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Abstract

In confirmatory cancer clinical trials, overall survival (OS) is normally a primary endpoint in

the intention-to-treat (ITT) analysis under regulatory standards. After the tumor progresses,

it is common that patients allocated to the control group switch to the experimental treat-

ment, or another drug in the same class. Such treatment switching may dilute the relative

efficacy of the new drug compared to the control group, leading to lower statistical power. It

would be possible to decrease the estimation bias by shortening the follow-up period but

this may lead to a loss of information and power. Instead we propose a modified weighted

log-rank test (mWLR) that aims at balancing these factors by down-weighting events occur-

ring when many patients have switched treatment. As the weighting should be pre-specified

and the impact of treatment switching is unknown, we predict the hazard ratio function and

use it to compute the weights of the mWLR. The method may incorporate information from

previous trials regarding the potential hazard ratio function over time. We are motivated by

the RECORD-1 trial of everolimus against placebo in patients with metastatic renal-cell car-

cinoma where almost 80% of the patients in the placebo group received everolimus after

disease progression. Extensive simulations show that the new test gives considerably

higher efficiency than the standard log-rank test in realistic scenarios.

1 Introduction

Research in oncology has been increasing over the past years. This can be seen for example by

an increased proportion of cancer trials registered at clinicaltrials.gov. In years

2007–2010, trials in oncology comprised 21.6% [1] while in 2017 the number rose to almost

35% of all registered trials [2]. In December 2018 the Food and Drug Administration (FDA) in

the US updated their guidance “Clinical Trial Endpoints for the Approval of Cancer Drugs

and Biologics” [3] with recommendations on the choice of appropriate endpoints when per-

forming clinical trials in oncology. Overall survival (OS) is considered by regulatory authori-

ties as the most relevant and reliable clinical endpoint. However, it usually requires a long

follow-up which could delay approval of a beneficial treatment. It is therefore common to use

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259178 November 15, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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a surrogate endpoint that is a good predictor of OS. One endpoint that is frequently used in tri-

als and allows for accelerated approval is progression-free survival (PFS). In some situations,

PFS might be enough to obtain traditional regulatory approval [4–7]. Carneiro et al. [8] pub-

lished an overview of accelerated and traditional regulatory approvals in oncology. However,

in most cases, the traditional approval can only be obtained after showing efficacy also on OS

and the accelerated approval might be withdrawn if the due diligence is not demonstrated [3].

For ethical reasons, a patient may switch treatment after disease progression. Such switch-

ing will not have an impact on PFS, but it may have a high impact on OS. Patient crossover

might result in a diluted effect on OS, decreasing the power of the study. See for example the

RECORD-1 trial [9] presented in Section 2. Even in the presence of patient crossover, it is pre-

ferred by the regulatory authorities to perform an intention-to-treat (ITT) analysis [10] where

treatment groups are compared as originally randomized. Using ITT as the primary analysis

has been criticized as it tends to underestimate the true treatment effect [10]. On the other

hand, ITT analysis is robust in the sense that it is unlikely that any bias would inflate the type-I

error rate.

It may be a clinically relevant question to estimate the efficacy that would have been

observed if no patients had switched in the study. Alternative approaches have been proposed

in the literature to address the issues of estimating the hazard ratio in the presence of treatment

switching. These methods focus on the issues of estimation and bias mainly in the context of

Health Technology Assessments (HTAs). They include the use of a per protocol analysis that

either censors patients at the time of switching, or removes them from the analysis set [10–12],

which can result in a selection bias. More complex methods include inverse probability of cen-

soring weighting (IPCW) [13], rank-preserving structural failure time (RPSFT) model [14]

and two-stage adjustments [15, 16] that were further simplified [17, 18]. Advantages and dis-

advantages of all methods have been discussed by researchers and regulatory authorities [10–

12, 19, 20]. These methods have proven to have a smaller bias than simply using the ITT

method under some circumstances [17]. Latimer et al. [18] showed that RPSFT model, IPCW

and two-stage adjustment are likely to provide good approximations of the true treatment

effect as long as the proportion of patients switching treatments is moderate. However, EMA

[12] points out that “RPSFT models will typically not change the p-value, and while IPCW and

‘two-stage’ methods might, confidence intervals for all three methods tend to be wide”, mean-

ing that while estimates of hazard ratio might be less biased, the power of the trial will not be

increased. Furthermore, it is stressed that underlying assumptions of these methods cannot be

proven to be true [12]. As noted above, it is still generally required to base the primary analysis

on the ITT set of patients and use the alternative methods as complements to ITT [12, 17, 18].

EMA [12] stresses that “due to the uncertainties involved in the methods (. . .), such estima-

tions should, at present, be used primarily as supportive or sensitivity analyses”.

Lately, non-proportional hazards have been receiving a lot of attention since immuno-

oncology agents present what is known as a delayed treatment effect, which violates the pro-

portional hazard assumption [21]. In this case, a common model assumes lack of treatment

differences at the beginning of the trial (i.e., the hazard ratio is equal to 1) and treatment differ-

ences after some unknown time point (i.e., the hazard ratio is no longer equal to 1). Alterna-

tively, and perhaps more realistically, one may assume that the relative treatment efficacy is

gradually increasing over time. Methods addressing the problem of power loss in that context

include the restricted mean survival time (RMST) [22], landmark analysis [23], accelerated

failure time model [24], weighted Kaplan-Meier statistics [25], weighted log-rank tests (e.g.

with Fleming and Harrington class of weights [26]), Max Combo test (taking the maximum

value of a set of different weighted log rank tests) [27] and the “modestly weighted log-rank

test” [28]. Another approach could be to simply increase the sample size in the trial accounting
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for the delayed effect, but this will be inefficient and in many situations infeasible, considerably

increasing the cost and length of the study.

