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Summary

Currently, Graphics Processing Units (GPUs) are crucial devices able to boost
the execution of complex algorithms in the scientific and artificial intelligence do-
mains. Moreover, GPU-based platforms are also relevant components now included
in several safety-critical applications (e.g., in the automotive and autonomous ma-
chines fields), where reliability and functional safety are essential requirements.

The doctoral research activities were focused on identifying new online tech-
niques for testing and mitigation of faults affecting GPUs.

This work also describes a new microarchitectural GPU model (FlexGripPlus),
a supporting tool for detailed reliability evaluation. FlexGripPlus can also be used
to support the development of functional test approaches and mitigation solutions.
This GPU model is compatible with the CUDA programming environment and
is a corrected and extended version of a previous GPU model implementing the
G80 architecture by NVIDIA. The GPU model’s extensions include support for
floating-point operations and for the execution of trigonometric and transcendental
operations using Special Function Units.

FlexGripPlus was used to develop, evaluate, and validate functional test tech-
niques based on the software-based self-test (SBST) strategy. More in detail, two
main strategies are proposed for GPUs: i) the multi-kernel test approach, and ii)
the modular approach of testing.

On the one hand, the multi-kernel approach exploits the GPU’s main operative
behavior as a special-purpose accelerator. This approach is based on the parallel
execution of test programs intended to detect and propagate the fault effects on
any GPU core’s available outputs. For this purpose, a set of parallel test programs
with different GPU configuration parameters allows the generation of test patterns
after dividing a target module into fault groups. This division process allows the
coverage of sensitive locations that implicitly remain constant by the effect of the
configuration of a parallel program. Moreover, this technique also uses a thread-
based method to propagate and identify faults into the GPU’s available outputs,
simplifying the evaluation of specific modules in the GPU architecture, such as the
pipeline registers.

On the other hand, the modular testing approach combines the microarchitec-
tural details of a given module, its functional operation, its major constraints, and
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a target fault model to design a generic description of a feasible test program.
More in detail, these GPU features are combined to generate a scalable high-level
abstraction test program, which can later be transformed into the equivalent soft-
ware routines to test a target module. This modular approach exhibited a good
effectiveness when testing internal memories and the divergence stack of the GPU
core.

It is worth noting that in both strategies (multi-kernel and modular), the com-
bination of high-level programming and low-level assembly language was adopted
whenever it was possible. Moreover, several compilation constraints and limitations
were listed when implementing the test programs. Both functional test strategies
were evaluated targeting the detection of permanent fault models.

Finally, three hybrid and flexible strategies were proposed to harden the GPU
architecture. The proposed hardening solution allows the online fault testing and
in-field fault mitigation. All three strategies are configurable using custom instruc-
tions, so allowing their adoption as part of the code of an application.

The first strategy is based on a flexible approach for in-field fault detection
applied to the execution units of the GPU core. This strategy exploits the high
regularity of the execution units and provides hardening with reduced overhead
costs. The second strategy allows in-field fault mitigation of any functional unit
once a fault is detected. In this approach, several in-field configurable spare units
are used to provide repair capabilities in the GPU.

The third strategy aims at detecting and mitigating faults at the same time.
This flexible approach allows the activation of one or both reliability features. More-
over, the reliability analysis of the proposed strategy showed a considerable increase
in the reliability of the targeted units with a minor effect on the running applica-
tions code and minimal effect on performance. Furthermore, the implementation
of the strategies was evaluated in several configurations, so determining different
hardware overhead figures of the proposed hardware mitigation architectures. In
the end, these analyzes provide a advisable configuration to obtain maximum reli-
ability benefits with reduced hardware and performance overheads.

Thanks to the availability of the FlexGripPlus model, this work includes for
the first time (to the best our knowledge) quantitative results in terms of microar-
chitectural reliability evaluations aimed at identifying the fault impact of transient
faults on several modules of a GPU core, including the scheduler controller, the
pipeline registers, the register file, and the branch unit. All these evaluations were
performed using several parallel applications. Furthermore, as described above,
this model was used as a validation tool in the quantitative evaluation of several
online test solutions and hardening strategies for GPUs.

The main results of the research activities are intended to support the develop-
ment of fault detection and fault-tolerance mechanisms for GPU devices devoted
to safety-critical applications, based on the proposed solutions for online testing
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and mitigation of faults. Moreover, the experimental results support the evalua-
tion of the different reliability solutions, which are required in the current trends
of continuous increment of GPU devices in applications, where the effect of faults
is critical.

Finally, as product of the research activities and according to the obtained
experimental results, the developed strategies for functional in-field test and in-
field mitigation increase the reliability (in up to 50%) and functional-safety (ASIL
B) of the GPU, so the combination of the developed strategies can be employed
as alternative or complementary fault-tolerance mechanisms for GPUs devoted to
applications in the safety-critical domain.
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Chapter 1

Introduction

Currently, new technologies boost our life quality in numerous aspects while in-
creasing the productivity and the efficiency in the society. Simple examples, such as
innovative environmental-friendly transportation systems and high-end production
methods, reduce the human effort, and optimize appliances and services’ produc-
tion.

In case of automotive systems, new technology trends are focused on introducing
new features, which extend the number of on-board embedded systems (and proces-
sors) [1]. In the automotive domain, these systems are intended to optimize energy
consumption, extend the user’s experience by introducing infotainment support,
and also provide autonomous and semi-autonomous control mechanisms, including
strategies for cruise control and autonomous pilot [2]. Furthermore, in the produc-
tion case, new tendencies of automation promote cooperative work environments
between humans and autonomous robots interacting and increasing the production.
Moreover, this automation method aims at reducing the human risk when hazard
conditions are involved.

Both cases (automotive and industrial production) are current examples of
safety-critical applications where any functional failure of the equipment, machines
or devices supporting the application can generate severe consequences, including
critical injuries, deaths, significant property damage or extensive environmental
damages [3]. For this purpose, the complex electronic devices, which are now
integrated into systems, must accomplish strict safety, reliability and security con-
straints to guarantee the correct operation of the entire system.

1.1 Main Motivation
In the automotive sector, leading companies have invested (and plan to invest)

billions in new technologies to implement and extend their usage to several appli-
cations involved in the sector, as reported in Figure 1.1. Those applications include
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the development of various levels of autonomy in vehicles motivated by the benefits
in terms of safety and security for the users, latency reduction in the traffic and en-
ergy efficiency. However, these technological benefits also imply several technology
challenges without clear solutions till the moment.

In principle, mature methods of design and development of safe and secure
devices can be employed for devices used in these new applications. However,
both sectors (automotive and autonomous machines) now exploit several innovative
technologies, such as Artificial Intelligence (AI) and computer vision, which suppose
a big advantage for more efficient procedures. However, this trend also implies
that modern devices can implement such sophisticated algorithms, so increasing
the application’s complexity and imposing huge restrictions in terms of real-time
operation, available power budget and performance.

In practice, the development of modern safety-critical applications require mainly
three elements: i) a high performance operation and power efficiency, ii) affordable
costs, and iii) safety and reliability [4]. In many cases, these requirements are
faced by most manufacturers and designers using the latest transistor technology
and scaling approaches in their products, so reaching the limits of the Moore’s law
in order to include a high number of transistors in the same device, so obtaining
considerable improvements in execution performance, power consumption and prac-
tical production costs. However, several studies [5], [6], [7], [8], [9] demonstrated
that new devices implemented with these cutting-edge technologies are also prone
to be affected by multiple types of faults arising at the early operational stages and,
more frequently, during their operative life. These faults can be caused by two main
factors: i) internal defects derived by the manufacturing processes or component
fatigues, and ii) environmental or external ones [10].

In the first case, the faults in a device can be the consequence of manufacturing
defects that were not identified or detected during the end-of-production testing,
so causing unexpected behaviors during its operative life. Furthermore, a device is
also prone to suffer of degradation (e.g., electromigration or gate-oxide effects) of
its components after long-periods of operation, or even when the device is not used
(e.g., idle operational mode) [11], and produce intermittent or permanent faults.
In the previous scenarios, the faults are produced by aging or wearout effects [12],
[13], [14].

On the other hand, external effects can also affect the operation of a device. In
this case, environmental effects change the electrical parameters temporary (or per-
manently) and produce transient fault effects, so affecting the running application
in the device. These fault effects are propagated across the device as soft-errors,
which are produced only when the application is running on an affected device.

The exposure of a device to high energy particles (producing radiation effects)
or to electromagnetic interference (EMI) increases the sensibility of the device to
temporary fault (transient faults), which swap the electronic charge of any or mul-
tiple storage components in the device, so switching ON or OFF a transistor used
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Figure 1.1: Principal investments in the automotive sector (Top), Trends in the
market (Bottom) Extracted from McKinsey Analysis.

3



Introduction

to store data. When this data is propagated through the circuit, several errors can
arise in the application. In the most extreme case, the device can be permanently
damaged as effect of those external interventions.

Modern processors and also accelerators, such as Graphics Processing Units
(GPUs), which are implemented with the latest integration technologies, can suf-
fer from both types of faults. In fact, the Failures In Time (FIT) rate is larger
than it was before in the previous technology scaling generations (see Figure 1.2).
Thus, these technology issues originate new reliability challenges for modern devices
characterized by a dense number of transistors targeted to operate safety-critical
applications. These devices and the target operational environment (safety-critical)
demand the development and adaptation of new test and reliability solutions.

More in detail, the trend observed in the scheme of Figure 1.2 suggests that
modern integration technologies maintain almost a constant Infant Mortality (IM),
but new devices are reaching the end-of-life state before the previous generations
(the Component Fault Rate (CFR) period is shorter than in previous integration
technologies). Thus, the extension of the operative life in modern technologies re-
quires innovative in-field testing solutions beyond the traditional end-of-line testing,
which is performed at the end of the production phase. End of production testing is
not affordable anymore in complex devices and becomes a relevant issue in devices
targeted for safety-critical applications and expected long-operative lives.

In the safety-critical domain, the reliability becomes imperative, so the com-
pliance with standards of reliability and safety is a must. Most of the reliability
constraints and safety development guidelines are included in industrial standards
such as the ISO26262 and the IEC61508. These guidelines provide a set of re-
quirements and needs that must be fulfilled in order to maintain optimal levels
of functional safety in an application. Moreover, the complexity and the require-
ments in new applications, currently exploit the usage of (once called!) emerging
technologies, such as Field Programmable Gate Arrays (FPGAs) and GPUs.

FPGA technologies are flexible and versatile. However, the development and
configuration processes are difficult and complex, so have been historically confined
to prototyping and a few critical applications. On the other hand, GPUs are less
versatile than FPGAs, but more simple and flexible in programming. In fact,
the programming capabilities, performance and internal features of GPUs have
evolved to become one of the principal actors used in the development of safety-
critical applications involving the implementation of algorithms for image and video
processing and more recently AI.

More in detail, currently, GPUs are among the most complex embedded systems
available in the market [15] and are now positioned as one of the most popular
technologies employed in the development of several safety-critical applications,
including automotive and autonomous machines in the industrial sectors. However,
these technologies still have several issues in terms of reliability, which are detailed
in detail in chapter 2.
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Figure 1.2: A scheme of the trend of FIT rate of transistor integration technologies.
Adapted from [16].

Taking into account the reliability issues, technological challenges and the high
complexity in GPU devices presented above, the following questions motivate the
work on the present thesis:

• What is the individual impact of faults on the internal modules of a GPU
during its operative life, and how do the faults affect the execution of appli-
cations?

• How to adapt or develop in-field testing techniques based on a functional
approach to detect fault affecting internal modules on GPUs?

• What are the rules to consider in the development of in-field testing solutions
based on a functional approach for the GPU architecture?

• Is it possible to face reliability challenges by exploring and developing hybrid
mitigation architectures for GPUs?, Which are the procedures, and what is
the cost of these structures in the GPUs?

These questions served as a guide for the research activities in this work.

1.2 Contribution
This dissertation focuses on three main pillars: i) The microarchitectural re-

liability evaluation focusing on particular modules of the GPU architecture, ii)
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The proposal of several functional strategies for online test on GPUs, and iii) the
development of some new hardware structures for in-field fault mitigation in GPUs.

Concerning the microarchitectural reliability evaluation, individual modules of
the GPU are evaluated and analyzed for the first time. One particular case in
GPU architectures (with respect to the CPU ones) is the presence of task scheduler
controllers. This work evaluated the fault sensitivity in the scheduler controller of
a GPU. This module is one of the most critical units. Results allow us to support
this claim about its fault sensitivity since a considerable percentage (about 25%)
of transient faults are propagated, causing fault effects on several of the evaluated
applications. Furthermore, other particular modules in the GPU were evaluated,
such as the pipeline registers, which are those registers located between consecutive
pipeline stages but hidden for the programmer. Other modules were also targeted as
part of the sensitivity characterization, including the execution units and the stack
memory. However, results also show that the fault sensitivity in these modules is
lower than the scheduler controller (in the range of 1% to 15%).

On the other hand, the proposal of several strategies of in-field functional testing
and mitigation structures mainly target faults arising during GPUs’ operative life.

The proposed functional test methods are based on the Software-Based Self-
Test (SBST)[17, 18] strategy that uses the computer programming capabilities of
the GPU to design test programs at multiple abstraction levels when possible. It
is worth noting that a similar approach based on SBST is frequently used for the
in-field test of processor-based systems.

The programming capabilities in a GPU allow the design of SBST programs
at a high level. However, restrictions and constraints are fully faced only using
a combination of three levels of programming abstraction in the GPU (high-level,
pseudo-assembly, and assembly levels).

Three different strategies are proposed for functional tests. The first approach
employs a custom approach to combine the operational restrictions of the scheduler
controller, in a GPU core, with fault primitives to define the possible test patterns
for functional tests. Results show that the proposed solutions can test the module
(≈ 100%), hence covering all faults on the targeted fault model.

The second approach of functional testing is based on the operation of multiple
test programs to cover different groups of faults. This approach is focused on
detect all faults that cannot be observed by the dynamic features of the GPUs,
which remain static during the operation of the device. This approach is effective
to test several modules inside the GPU and it was validated on the pipeline registers
of the GPU core, that handles data and control path information. Furthermore,
the results provide main advantages and limitations on developing test programs
at high, medium and low abstraction levels.

Finally, the third method is based on a modular approach to develop test pro-
grams. This method aim at the exploration of different options in the composition
of test programs. More in detail, this approach provides the mechanisms to develop
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test programs using basic blocks to represent the controllability and observability of
faults in a module. Both features (controllability and observability) are combined
with the operational parallel features of the GPUs, their main constraints, and a
target fault model to develop the generic blocks that, once mapped, describe and
implement the test routines for the target unit in the GPU. This approach was val-
idated in several modules of a GPU core, providing adequate coverage of fault and
contributing to explore different alternatives in the composition of test programs.

To the best of my knowledge, this is the first time that microarchitectural
evaluations and fault injection campaigns on GPUs are performed to measure the
effectiveness of functional test solutions based on SBST in GPUs.

The proposed test strategies and mitigation structures are intended to solve
testing issues and reliability challenges present in such complex devices.

Other research activities focused on the proposal and evaluation of flexible so-
lutions to mitigate faults in the GPU core. The proposed solutions are optimized
combinations of hardware and software structures aiming at the fault detection,
fault mitigation, or both in specific modules of the GPU core.

Three flexible solutions are developed and validated using the FlexGripPlus
model. the first strategy targets the in-field detection of faults affecting the func-
tional units in the GPU core. The results show that exploiting the high regularity
of these functional units, the area overhead of the solution is less than 20%. The
second strategy targets the mitigation of faults on the same modules of the GPU
core. Finally, the third strategy explore a flexible architecture to provide in-field
detection and mitigation of fault on the GPU. Results show a moderate hardware
overhead for this solution (<10%). For the second and third strategies, the relia-
bility of the harden module in the GPU reaches more than 40%.

The specific contributions of this research work are the following:

• A complete microarchitectural GPU model (FlexGripPlus), which is an open-
source model described in VHDL and based on the G80 architecture of NVIDIA.
FlexGripPlus was developed on top of the FlexGrip model [19] and intended
to support the analysis of fault effects in GPU cores, perform validation and
exploration of software-based techniques, and can be used to implement and
evaluate hardware and hybrid mechanisms for fault testing and fault mitiga-
tion.

• Several functional test strategies based on SBST approaches targeting the
detection of permanent faults in critical units of the GPU architecture. This
work introduces for the first time quantitative results about the fault coverage
on several modules.

• The proposal of flexible structures for the efficient detection and mitigation
of faults, using combinations of hardware structures and software commands.
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Several analyzes of reliability and overhead costs are presented for the pro-
posed mechanisms and allows the evaluation of the most suitable trade-offs
for implementation.

• The individual microarchitectural reliability evaluation of several data path
and control path modules in a GPU device. The evaluation allows us to
observe the sensitivity to faults of the targeted modules and to analyze the
criticality effect of each module in the operation of a GPU core. Results also
support the evaluation of complex applications, such as Convolutional Neural
Networks (CNNs) in GPU platforms.

The reminder of this manuscript is structured as follows: Chapter 2 introduces
the reliability features of GPUs employed in safety-critical applications and intro-
duces the FlexGripPlus model as a tool to perform reliability research at microar-
chitectural level.

Chapter 3 describes the main finding of the reliability evaluations performed
on several modules of the GPU and also provides the main observations of the
reliability evaluation performed on CNN workloads. Then, Chapter 4 describes and
reports the main findings of the proposed functional test techniques and solutions
for GPU cores employing the SBST strategy.

Chapter 5 describes the flexible strategies developed to optimize the detection
and mitigation of faults during the in-field operation of a GPU as combinations
of hardware structures and software instructions. Finally, Chapter 6 provides the
conclusion of the dissertation and the future works in the topic. The Appendix A
describes the microarchitectural details of the FlexGripPlus model and also includes
a list of the supported assembly instructions.
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Chapter 2

GPUs in safety-critical
applications

In the last decade, the GPUs have become the main workhorse in many high-
performance and data-intensive applications, mostly present in the High Perfor-
mance Computing (HPC), industrial, aerospace and automotive sectors [20]. The
highly parallel structure of GPU devices combined with their highly flexible pro-
gramming capabilities perfectly match the requirements of the applications in these
sectors, so exploiting the main operational benefits of these products. These mod-
ern GPU devices are also known as General-Purpose Graphics Processing Units
(GPGPUs).

The GPGPUs are the most flexible and programmable versions of a GPU and are
exceptionally effective when used with parallel workloads. In fact, currently these
technologies are also solutions in safety-critical applications. Devices including
GPUs are considered as one of the most complex Systems-on-Chip (SoCs) ever
designed and manufactured [15]. Nowadays, the versatility of GPUs has extended
their usage into a large number of domains. Moreover, it continues being the
principal device in multimedia and gaming applications.

A GPU oriented to safety-critical tasks can support the development of opera-
tions related with the implementation of sensor fusion and deep learning algorithms
for AI, such as the NVIDIA Drive [21]. In fact, GPUs can be integrated in the so
called Advanced Driver-Assistance Systems (ADAS) in the automotive domain [22]
[23] [24]. In this field, the GPUs are integrated in systems devoted to perform
several functions, such as Automatic Cruise Control, Pedestrian Recognition and
Protection, Forward Collision Warning, Automatic Parking and Automatic Pilot.
All these ADAS systems commonly use sensors as inputs, including cameras, radars
or lidars, producing a sustained flow of data that must be processed and perform
decisions in real-time [25]. GPUs are very well suited for these data-intensive pro-
cessing tasks and are being increasingly used as feasible solutions by several man-
ufacturers. Moreover, ADAS are also considered as an intermediate step towards
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semi-autonomous and self-driving cars [26].
Modern safety-critical GPU designs must include strategies to comply with in-

dustrial standards, such as the ISO26262 in the automotive domain. These stan-
dards require certain conditions to guarantee the correct execution, and a sufficient
level of functional-safety and reliability of GPU devices at the end of the production
and most importantly, during the operative life of the device. These regulations
and standards are relevant for three main factors: i) operational constraints of
the safety-critical application, ii) technology scaling in GPU devices, and iii) the
architectural features and complexity of GPUs.

Concerning the first point, the proposed fault-tolerance solutions must consider
limitations of real-time operation, limited power budget and a high data-intensive
processing behavior. Moreover, the possible solutions must evaluate performance
limitations in case of in-field testing and mitigation. Finally, the availability of
the modules and other resources should be considered during the operation of the
safety-critical application.

On the other hand, technology scaling approaches increase performance and
reduce size, while maintaining affordable production cost. However, these cutting-
edge scales also increase the sensitivity to faults, so new devices might be prone to
be affected by faults originated by internal and external factors, such as radiation.
More in detail, faults can arise in a GPU after long term operation (caused by aging
or wear-out) or by external factors, including radiation effects, electromagnetic
interference and severe variations in temperature and power supply [5], [8], [27], [28],
[29]. Thus, fault-tolerance solutions and reliability evaluations become relevant in
the safety-critical domain and are important in GPUs devoted to those applications.

Finally, the architectural features and complexity of GPU devices require spe-
cial fault-tolerance solutions, hence GPUs are dense and complex parallel devices
and several singular modules might require special attention. Moreover, the devel-
opment of ad-hoc solutions would need the combination of suitable strategies from
processor-based architectures and new custom approaches of testing and mitigation.
Nevertheless, it must be noted that initial designs of these special-purpose proces-
sors were developed as dedicated units to support the rendering process conceived
for gaming and multimedia workloads, only. Thus, the design and development of
GPUs targeted different objective. Moreover, most of these GPU designs included
internal modules and functionalities that were not intended for extended verifica-
tion or targeting industrial certifications. In these cases, the initial GPU devices
were designed for a typical commercial operative life, supported by the fast moving
trends in technology, and constant changes in the requirements for the gaming and
multimedia industries. In fact, the first generations of these devices did not include
any fault-tolerant or reliability strategy to manage fault detection or mitigation.

Another relevant feature of GPU devices is the elaborated programming method,
which is based on high-level user-friendly programming environments. This method
is optimized for performance and fast application development [30], but complicates
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the development of testing and mitigation solutions. The high-level abstractions
of commands, the compiler optimizations and the missing information about the
Instructions Set Architecture (ISA) due to proprietary characteristics provoke issues
for system and integration companies, which lack of microarchitectural details. In
this scenario, modern GPU devices used for safety-critical applications still cannot
guarantee the functionality and reliability for long-term operation, so new solutions
for the on-line testing and fault mitigation must be developed.

In order to propose reliability and fault-tolerance strategies, a clear descrip-
tion of a GPU is required. For that purpose, this chapter provides the general
microarchitectural organization of a GPU and the main relevant modules in its
architecture. The microarchitectural organization provides a common terminology
used across the following chapters, and also allows the identification of the main
operative modules in a GPU. Then, a brief overview of reliability strategies and
fault-tolerance methods for GPUs is provided, so allowing to identify actual meth-
ods and possible open questions. More in detail, several GPU models and tools are
presented. These models are commonly used to explore, implement and validate
strategies in reliability research. Finally, the introduction of a new microarchitec-
tural GPU model FlexGripPlus is presented. Moreover, the description includes
the list of detailed changes and improvements. This model is intended to support
the development of fault testing and fault mitigation strategies. For the purpose of
this work, the NVIDIA terminology is employed to describe the microarchitectural
composition of a GPU.

Section 2.1 introduces the general architectural organization of a GPU and its
main relevant internal modules. Then, Section 2.2 provides an introduction to the
main reliability challenges in GPU devices and the available reliability solutions.
Section 2.3 describes the tools for reliability research. Finally, Section 2.4 introduces
and describes the FlexGripPlus GPU model as a tool to explore, evaluate and
validate methodologies aiming to improve reliability in GPU devices.

2.1 Architectural organization of a GPU
GPUs are specialized parallel processors, which work as special-purpose proces-

sors (Hardware Accelerators), in the processing of data-intensive and highly parallel
applications. At the beginning (early 90’s) these devices were designed and devoted
to accelerate 2D/3D rendering and geometry processes for multimedia-based appli-
cations [31].

The initial generations of GPUs were modeled and based on the concept of a
Graphics or Rendering Pipeline [32]. This concept is based on the idea of a single
graphics core composed of a set of hardware cores, organized as a pipeline, able to
process graphics. More in detail, the graphics core includes a set of fixed-function
pipeline stages (Pixel Shading Pipelines), implementing the required operations
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(Application, Geometry and Rasterization) to transform 3D coordinates into 2D
pixels, which are commonly employed in multimedia operations. The coordination
and management of the fixed-function cores is performed through a host using
APIs, such as OpenGL or DirectX [33].

The next generations of GPUs started to provide programmable features into
the fixed-function cores, so enabling their configuration and extending their capa-
bilities. This programmable trend was exploited in successive generations of GPUs,
so evolving from fixed-function pipelines into microcoded processors, configurable
processors, programmable processors and finally reaching GPU architectures based
on Scalable Parallel Processors [34], which provides the general purpose function-
ality.

Modern GPU architectures exploit the best trade-off between state-of-the-art
approaches in processors’ design and traditional parallel architectures. More in de-
tail, these new GPU architectures adopted more flexible processing cores allowing
the general-purpose computation as GPGPUs. These General-Purpose GPUs are
based on a multi-core design using massive parallel processors to perform highly par-
allel computations (see Figure 2.1). These fully programmable cores are known as
Unified Programmable Shaders, Shader Cores, Single-Instructions Multiple-Thread
(SIMT) cores [35] or Streaming Multiprocessor cores (SMs) [34].

In these new architectures, the traditional Graphic Pipeline is just a sotfware ab-
straction and is replaced by one or several SMs able to perform all operations, which
were previously performed in the hardware cores of the former GPU generations.
The SMs are mainly composed of several scalar cores, also known as Streaming/S-
calar Processor cores (or SPs), and can operate sufficient parallel threads in an SM.
More in detail, each SM processes the same instruction for several threads which
are computed in the available SP cores in the SM.

The execution of a parallel task in a GPU is directly related to the microar-
chitectural organization and the configuration parameters defined in the task by
the programmer. Firstly, the total scalable number of parts of the tasks (blocks) is
defined. This parameter is internally managed by one or more general controllers
in the GPU (block scheduler). The main purpose of the block scheduler is the sub-
mission and assignment of each block into the available SMs in the system. Then,
each SM subdivides the block task into several sets of threads (also called Warps or
Wavefronts) that are operated in parallel on the available SPs. The operation inside
the SM follows the Single-Instruction Multiple-Data (SIMD) paradigm [36] or vari-
ations, such as the Single-Instruction Multiple-Thread (SIMT), when control-flow
divergence among threads is allowed.

On the one hand, a multi-SM GPU architecture provides coarse-grain manage-
ment of scalable data and task parallelism to execute multiple coarse-grain blocks
of the same task, possibly in parallel. Furthermore, in modern GPU architectures,
it is also possible the parallel execution of several blocks of two or more tasks. In
this case, the blocks are associated to the available SMs, so the GPU follows the
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Figure 2.1: A general scheme of a modern GPU architecture.

Multiple-Instruction Multiple-Data (MIMD) paradigm. This behavior is possible
due to an extensive interconnection network linking the SMs in the systems and
the memory resources in the GPU.

On the other hand, the available SPs in each SM provide fine-grained man-
agement of data and thread-level parallelism to execute hundreds or thousands of
fine-grained operations (threads) in parallel.

It is worth noting that the same essential modules can be located in a GPU
device among different manufacturers. These modules include controllers, process-
ing elements or SMs, and the structures for accessing the memory resources. Some
designs also include independent accelerators in parallel to the available SMs for
specific purposes, such as texture modules, which are mainly devoted to rendering
procedures in the multimedia domain. The composition of the processing elements
and the dedicated accelerators directly depends on the device’s operational targets
and potential constraints in terms of power, area or performance.

2.1.1 The Streaming Multiprocessor
The SM is the main operative workhorse module inside a GPU and executes an

assigned task in parallel. As introduced above, each SM includes a set of execu-
tion units, which are used to perform logic-arithmetical (INT)/floating-point (FP
32/64) operations. More in detail, the SMs are designed using optimized instruc-
tion set architectures (ISAs), which are an adaptation of Reduced-Instruction Set
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Computer (RISC) instructions into the parallel architecture domain to exploit the
SIMD computer taxonomy and other paradigms, such as the SIMT variation by
NVIDIA Corporation. Thus, the SMs are special-purpose SIMD (or SIMT) pro-
cessors (Engines) [37]. Internally, the tasks assigned to the SM are divided into
multiple groups of threads (Warps, Work-Groups, Thread-Groups or Wavefronts) to
be executed in the available resources. The size of the groups varies from 32 up to
128 threads across different technologies and architectures. This group size depends
on the operative granularity of the structures inside the SM and it is commonly
fixed according to the granularity of a given device.

Figure 2.2 shows a general scheme of the architecture of an SM. As observed,
the SM is mainly composed of one or multiple scheduler controllers (instruction
schedulers) and dispatcher units (1), several execution units (SPs and FPUs) (2),
Special Function Units (SFUs) or T-Streams (3), one instruction cache memory
(4), associated logic for instruction fetching and decoding (5), one Local Regis-
ter File (6) and a Shared memory (7), a module for divergence management (8),
Load/Store Units to access the memory resources (LSUs) (9) and most recently
additional special-purpose accelerators, including Tensor Cores Units (TCUs) (10),
targeting the operation of matrices in hardware[38][39]. Furthermore, mostly all
SM architectures include vertex accelerators and dedicated texture memory blocks
which are commonly used for multimedia applications, but not always exploited in
the general-purpose domain. New generations used to combine the texture mem-
ory and the Shared memory in order to extend the flexibility of these modules for
general purpose applications.

The Register File and the Shared memory are organized as banks, so allowing
the parallel access by the processing threads [40], [41]. Moreover, other structures
are located inside the SM, including a small local memory, some interconnection
networks (Crossbars and Meta-crossbars) and embedded memory structures storing
the predicate and the address registers for indirect memory operations. The SM
is internally divided in several pipeline stages to take advantage of the instruction
level parallelism in the SIMD architecture.

The execution of one task in the SM starts when the block scheduler assign a
workload. First, the scheduler controller selects one of the listed warps to operate
and dispatches it for execution. Then, one instruction is searched and decoded from
cache memory.

After this process, operands and opcodes are selected for each thread in the
warp, so reading from any of the memory resources. Then, the warp instruction
is issued for parallel processing into the available processing elements (SPs, FPUs,
SFUs, etc).

Finally, results are stored in selected memory locations and one new instruction
is dispatched. Inside an SM, the processing elements can be organized in parallel
starting with groups of 4 up to 128 SP cores [42][43][44]. Each SP is intended
to operate one thread of the task on independent data operands. In principle,
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Figure 2.2: A general scheme of the internal organization of a Streaming Multipro-
cessor in a GPU.

the processing elements and the threads are statically distributed. However, it is
also possible to find architectural variations adding crossbar modules, so allowing
a dynamic allocation of threads into the available processing elements.

It is worth noting that some manufacturers modify the granularity and com-
position of the SM, so proposing versions of SMs as combination of two, four or
more SMs cores. However, the internal operation remains almost equivalent. In
such cases, a new scheduler controller is common for all SMs and it is in charge of
starting the execution by submitting the tasks to each SM.

The next subsection describes further details regarding the composition of the
most relevant internal modules in the sM.

2.1.2 Execution units
The SPs (also known as Stream cores or CUDA cores) are the basic scalar units

in the SM. These units are employed to perform efficient integer or floating-point
operations on one active thread [45], [46].

The microarchitectural implementation of these units is commonly guided by
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restrictions in terms of power, performance and area [47]. Thus, these units include
several optimization strategies to execute operations in a limited amount of clock
cycles. More in detail, the overlapping of functionalities and operations in both
units (INT and FPU) are the most used approaches in modern designs of these
digital arithmetic units [48], [49], [50]. Another approach aims at reducing power
consumption by applying circuit gating into specific parts of the arithmetic circuit,
while maintaining precision in the operation [51].

The integer units are able to process signed and unsigned arithmetic operations
in several formats: reduced precision (8 or 16 bits) and normal precision (32 or
64 bits). Furthermore, the FPUs commonly implement the IEEE 754 floating-
point arithmetic standards for 32-bit single-precision and 64-bit double-precision.
Moreover, the FPU includes a fused multiply-add (FMA) operation with no loss of
precision and maintaining full precision by storing intermediate results, during the
product and addition.

Recent versions of SMs also include individual FPUs for single (32 bits) and
double-precision (64 bits) operations with independent instructions to access each
resource. Other versions of SMs also include scalar programmable units, so allowing
inside the SM the concatenation of two single-precision units to perform double-
precision operations.

2.1.3 Special Function Units
The SFUs are special hardware co-processors aiming at optimizing operation

of trigonometric and transcendent functions, such as SIN, COS, SQRT, EXP and
LOG. These units are often present in SMs, since complex image processing algo-
rithms are typically operated in many GPU applications [52], such as multimedia
operations and also in scientific ones. These modules are present in the SM in a
lower number than INT and FPU units and are shared among the active threads
in the SM.

In principle, the SFUs are designed using two main approaches: i) iterative and
ii) non-iterative. The first approach is devoted to executing iterative algorithms
that converge linearly or quadratically to the result, such as the COordinate Rota-
tion DIgital Computer (CORDIC), Newton-Raphson and Goldschmidt algorithms,
which are more oriented to improve area with acceptable accuracy and precision
[53]. On the other hand, non-iterative architectures are based on table-based solu-
tions and polynomial and rational approximations, such as those based on quadratic
and bi-quadratic interpolation using enhanced minimax approximations, which are
more oriented to optimize power consumption with high accuracy [54][55]. The
non-iterative architectures of SFUs are commonly included as part of modern GPU
architectures.
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2.1.4 Memory hierarchy
GPUs are parallel architectures and are mainly based on big arrays of parallel

processing cores. However, each core requires data operands to process. A memory
hierarchy in the GPU supports the load and the storage of operands employed by
each thread. In these parallel architectures, the massive number of active threads
per applications forces the adoption of several levels of memory resources to hide
latency when the instructions are executed.

The memory hierarchy of a GPU can be divided mainly in two groups: "In-chip"
memories, which are located inside the SM core, and "Out-chip" memories that are
external to the SM and are commonly shared among the SMs. However, it must be
noted that this classification is not directly related with the real implementation
inside or outside the GPU chip, but provides a hierarchy of the different memories
employed for SMs in a GPU.

The "In-chip" memories are composed of the Register File, the Predicate Reg-
ister File, and the Address Register File. All memory resources are distributed
among the active threads and the available functional units of the GPU core, so
each thread has singular access to data operands. The fastest "In-chip" memory
resource is the Register File and, as introduced above, is organized in banks and
is dynamically distributed during the configuration phase of each parallel program
(kernel). This configuration defines the number of registers, on each bank, that
can be accessed by each thread. Depending on the architecture of the core, the
maximum range of registers per thread is defined in the range from 64 to 128
registers.

On the other hand, the Predicate Register File is employed to store the predi-
cate flags per thread as result of logic, arithmetic and setting instructions. These
predicate flags are also employed as conditional input in conditional assessment
operations. The predicate register file is also organized in banks inside the SM;
this module is small in comparison with the register file and depending on the ar-
chitecture, each thread has access to a variable number from 4 to 12 of predicate
registers [56].

The Address Register File is also distributed among the cores during the con-
figuration phase of a parallel program and its main target is the indirect addressing
of any out-chip memory, so providing efficient parallelism and maintaining the
performance when accessing shared memory resources [57]. Moreover, this unit
is intended to avoid race conditions, which are produced when several threads of
different warps and blocks require the same memory element, originating multi-
ple repetitive load procedures. The Address Register File addresses the shared,
constant and local memories.

Regarding the out-chip memories, these memory resources are employed to share
data operands among the warps, blocks, and even SMs in a GPU. The first level
of these memories is composed of the Shared memory, which is devoted to store
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data shared amount warps and blocks in the same SM. The Shared memory has a
similar performance of the Register File and is also implemented as a set of banks
for parallel access [41][58]. However, it is relatively small in size (16KB-64KB),
so it is commonly used when a finite set of data must be processed by several
blocks or when minimal latency is required by an application. The most recent
implementation of the Shared memory maintains the bank organization, but now
it is combined with the first level of cache data memory as a unified module [35].

The Local memory is a small memory employed to store array-type data used in
a parallel program. This memory is available for each SM and is mainly used when
the program kernel employs any type of consecutive structures, including arrays,
vectors or matrices, so if the structure fits in the Local memory, the compiler selects
this memory to perform fast operations on consecutive data operands.

The constant memory is an "Out-chip" Ram memory storing constant parame-
ters during the execution of a parallel program kernel. This memory is programmed
during the configuration phase and it behaves as a read-only memory when execut-
ing the program. This memory is shared for all threads in a block and all available
SMs can access this memory resource.

Finally, the Global (or Main) memory in a GPU is the slowest memory in the
entire memory hierarchy and it is the principal and biggest memory resource of
the GPU. This memory commonly employs several ports to serve load and store
operations. The size of the Global memory may vary in the range from 2GB to
32GB.

2.1.5 Scheduler Controllers
The schedulers in a GPU are devoted to organize and manage the execution

of an assigned task into the available parallel resources. This modules also submit
and trace the operations of the parallel tasks.

There are two main types of schedulers inside a GPU. The first type is the
general scheduler (also known as the Work Distribution Unit [40] or Block Sched-
uler controller), which distributes and traces the blocks (big portions of a parallel
program) into the available SMs of a device.

The general operation of the scheduler controllers starts after the GPU config-
uration. The block scheduler distributes the big portions of the parallel program
(blocks) across the available SMs in the system. Then, one or more local warp
scheduler controllers (on each SM) distribute and group the threads as Warps and
then submit them to the functional units. Once a warp finishes the execution of
one instruction, a new warp and its instruction is loaded and processed. This oper-
ation is repeated until the entire parallel program is executed. Then, a new parallel
program is loaded and the previous steps are repeated. It is worth noting that most
SMs are able to execute up to eight blocks per SM, so the change of warp context
switching is mostly managed by the local controllers.
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The distribution considers the total number of blocks to operate and the avail-
able SMs in the system, so several static distribution policies can be found in
these controllers and are used to manage the operation of an application, includ-
ing Round-robin, Least Recently Used (LRU) [40], and custom policies, including
FAIR [59], Thread block-based CAWS [60], and others [61]. Modern versions of
these controllers in GPUs include support for concurrent kernel execution and can
distribute two or more applications on the available SMs, so behaving as MIMD
machines.

The other type of controller is located inside the SM and its known as Warp
Scheduler Controller. As introduced above, this controller manages the assigned
blocks and splits them in Warps. Then, these warps are submitted for execution to
the available parallel functional units. This scheduler tracks information (number
of active threads and actual status of the warp) about the executed warps and
uses special purpose memories to store the information per warp. The scheduler
controller employs all previous information to perform the context switching during
the execution of one or more blocks in the SM. This controller also manages the
intra-warp divergence, so controlling the several instruction paths in the threads of
a warp.

The warp scheduler controller also includes similar scheduling dispatching poli-
cies as the block scheduler controller, from static policies based on round-robin and
custom approaches, up to dynamic and more elaborated ones (i.e., GIGAThread
technology by NVIDIA) including the management of data-hazards, instruction-
type constraints, and thread conflicts [35] [62].

In case of static warp distribution policies, a fixed algorithm is employed on
each controller to dispatch workloads and verify the correct execution. On the
other hand, dynamic distribution policies are intended to reduce the latency in the
execution of warps by duplicating the number of schedulers in the SMs, so the inter-
nal distribution of the SPs (INT and FPUs) contributes to optimize the execution
of the warps. This duplication allows the execution of half warps (executing two
instructions in the same instruction cycle) and splitting the available functional
units between the controllers.

Recent versions of the scheduler controller also provide control efficiently. In
case of intra-warp divergence (several threads from the same warp have different
paths and execute different instructions), these warp scheduler controllers have a
fine-grain control in the threads, which is obtained by storing additional information
per thread, so allowing the swapping of thread operations of several paths during
the warp execution [44].

Finally, recent architectures of warp scheduler controller also simplified the man-
agement procedures and replaces those complex algorithms inside the hardware
controllers by compiler optimization efforts in software. In this case, strategically
placed instructions are used by the warp scheduler controllers to manage the ex-
pected latency in basic blocks of instructions of the executed parallel program.[35]
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[63].

2.2 GPU devices Reliability
At the beginning, the traditional end-of-manufacturing testing was sufficient

solution for initial generations of GPU devices. However, new generations of GPUs
are more complex and transistor-dense devices, which are used in new applications
of the safety-critical domain, so those traditional techniques are not sufficient any
longer to guarantee the correct in-field operation.

Nowadays, modern GPU architectures employ several fault-tolerance strategies
to increase reliability and also satisfy the industrial reliability and functional safety
standards. These strategies can be mainly divided in three types: i) design decom-
position, ii) hardware techniques, and iii) software techniques.

In the first case, the manufacturer and designer companies balance the design
and select, for a given product, the specific reliability and testing goal according
to the industrial standards [64, 65]. These standards suggest countermeasures to
guarantee the correct operation of the device during the production stages and dur-
ing the in-field execution. Modern manufacturer strategies also used to consider
the feedback from costumers in order to improve reliability features [66]. In some
reliability and safety designs for automotive, for instance, the manufacturer takes
advantage of standards restrictions by decomposing the design (ASIL decomposi-
tion of the design) [67].

In this decomposition approach, the systems can be decomposed into several
modules, analyzed individually and finally protected [68]. However, complex de-
signs and systems used to include modules from other manufacturers. Generally
those modules without detailed structural information, or those that cannot be eas-
ily modified (such as GPUs) remain unprotected, but huge effort is used to increase
the reliability of the surrounding components, so fulfilling the global reliability
restrictions. At the end, the entire design matches the required ASIL level, but in-
ternally not all the modules achieve such a level. This method can be used for huge
systems involving GPUs, but the local reliability of the GPU remains unvarying.

The second method directly improves the reliability of the GPU by adding
modules and hardware structures into the design phases.

The use of fault testing and mitigation strategies, such as Error Correcting
Codes (ECCs) [58], [69], can extend the reliability of several components of the
memory hierarchy of a GPU, including the Register Files, cache memories and RAM
memories. However, this solution is not feasible for execution units and controllers
in the system. In those cases, combinations of the state-of-the-art techniques are
usually employed. Authors in [21], proposed an in-system-structural-test (IST)
solution based on the adaptation of the original GPU design by the refinement
of the internal IP cores to increase the fault detectability. Then, a large set of
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testing structures (scan chains, MBIST, XBIST, LBIST) and additional controllers
are included to test and verify the correct operation of the device during the in-
field operation. The new structures were included considering power-gating and
phase-staggered clocks to reduce the overhead of power budgets. These in-chip
mechanisms also provide debug and diagnosis features when faults are detected. It
is worth noting that these solutions require huge efforts during development and
high costs in terms of area overhead with a moderate cost in performance.

Software mitigation solutions can also be adopted in GPUs. These solutions are
based on code adaptations to mitigate fault effects using functional and algorithmic
methods [70], [71].

The functional methods are based on traditional redundancy mechanisms and
selective hardening solutions [72], such as Duplication with Comparison (DWC),
Triple Module Redundancy (TMR) or custom-optimized techniques [73], [74]. On
the other hand, the algorithmic methods are based on code modifications applied to
specific algorithms to provide hardening and include the development of software-
based ECC [75], Algorithm-Based Fault-Tolerance (ABFT) for FFT [76], wavelets
[77] and Matrices operations [78], [70], [79, 80]. Nevertheless, these methods are
limited to linear algebra operations [81] and the performance degradation and mem-
ory over-head can become relevant, so compromising the real-time constraints of
some GPU applications. In contrast, there are a few proposed solutions of func-
tional testing on GPUs, which are mainly adaptations of processor-based strategies
such as pseudo-random or March algorithms [82]. However, the biggest constraint
factor in the development and adoption of these solutions is the limited architec-
tural details and available information of these commercial products, so limiting
the possibility to develop methodologies and strategies. The other factor is the
missing fault observability to validate techniques using commercial devices.

Further details and an extended description of the fault-tolerance strategies is
presented in the chapters 3, 4 and 5.

The brief introduction of the strategies shows that protecting and increasing the
reliability features in GPU devices is not a simple task. In fact, most efforts to in-
crease reliability are mainly developed by the design and manufacturing companies
which have access to all descriptions and details for that purpose. Furthermore,
these solutions cannot be always used and are limited by the availability of those
fault-tolerant structures in a device. Moreover, the independent development by
system integration companies is not always possible.

The reliability in GPUs is motivated, as introduce above, by the mandatory
need of guaranteeing the correct operation of safety-critical applications. More in
detail, there are three main methods to evaluate the reliability of GPUs. Two of
these can be also employed to explore and validate testing and mitigation strategies.
The three methods are: i) laboratory experiments, ii) software-based experiments,
and iii) fault simulation experiments.

