design example is provided to
show both the simpleness and the effectiveness of the proposed
approach.
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