It is well know that under proportional hazards, the log-rank test (LR) is optimal among all

tests based on the order of events (and censoring) [29, 30]. In the presence of delayed efficacy,

though, the weighted log-rank test shows superiority over the LR test in situations where the

experimental arm is in fact better than the control. The test assigns a small weight at an early

time in the study, where no differences are expected, and a larger weight for later time points,

where survival curves are expected to separate. However, it was shown by Magirr and Burman

[28] that the weighted log-rank test (WLR) does not control the type-I error rate under some

scenarios when the experimental arm performs worse than the control. Treatment switching

induces non-proportional hazards, where the hazard ratio increases towards the end of the

trial and dilutes power. Hence, a WLR test with decreasing weights can then be used to

increase power [31].

The focus of this article is on non-proportional hazards induced by treatment switching.

However, we encourage interested readers to see [32–37] for interesting discussions and meth-

ods tailored for other sources of non-proportional hazards (i.e., crossing hazards or delayed

effects).

In this manuscript we propose a modified weighted log-rank (mWLR) test where the down-

weighting depends on how much treatment switching is expected in a setting where patients

from the control arm are allowed to switch treatment after disease progression. The article is

divided into the following sections. In Section 2 we introduce a motivating example based on

the RECORD-1 trial. Section 3 presents the proposed mWLR test. In Section 4 we present the

simulation set-up we use to test the proposed mWLR test. In Section 5, we provide the results

of the simulations where the mWLR test is compared with LR and other alternative tests. In

Section 6 we discuss the main conclusions, the weaknesses and strengths of our proposal as

well as further research.

2 Motivating example: The RECORD-1 trial

In this section we introduce a case study. It will be used as a realistic scenario in which we can

test the performance of our proposal and compare it with other methods. It is, however, not

within the scope of this article to re-analyze or make new clinical interpretations of the data.

RECORD-1 was a phase III trial that examined the impact of everolimus (Afinitor; Novartis

Pharmaceuticals Corporation, East Hanover, NJ) on the primary endpoint of PFS, and the sec-

ondary endpoints of OS and safety in metastatic renal-cell carcinoma (mRCC) patients, after

treatment failure on sunitinib or sorafenib. It was a double-blind, multicenter study with

patients randomized to receive either everolimus (n = 277) or placebo (n = 139) in a 2:1 ratio.

Further details of the study design as well as main results have been presented in Escudier et al.

[9] and Korhonen et al. [38].

One important aspect of the trial is that placebo patients had the opportunity to receive

everolimus after disease progression, since existing literature already supported the antitumor

activity of everolimus and another mTOR inhibitor temsirolimus in this indication [39, 40].

The study design therefore allowed for crossover to open-label everolimus following progres-

sion for patients randomized to placebo. In fact, 106/139 placebo patients did switch to open-

label everolimus after disease progression. Furthermore, when the study was unblinded on

February 28, 2008, a planned interim analysis showed significant superiority of everolimus

over placebo on the primary endpoint PFS (hazard ratio (HR) 0.33; 95% confidence interval

(CI) 0.25–0.43; LR test p-value< 0.001). After this time, five of the remaining six patients still

receiving placebo switched to open-label everolimus, yielding a total of 111/139 placebo
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patients that switched to everolimus. Patients were further followed up for survival until

November 15, 2008. The ITT analysis of OS at this cut-off date yielded a HR of 0.87, which was

in favor of everolimus, although it was not statistically significant (95% CI 0.65–1.15; one-

sided p-value = 0.162). What makes this case study interesting in our context is that the OS

results may have been biased due to the large extent of treatment switching.

In Fig 1A, we present the OS curves from the ITT analysis, in Fig 1B the OS curves with

only switchers in the placebo arm, and in Fig 1C the OS curves with only non-switchers in the

placebo arm. Without assumptions, the median OS for the placebo group cannot be directly

estimated from the plots although they provide an insight of what impact the treatment switch-

ing could have had on OS in this trial. The median was in fact estimated using the rank-pre-

serving structural failure time (RPSFT) model [38] and the crossover-adjusted median OS

estimate was then close to 10 months.

3 Methods

3.1 The log-rank (LR) test

Let S(t) be the probability of survival at time t� 0 and be defined by S(t) = 1 − F(t), where F(t)
is a differentiable cumulative distribution function. Let f(t) be the corresponding probability

density function. The hazard function can then be defined as h(t) = f(t)/S(t) = −S0(t)/S(t).
Assume now that we have a clinical trial with a control arm and an experimental arm. The

corresponding survival and hazard functions are S0(t) and S1(t), and h0(t) and h1(t), respec-

tively. We test the following (one-sided) hypothesis:

H0 : S0ðtÞ ¼ S1ðtÞ 8 t vs: H1 : S0ðtÞ < S1ðtÞ 9 t; ð1Þ

to see if we have an effect on the experimental treatment arm. In clinical trials it is common

practice to use the hazard ratio (i.e., the ratio between the hazard functions of each treatment)

to quantify treatment differences. The hazard ratio function is defined as η(t) = h1(t)/h0(t).
To test this hypothesis we may use the LR test. Let t1 < � � �< tk be the k distinct, ordered

event times. The number of patients at risk at time tj is denoted by ni,j with nj≔ n0,j + n1,j. Let

Fig 1. Kaplan-Meier curves from the ITT analysis including all patients (image A), with only treatment switchers in the placebo arm (image B),

and with only non-switchers in the placebo arm (image C). Sample size in the placebo arm is equal to 139, 111 and 28 patients in plots A, B and C,

respectively. Sample size in the Everolimus arm is equal to 277 patients in all plots.

https://doi.org/10.1371/journal.pone.0259178.g001
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di,j denote the number of events on arm i at time tj with dj≔ d0,j + d1,j. The LR test statistic is

then defined as

ULR ¼
Xk

j¼1

d0;j � dj

n0;j

nj

 !