In the first case, laboratory experiments are performed by exposing real GPU

21



GPUs in safety-critical applications

devices to a external source that provokes fault effects in the operation of the de-
vice, such as radiation. Then, special applications or benchmarks are employed
to evaluate the fault sensitivity of a device. The results are then examined and
scrutinized in order to identity, characterize and theorize the main causes of the ob-
served faults and errors in the applications. This reliability evaluation is performed
in costly specialized equipment in facilities and laboratories with the available ra-
diation sources and is preferred by the academic community and the industry to
evaluate and analyze the effects of faults in new devices and those implementing
mitigation strategies. It is worth noting that similar procedures can be applied to
other external sources causing fault behaviors in the GPU, such as electromagnetic
effects.

In the second case, the software-based experiments are also performed on real
devices. In this method, the procedure consists on injecting faults by corrupting
the executed instructions of an application, so mimicking the effect of a fault in a
module of the device. This method allows the analysis and the evaluation of fault
effects on several data-path modules of a GPU and it is a valid and comfortable
option to evaluate or explore software-based hardening techniques in GPU devices.
However, this method presents difficulties in representing faults (allocation of in-
structions behaving as faults) on specific modules and specially on those devoted
to perform control and management functionalities.

Finally, the third method is based on fault simulation experiments. This method
is performed using computational models representing the behavior, functionality,
and architectural details of GPUs at several abstraction levels. Furthermore, this
method is cheap and is the only method allowing the exploration, evaluation, and
validation of testing and mitigation strategies at software, hardware, or optimized
combinations of both without implementing the GPU device in silicon. This method
is flexible and allows easy adoption when the main target is exploring testing and
mitigation strategies and several design tools in the market, including functionalities
and utilities, allowing reliability analysis.

This method can also be employed in the reliability evaluation, but special
considerations are required in the selection of representative fault models and con-
straints of the computational GPU model. Moreover, this method demands a high
computational power for large analyzes. Nevertheless, its possible that this method
can provide accurate and realistic behavior of reliability evaluation applied to indi-
vidual modules of a GPU.

A deep analysis and evaluation of the previous methods and the main targets
of the research work show that a feasible method to explore, evaluate and provide
new testing techniques and mitigation solutions for GPUs requires the use of fault
simulation and computational GPU models by the high advantages in flexibility
and the fine-grain control during the experiments. However, the other methods
are not discarded and are considered as supporting tools in the development of the
research work.

22



2.3 – GPU models as tools for reliability research

The next section introduces an overview of the available GPU models. Then, the
developed FlexGripPlus GPU model is introduced as a tool to perform reliability
analysis, to explore testing techniques and validate mitigation strategies for GPUs.

2.3 GPU models as tools for reliability research
Currently, the exploration, development and research of innovative solutions

for testing, reliability evaluation and fault mitigation in GPUs are based on the
combination of several strategies.

The development of those procedures requires detailed information regarding
structural details and are supported on representative computational models of a
device. These models are employed to develop and validate the proposed strate-
gies, including those focused on in-field testing and mitigation of faults. Thus, it
is common that in these stages, engineering teams in companies and researchers
employ those models to accelerate the design and testing, so evaluating initial so-
lutions before to continue with implementation stages. Moreover, multiple levels of
abstraction are also employed for these purposes, combining several models, tools,
emulation devices and real devices to analyze and validate the potential solutions.

In the GPU field, the few available models are mainly employed at the academic
level to propose and explore fault detection and fault mitigation strategies. A set
of works on structural descriptions of GPUs (simulators) are also employed to
select the best execution trade-off of an application and also to evaluate execution
phenomena on this parallel architecture [83][84].

As introduced before, these models are relevant tools and are important in
GPU research topics from parallel programs or parallel architectures. Moreover,
the high variety and different architectural abstraction-levels allow the classification
of these models as Behavioral, Structural and Microarchitectural. Currently, other
hybrid approaches, to validate and verify strategies, include software profilers and
instruction-level fault injectors.

The behavioral models are used to perform the operation of a GPU without
considering the device’s internal organization. These are used in the first steps
of the design phase and are rarely available. Moreover, the limited number of
architectural features on those models limit their use when reliability and fault
testing are the primary goals. Other classifications are discussed in the following
sections.

2.3.1 Functional models
These models are developed to mimic the functionality and operation of a GPU.

Moreover, several models include a behavioral operation of the modules integrating
the organization of a GPU and the interconnections and transactions among their
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internal modules. Nevertheless, these models used to present limited microarchitec-
tural details, such as the internal operation of execution units. However, the main
target of these models is not to include such implementation details. Furthermore,
such amount of details extend the simulation time of the model adding irrelevant
information for the objectives of this abstraction level.

There are several GPU models at the functional level, most of them described in
high-level programming languages and using custom frameworks or also combining
commercial tools to perform the simulation. Multi2Sim [85] is a simulation frame-
work devoted to explore and validate heterogeneous hardware designs before they
are physically manufactured. This framework includes support for multi-hosts and
multi-GPUs, so designers and computer architects can modify and propose new
architectures or variations. Moreover, the framework also includes several bench-
marks for comparison and performance evaluation purposes.

Another widely-used GPU model is GPGPU-SIM [86], which is a functional
and structural simulator of GPUs. This model allows the designer to analyze,
at fine-grain level, the execution of a kernel in a selected module. It was origi-
nally developed to support the design effort of applications and architectures. This
model implements the midrange architectural structure and supports as inputs one
unaltered version of a CUDA kernel description. This simulator is the closest to
the real devices implementation by the behavior presented during execution. The
Barra functional simulator [87] models the NVIDIA Tesla GPU architecture em-
ploying the UNISIM framework combining the cycle-based and the transaction-level
modeling (TML) approaches. It is based on two layers. The first layer represents
the CUDA software stack, meanwhile the second functionally simulates the GPU.
The gputejas project [84] is an ava-based parallel GPU simulator employing a fast
trace-driven simulation. Its main advantage is the parallel processing of the tasks
employed for the simulation effort, which reduces the execution time in up to 17.33
times with respect to a serial operation. However, this is not a purely functional
simulator. This model uses the Ocelot framework to execute CUDA applications
and then simulates the traces in order to establish timing characteristics. Attila
[88] is a software-based simulator of GPUs. This is a detailed cycle-accurate and
execution-driven GPU simulator. Moreover, it is highly configurable. However, it
only supports the OpenCL programming model. Finally, GEM5-GPU [89] is an
extension of the GPGPU-SIM model. This simulator mainly represents an hetero-
geneous architecture, including a CPU core as host of the system.

Unfortunately, all previous functional models are not intended to perform fine-
grain reliability evaluation. In fact, most of them are mainly developed to represent
the functionality of a GPU device, so these cannot be used to perform reliability
evaluation or evaluate testing strategies at microarchitectural level. For those pur-
poses, custom frameworks for fault injection and evaluation are developed, such as
GUFI [90]. In fact, the addition of fault injection frameworks is challenging in some
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models when considering that changes into critical descriptions of a model may ac-
tivate undesired internal operations or create incorrect simulation procedures.

2.3.2 Microarchitectural Models
These models include more architectural details that the functional ones and

commonly a hardware description language (i.e., Verilog, VHDL) or any synthe-
sizable language (i.e., SystemC, System Verilog) is employed for their description.
In this level of abstraction, the model is composed of almost all required modules,
specifications and characteristics of a real device. The model is generally described
at Register Transfer Level (RTL) or gate level, which is preferable since it provides
a detailed representation of the internal structures. However, such models require
higher computational effort for simulation or emulation than the high-level ones.

In practice, the number of available GPU models to support reliability analysis
is limited. On the one hand, there are GPU models described as a combination of
multiple levels of abstraction, such as MIAOW [91], which includes a partial RTL
description (mostly execution modules) of the AMD Southern Islands architecture.
However, the control modules are described in a high-level programming language
and are not synthesizable.

On the other hand, there is a set of fine-grain GPU models available: IPPro
[92, 93], FGPU [94], Simty [95], Nyami [96] and FlexGrip [19]. The first four
models were designed targeting FPGA platforms using custom GPU architectures
and instructions sets. Thus, their custom architectures and implementation target
technologies would limit the capability for reliability analysis, especially when com-
mercially available GPU devices are concerned. On the other side, the architecture
implemented in the FlexGrip model is closer to commercial devices by NVIDIA.
FlexGrip also partially supports the binary compatibility with the NVIDIA G80
instruction set, and it is compatible with the CUDA programming environment.
Thus, in principle, the FlexGrip GPU model is clearly a good candidate as tool to
implement, design and validate testing, mitigation and reliability evaluation by the
direct similitude to commercial devices.

Unfortunately, a deep analysis revealed that the original version of FlexGrip had
some restrictions related to technology dependency, instructions format support,
and compiler compatibility, limiting the development and study of new applications
to support reliability analysis. For this purpose and in order to overcome the
limitations, several improvements were performed and in the end, a new version of
the GPU model called FlexGripPlus was released. The next section describes the
main advantages of FlexGripPlus and the performed changes.
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2.4 From FlexGrip to FlexGripPlus
The FlexGripPlus GPU model [97] [98] is a new version built on top of the

FlexGrip model [19]. This version is an extension of the original one and corrects
several limitations and bugs observed after a detailed inspection of the hardware
modules and the programming capabilities.

This GPU model was developed to support the fine-grain reliability evaluation.
In fact, the main advantage of this model is that fault effects can be explained
based on conclusions inferred from observed effects on individual modules of the
GPU core, since manufacturers do not specify the internal composition and the
conventional experiments performed by scientists and researches cannot focus on
specific sub-modules. Thus, the development and support of a microarchitectural
GPU model, including additional details, is crucial to evaluate reliability and fault
sensibility on internal modules. Moreover, FlexGripPlus is a suitable as tool to vali-
date the development of test and mitigation strategies on GPUs with the advantage
that hardware overhead, performance and power metrics can be determined.

FlexGrip (the original model) is based on a Streaming multiprocessor (SM)
mainly composed of five stages of pipeline (Fetch, Decode, Read/Issue, Execute, and
Write-Back). The model is configurable and the total number of parallel Streaming
Processors (SPs) in the Execute stage can be selected, before synthesis or simulation,
among 8, 16, or 32 parallel cores.

The FlexGrip model also includes a basic memory hierarchy composed of the
system memory, the Register File, the global (or main) memory, the shared mem-
ory, and the constant memory. It is worth noting that cache memories are not
included in the model. However, other minor memories, such as the Address Regis-
ter File and the Predicate Register File, are included in the model and distributed
among the available SP cores. Regarding control units, the model includes two
task schedulers (Block Scheduler and Warp Scheduler), both adopting a round-
robin algorithm as a distribution policy to manage intra-warp divergences caused
by a branch instruction and also allow the control of kernels composed of several
blocks in case of a multi-SM configuration. A custom branch module is imple-
mented with a stack memory (denoted as “Divergence Stack”) to handle up to 32
levels of divergence. Please note that there are registers between different stages
of the pipeline. One structural comparison between the FlexGrip model and the
commercial GPUs (from NVIDIA) indicates that both share the same basic func-
tional structures, including the block and warp scheduler controllers, the Register
File, the parallel execution units, and the pipeline stages. Nevertheless, parts of
the memory hierarchy in FlexGrip differ from the one in the commercial devices
by the missing cache memories. Moreover, FlexGrip has no floating-point modules
or special-purpose accelerators. These structural limitations in FlexGrip can af-
fect the adoption of the most recent applications and limit testing and mitigation
techniques. However, this model is suitable as a base model to perform analysis
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of reliability and fault effects on data-path and control-path modules that can still
be meaningful with respect to the commercial devices considering the architectural
similarities between them.

One of the main advantages of the original FlexGrip is the structural similarity
with the G80 architecture of NVIDIA and the compatibility with its commercial
tool (CUDA). Moreover, the complete description of the GPU core, including the
controllers, in RT-level provides the possibility of analysing and observing fault
effects on those critical modules of these parallel architectures.

The development of the new version take into account the original structures
and the overall architecture, so instead of changing the complete description of the
model, it was completed and extended so providing a better understanding of other
structural behaviors.

The major limitations of the original FlexGrip include the dependency on a
specific technology (the Xilinx FPGA library), the limited number of supported in-
structions, and the partial compliance with the CUDA programming environment.
The first step was the verification of the correct operation of each initially sup-
ported instruction. Then, the newly added instructions have been carefully verified
for correctness. To achieve this, a methodology to improve the FlexGrip model and
produce the FlexGripPlus version has been used based on the following steps:

• Rigorous structural analysis of the FlexGrip model

• Development of basic test programs to verify each instruction supported by
the design

• Simulation and interpretation of results

• Definition of potential corrections

• Application of the revisions and verification with previous programs

• Development of new applications based on typical applications and workloads
for validation purposes.

In the beginning, the analysis of the internal structures in FlexGrip revealed that
some modules were incomplete, including the distribution controller of the Register
File (RF), the Decode stage, and the Execution stage. These incomplete modules
can lead to incorrect results under certain circumstances and must be fixed. Then
(in step 2), a large number of specific applications were developed to generate all
the potential format of the supported instructions and verify the correct execution
of each instruction. Each program was developed using the CUDA environment
when possible, or directly at the assembly level (SASS).

In this step, the incompatibility issues between the instruction decoding im-
plemented in FlexGrip and the binary code generated by the CUDA environment
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have been identified and fixed. Furthermore, for each modification, steps 3 to 5 have
been repeated to verify the correctness of the new implementation. This method-
ology should serve as a guideline if the model has to be further improved and new
modules have to be added. More in detail, in the process of implementing the
FlexGripPlus from the original FlexGrip, the introduced changes can be divided
into three groups:

• Technology dependency

• Instruction format support

• Compiler restrictions.

The next subsections provide the actions performed on each change.

2.4.1 Technology dependency
The FlexGrip model was initially designed as a soft-core targeting a Xilinx

FPGA, and some internal modules, such as the memories, were automatically gen-
erated as IP cores using the Xilinx System Generator tool. The descriptions of these
IP cores are not human-friendly to read or analyze and significantly limit the pos-
sibility to perform the required gate-level analysis when performing modifications
or when validating any proposed mechanism for fault testing or mitigation.

In FlexGripPlus, each module was carefully modified by removing any refer-
ence or dependency on specific technology libraries, replacing them with equivalent
generic descriptions. Through this process, the names of signals, interconnections,
and modules were clarified to simplify the analysis on each signal when performing
any reliability evaluation. In the end, about 40% of the modules were modified for
this purpose. It is worth noting that after this procedure, the model can now be
easily imported into different simulation environments, including ModelSim, Ques-
taSim, and Xcelium Parallel Simulator. Moreover, the removal of the technology
dependency from the model allows mapping the model into other platforms or
technologies that were not previously supported, such as ASICs. The FlexGripPlus
model has been synthesized using proprietary or independent technology libraries,
such as the ASIC 45nm OpenCell [99] or the 15nm OpenCell [100] libraries.

2.4.2 Instruction format support
The original FlexGrip implementation was intended to be compatible with the

CUDA programming environment through SASS instructions. However, thanks
to a detailed process of simulation and analysis, using a set of test programs to
check each instructions, it was possible to observe that some internal modules in
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control- and data-path units, such as decoding logic, intermediate registers, and
block interconnections, were missed or partially implemented.

Hence, we started from the initially supported instructions in FlexGrip, and each
instruction was verified against the NVIDIA CUDA programming environment.
Unfortunately, NVIDIA has not officially released the SASS op-codes (i.e., the
instruction formats and the binary meanings) so, a big effort was performed on
decoding most instructions (the op-code and formats) based on reverse engineering,
the CUDA binary tools, namely nvcc and cuobjdump, and also supported on some
independent projects1 [63].

Additionally, multiple verification benchmarks were designed targeting specific
instructions, so forcing the compiler to produce the target instruction op-code under
various formats. The previous process requires the explicit combination of high-
level routines and pseudo-assembly commands (PTx). Moreover, some issues (such
as the compiler optimizations, the out-of-order mechanism in the compiler that
changes or removes instructions) required the explicit addition of numerous output
memory locations in the micro-kernels.

All required changes (e.g., descriptions of missing registers, connections, com-
binational logic, or the correction of incomplete modules) were introduced in the
FlexGripPlus model to fully support the set of instructions with all the format
variations, including a first version with 28 instructions and 74 formats. Appendix
A shows the supported control-flow, arithmetic, logic, data-handling and memory
instructions and their formats.

In the end, about 4.8% of the code in FlexGrip was modified for this purpose.
Most of those modifications were performed in the Decode and Read stages of the
pipeline in the SM.

2.4.3 Compiler restrictions
The primary approach to develop new applications for the FlexGrip model was

based on the CUDA programming environment. After the instruction compatibility
issues mentioned above were fixed in FlexGripPlus, there was still a gap between all
the instructions that can be generated by the CUDA compiler and the instructions
supported in FlexGripPlus. Hence, three software tools have been developed to
check and preserve the compatibility between the CUDA programming environment
and the FlexGripPlus implementation.

Firstly, an assembly language checker tool, named "SASS checker", has been
developed to check the binary code generated by the CUDA compiler nvcc against
the instructions supported by FlexGripPlus. If any unsupported instruction is gen-
erated by nvcc, then the second tool, an assembly code writer tool named "SASS

1https://github.com/laanwj/decuda
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parser", can be used to convert any unsupported instruction into one or more sup-
ported instructions with the equivalent operation. However, in case of failure of
such a conversion attempt, the tool reports an error, and the user manually modifies
the source code to avoid the generation of unsupported instruction.

Thirdly, a memory configuration tool named "Index corrector" can verify and
correct the mismatches in the addressing indices, which are used to address the
memories during the execution of an application. The index corrector is required
considering that the locations to store the variables in a program are managed and
decided by the compiler tool without any significant user intervention. However, in
multiple applications, it is required to verify and correct the indices used to address
the memories of the system since the CUDA compiler always prioritizes the perfor-
mance execution over any explicit memory placement. Thus, the compiler chooses
the best trade-off between performance and memory operands in an application
to store elements in any of the available memory resources, managing the global,
shared, local and constant memories. These three tools successfully contribute to
reducing the time to develop or adopt new applications for FlexGripPlus. These
three tools are also used in step 6, mentioned previously, to design new applications
aiming at verifying the operation of FlexGripPlus.

Two main extensions were added to the FlexGripPlus model and in both cases
referring to execution units. As introduced before, the original GPU model was
only able to perform integer operations, so reducing the possible development of new
applications or the development of complex strategies for fault testing or mitigation.

The first extension targets the addition of floating point units (FP32) in single
precision format as suggested in the G80 architecture [42]. The module is imple-
mented as a combination of combinational and sequential modules able to process
up to three operands. More in detail, the FP32 is composed of four modules:
addition, multiplication, fused multiply and addition and conversion. These mod-
ules are located in parallel and some additional multiplexers, registers and a small
controller selects the operation depending of the incoming instruction.

The FP32 module is devoted to perform the addition (FADD), subtraction
(FSUB), multiplication (FMUL), multiplication and addition (FMAD and FFMA),
division and conversion (float to integer, integer to float). The Decode, Read/Issue
and Execute pipeline stages were modified to include support for the instructions
and functional units. The FP32 were also located in parallel to the existing integer
cores (SPs) and the flexibility features of the original model were also extended to
this module, so in FlexGripPlus it is possible to select among 8, 16 or 32 FP32
units.

The second extension targets the addition of the Special Function Units (SFUs),
which are devoted to perform the trigonometric and transcendental operations in
the core. The design of this module followed the bi-quadratic approximation ap-
proach [54, 55], as suggested in the G80 architecture guidelines [42]. This module
can execute the base logarithm (LG2), base 2 exponent (EX2), sin (FSIN), cos
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Table 2.1: Comparative analysis of main features in the FlexGrip and FlexGripPlus
models

FlexGrip FlexGripPlus

Instructions • 28 instructions
(partially supported)

• 52 instructions fully supported
• 85 formats of instructions verified

Programming
environment

• Partially compatible
with the CUDA programming
environment.
• A manual mechanism
to compile the CUDA (.cu)
file and adapt to the model

• Partially compatible with
the CUDA programming environment.
• A tool to translate the CUDA (.cu)
description into the final binary file
used in the model
• A tool to develop applications
at the assembly level (SASS)
• A tool to verify the compatibility
of the generated assembly code.

Applications • Only 5 benchmarks • More than 20 verified
applications

Simulation or
Implementation

platforms

• Simulation (ISIM, VIVADO
simulator)
• FPGAs (Xilinx)

• Simulation (ModelSim,
Xcelium Parallel Simulator, ZamiaCad)
• FPGAs
• ASICs

Memory management
support -

• An additional support to manage
the address register file employed to
access the Shared memory

Support for
Floating-Point operations No Yes: Floating point

in single precision (FP32)
Support for trigonometric

and transcendental operations No Yes: LOG2, EXP2, SIN,
COS, RCP, RSQRT

Documentation and manuals No Programmer’s manual and
Quick Starting Guide

(FCOS), reciprocal of the square root (RSQ) and the reciprocal (RCP) instruc-
tions. The main advantage of this module is the overlapping of functions, so all
operations are executed using the same sub-modules that are based on memories
and a combinational tree, so reducing the hardware overhead and maintaining the
precision of each operation. The SFU module, as the FP32, was integrated into
the GPU model to exploit the configurable features before simulation or synthesis.
Thanks to the development of both extension, it was also possible to develop an
alternative SFU module integrating other architectures devoted to mobile applica-
tions [101]. The FlexGripPlus model can use any of these two SFU versions.

Table 2.1 shows a comparative analysis of the main features of FlexGrip and
FlexGripPlus. Furthermore, it lists the introduced modifications, their effects and
main improvements mentioned above. It is worth noting that one additional instruc-
tion (ADA) was implemented, which is fully compatible with the CUDA program-
ming environment. The main purpose of the ADA instruction is the management
of the address register file modules to address any external memory resource (such
as shared or constant memories) to the GPU core.

The FlexGripPlus model is open-source and available for download from two
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Figure 2.3: A general scheme of the internal organization of one SM core in the
FlexGripPlus GPU model. The modules in gray represent the added modules or
modified from the FlexGrip model

open repositories 2 3. Furthermore, the manuals for programmers 4 (containing all
supported instructions and instruction formats) and the user’s guide of the model
are also available for download.

Fig 2.3 depicts a general scheme of the internal organization of one SM in
FlexGripPlus. As can be observed, all modules in gray are those modules and
submodules modified, debugged or added into the GPU model.

Besides the improvements made towards increasing the set of supported instruc-
tions, another significant improvement in FlexGripPlus is the technology indepen-
dence. This independence allows the usage of the model at a lower level without
any limitation related to the targeted gate library and the simulation tool. More
importantly, in this way, it is possible to investigate the fault effects with fault
injection techniques targeting specific modules.

Although FlexGripPlus implements the NVIDIA G80 microarchitecture (as in-
herited from the original FlexGrip model), it includes all principal and critical
modules, which are also present in modern GPGPU architectures. Moreover, the

2https://github.com/Jerc007/Open-GPGPU-FlexGrip-
3https://opencores.org/projects/flexgripplus
4https://doi.org/10.5281/zenodo.3819313
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compatibility of the model with commercial programming tools allows the use of
the same tools as in real application development (with minimal limitations).

2.5 Conclusions
This chapter described the fundamentals of GPU devices used in safety-critical

applications and the main challenges and issues in performing testing and mitiga-
tion of faults in modern GPU technologies. Moreover, this chapter also introduced
the microarchitectural fundamentals of the GPU architecture, their main archi-
tectural composition and the main reliability challenges. Then, several tools were
introduced, which are commonly used in research for design, verification and vali-
dation of new GPU architectures and also to evaluate fault-tolerance solutions in
GPUs.

Finally, this chapter also introduced and depicted the development of an open-
source microarchitectural GPU model (FlexGripPlus), which is a tool to support
at fine-grain level of reliability evaluations experiments and also the development,
implementation, validation and evaluation of in-field functional testing techniques
and mitigation strategies.
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Chapter 3

Analysis of transient fault effects
in GPUs

Nowadays, GPUs are among the most complex devices available in the market.
The high density of transistors and the high complexity in their implementation
includes several reliability challenges. Moreover, as introduced in Chapter 1 and
2, modern GPU devices are prone to suffer of transient fault effects, which can be
critical during the operative life of a device devoted to safety critical applications.

Since GPUs are moving to markets where reliability is crucial, GPU vendors
have worked to design platforms compliant with reliability standards (such as
ISO26262). In the meanwhile, the academic community has been carefully studying
GPU reliability with different approaches, including software-based and emulation-
based fault injection [102, 103, 104, 105, 106], and beam experiments [107, 108].

In several works [10, 109, 110], the authors analyzed these phenomena reaching
some relevant conclusions that can be applied from the design up to the system
integration levels. They identified sensitive modules in the memory hierarchy of
the GPUs, such as the main memory, the shared memory resources, the register
file and the caches, that compromised the execution of applications [111, 112].
In [113], the authors shared an introductory evaluation of the register file of a
GPU core using a detailed micro architectural evaluation on several representative
applications. Authors in [114] analyzed the effect of optimizing the average time to
access the memory resources and observed the increasing on the sensitivity by the
use of additional resources and some unprotected registers.

Other works explored the reliability and fault sensitivity on the execution cores
of GPUs [115]. In [116], the authors explore the effect of hardware and software
implementations of Floating-point units in soft-GPUs. The conclusions showed
that hardware modules can present fault sensitivity of up to 18 times in compari-
son with the software-based implementations in the device. Authors in [117, 118]
observed that fault-tolerant mechanisms, such as ECC, can contribute to decrease
the fault rate, but unprotected areas of the device are still sensitive and are prone
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to produce critical effects on the device, including crashing effects. Similarly, other
modules were analyzed, including the execution units used in modern applications,
such as neural networks [119, 120, 121], observing the main effect and also propos-
ing mitigation strategies to reduce the effects. Authors in [122] evaluated and
demonstrated the minor fault effect of modifying the distribution policies inside
the scheduler controllers of GPU devices. Other works explored the management
of the parallelism levels of applications to control the sensitivity of GPU modules
[108]. Results showed that dropping the workload activity in GPUs can be adopted
as an initial mitigation strategy and reduce the fault effect, but with moderate per-
formance costs. Finally, in [123, 69, 124, 125], the authors evaluated the effect of
embedded GPUs to radiation effects and the main improvements when mitigating
the effect through several levels of redundancy.

Nevertheless, most of these analyzes consider the complete device or perform
reliability evaluations using mainly software-based fault injectors, which in some
cases provoke difficulties on targeting specific modules to study particular behaviors.
Moreover, these limitations can also interfere in the analysis of fault effects caused
by transient faults.

In this chapter, several experimental quantitative results are introduced for
individual modules in a microarchitectural description of a GPU (FlexGripPlus).
These results are obtained using simulation-based experiments. More in detail,
relevant modules of the data path and control path of the GPU architecture are
analyzed through several applications aiming to identify critical submodules, which
later can be employed for hardening purposes or for building new fault models. It
is worth noting that the development of hardening techniques is out of the scope
of this chapter.

This chapter is divided into four subsections. The first subsection introduces a
simulation environment and the set of benchmarks employed in most experiments.
The second and third subsections describe the reliability evaluations performed
into the data path and control path modules of the GPU, respectively. Finally,
the fourth subsection describes the procedures performed to analyze the effects of
microarchitectural faults in GPUs and the effect on CNN-based applications.

3.1 Experimental set up for transient fault injec-
tion campaigns

3.1.1 Fault injection environment
A custom fault injector was developed to perform all experiments reported in

this chapter and also to validate the proposed solution of chapter 4. This environ-
ment mimics the same behaviors and constraints that a GPU may have in the real
operation, so the methods to identify and detect fault effects are the same as in
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real GPU platforms.
This fault injector was designed to perform fault injection campaigns in the

FlexGripPlus model supporting a transient fault model. However, it must be noted
that the tool is able to introduce two types of faults: permanent faults, based on
the Stuck-at fault model, and transient faults, based on the Single Event Upset (or
SEU) model.

The injection methodology of the tool is based on the method introduced in
[113][126], which employs a set of commands to place a fault in any time of the
simulation time and represent a fault effect. Moreover, the environment can reduce
the total time of the fault simulation by taking advantage of i) parallel capabilities
of the modern computers to run multiple simulations simultaneously (e.g., resorting
to a multi-thread approach [127]) and ii) the Utilization De-Rating factor (UDR) of
a module to pre-process the fault list and reduce the number of locations to inject
faults. The UDR is computed utilizing results from a fault-free simulation. The
information is analyzed (i.e., switching activity or correlation) in the target module,
and finally, unused locations by an application are removed before simulation [128,
129].

The fault injection environment is implemented in a high-level language (Python)
and is composed of three main modules, as shown in Fig. 3.1: 1) a fault controller,
2) a fault injector, and 3) a fault checker and classifier. The environment links a
set of configuration files with the execution of the behavioral/RTL simulator (Mod-
elSim or QuestaSim by Mentor or Xcelium Parallel Simulator by Cadence) that
works on the GPU model. The functions, in the fault simulator, can handle the
execution of multiple fault campaigns on the model.

It is worth noting that it is complex to inject SEU faults in a behavioral/RTL
model without timing information details. Thus, the fault simulator injects Single
Bit Upsets (SBUs) in memory cells or register signals in order to generate the
equivalent SEU effects. For the purpose of the works presented in this chapter,
the SEU injection capabilities are used in the fault injection campaigns. It must
be noted that all fault campaigns using the transient fault model employ a fault
list composed of all locations in a target module, while the fault occurrence time is
selected randomly.

A fault simulation campaign starts loading and compiling the GPU model in
the ModelSim simulator. In this process, the control manager loads the GPU
configuration, the application instructions and the initial data memory values. The
kernel instructions and the model configuration are provided by the user before the
fault campaign starts.

A golden simulation is performed in order to obtain the reference memory re-
sults and the performance parameters, which are later used in the classification
stage. The fault control manager loads the fault list for the campaign. This fault
list is composed of the signal locations where to inject each fault in the model.
Depending on the fault model, additional parameters are required, such as the
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Figure 3.1: A general scheme of the custom environment for the fault injection
campaigns.

injection time and the injection period. The fault decoder-generator reads from
the SEU fault list (one fault at a time) and generates an equivalent behavioral
injection command for the ModelSim environment, using the force–deposit syntax.
Then, the control manager starts the fault injection campaign. The execution time
limit is defined as twice the golden execution time of the program kernel. This
value is employed in order to check performance degradation by the fault effect.
Once the simulation finishes, the memory results and performance parameters are
stored. Finally, the checker and classifier verify the generation of memory results.
This classifier catalogues the fault effects in four categories: Silent Data Corrup-
tion (SDC), Time-Out (Performance Degradation), Hang (Detected Unrecoverable
Error (DUE)) and Masked (Silent) when there is not fault effect in the outputs of
an application.

A SEU effect is classified as SDC if there is a memory mismatch between the
golden and faulty results. A Time-Out happens when the fault simulation time is
greater or lower than the golden simulation time. The fault behavior is classified as
DUE when the fault simulation is not correctly finished or the GPU model cannot
correctly terminate its execution, additionally without results in the global memory.
Lastly, a masked classification is used if there are not mismatches in memory results
or execution time. It is worth noting that one fault simulation is performed for each
considered fault.

Once the fault campaign finished three report files are stored. Those files include
the memory results, if generated, the final dictionary file (which is composed of the
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fault type, the signal location and the final fault classification), and the fault-results
file, including a summary of the total number of faults classified grouped by type.

The multi-threaded fault injection methodology is employed in the fault injec-
tor, mainly to handle the large number of faults to inject during the campaigns.
The total number of SEU faults is commonly divided in three to ten equal-size
fault chunks composing a partial fault list. Each partial fault list is assigned to an
independent fault simulator with a FlexgripPus model to be processed as an inde-
pendent simulation. Finally, the final injection results are grouped and analyzed.

3.1.2 Benchmarks
Six applications were selected as benchmark applications to evaluate the behav-

ior of the different modules in FlexGripPlus against SEUs under different workload
profiles.

• FFT: The application is based on the Coley-Turkey algorithm [130] and im-
plements the butterfly element using CUDA. Since the original version of
FlexGrip does not provide support for division operations. These operations
were replaced with a software-based division approach using logarithmic and
logical operations.

• Edge detection (Edge): The application is based on the Sobel algorithm ap-
plying an image filter of 3x3 to a 2-dimensions input.

• Vector_Add: This application is extracted from the CUDA samples SDK
and is directly compiled for FlexGripPlus. This is a embarrassingly parallel
application and calculates the sum of two vectors.

• Bitonic-Sort (Sort): This is another original application extracted from the
CUDA samples SDK. The application sorts a sequence of consecutive data
elements stored in an array. This application includes multiple combinations
of data movements between memory and registers, and conditional control-
flow instructions, which are data dependent, so generating multiple paths
during the execution.

• M3: This application implements a Software-Based Self-Test (SBST) algo-
rithm introduced later in section 4.1.1. M3 targets the generation of patterns
to access the memory inside the scheduler controller. Thus, it is composed of
multiple control-flow instructions utilizing mainly the control-path modules.

• Matrix Multiplication (MxM): This application is based on the General Ma-
trix Multiplication (GEMM) routine, which is optimized using the square
tiling approach. The input matrices are firstly divided into blocks. Then, par-
tial results are obtained by multiplication of corresponding blocks. Finally,
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partial results are accumulated to get the final results of matrix multiplica-
tion. The implementation is limited to 32x32 input matrices.

Table 4.19 reports the main features of the benchmarks employed in the ex-
periments. It is worth noting that each application employs several instructions in
both formats (32 and 64 bit-sizes). Furthermore, the applications operate different
workloads, so the data memory footprint differs for each of them.

Table 3.1: Main features of the benchmarks used in the experiments.

Target module Type Size (Instructions) Duration (cc) FC (%)

SP ATPG 19,604 1,447,620 84.07
Pseudorandom 55,000 3,434,235 83.99

SFU

ATPG IMM 16,856 1,200,034 90.75
ATPG Mem 117 212,914 90.75

Pseudorandom 30K 309 1,546,404 82.55
Pseudorandom 60K 609 3,074,844 77.67
Pseudorandom 90K 909 4,603,284 89.11
Pseudorandom 120K 1,209 6,131,724 88.26

3.2 Analyzing the data path modules in a GPU
against transient fault effects

The data path modules in a GPU are those modules that handles all operands
for the parallel execution of an applications. This modules are commonly used in
all applications.

In the presented section, two data path modules (the Register File (RF) and the
Pipeline Registers (PRs)) are the target for the reliability evaluation. The RF is the
main memory resource employed in the GPU architecture and almost 90% of the
assembly instructions employ the registers in the RF as source of input operands
or as destiny of output results for every thread. In contrast, the PRs are hidden
structures in the GPU core and there is not a direct management or observability
from the GPU programmer, so the behavior of these internal structures requires
reliability analyzes, considering that has not fully evaluated in the past. For this
purpose, five applications with different code flow and workload are employed for
the reliability evaluation of the data path modules in the GPU.

It is worth nothing that other modules, such as the execution units were not
target in the first part as several works have documented reliability evaluations for
these parallel architectures and the research relevance of individual experiments is
low.
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3.2.1 Register File
For the RF, 30 fault injection campaigns were performed. The total number

of SEU faults to be injected in a fault campaign is determined by establishing the
total number of registers used by each application and per thread configuration.
Then, the total number of bit fields is multiplied by a constant (i.e., 10) in order
to define the faults to inject per location. 34,816 faults were injected for the FFT,
MxM, Sort, M3 and Edge applications under all SP configurations resulting in the
confidence interval of 99.46%. Meanwhile, for the Vector_Add application, 10,240
faults have been injected for 32 SPs configuration, and 8,192 faults for 16 and 8
SPs. It is worth noting that each applications have a different program behavior,
so diverse fault impacts are expected for each application.

With the aforementioned fault injection environment, described in section 3.1.1,
the fault simulation time was reduced from about 200 hours to less than 25 hours:
the adoption of the UDR factor allowed us to reduce by up to 95% the total amount
of injected faults. Fig. 3.2 reports the error rate percentage for each application.

When comparing results from different configurations, from some applications,
the trend of error rate is not so evident since the error rate is affected by several
aspects, for example, the number of registers actually utilized during execution, the
duration of each data stayed inside registers, etc. However, some interesting effects
can be observed.

The results shows that the FFT and Edge benchmarks present a similar be-
havior: by increasing the number of threads per block (64 threads configuration)
reduces the total error rate, which is expressed as the Architectural Vulnerability
Factor (AVF) is mainly determined by the number of employed registers by con-
figuration. The AVF expresses the probability that a visible error occurs due to a
bit-flip in any storage element of a device [131]. In practical terms, AVF is the rate
between the number of propagated faults-effects in a device and the total number
of injected faults in the device.

A different behavior is shown by the Vector_Add application. In this case,
raising the number of threads per block (i.e., increasing the parallelism) generates
a direct increase in the failure rate provoked by SEUs, see Fig. 3.2. Moreover,
Vector_Add does not produce any DUE or Timeout as it does not contain control-
flow instruction in its description.

Sort and M3 both have DUE as the majority due to the large percentage of
branch instructions that can be affected by SEUs in the registers. In Sort, an
growth of DUE rate can be observed when the number of threads varies from 32
to 64 as opposite in FFT because Sort contains a large portion of control-flow
instructions whose execution directly depends on operands and addresses stored
on the registers. Results show for the Sort applications that using more registers
increases the probability of fault effects as DUEs when corrupted registers access
memory resources or interfere in the execution of control-flow instructions.
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Figure 3.2: Fault rate results in the RF of FlexGripPlus (the horizontal axis, from
top to bottom, are #SPs, #Threads and application name).

In MxM, the incremental trend of DUEs is not as obvious as in Sort. In fact,
control-flow instructions in MxM do not depend on the input values, though it still
depends on the loop variables. Interestingly, these observations are similar to those
shown in [113] for applications with a high percentage of control-flow instructions.

Similar trends can be observed in different applications when the number of
SPs in the SM increases from 8 to 32, for example, the increment of DUEs in the
Sort application. However, other applications do not provide such a consistent and
visible trend. When the number of SPs changes, the register utilization factors
and the organization of threads inside the warps also change. This variation causes
different load and store patterns for used registers of an application. Those patterns
are dependent on the available number of SPs in the GPU core.

3.2.2 Pipeline Register
The PRs are structures distributed in the GPU core. These hidden registers

for the programmer are crucial for the operation of the system. However, a clear
fault sensitivity of such a modules have not been described for GPU architectures.
For this purpose, FlexGripPlus is employed to evaluate the effect of fault in the
PRs. More in detail, the distribution of the PRs in the SM core of FlexGripPlus
depends on the number of available SPs, see 3.2. Thus, for the experiments, the
three configurations of the SM core where considered.

In total, 144 faults injection campaigns were performed targeting PRs in Flex-
GripPlus. A total of 30,000 SEUs were injected per configuration. The fault injec-
tion results in terms of the averaged fault rate in the entire structure are shown in
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Table 3.2: Size of the PRs according to the number of SPs in the SM of FlexGrip-
Plus.

Pipeline Registers Controlpath
Datapath (SPs)

8 16 32
Warp to Fetch (W-F) 140 – – –
Fetch to Decode (F-D) 237 – – –
Decode to Read (D-R) 408 – – –
Read to Execute (R-E) 302 1,024 2,048 4,096
Execute to Write (E-W) 251 512 1,024 2,048
Write to Warp (Wr-W) 133 – – –
Total 1,471 1,536 3,072 6,144

Figure 3.3: Fault rate results in the PRs in FlexGripPlus (the horizontal axis, from
top to bottom, are #SPs, #Threads and application name).

Fig. 3.3.
It can be observed from the results that an increment in the number of threads

will lead to an increment of error rate, including SDC and DUE. This behavior can
be explained as the additional time cost for processing warps of the same block
increases the probability of an SEU in PR to be propagated through pipeline.
However, this trend also depends on the application type. As can be observed, see
FFT and MxM, each application has its own fault sensitivity to SEUs and some may
have considerable fault impact (FFT ), meanwhile others are less affected (MxM )
even when more threads are active in the parallel program.

Another clear trend that can be observed is that the error rates decrease when
more SPs are available in the SM. This means that the granularity in the GPU
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core composition is also a relevant parameter when considering the reliability of
the GPU. In fact, the original architecture of the G80 architecture (FlexGripPlus)
only includes 8 SPs per SM. However, the flexibility in the GPU model allow us to
observe architectural changes in the execution units, which are inline with recent
GPU designs, so including 32 or more SPs. As can be observed, for each application,
the fault rate trend is stable for each SM configuration in the GPU. In contrast,
the timeout trend is not consistent across different applications and configurations.

In M3, DUEs are the majority for all the configurations since this is a control-
flow-oriented application. On the other hand, in Vector_Add (the data-oriented
application without control-flow instructions), the majority effect lands in SDC.
For the other applications, the observed effect is less obvious.

When analyzing the PRs between different stages, the SEU sensitivity fluctuates
from 1.2 to 13.5 times (see Figs. 3.4 and 3.5), which indicates the existence of some
critical PR locations. These PR locations are architectural locations in the PRs
that are most commonly affected by faults and can generate SDCs or DUEs (i.e.,
the register R0 on each thread stores the thread identifier for each active thread
and a fault affecting this register can provoke critical effects). It turns out the PRs
storing the instruction decoding and warp status information are the ones of highest
sensitivity against SEU contributing a large proportion of SDC and DUE during
fault injection campaigns. In [113], the authors presented similar conclusions when
evaluating the PRs of a GPU. Although a direct comparison of the results cannot
be performed, both works show that the E-Wr PR is among the most SEU sensitive
PRs, as indicated in Figs. 3.4 and 3.5. An explanation for the observed trend in
Figs. 3.4 and 3.5 is the fact that E-Wr is the PR closer to the memory resources
after performing an operation, so a SEU affecting one of these registers is more
susceptible to be propagated to any output that other SEUs affecting another PR,
such as the Wr-W or W-F, where only the critical affected locations are propagated
and compromise the correct operation of the device.

3.3 Analyzing the control path modules in GPUs
The control path modules of a GPU core are small units (in fact, experimental

results show that the controller units in the FlexGripPlus model with 32 SP/FP32
cores occupy less than 10% of the total area in the GPU core), which are devoted
to manage the operation of an assigned workload during the operation of a parallel
program. However, the structural location and the importance in the execution
of these modules suggest that a fault can corrupt the operation of one or multiple
threads and even stop the execution of a GPU core. In this section, results of relia-
bility evaluation at microarchitectural level are provided for two important modules
in the GPU, the warp Scheduler Controller (SC) and the Divergence Management
Unit (DMU).
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Figure 3.4: SDC rate results per pipeline register in the SM for the evaluated
applications (the horizontal axis, from top to bottom, are #threads, #SPs and
application name).

Figure 3.5: DUE rate results per pipeline register in the SM for the evaluated
applications (the horizontal axis, from top to bottom, are #threads, #SPs and
application name).

3.3.1 Scheduler controller
The SC was divided into two parts for the analyzes: the internal memories and

the sequential logic elements. For this module thirty-six transient fault injection
campaigns were performed.
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In principle, the SC module is critical for the operation of the GPU core. How-
ever, a first view to the results contradicts the expected criticality in the analyzed
applications. In fact, the fault injection campaign results show low sensitivity
against SEUs; though the sequential logic corresponds to 14.3% of the entire ele-
ments in the SC, it generates between 85% and 92% of DUEs among the detected
faults for all the tested applications.

The unexpectedly low error rate in the internal memories of the SC has two main
explanations. Firstly, the low fault impact in the memories seems to be caused by a
existing loop between the SC and the pipeline stages in the SM, which contributes
to masks the fault effects. More in detail, the execution of an instruction in the
SM requires the control and the trace from the SC, which causes that values in the
scheduler memories are frequently refreshed after a SEU data corruption is caused.
However, in several cases the values are corrected by effect of the incoming values
from the pipeline stages, so instead of maintain a corrupted value in the memories,
the values from the pipeline stages are stored and mask the corrupted values. It
is worth noting that this micro-architectural loop behavior "as fault-masking" was
observed in the FlexGripPlus model. However, we cannot claim that identical or
similar structures are employed in modern GPU designs.

The second main reason is the number of threads configured for the evaluated
applications. In most benchmarks, which are configured with a fewer number of
threads, the architectural "fault-masking" behavior is effective when the workload
is relatively small. However, it becomes ineffective when the workload is bigger and
the number of threads in the application increases. The main effect of increasing
the threads can be observed in the MxM application. In this case, the probability of
reading values from the scheduler memories (in particular from corrupted locations
by SEUs) before any overwritten increases with the workload.

In the operation of the SC, it can be initially expected that one SEU causes a
single SDC and corrupt one value in the results. However, as documented in previ-
ous works [117][108] it was observed that multiple SDCs could also be presented in
the output memory for several applications (i.e., lines, blocks, or random locations
with erroneous results).

Table 3.3 reports the percentage of SEUs that causes SDC effects in the sched-
uler divided into those generating single and multiple effects in the memory. An
in-depth analysis shows that the multiple SDCs are caused by SEUs affecting the
Warp Program Counter (wPC) and other fields (base addresses in the hardware
distribution of a block, which are employed to access the memory resources) of
the memory in the scheduler, which are used redundantly by numerous threads.
Similarly, the multiple SDCs are caused by logic elements in the scheduler related
to the management of the information of the warps.

In general, for all the analyzed applications, errors corrupting the wPC also
affected the group of threads and propagated in the execution, so causing multiple
SDC. In contrast, faults in the Active Threads Mask (aTM) field produce most
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Table 3.3: Distribution of SEU effects in the scheduler causing single and multiple
errors in the outputs.

Benchmark TPB SPs
SDC (%)

Warp Status memory Logic
Single Multiple Total Single Multiple Total

FFT

32
8 0.024 0.025 0.049 1.4 1.28 2.68
16 0.014 0.01 0.024 1.2 1.12 2.32
32 0.042 0.056 0.098 0.4 0.61 1.01

64
8 6.53 2.4 8.94 1.1 1.43 2.53
16 2.19 1.2 3.39 0.7 0.56 1.26
32 0.12 0.1 0.22 0.64 0.39 1.03

VectorAdd

32
8 1.6 0.54 2.148 1 1.4 2.4
16 0.3 0.16 0.464 0.9 1.06 1.95
32 0.06 0.01 0.073 1.10 0.15 1.25

64
8 6.7 2.43 9.131 1.1 1.59 2.69
16 3.1 1 4.102 1.2 0.95 2.15
32 0 0 0 1.01 0.35 1.36

Edge

32
8 0.35 0.18 0.537 0.5 1.14 1.64
16 0.08 0.06 0.146 0.4 0.51 0.91
32 0.02 0.03 0.049 0.20 0.51 0.71

64
8 1.1 1.51 2.612 0.8 1.89 2.69
16 0.5 1.38 1.88 0.94 1.21 2.15
32 0.01 0.039 0.049 0.4 0.8 1.2

Sort

32
8 0.002 0.01 0.012 0.03 0.04 0.074
16 0.002 0.01 0.012 0.05 0.05 0.106
32 0.01 0.039 0.049 0.10 0.00 0.01

64
8 0.16 0.31 0.476 0.01 0.025 0.035
16 0.25 0.33 0.585 0.1 0.27 0.37
32 0.21 0.36 0.57 0.01 0.005 0.015

M3

32
8 0.41 0.13 0.54 0.3 0.11 0.414
16 0.28 0.18 0.46 0.12 0.17 0.297
32 0.14 0.15 0.292 0.23 0.23 0.467

64
8 0.93 0.6 1.53 0.6 0.21 0.81
16 1.48 0.7 2.185 0.66 0.24 0.9
32 1.58 0.65 2.23 0.5 0.49 0.99

MxM

512
8 13.51 20.69 34.2 0.16 0.1 0.26
16 12.75 18.3 31.05 0.17 0.11 0.28
32 11.39 13.2 24.59 0.22 0.1 0.32

1024
8 14.17 25.34 39.51 0.21 0.09 0.3
16 14.38 23.21 37.59 0.28 0.11 0.39
32 11.51 21.03 32.54 0.27 0.1 0.37

single SDC effects. In some control-flow-based applications (EDGE, FFT, Sort,
and M3 ), a small number of multiple SDC were caused by errors present in the
aTM field. Those errors modified the execution of one thread in the execution
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paths and caused additional operations or the missing of operations, which affected
subsequent executions in the program flow.

More in detail, the distribution of single and multiple SDC effects differs on the
applications and depends on parameters such as the coding style and internal mod-
ules employed that are correlated with the SC module. In the MxM application, the
high percentage of multiple SDCs is caused by the existent connection between the
status information of a warp stored in the SC and the RF and the shared memory
modules. However, the trend is not present in other applications. Vector_Add and
M3 have limited use of the RF and Shared memory, so the contribution of multiple
SDCs by misbehavior in the management of these modules is low.

In other work [132], the authors reported the effect and criticality of SDCs
affecting neural network applications in GPUs. In results, the authors also included
results for the MxM application. A comparison between the results of the MxM
with those introduced in the present work shows equivalent trends for a small
number of threads. Furthermore, from the architectural view point and considering
the distribution of the blocks of an application into the available SMs of a GPU,
the observed behavior is similar and coherent to the main conclusion observed in
the related work. More in detail, in [132], the authors found that the distribution
of SDCs caused by multiple errors in the output lay in the range from 45 to 65%,
without error margins. In the listed results in Table 3.3, the MxM applications
have an equivalent tendency for the pool memory with a distribution of SDCs in
the range of 54 to 65%.

Unfortunately, the results show that the previous tendency is not followed by
the logic part of the SC, and it presents a lower range (27-39%). However, it
should be noted that the experiments performed in [132] and the presented in
this work have relevant differences in terms of the type on injection performed
and the method to inject faults. In [132], the fault injection is performed to all
modules of a GPU. In contrast, this work only targets the injection of fault targeting
specific parts of the scheduler controller only. In any case, the obtained results
show the criticality of the scheduler module and the susceptibility to SEUs of the
MxM application. On the other hand, the distribution trend of SDCs for other
applications is different. In Vector_Add, FFT, Edge, and M3, the trend shows
a higher percentage of SDCs caused by single output errors than multiple ones,
as analyzed previously. Furthermore, additional 24 fault injection campaigns have
been performed on Vector_Add, and M3 with different configurations of threads per
block, and a fixed number of SPs to 32. The additional experiments are intended to
provide remarks regarding the fault masking effect in the SC memories mentioned
before.

The two applications were selected mainly by the distinctive execution behaviors
in the scheduler. The Vector_Add program is fully parallel and includes high
data-intensive operations without control-flow or thread divergence operations. In
contrast, M3 is mainly composed of control-flow operations and thread divergence

48



3.3 – Analyzing the control path modules in GPUs

Figure 3.6: AVF results in the memory(+) and the control logic (*) of the scheduler
controller of the GPU when executing the VectorAdd application and increasing
the number of threads.

routines. Thus, the scheduler is excited with entirely different patterns during the
operation of the two applications. The number of threads, for these evaluation,
varies in the range from 32 to 1024 for both applications.

From the results (see Fig. 3.6 and 3.7), when the number of threads is configured
as 32 or 64 for both applications, the fault masking in scheduler memory is effective
to limit the impact of SEUs, though we can still observe a small amount DUE
caused by SEUs in the logic part of SC. However, the increment in the workload
and parallelism level (more threads per application) causes a rapidly increment in
the error rate. In the end, two different distributions of DUE and SDC can be
observed when comparing results from Vector_Add and M3 applications.

Thus, an optimized implementation for performance is, as it often happens, not
the best solution when reliability is concerned. Further actions to increase reliability
should be adopted, such as ECC in the memory and Triple Modular Redundancy
(TMR) in the control logic. Finally, depending on the type of application, differ-
ent solutions (possibly in combination) can have effectiveness for improving system
reliability against SEUs. Interestingly, the previous results are coherent, supple-
ment the main findings and are in-line with other works that evaluate the reliability
of GPU devices against radiation. More in detail, the reported results show the
behavior of several applications under the effect of several modules when affected
by faults. A low-level granularity analysis shows that the same trend in terms of
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Figure 3.7: AVF results in the memory(+) and the control logic (*) of the scheduler
controller of the GPU when executing the M3 application and increasing the number
of threads.

reliability when the number of threads is reduced [108].

3.3.2 Divergence stack
Several fault injection campaigns were performed in the Divergence stack mod-

ule, see Appendix A for additional details of the divergence module. It is worth
noting that the fault injection campaigns on this module did not consider the Vec-
tor_Add application because this parallel kernel does not employ the module. In
contrast, the FFT and Edge benchmarks were evaluated employing 50,688 faults
in each fault campaign. The results are presented in Fig. 3.8.

Fig. 3.8 reports the error rate results for the Divergence module. As can be
observed, the relatively low sensitivity against SEUs of the module can be ex-
plained considering the limited percentage used by the applications. In fact, the
main reason for the limited fault effect is the few cases when multiple branches
(in the application) activate multiple level entries in the Divergence stack. More
in detail, each entry-line is employed for the fraction of a divergence generation,
meaning an application timing dependency and different SEU sensitivity per line.
This behavior is directly dependent on kernel description, nesting divergence, to-
tal number of divergence path instructions, and the number of convergence points.
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Figure 3.8: Fault injection results for the Divergence module (the horizontal axis,
from top to bottom, are #SPs, #Threads and application name).

Results support the previous explanation. Moreover, considering that usage of this
unit, for both kernels, is less than two thirds of the total simulation time and each
additional pushed line presents less activities, the sensitivity to SEU effects reduces
drastically. Nevertheless, the general trend (in the employed parts of the module)
shows that a fault affecting the divergence stack is critical and can cause a DUE
collapsing the entire operation of the system.

A change in the SP configuration seems to affect the sensibility of faults in
the Divergence module. This behavior can be observed in the FFT, Edge, and M3
applications with 64 threads. In each case, increasing the number of SPs is inversely
proportional to the susceptibility to SEUs and is explained by the reduction in
the management operations performed by the scheduler for a large number of SP
cores in the SM. However, there is not any direct interaction among the divergence
module and the number of SPs, so the observed reduction in the version of 64
threads of the applications is mainly caused by the correlation between reduced
management operations in the SC and shorter operation times on the routines
executed in a divergence path.

Among the four tested applications, Sort includes only one conditional control-
flow instruction generating multiple execution paths. However, the divergence in
this benchmark is data-dependent, so the generation of a new path depends on the
comparison of two operands from memory. This behavior explains that the error
rate did not change so much with different configurations in Sort.

The observed behavior in M3 is also different from others as it intends to gen-
erate multiple intra-warp divergences sequentially in the first 32 threads, leading
to an intensive switching activity in the SC. However, this application does not
generate nesting divergence paths (i.e., it does not use multiple level entries in the
Divergence module), so, when the number of threads changes from 32 to 64, the
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switching activity in scheduler is reduced, while the level of utilization of the Diver-
gence module due to divergence paths is not increased, leading to decreased error
rate, as shown in Fig. 3.8.

For FFT and Edge, similar trends can be observed as error rates increase with
the number of threads and decrease with the number of SPs. This behavior is
mainly due to the switching activity when the different combinations of active
warps and the number of SPs affect the organization of the warp execution.

Regarding the distribution of the DUE and SDC error rates, it depends on the
affected location within an entry in the Divergence module. An SEU in the wPC
field may create Timeout or DUE (or SDC). Similarly, an SEU affecting the aTM
field may generate SDC, by interrupting thread execution (i.e., unfinished compu-
tation), or DUE by causing threads to miss the synchronization point. Finally, an
SEU in the warp ID field produces Timeout effects. As seen in the comparison be-
tween FFT and Edge, a reduction in the number of threads can help to reduce more
than 50% of the SDC error rate, which is coherent with the conclusion introduced
in [107][132]. Interestingly, previous analyzes showed that internal modules of the
GPU cause different fault sensitivity effects according to the executed workload.

3.4 Analyzing CNN workloads to assess fault im-
pacts in GPU modules

Modern applications require special accelerators, such as GPUs, to increase the
performance in several domains, including autonomous systems for the automo-
tive, aerospace, and military markets. The highly parallel architecture of GPUs, in
fact, fits the required computational characteristic of most HPC codes and is par-
ticularly efficient in executing matrix multiplication, which is the computing core
of Convolutional Neural Networks (CNNs) used to detect objects in autonomous
machines.

Unfortunately, as explained at the beginning of this chapter, the impact of faults
on some characteristic and critical modules of a GPU, such as the SC or the PRs,
can hardly be investigated without a detailed microarchitectural analysis, whose
complexity and computational requirements make it hard to complete.

Recent works have suspected that a SC corruption can lead to a crash or impact
the computation of several parallel threads [133, 117, 134]. As a result, multiple
GPU output elements can potentially be corrupted, effectively undermining the
reliability of several applications, including CNNs [135]. Unfortunately, as it is not
possible to inject faults in software directly on the SC, all previous findings are
based only on observations and speculations that still need to be confirmed.

The scope of this subsection is to go a step beyond in the analysis of transient
faults in hidden modules of GPU cores, and focus on the impact of faults in the
execution of CNNs in GPUs. The FlexGripPlus model [97] is employed to perform
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the experiments and evaluate the microarchitectural reliability of those modules
(SC and PRs) that cannot be evaluated with other methods.

A two-level fault injection [136] approach to GPUs and CNNs is exploited to
avoid the prohibitively high time a microarchitectural simulation requires (that
would prevent the characterization of complex algorithms such as CNNs). More-
over, the efficiency of the microarchitectural evaluation for the CNNs considered
the internal composition and division in a set of independent layers, which execute
massive and repetitive convolutions on portions of matrices (Tiles).

The main targets for the reliability evaluation and characterization are the
scheduler and pipeline registers when the GPU core execute a selected subset of
representative CNN tiles. Then, with a software fault injection, the errors are
propagated in the corrupted tiles during the CNN execution. This strategy allows
to investigate the detailed effects of hardware faults in specific GPU hardware on
the execution of convolution in a much shorter time. To the best of my knowledge,
this work presents, for the first time, a microarchitectural reliability evaluation per-
formed injecting faults into individual modules of a GPU when operating a CNN
workload.

The reminder of the section is organized as follows: Subsection 3.4.1 introduces
the proposed two-levels approach describing the microarchitecture and software
fault injectors as well as the CNN selected as a case study and Section 3.4.2 presents
and discusses the experimental results and provides the main conclusions.

3.4.1 Proposed characterization strategy
The goal is to evaluate the effect of transient faults affecting the SC and PRs

during the execution of CNNs in the GPU. While the proposed evaluation strategy
can be adapted to any other GPU module, the selected modules are relevant for
three main reasons: i) They would not otherwise be accessible and, then, could
not be characterized using software fault injection, only. ii) Previous works have
speculated about the criticality of faults in these resources [133, 117, 134] but a
detailed analysis about their propagation and effects is still lacking. iii) Traditional
hardening strategies, such as ECC, can hardly be applied to SC and PRs, due to
the high implementation costs for these hidden structures.

The proposed reliability evaluation methodology takes advantage of the compu-
tational independence of frames and tiles inside an image to process to significantly
reduce the time required to inject faults at the microarchitectural level on GPUs
executing CNNs [137].

Each layer in the CNN extracts a specific feature that is then passed as input
to the next frame. Frames are executed sequentially, and there is no further inter-
action between them. Additionally, as multiplying big matrices introduces memory
latencies and dependencies that could undermine the performances, in GPUs con-
volution is divided into smaller parts (tiles). Hence, the tile size depends on the
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Figure 3.9: A general scheme of the proposed method.

GPU and is tuned to fully use the core resources, guaranteeing that caches and
registers are neither saturated nor underutilized. To complete a convolution, tiles
are independently processed several times in the GPU cores, with different input
values. Finally, tiles are combined to form the layer output.

The strategy is based on first characterize, with microarchitectural fault injec-
tion, the effects of faults on a subset of representative tiles. Then, a software-based
fault injector employs the previous results to inject the corresponding errors in each
tile of the considered layer and propagate each of them to the downstream layers
till the CNN output.

The reliability evaluation of a CNN limited to evaluate the Tiles can be justified
by the fact that transient faults can only corrupt the operation or data that is being
processed when they are activated. A fault in a SM can corrupt only the execution
of the tile that is being executed (commonly, CNN workloads (tiles) are assigned
to the available SMs in a GPU) but not other tiles nor other layers. A corrupted
tile implies an erroneous layer output that will be propagated to the downstream
layers. Thus, there is no need to simulate the whole CNN nor a whole layer with
the time consuming microarchitectural simulator.

Figure 3.9 shows the operational flow of the proposed strategy. As preliminary
tasks, the main features of the CNN under evaluation are extracted, including the
number of convolutional layers, the layers’ input/output size, and the golden (fault-
free) input operands and output feature maps for each layer. Then, the following
five steps are applied in sequence.
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1. The convolutional layers in the CNN are translated into the equivalent matrix
multiplication operations.

2. A subset of tiles from the matrices are selected and used as targets for the
fault-simulation environment.

3. The microarchitectural fault injection on a selected tile is performed and the
fault effects are propagated to the tile output, generating results reports.
These reports are used to identify the fault locations in the output tile.

4. The corrupted tile is merged with the other (fault-free) partial results in the
convolution to compose the layer’s output, i.e., the feature map resulting from
the injection.

5. Finally, the execution at the software level of the CNN propagates the poten-
tial errors to the output and the fault impact on the CNN output is classified.
The previous process is repeated for each convolutional layer in the CNN.

Fault injection environment

The microarchitectural fault injection campaigns follow the same procedures ex-
plained in section 3.1.1, so injecting one SEU per simulation. The MxM application
is selected for the experiments as the convolution operations performed by a GPU
device when processing CNNs. It is worth noting that LeNET CNN is selected to
validate and evaluate the proposed method.

The FlexGripPlus model is configured with one SM. A set of representative tiles
is selected to be characterized (Faulty Tiles) from each convolutional layer. The
remaining tiles (Fault-Free Tiles) in a layer are taken from the fault-free execution
of the CNN. After the injection, the output report is used to merge the output of
the faulty tile with the results from the fault-free tiles in order to create the fault
effect in the output feature map of the layer.

Reports causing SDCs are used in the merging process while the others are
marked as masked or DUE. Finally, the execution time of the fault campaign di-
rectly depends on the size of the targeted structure in FlexGripPlus. Similarly, the
number of fault campaigns depends on the number of selected faulty tiles in a layer.

Tiles Selection and Characterization

The tile size is tuned depending on the SM computing capabilities. For the ex-
periments and considering the original composition of the GPU model, the optimal
tile size is of 8x8 as 8 SPs are available per core. Even if simulating just tiles sig-
nificantly reduces the complexity of the characterization, the number of tiles that
need to be simulated makes the exhaustive simulation unfeasible. A small CNN as
LeNET, in fact, has 3,551 8x8 tiles an with a 12 CPUs server, the characterization

55



Analysis of transient fault effects in GPUs

of each tile takes at least 5h for the SC and 8h for the PRs. Thus, a selection of
the most representative tiles is used to reduce the total simulation time. For each
layer, a subset of tiles is used for the reliability evaluation and characterization.

Several experiments were performed on subsets of tiles in order to observe pat-
terns that allow a reduced, but still representative, microarchitectural layer eval-
uation. In the case of convolution, most tiles process very similar data while the
tiles at the edge of the matrix have a higher amount of zero elements [138]. Then
it is possible to select and characterize three tiles for each layer: (M) Max tile
(the tile with the highest sum of elements values), (Z) Zero tile (the tile with the
highest number of zeros), and (R) Random tile (a tile selected among the ones
that do not have significantly biased values). This selection is also in concordance
with other works in the area that showed that the propagation of data path faults
in an application on GPUs is data independent if the input data is not biased (i.e.,
there is not an excessive amount of 0s or all 1s) [139]. Moreover, the filter used in
a layer is the same for all tiles, reducing the divergence of input of different tiles.

Multi-level merging

The multi-level merging to integrate FlexGripPlus with the software execution
is performed in two steps.

1. Before the microarchitectural fault injection a "demerging" process extracts
the input operands (i.e., faulty tiles) from the input matrices of the layer under
evaluation. The locations of the 8x8 faulty tiles are defined (as explained in
the previous subsection) and extracted from the input matrices. Then, the
faulty tiles are translated into the format of the GPU model and employed
as inputs in the microarchitectural simulation.

2. The partial convolution result of the faulty-tile is merged with the fault-free
tiles to create the expected output feature map of the layer in which the fault
has been injected. The corrupted feature map is compared with the golden
one to identify the faulty locations for further analysis. These reports are also
used to feed the software fault injection that propagates the faulty feature map
to the next stages of the CNN. Only feature maps that are different from the
golden copy are propagated in software while the faults that do not impact
the tile and the corrupted tiles that do not impact the layer output (in the
merging process the faulty tile can be smoothed by the other fault-free tiles)
are marked as masked.

Software-level evaluation

The software environment executes the CNN and includes a fault simulator that
performs the fourth stage in Figure 3.9. A Python script performs the execution of
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the multilevel merging with the real CNN execution, allowing to select the input for
each layer in the CNN. For each corrupted tile in each layer, the microarchitectural
fault injection report is used to build the corrupted feature map that is sent as the
input of the downstream layer. The fault is then propagated till the CNN output.
The software environment also tracks the propagation of the fault, comparing the
output of all the downstream layers with the fault-free expected output. This
information is essential to understand if (and why) a microarchitectural fault is
masked during the CNN execution.

When the CNN completes the classification process, the CNN output errors
are categorized into two groups: if the error at the CNN output induces a miss-
classification it is marked as critical, not critical otherwise.

Limitations

Unfortunately, to protect strategic technological and economical information,
the manufacturers are not releasing any model for their architectures. As explained
in Chapter 2, the closest to represent the microarchitectural behavior of the com-
mercial devices is FlexGripPlus. The discrepancy between the FlexGripPlus and
the modern GPU architectures, however, does not undermine the proposed idea of
decoupling the two fault injection methodologies. The proposed frameworks and
the insights it allows to gather can be easily extended to any other GPU model.
Moreover, once the fault reaches a visible state for the software, its propagation
depends more on the executed code than on the underlying architecture [140]. The
propagation of the corrupted tile, then, depends more on the CNN code than on
the GPU architecture.

3.4.2 Experimental results
The LeNET [138] CNN is used as case study, which is composed of 2 convolu-

tional layers, 2 fully connected layers (output layers) and 2 pooling layers. For each
one of the convolutional and output layers in LeNet, 3 representative tiles (M, R,
Z) are selected and used in the fault injection experiments with the FlexGripPlus
model. We do not consider pooling layers in the microarchitectural simulation as
the simple operation they execute makes them less interesting and less critical for
CNNs reliability [135, 141].

As mentioned above, the SC and the PRs are the targets for reliability eval-
uation. The analysis of these modules can contribute to explain the behaviors of
fault affecting these modules and the fault propagation effect when executing CNN
workloads.
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Microarchitectural fault injection results

Twelve fault injection campaigns are performed on each of the 2 targeted mod-
ules (3 tiles for each of the 4 layers) injecting SEUs. All experiments are simulated
on a server using an Intel Xeon CPU running at 2.5 GHz, equipped with 12 cores,
and 256 GB of RAM.

The fault simulation environment is configured to inject 10 transient faults per
each target location in each module. The fault injection time is randomly selected
during the execution of the program kernel [128, 129]. In total, 20,000 faults are
injected in the scheduler and 50,000 faults in the pipeline registers for each of the
3 faulty tiles and 4 layers in about 288 hours. It is worth noting that the total
number of faults injected depends on the module size.

Table 3.4: Microarchitectural Fault Injection Results

Warp scheduler controller Pipeline registers
SDC (%) DUE (%) masked (%) AVF (%) SDC (%) DUE (%) masked (%) AVF (%)

Layer1
Z 4.43 7.89 87.68 12.32 0.63 1.12 98.20 1.75
M 5.23 7.18 87.58 12.41 1.39 1.92 96.60 3.31
R 5.65 7.83 86.52 13.48 1.34 1.93 96.73 3.27

Layer2
Z 4.03 7.78 88.19 11.81 0.28 1.92 97.80 2.20
M 4.51 8.05 87.44 12.56 1.29 1.92 96.79 3.21
R 5.65 7.83 86.52 13.48 1.14 1.92 96.94 3.06

Layer3
Z 2.85 7.78 89.38 10.63 0.24 1.94 97.83 2.18
M 5.09 9.15 85.76 14.24 0.88 1.95 97.17 2.83
R 5.56 7.89 86.54 13.45 0.89 1.94 97.15 2.83

Layer4
Z 3.57 7.25 89.18 10.82 0.21 1.92 97.85 2.13
M 3.85 7.33 88.86 11.18 0.96 1.94 97.10 2.90
R 3.98 7.20 88.82 11.18 0.75 1.95 97.31 2.70

Table 3.4 reports the Architectural Vulnerability Factor (AVF) [142] for the 3
analyzed tiles on the 4 layers of the CNN.

As it can be observed in the results, a fault in the SC is up to 10x more likely
to corrupt the tile than a fault in the PRs, confirming its criticality. Neverthe-
less, the size of the pipeline module in FlexGripPlus is about 10x bigger than SC.
The pipeline registers, then, are more likely to be corrupted by radiation or other
sources of transient faults but the generated fault is more critical when affecting
the scheduler.

More in detail, for the scheduler, the injections in the Z, M, and R tiles provide
very similar AVFs (differences lower than 16.5% in most cases). These results
suggest that using just a subset of tiles to characterize the layer reliability to faults
in the scheduler can still provide accurate AVFs. Intuitively, the effect of faults in
the control logic do not directly depend on the data being processed.

For the pipeline registers, the AVFs of R and M tiles are similar (differences lower
than 32.5%) while the Z tile has a lower AVF. Previous works showed that data-
path faults propagation does not significantly depend on the input values, unless the
input is biased [139]. R and M tiles can be both considered not biased according to
the definition of [139] (there is no clear data pattern), while Z is explicitly selected
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Figure 3.10: Corrupted Max (M), Random (R), and Zero (Z) tiles that propagate
to LeNet output generating a critical/not critical SDC or are masked.

as it has an obvious pattern in the input. For data-path faults, then, it might be
necessary to characterize more than one tile per layer. However, our data shows
that the AVF of Z tiles is much smaller than R and M tiles, eventually making
them intrinsically less vulnerable to faults. To have a worst case evaluation of the
pipeline registers criticality it is then sufficient to characterize the R or M tiles.

Software-based propagation results

For each subset of tiles (M, R, Z), the propagated faults per tile are combined
with the outputs of each layer. Then, in software, the corresponding corrupted
layer outputs are operated in the CNN to understand their final impact behavior.
The analyzes are focused on the different effects between the subset of tiles and on
the differences between injections in different layers.

Figure 3.10 shows the probability for the corrupted tiles to be masked, to gener-
ate an error or a critical error (miss-classification) when propagating till the LeNet
output. For each layer we have separated the contribution of M, R, Z tiles and
distinguish between injections in the scheduler (left bars) and pipeline (right bar).

Interestingly, most corrupted tiles modify the output. However, few corrupted
tiles induce a critical error (<2% for the SC and <20% for the PRs). This is to be
expected, as the main functionality of LeNET is the classification of only 10 classes
(digits from 0 to 9), so, it is hard for one architectural fault to change the output
classification probabilities sufficiently to cause miss-classification.

For the first three layers, the propagation behavior is very similar for the three
tiles confirming that, for the scheduler evaluation, there is no need to characterize
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all tiles. Only pipeline registers injections in the Z tile of layer 1 shows a higher
masking effect. This is because the small magnitude of the error in the element of
the tile is masked during propagation. The masking effect is reduced gradually in
the downstream layers. On the other hand, Z tiles in layer 4 always produce an
error. The lower masking effect is justified by the fact that layer 4 is the output
layer and an injected corrupted tile implies a corrupted layer output. When errors
are injected in the last layer, then, there is no masking effect caused by propagation.

One of the reasons for the tiles to generate a critical or not critical errors in
the CNN operation can be observed in Figure 3.11. These distributions show,
for the injection in the SC (PRs data is similar and not shown), the percentage
of corrupted element at each layer output as the corrupted tile (injected in the
layer identified by the color of the bars) is propagated through LeNET. Solid lines
represent the injections that induce a critical error (miss-classification) and dashed
lines the injections that induce a not critical error.

Fig. 3.11 reports only the average result for the three tiles with the error
bars highlighting the differences between Z, R, and M. As it can be seen, the
injection in all tiles provides very similar propagation patterns. Moreover, the
reported results show that a corrupted tile represents a small percentage of the
layer output in which it is injected. On the average corrupted tiles injected in layer
1 affect less than 0.1% of the layer elements, in layer 2 less than 0.2%. However,
the number of corrupted elements explodes when the fault is propagated to the
downstream layer, till affecting most (if not all) the elements in the network output.
Interestingly, injections in the first 3 layers induce a critical errors in the output
only if, propagating, they affect all the output elements. These layers perform
operations (as convolutions) that can easily spread the error. Moreover, if only few
elements are corrupted the last (fully connected) layer might still have sufficient
data to properly classify the input.

Finally, only injections in the last layer (dark red bars in Figure 3.11) cause a
critical error without affecting all the elements (58%, on the average). The value
of those elements is eventually sufficiently wrong to modify classification.

Critical faults identification

The combination of microarchitectural and software fault injection allows to
identify the faults that are more likely to modify the CNN output eventually mod-
ifying classification.

A first major difference between faults in the SC and in the PRs is that the
former have a high probability of causing multiple errors in the tile output while
the latter impact mostly one single element. Up to 87.3% of the fault in the SC
but less than 20% of fault in the PRs corrupt multiple elements in the tile’s output.
This is because most memory cells in the SC are employed to store information of
multiple threads in the GPU core or even about the entire block of threads. One
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Figure 3.11: Percentage of corrupted elements in a layer output for injections in
the layer identified by the bars color. As the fault propagates thought the layers
the percentage of corrupted element significantly increases. Solid lines are critical
errors, and dashed lines are not critical errors. Error bars report the maximum
difference between Z, R, and M tiles.

fault in the SC can then affect the execution or the data of multiple threads. In
contrast, a fault in the PRs has more probabilities to affect the data-path of just
one of the threads being executed in the corrupted core.

Figure 3.12a depicts, for each layer, the multiple error distribution caused by
faults in the SC. each graph (in Figure 3.12a) represents the maximum difference
between the expected and corrupted value of each element in the R tile (M and Z
provided similar results). On the other hand, faults in the PRs produce differences
of at most 103 without a clear pattern in the spatial distribution and are not
depicted. Similarly, Fig 3.12b depicts the spacial distribution (per location in the
output tiles) of the multiple corruption patterns observed during the fault injection
campaigns. As can be observed, most corrupted locations are part of a group of
threads that are being executed and interestingly present clear patterns of corrupted
rows, columns or complete regions. These output patterns can be combined with the
magnitude results and provide fault model that can be applied at higher abstraction
levels when evaluating the reliability of CNNs using GPU platforms.

The faults in the SC can produce a very high difference (up to 1038!) in some
specific locations of the tile, that depend on the layer. For layer 1 and 2 the largest
difference is identified in the middle locations of the tile, which is expected given
the output tile size and the higher probability to propagate the fault effect into
multiple threads (columns in the output tile). Similarly, the largest fault effects for
layer 3 and 4 are identified in the corners of the output tile, which can be explained
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by the output size of the tiles and the layer composition, limiting the evaluation of
multiple threads, and the low fault effect propagation to multiple threads caused
by mostly zero values.

(a) Distribution of the output error
magnitude produced by faults in the
R tiles of layer 1 (Top-left), layer 2
(Top-right), layer 3 (Bottom-left),
and layer 4 (Bottom-right).

(b) Spatial distribution of the multiple cor-
rupted elements patterns. Arrows indicate
that neither the position of the observed pat-
tern nor the block size are fixed.

Figure 3.12: Magnitude (left) and spatial (right) distribution of the effect of faults
in the scheduler of the GPU when operating tiles of the LeNET CNN.

Additionally, a deep analysis show that faults in the SC are on average more
than 5x more likely to cause a DUE than faults in the PRs (Table 3.4). This is
justified by the fact that, on GPUs, few control-flow data-dependent operations
are executed to avoid dependencies that would reduce performances. Thus, it is
unlikely for a data-path fault to generate a DUE while faults in the SC can indeed
generate illegal memory requests, the stop of active threads or the activation of
unexpected ones, including other misbehaviors that can collapse the execution of
the device.

Finally, a feedback analysis is employed to the data from the fault campaigns to
determine the microarchitectural locations causing the most severe critical SDCs
in the CNN. For both SC and PRs, the critical locations store data employed to
manage the execution of the GPU. For the SC, the analysis shows that a group of
just 4 memory cells are the cause of 97.3% of the critical SDCs. A fault in these
cells affects multiple values in the output and, in 35.14% of cases, even the entire
tile output. These critical cells are devoted to store the addresses to access the
Shared memory and the Register File per assigned block. The remaining 2.7% of
critical SDCs are caused by faults in one register inside the SC. It was also found
that only 7 locations in the PRs, when corrupted, generate multiple errors in the

62



3.5 – Conclusions

tile output. These locations store control signals of the operating instruction and
addresses to access the Shared memory.

3.5 Conclusions
In this section several reliability evaluations about transient faults were de-

scribed. The carried out fault injection campaigns provided detailed results about
the sensibility to SEUs of individual modules of the GPU under different encoding
styles (e.g., varying the number of threads or the parallelism). The evaluation was
performed employing representative applications with diverse workloads to sensitize
each module with different patterns. In some cases, it was possible to determine cor-
relations with previous works. However, the existence of some inconsistency across
the different applications and GPU configurations prompts for further investigation
for evaluating specific modules in GPU devices against SEUs.

More in detail, as a major contribution of this chapter, a detailed microarchi-
tectural evaluation is performed for the analyzed modules with respect to SEUs.
The experiments were performed resorting to an extended GPU model and to some
realistic applications.

In the Register File, a program kernel divided in several blocks contributes to
reduce the effects of SEUs and promotes the increment of error masking, since it
is possible that several blocks submitted to the same GPU core occupy and use
the same register set for the operation of independent belonging to those different
blocks. This behavior can be observed when the maximum number of blocks is
submitted to the SM and a new block is ready for dispatching to the same SM
(in different time periods), so one of the already submitted blocks and the new
block share the same register set in the register file, as it happens in FlexGripPlus.
Results also suggest that the distribution of threads per block may play a major
role as, a zero hardware cost, mitigation strategy for SEU effects for applications
with a high usage of data-path units, such as the Registers Files. On the other
side, this distribution seems not to impact in a significant manner on the targeted
control units.

A general conclusion of the analyzed modules in the GPU is that an increment
in the number of threads per block seems to generate a higher SEU sensitivity on
all data-path modules. This can be explained by the additional time to process
all threads in a program and the higher occupancy of resources in the GPU. Nev-
ertheless, the final percentage of rising sensitivity effect directly depends on the
behavior of the parallel program and the instructions employed in its implementa-
tion. In contrast, in some control path modules of the GPU, the sensitivity to fault
is affected (positively or negatively) when changing the number of threads.

The specific characteristics of each application may further change the above
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behaviors. Previous results gathered at the GPU level could not catch these as-
pects, which must be taken into account when optimizing an application code for
performance, reliability, or in conjunction.

Finally, in section 3.4, the microarchitectural evaluation of reliability in critical
modules of the GPU (i.e., the scheduler controller and the pipeline registers) allows
the adaptation of the concept of multi-level fault injection that was employed to
evaluate the microarchitectural effects of faults in GPU operating CNN workloads.

The proposed strategy was used to perform the experiments and reduced the
total fault simulation latency into the evaluated workloads (convolutions) in the
CNN. In the experiments, only a subset of convolution tiles was considered. From
the performed experiments, it was shown that their propagation is very similar, so it
is still possible to have a precise reliability evaluation for CNNs with the evaluation
of a subset of tiles.

At the end, thanks to the adopted combination of microarchitectural and soft-
ware fault injection, it was possible for the first time to quantitatively assess the
effects of faults in GPUs critical modules during the execution of a CNN.
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Chapter 4

Functional testing on GPUs:
Software-based solutions for
in-field fault detection

This chapter describes the main contributions in the field of functional testing
of GPUs using the Software-Based Self-Testing (SBST) strategy. The proposed
methods mainly target modules that are critical in the execution of a GPU. For
this purpose, several custom techniques were explored targeting a critical module in
the GPU core (the SC) for several fault models. Then, multi-kernel test strategies
are proposed targeting the functional testing of modules that are dynamically re-
configured and hidden for the programmer. Finally, a modular approach to develop
functional test programs is proposed. This modular approach is based on a higher
abstraction level and exploits the main operational features of a module under test
to propose several test solutions. This approach is validated on several embedded
memories of a GPU.

It is worth noting that the in-field constraints and the operational restrictions of
the target modules were considered in all proposed strategies. Moreover, compiler
restrictions and other programming limitations of GPU architectures were also
discussed in this chapter. Real GPU devices and the FlexGripPlus GPU model
were employed in the experiments and in the validation of the proposed functional
test techniques.

At the end of the chapter, classical test methods (such as deterministic and
pseudorandom) are adapted and used to test the regular structures in GPUs, such
as the functional units. Finally, a general overview of the fault coverage of all
test strategies is provided, allowing us to observe the main benefits of the SBST
approach in GPUs. This analysis also depicts the uncovered parts in the GPU by
the proposed test strategies.

The first section targets the development of functional test solutions for the
scheduler controller in the GPU. The second section describes the methodology to
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develop test programs aiming at the detection of faults in the pipeline registers using
a multi-kernel approach, so providing a mechanism to test structures in the GPU
that are dynamically configured for each application. The third section introduces
a modular approach to efficiently develop test programs using a high abstraction
level, so aiming at the selection and exploration of different test routines for a target
structure under test. The fourth section describes classical test strategies that can
be adapted from CPUs to GPUs and used for test of functional units and regular
structures in GPUs. This section also provides a general overview of the benefits of
SBST strategies applied on GPUs in terms of fault coverage and functional safety.

4.1 Functional test of the warp scheduler con-
troller in GPUs

This section introduces functional test strategies to test the SC in GPU cores.
As introduced previously, see chapter 2, the SC is a critical module in the operation
of a GPU and any fault can affect the operation of a running application or even
collapse the execution of the entire GPU.

In general, several works targeted the detection and identification of faults on
GPU platforms. However, most approaches explored traditional application-based
techniques, including the duplication and comparison of the complete program,
memories or both [69, 143]. Other approaches proposed optimized programs by
using a fine-grain solution aiming at identifying and detecting fault through dupli-
cated warps [144]. In principle, this solution is effective to evaluate any data path
module. Similarly, authors in [145], proposed a framework to exploit consecutive
warps and possible divergences in a program to duplicate or triplicate the oper-
ations and perform detection and mitigation of faults in any data-path module.
In [146], the authors proposed a methodology based on the duplication of instruc-
tions to perform the fault detection. However, in all these software-based detection
strategies, the performance cost is a relevant restriction. For that purpose, in [146],
the authors also proposed an ISA extension to optimize and reduce in up to 30%
the comparison costs.

Authors in [147] explored the idea of employing idle SMs, commonly available
during the execution of control-flow instructions, to detect through comparison
faults affecting any SM. Other works explored the idea of manage the error resilience
of internal modules, such as the Register file, employing compiler algorithms to
provide fault mitigation on GPUs [148].

More in detail, several authors [124] [149], see also Chapter 3, already investi-
gated the sensitivity features of complete GPUs to radiation effects, which are a
major cause for transient faults. These works are mainly based on exposing real
GPUs to accelerated radiation fluxes, and then observing the resulting effects. In
this way, it is possible to estimate both the probability of a single fault to arise, and
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the fault effect caused to the application when a fault propagates through the sys-
tem. Those conclusions are used to build application-based mitigation strategies,
such as those introduced above. Furthermore, the conclusions can also be used to
propose innovative hardware testing strategies.

Moving to permanent faults, achieving the required safety targets clearly man-
dates the adoption of special techniques to minimize the chances that possible
faults created by the manufacturing process or by other mechanisms (e.g., aging)
escape the different test procedures applied at the device, board and system level.
Moreover, given the very high safety targets required, the advanced semiconductor
technology used to manufacture current GPU devices, and the relatively short life-
time of these technologies in safety-critical applications, including ADAS systems,
it is mandatory to develop efficient techniques to detect permanent faults (in-field
test) before they cause critical failures.

In all cases, a test must be performed, which should be able to detect a very
high percentage of those faults that may cause critical failures. In case of perma-
nent faults, the test must be relatively fast, and must be performed taking into
account the environment where the target device works, with minimum impact on
the rest of the system. Due to these constraints, the SBST strategy has been widely
adopted for in-field test [150], due to the flexible and non-invasive features of SBST.
Moreover, several guidelines are provided by research works in the area [151]. The
development of SBST test procedures can sometimes be done by abstracting de-
tailed structural information of a module, when the function and architecture of
the target module is known (e.g., for caches, or branch prediction units). In other
cases, the development is based on these information for both developing the SBST
code, and for assessing the achieved fault coverage.

In the case of GPUs, the development of effective SBST test procedures can be
split in two parts:

• When targeting the computational cores of the GPU, one can use the tech-
niques developed for traditional processor-based systems [151]. The work in
[82] is an example of what can be done in this direction.

• More efforts are required to target those modules, which are specific of the
GPU architecture, such as parallel controllers for execution and memory re-
sources.

Authors in [82] proposed several techniques to test GPU devices employing spe-
cial test programs exploiting well-known strategies from processor-based systems,
such as pseudo-random algorithms to test the execution units and adaptations of
march algorithms for internal memories. However, these mechanisms are not effec-
tive for all internal modules of a GPU. As an example, testing the scheduler existing
in any GPU, as well as the interface between the scheduler and the computational
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cores, requires specific algorithms able to excite the different faults and to make
them observable.

In other works [152] [153] [122] data and control modules are tested and analyzed
by the presence of faults. These experiments included reliability characterization
by statistical fault injection methods and checking the effect of software errors in
the system. In [154] it is presented a methodology to mitigate hardware failures in
GPUs. Moreover, a rescheduling strategy is introduced to ensure execution under
hardware malfunction.

Similarly, the use of functional testing routines as self-test programs is increas-
ingly common and now widely supported also by several semiconductor manufac-
turers and IP providers in the automotive field, such as STMicroelectronics [155],
Infineon [156], Microchip [157], ARM [158] and Renesas [159].

The main focus of this section lies on the development of functional test tech-
niques of the scheduler inside the cores of a GPU (also called warp unit). It is
worth noting that there is a huge deficit of functional testing solutions targeting
the scheduler controllers in the GPU architecture. Moreover, this scheduler is prob-
ably the most critical unit within a GPU core since it manages the execution of
the parallel tasks and their distribution among the available cores, considering the
memory resources in the device.

The implementation of this module is not known in detail for commercial GPU
devices, thus FlexGripPlus is employed as a representative GPU to validate the
proposed testing solution. We first evaluated the stuck-at fault coverage that can be
reached on some specific parts of the scheduler and on the scheduler/core interface
by simple programs running on the GPU (identifying also those faults, that cannot
produce any failure, given a specific scenario), and then proposed some techniques
to improve such a figure.

This section is divided into two parts. Subsections 4.1.1 and 4.1.2 describe a
functional testing technique targeting the scheduler controller. On the other hand,
Subsections 4.1.3, 4.1.4, 4.1.5, 4.1.6, 4.1.7, 4.1.8, 4.1.9, and 4.1.10 describes the
development and validation of an on-line testing technique for the memory in the
scheduler of the scheduler controller of the GPU.

4.1.1 A method for functional testing for the Scheduler
Controller

The evaluation performed consists of a preliminary permanent fault coverage
analysis of a simple benchmark application using the whole set of GPU assembly
instructions. Secondly, three incremental methods to enhance the fault testing
capabilities of any application implemented on a GPU were developed. The three
methods are accurately described in this subsection showing the interdependence
between the application execution flow (e.g., divergence and convergence paths),
the thread mapping and the shared memory allocation.
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Please note that for the purpose of this strategy, a fault can be labeled as
detected at the end of the execution of a given piece of SBST code when one or
both of the following conditions hold (called detection by memory content and by
performance degradation, respectively).

In the first situation, the results, produced in memory by the fault-free and each
faulty system, are compared. A fault is detected when the comparison produces
a mismatch. In the second, the performance evaluation is based on two checks.
Firstly, we check if the kernel execution was correctly completed and the simulator
generated the results in memory. If the fault caused the system to hang or the kernel
execution did not finish, the fault is labeled as detected. In the case of execution
completed, we check and compare the kernel execution time (e.g., the number of
clock cycles) with the fault-free one. In case of time mismatch, the fault is labeled
as detected by performance degradation. In these evaluation it is possible that a
fault could be detected by evaluation of the performance and memory mismatch.
However, the checker priorities a fault detected by wrong results in memory instead
of performance degradation.

Basic program behavior

We first selected a simple benchmark (VectorAdd) to evaluate the effects of
permanent faults in the warp unit (i.e., in the warp pool memory and in the inter-
connections with the SM). This sample program performs an add operation between
two vectors and generates a result vector. The benchmark is composed of 18 SASS
assembly instructions. This simple program corresponds to a one dimension data
intensive and embarrassingly parallel application. Despite its simplicity, it suitably
stimulates the warp unit. The application is configured to use one grid and 256
threads per block. This implies that the size of the input vectors is limited to 256
operands.

Under the previous configuration, the number of warp pool line entries used
is 8 out of the 32 available lines. Hence, we evaluated the effects of the program
execution on the testable fields, i.e., the mask field and the program counter in the
used warp pool line entries and in the interconnections interface.

A fault affecting the controls signals or the warp base parameters between the
warp unit and the SM could stop or hang the system. As a consequence, the faulty
SM hardware uses other system configuration parameters than the correct ones
and the application never finishes or generates a valid result. A wrong base address
for either the shared memory or the file registers could overlap operands from
different threads and thus compromise the application execution. Furthermore, a
fault in the actual thread state connections can generate performance issues, such
as unexpected latency, or a mismatch in the final results in memory.

Permanent faults in the warp pool memory may also generate several issues.
In the actual mask field, faults can produce two possible scenarios. In the first

69



Functional testing on GPUs: Software-based solutions for in-field fault detection

scenario, some threads preserve a permanent active state and never finish the kernel
execution. In the second scenario, some threads preserve a permanent inactive state
and are not allowed to execute instructions and write results in the global memory.
This implies that some results will not be written to memory. In this case, a
memory mismatch is produced at end of the program execution.