; ð2Þ

where the expression inside the sum describes the difference in actual and under H0 expected

number of events on the control arm at each distinct time. Under the null hypothesis, we

would have E[ULR] = 0. The variance of ULR is given by Brown [41] as

VðULRÞ ¼
Xk

j¼1

n0;jn1;jdjðnj � djÞ

n2
j ðnj � 1Þ

 !

: ð3Þ

For large sample sizes the test statistic ZLR ¼ ULR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðULRÞ

p
is normally distributed with mean

0 and variance 1 under the null hypothesis, by the central limit theorem. For a model with pro-

portional hazards, meaning η(t) = c, where c> 0 is any constant, this unweighted LR test is

optimal (see Schoenfeld [30]) and power will increase with sample size. However, this is not

the case under the presence of treatment switching.

In Fig 2 we present a simple example that shows how the power behaves depending on the

number of events both under the proportional hazards model and under the presence of treat-

ment switching. More information about how the model is set up will be described in Section

3.3. Under proportional hazards we see that, using the LR test, the power increases with the

Fig 2. Power with the log-rank (LR) for different total number of events under two different models: The proportional hazards

model and the exponential progression switching model presented in Section 3.3 where patients switch treatment after disease

progression with probability p.

https://doi.org/10.1371/journal.pone.0259178.g002
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number of events. However under treatment switching, using the LR test, we see that the

power increases up to a point, and then decreases.

3.2 Weighted log-rank (WLR) tests

Under the presence of treatment switching and following non-proportional hazards, the stan-

dard LR test is suboptimal. An alternative is the WLR test, defined as

UWLR ¼
Xk

j¼1

wj d0;j � dj

n0;j

nj

 !

; ð4Þ

with variance

VðUWLRÞ ¼
Xk

j¼1

w2

j

n0;jn1;jdjðnj � djÞ

n2
j ðnj � 1Þ

 !

: ð5Þ

The test statistic is defined as ZWLR ¼ UWLR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUWLRÞ

p
� Nð0; 1Þ under the null hypothesis

[26]. By setting the weights wj = 1 (or any constant) we will get the standard (and unweighted)

LR test.

Under the presence of treatment switching one expects a higher treatment effect in the

beginning of the study that will decrease as the study progresses. Intuitively, by down-weight-

ing late events, where treatment switching is expected to be high, we would achieve higher

power than the standard LR test. For instance, the well known Fleming and Harrington class

of weights [26] have been receiving a lot of attention over the last years, in particular with the

development of immuno-therapy (see e.g., Jiménez et al. [42]), since they allow to down-

weight early or late event using the estimated pooled survival function ŜðtÞ.

3.3 A modified weighted log-rank (mWLR) test based on exponential

progression switching

In this section, we develop a mWLR test that is tailored to a situation with considerable treat-

ment switching. Under the assumption that we know the true hazard rate function, the optimal

LR weights would be

wj ¼ � logðZjÞ; ð6Þ

where ηj represents the hazard ratio at time tj.
In a regulatory setting the hypothesis test has to be pre-specified, therefore we propose to

derive a hazard ratio model based on relevant clinical parameters and, through Eq (6), obtain a

pre-specified weight function.

For simplicity, we assume exponential distributions for both progression and death. Let OS

for patients receiving the control and experimental treatment be defined respectively as

SOS
0
ðtÞ ¼ expð� lOS

0
� tÞ;

SOS
1
ðtÞ ¼ expð� lOS

1
� tÞ:

ð7Þ

A PFS event is defined as either a disease progression or a death. We use independent expo-

nential distributions for these two components of the PFS event and define time to PFS as the

minimum of time to progression or death. Our model does not depend on progression in the

experimental group, as it is not affected by treatment switching, but we assume that time to
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progression in the control group has survival functions

SP
0
ðtÞ ¼ expð� lP

0
� tÞ: ð8Þ

As the competing progression and death risks are assumed to be independent and constant,

the probability r that a patient in the control group has a progression before dying is

r ¼
l
P
0

l
P
0
þ l

OS
0

: ð9Þ

The total PFS hazard is the sum of the component hazards, hence

l
PFS
0
¼ l

P
0
þ l

OS
0
: ð10Þ

For the RECORD-1 trial, as for most other oncology phase III trials, the medians mPFS
i and

mOS
i for PFS and OS respectively, are provided in the main publication [9]. We have that

l
OS
0
¼ logð2Þ=mOS

0
; ð11Þ

and

l
P
0
¼ l

PFS
0
� l

OS
0
¼ logð2Þ=mPFS

0
� logð2Þ=mOS

0
: ð12Þ

Therefore if l
P
0
¼ logð2Þ=mP

0
, it follows that

mP
0
¼

mPFS
0
�mOS

0

mOS
0 � mPFS

0

: ð13Þ

Directly following a progression, patients in the control group are assumed to switch to

experimental treatment with probability p. Thus, the total probability that a control arm

patients will switch treatment before dying is defined as

q ¼ PðprogressionÞ � Pðpatient switches treatment j progressionÞ ¼ r � p

¼ 1 �
mPFS

0

mOS
0

� �

� p:
ð14Þ

Note that this is the probability of the patient progressing and switching at some time point.

Progressions occurring after censoring will not be observed in a trial. Thus, the proportion of

patients switching treatment before a trial ends will often be somewhat less than q.

Given the characteristics of the RECORD-1 trial discussed in Section 2, a patient switching

from control to experimental treatment is assumed to switch OS hazard from l
OS
0

to l
OS
1

. This

completes the model assumptions and we can now derive the hazard ratio function to obtain

the proposed weights. The rationale of the model assumptions as well as alternative model

choices are discussed in Section 6.