A fault in the execution program counter field can generate a hang in the thread
execution and access to invalid locations in the program memory. Finally, a fault in
other warp pool fields, which correspond to memory and register file base addresses
configuration can cause the kernel to crash. However, some of these faults are
observable but not controllable. These permanent faults belong to block scheduler
configuration settings and a GPU functional testing approach cannot access to block
settings, so those faults could be observed by the proposed observation mechanism
but it is not possible to propagate and observe the effect of other faults.

Enhanced versions

Taking into account the previous analysis, three approaches were proposed to
enhance an existing program (such as the one introduced in the previous sub-
section) to increase its ability to test the faults affecting the fields of a warp pool
line entry and the connections between the warp unit and the SM.

These approaches heavily rely on the thread ID, or index, which uniquely iden-
tifies a thread during its execution which, in turn, depends on the kernel dimension
and application complexity. Moreover, the proposed approach defines the distri-
bution of blocks and threads in a grid and could be used by multiple threads to
access multiple data locations (Multiple-Threads Multiple-Data or MTMD). This
ID parameter is also used as a base address to load or store operands from different
memory locations.

The proposed SBST approaches employ the thread ID to identify the number of
a thread executed in a SP and to change the thread execution order. The change in
execution generates divergence paths and the expected stimuli to check the actual
mask field. The reader is invited to refer to Fig. 4.1 for a pseudocode with the
different methods.

Method M1

This method uses the thread ID during the execution of an application without
compromising the code integrity, so it is possible to add the test mechanism at the
end or at the beginning of the application code. M1 is based on introducing a set
of comparisons between the thread ID of each thread, and a set of constant values.

Firstly, the application is executed. Secondly, the thread ID and the constant
value j are compared, and depending on the comparison, two possible divergence
paths are generated in the SM. Each path is composed of different instructions, so
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Figure 4.1: Pseudocode for method M1 (white), M2 (white and light gray), and
M3 (white and dark gray).

it is possible to detect a fault by comparing the execution time of the paths. In
fact, each path is carefully described for this purpose. a fault is detected once a
change in the expected thread execution time is detected. Then, the divergence is
repeated to consider the missing fields of the warp pool lines. The total number of
such repeated evaluations depends directly on the number of warps-per-block and
threads-per-warp configured by the programmer according to the application.

A permanent fault in the mask field generates wrong divergence paths, leading
to performance variation which can be used for fault detection. This technique only
targets the permanent faults affecting the ID field of the warp pool line. However,
some comparison routines can be suitably placed in the program memory in order
to also detect faults affecting the bits belonging to the warp program counter.

Method M2

In this method, the divergence paths, generated by the comparison, are divided
into two groups. The first thread group execute one or several store instructions
in global memory to extend the performance variation. Moreover, these instruc-
tions allow the possibility of checking the global memory as mechanism for fault
detection. On the other hand, the second group bypass the store instruction and
executes NOP instructions, so reducing the latency of this path.

In the presence of a permanent fault in the mask field, unauthorized and per-
manently active threads will store the final memory results more than once. This
will not affect the final result of the application in global memory but will cause
a performance variation due to extra global memory accesses. On the other hand,
a permanently inactive thread will never write to global memory, leading to some
missing values in the final results of the global memory.
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The same approach employed in M1 method is used to check the warp program
counter fields in the warp pool line. Additional branches are also inserted to detect
faults affecting the warp program counter. With this approach some interface
interconnection faults can also be detected.

Method M3

The methods M1 and M2 depend on performance variation triggered by diver-
gence paths in the test program to detect the permanent faults. However, in practi-
cal GPUs, these methods would require performance counters for detection, which
are not necessarily implemented, fully available or easily accessible. To solve this
issue, a variation of M2 is presented. In this approach, a mechanism of Signature-
Per-Thread (SpT) is introduced. The SpT is intended to aim the propagation of
any fault effect on one available memory output. In this approach, each thread of
an applications uses special locations in memory to represent the actual state of a
test program and propagate any detected fault effect.

Firstly, The SpT of each thread are initialized. Then, one exclusive memory
location in global memory is assigned to each thread, so each particular memory
location is devoted to store a SpT during the operation of the test program. One
of the two divergence paths (i.e., convergence path) is equipped to perform the
following procedures on the SpT: loading, updating, and storing in memory, as in
M2.

The procedure of updating of an SpT can behave as a Multiple-Input Signature
Register (MISR). Nevertheless, in M3 a compacted version of the SpT reduces the
number of required instructions by updating the SpT as an incremental counter.
The SpT increments each time the associated thread writes into memory (the ex-
pected value for every thread is one). A higher value implies that the thread has
written more than once in memory. A signature with value zero implies that the
thread never accessed the global memory. At the end, the detection of permanent
faults is performed by checking the signatures after retrieving the information from
the global memory in the final results.

4.1.2 Experimental Analysis
The FlexGripPlus simulation setup

In order to assess the effectiveness of the proposed techniques we performed
some simulation-based fault injection campaigns using the FlexGripPlus model.
The same tool introduced in Chapter 3 was adapted for the experiments. For
the purpose of this work, the fault injection tool uses the stuck-at fault model to
generate the equivalent commands for the simulation framework handling the GPU
model.

72



4.1 – Functional test of the warp scheduler controller in GPUs

Besides the check of the final results in global memory, a performance evaluation
is also employed by comparing the actual and golden kernel execution time. A
fault is labeled as detected by “performance degradation (Time-Out)” when the
execution time, in the fault simulation, is longer or shorter than the expected
value.

For fault injection purposes, a fault list is employed to feed the fault injector
module in the tool. This fault list includes the fault model type and the location to
inject. At the end of the fault injection campaign, the list of faults injected, labeled
according to the two checks mentioned above, is gathered for coverage analysis as
presented later in this section.

Implementation

For implementation purposes, the Instruction Set Architecture (ISA) of Flex-
GripPlus (SASS SM 1.0) was employed. The three SBST methods are applied to
the original application code.

Method M1
In FlexGripPlus, the configuration stage of the SMs distribute the available

registers in the Register File among the threads to be executed by the application.
Then, the first register for each thread (R0) is loaded with the thread ID (X, Y
and Z). This register R0 is used for each thread to access the memory resources. In
this case, the Thread ID(X) was employed as part of the test program to address
specific threads and manage the test execution. In this case, a movement operation
from R0 to an available and free register is included.

The total number of constants to compare depends on the blocks and threads
per block configuration. For the present application, eight comparison routines
are required, according to the total number of SPs available in the SM (8) for
FlexGripPlus. The implementation of the M1 method code is composed of 91
assembly instructions, including the original application.

The routines employed are aimed to perform the following operations:

1. Selection of a convergence address point. An instruction memory address is
defined as a convergence point for thread divergence.

2. Comparison between the thread ID register and a constant value. Each con-
stant value is loaded using immediate instructions or through movements from
shared or constant memories). Those threads with different thread ID values
enter in a waiting state before reaching the convergence point.

3. Conditional branch execution. This generates the divergence paths, which
indirectly generates the test patterns to be employed when evaluating a line
of the scheduler memory.
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Figure 4.2: General pseudocode for a routine implementing Method M1. Z is the
number of threads per block or threads defined for the application.

4. Execution of divergence paths. Threads which match their Thread ID value
with the constant value execute additional instructions. All threads converge
again at the convergence point (determined in step 1) and continue the parallel
execution.
These operations are repeated for every constant value predefined in the test
code, as illustrated in Fig. 4.2.

The number of conditional branch routines is directly related with the maximum
number of threads per block and the number of threads defined in the application.
These routines are placed at the end of the application code.

Method M2
This method exploits the same approach used in M1 and based on the thread

ID index. However, the M1 test program is modified and updated by replacing the
final global memory store instruction with a series of conditional routines followed
with the global memory storage. In the proposed solution, 90 assembly instructions
are employed.

In this approach, the first three operations are equal to the method described
above. Nevertheless, the step 4 is replaced with several conditional branches, so
generating the test patterns for the program counter fields in the memory and the
interconnections of the SC. Each conditional branch targets strategical locations in
the memory so changing the test pattern each time a new address is reached. One
global memory storage is performed after each control-flow operation (by changing
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the memory address). In this case, a fault can be identified if the final results is
never stored in the global memory by the fault effect. It is worth nothing that
the combination of conditional branches and the execution of the store instructions
generate additional latency to the test program. The operations are repeated as
many times as M1.

Method M3
In this approach, a signature (SpT ) is included as part of the test program. This

signature is individual for each execution thread and requires additional space in the
global memory. In this case, an input parameter to the parallel kernel is employed
as base address for the final storage of the signature. The following operations are
carried out replacing the final storage operation:

1. SpT initialization. For every active thread, the signature in the global memory
is initialized with a value zero.

2. Selection of a convergence point.

3. Comparison between thread ID and a constant value, generating divergence
paths of thread execution.

4. Threads whose thread ID matches the constant value perform directly a final
memory store operation, load the thread signature, increase once, and store
back into global memory.

5. Other threads (divergent ones) execute additional instructions and one or
more unconditional branch instructions to reach the convergence point.

In FlexGripPlus, the code is implemented using assembly language with 152
instructions. However, the proposed approaches can also be mapped and developed
at a higher level (e.g., using CUDA) with the use of switch and consecutive if
statement and the ThreadIdx.x parameter. An example of routine implementation
of the method M2 at high level is presented in Fig 4.3.

When implementing the test code in CUDA, in-line PTX operations are required
to allow a finer control of the branch instructions. However, the most control-flow
instructions are complex to manage from the PTX level. Thus, instrumentation
with SASS instructions is still needed (after PTX-SASS translation) to guarantee
the intended operation of the test program. It must be noted that the main target
of the high level compilers of GPUs are devoted to optimize performance operation
and compact the code length, so are not fully suitable for testing purposes.

Experimental Results

Two fault simulation campaigns have been performed on the GPU model using
the fault list of the warp pool memory lines (2,048 elements) and the interface
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Figure 4.3: Pseudo-CUDA-code for method M2. Z is the number of threads per
block or thread in the application.

connection (478 elements). FlexGripPlus has been configured with one grid, 256
blocks and 32 threads per warp. Table 4.1 presents the results of the fault simulation
campaign for the warp pool memory lines. The original application (VectorAdd)
requires 142.005µs. of simulation time. Algorithms M1, M2 and M3 require 142.005
µs, 415.215 µs and 1.122 ms respectively.

Table 4.1: Fault detection results in warp pool memory.

Application Code VectorAdd M1 M2 M3
Total faults 2,048

Testable faults 984
Detected faults 624 728 984 984

Hang 440 613 616 616
Memory mismatch 184 115 112 368

Performance degradation 0 0 256 0
Testable Fault coverage (%) 63.4 74.0 100.0 100.0

Fault coverage (%) 30.5 35.5 48.0 48.0

During the fault simulation experiments on the warp pool memory, it was pos-
sible to identify several cells in the structure that once affected by faults do not
cause any effect on the outputs of the GPU cor, so those fault effects were masked.
Moreover, it was possible to observe that these cells could not be accessed by any
available instruction in the ISA of the FlexGripPlus. A detailed analysis revealed
that some permanent faults are functionally untestable (faults that cannot be ac-
tivated by instructions, but also those do not affect the main functionality of the
device), such as the bits in the higher part of the warp ID and some bits com-
posing the base address to access memory resources, including the shared memory
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and general-purpose registers. In fact, these fields remain constant or are defined
as constant values during a parallel kernel execution and are inaccessible. Taking
into account those restrictions, the total number of untestable faults per entry line
is equal to 156 permanent faults. Furthermore, 23 faults are observable but not
controllable. These faults correspond to the base addresses of the general purposes
registers file and shared memory space of every thread, so for the application with
eight warps entry lines, the total amount of untestable faults is 1,064.

As reported in Table 4.1, method M1 increases the number of detected faults
comparing to the original application (VectorAdd), while method M2 is capable
to detect all the testable permanent faults in the warp pool memory. The 256
permanent faults detected by memory mismatch in M2 are all related to the actual
mask field for the eight lines used by application. It means that all permanent
faults in the actual field are detected. The same numbers of permanent faults in
program counter, detected by method M1, are detected also by M2.

The method M3 aims at a different purpose. This approach allows fault de-
tection in the actual mask field employing a different observation mechanism, i.e.
checking the final results in the global memory only. Hence, it does not require
the use of additional or complex hardware for performance or timing measurement
during test.

A new analysis of the interconnection signals shows that a total of 201 connec-
tions are not relevant for kernel execution and thread control in the GPU and are
classified as untestable faults for the proposed methods. In Table 4.2, the results of
the fault injection campaign regarding the interconnections between the warp unit
and the SM is reported. M1 increases the fault detection coverage by 7.94% as it is
able to detect those faults affecting the bits carrying the thread state information
between the warp unit and the branch unit to control the branch execution. M2
further increases the fault coverage to 85.92% instead of 100%, as connections re-
garding shared memory size, general-purpose registers size or number of warps do
not generate misbehavior in FlexGripPlus operation.

Table 4.2: Fault detection results in the interconnections of the scheduler controller
of the GPU.

Application Code VectorAdd M1 M2 M3
Total Fault 478

Testable Faults 277
Detected Faults 155 177 238 236

Hang 105 157 154 161
Memory Mismatch 50 20 20 75

Performance degradation 0 0 64 0
Testable Fault Coverage (%) 56.0 63.9 85.9 85.2

Fault Coverage (%) 32.4 37.0 49.8 49.4
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Faults detected by performance degradation correspond to the signals between
the warp unit and the Execution/Control stage in SM which are in charge of pre-
serving execution coherency between the two modules.

The method M3, without checking Performance degradation, is still able to
achieve almost the same fault coverage by only checking the final results in global
memory. Fault coverage is increased by 29.25% comparing to the original applica-
tion, which means that 81 additional permanent faults are detected: 64 of them
belong to the actual thread state and the other faults belong to the program counter
of the parallel threads.

In M2 some permanent faults are detected with different observation mecha-
nisms. Some faults affecting the thread program counter and base address of the
general-purpose register file previously detected by memory mismatch become de-
tected by Hang or Performance observation. Faults related to bus control signals,
memory and general-purpose register file base addresses are detected by Perfor-
mance degradation in M2.

Finally, M1 is able to detect some faults in the warp pool memory and in the
interconnections; however, the percentage of fault coverage is low. On the other
hand, M2 achieves higher fault coverage by introducing store instruction to access
global memory to increase performance variation among different divergence paths.
Meanwhile, M3 achieves similar high fault coverage by only checking the final results
in global memory, taking advantage of a signature variable for each thread.

4.1.3 An on-line testing technique for the scheduler mem-
ory of a GPU

This section describes a technique to generate functional self-test programs tar-
geting the detection of faults in the memory of the SC of a GPU. The targeted
faults are permanent under the stuck-at and coupling fault model between pairs of
the cells of the memory. The proposed technique translates Fault Primitives (FPs),
which represent the effect of faults in a memory cell, into self-test functions and
programs composed of a sequence of operations to excite the fault in the memory
and to propagate its effects to a visible location, thus detecting its presence.

The proposed strategy focuses on the memory in the SC because it represents
a crucial module for the device operation. A micro-architectural analysis of the SC
shows that most of its area is devoted to storing information in a status memory.
This information is continuously updated after each instruction cycle in the GPU.
Furthermore, this status memory is present in each Streaming Multiprocessor (SM)
of a GPU. The experimental results to validate the proposed method have been
gathered resorting to a commercial profiler (NVIDIA Visual Profiler and the Nsight
Debugger), using the NVIDIA-GEFORCE GTX GPU platform and a structural
fault simulator. The CUDA programming environment was used to implement
most of the proposed test procedures.
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In principle, the traditional functional test strategies implement March algo-
rithms (composed of March elements) for memory testing. One March element is
a sequence of reading and writing operations performed on all the memory words
in a specified order. Each sequence generates specific pattern values to be written
and evaluate those read from memory. In order to designs these sequences, FPs are
used. These FPs represent the faults affecting a memory cell, and these are em-
ployed to design the test patterns as self-test procedures. Moreover, the collection
of self-test procedures (composing libraries) can be activated when required (e.g.,
at the power-on, power-off, or periodically), generating test patterns and exciting
a target module. Moreover, these routines check the test results and trigger an
observability mechanism, such as an interrupt flag or a software exception, when a
fault is detected. Thus, it would be possible to adapt these strategies and propose
unconventional methods to evaluate critical modules, such as the memory in the
SC, which is specific to GPU architectures.

The proposed method is based on the definition of a set of FPs describing static
and permanent faults in memory. These FPs are customized to the scheduler and
translated considering the operational restrictions of the memory in the scheduler.
Then, the FPs are used to extract the corresponding test patterns (TPs), i.e., the
sequence of reading and writing operations. These TPs maps into high-level self-
test routines or functions for the GPU, thus generating the test programs. Finally,
the same mapping and translation process is performed from March elements into
self-test routines, thus providing the same fault detection coverage of the original
March elements. In the end, this method can translate any element of a March
algorithm targeting the status memory of the scheduler into a self-test procedure.
A general scheme describing the proposed approach is shown in Fig. 4.4.

The main contributions of the proposed method can be summarized as:

• The identification of the FPs for all faults (including single and multiple
coupling faults) in the status memory of the warp scheduler controller of a
GPU.

• A method to translate, map and adapt each FP (and associated test patterns)
or March element into self-test routines and high-level functions targeting
the detection of all permanent static faults in the memory cells of the status
memory in the warp scheduler of a GPU.

• A software mechanism to avoid the operation of the dispatcher units in the
SM during the execution of a program kernel in the GPU.

• A method to employ the dispatcher units in an efficient manner by using a
parallel approach to test the memory in the warp scheduler controller.

• A method to design self-test routines by only using a high-level abstraction
language by means of the CUDA programming environment.
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Figure 4.4: General scheme of the proposed approach for mapping TPs targeting
FPs into test kernels.

The organization of this section is the following. Subsection 4.1.4 overviews the
effects of permanent faults in the memory of the scheduler for generic applications.
subsection 4.1.5 introduces the fault primitives (FPs) for a generic memory and
describes the main features of the memory and its operational restrictions. Section
4.1.8 defines the methods to generate test patterns for the target memory employ-
ing software-based approaches. Section 4.1.9 describes the test pattern generation
targeting each memory field and presents a test case algorithm, detailing the gen-
eral implementation of TPs using high-level functions in the CUDA environment.
Section 4.1.10 reports on the validation we performed to assess the effectiveness of
the proposed techniques and introduces an alternative implementation method for
performance optimization.

4.1.4 Effects of permanent faults in the memory of the
Scheduler controller

A fault located in the memory of the scheduler can generate misbehaviors which
may seriously compromise the correct operation of the device. Some previous works
reported that faults affecting this module may have a critical impact on the sys-
tem execution and can cause wrong memory results or even system hanging [108].
Nevertheless, those works only targeted transient fault effects.
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In order to extend this conclusion and evaluate the effects of permanent faults,
fault simulation experiments on a GPU model (FlexGripPlus) were performed us-
ing four representative applications (Vector_add, FFT, Edge and MxM ). Using this
model it is possible to inject a permanent fault in each module location and observe
the fault effects during the execution of the selected application. Each memory lo-
cation includes the Actual Thread Mask (TAM) and the Warp instruction Program
Counter (WPC) fields. Some other fields are also included in the memory and are
related to the configuration parameters coming from the host or external schedulers.

It is worth noting that due to the configuration of the applications, all the above
applications employ integer operands, only.

The fault injection campaign was performed employing the RTL level descrip-
tion of FlexGripPlus. The same fault injection environment employed in section
4.1.1 was used to target the warp memory in the scheduler of one SM. Thus, the
fault injector can place permanent faults corresponding to stuck-at faults affecting
single bits of the SC memory.

The fault simulator uses a multi-threading fault injection approach and each
fault list was divided into two pieces. Eight fault campaigns were performed inject-
ing 4,096 randomly sampled permanent faults per campaign. According to [160]
this allows us to reach a 2% error margin on the estimated metrics with a 99%
confidence level. A summary about fault effects is presented in Table 4.3, where
the rightmost column reports the cumulative percentage of the faults in the SDC,
Hang and Timeout categories. As it can be observed from the results, a permanent
fault can generate different effects depending on the features of the application and
used GPU resources.

In general, a permanent fault affecting the WPC field generates mainly hanging
conditions. On the other hand, faults affecting the TAM field generate most of the
SDC conditions.

A high percentage of faults (56.5% to 85.9%) affecting the scheduler memory
produces a failure, proving the criticality of this unit in the operation of the GPU.
Moreover, these faults may generate unacceptable conditions for complex applica-
tions and some of these effects can be unacceptable for safety-critical applications.
Other kinds of faults (e.g., Coupling Faults) affecting the scheduler memory do
produce similar results.

4.1.5 Fault primitives for the memory in the scheduler
The FPs represent memory failures and are defined as the combination of a

sequence of memory operations and the observations, including deviations from the
expected value. This sequence of memory operations are employed to sensitize a
condition in the memory cell and may also be employed to verify and to detect any
possible failure in a memory cell.

An FP is composed of one or a sequence of memory operations, which can be
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Table 4.3: Effects of permanent faults affecting the memory in the scheduler con-
troller.

Benchmark Faults (%)
SDC Hang Timeout Silent Cumulative Total

VectorAdd 21.87 35.93 0.0 42.18 57.81
FFT 34.37 51.56 0.0 14.07 85.93
Edge 9.37 62.50 7.03 21.10 78.90

MatrixMul 1.90 54.68 0.0 43.46 56.54

writing or reading, and the observed effect on the cell. In reading operations, it
is common to include the logic output value as a third element. The FPs may
target multiple sets of functional faults that can affect a single memory cell and
also couples of interfering cells in a memory.

The FPs have been used in the past to define memory test techniques, i.e.,
March algorithms, able to generate an appropriate sequence of patterns (reading
and writing operations), thus testing a memory. The complexity of these algorithms
grows proportionally to the size of the memory. Additional details regarding a
complete theoretical description of memory functional fault models may be found
in [161]. For the purpose of this work, we target the procedures required to translate
FPs and March algorithms into functional self-test programs able to detect faults
in the scheduler memory of GPUs.

Single Cell Static faults

Considering the set of FPs presented in [161], Table 4.4 reports the full set of
static FPs for single memory cells. The term “static” refers to the fact that they
represent faults sensitized by a single memory operation. Each row includes the
Addressable Functional Fault Primitive for the scheduler, denoted as AFFP(SCH).
As it can be noted, the AFFP(SCH) also contains the initialization steps required
to sensitize the fault.

Table 4.4: Fault primitives for a single memory cell.

Fault type Fault Model FP AFFP(SCH)
DRDF Deceptive RDF < ĀrĀ/A/Ā > < Ā, (WĀ, rĀ, rĀ, A/Ā >

< ArA/Ā/A > < A, (WA, rA, rA), Ā/A >

TF Transition fault < ĀWA/Ā/− > < Ā, (WĀ, rĀ, WĀ, rĀ, Ā/A >
< AWĀ/A/− > < A, (WA, rA, WĀ, rĀ, A/Ā >

WDF Write destructive fault < ĀWĀ/A/− > < Ā, (WĀ, rĀ, WĀ, rĀ, A/Ā >
< AWA/Ā/− > < A, (WA, rA, WA, rA, Ā/A >

RDF Read destructive fault < ĀrĀ/A/A > < Ā, (WĀ, rĀ, rĀ, A/Ā >
< ArA/Ā/Ā > < A, (WA, rA, rA, Ā/A >
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In Table 4.4, "A" represents a logic test stimulus written in the target bit-field or
cell of a LE. Similarly, "Ā" is the complementary pattern. Each AFFP is organized
as follows:

AFFP =< Initial_condition, (Stimuli), Fault_value, Fault_free_value >
(4.1)

For example, considering the DRDF, the FP is expressed as: FP :< Ā >
rĀ/A/Ā , with (Ā > rĀ) as the initial sequence of operations in the cell (the initial
state and one reading operation), the second element (A) describes the effect of
the fault in the cell, and the last element (Ā) represents the logic output value
of the cell. Similarly, the associated AFFP(SCH) is defined as: AFFP (SCH) :<
Ā, (WĀ, rĀ, rĀ), A/Ā >. This expression employs the same initial logic state (Ā).
The second and third memory operations in the sequence ( WĀ, rĀ) are added and
employed to initialize the cell. The reading is included as one of the operational
restrictions presented in the target memory. The fifth element(A) represents the
effect of the fault in the cell, and the last parameter (Ā) is the fault-free logic output
value, which is employed during the test pattern generation process.

Coupling Cell Permanent faults

The coupling FPs are associated with the interaction and effect between two
independent cells, an aggressor (a) cell, and a victim (v) cell. These cells can belong
to the same Line Entry (LE) or not. The considered FPs are shown in Table 4.5.
X, Y, and Z represent logic values.

In the proposed approach, the State Faults (SF) FP < Ā/A/− >< A/Ā/− >,
the State Coupling Faults (CFst) FP < Ā; V̄ /V/− >< V̄ /V/− >< Ā; V/V̄ /− ><
A; V/V̄ /− >< A; V̄ /V/− >, and the Incorrect Read Faults (IRF) FP < Ā ><
A >< rĀ/Ā/A >< rA/A/Ā > are not considered, mainly because of the absence
of a clear mechanism to cause the initial conditions or to detect these faults in the
scheduler memory.

The AFFP(SCH)s in both cases, single and coupling, present some similarities
in the associated Sensitizing Operation Sequences (SOSs). Thus, it is feasible to
collapse identical patterns. The single-cell AFFPs of RDF and DRDF share the
same sensibility patterns. Similarly, some coupling faults (CFrd, CFir, and CFdrd)
were grouped using the same SOS, since the only difference among them is the
number of consecutive reading operations. Therefore, the SOSs with the lowest
number of reading operations were neglected and the CFdrd SOS is employed to
sensitize those coupling faults. In the end, the number of patterns was reduced to
30.

At this point, the AFFP(SCH) is partially complete and must be adapted con-
sidering the operational restrictions valid for the SC. The next sub-section describes
the operational restrictions of the target memory.
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Table 4.5: Static Fault Primitives for coupling cells in memory.
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Ȳ
), Y v, Ȳ
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Ȳ
, rv

Ȳ
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4.1.6 Operational restrictions of the memory in the sched-
uler

As said previously, this memory has some operational constraints. These are
considered in the FP adaptation process and are crucial to generate the test pat-
terns. The memory in the scheduler cannot undergo any possible operation or
sequence of operations. In particular, the following operational restrictions are
present (for each of them, we first describe the restriction, then summarize the
effects, and finally describe how to take it into account):

1. By default, the initial state of all threads in a warp is the active state. It
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means that the TAM field starts with a “1” value in all bits. This condition
is triggered during the GPU configuration phase.
Restriction effect: This condition reduces the available number of test
patterns to be applied and also forces the addition of an initial condition
during test pattern injection, so reducing the performance of the test.
Potential solution: The initial conditions cannot be avoided. Nevertheless,
it is possible to split the target test fields during a test procedure and ap-
ply multiple test patterns replacing the effect of the missing one. Multiple
injections procedures are required for this purpose.

2. In the TAM field, when a warp ends the instruction execution, the scheduler
updates the content of the associate LE including an implicit reading proce-
dure. In contrast, writing procedures can be forced each time an instruction
starts its execution or when the application flow changes the number of active
threads in a warp.
Restriction effect: This condition complicates the injection of consecutive
specific writing and reading operations in the LEs. The implicit reading oper-
ation may increase the complexity of the injection of some specific operations
in this field.
Potential solution: In this memory, the operational restriction cannot be
avoided. However, this restriction does not affect the testing procedures of
static coupling faults.

3. Stimulus applied into the TAM field can generate thread divergence causing a
program-flow division into two paths (the Taken and the Not-Taken). These
paths are managed by the SC and executed in a serial fashion.
Restriction effect: This condition adds some undesirable writing and read-
ing operations and latency. Moreover, initialization procedures may be re-
quired between injections of consecutive patterns.
Potential solution: This restriction cannot be avoided. Nevertheless, the
additional path Not-Taken can be neglected for the purpose of the coupling
faults test and considered as a transition of the initialization phase for the
next pattern injection.

4. The execution of a divergence path (Taken or Not-Taken) cannot be stopped
when a thread group is operating in the SM resources. The use of conventional
functions has no effect in stopping these threads.
Restriction effect: This condition involves the development of additional
mechanisms to manage the operations of stop and restart of warps located
in the LEs. Moreover, this behavior imposes restrictions in test patterns
selected for the TAM field. Finally, multiple writing and reading procedures
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are required to test the field considering that the imposed restrictions limit
the injection pattern and at least one active state bit should be maintained
during evaluation.
Potential solution: A method to stop the warp execution lies in resorting to
some thread synchronization methods (i.e., __syncthreads()) and semaphore
variables to identify the warp state. Nevertheless, at least one thread must
remain in the active state in order to retain the warp in hanging condition
with the possibility to restart it again. On the other hand, a LE with the
TAM field filled with inactive threads denotes a finished warp and cannot be
launched again for this program kernel.

5. The GPU has two warp dispatcher units. These units dispatch the available
warps into the SM resources based on performance and optimization features,
by means of complex data-hazards mechanisms and elaborated dispatching
policies. Thus, the execution order of a group of warps may be complex
to predict. Moreover, clear structural descriptions and internal operational
details are not provided by the device manufacturer [162] [34].
Restriction effect: This behavior may compromise the execution of test
patterns in consecutive LEs and adds latency among the injection of patterns
into the memory LEs.
Potential solution: software-based mechanisms must be employed to skip
the operation of these modules in order to obtain the expected interaction
behavior among consecutive LEs during test injection. This mechanism can
be based on the addition of semaphore variables and internal loops to maintain
the state condition of a target warp and the associated LE.

4.1.7 Adapting FPs to test the memory in the scheduler
We can identify a test pattern for each one of the considered FPs. This pattern

is directly derived from the associated AFFP. The following example shows the
steps required to generate and adapt the test patterns from the associated FP.
Consider the FP:

FP :< XaZv, Wy
a/Z̄

v
/− > (4.2)

In this example, this FP describes one disturb coupling fault between two cells
(a) and (v) with an initial logic state X and Z, respectively. A writing process in the
aggressor (a) cell generates the logic toggle of the victim (v) cell. The associated
AFFP is based on:

FP :< XaZv, Wx
a/Z̄

v
/Zv > (4.3)
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From the AFFP it is possible to derive an initial test pattern (TP). The TP
adds the condition to check the state of the (v) cell and is defined as:

TP :< XaZv, (Wx
a, rz

v) > (4.4)

The first two terms in 4.4 represent the initial logic state in (a) and (v) cells.
The consecutive terms describe the patterns to evaluate the fault. Thus, the TP
starts a writing process in the (a) cell, to generate the fault condition, and then,
a reading procedure is performed on the (v) cell to verify the fault effect in the
affected cell. This TP can be employed in general-purpose memories with normal
writing and reading procedures. However, the special purpose memory, in the SC,
includes a set of constraints presented in the previous section; thus, in order to
include the operational restrictions and initialization conditions into the AFFP
and TP, additional procedures are added as part of the pattern for test purposes.
The adapted versions of the AFFP and TP for the SC memory are presented in
equations 4.5 and 4.6.

The additional memory procedures in 4.5 and 4.6 were selected as follows: the
first four terms in parenthesis, in AFFP(SCH) and TP(SCH), describe the initial
logic states for both cells. The second and fourth terms are the unavoidable reading
operations on each cell of the SC memory by the operational restrictions. The fifth
term represents the sensitive operation of the FP. The sixth term is the implicit
reading procedure due to the previous operation. Finally, the seventh parameter,
in TP(SCH) is the additional operation to observe the failure in the memory cell.

AFFP (SCH) :< XaZv, (WZ
a, rX

a, WZ
v, rZ

v, WX̄
a
, rX̄

a), Z̄
v
, Za > (4.5)

TP (SCH) :< XaZv, (WZ
a, rX

a, WZ
v, rZ

v, WX̄
a
, rX̄

a) > (4.6)

It is worth noting that during the scheduler operation it is possible to perform
reading operations in the memory for the TAM and WPC fields. Considering the
TAM fields the only condition is that each bit field maintains the same logic value.
On the other hand, the WPC changes by executing a new instruction, thus a reading
operation can be partially performed. These toggling bit fields cannot be included
in the previous pattern. This means that the previous pattern should be applied
more than once to fully test the WPC field. As explained below, the TP(SCH) can
be directly derived from the associated AFFP(SCH), since the same writing and
reading operations are performed. The complete list of AFFP(SCH)s is presented
in Tables 4.4 and 4.5.
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4.1.8 Methods to Generate SBST Patterns for the Sched-
uler Memory

the scheduler memory is a special purpose memory and includes some restric-
tions in terms of writing and reading operations. Moreover, the accessing method
to each LEs cannot follow the conventional procedures used in processors to ac-
cess data memories. Thus, alternative methods should be proposed to inject test
patterns based on writing and reading operations.

The proposed methods are focused for detecting permanent faults and static
coupling faults in the WPC and the TAM fields of the memory in the scheduler.

This subsection presents the software methods employed to perform reading and
writing operations in the SC memory for the TAM and WPC fields.

The memory behavior when performing reading and writing operations

The in-field controller operation imposes restrictions when perform writing (W(x))
and reading (R(x)) sequences in the memory. These restrictions depend on the tar-
get field in the LE.

The methods to perform W(x) procedures into the WPC and the TAM fields are
similar among them and are based on executing control-flow instructions.

Conditional control-flow instructions can be used to write in the TAM field.
However, their execution may generate thread divergence creating two paths (the
Taken and the not-Taken), which are managed by the warp scheduler and are exe-
cuted independently in a serial fashion until a convergence point is reached. Then,
the threads are executed again in parallel (see Fig. 4.5). Thus, the execution of one
conditional control-flow instruction generates a process where all the instructions in
the first thread path (Taken) are executed, generating a W(x), followed by the exe-
cution of all instructions in the second path (Not-Taken), forcing an inverse writing
W(x̄) operation on the same bit field. New architectures include deeper granularity
and are able to process independently divergence threads by storing more parame-
ters into the memory [44], thus partially reducing the latency of divergence thread
paths.

The time execution of each writing procedure on each path directly depends
on the total number of instructions in the path. For the TAM field, the reading
sequence is implicitly added after the execution of each instruction. Fig. 4.6 rep-
resents the effect of a conditional control-flow instruction which modifies the state
of one-bit of the TAM field in terms of W(x) and R(x) operations. The divergence
instruction is able to generate writing operations of both logic values (1 and 0) on
the same bit field consecutively.

The access to the WPC field in a LE is based on the sequential execution
of instructions. Nevertheless, this execution is a naïve method and some high-
part fields are complex to stimulate. In a GPU, each warp employs the same
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Figure 4.5: A general scheme of the classical intra-warp divergence management
for the NIVIDIA’s Pascal and previous GPU architectures.

program counter to fetch and execute an instruction. Unconditional control-flow
instructions to specific locations can be used to generate the test patterns in this
field. Taking into account that each warp executed by the SM resources employs a
shared program counter, it is required to add mechanisms to stimulate these fields.
Nevertheless, the same behavior of the TAM field is also presented in this field and
R(x) operations are generated after a W(x) sequence.

In order to face the TAM fields, we consider the divergence management mech-
anism implemented in NVIDIA Pascal and previous architectures.

4.1.9 Test Pattern Generation
In order to generate TPs for the target memory, each restriction is analyzed and

considered in the mapping process of FPs into software functions.
Regarding operational restrictions, the first and the second ones cannot be

avoided and test patterns targeting the TAM fields must face the starting condition
of all threads active (all bits equal to 1). Some FPs require initialization conditions
of bits in logic 0, thus additional patterns must be generated and applied before
starting the test sequences for the target FPs.

The second restriction describes the impossibility of performing a W(x) without
one consecutive implicit R(x) operation at the end of each instruction cycle. The
FPs definition, design, and implementation TPs must include those consecutive
W(x) and R(x) procedures.

Regarding the third listed constraint, it describes the impossibility to stop a
divergence path when started. A technique to control and reduce the effect is
based on the selection of a limited number of operations and control-flow functions
presented on each path. A set of input patterns (see Table 4.6) may be employed to
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Figure 4.6: A general scheme of the write and read operations generated by a
divergence path function in a bit of the TAM field. The nesting divergence case is
not considered in the scheme.

divide the self-test program into chunks. These test patterns are carefully selected
to increase the fault detection inside and among LEs.

Table 4.6: Selected test patterns for coupling fault detection in a LE.

Test Pattern Description
1111...0000 / 0000....1111 First-Half X, Second-Half X̄

00001111.. / 11110000... First four bits X, Second four X̄

0011...0011 / 1100...1100.. First two bits X, Second four X̄

1010...1010... / 0101...0101... Alternated X and X̄
11111111111111111111111... All in ones

The third restriction arises during the execution of a not-taken path. Initially,
the scheduler submits threads executing the divergence taken-path. Then, the
scheduler inverts the state of the threads in a warp activating those that were
inactive and inactivating those that executed the taken path. In this way, an
inverse W(x) operation, in the TAM field, starts the not-taken path execution. The
not-taken path can be temporary skipped or delayed by the addition of nested
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divergence paths. These nesting conditions introduce additional operations in a
procedure. Nevertheless, these do not affect the test pattern generation or the
adaptation of a March operation into high-level functions.

Concerning the fourth constraint, the previous test patterns must remain at
least one thread (bit) in the active state (logic 1). This condition explains the
missing pattern (all in 0s) in Table 4.6.

The fifth restriction (warp control issues by dispatcher units) is faced by using
combinations of thread synchronization functions, i.e. thread barrier instructions,
semaphore mechanisms (local variables), and control-flow loops. These elements
are placed in strategic locations in a function in order to stop/skip the operation
of the dispatchers and to control the warp submission into the SM resources. The
loops are placed in order to retain the state of LEs during a stopping condition.

This technique is able to hang temporarily the operation of an active warp and
to dispatch a desired one. It is worth noting that, some undesired consecutive R(x)
operations may be executed as a product of the skipping method for the dispatchers.
Thus, adding latency in the program execution. On the other hand, these R(x)
operations in a LE do not produce consequences in the test pattern generation and
the March operation or algorithm adaptation, as previously described.

During the scheduler operation, this unit manages the content of the WPC and
the TAM parameters employing W(x) operations, which are the product of control-
flow instructions (conditional and unconditional). Considering that in most GPU
technologies, the divergence paths are executed in different operation cycles in a
serial manner, the proposed technique uses the taken-path as the principal path for
test pattern generation. Thus, the inverse W(x) operations can be neglected and it
is not used in most of the cases.

The next subsection proposes and details a method to skip the dispatcher opera-
tion employing the mechanisms introduced below. The consecutive sections present
the sequence of steps to produce W(x) and R(x) procedures into the WPC and the
TAM parameters of a LE.

A method to skip the operation of the dispatcher unit in the SM

The basic operation of the dispatcher units is the management and warp submis-
sion to the SM resources. The operation of this unit depends on multiple parameters
in order to increase the performance. Those parameters include the application cod-
ing style, data operands sources, internal hazards, and availability. Moreover, it is
also considered the instruction conflict and latency, and internal warp distribution
policies; thus in most of the cases warps are not dispatched following a sequential
approach with a direct incidence in the LEs. This operation restricts the applica-
tion of test patterns on (a) and (v) cells, thus its operation should be controlled or
avoided.

The proposed method employs software approaches to start and stop the warp

91



Functional testing on GPUs: Software-based solutions for in-field fault detection

Figure 4.7: Example of the method used to skip the operations of the dispatcher unit
employing semaphores and synchronization functions between consecutive aggressor
and victim cells.

execution and keep the belonging LE state. It is worth noting that the main idea
is to stop temporarily the execution of an active warp instead of fully terminate
the warp operation and inject patterns in a sequential fashion in order to keep
the coherency of the TP injection. Moreover, a set of variables which behave as
semaphores and thread synchronization checkers are employed for this purpose. It
should be clarified that the addition of these mechanisms requires communication
among threads. Moreover, the same kernel operations are executed by the (a) and
(v) cells.

Fig.4.7 represents a basic example of the mechanism employed to skip the oper-
ation of the dispatcher. In this example, a kernel program is executed concurrently
by warps corresponding to consecutive LEs behaving as (a) and (v) cells. One
external comparison parameters (A) is loaded into the kernel. Moreover, (A) is
shared between both warps. As shown in the example, the injection pattern and
the starting cell can be selected by changing the (A) value in the semaphore.

The process starts with a warp selection through (A) value comparison. In this
example, (A) starts in 1 and the warp corresponding to the (a) cell is selected to
start its execution. Then, a pattern is applied (3FFh), the semaphore variable is
updated with (A=2) and the barrier instruction stops the warp.

The dispatcher picks any other available warp and dispatches it to the system.
However, if the submitted warp is not the expected one, a loop mechanism stops it
again. It should be clarified that a previously stopped warp continues its execution
after the last executed instruction before the stopping condition. Employing this
mechanism, the target (v) warp, with an A=2 condition, can start the execution
in an ordered manner.

Once (v) is dispatched, the semaphore condition is true and the pattern is
injected on the cell followed by a new update in the semaphore value and a barrier
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function. This last instruction restarts the dispatcher operation and picks again
any available warp.

In final steps, the dispatcher submits again the warp corresponding to (a) and
enters in a path to remove the pattern. This pattern can be the Not-Taken path or
an additional nesting path for a new pattern injection. Moreover, the semaphore
is again updated. Finally, the dispatcher submits (v) and removes the pattern. In
the end, the cells are ready to start a new pattern injection. The loop requires
an additional local variable to calculate the number of loop execution times. It is
worth noting that, we did not consider the Not-taken path to include operations
related to the injection of new patterns.

Test patterns for the TAM field

The scheme in Fig. 4.6 describes the sequence of steps and stimulus instructions
to generate patterns in one LE. The following steps are derived from this scheme
and perform W(x) procedures in the target parameter (TAM).

This method presents effectiveness in evaluating some coupling faults between
two cells belonging to different LEs (CFir, CFdrd, and CFrd).

Sequence of steps for pattern generation in a single cell:

1. Execute an embarrassingly parallel function (F) (Initial condition).

2. Execute a divergence generator function (W(x) in the target bit(s) of TAM).

3. Execute the taken path (R(x) in the full TAM).

4. Execute the not-taken path (Inverse W(x) and R(x) procedures on selected
bit(s) field).

5. Convergence point execution (CP) (parallel execution of instructions and im-
plicit R(x) procedures).

The previous steps form the basic W(x) procedure into a LE. On the other hand,
the proposed method may neglect the Not-Taken path for test patterns generation.
Thus, step 4 can be ignored, for the purpose of test pattern generation, and is
mainly employed as a connection to start a new March operation.

In the Taken Path, of a thread group, additional functions are added to stop
and hang the warp execution. Then, the warp scheduler selects an available warp
and the dispatcher launches it in the SM resources. The CFdrd, the CFrd, and the
CFir coupling faults can be suitably tested by means of both divergence paths, due
to the number of W(x) and R(x) operations involved. Nevertheless, some additional
steps must be added to test a bigger number of coupling fault sets.

Sequence of steps for pattern generation in multiple cell:
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The detection of coupling faults, among cells of different LEs, requires more
steps including synchronization operations, nesting divergence functions, and warp
selection routines to assure the correct pattern generation and evaluation of each
fault set. The following steps are based on the scheme presented in Fig. 4.6, and the
interaction between two cells. Experimental observations were used to determine
the interaction among cells. The following list describes the suggested steps to test
this type of coupling faults:

1. Execute an embarrassingly parallel function (F).

2. Select a target warp or LE ((a) cell).

3. Execute the first divergence function (W(x) operation in the target bit(s) field
of (a) cell).

4. Execute the taken path of divergence (R(x) the full TAM field for (a) cell).

5. Execute a barrier function in the (a) cell path, thus stopping the warp exe-
cution and launching a new warp.

6. Select a new target warp ((v) cell).

7. Execute a second divergence function (W(x) in the target bit(s) of a (v) cell).

8. Execute the taken path for the second divergence (R(x) operations of the full
TAM field in the (v) cell).

9. Execute a barrier function in the (v) cell path launching a new warp.

10. Execute of the not-taken path for the (a) cell (inverted W(x) operation in the
target bit(s) of the TAM field, followed by R(x) operations).

11. Execute a barrier function in the (a) cell path.

12. Execute of the not-taken path for the (v) cell (inverted W(x) procedures in
the target bit(s) of the TAM field, followed by R(x) operations).

13. Execute a barrier function in the (v) cell path.

14. Convergence point execution (CP).

The step range, from 9 up to 13, originally is part of the neglected operations
required to start a new test patterns sequence. Nevertheless, these steps potentially
can be employed to test additional coupling fault conditions in the TAM parameter
(CFtr, CFds).

In the first divergence, an external pattern is applied to the target (a) cell. This
pattern divides the warp by selecting the active threads during the evaluation of
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a (v) cell. This division is performed by a divergence which splits the warp into
two equal groups of consecutive threads (group 1: 0 to 15 and group 2: 16 to 31).
Nevertheless, the functions must be evaluated independently, in both groups, to
cover all coupling faults.

In this method, the R(x) operations are integrated with the W(x) ones. In the
simplest case, R(x) operations can be performed by the execution of non-control-flow
instructions during the execution of a warp. In the TAM field, one R(x) operation is
presented when the number of active threads, in a warp, is the same after executing
one instruction. Similarly, for the WPC field, the execution of instructions is able
to maintain the value in most fields, but for the WPC parameter, some bits should
be neglected during the fault evaluation.

As introduced previously, R(x) operations are presented after each instruction
cycle in both targeted fields. Moreover, these cannot be avoided. The scheduler
checks the LE continuously at the starting and ending points of each instruction
cycle to preserve the SM coherency during the warp operation. Other halted and
stopped LEs are read when those turn into the active state by the SC management.

Step 8 describes the addition of a nested divergence function. A nested diver-
gence function is effective to retain a warp in an active state and maintain at least
one active thread in the TAM field, thus limiting the effect of the fourth constraint
in the memory. Moreover, this is suitable to detect coupling faults of the groups
(CFir and CFrd). The divergence function can be located after steps 4 or 10 con-
sidering an (a) cell. Similarly, this function can also be placed after step 8 for a (v)
cell.

A third nested divergence function is required to detect the faults in the CFwd
set. This sensitizes some missing conditions and guarantees the required W(x)
operations in the memory. The third nested divergence function operates selecting
only the thread 0 (first) or the thread 31 (last) for each path. This divergence
should be applied in both cases to also test coupling faults on those fields. Some
barrier instructions are added on each path for synchronization purposes. In the
sequence of steps, the 14th step is replaced and the 4th, 5th, 10th and 11th are
added to generate a new operation on the (a) cell. Thus, the third nested divergence
function is executed during the second nested divergence, in the not-taken path.

This sequence can be used to evaluate any interaction among the (a) and (v)
cells. Finally, barrier functions and shared variables may be placed on the steps
to control the displacements across the LEs in any memory direction (dropping or
incrementing).

Test patterns in WPC

The proposed technique considers those GPU architectures with a shared WPC
parameter in all threads of a warp. In this strategy, the test program design and
execution must target the highest possible parallelism, thus the approach avoids
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thread divergence to maintain the parallel execution of the threads in a warp. For
this purpose, a set of routines are located in specific and strategic addresses of the
system memory. The target memory addresses, for each routine, are based on the
test patterns introduced in Table 4.6.

Each routine is mainly composed of embarrassingly parallel operations and
thread barriers. The main function calls each routine using unconditional control-
flow instructions. Inside the routines, a set of barrier functions halts the operation
of a warp and starts the execution on a new one. The same method used to select
the warps, in the TAM parameter evaluation, is also used for testing the WPC
parameter.

Some WPC bit fields, in the highest part of the memory, are difficult to evaluate
by the complexity to locate the test routines. This issue is solved by the inclusion
of additional GPU functions and program kernels in the memory. These functions
and programs are placed in memory during the compilation. Finally, the method
is flexible and the implementation may consider division into pieces in order to
evaluate specific WPC fields through independent kernels in short execution times.

Sequence of steps for pattern generation in single cells
The following sequence of steps describes the procedures of writing and reading

into the WPC parameter to evaluate a single cell.

1. Execution of an embarrassingly parallel instruction (F) (R(x) procedures).

2. Execution of an unconditional control-flow routine (calling a function and
W(x) and R(x) procedures).

3. Return from the routine, and then compare the signature. Start a new call
to another routine (W(x) and R(x) procedures).

4. (Restart and repeat steps 2 and 3 when required).

As previously discussed, R(x) operations are integrated into the W(x) operations
in the target memory. For each memory parameter (TAM or WPC), the process-
ing thread computes a signature (d_signature). This parameter is included as an
observation mechanism to evaluate and detect any fault in the LE. A mismatch
in the final signature represents the presence of a fault in the memory cell. This
signature is evaluated at the end or in the middle of each test program routine.

Sequence of steps for pattern generation in multiple cells
As previously introduced for the TAM parameter, the test pattern generation

of coupling faults among LEs requires more elaborated steps. The (a) and (v)
target cells are carefully chosen by the warp selector mechanism which may generate
divergence, in case of intra-warps cells, or not when the cells belong to different LEs.
The following sequence of steps is able to generate test conditions and patterns.
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1. Execution of an embarrassingly parallel instruction (F).

2. Execution of unconditional control-flow operations calling and selecting an
(a) cell (W(x) operation in the (a) cell).

3. Execution of the routine and a barrier instruction in the path of the (a) cell
launching a warp containing the (v) cell (R(x) operation in the target (a) cell
of a LE).

4. Selection of the target (v) cell and execution of unconditional control-flow
operations (W(x) operation in the (v) cell).

5. Execution of the routine and a barrier instruction in the path of the (v) cell,
dispatch of a new warp containing (a) cell.

6. Return to the main program path and the start of the new operation of
embarrassingly parallel instructions (W(x) operation in the returning stage,
R(x) in the parallel execution).

This sequence of steps allows the test pattern generation and evaluation of
the groups, CFtr and CFds, of coupling faults. Nevertheless, other steps must be
added to evaluate missing coupling fault groups, such as CFir. In this case, the new
steps are located after the 5th step and these include the execution of additional
functions in the routine, thus generating implicit R(x) operations in the LE. New
barrier instructions are also placed in order to generate elaborated stimulus in both
cells. The generation of test patterns for CFwd coupling faults needs a new W(x)
operation in the (a) cell by means of a new routine, which is included after the 6th
step.

March algorithms adaptation

March algorithms are well-known methods to detect coupling faults in memories.
Thus, those methods can be employed to generalize the proposed technique to
detect permanent and static coupling faults in the memory.

Those algorithms are composed on a set of writing and reading operations (or
March operations) to be performed in the memory. The injection direction in the
operation is considered as an additional parameter to consider in the implementa-
tion phase.

It is not possible to inject consecutive March operations in the scheduler mem-
ory by its operational restrictions. Nevertheless, this restriction can be partially
avoided by applying March operation patterns in a segmented fashion. In this
method, a March operation is firstly performed followed by a set of initialization
operations. Then, the second March operation is injected and, finally, new ini-
tialization operations are included for other March operations. Fig. 4.8 shows an
adaptation example employing the segmented approach.
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Figure 4.8: A normal sequence of March operations and the adapted approach for
the scheduler memory, (*) Example of initialization operations.

The application of segmented patterns into the target memory locations does
not reduce the effectiveness of the proposed method and the adaptation of a March
operation.

This initiation sequence is composed of additional W(x) and R(x) operations
required to access the target memory locations or to avoid the normal scheduler
execution. In some cases, these initialization operations include March operations
in other LEs. Thus, March operations are described independently as a set of
program kernels.

The division of a test kernel in chunks, or multiple test programs, allows the fault
evaluation during idle intervals of the in-field operation of the device. The division
must also consider the observability mechanism and the Host interaction. For this
purpose, the test signatures are stores in free locations of the global memory. Thus,
these can be reused in multiple test kernels. Similarly, the Host may locate and
trigger the test programs aside from the application kernels.

As a proof of concept, we employed two March algorithms (MATS+ and
MATS++) to demonstrate the features of the proposed technique and generated a
set of test programs for the TAM and WPC fields for each LE in the memory.

MATS+ AND MATS++ algorithms
Each algorithm is adapted following the proposed technique. Moreover, it is

described in multiple test kernels; thus, its operation is performed by applying
multiple test parts. Table 4.7 shows the operations in the MATS+ algorithm (the
reader may refer to [163] for details regarding March test notation). It can be noted
that initialization steps and implicit R(x) operations are included in the adaptation
of each operation. The initialization steps are needed to generate a specific test
pattern in the target LE (or warp) and to avoid the execution of the dispatcher
units. This method is used for each LE in the memory.

The adaptation to high-level functions is based on independent kernels (Basic
Block Kernel or BBK) describing a March operation. These BBKs uses the sig-
nature location in memory and an external test pattern as input parameters. The
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Table 4.7: MATS+ and (*) MATS++ operations as a sequence of CUDA kernel
executions.

Original March
operations (MATS+)

Adapted March
Operations

Equivalent
CUDA BBK kernel

M1: ⇕ (W(0)) Init. Steps:(W(X), R(X));
M1:⇕ (W(0), R(0))

Test_kernel_dropping
<TOTAL_BLOCKS, TOTAL_THREADS>

(TOTAL_THREADS,
vector_params[0], d_signature);

M2: ⇑ (R(0), W(1))

Init. Steps:
(W(X), R(X));

M2:⇑ (W(0), R(0),
W(1), R(1))

Test_kernel_dropping_x
<TOTAL_BLOCKS, TOTAL_THREADS>

(TOTAL_THREADS,
vector_params[1], d_signature);

M3: ⇓ (R(1), W(0), R(0)*)

Init. Steps:
(W(X), R(X));

M3:⇓ (R(1),
W(0), R(0))

Test_kernel_incrementing
<TOTAL_BLOCKS, TOTAL_THREADS>

(TOTAL_THREADS,
vector_params[0], d_signature);

external pattern is only present for the evaluation of the TAM field in the LE.
Table 4.7 also presents the adaptation of the algorithm into a set of independent

test kernels. In this example, it is can be observed that the external pattern is
different in each case. The same pattern is applied to the first and third kernels.
On the other hand, the second program needs the opposed value to generate the
desired pattern. The kernel sequence (dropping, dropping_x, incrementing) must
use the patterns in Table 4.5 to evaluate all target coupling faults. In the end, this
program kernel sequence is applied eight times.

Algorithm implementation in the CUDA environment
In Fig.4.9, the scheme presents the interaction between (a) and (v) using the

method described above. Although the diagram depicts a parallel program execu-
tion in (a) and (v), the execution of the algorithm is fully serialized for each SM.
In fact, on each SM core, only one SC and its internal memory exist. However, this
scheme shows the complexity in the test program description in order to ensure
that (a) and (v) cells interact in the expected fashion.

The method employed to inject patterns in the cells uses a selection mechanism
to identify and classify the LEs (warps) as even or odd (as (a)-(v), or (v)-(a)).
Moreover, additional conditions in the kernel description were added to check the
edge conditions of (a) in the memory borders (i.e., LE number 0 or 31 and target (v)
number -1 or 32, respectively). In these cases, the (a) cell is maintained as inactive
while the other cells perform the injection sequence. The mechanism employed for
thread communication is based on the method to skip the dispatcher units operation
(see section 4.1.9).

The implementation of the program kernels also considered the direction of
pattern injection. Independent kernels were designed, as presented in Table 4.7, to
perform the pattern injection in both directions.
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Figure 4.9: A general flow diagram of the test algorithm for the TAM and WPC
fields in the scheduler memory.

The pseudocode reported in Fig. 4.10 describes a general CUDA implementation
of one of the test programs aimed to detect coupling faults. This kernel is executed
concurrently by an (a) and a (v) warps (or LEs).

The warp selection mechanism divides both cells and also controls the execution
of the program in a sequential fashion.

In Fig. 4.10 we detailed the implementation of the warp selection and detection
process. The main difference among them is the total number of conditions required
to generate the start of detection of the target LE.

It should be noted that, in both cases, the returning steps after and before warp
synchronization are neglected to inject any test pattern into the cells. In the TAM
case, these intervals are generated during the Not-Taken path evaluation. In the
WPC algorithm, these intervals belong to the returning procedures from a called
routine.

The warp selector mechanism generates independent paths for the (a) and (v)
cells. Internally, the path may use divergence operations stimulating the parameter
under evaluation. In (a), a second divergence path is employed to add the required
initialization condition (W(0)) for evaluation of those coupling faults which need
this initial state.
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Figure 4.10: A pseudocode (CUDA) describing the program kernel implementation
to detect coupling faults. (¥) Functions to generate divergence paths in the (a)
and (v) cells in the LEs. (§) functions to skip dispatchers. (£) optional functions
to evaluate edge conditions in LEs.

The pseudocode presents the worst-case scenario for test pattern injection, thus
the kernel description can be simplified in order to avoid the second divergence for
some static coupling and permanent faults.

Adapting March operations to test the scheduler memory
Each March operation can be represented as a set of W(x) and R(x) operations

in a selected direction. The implementation of a March operation, considering the
FPs for the SC memory included the direction parameter as an additional factor
in the adaptation.

Adapting the March writing and reading procedures
Each operation (W(x) and R(x)) is translated into equivalent software functions
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on the target fields (TAM and WPC). Table 4.8 presents an example of the adap-
tation of a TP for coupling fault detection composed of multiple W(x) and R(x)
operations.

Table 4.8: Example of a TP sequence for coupling fault evaluation.

Target TP operations TPx = {wa
x, ra

x, wv
y , rv

y , ry
v, ry

v}
March

Operation
The equivalent operation

for TAM fields
The equivalent operation

for WPC fields
wa

x Divergence generation in (a) Subroutine call in (a) cell

ra
x

Execution of multiple instructions
in the taken path of (a)

Execution of consecutive
instructions in (a) cell

wv
y Divergence generation in (v) Subroutine call in (v) cell

rv
y

Execution of multiple instructions
in the taken path of (v)

Execution of consecutive
instructions in (v) cell

rv
y

Execution of multiple instructions
in the taken path of (v)

Execution of consecutive
instructions in (v) cell

It is worth noting that this example does not present the additional steps after
the pattern injection and the Not-taken path operations for (a) and (v) warps.
Thus, those steps are considered as initialization operations for the next pattern.

The final step in order to adopt a March operation is the adaptation of the
direction parameter in the kernel. The next subsection presents the method to add
and select this parameter in the design.

Adapting the March direction operations
The application of a March operation has an associated injection direction (⇕,

⇑, ⇓). This parameter is related to the FP to be tested and TP to be injected.
The CUDA implementation of the TPs included, on each kernel, an external

parameter describing the injection direction (Incrementing and Dropping) of each
operation.

Moreover, this organization is static. Thus, the warps with lower or higher IDs
will be the first selected and have priority access to the SM resources. It is worth
noting that warp selection does not generate any kind of divergence in the SM.
Nevertheless, the warp selection process and direction management are based on
the previously described method to skip the dispatcher unit from section 4.1.9.

One selection loop is added into the test programs to manage the warp selection
considering the direction of the March operation. This selection loop is initialized
with a base, an offset, and a limit. The base and the limit define the direction to
be applied. This starts with the same conditions for each warp in the test kernel;
thus during the kernel execution, the loop selects the warps in the range of the
base and the offset values. Then, the base and offset are updated until the limit
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is reached. This selection mechanism has a higher priority for the warps in the
range of selection. However, this method has low priority in the border warps and
increases the latency in their execution. Moreover, the dispatching process may
add additional conditions in order to select even or odd warps and generate TPs
for multiple coupling faults.

Inside the loop, a base and offset are employed to select the external parameters
and to identify the warps that can be dispatched into the SM.

Multiple shared memory locations are employed to control and manage the
coherency of pattern injection between consecutive (a) and (v) warps. This local
synchronization mechanism is local for the interaction between consecutive cells
belonging to different LEs in the memory.

4.1.10 Experimental Results
Performance results

Several experiments were performed to validate the proposed methods. We
employed an NVIDIA© GeForce GTX 960M GPU with 32 threads per warp and
1.176 GHz of clock rate. The evaluation and validation of the test programs are
performed by employing the NVIDIA© Nsight™ 5.6 tool and the NVIDIA© Vi-
sual profiler. These tools are employed to determine the resources overhead and
performance parameters. Moreover, these also verify the correct operation of the
implemented test kernels in the GPU.

Table 4.9 reports the performance results of the implemented test programs
following the proposed technique for different LE sizes in the scheduler memory.
The second column in the table also reports the required idle time intervals to
perform an individual test sequence of the whole procedure.

The BBKs were originally designed and implemented to be executed in one SM
of the GPU with a configuration of one block per grid.

Table 4.9: Performance parameters of the implemented test programs to evaluate
different LE sizes. The symbol (+) identifies the cost for active kernel functions,
only.

LE parameter
TAM WPC

LE size 32 16 8 32 16 8
BBK execution (uS) 778.98 359.30 168.30 573.50 187.79 91.52
Total execution (mS) 18.69 8.62 4.04 13.86 4.51 2.19

Number of
instructions

BBK incrementing kernel (KB) 276.25 78.28 8.43 186.48 50.36 14.46
BBK dropping kernel (KB) 276.61 78.18 8.40 436.13 73.49 15.58

per pattern (KB) 829.11 234.74 25.26 809.08 174.21 44.49
Total (MB) 6.63 1.88 0.202 6.473 1.397 0.356

GPGPU memory
overhead

System memory (KB) 1.84 1.84 1.84 2.42+ 2.42+ 2.42+
Shared memory (B) 260.0 132.0 68.0 4.0 4.0 4.0

103



Functional testing on GPUs: Software-based solutions for in-field fault detection

The implementation of the proposed method used an equal number of local
registers and this number is independent on the LE size. The TAM kernels required
28 registers and the WPC kernels required 37.

The number of instructions to evaluate a parameter (3 test kernels) in the LEs
of the memory is relatively high (809 and 809KB, for WPC and TAM parame-
ters respectively). This behavior is explained by the selection of the programming
environment (CUDA) to implement the functions and the additional mechanism
employed to manage and avoid the dispatcher units. Moreover, the total number
of instructions is also proportional to the number of LEs tested.

As shown in Table 4.9, some milliseconds are required to execute all program
kernels. Moreover, the kernels present a low cost in terms of the system memory
overhead to perform the test of one pattern for 32 LEs (2.4KB in WPC parameter
and 1.84KB in the TAM field). Nevertheless, the test program for the WPC pa-
rameter is also composed of some inactive kernels in memory to place the routines
in the target memory locations to be tested. This test procedure requires the entire
system memory space. Hence, the evaluation of the WPC parameter during device
operation should be limited to the Power-On/Power-Off intervals.

Regarding the share memory resources (Table 4.9), the TAM kernels require a
low number of memory locations. For this kernel, this parameter is directly depen-
dent on the total number of line entries considered and the number of shared thread
variables employed as semaphores used to avoid the dispatcher units execution. On
the other hand, the WPC kernels employ a constant number of shared memory
locations, as this kernel does not require semaphore variables among the threads.

Six test kernel functions are needed to control the warp execution and to stop
the operation of the dispatchers. For this purpose, the conditional functions (di-
vergence functions) are employed during the evaluation of coupling faults between
cells. These functions include additional instructions in the test programs imple-
mentation. In contrast, the instruction size of the BBK is relatively low (≈ 280KB)
and is executed in less than 780. In the TAM test programs, the number of shared
memory locations has a linear dependency with the evaluated LEs. In contrast, the
WPC test programs employ a constant number of shared variables independently
of the SC memory size. This can be explained considering that the techniques
for testing the WPC parameter are simpler than those employed to evaluate the
TAM field including the warp selection mechanism to stop the operation of the
dispatchers.

A detailed analysis of the TAM test programs with the NVIDIA Visual Profiler
shows that the concurrency operation of these test kernels, under multiple LE size,
is 0%. The concurrency operation is an indicator of the level of parallelism in the
program. This zero percentage in concurrency is mainly generated in the program
by the complexity to follow the required steps and generate the patterns to evaluate
the TAM parameter in a LE and the TAM. Additional analyses with the Visual
Profiler showed that the implementations of the test programs spend almost 60%
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of the execution time in thread synchronization operations or in halting conditions.
In the WPC test kernels, the halting and the synchronization functions affect in
a lower manner the execution time, which is near to 50%. In both cases, these
operations are needed in order to stop or avoid the execution of the dispatcher
modules during the test operation.

Fault detection results

In order to evaluate the effectiveness of the proposed technique and to check the
FC, we employed as a verification tool a memory fault simulator. This simulator
reads an input file with the generated memory procedures (writing and reading)
during the program kernel execution. A detailed description and additional infor-
mation about the memory fault simulator can be found in [164].

To the best of our knowledge, comparative functional test techniques targeting
the same memory structure in the scheduler of a GPU were not proposed in the past,
thus limiting the possibilities of a direct comparison. Nevertheless, we selected three
representative benchmarks (Vector_add, MxM, and Edge) to evaluate, compare and
show the efficacy of the proposed functional test mechanism. Each benchmark was
configured with a workload equivalent to the one adopted for the functional test.

In order to generate a compatible input file for the memory simulator, each test
program and benchmark was instrumented with debugging functions able to trace
the functions, the operations or the instructions executed at each phase. Table 4.10
presents the obtained results for the proposed functional test mechanisms and the
selected benchmarks expressed in terms of FC.

According to the results, the proposed technique is able to test effectively the
static single and coupling faults in the SC memory. Although the original test
programs design was not targeted to consider some groups of faults, such as the
state coupling faults (CFst), the state faults (SF), and inversion coupling faults
(CFid), the results in the fault simulation show that these groups of faults were
also evaluated by the test program kernels in an indirect manner. The additional
nesting divergence functions, for both cells (a and v), directly caused the detection
of faults in the CFid group. Moreover, the time delays during the test injection
provoke the required initial conditions in those cells that are not directly evaluated,
thus, indirectly evaluating the faults of the CFst and SF groups.

During the first attempts to determine FC results from the fault simulations
using the proposed method, we obtained some moderate percentages (96%) for
some specific patterns in the memory. After a detailed check of these conditions, we
concluded that the initial stage of some LEs, targeting the TAM fields, remains in an
active state, thus avoiding the evaluation of some FPs with a W(0) as starting logic
state. These restrictions were finally removed and corrected through the addition
of the second divergence path in order to consider the conditions of initialization.

A comparison of results among the implemented test programs and the selected
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Table 4.10: Fault coverage of the MATS++ test kernels for a SC memory with 32
LEs. (*) FPs that were not initially considered in the proposed technique.

Fault
primitive

MATS+
Algorithm

FC (%)

VectorAdd
FC (%)

MxM
FC (%)

Edge
FC (%)

TAM WPC TAM WPC TAM WPC TAM WPC
TF_1
TF_0

RDF_1
RDF_0

DRDF_1
DRDF_0
WDF_1
WDF_0

100.0 100.0

100.0
0.0

100.0
0.0

100.0
0.0
0.0
0.0

34.4
84.4
84.4
34.4
0.0
0.0
34.4
84.4

100.0
0.0
0.0

100.0
0.0

100.0
0.0
0.0

37.5
87.5
38.5
89.1
0.0
0.0
37.5
87.5

1.6
100.0
100.0
1.6
0.0
0.0

100.0
1.6

35.5
89.5
40.5
90.5
0.0
0.0
35.5
85.5

CFds_X,
CFir_X,
CFtr_X

100.0 100.0 - - - - - -

CFrd_X,
CFwd_X,
CFdrd_X

100.0 100.0 - - - - - -

CFst_X 100.0 (*) 100.0 (*) - - - - - -
SF_X 100.0 (*) 100.0 (*) - - - - - -

CFid_X 100.0 (*) 100.0 (*) - - - - - -

benchmarks allow us to affirm that an application by itself is not suitable to gen-
erate a considerable number of functional test patterns in the SC memory. The
previous behavior is clearly represented in the low percentage of FC of each single
cell FP group. Vector_Add and MxM applications operated fully parallel and did
not produce all the required logic state changes for the TAM field. The parallel
behavior explains the zero percentage presented in the FC in some FPs groups. A
similar situation is presented in the low percentage of the TAM field in the Edge
application, this behavior is generated by some divergence paths produced during
the evaluation of the convolution algorithm. Nevertheless, the generated divergence
is not enough to increase the percentage of FC in most single cell groups of FPs.

Concerning FC results in the WPC field, these directly depend on the total
number of instructions and the number of internal loops described in the program
kernel. The longest benchmark (Edge), which also includes up to 25 loops, denotes
a higher FC in comparison with the other applications with lower number of in-
structions and with none (Vector_Add) or a few (MxM ) loops in their description.
A direct comparison of FC results between the proposed functional test mechanism
and the representative applications shows the need and relevance of the proposed
functional test solution in terms of detecting faults in a large number of groups of
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Figure 4.11: Proposed methods to apply a March operation including the direc-
tion parameter. (Left) Sequential method using software techniques to skip the
dispatcher unit operation. (Right) Using a parallel arbitrary injection in pairs of
LEs.

FPs.
The FC results in the benchmark for the coupling fault groups are not presented

in Table 4.10. However, it is possible to state that the same trend towards a low
FC for single cells FPs is also valid for the multiple cells groups

Kernel performance optimization

The implemented kernels were designed to apply the March operations in a se-
quential fashion following the direction of a March operation. However, the software
management of the kernels (by using semaphore variables, loops, and synchroniza-
tion functions) is effective in generating test patterns in the memory, but it also
reduces the execution performance. Thus, the total kernel execution time can be
measured in terms of hundreds of microseconds in the experiments. Nevertheless,
as detailed previously, it was noted that a large part of the latency in execution
time is caused by the operation of the synchronization loops.

In order to reduce the time execution in the kernels, we propose a set of op-
timizations in the kernel description by modifying the method employed to apply
the March operation. This method applies the operation in an arbitrary manner
on groups of two independent consecutive LEs (Warps), one as (a) and the other
as (v), following the direction parameter of the original BBK. Thus, the injection
of a W(x) or R(x) operation only depends on the correlated pairs of LEs (see Fig.
4.11).

This method takes advantage of the dispatcher units operation and uses them
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to manage the pattern injection on consecutive LEs. Employing this approach a
high percentage of the latency presented in the previous sequential method can be
removed. Nevertheless, it must be considered that synchronization loops cannot
be fully removed. However, those can be optimized in order to reduce the final
latency.

The initial loop employed for sequential warp selection was removed and re-
placed by the simple loop mechanism which also selects LE as (a) or (v). Then, on
each path, this solution includes optional synchronization loops for each condition.
One additional loop and break-loop condition are placed at the end of the kernel
execution after the pattern is applied and the LEs are ready to finish.

The main purpose of the loop and the break-loop conditions is the reduction of
inefficient synchronization loops and the associated latency for a large number of
warps. In this strategy, the synchronization is only evaluated between the aggressor
and victim warps, instead of adopting a global synchronization with all warps, as
in the other strategy.

The break-loop condition was designed to be executed at the end, when a warp
terminates its execution and intra-warp divergence is not active, thus simplifying
the management of non-consecutive warps.

The same semaphore mechanisms are employed to keep the order in the execu-
tion. Nevertheless, the total amount of semaphores is incremented up to 32, which
is equal to the number of LEs in the scheduler memory.

This optimized solution should be applied twice, for the (a)-(v) and (v)-(a) cells
configurations respectively, in order to cover all conditions in the memory.

A performance comparison between a sequential version of a test kernel and the
optimized version was performed. Table 4.11 presents the performance parameters
for two BBKs (increasing and dropping).

Table 4.11: Performance parameter for the original and optimized version of a test
kernel. (*) The resource overhead is calculated per kernel.

BBK Time
execution (us) Registers Shared memory

(bytes)
Instruction size

(bytes)
Dropping
(Original) 208,701 37 4 1,152

Dropping
(Optimized) 47,868 37(*) 256(*) 2,944

Improved 160,833 0 -252 -1,792
Increasing
(Original) 176,750 37 4 1,728

Increasing (Optimized) 35,801 37(*) 256(*) 2,944
Improved 140,949 0 -252 -1,216

The effectiveness of the proposed optimizations in the kernel description can
be noted by comparing the execution time of the BBKs (original and optimized).
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For the Dropping BBK version, the execution time is reduced by more than 77%.
Similarly, the Increasing BBK version presents a reduction of more than 79%. The
total number of registers employed by each kernel remains the same. In contrast,
each optimized kernel version employs up to 64 times more shared memory loca-
tions and almost the double of instructions in the kernel description. Although this
optimization required more resources in term of shared and system memory loca-
tions, these can be partially neglected when comparing with the high percentage
of execution performance gain.

In Table 4.11 , it should be considered that the selected BBKs do not include
a second nesting divergence for pattern injection. This additional nesting would
require one additional synchronization loop, thus each path would include one such
loop, as it is presented in the original implementation. Nevertheless, the improve-
ment process is the same as described above.

It is well-known for parallel programs that the usage of synchronization loops
reduces the execution performance and could generate conflicts in the intra-warp
execution. Thus, for the performance view point, these methods should be avoided.
Nevertheless, the added mechanisms were carefully designed in order to operate in
specific regions when the warp does not diverge. Moreover, the loop break condition
is limited to convergence warp states: in this way the coherence of the parallel
program is not affected nor compromised.

4.2 Multi-kernel approach of functional test on
GPUs

As described in Chapter 2, GPUs are mainly composed of groups of SMs. Each
SM includes multiple levels of pipeline stages to improve application performance.
A large register is placed between each pair of adjacent stages to temporarily store
information about the multiple instructions executed on each stage. These registers
are crucial for the SM operation and stores temporary information about the data
and control signals employed in the different stages of the SM, so it is expected that
a fault affecting these structures could generate critical and unexpected behaviors,
from an erroneous result (if the affected location is a data-path register field) until
a system crash (when a control-path register field is affected). Hence, faults in
these structures could often be unacceptable for safety-critical applications. In
particular, faults in control-path fields of Pipeline Registers (PRs) are complex to
detect during the device operation. Moreover, systematic solutions for in-field test
of faults in these GPU structures are still missing.

Some recent works [90][102][153] proposed tools to inject soft-errors at the low-
level code in real o micro-architectural models of GPUs, in particular, to support
the analysis of transient faults effects. However, the injection locations are lim-
ited to some data-path units and it is not possible to determine a Fault Coverage
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(FC) for permanent faults resorting to these solutions. In other works, the authors
employ RT-level models and real GPUs to propose test techniques targeting per-
manent faults in some modules, such as register files (RF) [82], memories [165] and
controllers [166]. Similarly, other works [167][108] analyzed the effect of transient
faults on data-path and found a relation among the fault effects, the employed
instructions and the module usage. In [168], the authors proposed hardening tech-
niques to mitigate the effect of transient faults in the PRs calculating the effects of
faults affecting each register for some selected applications. However, to the best of
our knowledge, there are no works proposing methods addressing permanent fault
detection in PRs of GPUs and reporting experimental data on their effectiveness.

In this section, a software-based technique is proposed to explore the feasibility
of such technique when detecting permanent faults in the PRs of the SMs of a
GPU. More in detail, this work targets the control-path fields in the pipeline regis-
ters considering that these structures are present in GPU technologies and include
control and management information. This information is crucial for SM operation
and instruction execution. Moreover, these are not easy testable and are located
across PRs in the SM. The data-path fields are neglected since it is known that the
test of data-path structures is more dependent on low-level implementation details
and can be successfully achieved using techniques such as the one proposed in [169].

A multiple-kernel approach is used to target different sub-sections of the control-
path fields in the PRs, showing that traditional in-field functional techniques de-
veloped for CPUs can be applied in this case, provided that a careful combination
of high- and low-level programming structures are adopted. Experiments were per-
formed employing fault simulation on FlexGripPlus.

The experimental results show the effectiveness and limitations of the approach.
As far as we know, this is the first work presenting an experimental evaluation (i.e.,
assessing the achieved FC) of SBST approaches to detect permanent faults in the
PRs of a GPU.

The section is organized as follows: subsection 4.2.1 briefly introduces the func-
tion of the PRs in the architecture of a GPU core. Subsection 4.2.2 introduces
the proposed SBST techniques to detect permanent faults in the pipeline registers.
Subsection 4.2.3 reports the experimental results to validate the proposed approach.

4.2.1 PRs in GPU architectures
The PRs in a GPU are mainly used to store operands and control signals for

the execution of a warp instruction. The control signals are employed to manage
information related to the warp instruction status. The Warp-Fetch (W-F) registers
are composed of control fields related to the actual instruction, the warp status
and execution state on the SM, including the Warp program counter (WPC), the
initial and active thread mask (TAM or AThM), parameters for shared memory and
general purpose registers size configuration. On the other hand, the PR between
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the Fetch-Decode (F-D) stage includes the same information of the previous stage,
adding the warp instruction operational code. The Decode-Read (D-R) PR stores
the format of the specific instructions fields to activate some operational modes
or sub-modules in the next stage. The Read-Execution (R-E) PR additionally
includes the Temporary Registers (TRs), which handle operands and predicate
conditions for each SP in the execution stage. The Execution-Writeback (E-Wr)
PR also contains some TRs storing the results. Table 4.12 summarizes the basic
information about the control-path fields of PRs.

Table 4.12: General information about PRs in FlexGripPlus (Control-Path only).

Regs Warp
Instructions

Warp
Status

Instruction
Opcode

Instruction
Formats

Bits per
Reg

F-D X X 237
D-R X X X X 391
R-E X X X 302

E-Wr X X X 251
Wr-W X X 133
W-F X X 140

4.2.2 Proposed approach
The proposed technique is based on a bottom-up approach to target the test

of the PRs in the GPU. This approach is focused on designing multiple parallel
programs (kernels) to detect faults in different groups of sub-registers, so each
designed kernel focuses on some specific parts of the register fields. In the end,
the cumulative FC achieved by all the kernels is assessed. Each kernel is written
through a high-level compiler (CUDA) when possible. Moreover, we added some
assembly instructions (SASS) if required. As previously introduced in Chapter 2,
the GPU assembly language (SASS) is not fully known as it has not been released
by NVIDIA.

Proposed functional test methods

PRs are divided into two main groups and multiple sub-sets for the purpose
of developing multiple functional test methods, one for each target. Fig. 4.12
represents the pipeline fields division. The proposed test methods are explained in
the following subsections.
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Figure 4.12: Composition of the PRs in the GPU core.

Algorithms to test the warp instruction status registers

As shown in Table 4.12, each PR stores warp instruction and status information
across the SM. It means that, when targeting one sub-set of registers in one PR, it
is enough to generate the detection on other PRs. The test method for the WPC
field and AThM are:

WPC technique
This method (PC_T) employs a main program which calls a set of sub-routines,

strategically placed in memory, in order to generate test patterns in the WPC
registers of each PR. Each sub-routine is composed of a Signature-per-Thread (SpT)
and a Counter-per-Thread (CpT). These two elements increase the observability of
the target registers in the memory of the test program and also stop the execution
if a permanent fault affects one of these fields.

The CpT verifies if a fault generates loop conditions and a hanging effect in
the system. Kernel termination instructions (RET) are placed in memory locations
between two subroutines to solve this issue. These instructions stop the kernel
execution when a control-flow instruction does not reach a target memory location
due to a fault turning hanging conditions into fault detections. Each subroutine
checks the CpT value. If this value corresponds to the expected one, the SpT is
loaded, updated and stored. Then, a new subroutine is launched. Otherwise, the
kernel is stopped. Fig 4.13 shows the operations performed by a subroutine.

In the PC_T implementation, it was necessary to replace the CALL and RE-
TURN instructions, not supported by FlexGripPlus, with unconditional and control-
flow instructions (BRA). Thus, the test program consists of multiple unconditional
jumps to and from subroutines. The lower bits in WPC registers were not explicitly
tested with subroutines considering that instructions in master program implicitly
generate patterns for them.

The program kernel is configured with 32 Threads per block and one Block in
the grid. The execution of one warp checks the state of the WPC fields, considering
that WPC is shared for all threads in a warp. The program kernel was designed to
skip thread divergence and avoid the incidence of other modules during execution.
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Figure 4.13: Pseudo-code of the routine targeting the WPC fields. (*) Assembly
instructions manually included. The subroutines where explicitly located in specific
locations of the system memory.

AThM technique
This technique is an adaptation of the M3 algorithm, introduced in section 4.1.1,

see [166]. In this case, the same warp status information (presented in the SC mem-
ory and PRs) is employed to propagate any fault effect and detect the error. Thus,
is possible to adapt this method targeting AThM fields. The method generates
thread divergence operations to supply test patterns targeting the AThM fields.
Two control-flow instructions are employed to start and finish the divergence in the
model. The first instruction, a conditional control–flow type, is activated through
logical comparisons between the Thread Identifier and a set of constant values.
These values are all the potential Thread IDs in a warp (0-31). The divergence
generates two potential paths (Taken and not-taken). In the first one (Taken), an
SpT is updated and stored in memory. The other path (not-taken) is not employed
and an unconditional control-flow instruction returns to the convergence point for a
new comparison. In the end, 32 comparisons are performed in a sequential fashion
and each bit register is tested. The SpT is employed as observability mechanism of
a fault in memory. Fig 4 shows the general procedure to test AThM fields.

We proposed two solutions by changing one logic operation in order to select
between detection and diagnosis test. In the first case, a fast fault detection test is
designed with logical comparison through an AND operator. On the other hand,
XOR operators are used in the diagnosis test version.

The diagnosis test (WS_T_D) is able to identify an individual permanent fault
in the AThM field. On the other hand, a detection test requires only two compar-
isons. For this purpose, two variations where proposed. In the first (WS_T_V1),
the divergence is performed on even and odd thread groups (16 threads per time).
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Figure 4.14: Pseudo-code of the test program for the ATHM fields. (*) Assembly
instructions included.

Initially, an even constant is loaded and the comparison generates divergence on
even threads. Those threads actualize the SpT and return to convergence. Then, an
odd constant is loaded and the previous process is repeated with the odd threads.
Finally, a comparison of SpTs in memory is performed to detect a permanent fault.
The (WS_T_V2) test version employs only one comparison to generate the diver-
gence (an even constant parameter). Nevertheless, in both paths (even and odd)
the SpTs are updated. All test programs are configured with 32 Threads per block
and one block taking into account that the execution of one warp in the SM is
enough to test the fields in the pipeline registers.

Method to test the kernel parameters fields

• The GPRS size
These fields define the number of registers to be employed for each thread
during kernel execution and are programmed during the device configuration
stage. Thus, one kernel is not able to generate the required test patterns.
The proposed method is based on designing three program kernels forcing the
compiler to use an expected number of registers and generate the patterns.
Test kernels GPR_T_3R, GPR_T_12R and GPR_T_63R were designed
using 3 (0x03), 12 (0x0C) and 63 (0x3F) registers, respectively, which are also
the patterns for the target field. The pattern selection followed the guidelines
of the CUDA Tool-kit manual. The GPUs with computer capability 1.0 is
able to handle up to 64 registers per thread. Over this limit, the compiler
generates optimizations or data transfer to other memories.
GPR_T_3R program executes one logical and one arithmetical operation.
This is configured with 1024 Threads per block and one Blocks per grid in
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order to use a complete SM. GPR_T_12R kernel executes a set of addition
operations on global memory locations. This program is configured with 64
threads per block and one blocks per grid. Considering that RF placement
policy assigns the registers of each thread in a consecutive way, it is possible to
detect faults with this configuration. Finally, GPR_T_63 kernel computes
an accumulative addition using each register as part of the result avoiding
the optimization by the CUDA compiler. The kernel is configured with 256
threads per block and 1 blocks per grid. Each test program includes an SpT.
Kernel termination and SpTs are used as observability mechanism for fault
detection.
GPR_T_3R is employed to test permanent faults in “1” on the higher part
of the register field. Similarly, GPR_T_12R detects those in the higher part
and the lower part of the field. GPR_T_63R is employed to test permanent
faults in “0”, considering that a fault would overlap other thread registers,
thus, corrupting the result. GPR_T_3R kernel was also able to generate
patterns to test other control-path fields by employing a large number of
threads in the kernel.

• GPRS and shared memory base fields
These fields are also programmed during the device configuration stage. Nev-
ertheless, the execution of multiple blocks or a large set of threads per block,
in the same SM, is able to generate test patterns on these fields. The proposed
approach is a combination of both approaches.
GPR_T_3R kernel is reused to test the low part of the target fields, con-
sidering that it uses the maximum number of threads per block and a low
number of registers. On the other hand, the high part requires the assignation
of distributed memory addresses across the RF. For this purpose, we designed
one kernel (B_T) employing 16 registers per thread and configured with 8
block per grid. In this way, the 9 bits in the GPRS base field can be tested.
The test kernels execute a set of arithmetical operations in order to employ
the selected number of registers; finally, the SpT is stored in global memory.

• Other register fields
This kernel targets the missing register fields in the control-path fields. Most
of them are presented in D-R register and are composed of the instructions
op-codes, predicate registers flags, immediate operands values, and logical and
arithmetic selectors. It was considered to employ a pseudo-random kernel em-
ploying most instructions, thus generating most test patterns. Nevertheless,
this solution is feasible only when the ISA of the GPU is well known and it is
directly generated at the assembly level. Nevertheless, CUDA employs multi-
ple compiler optimizations removing instructions or modifying those that do
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not contribute to a thread result in memory. This restriction minimizes the
effectiveness of this method.
As a solution, this kernel employs most representative instruction op-code to
increase missing FC through selective operations. Then kernel (PSR_T) is
designed to generate the highest number of potential variations on some se-
lected target fields. Those fields are: i) operand order and sign, ii) immediate
operand parameters, iii) predicate flags and iv) op-code, which represent a
high percentage of the missing faults.
Targets (i and ii) require the generation of multiple arithmetic operations.
On the other hand, the pattern for (iii) requires the explicit comparison of
parameters. In order to avoid the compilation optimizations and force it to
generate the expected pattern in those fields, the comparisons are made based
on memory locations. An initial approach considered seven comparisons (!=,
<, ==, <=, >, < | >, >=) to generate the patterns considering an unknown
op-code. In the optimized version, it was required only two comparisons.
The op-code generation was carried out employing memory and kernel pa-
rameters movement combined with shift operations. Those instructions were
analyzed following the CUDA compilation and analyzing the assembly code
of multiple arithmetics and movement operations. The kernel is configured
with 32 Threads per block and one block per grid, since SM shares those fields
during the execution of a warp.

• Compiler restrictions in kernel implementation
In some of the proposed methods, problems and restrictions were faced dur-
ing kernel implementation. Those restrictions are caused by the CUDA en-
vironment, which employs advanced algorithms for resource reduction and
performance improvement in the application.
In the PC_T program, the RET instructions were manually added in free
memory locations to terminate the program execution, since; CUDA compiler
removes all instructions without any direct relation with the kernel execution.
Besides, each subroutine was placed in the target location. Similarly, in
WS_T_x kernels, the implementation required the explicit comparison of
each thread identifier with the constant parameter independently in order to
generate the expected divergence.
In the description, the GPR_T_xR kernels avoid arrays and matrices defini-
tions. In these kernels, the register declaration is replaced with an indepen-
dent declaration of each variable. A consecutive register declaration, such as
an array would be interpreted by the compiler as local memory locations for
the kernel, so limiting the target of the test kernel. Moreover, the command
to increase the registers usage per thread was required in order to guaran-
tee the total of registers employed in the test kernel. Finally, every register,

116



4.2 – Multi-kernel approach of functional test on GPUs

in a thread, should be part of a memory store operation in order to avoid
optimizations and reduce the number of registers employed.

4.2.3 Experimental results
The fault simulation environment is the same introduced in Chapter 3, Section

3.1.1. For the experiments, the environment was configured targeting permanent
faults and injected one fault per simulation. the input fault list was divided into
ten parts.

In the experiments, we injected 2,382 faults in the control-path fields of the
PRs. For the purpose of this paper, we only considered the RT-level model of the
GPU, hence, the analysis is limited to the stuck-at faults on the inputs and outputs
of the Flip-Flops composing each pipeline register. FlexGripPlus was configured
with one SM and 32 SP-cores in the SM during the fault injection campaigns. Fault
simulation campaigns required about 6 hours to be completed. The experiments
were performed on a workstation with an Intel Xeon CPU running at 2.5 GHz,
equipped with 12 cores, and 256 GB of RAM.

We performed injection campaigns on four representative benchmarks (Vec-
tor_Add, MxM, FFT, and Edge) to compare the FC of applications with the one
provided by the proposed solutions.

Table 4.13 shows the characteristics of the developed SBST kernels and the four
applications. It shows that most of the kernels are composed of a low number of
instructions and have a short execution time. Tables 3 and 4 show the achieved FC
in the targeted structures. The total FC does not consider Functionally Untestable
Faults (FUFs) in the system, i.e., faults that cannot be tested resorting to a func-
tional approach. For the identification of FUFs we adopted a method derived
from the one presented in [170]; unfortunately, the identification of all FUFs in a
complex circuit goes beyond the state of the art techniques. For the considered ap-
plications, Table 4.14 presents the average result of multiple simulations employing
various data input sets. Results show that benchmarks provide a relatively moder-
ate FC (32-57%). Moreover, a high percentage of fault effects are detected through
hanging conditions in the system, stopping the operative state of the device.

VectorAdd and MxM applications employ mainly data-path structures including
data-path fields in the PRs of GPUs. However, the execution is affected by the
incidence of a fault in the control-path fields. In the first application, faults are
distributed among a system hanging condition and an SDC in results. In contrast,
most faults in MxM generate hanging conditions, due to the execution of flow-
control and conditional instructions. Similarly, FFT and Edge applications, which
are composed of multiple control-flow instructions, are more prone to fault effects
belonging to the system hanging category.

Every proposed SBST kernel achieves a low FC (lower than 40%). Nevertheless,
as explained below, the multi-kernel test approach is composed of multiple kernels,
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Table 4.13: Characteristics of the implemented test kernels and applications. (*)
using the CPT.