Patients randomized to the control group will belong, at a certain time t, to one of the fol-

lowing 4 categories: (i) non-progressed (np), (ii) progressed and having switched to experi-

mental treatment (ps), (iii) progressed non-switched (pns), or (iv) deceased. The flow between

the Markov states is shown in Fig 3 and the probabilities for the first 3 categories are given by

the starting conditions Snp(t) = 1, Sps(t) = 0 and Spns(t) = 0, as well as by the following
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differential equations:

dSnpðtÞ
dt

¼ � ðl
P
0
þ l

OS
0
Þ � SnpðtÞ;

dSpsðtÞ
dt

¼ p � lP
0
� SnpðtÞ � lOS

1
� SpsðtÞ;

dSpnsðtÞ
dt

¼ ð1 � pÞ � lP
0
� SnpðtÞ � lOS

0
� SpnsðtÞ:

ð15Þ

The solution to this system of differential equations is given by

SnpðtÞ ¼ expð� ðlP
0
þ l

OS
0
Þ � tÞ;

SpsðtÞ ¼
p � lP

0

l
P
0
þ l

OS
0
� l

OS
1

� exp � lOS
1
� t

� �
� exp � l

P
0
þ l

OS
0

� �
� t

� �� �
;

SpnsðtÞ ¼ ð1 � pÞ � ðexpð� lOS
0
� tÞ � expð� ðlP

0
þ l

OS
0
Þ � tÞÞ;

ð16Þ

and the total survival function for the control arm is therefore defined as

S0ðtÞ ¼ SnpðtÞ þ SpsðtÞ þ SpnsðtÞ ¼

¼ ð1� pÞ � expð� lOS
0
�tÞ þ p �

l
P
0
� expð� lOS

1
�tÞ þ ðlOS

0
� l

OS
1
Þ � expð� ðlP

0
þl

OS
0
Þ � tÞ

l
P
0
þ l

OS
0
� l

OS
1

:
ð17Þ

An obvious question is how this flow between Markov states translates into survival func-

tions. In Fig 4A we provide an example of the composition of patients over time for each

Fig 3. Markov chain states and transition rates.

https://doi.org/10.1371/journal.pone.0259178.g003
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survival group as defined in Eq (16). In Fig 4B we show the resulting survival function for the

control group (in teal). Moreover, in Fig 4B we also show the survival function for the experi-

mental arm (in brown) as well as the survival function for the control group under propor-

tional hazards (in pink) to make a visual comparison with the derived survival function for the

control arm.

By definition, the hazard function for the control arm is h0ðtÞ ¼ � S0
0
ðtÞ=S0ðtÞ. As the PFS

rate is the sum of the progression and OS rates, l
PFS
0
¼ l

P
0
þ l

OS
0

, it follows from Eq (17) that

h0ðtÞ ¼
v0ðtÞ � l

OS
0
þ v1ðtÞ � l

OS
1
þ v0pðtÞ � l

PFS
0

v0ðtÞ þ v1ðtÞ þ v0pðtÞ
; ð18Þ

where

v0ðtÞ ¼ ð1 � pÞ � ðlPFS
0
� l

OS
1
Þ � expð� lOS

0
� tÞ

v1ðtÞ ¼ p � lP
0
� expð� lOS

1
� tÞ

v0pðtÞ ¼ p � ðlOS
0
� l

OS
1
Þ � expð� lPFS

0
� tÞ:

ð19Þ

The hazard for the experimental arm simplifies to h1ðtÞ ¼ l
OS
1

and we can calculate the hazard

ratio over time, ZðtÞ ¼ l
OS
1
=h0ðtÞ. Therefore, the weights defined in Eq (6) are computed as

wj ¼ � logðl
OS
1
=h0ðtjÞÞ.

These weights will primarily depend on the assumed (conditional) treatment switching

probability, p. Note that when p = 0 the model simplifies into a proportional hazards model

that assigns constant weights. That is, the proposed mWLR test coincides with the standard

unweighted LR test. A common time scale parameter will not alter the weights, in the sense

that if all times and time parameters are multiplied by a constant k, all weights remain the

same. The assumed relation between the median survival of experimental and control will

have little impact on the test weights except for the obvious change in power and for the fact

that the initial value of wj is proportional to the ratio between these medians of overall

Fig 4. Plot A shows the survival probability for non-progressed patients (red), progressed and non-switched patients (green) and progressed and

switched patients (blue) assuming p = 0.5, mPFS
0 ¼ 2, mOS

0 ¼ 10, mOS
1 ¼ 15. In plot B, we show the resulting survival functions for the control (teal)

and experimental (brown) arms, and also as a comparison, the control arm under proportional hazards (pink).

https://doi.org/10.1371/journal.pone.0259178.g004
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survivals. The test will have some dependency on the relative medians for progression and

overall survival, as the test differentiates between time points with different proportions of

non-deceased patients that have switched treatment.

In Fig 5A, we present the hazard ratio functions produced by the proposed model assuming

different values of p together with the real RECORD-1 hazard ratio. In Fig 5B, we present the

weight values obtained from Eq (6) for each of the hazard ratio functions presented in Fig 5A.

In this section we have proposed a model that uses clinically relevant parameters to build a

realistic hazard ratio function that explains the impact of treatment switching in a clinical trial.

In fact, in Fig 5A we see that when using p = 1 the proposed hazard ratio function closely

approximates the hazard ratio function of the RECORD-1 trial. However, the true hazard ratio

function is unknown when designing a trial, and the best we can do is build a “guess” based on

prior clinical information from clinical trials with similar characteristics. In Sections 4 and 5

we implement an evaluation of the methodology presented in this section. To do so, we assume

a true hazard ratio function and a pre-specified hazard ratio function that will be our “best

guess”. Let p refer to the probability of treatment switching after disease progression from the

true hazard ratio function and p0 refer to the probability of treatment switching after disease

progression from the assumed (or “guessed”) hazard ratio function.