SBST kernels or
Benchmark

Execution time
(Clock Cycles)

Memory size
(Bytes)

WS_T_D 16,449 128
WS_T_V1 2,175 128
WS_T_V2 1,913 128

TR_T 2,273 384
GPR_T_3R 23,586 8,192

GPR_T_12R 103,930 400
GPR_T_63R 283,714 1,500

PC_T 31,570 128 / 256(*)
B_T 178,750 9,256

PSR_T 7,313 2,304
VectorAdd 28,565 768
MatrixMul 201,365 768

Edge Detection 688,305 2,048
FFT 584,265 512

Table 4.14: FC of selected applications in control-path fields of PRs

Kernel SDC
(%)

Hanging
(%)

Timeout
(%)

Total FC
(%)

Testable FC
(%)

VectorAdd 18.10 20.82 0.62 32.37 39.54
MatrixMul 9.74 42.67 0.92 43.66 53.33

Edge Detection 19.89 49.44 1.03 57.60 70.36
FFT 21.89 42.36 0.67 53.15 64.92

designed to target different pipeline registers fields, and executed independently.
The FC in the control path is obtained as the cumulative number of faults detected
by all the test kernels. The joint testable FC of those kernels reaches a relatively
high percentage (80% in control-path). Moreover, the multi-kernel SBST approach
is able to detect up to 38.31% of the permanent faults employing only memory
results, a traditional mechanism for in-field test. On the other hand, the bench-
marks are only able to detect 21% of the faults with the same detection mechanism,
showing the effectiveness of the SBST approach.

The Edge kernel can detect 70% of the permanent faults in the control-path
field of the PRs. Nevertheless, 49.4% of it is through hanging detection. On the
other hand, the proposed kernels reduced in up to 26% the hanging conditions and
translating them into memory errors.
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The multi-kernel approach also guarantees that the in-field test can be per-
formed employing chunks (multiple kernels) with short execution time. In Table
4.15, we reported both the total and the Testable FC%. The total FC has been
computed excluding FUFs. Multiple FUFs can be found in the control-path of the
GPGPU. These include faults affecting the two lowest bits of each WPC pipeline
register, the initial active thread mask, and some other fields that are present in
the design but did not affect the benchmarks or the SBST kernels execution. In
the end, 456 faults in the control-path are labeled as FUFs.

Table 4.15: FC of the proposed SBST approach

Kernel SDC
(%)

Hanging
(%)

Timeout
(%)

Total FC
(%)

Testable FC
(%)

WS_T_D 4.61 25.23 16.67 38.08 43.51
WS_T_V1 4.77 23.33 13.85 34.34 41.95
WS_T_V2 4.82 23.64 13.95 34.72 42.41

GPR_T_3R 14.51 21.85 0.82 30.35 37.07
GPR_T_12R 16.77 21.49 0.51 31.74 38.77
GPR_T_63R 20.10 22.49 0.56 35.10 42.87

B_T 9.13 22.51 1.23 26.91 32.87
PC_T 21.69 17.59 0.41 38.37 39.69

PSR_T 19.74 23.54 4.46 39.08 47.74
Overall 38.31 23.44 18.51 65.70 80.26

Table 4.16 reports the FC in the control-path fields for each PR using the pro-
posed multi-kernel approach. The proposed method seems to be globally effective
for fault detection on most of the fields in the pipeline registers.

Table 4.16: FC in the individual pipeline registers (PRs)

Pipeline
Register

SDC
(%)

Hanging
(%)

Timeout
(%)

Total FC
(%)

Testable FC
(%)

F-D 51.24 16.17 9.20 64.98 76.62
D-R 27.89 8.45 6.06 38.49 42.39
R-E 36.21 25.0 19.82 46.69 81.03

E-Wr 33.96 14.71 18.45 50.0 67.11
Wr-W 45.36 28.35 16.49 65.79 90.21
W-F 50.48 25.48 15.38 68.21 91.83

Overall 38.31 23.44 18.51 65.70 80.26
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The relatively low FC in some PRs (D-R, and E-Wr) is mainly caused by re-
strictions stemming from the adoption of a high-level kernel description and im-
plementation using the CUDA compilation tool. This tool sometimes removes or
changes the execution order, instruction type, and operand placement in the device
depending on the program description, the compiler configuration, and the opti-
mizations options. This behavior is intended to increase the execution performance
in the device. Nevertheless, from the reliability viewpoint, this abstraction level
introduces restrictions for test pattern generation in fields, such as instruction op-
codes, special operand types, physical memory addresses and fields that depend on
external configuration units such as the block scheduler. Most previous registers
fields are found in the D-R and E-Wr PRs. A naïve solution to improve the FC is
the addition of assembly instructions, as we did in some of the proposed methods
and increasing by up to 10% the obtained FC. However, this solution is feasible
only when the SASS specifications are complete.

It is worth noting that, the proposed approaches target the fault detection
employing the SDC mechanisms (i.e., looking at the memory content). This effect
can be observed in all PRs results. Moreover, the proposed methods were partially
effective in detecting faults in the targeted data-path fields by checking memory
errors without affecting the system operation.

4.3 Modular testing of GPUs
This section describes a modular approach to develop functional testing solu-

tions based on the non-invasive Software-Based Self-Test (SBST) strategy. The
proposed strategy is based on a scalar and modular mechanism to develop test pro-
grams based on schematic organizations of functions, so allowing the exploration of
different test solutions using software functions. The FlexGripPlus model was em-
ployed to evaluate experimentally the proposed strategies, targeting the embedded
memories in the GPU. Results show that the proposed strategies are effective to
test the target structures and detect from 98% up to 100% of permanent stuck-at
faults.

Several works demonstrated that SBST solutions [17] could be successfully in-
tegrated into safety-critical applications, such as the automotive ones [171]. Most
previous works on GPUs proposed SBST strategies targeting some data-path mod-
ules [172], including the execution units [82] [154], the register file [71], the pipeline
registers [173] and some embedded memories [174]. Moreover, other solutions tar-
geted critical modules in the control-path (i.e., the warp scheduler [175], their
internal memories [166][176], and parts of the convergence management unit [177]).
Nevertheless, to the best of my knowledge (and as observed in sections 4.1 and
4.2) most of the proposed strategies were designed after relevant programming ef-
forts and analyses, as custom solutions for each specific module using the specific
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micro-architectural details. Thus, it reduces the possibility of any portability and
generalization. It means that practical strategies to provide convenient procedures
in developing SBST mechanisms are still missing in parallel architectures, including
GPUs.

In this section, some critical memory modules present in the FlexGripPlus model
are employed to validate the proposed modular strategy. In fact, the modular
approach exploits a key feature of most SBST strategies in which test program
corresponds to a combination of several routines, which are linked together and
integrated into the test program. Thus, each routine’s intended functionality can
be seen as a ’modular’ and independent block. This abstraction level (routines as
blocks) can be used to explore alternative descriptions and observe the advantages
and limitations of diverse topologies for a given target. Moreover, this method
allows to port test routines between different targets, simplifying the development
of functional test programs [177, 174].

In this section, a detailed description of the proposed modular strategy to gener-
ate test programs is provided. Moreover, the exploration of different test-program
topologies for a given module is depicted and discussed. Then, several different
test routines (in a test program) are implemented for the same module under test,
considering operational constraints. Finally, the validation is performed through
experiments using the small embedded memories in the GPU core.

This section is organized as follows. Subsection 4.3.1 introduces a basic overview
of the target modules in the context of the GPU architecture. Subsection 4.3.2 de-
scribes the modular SBST strategies to test permanent faults. Subsections 4.3.3,
4.3.4, and 4.3.5 describe the procedures to develop test programs in the stack mem-
ory, the Predicate register file, and in the address register and vector register files,
respectively. Then, subsection 4.3.6 reports the main constraints and limitations
during the developmentof the test programs. Finally, subsection 4.3.7 reports the
experimental results.

4.3.1 Embedded memories in the GPU core
Inside the SM core, several embedded memories are used to indirectly access to

memory resources, to store the predicate flags, after the execution of conditional
instructions, and to store information for divergence management. These embedded
memories are limited in size, in some cases lie inside controllers, making hard and
expensive to add fault detection or mitigation structures, such as ECC or BIST.

Stack Memory

This special-purpose embedded memory is located inside the convergence man-
agement unit, see Appendix A for additional details. This unit stores the starting
(divergence point) and ending (convergence point) addresses when a conditional
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assessment instruction is executed by a warp. More in detail, the memory contains
a set of 32 Line Entries (LEs). The number of LEs is directly related with the
number of threads in a warp and the maximum number of nested divergences per
warp. A divergence point can be defined as the address, in a parallel program,
where two paths (Taken and No-Taken) are produced by effect of a conditional
operation, so causing intra-warp divergence (threads in a warp execute different
paths with different instructions). Furthermore, a convergence point is the location
in the parallel program where the intra-warp divergence ends, so the threads in a
warp execute one path again.

Figure 4.15: Organization of the LEs in the stack memory of FlexGripPlus.

Each LE in the stack is composed of three fields, (see Fig. 4.15). These fields
are the ‘thread mask’ (TM), the flow ID, and the ‘program counter of a warp’
(SPC). The TM stores the status of the active threads in a warp and an active
logic state represents the number of active threads executing a path (Taken or No-
Taken). The flow ID represents the execution state of the intra-warp divergence.
This field can be “01” (for a branch condition) or “00” (for a convergence point or
embarrassingly parallel condition). The SPC can store the starting address of the
paths or the convergence point address after both paths are executed.

The CMU employs two LEs to manage the intra-warp divergence. The first LE
stores the convergence point (also known as synchronization point) and the number
of active threads at the moment of starting the divergence. The second LE stores
the starting address for the No-taken path and the threads to execute this path.
It is worth noting that the CMU uses a new set of LEs to store the status once
nesting divergence is produced.

Predicate Register File (PRF)

This module stores the predicate flags after the execution of conditional assess-
ments, by each thread, in a warp. These conditional assessments are the product of
logic-arithmetical operations or explicit setting operations. When the GPU model
is configured with 8 SPs, 2,048 one-bit size locations are assigned per active thread.
These locations are divided in groups of 4-bits registers (C0, C1, C2 and C3) and
distributed among the available threads. Each predicate register Cx stores the log-
ical state of the zero (Z), the sign (S), the carry (C), and the overflow (O) flags for
each thread. The flags remain constant in the subsequent clock cycles until the ex-
ecution of a new instruction affects their state. Furthermore, these predicate flags
are also used as conditions for the executions of instructions, so these are commonly
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read before the execution if required. Recent implementations of the PRF provide
support for up to 8 predicate registers per thread.

Address Register File (ARF)

This module is a structure of registers devoted to perform indirect indexing
for external memories to the SM, including the shared and constant memories.
These additional registers are mainly used in case of performance optimization for
the several threads in a program and are mainly focused on the efficient access of
memory sectors organized as arrays or matrices. Furthermore, the ARF reduces
latency of accessing frequently used data by a kernel.

Each one of the eight SPs has an associated ARF module composed of 512
registers of 32 bit-size holding up to 128 threads. Each ARF module is distributed
among the threads, so four registers (A0, A1, A2, and A3) can be employed per
thread.

Vector Register File (VRF)

This is a massive structure composed of 16KB general-purpose registers of 32
bit-size and located inside of an SM. This structure is the fastest element in the
memory hierarchy of the SM and is one of the most critical units in the operation
of a thread, since most instructions store or load operands from this structure. The
VRF is divided among the eight cores and it is distributed among the threads in a
program during the configuration phase.

Since recent GPU architectures protect the VRF against fault effects through
ECC structures, this module is not considered as the main target for the devel-
opment of SBST programs. However, we employ this module to validate and also
explore different options of implementing test programs.

4.3.2 A modular approach of functional testing
The modular approach for testing is a generic strategy to develop functional

test programs taking into account the microarchitectural composition of a target
module, the interaction with the parallel architecture of the GPU, its functional
operation, its constraints, and the fault model. This modular approach is based on
the development of a group of generic procedures, which are represented as a set of
interconnected blocks, that once translated, compose a test program.

The approach for modular testing considers three steps: i) Generic blocks de-
scription, ii) Implementation or mapping, and iii) validation, see Figure 4.16.

In the beginning, the organization of the test program is initially defined as a set
of generic high-level blocks, which are then divided into a group of interconnected
procedures to generate the intended test functionality. This modular abstraction
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Figure 4.16: A general scheme of the proposed modular approach to develop func-
tional test programs.

provides flexibility that can be used to explore and address different approaches of
functional test in any module.

The Generic blocks description is a strategy to represent the behavior of the
interconnected procedures aiming the test a given target module. This representa-
tion considers the operation of the module and its interaction with the system, the
operational constraints, and the features of the target fault model.

In this stage, the most relevant functionalities of each hardware module are
employed to define a sequence of generic procedures (blocks) that, once combined,
allows the functional test of the module. Each procedure is intended to aim one of
this three functionalities: 1) Fault Controllability, 2) Fault Observability or 3) Pro-
gram Monitoring. Fault Controllability procedures are directly related to the ability
to inject test patterns through the available instructions and structural resources.
Fault Observability procedures propagate the effect of a fault in the module into
one of the available outputs of the GPU, such as control signals, buses, or external
memories.

In principle, a Fault Controllability procedure injects test patterns in the target
module. However, the feasibility of applying those patterns must be evaluated for
each target module. It is worth noting that SBST is a non-invasive test strategy,
so it is possible that some modules have not controllability support (i.e., instruc-
tions able to activate faults in the module) to apply a test pattern. On the other
hand, Fault Observability procedures describe the feasible methods to propagate
the fault effect to any visible output. This feature becomes important in modules
that are operated by different threads. In a parallel architecture, such as the GPU,
the observability of faults might implicitly include parallel fault propagation. The
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micro-architectural features of a module provide the composition and contribute
to identifying the Fault Controllability and Fault Observability procedures for a
module. Finally, Program Monitoring procedures introduce optional management,
tracing, or check-pointing in the test program. They can be used to increase the ob-
servability of faults or other purposes, such as the test program’s division into parts.
In this stage, a general analysis of the module’s observability and controllability
allows the definition of the procedures to integrate the functional test program.

The operational constraints and the target fault model provide the relevant
limitations regarding the controllability or the fault’s observability. At this level, the
constraints are used to propose alternative procedures aiming at the management
or even removing these limitations. The features of the fault model are used as
complementary information to verify that each procedure and the combination of
them allow the test of faults.

For illustration purposes, the method is supported in a scheme describing the
procedures (software functions) of the modular test program, see Figure 4.17. This
scheme is composed of blocks (1, 2 and 3), representing modular procedures, and
a set of interconnections (Arrows), indicating the serial sequence of operations
during the test. Finally, dotted modules in a scheme represent loop functions as the
repetition of one or several blocks. It is worth noting that in parallel architectures,
and depending on the structural location of the target module, several threads
might execute the same test program in parallel.

Figure 4.17: An example of the modular organization of a test program. Gen-
eral organization and test program description (Top), Equivalent organization per
thread (Bottom).

The flexibility of the modular approach allows the exploration of test programs
by composing different block interconnections and different routines, so potentially
allowing test designers to explore different benefits or constraints in the development
of a test program.
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The second step (Implementation or mapping) builds a test program by trans-
lating the blocks in the modular scheme into equivalent software routines. In fact,
the modular schemes only consider the main functional features of a test program
and include all microarchitectural constraints. Thus, the implementation stage is
based on the translation or mapping of each procedure (block or function) into the
equivalent software routines using the available instructions of the GPU’s microar-
chitecture. In this step, the interconnections and internal loop are also considered
and included in the mapping process.

The identification of the specific set of instructions allows the operation of any
intended functionality from the modular organization, so aiming the test of the
targeted modules. More in detail, the implementation of the modular test program
requires the use of an incremental approach. Initially, each block (procedure) is
analyzed and translated individually. Then, a preliminary evaluation is performed
to verify the functional test operation. This process is repeated for each procedure
in the modular scheme. Then, the main interconnections among the blocks are
mapped and checked. Finally, the internal loop is automated to provide portability
according to the number of resources per thread and warps in the test program.

Each procedure (block) can be composed of a number of instructions ranging
from simple instruction up to complex program procedures. Similarly, the internal
loop requires the addition of several instructions at the beginning or at the end
of the routines, which are commonly included to manage the control flow and the
sequence of the program. In the end, the blocks of all proposed SBST strategies are
described as a combination of a high-level programming language, such as CUDA
(when possible), and instructions at the assembly-level (SASS for the used GPU).
The main advantage is that minimal changes in a block (procedure) are required
to change the functionality of a test program (i.e., the test can be focused on fault
detection or diagnosis).

Finally, in the third step (validation), the self-test routines are verified using
fault injection campaigns into the target modules. The output reports can be
employed to improve the quality of a test program.

The following subsections describe the development of the functional blocks and
schemes used to develop SBST programs for the divergence stack memory, PRF,
ARF, and the VRF in a GPU core.

4.3.3 Stack Memory
As introduced above, the stack memory is a particular module in a parallel

architecture. This module is part of the control-flow management, so one warp
may access this memory to push or pop information.
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Controllability

The controllability (and the injection of test patterns) of this module is achieved
by forcing the execution of controlled divergences for each thread in a warp. The
generation of divergences forces the stack to store the information of the number
of active threads in the TM field and the starting instruction address in the SPC
field, so both fields are excited each time a divergence is produced. When more
than one divergence is produce, two possible effects in the stack are observed. In
the first case, a serial divergence only access the same LE in the stack and changes
the values of TM and SPC. On the other hand, a nesting divergence changes the
target LE and both values (TM and SPC) are stored in a new addressed LE.

The detection of permanent faults in the stack is reduced to generate and per-
form a sequence of divergence paths as a method to excite the TM field of each LE
in the Stack memory.

Using the previous information, we propose two possible methods to control the
address pointer of the LEs and inject test patterns in both fields (TM and SPC) of
the LEs in the stack.

The first method (Nesting), see Fig. 4.18 (Top), generates test patterns by using
a sequence of recursive intra-warp divergence routines, so nesting functions cause
the movement of the address in the stack pointer into a deeper LE. The divergence
is produced by successive conditional assessments between the thread identified of
each thread in a warp and constant values, so generating an ordered number of
comparisons (following a specific path, blue path in Fig. 4.18) and producing the
required test pattern in the TM field of each LE.

On each comparison, one or a group of threads is disabled, so defining a pattern
to be stored into the deeper LE and generating two execution paths. This method
is useful in managing the addressing of the LEs and injecting patterns into the
TM field. The routines on each path (Taken and No-taken) expose the presence
of a permanent fault in the TM. The previous process is repeated for half the
number of threads in a warp, hence two LEs are required during nesting divergence
management. Once the Taken routine finishes, the DMU submits the No-taken
path routine when a fault is present.

A fault-free divergence stack always executes the routine in the Taken path,
which generates new divergence paths and forces the test of other levels of LEs.
Moreover, once a divergence is generated, two LEs store the synchronization point
and the address to start the not-taken path (which can be used as test patterns).
Thus, a fault can be detected when retrieving the stored values, or when the number
of threads executing a path is different from the expected one, so making the fault
effects visible in the outputs.

The Nesting strategy can inject test patterns on the even LEs of the stack
memory. However, the odd ones are missing. The generation of test patterns for
these fields requires the explicit addition of one synchronization function (SSY)
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before start the comparisons causing the divergence. The effect of SSY is the
movement of the address pointer to the next or deeper LE in the stack memory.
Then, the same previous procedure can be applied again, so testing the odd LEs.

On the other hand, the main issue of this strategy is the procedure to manage
disabled threads. When a thread is disabled, this cannot be turned active again
until the divergence paths are executed, and a convergence point is reached. Thus,
it is not possible to test or detect a permanent fault in a deeper LE location.
This restriction implies that the comparisons should be performed multiple times,
targeting different threads in the TM field. We anticipate that this strategy may
suffer from considerable code length and excessive execution times.

Figure 4.18: A general scheme of the proposed modular SBST strategies Nesting
(Top) and Sync-Trick (Bottom) to test the stack memory. (*) Optional function
to test the odd LEs. (§) Optional functions to distribute the test functions in the
system memory.

The second method (called Sync-Trick), see Fig. 4.18 (Bottom), exploits the
functionality of synchronization functions (SSY) to deceive the CMU when testing
the stack memory. This method allocates SSY functions in strategically selected
locations in the test program to generate the movement in the stack pointer.

More in detail, one SSY is explicitly located before each sequence of controlled
divergence functions to test the TM of a LE. Hence, this function forces the con-
troller to allocate a new level of LE in the memory without the need to generate
an intra-warp divergence explicitly. The advantage of this method is that each LE
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can be addressed without the need of disabling specific threads to create nesting
addressing of the memory. Thus, this strategy replaces the generation of nesting
divergence by the management of the stack pointer and the execution of sequential
controlled divergences.

The sequences of intra-warp divergence operations, generating the Taken and
No-taken paths, inject the test patterns into the target LE. This process can be
repeated N times (number of threads in a warp) to use different active threads and
memory addresses as test patterns. Then, a new SSY addresses a deeper LE and
the test procedure is restarted. It is worth noting that this mechanism is effective
to move across one direction and reach deeper LEs in the memory. However, the
returning phase (to a previous LE) requires the achievement of the convergence
point address, which is initially stored in the stack by the execution of the SSY
instruction.

Observability

The fault effect propagation is achieved using the Signature per Thread (SpT)
strategy [173, 166, 178], introduced above. Each SpT is updated, taking advantage
of both paths (Taken and No-taken) produced during an intra-warp divergence.
Thus, the same mechanism used to test faults is used to increase the observability
of the structure under test. Each SpT computes and accumulates intermediate
results for each verified LE. The SpTs are finally grouped and stored in global
memory for later analyses.

Test Program Organization

The interconnections and the main architecture of each proposed test approach
are defined knowing the stack memory’s observability and controllability methods.

Figure 4.18 presents the basic schemes of the modular composition of the Nesting
and Sync-Trick test mechanisms.

In the first case (Nesting), the test generation is based on nesting divergences,
so the general test strategy starts with selecting the target LE in the stack (optional
use of the SSY function). Then, one divergence (two paths) divides the number
of active threads, followed by the execution of a taken routine. This routine is in
charge of update the SPT in the active threads. Then, a new divergence is produced
(two new paths). Similarly, the same procedure restarts again, and a new taken
routine is operated. The previous procedure continues until all LEs in the stack
are addressed. Finally, the No-Taken paths are operated before reach the routine
of convergence (CONV).

In the second approach (Sync-Trick), the operation starts selecting a target LE
in the stack (using the SSY function). Then, the divergence is generated, and the
two paths are created. The taken (function) path updates the signature per thread,
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and, finally, the Not-Taken path is executed, and both paths reach the convergence
function (CONV). The previous procedure is repeated as the number of threads in
a warp (N). Then, a new target LE in the stack is addressed, and the procedure is
restarted again until the total number of LEs in the stack (M) is tested.

In both schemes, the address pointers SPC0, SPC1, and SPC2 represent each
block function’s effect on the stack address pointer and the values stored in the
SPC field of the stack memory.

As depicted in both schemes, the PC and Check-point procedures are also in-
cluded in the test strategy. These complementary functions are introduced to in-
crease observability or to allow the division into parts when possible.

A control-flow routine (PC) can be included before or in one of the divergence
paths to test the high bits in the SPC field. In fact, a detailed overview of the SPC
field revealed that this field is partially tested. This issue is mainly caused by the
short length of the test program for both strategies. In order to complete the test
of the SPC field, the test routines are redistributed across the system memory, so
generating the missing test patterns and the PC routine is used to address those
test routines distributed in the memory.

The check-point routines are included to verify the testing of the SPC field of
the LEs in the stack. These routines are located after the convergence point. In
this way, any permanent fault in the SPC is detected when the convergence point
or the starting address of the No-Taken path are incorrectly read from the LEs by
the effect of any permanent fault. A fault in the SPC field generates an unexpected
addressing in the system memory. The permanent fault is detected by mismatches
in time execution and through the signatures stored in the global memory.

The check-point routines verify, through a check-point signature, the correct
flow execution of a program. Moreover, this function compares an expected check
signature value with the actual accumulated value during the test program’s ex-
ecution. When the comparison matches, the accumulated signature is updated,
otherwise the test program finishes propagating in memory the error in the SPC
field of the evaluated LE. The same strategy can be applied to any of the two
controllability methods (Nesting or Sync-Trick).

The use of these additional functions (Check-Point and PC) is optional, consid-
ering that these strategies are costly in memory overhead for an in-field execution.
It is worth noting that the proposed technique takes into account the operational
restrictions to develop the test programs using the Stuck-at fault model. Other
fault models would require the adaptation of the Sync-trick mechanism. However,
it would be hard or impossible to follow the Nesting strategy. The convergence
function (CONV) synchronizes both paths’ operation and restart (from that point)
the embarrassingly parallel operation of all threads in a warp.
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Implementation

The synch-trick strategy cannot be directly described in CUDA, and explicit
assembly level descriptions are required. In contrast, the Nesting mechanism can be
directly mapped into the CUDA without modifications. The implemented code for
both test methods is composed of the following functions: i) Initialization function,
ii) synchronization function (SSY), iii) flow control function (PC), iv) intra-warp
divergence function and SpT update functions (Taken and No-Taken), and v) check-
point function (Check-point).

Each function is described independently and can be attached depending on
the target of a test program. The initialization function defines and initializes
the registers for each thread. Moreover, this function initializes the addresses to
store the SpTs and check-point signatures. The functionality of other functions was
introduced in the previous section.

Two main operations can be employed to manage the addressing of LEs in
the stack memory. Initially, the convergence function is implemented using one
synchronization instruction (SSY), which affects the stack pointer in the memory,
and moves it to the next LE. When the program reaches the convergence point, the
pointer returns to the previously addressed LE. During the execution, the first LE
is used only for storing purposes. In contrast, the second LE is employed during
the management of the divergence, and control-flow instructions can affect this LE
with writing or reading operations. Thus, when the operation of the first path
ends, the information in the second LE is used to start the not-taken path until
the convergence point is reached. The CONV function, which is interpreted as the
return from an addressed LE to the previous one, is described using exit control-flow
instructions, such as (NOP.S).

The PC functions are relocations in the memory of the intra-warp divergence
routines. These PC functions require of some instructions (in the format of 32 and
64 bits) located before each relocated function. These instructions avoid hanging
conditions by permanent faults in the SPC field. In this way, when the program
counter is affected by a fault, and it jumps to any unexpected memory location,
it is always possible to retake control of the program and finish the execution of
the GPU. Nevertheless, it is expected degradation in performance by the effect
of the permanent fault. On the other hand, the intra-warp divergence routines
are generated by successive comparisons between the Thread.id values, of a warp,
with a constant value. The constant value is loaded using immediate instructions.
The check-point signatures are predefined before execution and also loaded through
immediate instructions. Then, the two paths are executed.

The functions in both paths (Taken and No-taken) update the SpT, which is
firstly loaded from memory and then increased as a counter according to the path.
A similar procedure is applied in the check-point routines that update check-point
signatures to verify the step-by-step execution of the program, so avoiding infinite
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loops or unexpected branches by faults in the SPC field.
The modular description of both SBST strategies allows the exploration of mul-

tiple options for the programs. In the Nesting method, the modular approach
guides the addition of functions, such as the nesting divergence, and also provides
support to add or to remove optional functions targeting the SPC field (PC and
Check-point). In contrast, the modularity presents considerable advantages for the
Sync-Trick method. The code description of this method is scalable and modu-
lar, so it is possible to append or remove block functions in the description of the
program, targeting the individual test of LEs in the stack memory. This modu-
larity gives us the possibility to address any or a group of LEs and to generate
an independent test program. The division of the test contributes to reducing the
execution time of the test program during the in-field operation of a GPU.

The Sync-Trick method can employ two approaches to evaluate LEs in memory.
The first approach (Accumulative or Acc) aims the test of a consecutive group of
LEs and accumulates the signatures in memory. This approach must always start
from the first LE and can finish at any of the other 31 LEs in the stack.

On the other hand, the second approach (Individual or Ind) targets the testing
of an individual LE and then the retrieving of signature results to the host. This
approach only focuses on one of the LEs in the memory and is intended to have
a reduced execution time. The performance cost (execution time (ST)) of both
approaches (Acc and Ind) can be calculated using the equations 4.7 and 4.8.

ST (Acc) = Ts · n + Ch · n + SSY · (n − 1) (4.7)

ST (Ind) = Ts + Ch + SSY · (n − 1) (4.8)

where n represents the target LE in the stack memory. SSY, Ts, and Ch rep-
resent the execution time of the synchronization, test pattern injection, and check-
point functions, respectively. The initialization function was not included consid-
ering that it is constant for both cases, and it is negligible in terms of duration.

From equations 4.7 and 4.8, it is clear that the cost of the Accumulative version
(Acc) is higher than for the Ind version. The cost is mainly caused by the different
approaches in each case. In the Acc version, the program is intended to test the
number of selected LEs sequentially. In contrast, the Ind approach targets the
test on one LE, so the test patterns and check-point functions are used once. The
number of synchronization functions depends on the target level of LE in the stack
memory.

On the other hand, the performance cost of the Nesting method is described by
the expression in equation 4.9.

Ns = N · Ch ·
m∑︂

i=0
(SSY + Ts) (4.9)
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where N represents the total number of threads in a warp, and m is the target
LE to be tested. CH, SSY, and Ts have the same meaning than in equations 4.7
and 4.8. As introduced previously, the target LE could be even or odd. Thus, the
starting value of i in the summation could be 0 or 1.

4.3.4 Predicate Register File
This module is a parallel structure in the GPU and it is addressed in parallel

by the active threads during the execution of a program, so the maximum number
of threads per core are required to perform the test of the complete module.

Controllability

The PRF stores homogeneous information, so each active thread in a program
have direct access to this memory, Thus, only one procedure is required to inject
test patterns. The test of each register is based on the generation of load procedures
(Ld), see Fig. 4.19. Initially, Ld targets one predicate register per thread (Cx) and
assigns a value by using two possible methods: i) conditional assessments(PRF_T)
or ii) direct assignments(PRF_T_R2C).

In the first case, a sequence of conditional assessments causes the activation of
each predicate flag, injecting a test pattern, and propagates its effect for evaluation.
On the other hand, in the direct assignment, the movement operation changes the
content of the predicate register. It is worth noting that in both cases, one flag was
targeted to clearly identify a fault.

Observability

A function (PROP) performs conditional evaluations to identify and classify
a fault. This function propagates the effect of the target predicate register. The
conditional evaluations produce two paths (Taken and No-taken). Both paths are
used to update an SpT to identify if a fault was present in a given flag of a predicate
register. As depicted in Fig. 4.19, the blue path describes the fault-free case of the
test. When there are no detected faults, the test program remains convergent for all
threads in a warp. In contrast, when a fault is detected, an intra-warp divergence
is produced as effect of the fault and the SpT are updated indicating a detected
fault. It is worth nothing that four serial procedures of conditional evaluations are
required to test each register.

Test Program Organization

Two different approaches of modular test can be proposed for this module. In
the first case (PRF_T), see Fig. 4.19 (Top), the organization of the test program is
fully sequencial, so the Ld procedure injects a test pattern into a target register in
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the PRF. Then, the Prop routine propagates any fault and evaluates the previously
register in search of faults. The taken and not-taken routines are used to update the
SpT and propagate any fault effect into the available outputs. The Taken routine
is intended to be operated when a faults are not present in the evaluated register of
the PRF. Once, both paths reaches convergence, the previous sequence is repeated
as the number of exclusive predicate registers per thread (M), the total number of
flags (N) and the number of test patterns to inject per register (T).

Figure 4.19: General schemes of the modular approaches to test the PRF.

In the second case (PRF_T_R2C), see Fig. 4.19 (Bottom), the organization of
the test program varies and is divided as a sequence of individual operations. First,
The injection is performed using the Ld procedure and propagated with the Prop
routine. Then, it is repeated M times, as the number of registers, so injecting the
same test pattern to each register.

The evaluation is performed using the one divergence and the Taken procedures.
Again, these procedures are repeated as the number of registers per thread, so eval-
uating all previously addressed flags. Finally, the complete procedure of injection,
propagation and evaluation is repeated as the number of flags per register and the
number of test patterns to inject. It is worth noting that the main fault model
target of the proposed strategy is stuck-at faults. However, it is also possible to
adapt the second case to evaluate other fault models in the PRF.

Implementation

Three versions of the Ld function can be devised; one based on logic-arithmetic
instructions (IOP.AND, IOP.XOR) and a second version using setting instructions
(ISETP) to modify a flag in the predicate register. Furthermore, it is also possible
to modify a register using a direct assignment (R2C). Thus, the main functionality
(inject a test pattern) can be obtained through several descriptions. The block
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functions in the SBST strategy for the PRF are parametrically developed, so it
is possible to easily replace one function (such as Ld) by another in the program.
It is worth noting that the first two cases require several instructions before the
comparison or setting.

The Prop function also supports different implementation methods. One method
is based on a sequence of conditional operations, which are executed once a specific
flag is active. The other method is through intra-warp divergence, so explicitly pro-
ducing two execution paths corresponding to the faulty (No-Taken) and fault-free
(Taken) cases. In both versions, the parametric description allows the selection of a
predicate register and a target flag, so simplifying the procedures for the generation
of the test program.

The routines on each path follow a similar description with respect to those
developed for the stack memory, so in principle, these functions are imported into
these SBST programs.

Equations 4.10 and 4.11 represent the performance cost of both strategies for
testing the PRF. As you can observe, both equations are equivalent and the perfor-
mance of both strategies remains the same. The main difference between the two
approaches is the order of executing the test on each register of the PRF module.

ST = ((Ld + Prop) · M + T · M) · N · T (4.10)

ST = (Ld + Prop + T ) · N · M · T (4.11)

The Ld implementation presents the same cost for the IOP (arithmetic and
logical) and the ISETP (setting) descriptions of the functions. However, for the
R2C alternative, the total description and memory footprint is reduced to a total
of 36 instructions.

4.3.5 Address Register File and Vector Register File
These modules are parallel in the operation of a program in the GPU and can

be accessed in parallel by the active threads.

Controllability

The ARF and the VRF modules stores homogeneous information on each reg-
ister, so there are not internal field divisions. This feature allows the use of only
one procedure (Ld) to perform the test pattern injection. The main idea of the Ld
procedure is to perform direct assignation of test patterns on each register of both
modules (General Purpose Registers Rx in the VRF and address registers Ax in
the ARF). The addressing routine of the registers is mainly sequential. However,
the direction and the limits are defined according to the number of threads in a
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program (T). It is worth noting that all active threads can access the ARF or VRF
during the execution of the instructions.

Observability

The propagation of a fault is performed using a function (Comp). This pro-
cedure performs conditional assessments and compare the value in any register
with several predefined masks. These masks are used to identify any fault in the
evaluated registers and are the base for the comparison.

There are two possible selections of the mask: i) Fine-grain and ii) Coarse-grain.
A fine-grain mask allows identifying the location of the fault affecting a register.
However, several detection procedures are required. On the other hand, a coarse-
grain mask allows the rapid detection of a fault, but it is not possible to identify
its location.

After each comparison, a divergence is produced. This divergence is employed
as mechanism to evaluate the propagation of a fault and also to update the SpT.
The gray (see Fig. 4.20) path shows the embarrassingly parallel operations, when
the test approach is used and there are not fault in the module. In contrast, the
Not-taken path in black is used when a fault is detected.

Test Program Organization

The organization of the modular test programs can be defined in two methods
and can be applied for both modules (ARF and VRF). It must be considered that
the internal content of each routine is adapted according to the target module. In
the representative schemes, we considered a test program configured with a defined
number of register per thread in a warp (N), a defined number of warps (M), a
predefined number of parallel threads (P) and a fixed number of test patterns to
inject (T).

In the first case, see Fig. 4.20(Top), the procedure is performed targeting a se-
quential test detection. First, the Ld procedure injects test patterns in one register.
Then, the Prop procedure propagates the faults effect (if present) and a comparison
is performed using the Comp procedure. This comparison starts the divergence and
the Taken path is evaluated to update the signature for each active thread. Finally,
the previous procedure is repeated as the number of registers per thread in a warp,
number of warps in the test program and the number of test patterns to inject.

The second approach, see Fig. 4.20 (Bottom), is intended to divide the test
program into small parts, so the sequential procedure of test is replaced by a two
independent stages that combined provide the same test functionality of the previ-
ously explained approach. These two independent stages are: general test patterns
injection (1) and general evaluation (2). In (1), a complete sequence of one test pat-
tern injection is performed injecting in all registers assigned to any thread. Then, in
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Figure 4.20: General schemes of the modular approaches to test the ARF and VRF.

the stage (2), all propagation and comparison operations are performed to identify
faults in the registers. Finally, both stages (1 and 2) are repeated as the number
of warp in the program and the number of test patterns to inject.

Implementation

In the case of the ARF and the VRF memories, both approaches employ sim-
ilar methods to implement the Ld function. This is based on the direct assign
instructions R2A and MOV, respectively. However, the ARF structure can use an
equivalent instruction to perform the assignation using another address register as
source A2A.

The Comp function compares and enables a flag when mismatches are found. In
both cases this function is implemented using similar mechanisms through constant
values (from immediate instructions or loaded from memory). Finally, the same
intra-warp divergence functions are imported and adopted for these modules. It
is worth noting that the development of the blocks allows different targets of the
SBST program. On the one hand, it is possible to develop the functions to only
perform fault detection. Furthermore, the functions can be replaced with special
versions, which provide fault diagnosis features (VRF_T_dia), so allowing the
identification of the location causing the fault effect. A detailed evaluation shows
that both versions of the R2A and A2A routines to implement the Ld function have
the same cost in terms of execution and resource overhead.

Equation 4.12 describes the performance costs for both approaches, which are
equivalent from the performance point of view. Nevertheless, the test can be per-
formed in parts (ld + comp) when the modules are free and the application can be
stopped for a long interval. Otherwise, the complete evaluation of each register and
the splitting into parts can be employed when short interval times can be employed.
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It is worth noting that the performance of each approach is affected when faults are
detected on each module by the execution of the missing path in order to update
the detection signatures.

ST = ((Ld + Pr + Co + Ts) · N · M · P

= ((Ld) · N + (Pr + Co + Ts) · N) · M · P
(4.12)

4.3.6 Limitations and constraints
Although the proposed modular approach can be applied to any hardware mod-

ule in a GPU, several programming constraints must be consider in the mapping
or implementation step.

In the implementation of the SBST techniques, we explored different possible
description styles for each program using high-level and middle-level abstraction
languages for programming the GPU (CUDA and PTX, respectively). However,
we observed some constraints related to the implementation of the SBST technique
in CUDA or PTX, due to the fact that particular combinations of instructions
are required to excite any of the target modules. Furthermore, the generation of
specific instructions at the two levels in some cases was not possible (e.g., the
SSY instruction cannot be used in CUDA or PTX levels). Thus, we adopted
the assembly language (SASS) to describe most SBST techniques that cannot be
directly described at other abstraction levels.

It should be noted that compilers in the programming environment of GPUs
have as main target the performance optimization of a program, so removing or
reorganizing the intended test program and causing a mismatch in the intended
behavior of the SBST programs. The solution to overcome this issue is based on
a combination of different levels of description, when possible. This solution is
affordable only when the Instruction Set Architecture (ISA) of a GPU device is
well known, which unfortunately is not always the case.

4.3.7 Experimental results
The RTL FlexGripPlus model was used in the experiments. Initially, the perfor-

mance parameters of the implemented test programs are determined. Then, fault
injection campaign results are reported showing the effectiveness of the proposed
modular approach on the target modules.

Performance of the Test Programs

Table 4.17 reports the results concerning the performance parameters for all
implemented test programs. It is worth noting that results reported in Table 4.17
were obtained by simulations performed resorting to the ModelSim environment.
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Table 4.17: Performance parameters of the SBST programs using the two ap-
proaches to detect permanent faults in the LEs

Approach Module Instructions Execution time
[Clock cycles]

System memory
overhead [Bytes]

Sync-Trick Ind LE #1 Stack 403 33,449 1,612
LE #2 Stack 404 34,211 1,616
LE #10 Stack 412 34,589 1,648

Sync-Trick Acc
LEs 1 – 2 Stack 794 66,637 3,176
LEs 1-10 Stack 3,922 326,423 15,688

All Stack 12,524 1,030,473 50,096

Nesting

LE 1 Stack 683 37,986 2,732
LEs 1-2 Stack 1,323 83,569 5,292
LEs 1-10 Stack 6,443 528,086 25,772

All Stack 19,883 2,567,209 79,532
PRF_T PRF 434 1,890,106 1,736

PRF_T_R2C PRF 398 1,795,596 1,592
ARF_T ARF 122 338,240 488

VRF_T_det VRF 82 108,958 368
VRF_T_dia VRF 350 1,503,254 2,800

The reported results show the performance parameters for the two possible
test methods of the stack memory (Nesting and Sync-Trick methods under the
accumulative and individual approaches). All versions present an overhead in the
global memory of 64 locations (256 bytes) devoted to saving the SpTs and the
Check-point signatures.

Regarding the performance results of both versions, it can be noted that the
Sync-Trick (Ind) approach maintains an average performance cost to test any LE
in the stack memory. The only difference among these programs is the number of
SSY instructions included to address a selected LE. Similarly, the Sync-Trick (Acc)
version can test a group of LEs consecutively. However, it requires additional
execution time and cannot be stopped once the test program starts.

On the other hand, Table 4.17 also reports the required execution time to test
the first and the second LEs in the stack using the Sync-Trick Ind (rows 2 and
3, column 4) and Sync-Trick Acc (row 5, column 4) approaches. The Individual
approach requires 76 additional clock cycles to test the LEs, but it has the advantage
of being able to test each LE independently. In contrast, the Accumulative method
must check both LEs consecutively. Thus, the Ind approach can be adapted for in-
field operation by the limited number of clock cycles required during the execution.

The performance parameters show that for the Nesting approach, there is a
proportional relation between the number of instructions and the number of LEs to
test. Similarly, the relationship between the execution time and the number of LEs
to test presents an increasing exponential ratio. In the end, the Nesting method
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requires more than twice the execution time to test the entire stack than Sync-Trick
using the Acc approach. The execution time could be the relevant parameter to
take into account when targeting the in-field operation.

As observed in Table 4.17, the implemented test programs, targeting the PRF
and using two different Fault controllability procedures (PRF_T and PRT_T_R2C)
require different execution times. Moreover, the number of instructions in both test
programs is different. However, the intended test functionality of both versions is
the same, so showing that the modular approach can produce different test pro-
grams for the same module and allowing the exploration of different test solutions.

Regarding the implemented test programs for the VRF, The fault diagnosis
(VRF_T_dia) version requires up to 13 times the execution time of the test pro-
gram targeting fault detection (VRF_T_det), only. The interesting of both test
programs is that the modular program is the same, but the implemented functions
produce the difference in time execution and intended functionality.

Fault injection results

The fault injection environment follows the methodology described in [173], and
we injected permanent faults using the Stuck-at Fault model. On each target mod-
ule, fault simulation campaigns were performed injecting faults in every location of
each module, meaning 4,224, 32,768, 262,144 and 262,144 permanent faults in the
stack memory, PRF, ARF and VRF, respectively. These fault simulation campaigns
were performed using both representative benchmarks and the test programs im-
plementing the proposed SBST strategies. Moreover, the SBST programs targeting
the stack memory were evaluated with and without the optional PC functions.

The representative benchmarks have been carefully selected to compare the
detection capabilities they can achieve with the ones provided by the proposed
SBST programs. Descriptions and details regarding the chosen benchmarks can be
found in Chapter 3. For the sake of completeness and comparison, the different
versions of the SBST strategy are reported in Table 4.18. The results are reported
based on the output effect of the faults as: Faults corrupting the output results,
or ’Corrupted Output Data’ (Data)), faults corrupting the complete execution of
the system, or ’Hang’, and fault affecting the performance of a given benchmark,
or ’Timeout’.

The last column of Table 4.18 reports the testable FC (TFC) of the benchmarks
and the proposed SBST strategy. The TFC is defined as the ratio between the
number of detected faults and the number of injected faults after removing the
untestable faults. The untestable faults are those faults that due to structural
or functional issues cannot be tested and cannot produce any failure. A detailed
analysis of the stack memory revealed that a total of 192 faults are untestable.
These are related to the lowest bits of the SPC field of each LE, which does not affect
the execution of an instruction. Thus, these faults were removed when computing
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the TFC.
The Sync-Trick strategy provides a moderate FC for both cases (Ind and Acc).

Moreover, the FC increases when adding the PC functions and the relocation of
the test functions in the memory. These comprehensive approaches (Ind+SP and
Acc+SP) obtain a high percentage of FC for the target structure.

An in-depth analysis of the results shows that the Individual approach allows
detecting 100% of the faults in the TM of all LEs by looking at the results of
the test procedure "Data" type faults. In contrast, the Acc version causes a small
percentage (0.75%) of faults produced in the TM field and visible because they
hang or crash the GPU. This behavior can be explained considering that in the Ind
approach, each LE is evaluated individually, and so all detections can be labeled as
Data. On the other hand, for the Acc method, a permanent fault in one LE affects
the synchronization point, thus corrupting the convergence point and causing the
Hang condition. More in detail, a Stuck-at-0 fault is a sensitive case during the run
of the test program. A fault affecting one LE when used as synchronization causes
the Hang condition.

The Nesting SBST program has a slightly lower FC than Sync-Trick with an
increment of more than twice the percentage of faults causing hanging and timeout.
This fault effect is equivalent to the effect shown by in the Acc version of Sync-Trick.
In this case, the Nesting method generates intra-warp divergence to move the stack
pointer among the LEs (in the stack memory), testing all LEs even when a fault is
detected, so other LEs are also tested. The continuous evaluation generates issues
when a fault affects the LE used for synchronization purposes (when testing the
even LEs). Thus, the test program may confuse the convergence point and produce
the Hang or Timeout condition. According to results, the Nesting strategy seems
to be more susceptible to Hang and Timeout effects than the Sync-Trick using the
Acc approach.

In both approaches, the addition of the relocation in memory and the SPC
functions increase the testable coverage in the stack memory. However, as explained
previously, these optional functions can be employed when it is possible to use the
entire system memory to relocate the test functions in specific memory locations,
or the application code allows this adaptation. Similarly, both SBST approaches
can detect a considerable percentage of the permanent faults in the stack memory.
However, a direct comparison involving the performance parameters from Table
4.17 shows that the Nesting approach consumes more than twice the execution
time and 37% of additional instructions. In conclusion, the Sync-Trick strategy
seems to be a feasible candidate for in-field operations. Moreover, the Ind strategy
can be divided into parts and adapted with the application code.

Regarding the SBST program for the PRF module, the two implemented ver-
sions obtain the 100% of fault coverage. The main advantage of both versions is the
fault propagation to the global memory, so enabling the detection as Data. In fact,
all faults detected are identified using this classification. Thus, the main difference
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between SBST approaches is the performance and overhead cost, which are mainly
caused by the internal description of one modular function (Ld). The previous fault
coverage results allow us to validate the exploration of different methods to imple-
ment different modular functions. In both cases, the replacement of a modular
function does not affect the final fault coverage. A similar situation is observed in
the SBST programs for VRF. In both approaches (Detection (Dec) and Diagnosis
(Dia)), the programs reach a full fault coverage (100%). However, the performance
degradation rises up to 13.8 times when employing the diagnosis version of the test
program. Nevertheless, this SBST version can be affordable with mild system time
constraints, such as during the Switch-on of the system.

Table 4.18: FC results for the representative benchmarks and the proposed SBST
strategies

(%)SBST strategy
or benchmark Module Data Hang Timeout FC TFC

Stack 0.00 0.38 - 0.38 0.40
PRF 0.00 0.38 - 0.38 0.38
ARF 25.07 0.0 - 25.07 25.07MxM

VRF 18.26 8.24 - 26.5 26.5
Stack 0.15 0.04 - 0.19 0.19
PRF 0.16 0.04 - 0.20 0.20
ARF 0.00 0.00 - 0.00 0.00Sort

VRF 0.18 0.07 - 0.25 0.25
Stack 0.14 0.19 - 0.33 0.35
PRF 0.15 0.19 - 0.34 0.34
ARF 0.0 0.0 - 0.00 0.00FFT

VRF 0.19 0.21 - 0.4 0.4
Stack 0.15 0.28 - 0.43 0.47
PRF 0.00 7.05 - 7.05 7.05
ARF 0.00 0.00 - 0.00 0.00Edge

VRF 12.25 5.6 - 17.85 17.85
Ind 65.64 2.08 1.01 68.75 72.02
Acc 64.89 2.84 1.01 68.75 72.02

Ind + PC 83.00 8.49 2.44 93.93 98.41Sync-Trick

Acc + PC

Stack

82.24 9.25 2.44 93.93 98.41
54.12 11.81 1.23 67.16 70.04Nesting + PC Stack 76.94 13.16 2.81 92.91 97.34
100.0 - - 100.0 100.0PRF_T R2C PRF 100.0 - - 100.0 100.0

Det 100.0 - - 100.0 100.0VRF_T Dia VRF 100.0 - - 100.0 100.0
ARF_T ARF 100.0 - - 100.0 100.0

Although Table 4.18 reports one SBST program for the PRF, the two versions
were evaluated changing each time the Ld function. The two versions achieved the
same fault coverage (100%) and the Ld functions, in both versions, have the same
performance cost, so both solutions can be used identically.

A comparison of the FC obtained by the proposed SBST strategies and the
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representative benchmarks shows that the FC using these specialized programs is
higher for the targeted modules than the FC obtained with typical applications.
Thus, the FC capabilities of a representative benchmark is mostly lower. This
behavior can be explained considering that most applications only use parts of
the modules (e.g., only the first levels of stack memory to handle the divergence or
certain registers per thread in the ARF or VRF modules) to operate the instructions
of each application.

The matrix multiplication application generates one level of divergence. Thus,
other levels inside the Stack memory are not employed, and the fault effect in not
detected or propagated into the application. On the other hand, the VRF and the
ARF modules are excited in almost 25% and 20%, which helps to explain the fault
coverage obtained for both modules (26.5% and 25.07%, respectively). In contrast,
the Sort application can generate intra-warp divergence, depending on the input
data operands, but it remains limited to the first LE in the stack memory. However,
the percentage of detection (0.33% and 0.19%) is negligible in comparison with the
proposed test strategies. A similar behavior is observed for the ARF, PRF and
VRF when executing this application.

The FFT benchmark produces two levels of intra-warp divergence, so using up
to four LEs during the operation. This behavior slightly increases the percentage of
faults detected. Nevertheless, the achieved percentage remains small. Finally, the
Edge application causes two levels of intra-warp divergence and can detect some
faults as Data and hangs. However, the total coverage of all representative kernels
is minimal.

The previous scenario supports the idea that executing applications and check-
ing their results (as it is often done when using a functional test approach) is
definitely not enough to verify the functionality of crucial hardware modules in the
GPU. Thus, special test programs, as those proposed in this work using the mod-
ular approach, are required to guarantee the correct operation of a module inside
a device used in a safety-critical application.

The main advantage of the proposed method lies in its modularity and scalabil-
ity. Scalability allows the configuration and the selection of the number of LEs to
be tested in the SBST programs for the stack memory. Moreover, the test programs
for the ARF, PRF and VRF can also be reduced to target only specific registers
in the target modules. Finally, the scalability of their structure allows splitting the
overall program in several parts, as presented for the Sync-Trick SBST program.

As introduced previously, the implementation of the test programs required
the combination of high-level descriptions (about 15% of the total code in all SBST
strategies), and the addition of assembly functions (about 85%). For both proposed
SBST strategies targeting the memory stack, the synchronization functions (SSY)
were implemented in assembly language. In this way, we could also avoid that
the compiler removes or changes important parts of the test code. Similarly, in
the PRF test program, the Comp modular function used specific procedures that
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required assembly language support. Thus, these parts and others are written at
the assembly level. These limitations show that the development of test programs
for these complex structures in GPUs requires access to the assembly formats to
provide feasible and efficient solutions. The implementation effort could be reduced
by the design of an automatic tool to include the subroutines at the assembly or
binary level. Moreover, such a tool could also be employed to develop modular
approaches, targeting other modules, such as functional units in the GPU.

Although the proposed SBST strategies targeted the test of unprotected mem-
ories in a GPU model with the G80 micro-architecture, we still claim that the
proposed methodology can be adapted and used for the most recent GPU architec-
tures, such as Maxwell and Pascal that include similar structures. Moreover, other
parallel architectures can also use the proposed method.

4.4 Complementary test strategies and general
overview of the SBST strategy on GPUs

This section describes the adoption of one classical method of functional testing
from processor-based systems into GPUs. Then, a general overview of the main
benefits of SBST strategies applied to GPUs is presented. In this evaluation, the
overall fault coverage and functional safety analysis is performed for the complete
GPU depicting the main advantages and limitations of the SBST strategy as func-
tional testing solution for GPUs.

4.4.1 Adapting automated approaches of functional test on
GPUs

In the past, functional test strategies were proposed and applied in processor-
based systems (CPUs). These can be divided into two main approaches: determin-
istic and automated [82][150].

On the one hand, the deterministic approach exploits the functions and the ar-
chitectural composition of each target module to apply well-defined algorithms, such
as March algorithms in internal memories (as presented in section 4.1.1) [175]. How-
ever, as also explained in section 4.1.1, huge effort is required to adapt deterministic
strategies by the additional operational constraints and operational restrictions.

On the other hand, the automated approaches of functional testing comprise the
use of pseudorandom-based and ATPG-based methods to test a module in a device.
The first method (Pseudorandom) focuses on the most suitable set of instructions,
which are randomly combined and repeated with pseudo-random operand values.
The selected instructions aims at activating any propagating any existent fault on a
given module. commonly, evolutionary algorithms are used to optimize the number
of instructions in a test procedure. On the other hand, ATPG-based methods
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resort to Automatic Test Pattern Generation (ATPG) tools to analyze and extract
test patterns for a given target module. Then, these patterns are translated into
equivalent valid instructions, so composing one or more test programs. It is worth
noting that it is possible that some test patterns cannot be translated into proper
instructions and must be ignored (possibly resulting in safe faults).

In case of parallel architectures, such a GPUs, both methods (pseudorandom
and ATPG-based) are effective when applied to regular structures of a GPU, such
as the functional units (i.e., SPs and SFUs), so taking advantage of the multi-
thread parallelism in the GPU and using the active parallel threads to address and
perform the test procedures on each module in a parallel manner [179]. The parallel
adoption is required in order to exploit the parallel features of a GPU. Moreover,
additional mechanisms to propagate the fault effects and to manage the input test
patterns in memory are required.

In the first case, a parallel mechanism of signatures, such as the Signature
per Thread (SpT) (introduced in Section 4.1) is used to indicate the host or any
external controller the presence of faults in any of the functional units in the GPU.
On the other hand, the organization of the input test patterns in the memory
directly depends on the effective number of test patterns, the number of parallel
cores and the expected performance in the test procedure. A simple organization of
the test patterns can be based on immediate operations, so the memory hierarchy
of the GPU is not employed. However, it is expected long execution times. Another
organization method is based on storing the input test patterns in the main memory
and force the parallel threads to address the same memory locations, so applying
in parallel the same patterns into each active functional unit. It is worth noting
that the static organization of the regular structures in the GPU (i.e., a group of
threads always access a given functional unit) and the fixed distribution policies
in the schedulers allow the development of embarrassingly parallel test programs
and the use of the generated test patterns by the pseudorandom and ATPG-based
approaches.

In order to determine the feasible adoption of the automatic approach, two
functional units (the SPs and the SFUs) in the GPU are target with the purpose
of develop test programs and validate the approach using the pseudorandom and
the ATPG-based methods.

In the development of the test programs, the pseudorandom approach is em-
ployed considering only the available instructions addressing each target module.
On the other hand, the ATPG-based approach employed all valid instructions ob-
tained after adopting the test patterns into equivalent instructions for the GPU. In
case of the pseudorandom approach targeting the SFU, four different data sizes are
selected (30,000, 60,000, 90,000, and 120,000) in order to observe the fault cover-
age effect. Similarly, the ATPG-based approach is adopted considering immediate
(IMM) operations and storing the test patterns as operands in the main memory
(Mem).
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Each test program is fault simulated employing the gate level representation of
each functional unit. The gate level version of both functional units was obtained
employing the 15nm technology library [100]. Then, a custom fault injector is
employed to inject one permanent fault (Stuck-at) per simulation in the fault cam-
paigns. In the experiments, the GPU model was configured with 8 SP cores and 2
SFUs per SM. Table 4.19 reports the designed test programs, their main features
and the fault coverage obtained after each fault campaign. It is worth noting that
FC results are calculated considering all available functional units in the GPU.

Table 4.19: Main features and fault coverage of several test programs for the func-
tional units (SP and SFU) in the GPU.

Target module Type Size (Instructions) Duration (cc) FC (%)

SP ATPG 19,604 1,447,620 84.07
Pseudorandom 55,000 3,434,235 83.99

SFU ATPG IMM 16,856 1,200,034 90.75
ATPG Mem 117 212,914 90.75

Pseudorandom 30K 309 1,546,404 82.55
Pseudorandom 60K 609 3,074,844 77.67
Pseudorandom 90K 909 4,603,284 89.11
Pseudorandom 120K 1,209 6,131,724 88.26

As observed in the FC results, the adoption of automatic approaches for the
development of parallel test programs is feasible and provide good results in GPUs.
More in detail, results in both target modules, the use of the ATPG-based and
pseudorandom approaches are able to coverage a high percentage of permanent
faults in the functional units. In both modules, the ATPG-based solutions provide
a higher FC with a lower number of instructions per test program which is highly
desirable. Moreover, in case of the SFU, the management of the input test patterns
as data operands provided a high compaction, so reducing the size and duration
of the test program in up to 99.3% and 82.2% respectively, but maintaining the
same FC. On the other hand, the use of different data sizes on the pseudorandom
test programs provides a moderate increasing effect in the fault coverage (<10%).
However, the number of instructions per test program and the test duration are
also incremented proportionally.

The missing percentage of FC when using the ATPG-based approach is mainly
caused by the unfeasible adoption of input test patterns as valid instructions in the
GPU. More in detail, about 10% of the input test patterns were discarded in both
modules by the lack of available instructions activating the functional units.

Although both automatic methods are able to detect most faults in the targeted
modules, the ATPG-based test programs are more compact that the pseudorandom
version and required less time to be executed, so these approach can be considered
as a feasible solution if ATPG tools can be used on the target modules. In contrast,
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the pseudorandom approach is useful only when microarchitectural details are not
available on the target modules.

4.4.2 Overall evaluation of the SBST strategy in GPUs
This subsection provides a general overview of the proposed SBST strategies on

the complete GPU. It is worth noting that results do not report the fault coverage
on the memory controllers or external memories in the memory hierarchy of the
FlexGripPlus model, since the memory hierarchy contains several restrictions (miss-
ing cache memories and associated controllers) and it is not fully representative of
real GPU devices and specific test programs or algorithms were not developed for
such modules.

Each module in the RTL version of the FlexGripPlus model was evaluated with
all developed test programs using the proposed SBST strategies presented in this
chapter. Each fault campaign injected permanent faults on each module when
executing an individual test program. In the experiments, the detection of a fault
is considered only when it causes an SDC or timeout effect in the outputs for each
each test program. At the end, the FC is determined considering the accumulative
number of faults detected for all test programs.

Table 4.20 reports the FC results concerning each module in the GPU. As can
be observed, the effectiveness of the SBST strategy in some modules is moderate,
even when applying all test programs (see schedulers). On the other hand, there
are several effective test programs (70% to 100% of detected faults).

Table 4.20: A summary of the FC obtained for the different modules of the Flex-
GripPlus GPU model using the proposed SBST approaches. All test programs were
used to determine the FC of the module.

Module Detected faults FC (%) Reference manuscript
SMP controller 1,156 57.8 [173, 174, 177, 166, 179]

Warp Unit 8,416 58.5 [173, 174, 177, 166, 179]
Pipeline Fetch 538 88.8 [173, 174, 177, 166, 179]

Pipeline Decode 837 70.4 [173, 174, 177, 166, 179]
Pipeline Execute 91,429 84.5 [179]

Address Register File 32,768 100.0 [174]
Vector Register File 131,072 100.0 [174]

Predicate Register File 32,768 100.0 [174]
Divergence Stack Memory 4,139 98.0 [177]

Overall GPU 303,295 92.6 all

At the end, the overall percentage of detected faults in the GPU core reaches
92.6%, which supports the argument that functional testing techniques based on
SBST are feasible in-field testing solutions for GPU devices and can be considered
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as a complementary technique for complex hardware accelerators, as it was proved
in the past for CPUs.

4.4.3 Functional safety evaluation of the SBST strategy in
GPUs

In this subsection, the functional safety of the GPU is determined considering
only the SBST strategies and the fault coverage results as safety mechanism. In
fact, the calculation of the FC is an indication of the design safety based on the
efficiency of a given Safety Mechanism. However, it is not sufficient to assure
compliance with Functional Safety standards (i.e., ISO26262). For such a purpose,
it is required the reduction in the probability of system failures rate (also known
as Failure in Time or FIT).

The Single Point Faults Metric (SPFM), which represents the potential of the
permanent faults to violate safety-related functionalities, is defined by ISO26262 as
evidence of Safety Integrity [65]. The SPFM considers the total FIT rate (λ), and
the contribution of the fault classes:

• Single-Point Faults (λSPF): not covered by safety mechanisms

• Residual faults (λR): undetected by safety mechanisms

The SPFM can be calculated according to the equation:

SPFM = 1 −
∑︁(λSPF + λR)∑︁

λ
(4.13)

The primary methodology for determining the Safety Metrics parameters is the
Failure Modes Effects and Diagnostic Analysis (FMEDA). The FMEDA correlates
IC components (Gates, Flops, and Memory cells) to Failure Modes (FMs). Then,
by computing the λ of individual IC components, the FC, and the Safe faults, we
can determine the total λ of each FM.

The FMEDA starts with the definition of the FMs and the mapping of de-
sign components. For FlexGripPlus, we considered 9 main parts (see Table 4.20)
and 28 internal subparts,by dividing the composition of each module in the GPU.
Each subpart was analyzed to determine function-specific FMs, so determining the
potential effect of a fault in the functional operation of the module and the GPU.

After mapping each FM to the appropriate design component(s), we can eval-
uate the percentage of Safe faults per module and the FC. The safe faults are
determined after analysing the structural activation and structural propagation of
faults on each module in the GPU. More in detail, the structural activation forces
the primary inputs in the GPU and evaluates the propagation of any input value in
the internal nodes. Similarly, the structural propagation evaluates the outputs of
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the GPU and correlates the internal connections in order to find all possible nodes
in the modules which can be propagated into the available outputs. In the end,
those internal locations in the modules that are not related with the activation or
propagation analysis are considered as safe faults for the GPU, since there are not
feasible mechanisms to activate (by using inputs) or propagate (outputs) the effect
of a fault. The results showed that 11.05% of the faults in the modules of the GPU
can be considered as safe faults. It must be noted that we considered the gate level
representation of the FlexGripPlus model during the safe fault analysis. At the
end, The FlexGripPlus FMEDA comprises 92 Failure Modes mapped to 2,751,088
Gates, 1,507,085 Flops, and 784,224 Memory cells.

The analysis is performed employing a commercial tool in the FlexGripPlus
model, considering the 15nm FinFET-based Open Cell Library and its internal
technology and physical parameters, resulted in a total λ of 10.08 FIT; from these,
the implemented safety strategies (SBST test programs) provides the following
results:

• Detected by the test programs: 9.17 FIT

• Undetected (λR): 0.57 FIT

• Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC, directly impacts the SPFM. The
proposed Safety technique based on only STLs for FlexGripPlus resulted in an
SPFM of 94.27%, allowing ASIL B assessment without hardware modifications and
without any other safety mechanism.

The previous evaluation and the results supports the idea that functional test
strategies based on the SBST approach can be employed in GPU devices as a
complementary technique to provide safety mechanisms into devices oriented to
safety-critical applications. The ASIL B assessment proves that GPU devices can
use STLs as an alternative approach to guarantee functional-safety features into
these complex parallel accelerators with zero hardware cost and without changes in
the original microarchitectural design of the GPU core. However, it must be noted
that most test programs were developed at assembly level, so avoiding compiler
optimizations.

4.5 Conclusions
This chapter described several SBST strategies targeting the development of

in-field test procedures for critical modules in the GPU architecture and in some
cases hidden to the programmer, such as the scheduler controller, pipeline registers
and embedded memories. In the end, the overall evaluation is performed on the
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complete GPU showing that SBST approaches can be employed as a complementary
strategy to support the in-field testing procedures in GPUs.

Regarding the SBST methods proposed for the scheduler controller, three in-
cremental solutions were proposed and evaluated to detect faults inside the warp
scheduler in the GPU. Moreover, the methods to adapt and use them in any appli-
cation were also provided. The key idea behind the methods is their capability to
generate divergence paths, during the thread execution, and use the performance
variation among the threads and/or final results in global memory to detect perma-
nent faults. Moreover, the strategy employs the signature per thread mechanisms,
so each variation on the thread execution can be monitored and it is used to prop-
agate the fault effect to any observation point. More in detail, results indicate
that both method M2 and M3, see section 4.1.1, are promising SBST methods able
to achieve high fault coverage. Especially, the M3 method requires only to check
the final results in global memory after test program execution, which is a typical
mechanism used in SBST techniques for processors.

A complementary work was developed and validated using real NVIDIA GPU
platforms. In this case, a functional technique was proposed targeting the develop-
ment of Self-test programs aiming to perform the on-line test of static and coupling
faults in the scheduler memory of a GPU. This technique was developed and imple-
mented considering the available micro-architectural information of a GPU and a
high-level programming environment (CUDA). In the proposed method, the fault
primitives for such a model were described and adapted considering the opera-
tional constraints of the target module. The results on some representative test
cases showed that the proposed approach is effective and can test all the identified
fault primitives, so validating and ensuring complete coverage of all static and cou-
pling faults in the memory of the scheduler structure. It is worth noting that the
validation procedure was performed using real GPU devices. Finally, optimizations
to effectively implement the same kernel to describe a generic March operation
targeting the memory within the scheduler are also presented.

Section 4.2.2 described a multi-kernel approach to develop self-test routines to
test a hidden module for the programmers (the pipeline registers). The complexity
of the parallel execution and the configurable capabilities of an SM core (each time
a kernel is executed) were the key elements employed to develop the proposed test
routines. Besides, the reported results assessed for the first time the Fault Coverage
of SBST programs on the pipeline registers of a GPU core. A multi-kernel test
approach composed of multiple SBST programs was proposed to test the control-
path fields in the pipeline registers. Resorting to an RT-level fault simulation
environment, we could compute the related FC, which amounts to more than 80%.
The implementation of the test programs was based on a combination of high-level
and low-level programming abstractions, developed through CUDA and manually
included assembly (SASS) instructions. This work revealed and detailed multiple
imposed compiler restrictions and constraints during test kernel implementation at
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a high-level. Each proposed SBST targeted different portions of the control-path
fields in the pipeline register. An overlap of the proposed solutions can detect a
considerable percentage of faults employing only memory results comparisons as
the detection mechanism. Although the experiments target the pipeline registers,
we claim that the same strategy can be applied to other modules in GPU devices.

Section 4.3.2 introduced a modular and scalable method to design functional
programs for testing modules of GPU cores. The method was validated resorting
to the small embedded memories in GPU cores, such as the address and predicate
register files and the divergence stack. For this purpose, each target embedded
memory was analyzed and based on controllability, observability and composition
features. A set of parametric functions (called blocks) were developed and then
combined to test each target structure in the GPU. Results show that the modular
solution allows the exploration of the advantages and limitations of the implemen-
tation of different routines employed in a test program. Moreover, this technique
also allows the split of a test program into several parts, while still achieving the
same FC, so allowing to adjust the test program to potential requirements of in-field
operations.

Finally, the adoption of automatic methods (pseudorandom-based and ATPG-
based) in the GPU domain showed that it is possible to employ functional tech-
niques from CPUs into GPUs. According to the results in the parallel functional
units of the GPU, the percentage of detected faults by the designed test programs
is high (about 85 to 90%), so these techniques can be employed as a complementary
technique when testing GPU cores.

The overall evaluation of the SBST technique supports the idea that STLs are
feasible alternatives for the in-field test of GPUs given their high fault coverage,
low intrusiveness, and zero hardware cost. It must be noted that most test pro-
grams were designed exploiting the assembly language, so skipping the compiler
optimizations. Similarly, the functional-safety analysis provided a high coverage of
faults in the design. According to the results, the SBST strategy can be used as a
complementary safety mechanism in devices aimed at safety-critical applications.

151



152



Chapter 5

Flexible hybrid mechanisms for
in-field fault detection and
mitigation in GPUs

This chapter describes three flexible hybrid mechanisms aiming at detecting
and mitigating faults during the in-field operation of a GPU core. Each mechanism
is composed of a structure added into the design of the GPU core that can be
configured and enabled through custom instructions, added into the ISA of the
GPU. The design, implementation and experimental validation were performed
resorting to the FlexGripPlus GPU model.

Section 5.1 describes a flexible mechanism targeting the in-field fault detection
of permanent faults by performing parallel operations and comparing the results
searching for errors. On the other hand, sections 5.2 and 5.3 introduce hybrid
structures to mitigate faults, and detect and mitigate faults, respectively. The
proposed structure in section 5.2 exploits the adition of spare modules to replace
and mitigate fault effects on the GPU. Finally, the proposed solution in section 5.3
describes a flexible structure integrating both functionalities (fault detection and
mitigation).

In each section, the proposed structure, the implementation and main results,
including resources overhead and reliability estimations, are presented.

5.1 DDWC: A Dynamic Hardware Mechanism
for In-field Fault Detection in GPUs

This section describes a Dynamic Duplication With Comparison (DDWC) mech-
anism intended to harden the operational units (SPs) located in the SMs of a GPU.
The proposed mechanism targets the detection of permanent faults that may arise
inside the SPs. The main idea of the proposed strategy consists in the insertion
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of one additional functional unit in the GPU core, to compute redundantly the
same operations of one selected SP. After each operation, the results are compared
and possible failures are detected. A custom reconfiguration instruction allows the
dynamic selection of the target SP to be monitored [180].

This work is motivated by the fact that new reliability challenges in modern
devices may compromise the correct operation of an application and the system
during the operative life, thus showing reduced long-term reliability. Moreover,
due to the high density and complexity of GPUs, this work explores alternative
solutions to face these reliability issues.

Currently, design and reliability teams face reliability challenges in GPUs by
adding special structures, such as ECCs, to reduce the sensitivity to faults of some
structures, such as memories resources (i.e., register file and cache memories) and
communication interfaces. Nevertheless, other internal modules, such as the execu-
tion cores and the task controllers, cannot be easily protected with an acceptable
design and production cost. Thus, these internal modules represent a challenge
when dealing with their protection [181]. Moreover, traditional solutions to extend
the reliability of control and execution units (EUs), such as dual-core lock-step and
design diversity [182], increase the hardware overhead and the complexity of the
device exponentially. Moreover, these solutions can also reduce the performance of
the system by the included reliability structures.

In processor-based systems, there are several solutions to increase the in-field
reliability, consisting in the adoption of classical strategies of Duplication with Com-
parison (DWC), Double and Triple Modular Redundancy (DMR, TMR). However,
these strategies are mainly neglected (for in-field test) in GPU products due to
economic and technical reasons. In fact, the architecture of the GPU implicitly in-
cludes (coarse-grain!) duplicated or triplicated structures, but with other purposes.
In the GPU the duplication or multiplication of structures is fully devoted to exploit
the parallel and performance operation of the device. Nevertheless, these classical
solutions may be used in applications where safety is a major constraint. In these
safety-critical fields, the additional cost in terms of design and production can be
reasonably accepted due to the reliability benefits. To the best of our knowledge,
there are no hardware solutions for in-field operation used in real GPU cores based
on the previous techniques.

In the literature, several related works have been proposed in the past, exploiting
DWC techniques as an error detection strategy for GPU devices. These works can
be classified into two categories: i) software and ii) hardware. In both cases, the
main target is to provide the detection or correction of faults. However, hardware
approaches may be complex to develop and implement, although they are more
efficient than software approaches.

On the one hand, software DWC mechanisms take advantage of time redun-
dancy by repeatedly executing instructions [167] [168] [183], functions [69], or ap-
plication tasks [69] [71] [146] on a GPU device. At the end, results are compared
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to detect faults. These mechanisms introduce zero hardware overhead but cause
significant performance degradation, additional switching activity, and also a mod-
erate overhead in the memory and similar resources. Furthermore, in [184], the
authors proposed an interesting automatic multithreading environment to mod-
ify the parallel program for GPUs and duplicate the number of operations. This
solution is efficient in the use of both spatial and time redundancy, but the per-
formance degradation of the modified program directly depends on the behavior of
the application.

On the other hand, hardware solutions exploit spatial redundancy and consist
of adding dedicated hardware structures in the design to increase the reliability
by allocating operations into redundant and independent modules. Results are
then compared to detect possible faults. The main advantage of these mechanisms
is a reduced performance degradation. However, the hardware overhead directly
depends on the redundant modules to be added and modified. In [185], a mechanism
is used to duplicate the internal cores in one SM of a GPU. Special structures are
added in the input and output modules to process the data operands and the
interconnections. Nevertheless, the mechanism was only evaluated resorting to a
structural simulator; hence, the hardware overhead and the resulting performance
degradation were not quantitatively assessed. In [144], the warped-Dual Modular
Redundancy was proposed, which uses the free execution cores, inside the GPU core
or SM, to provide a redundant mechanism and detect errors. The inactive threads
are configured using a Register Forwarding Unit (RFU), which can be configured
either as EUs or as comparators. The RFU uses the original structures to monitor
and verify the cores using timing redundancy. Although this method was evaluated
with a simulator, results showed that the associated hardware overhead might be
significant, considering the RFU existing in each core. Moreover, this method
can only be activated when intra-warp divergence conditions are present in the
application, so reducing the scope of this solution.

In [186], several execution units are included in the design of a GPU and are
used to replace by reconfiguration and fuse the faulty units after performing the
end-of-manufacturing testing. Finally, In [187], the authors propose and addition
of heterogeneous cores to detect faults in a multi-core processor when executing
out-of-order operations.

5.1.1 Main idea of the DDWC mechanism
The proposed dynamic redundancy mechanism (DDWC) targets the detection

of permanent faults and also those faults potentially causing mismatching by effect
of a fault. The proposed mechanism combines the flexibility provided by the soft-
ware to identify a target module, combined with the low-performance degradation
and spatial redundancy obtained by the hardware structures, so providing an effec-
tive fault detection mechanism. DDWC is intended for the in-field test by slightly
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modifying the application code by just adding, at specific locations of the code,
instructions to control the DDWC structure; so apart from the additional instruc-
tions, the DDWC mechanism is completely transparent to the programmer. This
solution is intended to introduce small or null performance overhead and minimal
modifications into the existing structures.

More in detail, DDWC is an adaptation of the classical DWC structure. This
strategy uses a sphere of redundancy (see Fig. 5.1) replicating one or more modules
to increase the fault detection capabilities in a system. The DDWC structure is
mainly composed of an input selector module, a redundant or spare module (a
copy of the target functional unit or SP core), an output selector module, and a
comparator (to check the coherence of the results). Finally, one controller manages
the input and output selectors to provide the data and feed the redundant and
comparator modules through the selection performed by a controller. This selection
is managed and activated by a custom instructions (DDWC_i), so the configuration
of the DDWC structure can be programmed and controlled from the application and
programmer views. This strategy allows the enabling and disabling of DDWC when
the GPU is in operation. In fact, the controller can be dynamically programmed
through the DDWC_i instruction, which identifies the module to be monitored
and activates the input data channel, using the input and output selector modules
in the sphere of redundancy, see Fig. 5.1. The input and output selector modules
are composed of crossbar or meta-crossbar structures. Some additional decoders
and registers are also included in the DDWC structure. The flexibility of the
added instructions allows the designer to choose a suitable trade-off between fault
detection latency and performance overhead by selecting the frequency of execution
of the DDWC_i instruction.

Once the custom instructions activates the DDWC mechanism, the controller
selects one input data channel. Each data channel is statically associated to each
target module, so it is possible to use the selector modules (input and output)
to coordinate the assignation of the same data operands into the spare module.
Then, all input operations are redundantly executed by both: the target module
and the redundant one. This comparison and fault detection structure is well-
known and contributes to reducing the performance latency for fault detection.
The comparison of both obtained results (the target module and the redundant
one) is the based to identify a fault in the system. This direct comparison also
includes the evaluation of the output flags after each operation performed in the
functional unit. A fault is detected if there is at least one mismatch in the results.
The comparator generates an output error signal triggering the logic state that
indicates the fault detection.

It should be noted that the sphere of redundancy can be applied at multiple
levels of granularity in a GPU architecture. However, the DDWC structure could
be unfeasible when applied to big modules, which might represent a considerable
hardware overhead for a complex system, such as pipeline blocks in a processor or
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a GPU. Moreover, the non-regularity of some structures could limit the adaptation
of the DDWC to keep low performance and hardware costs. It is worth noting that
the DDWC structure focuses on the fault detection mechanism, so error handling
and mitigation strategies are out of the scope of this section and will be discussed
in section 5.3.

Initially, several modules of the GPU architecture were explored as candidates
to implement the DDWC mechanism.

Firstly, the entire Execute pipeline, in the SM core of FlexGripPlus, was consid-
ered as priority target module for the sphere of redundancy in DDWC. However, as
commented before, the non-regularity of its internal structures (the Execute mod-
ule includes SPs, FP32s, SFUs and some controllers) were a strong factor to avoid
that possibility by the limited adaptation and use of the main idea of the DDWC
mechanism, so introducing unacceptable hardware overhead in the GPU core.

Other feasible candidates are the sub-module structures of the functional units
in the GPU core. In principle, the adaptation of the DDWC mechanism requires
the duplication of each sub-module, so basically duplicating hardware overhead for
each functional unit considered. Finally, the functional units were evaluated. In
this case, the high regularity of the functional units (specifically SPs) in the execute
pipeline allows the adoption of the DDWC mechanism with a limited hardware
overhead when sharing the same spare module, so it is possible to duplicate the
SPs and perform the comparison on selected time intervals. This combination
(regularity of the SPs and the reconfiguration mechanism) contributes to reducing
the total overhead costs in the GPU core. In the end, it was proposed the addition
of only one SP core, and a newly introduced custom instruction allows selecting a
target SP with the comparison structure. Fig 5.1 summarizes a general scheme of
the mechanism using SP cores as the main modules in the sphere of redundancy.

The input switch collects all the data channels (SPCs) and activates one of the
data paths coming from the previous pipeline stage and feeds the redundant SP
core. In contrast, the output switch collects all output data channels (SPDCs)
for the active SPs, selects one among them, and feeds the comparator module. A
switch controller is included to manage the channel selection in both switches (input
and output). The signals decoded by the DDWC_i instruction are employed to
reconfigure both switching structures.

The redundant SP is placed in parallel to the existing SP modules, and the
inputs are directly connected to the input switching selector. Similarly, the outputs
of the redundant SP are connected to one of the inputs of the comparator module.

The comparator module is a bit-wise comparator of the output results (SPDCs)
coming from a target SP and the redundant SP. An output strobe flag is included as
observability mechanism to inform the Host, or an exception handler in the GPU,
about potential faults found in one of the SPs. A mismatch in the results indicates
a fault in the SP, hence triggering the output flag.

Some additional combinational modules, such as the interconnections and the
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Figure 5.1: A general scheme of the proposed DDWC structure for in-field fault
detection implemented into the FlexGripPlus model

decoding hardware, are included in the DDWC mechanism. Similarly, a configu-
ration register holds the latest configuration in the DDWC structure after using
the DDWC_i instruction. It is worth noting that in order to maintain the original
structural configuration of the GPU core, the DDWC mechanism starts disabled
(disable mode) after a reset or switch-off event and can be activated only through
the DDWC_i instruction.

The explicit selection of a target SP core to perform the comparison with the
DDWC_i instruction may affect the optimal fault detection performance of all SP
cores in the sphere of redundancy. Moreover, the input operations (extracted from
the instruction in the application) and the frequency of activation of the custom
instruction can also limit the number of patterns applied to each core and the final
capacity to identify errors. Thus, the operation of the DDWC mechanism requires
a balance between the selection and activation of a target core and the insertion of
the DDWC_i instruction in the application code to obtain the best fault detection
rate performance.

It is worth noting that other modules in the GPU, such as memories and control
units, were not targeted and are out of the scope of the proposed DDWC solution.
The use of the DDWC mechanism in these modules may introduce hardware over-
heads greater than 100%, considering the duplication of modules and the required
additional structures, such as registers, comparators, and interconnections.

5.1.2 Implementation and experimental evaluation
The FlexGripPlus model was used to implement and evaluate the fault detection

capabilities of the DDWC mechanism experimentally. Three pipelines modules
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(Decode, Read, and Execute/Control-flow) were modified to include the DDWC
structures. It is worth noting that the selection of the SP cores, as sphere of
redundancy, to implement the DDWC mechanism contributes to reduce the number
of deep modifications in the original memory hierarchy and the warp scheduling of
the GPU.

In the Decode stage, the DDWC_i instruction was implemented by carefully
adding some combinational logic. The Instruction Set Architecture (ISA) in Flex-
GripPlus (SASS) was analyzed, and one available operation code was selected for
its description. The format of the DDWC_i instruction includes 5 bits to select the
SP module to be duplicated, which is directly related with the data channel feeding
the module, 2 bits to enable or disable the DDWC module, and 6 bits stating the
instruction type.

In the Read stage, a bypass structure was included. This bypass is composed of
registers and keeps the pipeline coherence during the execution of the instruction
by managing the operands and configuration signals in the DDWC structure to be
used in the Execute/Control-flow stage.

The Execute/Control-flow stage was modified, adding a copy of an SP core
(SPx), the input and output multiplexers (implementing the input and output
selector switches), and a logic comparator, see Fig. 5.1. The two multiplexers are
located in the inputs and outputs of the redundant SP core (SPx) to select the data
channel to be duplicated.

The comparator is a fully combinational module, built with XOR gates. The
output multiplexer selects and feeds one of the inputs of the comparator with results
coming from SP cores. The other input is constantly connected to the outputs of the
redundant core (SPx). The result of the comparator enables an output flag and it is
propagated to the next stage. Then, this flag indicates the Host or a error handling
module in the GPU that one error was detected. This flag is intended to activate
an interruption/error-handling routine in the host and indicate the presence of a
fault in the SP core. After a fault is detected, the controller also propagates one
configuration code to the Host. This code can be used to locate a faulty SP core
in the SM or in one available SM in a GPU by the Host.

One additional local controller, one decoder, and some registers were also in-
cluded to configure both multiplexers. As previously mentioned, this configuration
is based on the decoding signals from the DDWC_i instruction.

The input an output data-path interconnections (data channels) of each SP
core were duplicated to feed the multiplexer units. On the other hand, the control-
path fields of all SP cores in the GPU core were not duplicated, but shared when
considering that The FlexGripPlus architecture employs the same instructions to
be processed into the available SP cores, so all available cores remain with the same
configuration during the execution of one instruction.
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Under the inactive mode of the DDWC mechanism, both multiplexers are un-
connected from the redundant SPx core and the comparator, so avoiding unneces-
sary switching activity in both modules. In this way, the dynamic power is reduced
during inactivity periods.

Regarding application code modifications, the code requires a minor modifica-
tion to use the DDWC mechanism for in-field detection. According to the intended
functionality, it is suggested to include the DDWC_i instruction at the begin-
ning of the application code to reduce performance degradation. Similarly, the
DDWC_i instruction can be placed in strategic locations in the code (i.e., before
any logic-arithmetic instruction) or in a periodical manner (after a given number
of instructions). However, in both cases, the performance degradation for the ap-
plication must be considered. In any case, during the in-field execution, the output
flag signal in the comparator is directly assigned as a source of fault identification.
The implementation of the DDWC_i instructions supports two formats, allowing
the selection of the target SP core to be duplicated from an immediate source of
from a register source.

It is worth noting that the DDWC mechanism is intended to be used during the
in-field operation of the GPU. Once DDWC is active, the redundant core should
swap among the SPs of the SM. For this purpose, the program code is modified by
adding some DDWC_i instructions. Depending on the application and on the se-
lected frequency for the swap procedure, the locations where the DDWC_i instruc-
tions are inserted can be suitably selected. A higher rate reduces the fault detection
latency but increases the performance overhead stemming from the DDWC_i in-
struction addition. The method is flexible since it allows adopting the solution
which best fits the target system specifications.

5.1.3 Experimental Results
The experiments were performed on the SM core using three SP configurations

(8, 16 and 32 SP cores). This hardware flexibility allow the analysis and evaluation
of the proposed DDWC mechanism in the SM core with multiple dimensions.

An extensive group of simulations were performed to verify the correct operation
of the proposed structure.

Figure 5.2 depicts the changes in the code to activate and swap the DDWC
structure during the execution. The Fig. 5.2(left) shows the case of activating the
DDWC mechanism before to start the execution of a part of code, using a static
selection. On the other hand, the example of Fig.5.2(Right) shows a modified code
using a dynamic selection of channels using a register as source.

A preliminary observation shows that any application in a GPU core, integrated
with the DDWC mechanism, uses the DDWC structure four times and twice per
SP core when the GPU core is configured with 8 and 16 SP cores configuration,
respectively. This behavior is explained considering that the thread management
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Figure 5.2: Examples of code modifications when using the DDWC mechanism.
The static selection (left) maintains configuration according to the constant channel
CH0. The dynamic selection (right) employs a general purpose register to address
any channel, so allowing the online configuration of the DDWC mechanism.

in a SM core when the number of SP cores is lower than the number of threads in a
warp, so the threads are divided in groups and submitted to the available SPs (and
the spare SP in DDWC). Thus, for an 8 SPs configuration, four groups of threads
share the same SP (and the spare SP if DDWC is active). Similarly, for a 16 SPs
configuration, the controller in the SM dispatch two threads to each SP serially.
It means that for every configuration of the DDWC structure, the comparisons,
and possible fault detection are performed four times and twice with instructions
belonging to the same warp for the 8 and 16 SP cores configurations. In contrast, a
configuration of 32 SP cores in the SM has the equal number of threads in a warp,
so the instruction per warp is only executed ones on a SP (and the spare SP core
for comparison).

The experimental performance results were gathered using a gate-level netlist
version of the FlexGripPlus model integrating the DDWC mechanism. The Syn-
opsis toolchain (Design Vision) was used to estimate the hardware overhead and
performance degradation. The NAND-Open-cell library for 15nm [100] and 45nm
[99] were used for synthesis purposes.

Both GPU models (the original one and the one integrated with DDWC) were
compared for all configurations of SP cores. Results in terms of size of cells are
reported for the modified modules during the integration and also for the entire
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design in Table 5.1. The reported results do not considered the hardware cost of
the memory elements in the SM of the GPU core.

The reported results show that hardware overhead of the DDWC mechanism
is relatively low. In the one hand, in the Decode pipeline stage of the GPU core,
the total overhead of the implementation of the controlling instruction represents
only 3%. Moreover, the hardware cost seems to be insignificant (≈0.1%) for the
Read pipeline stage. In contrast, in the Execute/Control-flow pipeline module, the
overhead is inversely proportional to the number of SPs in the SM. Hence, a lower
number of SPs introduce a higher overhead cost. However, this overhead seems to
be moderate (≈3.5-10%). On the other hand, the analysis of the overhead cost in
the entire design shows that it is lower than 3% for all SPs configurations. These
results support the initial goal of limiting the impact in the hardware overhead by
the DDWC mechanism.

The above results support the claim that the proposed DDWC mechanism rep-
resents a practical solution as a fault detection strategy without including a critical
impact in the area of the GPU.

Table 5.1: Hardware and performance overhead of the DDWC mechanism for mul-
tiple configurations in the GPU core using the 45nm technology library.

Modules SP
cores

Number of Cells Area
overhead

(%)

Time delay in the critical path (pS) Performance
degradation (%)

FlexGripPlus
FlexGripPlus

+
DDWC

FlexGripPlus
FlexGripPlus

+
DDWC

Decode 8/16/32 1,229 1,266 3.04 1.72 1.77 1.16
Read 8/16/32 142,397 142,545 0.10 3.65 3.65 0.0

Execute
8 60,309 65,959 9.37 6.51 7.0 7.52
16 113,293 118,739 4.81 6.69 7.68 14.79
32 219,261 226,822 3.45 7.52 8.54 13.56

All
8 229,515 235,964 2.81 11.88 12.42 4.54
16 280,132 286,360 2.22 12.06 13.10 8.62
32 386,100 394,516 2.18 12.89 13.96 8.30

Performance overhead

The performance overhead was evaluated at the module and design levels. Ini-
tially, the critical path delay was determined for each modified module and the
whole design. It is worth noting that in both cases, the synthesis and analysis were
performed without adding constraints or optimizations in the synthesis tool. A
frequency of 100MHz was selected for the synthesis. The results are presented in
Table 5.1.

By looking at the results, it can be noted that the additional structures in the
Decode module added a small percentage of performance degradation (1.16%). In
the Read module, a bypass register was added. Nevertheless, this does not intro-
duce any overhead. This behavior can be explained by observing that the bypass
register was concatenated with existing structures in the module, thus guarantee-
ing the same functionality of the original structures. In contrast, the performance
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degradation in the Execute/Control-flow module seems to be directly affected by
the number of SP cores. For a low number of SP cores, the critical delay path is
increased by 7.52%. The configuration of 16 SP cores seems to present the maxi-
mum percentage of performance overhead with 14.79%. In contrast, the overhead
drops for the 32 SP cores. Although the total delay overhead is higher for 32 SPs,
the delay overhead is lower. This behavior can be explained considering that added
SPs are placed parallel in the design, thus adding a low timing overhead. However,
the most representative timing effects are due to the added modules in the path.
These modules are the input and output switches and the comparator.

Power consumption overhead

The consumption overhead for the DDWC strategy was determined after ana-
lyzing the initial description of the GPU core and the GPU containing the DDWC
structure. Each affected module of the GPU core to implement the DDWC (De-
code, Read, and Execute) was analyzed in terms of the individual effect of the added
structures. The analyzes were performed on the synthesized version of both GPUs
(the initial and holding DDWC).