4 Simulation study set-up

In this section we conduct a comprehensive simulation study to investigate the operating char-

acteristics of the mWLR test with the hazard ratio model based on exponential progressions

introduced in Section 3.3. The entire simulation study is based on a single scenario set-up

where sample size, median OS, median PFS and total number of deaths are the same from

those observed in the RECORD-1 trial. These values are presented in Table 1.

Note that, in Table 1, the median OS in the control group ranges from 5 to 10 months as it

is not possible to obtain its real value from the RECORD-1 trial data given the impact of treat-

ment switching. The recruitment data was not taken from the RECORD-1 trial data and

patients are assumed to be enrolled uniformly during 12 months.

Fig 5. Hazard ratio from the RECORD-1 trial and hazard ratio functions obtained with the model based on exponential progression switching

(plot A), and corresponding weights functions from Eq (6) (plot B), for p = (0, 0.2, 0.4, 0.6, 0.8, 1), mOS
0 ¼ 10 with mOS

1 ¼ 15 and mPFS
0 ¼ 2. The

weights using p = 0 are equivalent to those from the standard log-rank (LR) test.

https://doi.org/10.1371/journal.pone.0259178.g005
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One may think of this set-up as if we would be designing a clinical trial similar to

RECORD-1 trial, after having observed the RECORD-1 trial results. In other words, we are

designing a clinical with solid and reliable historical information that allows us to pre-specify a

sensible hazard ratio function. The performance of the mWLR test is compared with the per-

formance of the standard LR test in terms of power and efficiency. The empirical power for

both tests is calculated as

PowerLR ¼
1

M

XM

i¼1

1 ZLR
i > F� 1ð1 � aÞ

� �
;

PowermWLR ¼
1

M

XM

i¼1

1 ZmWLR
i > F� 1ð1 � aÞ

� �
;

ð20Þ

and the relative efficiency between mWLR and LR as

EfficiencymWLR
LR ¼

F� 1ð1 � aÞ þ F� 1ðPowermWLRÞ

F� 1ð1 � aÞ þ F� 1ðPowerLRÞ

� �2

; ð21Þ

where F−1 represents the quantile function of the standard Normal distribution, α = 0.025 and

M = 104 corresponds to the number of simulations implemented implemented in R [43] for

each scenario. Eq (21) should be interpreted as the (empirical) efficiency of mWLR with

respect to LR where values above 100% imply a better performance of the mWLR test with

respect to LR, and values below 100% imply a better performance of LR with respect to the

mWLR test.

Let p̂ denote the estimated power. As M = 104 simulation runs are performed for each point

in power diagrams, the simulation error (95% confidence interval) is�1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ=M

p
,

at most ±1.0 percentage points.

One of the key characteristics of this methodology is that it relies on the pre-specification of

a hazard ratio function that depends on prior values of median OS, median PFS and probabil-

ity of switching. As presented in Fig 5, depending on p, the hazard ratio function has different

shapes. However, if p0 is not close to p, the model may not work very well since the hazard

ratio function would be misspecified. In the simulation study we primarily focus on evaluating

the performance of the proposed model under the presence of a high proportion of treatment

switching. However, we also make an evaluation in cases where p and p0 are not close, and

compare the results with those from the standard LR test.

Moreover, in order to provide an entire overview of the model performance we also com-

pare the mWLR test, in a scenario with a high values of p, with the test based on the restricted

mean survival time and the Max Combo test, which are known to have higher power than the

standard LR test under non-proportional hazards.

Table 1. Median OS, median PFS, sample size, and total number number of deaths based on the RECORD-1 trial.

Control Arm Experimental Arm

Median OS (months) 5–10 15

Median PFS (months) 2 4

Sample Size 139 277

Total number of deaths 221

https://doi.org/10.1371/journal.pone.0259178.t001
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Note that we do not test on the real RECORD-1 data the proposed weight function built

with the model presented in Section 3.3 since it is out of the scope of this article re-analyzing

or making new clinical interpretations of the RECORD-1 trial data.

5 Results

5.1 Performance of the new test

In this section we present the results from the simulation set-up described in Section 4 that

provides a scenario that can be considered similar to the RECORD-1 trial and hence realistic.

We start this performance evaluation by considering the extreme case where all patients in

the control group switch treatment after disease progression (p = 1). If we take p0 = 1, this is

the scenario where mWLR has the greatest benefit compared to the standard LR test. More-

over, this scenario would not be so far from what was observed in the RECORD-1 trial, where

111 out of the 139 patients randomized to the control arm switched treatment, giving an esti-

mate for q of 80%. We don’t know how many patients, in the control arm, died before progres-

sion but with reasonable assumptions regarding the competing risks for progression and death

(see Eq (14)), p can be expected to be considerably higher than q, although not exactly 1. Later

on, we assess the test performance for p0 = p ranging from 0 to 1.

In Section 5.2 we assess the robustness of the proposed test when the degree of treatment

switching is misspecified, with the test parameter p0 being different from p. Although the LR
test is currently the dominating analysis method, we compare mWLR also against other alter-

natives, the Max Combo test and Restricted Mean Survival, in Section 5.3.

Throughout this section, we assume that median TTP is mP
0
¼ 2 months in the control

group. For the median OS, we assume mOS
1
¼ 15 months for the experimental treatment, while

we consider a range of values for patients on control treatment. With no treatment switching

(p = 0) the unaffected hazard ratio for OS in our model would be HRu ¼ mOS
0
=mOS

1
. Taking

median survival on control ranging from mOS
0
¼ 5 months to mOS

0
¼ 10 months, the unaffected

HR ranges from HRu = 5/15� 0.33 to HRu = 10/15� 0.67.

Fig 6 shows that mWLR is much more powerful and therefore efficient than the LR test

when p = p0 = 1 for different values of mOS
0

. Obviously, the absolute increase in power depends

on how large the power is for the LR test. For example, when mOS
0
¼ 5 (HRu� 0.33), LR power

is equal to 96%, leaving limited room for further power increase. However, mWLR reaches a

power of 99%. When HRu = 0.5, the absolute increase in power of mWLR with respect to LR is

larger, going from 45% up to 66%. The efficiency with respect to LR goes from 141% to 183%

when going from HRu� 0.33 to HRu� 0.67. That is, the trial would have required a much

lower sample size if the proposed mWLR test would have been used instead of the standard LR
test.

In practice, HRu is unknown when planning the trial, so it is reasonable to consider the per-

formance of the tests over a range of HRu values. If results on PFS are very convincing and

treatment switching is high, it is not certain that regulators would require a formal statistical

significance for OS. It is therefore of importance that the increase in efficiency with mWLR
would also lead to lower p-values even if neither test reaches statistical significance. For exam-

ple, when mOS
0
¼ 10 and power is relatively low, more than 99% of simulations gave a lower p-

value for the mWLR test than for standard LR.

The previous example with p = 1 is the most challenging scenario, but it is where mWLR
most clearly dominates the LR test. With the correct treatment switching assumption (i.e., p0 =

p), mWLR outperforms the standard LR test for all values of p. However, as presented in Fig 7,

the benefit is practically neglectable if the degree of treatment switching is low. In fact, we do

not think that the mWLR test is worthwhile if p is known to be small, say p� 0.4. On the other
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Fig 7. Efficiency of the modified weighted log-rank (mWLR) test with respect to the log-rank (LR) test assuming

matching values of p and p0 (i.e., (p = 0, p0 = 0), (p = 0.1, p0 = 0.1), . . ., (p = 1, p0 = 1)) for a fixed value of mOS
0 ¼ 10

months.

https://doi.org/10.1371/journal.pone.0259178.g007

Fig 6. Power of the modified weighted log-rank (mWLR) test and the log-rank (LR) test (plot A) and efficiency of the mWLR test with respect to

the LR test (plot B) assuming p = 1 and p0 = 1 for values of mOS
0

that range from 5 to 10 months and the corresponding hazard ratio η.

https://doi.org/10.1371/journal.pone.0259178.g006
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hand, the efficiency gain of approximately 5% when p = 0.5 is not neglectable since a 5%

decrease in sample size may translate into high cost savings. An even clearer indication for

using mWLR is when the investigator team fears that p� 0.75. For example, when a trial is

designed, the “best guess” of the probability of treatment switching after disease progression

may be p0 = 0.6, where the efficiency of mWLR with respect standard LR is about 109% if p0 =
p. However, the prediction of p0 may be quite uncertain, ranging from rather low treatment

switching, where LR would do well, up to perhaps p0 = 0.75 (with a potential efficiency of

around 120%) or even p0 = 0.9 (with an efficiency of about 149%) if p0 = p. Such situations,

where p0 is uncertain when pre-specifying the analysis, will be further explored in the next

subsection.

5.2 Robustness

As indicated by Fig 7, efficiency is increasing rapidly as p increases, with a value of 183% when

p = 1 and p0 = 1. The downside is that, assuming p0 = 1, mWLR is only better than LR when

p> 0.7 and has an efficiency lower than 100% when treatment switching after disease progres-

sion is p� 0.7, as presented in Fig 8A and 8B. We could argue that mWLR with p0 = 1 is rela-

tively robust when we are convinced that treatment switching will be very high. However,

choosing a somewhat lower design parameter, p0, will give a more robust test if p is not known

to be 1.

By construction of the test, it is not surprising that mWLR is the best test for a certain value

of p if designed with the matching treatment switching parameter (i.e., p0 = p) as presented in

Fig 9B, where the dot in each curve represent the value of p0 that maximizes efficiency of

mWLR with respect to LR for a given value of p.

For a practical situation in a scenario with the characteristics presented in Section 4, a large

expected treatment switching, but also a relatively large uncertainty around p0, one solution

could be to assume p0 = 0.7 for the following reasons:

1. The test is optimal if p0 = p.

2. It is more efficient than the standard LR if p� 0.7 with efficiency values that go from 114%

p = 0.7 to 157% at p = 1 (see Fig 9A).

Fig 8. Power of the modified weighted log-rank (mWLR) test and the log-rank (LR) test (plot A) and efficiency of the mWLR test with respect to

the LR test (plot B) assuming a fixed value of mOS
0 ¼ 10 months, a fixed value of p0 = 1, and varying the value of p between 0 and 1.

https://doi.org/10.1371/journal.pone.0259178.g008
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3. If p< 0.7, it would still be more efficient than standard LR for values of p� 0.45.

4. If p< 0.45, the loss would still be rather limited, especially for values of p� 0.3 where the

efficiency is above 95%.

5. If p = 0, the test has an efficiency of 88%.

Thus, mWLR with p0 = 0.7 shows a balance between being robust to mid-degrees of treat-

ment switching while having large efficiency for high-degree treatment switching with respect

to the standard LR test.

As noted, the relative values of the medians are much more important for the results than

the absolute values. The model is time-scale invariant. This means that, if all times, medians,

etc., were multiplied with a factor 2, say, the power would be the same. Follow-up and inclu-

sion time also has to be expanded for this to hold exactly, but as long as maturity (the fraction

of patients followed to death) does not change much, the impact of these times is rather lim-

ited. Of greater interest is what happens if median time to progression is changed relative to

median OS. Supplementary material contains replications of Fig 9B when mPFS
0

is 1 and 4

months, respectively, instead of 2 as in the main model (see S1 and S2 Figs in S1 File respec-

tively). When mPFS
0
¼ 1, patients progress faster with respect to mPFS

0
¼ 2, which translates into

higher values of q (i.e., a larger proportion of patients that actually switch after disease progres-

sion before dying) and therefore a higher efficiency of mWLR with respect to LR compared to

the one observed with mPFS
0
¼ 2. In contrast, when mPFS

0
¼ 4, patients progress slower which

translates into lower values of q and therefore a lower efficiency of mWLR with respect to LR
compared to the one observed with mPFS

0
¼ 2. However, these differences are in line with how

the test is constructed and we can say the conclusions obtained using mPFS
0

equal to 1 and 4 are

qualitatively the same to the conclusions obtained with mPFS
0
¼ 2.

We also evaluate the robustness of the proposed mWLR test when the underlying time-to-

event distribution is not exponential. More precisely, we use a Weibull distribution with shape

parameter k ranging from 0.5 to 1.5 and scale parameter λ selected so the distribution yields a

desired median OS or median PFS. With this distribution, it is possible to show that the hazard

function of each treatment group decreases if k< 1, increases if k> 1 and is constant if k = 1.

Fig 9. Efficiency between the modified weighted log-rank (mWLR) test and the log-rank (LR) test assuming a fixed value of mOS
0 ¼ 10 months and

varying both p and p0 between 0 and 1. Values above 100% favor mWLR and values below 100% favor LR.

https://doi.org/10.1371/journal.pone.0259178.g009
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In S3 Fig in S1 File we assess the power of mWLR and LR varying the value of k in the same set-

ting presented in Fig 6. Results show that mWLR performs slightly worse than LR for values of

k� 0.7. In contrast, when k> 0.7, our proposal outperforms LR. This assessment shows that

mWLR is sensitive to increments/decrements of the hazard function of each arm and thus a

careful evaluation of the expected hazard function of each arm is advised since the expected

power of mWLR may change.

5.3 Comparison with other methods

In this section we provide a comparison with two methods that have been receiving quite a lot

of attention in the last years given their good performance under non-proportional hazard

with respect to the standard LR test: the Max Combo test [27, 44] and the test based on the

restricted mean survival time [22].

It is important to mention that the test based on the restricted mean survival time is highly

depending on the truncation time. Hence, in order to have an objective and fair comparison

between these tests, the truncation time for the test based on the restricted mean survival time

is linked to the data and is pre-specified as the minimum of the maximum observed event or

censored time of each arm (i.e., minimax observed time).

With respect to the Max Combo test and following Roychoudhury et al. [45], we implement

it considering the maximum of four correlated Fleming-Harrington class of weights: (ρ = 0,

γ = 0), (ρ = 1, γ = 0), (ρ = 0, γ = 1) and (ρ = 1, γ = 1).

This comparison is made using the same set-up as in Section 5.1 which is realistic and simi-

lar to the RECORD-1 trial. The efficiency of mWLR with respect to the test based on the

restricted mean survival time (Fig 10A), shows that when the recommended value p0 = 0.7 is

used, in a scenario with these characteristics, mWLR is more efficient that the test based on the

restricted mean survival time for p� 0.45, reaching an efficiency of 137% when p = 1, and

112% when p = 0.7 where the test is optimal. Moreover, the efficiency loss for p< 0.45 is rather

limited with an efficiency of 90% even when p = 0.

Fig 10. Efficiency between the modified weighted log-rank test (mWLR) with respect to the test based on the restricted mean survival time (plot

A), and efficiency between mWLR test with respect to the Max Combo test (plot B) assuming a fixed value of mOS
0 ¼ 10 months varying p between

0 and 1, and p0 between 0.5 and 1. Values of efficiency over 100% favor the mWLR test and values below 100% favor the test based on the restricted

mean survival time or the Max Combo test.

https://doi.org/10.1371/journal.pone.0259178.g010
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The efficiency of mWLR with respect to the Max Combo test (Fig 10B), shows that in a sce-

nario with these characteristics, using the recommended value p0 = 0.7, mWLR is as good as, or

more efficient than the Max Combo test for all values of p, reaching an efficiency of almost

200% when p = 1. For values of p� 0.3 however, the performance between mWLR and Max

Combo is similar with efficient values below 105%.

Overall, these results are in line with the results obtained in Section 5.2 where the test is

fairly robust for p0 = 0.7 also in comparison with other testing alternatives particularly suitable

for scenarios where the proportional hazards assumption does not hold.

6 Discussion

In this article we propose a new class of weighted log-rank (WLR) tests to be used when treat-

ment efficacy is decreasing over time. The motivating application is when a substantial amount

of patients in the control group switches during the clinical trial to a more effective treatment.

This is, for ethical reasons, often occurring in phase III oncology clinical trials. However, the

proposed test or another test based on the same idea may be applicable in other situations

when there is a similar pattern of decreasing efficacy over time. One example outside of the

treatment switching application is when the experimental treatment affects only one of several

risk components. More precisely, if a trial is including patients with a recent stroke, a drug that

is effective in preventing (new) strokes may show large benefit on all-cause mortality in an ini-

tial phase. However, the hazard ratio will gradually increase over time when the relative risk of

stroke-related deaths starts to decrease and other causes of mortality start to be present in a

large part of the total number of deaths.

According to the FDA [3], endpoints for later phase efficacy studies evaluate whether a

drug provides a clinical benefit such as prolongation of survival or an improvement in symp-

toms. In oncology late phase clinical trials, overall survival (OS) is usually the preferred end-

point for final approval since it does not rely on any assumption, although progression-free-

survival (PFS) is often accepted for conditional approval, awaiting direct evidence of a survival

benefit.

The FDA [46] also acknowledges that in most trials, some patients may not receive the

treatment assigned by randomization because of poor response, improvement or worsening of

disease, or high toxicity among other reasons. In general, informative dropout may be of con-

cern even if it occurs before the initiation of treatment as it can cause a distortion of the results.

However, despite the potential treatment effect dilution that an intent-to-treat (ITT) analysis

may cause, this type of analysis is the gold standard in confirmatory trials. The reason is that it

ensures that the comparability of populations created by randomization is maintained and

reduces the risk that bias will be introduced during the trial or during the analysis. Treatment

switching obviously may distort what would have happened if patients would have been

treated only with the drugs from the treatment arms in which they were randomized. How-

ever, even if it is possible to model what the relative efficacy would have been without treat-

ment switching, such a model cannot be based solely on randomization since unknown factors

will influence which patients from the control arm switch treatment.

In this article we are motivated by the RECORD-1 trial, a phase III clinical trial that com-

pares placebo with everolimus in patients with metastatic renal-cell carcinoma where almost

80% of the patients switched from the placebo arm to receive everolimus after disease progres-

sion. Fig 1B shows that placebo patients who switched treatment had much longer average

survival than those who did not switch treatment as presented in Fig 1C. However, this com-

parison is not randomization-based. One of the key questions is why some patients choose to

switch, or not to switch, treatment? One could for example imagine that patients from the

PLOS ONE A modified weighted log-rank test for confirmatory trials with a high proportion of treatment switching

PLOS ONE | https://doi.org/10.1371/journal.pone.0259178 November 15, 2021 17 / 22

https://doi.org/10.1371/journal.pone.0259178


placebo arm with particularly poor prognosis could receive palliative care instead of a new

treatment with potential side effects. Techniques used to analyse observational data could be

useful for example to determine the magnitude of an effect in patients actively taking a drug.

However, a statistically significant ITT comparison between two randomized groups would

provide more robust evidence of treatment efficacy, although sometimes the ITT analysis of

OS is not feasible given ethical constraints. The methodology proposed in this article aims to

increase the power in an ITT analysis under a high proportion of patients that switch treat-

ment after disease progression.

The most common test used for confirmatory time-to-event clinical trials is the unweighted

log-rank test (LR). However, given that nonparametric tests are relatively infrequent for pri-

mary analyses in other clinical trials, one may ask why LR is so popular for survival trials. One

answer is that common parametric test alternatives often are relatively in-efficient [47]. If the

hazard ratio is constant over time, the unweighted LR test is the most powerful test. Propor-

tional hazards is a decent approximation in some cases, but there are many examples where

this assumption does not hold. One area in which this assumption is clearly not met is

immuno-therapy (see e.g., Rahman [48]). However, from our point of view, it is a mistake to

think that the LR should have a general precedence because it is labelled as “unweighted”. One

may view the Wilcoxon test [49] as a weighted version of the LR test, but one could equally

well view LR as a weighted version of Wilcoxon. The fact is that LR is equivalent to attributing

a certain strictly decreasing “score” to each observation, depending on its rank order (see

Leton and Zuloaga [50]). We argue that different scores (or LR weights) should be used when

they can be pre-specified to give considerably higher power while strongly controlling the

type-I error.

The Fleming-Harrington class of weights can be used with strictly decreasing weights

under the presence of treatment switching. However, if weights are not strictly decreasing then

type-I error is not controlled as showed by Magirr and Burman [28]. This also holds for the

Max Combo test, which is an omnibus test with four different Fleming-Harrington test com-

ponents. A difference between our proposal and the Fleming-Harrington class of weights is

that our weights are functions of time, instead of functions of the estimated pooled survival

function. A benefit is that it is more natural to model the effect under treatment switching in

the time scale. Also, as seen in the simulation results presented in this article, our test mostly

outperforms the Max Combo test.

Hypothesis tests should be complemented with clinically relevant estimates. The Kaplan-

Meier curves, together with censoring patterns, give essentially all information, although more

condensed measures are also valuable. Median survival and survival at, for instance, 2 years

are clinically meaningful. Cure rate (if applicable) and otherwise (restricted) mean survival

may have even greater bearing while also being clinically interpretable even under non-pro-

portional hazards (see [35]). In contrast, LR tests, weighted or unweighted, can give estimates

of an average hazard ratio or a parametric hazard ratio time function. This can be done by sim-

ply multiplying the number of patients at risk in the experimental arm with the tentative haz-

ard ratio when calculating the LR statistic. The hazard ratio that makes the test statistic equal

zero leads to the hazard ratio estimate. Strictly speaking, our method corresponds to a hazard

ratio estimate. However, an estimated hazard ratio is difficult to interpret when hazards are

meaningfully non-proportional.

In this article, we have promoted the use of pre-specified LR tests with non-increasing

weights that correspond to the predicted hazard ratio function over time. We have developed

one class of weights using prior information regarding median times to progression and to

death, depending on actual treatment, as well as about the expected probability of treatment

switching. For a concrete clinical trial, it may be possible to develop other models for the
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hazard ratio function, better tailored to existing pre-clinical and early-phase clinical data,

other indications, competitor data, clinical judgment etc. (see Burman and Wiklund [51]).

We also tested the robustness of our proposal under hazard ratio model misspecification.

In other words, we have assumed an expected probability of treatment switching and tested its

performance when the true proportion of patients after disease progression that switch does

not match the expected probability of treatment switching. In this evaluation, we found that

the performance is clearly dependent on the accuracy of the expected probability of treatment

switching. When the degree of treatment switching, p is uncertain, we recommend designing

the modified test based on a slightly lower value of p than the best guess estimate, to give higher

robustness. The comparisons also evaluate a median OS misspecification in the control arm.

In this case, the model is not very sensitive to the median OS value used to defined the hazard

ratio function and there are not big differences in terms of performance. We have also evalu-

ated the performance of mWLR when the underlying time-to-event distribution is not expo-

nential. For this analysis, we have employed a Weibull distribution and we have observed that

our proposal is sensitive to increments/decrements of the hazard function of the treatment

groups. Therefore, we advise to carefully evaluate the expected hazard function of the treat-

ment groups.

Some possible extensions of the current work could consider its implementation in an

adaptive setting, or situations where the probability of treatment switching depends on calen-

dar time (when the experimental drug gets more available), OS hazards increasing after pro-

gression and/or depending on time of progression, and other distributions than exponential.
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