In results, The power overhead produced by the DDWC in the Decode and Read
modules is negligible (< 0.001%). In contrast, the overhead in the Execute module
directly depends on the available SP cores, since the power consumption increases
according to the available SP cores in the design (73.6% and 222.45% of power
consumption incremented for 16 and 32 SP cores, respectively, concerning the 8 SP
cores version of the module). Interestingly, the added spare cores to perform the
comparison remain as cold spare modules when inactive, so the additional power
consumption is only present in the active mode of the DDWC structure. Once
the DDWC is in active state, the increment in the power consumption raises to
18.68% for a GPU with only 8 SP cores. This power overhead is reduced to 5.03%
employing a GPU with 32 SP cores. Finally, analyzing the complete GPU, the
power overhead is increased by up to 2.65% for the minimum number of SP cores
(8). Meanwhile, the power costs are reduced up to 1.1% in a GPU with 32 SP
cores.

Fault Detection Capabilities

The fault injection environment is based on the ModelSim framework, and the
injection methodology used is similar to the introduced in [167] [173]. Further de-
tails regarding the descriptions and configurations of the used benchmarks can be
found in Chapter 3.1.2. For the experiments, the output flag from the comparator
was included as an observability mechanism to detect faults in the simulation en-
vironment. It is worth noting that in both versions of the GPU (original and the
one including DDWC) the main outputs of the GPU (memory and control signals)
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Figure 5.3: Fault coverage results for several applications when enabling the DDWC
structure in a GPU.

were used as observation points to detect fault effects during the fault campaigns.
A set of benchmarks with different workloads was employed to validate and

evaluate the detection capabilities of the DDWC strategy experimentally. The
fault injection campaigns were performed in the FlexGripPlus with and without
the DDWC mechanism and considering single stuck-at faults at the RT level. On
each fault campaign, the GPU model was configured with 8 SPs and 32 threads per
block. Each benchmark was adapted to include the DDWC_i instruction activating
the DDWC mechanism. Gathered results were combined to mimic the long-term
operation of the GPU with the DDWC mechanism rotating among the SPs.

Figure 5.3 reports the Fault coverage results for five applications evaluated in the
original GPU and one implementing and enabling the DDWC mechanism. In the
experiments, 8 SP cores are configured in the SM and one SP core was permanently
active to perform comparisons.

The results showed that the increment in the detection of fault, reflected in the
fault coverage of the analyzed applications, varies in the range from 8% to 30%.
However, results support the idea of the increment in fault detection capabilities
when adding the DDWC mechanism in the GPU core. The final Fault Coverage
that can be achieved on each SP resorting to the proposed method strongly depends
on the application. In fact, the observed behavior for each application directly
depends on the number of instructions using the SP core during the execution of
the program. Moreover, it should be considered that the DDWC strategy requires
the explicit selection of a target SP core to perform fault detection. Thus, a balance
between the frequency of the SP switching and the application features is required
to obtain optimal in-field fault detection.
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Estimation of the fault detection time

The proposed DDWC mechanism increases the fault detection capabilities con-
cerning faults in the target structures. However, as the DDWC structure is intended
to select the SP to be monitored during in-field execution dynamically, the overall
fault detection capabilities of the DDWC strategy depends on several parameters,
such as the switching frequency and detection time, and the detection capabilities
of the operations (or test patterns). A test pattern is one or a sequence of values
applied to the inputs of the target SP to excite a fault and propagate the error to
the outputs.

Considering a fault-free DDWC structure and an SM composed of n SPs, the
SM in principle cannot detect permanent faults in the SPs. Hence, fault detection
capabilities are zero. Using the DDWC mechanism, the fault detection capabilities
in the system increase. This increase can be estimated by resorting to the relation
between the fault observability and the required time to detect a fault. The fault
observability (Ob)[188] in one SP can be defined as:

ObSP (p)) =
[︄

Np

Nnp

]︄
(5.1)

where Np and Nnp are the number of input patterns that propagate and do
not propagate a fault effect to the output, respectively, and P = Np + Nnp is
the number of patterns, assuming that the average observability remains constant
across the time. In the DDWC mechanism, the patterns are mainly generated by
the execution of instructions and data operands.

The time for detecting a fault (tt) is composed of a set of time intervals needed
to perform the fault detection in an SP. If a fault arises in the system at time t = 0,
the fault is excited by a pattern after a time t1. Then, it is propagated to the
output after a time t2, and finally, it is detected after a time t3. Thus, it is possible
to estimate the time for fault detection (ETFD) in a continuous fault detection
structure case as:

ETFDDW C(t,p) = [Np + Nnp] · tt

Np

; tt = t1 + t2 + t3 (5.2)

In Equation 5.2, short times are desirable to perform fault detection. However,
the configuration of the DDWC strategy directly depends on the time interval
employed to switch among SP cores t4 and the required time to execute the con-
figuration instruction t5. Thus, it is possible to express the time for fault detection
(ETFD) in the SPs using the DDWC mechanisms as:

ETFDGP U(tt,p) = [Np + Nnp] · [tt + ∑︁n
i=1 (t4 + t5)]

Np

(5.3)
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Figure 5.4: The maximum value of ETFD for multiple frequencies of the DDWC_i
instruction (100, 200, 300, and 400 instructions) in the application code and under
multiple SPs configurations in the SM.

where n is the number of SPs in the SM, and time t5 is proportional to the
number of instructions between two sequential configuration instructions.

Figure 5.4 represents the worst-case scenario for fault detection in an SP, assum-
ing that the switching among the available SPs is performed every 100 instructions
in the program code. The expression is calculated using a clock period of 10 ns,
an average time for instruction execution of 20 clock cycles, and times for pattern
injection, fault propagation and fault detection at a fixed rate of 3 clock cycles.
It is assumed that the fault can be propagated to the output by one of the test
patterns.

Equation 5.3 can be used to find an optimal trade-off between the switching fre-
quency for the DDWC mechanism among the SPs and the performance degradation
in the application by the insertion of DDWC_i instructions.

Comparison with other fault detection strategies

A comparison of the proposed mechanism with classical fault detection methods,
such as lock-step and Build-In Self-Test (BIST), shows that the lock-step structure
requires the duplication of each structure in the design. Thus, the hardware over-
head overcomes 100%, considering the additional structures. On the other hand, a
BIST mechanism can be an effective solution for the end-of-production test. Nev-
ertheless, the same approach could be challenging to use with the SPs during the
operational phase of a GPU. These difficulties are based on the required execution
time to perform fault detection. Moreover, the required structures for implement-
ing such a solution may be equal to or greater than the DDWC strategy in terms
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of hardware overhead.
In general, testing solutions based on SBST mechanisms add zero hardware

cost to the system. However, the latency required to perform the fault detection
might compromise the performance of an application. In contrast, the DDWC
mechanism faces those latency issues by reducing the fault detection time as a
negligible effect in the execution of instructions, so the performance degradation is
not included as part of the instruction’s cycle. Moreover, a big advantage is that
the DDWC mechanism can be combined with SBST techniques to increase the fault
observability.

The previous analysis proves that the DDWC mechanism is an alternative so-
lution for in-field fault detection, equivalent to lock-step and BIST, but DDWC
has lower cost in terms of hardware overhead when implemented in the SP cores of
GPUs. Moreover, the proposed mechanism may also coexist with other structures
to detect, mitigate, or repair faults in the SP cores.

5.2 BISR: a dynamic reconfiguration mechanism
to increase the reliability of GPUs

This subsection introduces a dynamic reconfiguration mechanism aiming at the
mitigation of faults in a GPU core. For this purpose, the Built-In Self-Repair
mechanism was adapted and employed to protect the execution units in a GPU.

In principle, many commercial GPUs include fault mitigation mechanisms for
memories based on ECCs. In most industrial applications, these ECCs are enough
to provide the required reliability. In the worst case, when the GPU stops working,
it may be replaced. A different scenario exists in the automotive industry. For this
kind of functional-safety applications, the effects of a fault may cause unacceptable
operational failures. Thus, GPUs may require complementary fault mitigation
solutions to be applied during real-time operation.

As introduced before, traditional solutions to increase the reliability of digital
design are based on hardware, software, and hybrid approaches. The hardware
mechanisms are considered as feasible solutions in applications with strong require-
ments in terms of functional safety and reliability, such as the automotive one. In
this case, an additional cost can be justified by the improved features and capa-
bilities. Hardware solutions include Duplication with Comparison (DWC), Double
and Triple Modular Redundancy (DMR, TMR), ECC and the hardening of se-
lective logic gates. The adoption of these solutions requires a careful evaluation
of the involved area and power budget overhead. Moreover, some of these tech-
niques are mainly intended to mitigate the effects of transient faults in a system.
In contrast, mitigation of permanent faults requires strategies, such as Built-In
Self-Repair (BISR), replacing a faulty block with a spare one.

In BISR, the granularity of the block depends on the target module, and the
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complexity and criticality of the device [189]. In the past, BISR has been success-
fully applied in the memory blocks of processor-based systems by adding spare rows,
columns, and additional controller structures to correct faults during the produc-
tion phase and also during in-field execution [190][191]. Other works [192][193][194]
targeted data-path units, such as the register file, and some internal components
of the execution units (EUs) [195]. Similarly, some works proposed reconfiguration
solutions targeting computational blocks in GPUs [196] or other modules in the
GPU, such as the memories [197], and functional units [198], or combinations of
both aligning the system to the specific workload requirements [199][200]. In [186],
the author proposes selective hardware redundancy to correct defective blocks dur-
ing the production stage. This method is intended to increase the production yield
during manufacturing.

Other works [167][201][202] introduced mitigation strategies only based on soft-
ware mechanisms. These solutions are effective in detecting most faults and tol-
erating a high percentage of them. Moreover, the added area overhead is zero.
Nevertheless, their cost in terms of performance degradation and memory over-
head may be relevant due to these solutions are implemented by instrumenting
the application code with custom functions. Considering the previous works, the
combination of software mechanisms and additional hardware modules in a hybrid
structure to achieve the same results may be attractive.

This subsection introduces a BISR strategy mainly aiming at addressing per-
manent faults (or any other type of fault that can be observed) during the in-field
operation in the SP cores (Stream/Scalar Processors) inside the SM of a GPU. This
BISR strategy leverages on the high regularity of the SPs in the GPU architecture.
We leverage the techniques recently described in chapter 4, which allow the detec-
tion of permanent faults in the SP cores of a GPU resorting to software self-test
procedures. Similarly, we employed suggestions and guidelines proposed in [82].

The basic idea behind the BISR mechanism lies in introducing a given num-
ber of Spare SP (SSP) cores, which may substitute any faulty SP as soon as a
permanent fault affecting it is detected. In our proposal, the reconfiguration can
be activated via software with an additional instruction (Config_SPs), which has
been purposely introduced in the GPU Instruction Set. Moreover, this instruction
is compatible with the original programming language of the GPU. Apart from
the execution of Config_SPs instruction, the mechanism is completely transparent
to the programmer. The method only allows tolerating faults affecting SP cores,
which correspond to a significant fraction of the total SM area.

The BISR mechanism is intended to add as minimal as possible structural
changes into the existing hardware of the GPU, and thus on its performance. Fi-
nally, the proposed solution does not require any change in the application code.
The proposed BISR mechanism (together with the related test) can be activated
during power-on or at reset when timing constraints for fault detection and hard-
ware reconfiguration are not so relevant.

168



5.2 – BISR: a dynamic reconfiguration mechanism to increase the reliability of GPUs

The proposed BISR solution has been implemented and evaluated resorting to
an extended version of the FlexGripPlus model. Extensive experimental results
showing its cost and effectiveness have been gathered referring to that model.

Although the usage of spare units is a well-known solution in dependable archi-
tectures, to the best of our knowledge this is the first work proposing its adoption at
the SP level in a GPU core, and exploring in a comprehensive way the costs/benefits
of its integration in a hardware model representing a real GPU.

The next subsection describes the proposed fault mitigation mechanism, as well
as a summary of the software test mechanisms which can be used to detect faults
in the SP cores and how they can be integrated in the proposed solution. Then,
the implementation of the proposed BISR mechanism is described, using the Flex-
GripPlus model. Finally, the experimental results, analyzes and main conclusions
are reported.

5.2.1 BISR mechanism in GPU cores
Given the complexity of a GPU, different mitigation methods should be used

addressing the different composing parts. This subsection proposes a fault mitiga-
tion strategy targeting the SPs in the Execute/Control-flow stage of a GPU. This
method aims at increasing the reliability of this stage by disabling an SP once it
has been labeled as faulty due to a permanent fault, and substituting it with a
Spare SP core (SSP). The solution is based on a hybrid approach [203].

The hybrid approach combines some mechanism to detect permanent faults in
the SPs, based for example, on Design for Testability (DfT) or SBST test programs.
For instance, in [173] and in Chapter 4, it was showed that suitable test programs
can detect a high percentage of permanent faults within a single module. Once a
faulty SP has been identified, a re-configuration process is launched. This process
executes an ad-hoc instruction, which replaces the faulty SP by a spare one. For
the purpose of this mechanism, the fault detection and localization phases were not
targeted, but it is focus on the hardware changes to be introduced to support the
reconfiguration phase (see Fig. 5.5). It is worth noting that in this work, it was
not considered fault administration structures (FAS) to be activated after a device
shut-down to recover the previous configuration state in the device. These FAS
could be composed of flash memories and controllers to store the state of SPs and
SSPs in the device.

Fault mitigation architecture

The BISR architecture is based on adding a given number of SSP modules in
parallel to the existing SPs. These SSPs are cold standby modules, thus reducing
the power consumption during inactivity. Two switching modules are added to
control the data-path signals in the existing SP and SSPs. The switching units
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Figure 5.5: A general scheme of the detection, identification, and configuration
approach for fault mitigation.

Figure 5.6: A general scheme of the adopted circular switching method for SP core
configuration.

are placed in the Execution/Control-flow stage of the GPU following the Circu-
lar Switching Scheme, see Fig. 5.6. This Circular Switching Scheme is based on
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managing the access to data and control channels of the modules to possibly re-
pair (SPs). The two switching units manage the access to the channels for each
module (SP), so enabling or disabling the operation of any selected module in the
device. These switching units are mainly composed of meta-crossbar structures. A
controller manages the switching units and enables or disables the operation of SPs
and SSPs in the system. Fig. 5.6 shows the general scheme of the configuration
structure composed of n SP cores and m SSPs added and connected to the SM. It
is worth noting that the number of input and output signals on each SP is different.
Thus, the size of the input and output switches may differ. Nevertheless, the same
mechanism is employed to manage each SP core.

In order to minimize the impact of the changes on the existing architecture,
we preserved the original memory hierarchy and WSC modules. Thus, each input
Thread Data Channel (ThDC) is kept at the input of the execution stage.

The input switching unit includes, as outputs, the additional SP-data channels
(SPDCs) and also connects them to the SPs and SSPs. In this way, each input
ThDC is connected with one SPDC in the configurable scheme. The output SPDCs,
coming from the SPs and SSPs, are connected with the output switch unit and the
original output ThDC of the execute pipeline stage.

The output switch reduces the total number of data-path channels in order
to keep the same pipeline interconnections. In the adapted mechanism the input
switch behaves as a data channel de-multiplexer. Similarly, the output switch acts
as a data channel multiplexer.

The placement of the two switching modules at the input and output of the
SP cores contributes to maintaining the original memory hierarchy for each thread
execution without relevant changes in the design. This is achieved considering that
each ThDC does not include information related to the direct association of a ThDC
to a specific SP core to perform operations. Thus, each thread process uses the
original registers and memory locations, even when a spare core is active. Hence,
the proposed solution is entirely transparent to the software, which must not be
modified in any way.

The solution we followed does not impact the WSC existing in the SM. The
WSC traces the execution and the state of each thread in a warp, but it does
not include information related to the SP core allocation, thus remaining without
changes.

The switch controller manages the configuration of both switching units using
the same input control signals. The custom Config_SPs instruction generates the
input control signals and activates the re-configuration of the SPs.

More in detail, the instruction selects one SP and one SSP core and forces the
GPU to substitute the former with the latter for all the following activities. In
the current version, the selected configuration is not saved anywhere: hence a test
and possible re-configuration should be performed at each power-on or reset. The
introduction of a small Non Volatile Memory could allow storing the configuration.
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The format of the instruction is selected avoiding any overlapping with the original
instruction set of the GPU. The instruction format is divided into two parts. The
first part of the instruction picks and enables one of the available SSPs in the
system. The second part manages the switching units by selecting the correct
input and output data channels for each SP and SSP core.

Fault detection, fault identification, and reconfiguration

The BISR mechanism is intended to operate during the Power-on (or reset)
conditions, so it is assumed that the test and possible reconfiguration steps are
both performed during this initial configuration stage of the device. Moreover,
the fault detection and location phases, as well as the reconfiguration one, can be
executed without any strict time and memory constraints.

For the sake of completeness, we summarize here how the fault detection and
location phases could be implemented. More details about this solution can be
found in Chapter 4. However, other solutions (e.g., based on DfT) could be used
as well.

At the power-on, the BISR structure is inactive. Thus the SP cores are initially
connected with each ThDC and the SSP cores remain in cold standby mode. Then,
a set of test patterns is applied to the SPs. These patterns are based on the
execution of well-defined operations to test in parallel each SP in the SM.

The strategy employed is based on targeting all sub-modules in the SP cores
and forcing them to execute suitable test patterns using instructions. The partial
thread results are stored in the global memory for later analysis. As each thread
executes the same instructions on different SP cores, a Signature-per-Thread (SpT)
mechanism is used. Every SpT is compared with a set of previously stored results,
and depending on the comparison each SP core can be labeled as faulty. This
method allows for quick identification of the faulty SP.

Assuming that n SPs and m SSPs are available, the test is then repeated after
reconfiguring the GPU so that m SP cores are substituted with m available SSP
cores. At the end of this phase, a full map of the faulty and fault-free cores is
available. Based on this map, if at least n cores are available, the GPU can be
reconfigured accordingly and can continue working correctly.

For the sake of simplicity and to avoid reconfiguring the code, It is assumed
that the minimum number of cumulative fault-free SPs and SSPs in the SM is n.
This value is compared each time to verify when the SM cannot operate anymore.

The above procedure assumes that the system does not include any Non Volatile
Memory (NVM). Hence, at each power-on, a complete test is required to build the
map of faulty/fault-free cores. If an NVM is available, this map can be stored there
and used to reconfigure the GPU accordingly at each power-on. The map is then
updated with a given frequency, depending on the reliability targets and scenario
parameters.
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Figure 5.7: A general scheme of the implemented structure in the FlexGripPlus
model.

Implementation

The FlexGripPlus GPU model was used to experimentally evaluate the per-
formance of the proposed BISR fault mitigation mechanism. This mechanism is
implemented in the Execute/Control-flow pipeline stage of the GPU. Nevertheless,
additional changes were made in the Decode and Read stages by the introduction
of the configuration instruction. The Decode stage was modified by adding new
combinational logic to decode the added instruction.

The Read stage includes a bypass register to keep the pipeline coherence during
instruction execution and also to store the configuration information for the SP
cores. This information is then decoded and employed in the Execute/Control-flow
stage. In the Execute/Control-flow stage, the description of the switching structures
is the same for the input and output switches: both switching units were designed
using the same basic modules, i.e., multiplexer blocks and bypass register structures
(see Fig. 5.7). Moreover, an automatic generation mechanism is used to intercon-
nect the SPs and busses with the input and output of the multiplexers in the same
stage. Additional decoding, concatenating and de-concatenating blocks control the
activation of the module and reduce the number of multiplexers in the system. In
this way, a big multiplexer module is attached to each additional SSP. Similarly,
the output switch uses multiplexers to interconnect with the output ThDCs. The
ThDCs are selectable depending on the number of SPs in FlexGripPlus (8, 16 or
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32).
Both switches (input and output) are activated under the same control con-

dition, thus reusing the controller structure. This switching controller includes
additional registers, to store the configuration information, and decoders to reduce
the total number of control bits. This controller information is used to design the
instruction op-code composed of eleven active bits fields. Moreover, these registers
maintain the inactive SSPs and SPs in a cold standby mode, thus avoiding any
unnecessary switching activity and reducing the power consumption.

The management of the information flow (ThDCs and SPDCs), allows the usage
of the same registers and memory locations employed by the SPs and the replacing
SSPs, when active. In this way, the memory is virtualized from the mitigation
modules. Instead of a restriction, this condition was exploited to add the BISR
infrastructures in the GPU by employing the same memory hierarchy modules.
The control-path lines on each SP core are not considered as inputs in the switches
due to these interconnections are shared on all SP cores and can be directly assigned
on the SSPs.

The capabilities and flexibility of the FlexGripPlus model for selecting the num-
ber of SPs in the SM are also employed in the description of the mitigation modules.
The same code style is used to describe the BISR modules. These structures are
parametrically generated depending on the total number of SP and SSP cores aim-
ing to reduce the hardware overhead in the system among configurations.

5.2.2 Experimental Results
The FlexGripPlus model was configured with one SM core in 3 modes (8, 16,

and 32 SPs), so it is possible to analyze the benefits and limitations of the proposed
BISR strategy with different numbers of SPs in the device. Firstly, we ran extensive
simulations to validate the correctness of the proposed BISR strategy. Moreover,
The quantitative cost and the benefits of the strategy were evaluated. For each
considered case, the number of introduced SSPs ranged from 0 to 7. The analyses
were performed resorting to a gate-level version of the FlexGripPlus model. The
estimation of the hardware overhead was done resorting to the Design Vision tool
by Synopsys using the ultra-compiler configuration. The 45 nm NanGate Open-cell
library was employed for the experiments [99].

Hardware Overhead

The modules modified for implementing the BISR strategy are the Decode, Read,
and Execute stages. These modules were modified at the RT level. Then, the GPU
model was synthesized at gate level and compared in size with respect to the original
design. Table 5.2 reports the hardware overhead results: for each configuration, it
is reported the required number of cells and the percent of area overhead, computed
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concerning the corresponding configuration in the original version of the model.
The hardware overhead introduced by the BISR strategy can be split into two

parts: from one side, there is the cost to implement the instruction, the switch-
ing modules, and the switching controller. The “0 SSPs” configuration is used
to quantify the hardware cost in the BISR structure. The hardware overhead of
these structures represents a low percentage of the whole hardware: for all SP core
configurations, the hardware cost is in the range from 0.8% to 1.7%. From the
other side, there is the cost for the SSPs, which linearly grows with their number
and becomes largely dominant when the SSPs increase. In fact, the addition of
one SSP core (6,623 cells) introduces hardware overhead greater than 3% in all SP
configurations. Clearly, the hardware overhead rate grows with more SSPs and is
higher when the number of SPs is lower. The optimum choice of both parameters
depends on the design requirements, e.g., connected to the computation required
by the application, by the probability of faults (given by the operating environment
and by the semiconductor technology), by the target reliability and by the duration
of the mission. In any case, it is worth noting that the hardware overhead remains
below 20% for all the considered GPU configurations.

The last two columns in Table 5.2 report some figures allowing the evaluation
of the relative size of the SPs with respect to the total size of the FlexGripPlus
model. From the results, it is shown that the percent area of the whole SM that can
be protected resorting to the BISR strategy ranges from about 25%, in the 8 SPs
configuration, to about 55% with 32 SPs. It is worth noting that the adopted BISR
mechanism was aimed to mitigate faults in the SP cores, only. Other solutions can
be used to mitigate faults in other modules.

Performance and power overhead

Since the BISR strategy requires the introduction of some complex switching
modules to flexibly interconnect all the SPs and SSPs with the rest of the system,
it clearly impacts the GPU overall performance. We performed an experimental
analysis of this phenomenon resorting to the data produced by the synthesis tool.
In particular, the impact on the performance of the adapted BISR strategy has been
evaluated by analyzing the changes in the critical path delay for all configurations.

Results showed that for a large number of SSPs (6 or 7), the performance
degradation reaches up to 20%. This is mainly caused by the logic included in the
input and output switches and inside the switch controller. More in detail, for one
SSP, the timing degradation is up to 15% and up to 16% for 2 SSPs. Clearly, it
should be noted that the reported results have been obtained without executing
any specific optimization to reduce such a performance overhead.

The power overhead can be neglected for this BISR strategy by considering
that all inactive SSPs and SPs act as cold standby modules. Moreover, other
structures remain in a configuration state. Thus, only static power by leakage
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Table 5.2: Hardware overhead of the BISR mechanism for multiple configurations
of the GPU.

Version SP cores SSPs cells Area
overhead (%)

Total SP cells
in the design

SP/SSP cores
cells (%)

FlexGripPlus
8 0 229,515 - 52,984 23.08
16 0 280,132 - 105,968 37.82
32 0 386,100 - 211,936 54.89

FlexGripPlus
+

BISR

8

0 231,343 0.8 52,984 22.90
1 237,279 3.4 59,607 25.12
2 243,063 5.9 66,230 27.24
4 254,692 11.0 79,476 31.20
6 266,182 16.0 92,722 34.83
7 271,757 18.4 99,345 36.55

16

0 283,160 1.1 105,968 37.42
1 290,034 3.5 112,591 38.81
2 296,164 5.7 119,214 40.25
4 309,318 10.4 132,460 42.82
6 321,529 14.8 145,706 45.31
7 335,139 19.6 152,329 45.45

32

0 392,476 1.7 211,936 53.99
1 400,902 3.8 218,559 54.51
2 410,280 6.3 225,182 54.88
4 425,172 10.1 238,428 54.07
6 440,576 14.1 251,674 57.12
7 460,372 19.2 258,297 56.10

current is consumed during operation. In a real implementation of the strategy,
the transistor technology (i.e., 12 or 7nm) presents leakage currents in the order
of 10nA/µm to 12nA/µm. Thus, the final power overhead of the BISR strategy
is negligible in comparison with the dynamic power consumption produced in the
GPU.

Reliability advantages

The goal of the adapted BISR strategy is to allow a GPU-based system to
continue working even after one or more faults arose within the SPs. This strategy
is independent of the considered fault model, provided that a suitable technique to
detect it and identify the affected SP core is available.

The reliability estimation of this strategy is based on the probability of correct
operation of the system after a time t. Considering a GPU composed of n SPs
and m SSPs, the execution of the system is correct if all thread instructions are
operated without failures in the available execution units of an SM. Moreover, the
probability of proper operation in the GPU can be described as the probability of
GPU failure (when at most m+1 SPs or SSPs fail). Both units (SPs and SSPs) are
identical and operate independently among them, hence the probability of correct
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operation at time t in the SPs (PSP (t)) and the SSPs is equal. In this way, the
probability of proper execution, using the BISR mechanism (RBISR), follows a
cumulative distribution function as reported in equation 5.4.

RBISR =
m+1∑︂
i=0

(︃
n + m

i

)︃ [︂
PSP (t))

]︂n+m−i
·

[︂
1 − PSP (t))

]︂i
(5.4)

Extracting terms from equation 5.4 (see equation 5.5), the first one at right
represents the probability of correct operation in the original GPU (PGP U(t)) corre-
sponding to the first element of the sum, so failing after a single faulty unit. On the
other hand, the second term at right represents the added probability of a correct
operation using the BISR strategy.
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m+1∑︂
i=2

(︃
n + m

i

)︃ [︂
PSP (t)

]︂n+m−i
·

[︂
1 − PSP (t)

]︂i
·

[︂
PSW (t)

]︂
·
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]︂ (5.6)

with:

PGP U(t) =
[︂
PSP (t)

]︂n
(5.7)

As PGP U(t) is a component of the probability for the BISR mechanism, it proves
that RBISR > PGP U(t). Thus, the GPU reliability improves according to the second
term in equation 5.6. This term also includes the probability of the correct operation
of the switching structures Psw(t) and in the controller Pc(t). The dominant factor is
the total number of SSP units (m) added in the BISR structure. Moreover, there
is a direct relationship between the number of SSPs (m) and RBISR. However, the
BISR strategy may be feasible when considering a balance among overhead, cost,
and reliability. In principle, m cannot be higher than n.

Fig. 5.8 represents the increment of the reliability of the BISR version (RBISR)
with respect to the original version for multiple values of PST (t) and SSPs (m). From
the graph, it can be noted that RBISR is strongly dependent on the values of m
and PST. In fact, RBISR presents a maximum reliability peak whose position varies
for each combination of PST and m. This peak value can be used to select the
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Figure 5.8: Improvement in the reliability of the BISR structure for multiple prob-
abilities of correct execution under multiple configurations of the SSPs (m).

Figure 5.9: Improvement in the reliability of the system RBISR with respect to the
probability of correct execution for various values of SSPs (m).

number of SSPs in the GPU considering a target probability of correct execution
in the system. After this value, the effectiveness of the strategy drops down.

The graph in Fig. 5.9 describes the relation among PST (t) and the increment
of RBISR for multiple values of m. This graph represents the gained benefits in
terms of reliability for multiple BISR configurations. As expected, the increase in
the number of SSPs (m) has a proportional positive impact on the reliability of the
target structure. As can be seen from the graph, the BISR mechanism provides
almost 10% of increased reliability, even when the probability of correct execution
is dropped by up to 20%. Figures 5.8 and 5.9 can be employed to select the best
trade-off among the parameters to reach a given target reliability.
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Comparison with other techniques

A comparison with other well-known strategies such as lock-step and TMR can
be performed. In principle, a TMR mechanism is highly reliable. However, this is
not feasible to be used in the SPs due to the excessive hardware and dynamic power
overhead. The lock-step strategy provides a high percentage of fault tolerance for
most modules in a GPU. Nevertheless, it requires the duplication of each module.
Thus, the hardware overhead is equal to or greater than 100%. A similar situation
can be found in terms of power consumption. In contrast, the adapted BISR strat-
egy takes advantage of the regularity of the SPs to reduce the hardware overhead
to less than 20% even in the worst case. Moreover, the inactive SPs remain in cold
stand-by mode reducing the power consumption of the mitigation strategy.

It must be also underlined that the proposed BISR strategy, based on dynamic
reconfiguration, is particularly well suited for long-term missions (which are com-
mon for example in the automotive domain) since it allows avoiding the issues
created by fault accumulation.

5.3 DYRE: a flexible solution to increase GPU’s
reliability

This section introduces a flexible solution to perform the detection and the
mitigation of faults in GPU cores, so protecting and extending the operative life
of a GPU. The proposed solution is based on the addition of some spare modules
to perform two in-field operations: the detection and the mitigation of permanent
faults of any type of fault that affect the GPU outputs. The proposed solution takes
advantage of the regularity of the execution units in the GPU architecture to avoid
significant design changes and limit the hardware overhead. The proposed solution
was evaluated in terms of area, performance, and power overheads resorting to
FlexGripPlus.

As introduced in sections 5.1 and 5.2, mostly all solutions for detection and
mitigation of faults are based on hardware, software and hybrid approaches. This
subsection proposes a combined and flexible solution called DYnamic REconfig-
urable structure for in-field detection and mitigation of faults (DYRE) that is based
on the coalescence of the classical DWC mechanism, for fault detection, and the
BISR approach, for fault mitigation. The DYRE architecture is intended to in-
crease the reliability and operative-life, by supporting both the detection and the
mitigation of permanent faults in the execution cores of a GPU. This mechanism
allows reconfiguring the GPU architecture to identify (through comparisons) and
mitigate (by module replacement) possible faults arising during the in-field opera-
tion. The architecture of a GPU architecture adopting DYRE can be dynamically

179



Flexible hybrid mechanisms for in-field fault detection and mitigation in GPUs

re-configured using custom instructions purposely added to the instruction set. Fi-
nally, the DYRE architecture is designed to avoid major changes in the original
GPU design and to minimize the impact on execution performance.

The next subsections describe the proposed architecture to detect permanent
faults in the execution units of GPU cores and mitigate their effects during the
in-field operation. Moreover, the DYRE strategy is evaluated experimentally, ob-
taining The evaluation of the hardware, power, and performance cost involved by
the DYRE architecture and of its benefits in terms of reliability enhancement. The
analyzes and results show that the overall GPU reliability of the execution cores is
improved by 20% to 40% when using the DYRE architecture. Moreover, DYRE in-
troduces less than 1% of performance degradation, less than 5% of hardware costs,
and less than 8% of additional power consumption.

5.3.1 Proposed DYRE architecture
DYRE [204] is a dynamic fault-tolerance architecture intended to detect per-

manent faults in the SP cores of a GPU SM and mitigate their effects. This mech-
anism takes advantage of the high regularity and homogeneous composition of the
SP cores, the parallel execution of the thread/tasks on the SPs, and the static dis-
tribution of the tasks among the SPs to reduce the cost in terms of hardware and
performance. The DYRE architecture is based on the addition of one or more spare
SPs (SSPs) in the Execute stage of the SM. Each additional SSP can be employed
for results comparison or replacement purposes.

In particular, an SSP can:

• Be paired to an SP, so that it performs the same operations on the same
input data; hence, the results produced by the paired SP and SSP can be
compared, and this allows detecting possible faults affecting one of the two
modules;

• Replace a faulty SP core.

The architecture of a DYRE GPU differs from a normal one only in the Execute
stage (see Figure 5.10) and includes one or more SSP cores, three crossbar units
(input, middle and output), some configuration registers, one comparator block
(COMP), a controller unit, and some decoding logic. This structure provides flex-
ibility allowing two non-exclusive operational features: 1) the in-field detection of
faults and 2) the in-field mitigation of faults in the SPs.

The specific architecture of a DYRE GPU can be flexibly and dynamically de-
cided by executing ad hoc assembly instruction introduced in the GPU instruction
set to activate the fault detection and fault mitigation features. The DETection
Trigger (DETT) instruction configures an SSP to be paired with an SP, thus en-
abling the comparison between the results produced by the pair for fault detection
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Figure 5.10: A general scheme of the Execute stage of a GPU with the DYRE
architecture.

purposes. Similarly, the MITigation Trigger (MITT) instruction re-configure the
GPU substituting one SP with an SSP for mitigation purposes. Both instructions
can reconfigure the DYRE architecture with the cost of one instruction cycle and
are intended to be included in a running application, so enabling both features of
a DYRE GPU. Both operational features (detection and mitigation) use the same
hardware structures, thus reducing the overall hardware cost. However, a single
SSP cannot be used for detection and mitigation at the same time.

Fault Detection

This operational feature is inspired by the DWC mechanism and uses a sphere
of redundancy composed of the active SPs in the SM. The DYRE architecture uses
this feature to detect faults through the active comparison of results after each
executed instruction by an SM. More in detail, When the DETT instruction is
executed, the local controller enables the fault detection feature, and one SSP and
one active SP are selected to perform all the following instructions in parallel. After
this procedure, the detection feature is transparent for the application. The SP and
the SSP can be paired by a time interval or the entire execution of the application.
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Moreover, the target SSP or SP can be replaced with another core at any moment
of the in-field operation by executing again a new DETT instruction.

The structure of the DYRE architecture uses two crossbars (input and middle)
to select a target SP. Both crossbars select and duplicate the input and output data
channels to feed the SSPs core and the comparator block, respectively.

After each operation, the results of the SP and the SSP are compared. The com-
parator triggers a faulty flag when a mismatch is detected. The flag is propagated
to the next stage and sent to the exceptions unit in the GPU or the Host.

Fault Mitigation

This operational feature is based on an adaptation of the BISR mechanism, and
it is intended to mitigate the effect of faults in the cores by disabling and replacing
one affected SP core with one of the available SSPs in the system. The SSPs are
organized as cold standby modules and are active only when required. Correspond-
ingly, the inactive SP cores are disabled to reduce the power consumption during
inactivity.

The static distribution of tasks among the SPs allows the correction of faults
by switching the input data from a faulty unit to a fault-free unit. This behavior
also reduces further changes in other modules of the GPU. For this purpose, it
is possible to mask the replacement of a faulty SP by an SSP. Thus, the fault-
mitigation structure operates transparently for the point of view of the memory
and the scheduling controller.

More in detail, the execution of the MITT instruction activates two crossbars
(input and output, as depicted in Figure 5.10) to redirect the data-flow of the
data channel from one active SP (faulty core) to the selected SSP (fault-free), so
mitigating the fault effect. The effect of the MITT remains active for all subsequent
instructions.

Methods of use

The DYRE architecture is intended to operate in two cases: i) in the Power-
on/reset phase of the device and ii) during the in-field operation of an application.

At the power-on, the DYRE architecture is inactive. Hence, the SSPs are ini-
tially idle as cold standby modules. A specially crafted test program applies pat-
terns to check the possible presence of permanent faults in each SP. This program
includes several DETT instructions that activate one SSP and swap the available
SPs to perform comparisons with it when executing the same instructions on the
same data. If a mismatch is found, the SP is labeled as faulty. The program
replaces the faulty SPs by SSPs thought MITT instructions, and the application
starts. It is worth noting that the generation of suitable test programs for the SPs
is out of the scope of this work. However, the techniques proposed in Chapter 4
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showed that generating them is feasible.
On the other hand, the use of DYRE during in-field operation requires the ad-

dition of one or several DETT instructions in the application code. Each DETT
instruction selects one SSP, so activating the fault detection through comparisons.
A fault is detected when, during the execution of the instructions of the applica-
tion, a comparison produces a mismatch. Then, a subroutine activates the MITT
instruction to replace the faulty SP by one SSP. This subroutine can be launched
when a mismatch is generated or during the idle times of an application. The re-
placement subroutine (with MITT) is intended to substitute the faulty core with
minimal latency in the execution of the application, considering the low reconfigu-
ration cost of the mitigation feature.

It is worth noting that the DYRE architecture, as the BISR mechanism, does
not include any fault administration structure to store the actual configuration state
and to be possibly restored after a device power-off or reset. However, a similar
proposed solution for the BISR mechanism can also be used for DYRE as well.

Implementation

DYRE was implemented in FlexGripPlus, modifying the Decode, Read, and
Execute stages. The hardware to support the DETT and MITT instructions was
added in the Decode stage. Similarly, a bypass mechanism and some changes in
the memory controllers were performed in the Read stage to add flexibility to the
instructions. The implementation allows the adoption of the DYRE architecture
with any of the three SP configurations (8, 15, and 32) of the model.

The Execute stages include the additional SSPs, the crossbars, and the con-
trollers of the DYRE architecture. The main purpose of the crossbars is the selec-
tion of the input and output data channels (iDCx and oDCx) to feed the SPs and
SSPs in the system. The input crossbar selects one of the iDCx feeding the active
SP cores and can duplicate or switch the input data to one of the SSPs. In case of
duplication, the selected SSP redundantly executes precisely the same operation of
the selected SP. In contrast, in the case of switching, the input crossbar substitutes
the iDCx of one SP core and feeds a selected SSP. The control signals of the SP
cores are statically shared among the SP and SSPs in the system.

The middle crossbar is formed of two independent crossbars used to feed the
two inputs of the COMP module. COMP is only used during the fault detection
operation and is composed of a bitwise comparator that compares the results and
output flags from two execution units (SPs or SSPs). On the other hand, the
output crossbar manages the results coming from the active SPs and SSPs. This
crossbar is used to select the output channels (osDCx and ossDCx) from the active
SPs and SSPs and feed the next pipeline. The flexibility of the middle crossbar
allows the comparison of two SSPs when the mitigation and duplication mode are
simultaneously activated.
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Figure 5.11: Percentage of overhead cost of the DYRE architecture on each adapted
module and in the entire GPU.

The input and output crossbars are indeed meta-crossbars, and multiplexer
structures used to preserve the same type of input and output data channels in the
Execute stage and from and to other stages of the SM.

Some configuration registers are employed to select among the operational fea-
tures (detection, mitigation, or both). The local controller configures the DYRE
architecture using decoded commands that come from the DETT and MITT in-
structions. Some decoding logic is included to manage the two operational features
when controlling the crossbar structures.

The DETT and MITT instructions were designed to select the channels or target
cores using operands coming from an immediate value or a general-purpose register.
This flexibility in the instruction format allows the dynamic selection of the target
core during the in-field operation. Both instructions use a format composed of six
bits stating the instruction type. Other five bits select the input data channel to
be switched for duplication or replacement, and five bits select the target SSP core
to be used.

5.3.2 Experimental Results
Two evaluations are performed on the proposed mechanism. Firstly, the over-

head assessment determines the cost in terms of hardware, power, and performance
of the DYRE architecture. For this purpose, the DYRE architecture is compared
with the original design, one based only on fault-detection (DDWC), see section
5.1, and one based only on fault mitigation, see section 5.2. The original GPU
and the three fault-tolerance mechanisms were synthesized using the Design Com-
piler tool using the 15 nm Nandgate Open-cell library and 500MHz Clock. It is
worth noting that the internal memories were not synthesized. Fig. 5.11 reports
the results of the hardware and power overhead for each setup. Finally, a second
evaluation analyses the reliability features of the proposed mechanism.
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Figure 5.12: Area overhead for the DDWC, BISR and DYRE architectures with
respect to the original design evaluated in the 8, 16 and 32 SP cores configurations
with one SSP.

Hardware overhead analysis

Two cases were considered for the hardware overhead evaluation: i) considering
the affected modules, only and ii) considering the whole system. In the first case,
the assessment was performed considering the modules affected by modifications
when implementing DYRE. In the second case, the cost of the entire design is
evaluated. All evaluations were performed using the three configurations with 8,
16, and 32 SPs.

According to results, the hardware cost of implementing the instructions in the
Decode stage is lower than 5% and almost negligible for the Read stage (≈0.3%).
On the other hand, the implementation of the SSPs directly affects the hardware
cost in the Execute module. For a configuration of 8 SPs, the cost of using two
SSPs is lower than 13%, but it increases to 42% when DYRE is configured to use
the same SPs and SSPs. Among the SP configurations, it can be noted that in the
Execute module and the entire design, the hardware overhead follows a proportional
inverse relation. Thus, large SP configurations present low hardware overhead. In
Execute, when adding 25% of SSPs, the cell and area costs are around 10% and
8%, respectively. In the case of adding 50% of SSPs, these costs are about 22% and
17%.

On the other hand, the hardware overhead in the logic of the design is lower
than 7% for all configurations. In the case of two SSPs, the cell and area overhead
is lower than 2%, so causing a minimum impact on the design when using DYRE.
When the SM is configured with 32 SPs, the addition of one or two SSPs caused
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negative percentages of hardware overhead. However, these values are due to the
optimization constraint in the synthesis tool, and the effect is translated as power
overhead for these configurations

5.3.3 Power and performance analysis
From Fig. 5.11, the power consumption in the Decode module indicates a

minimum overhead (<5%), and it is almost negligible in the Read module for all
SP and SSP configurations. In the Execute module, the addition of one or two
SSPs in all SP configurations causes a moderate average cost of power from 14 to
17%. When DYRE is configured to include 50% of SSPs for each SP configuration,
the power cost is moderate (around 23.7% and 25.9%). Moreover, the overhead
reaches up to 34% when the number of SSPs and SPs is equivalent. Nevertheless,
the entire logic cost remains stable and is lower than 8% in all configurations.

In terms of performance, the DYRE architecture does not introduce more than
1% of degradation in the critical path for all the evaluated configurations.

Although the synthesis of the model used only the clock constraint, the results
in Fig. 5.11 show the distribution and the trend to consider when implementing
the DYRE solution. In this way, the addition of two SSPs can be affordable in
terms of hardware (<2%) and power (<8 %) costs.

An overhead comparison of DYRE with the fault-detection (DDWC) and the
fault-mitigation (BISR) architectures is reported in Fig. 5.12. Each strategy was
implemented and synthesized for the three possible SP configurations. In principle,
results show that hardware overhead in DYRE is the lower of the three strategies
(<5%) and decreases when increasing the number of SPs in the design. However,
the main overhead is represented in terms of power consumption.

Regarding power consumption, the DYRE architecture increases the power of
the system from 4.55% to 8.72% with respect to the original design. This can be ex-
plained considering that the additional structures (controller, multiplexers, and the
comparator block) remain active, so consuming static power even when the DYRE
architecture is inactive. However, this cost might be reduced, including power op-
timization strategies. It should be noted that power optimization techniques were
not used in any of the three strategies during the experiments.

5.3.4 Reliability analysis
The reliability of the DYRE architecture is estimated by determining the proba-

bility of correct operation, which depends on the number of available and fault-free
SP and SSP modules. The proper execution of the system is obtained when all
thread-operations are performed without failures affecting the execution cores. This
probability of correct operations can be inverted and expressed as the probability of
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failure (when some SPs or SSPs fails). The dual-modules feature of the DYRE ar-
chitecture influences the reliability calculation and the number of cumulative faults
affecting SPs or SSPs before the overall architecture encounters a functional error.

During fault-free operations, both groups of SP and SSP modules are identical
and operate in parallel independently among them. Considering this scenario, the
probability of correct operation of the DYRE architecture (RDY RE) can be com-
puted by adopting a binomial distribution function using n SPs and m SSPs mod-
ule, respectively. RDY RE is composed of the probability of a fault in an SP(PCore(t))
at a given time t and a K limit related to the active operational features (mitigation
and detection), as reported in equation 5.8.

RDY RE =
k∑︂

i=0

(︃
n + m

i

)︃ [︂
Pcore(t))

]︂n+m−i [︂
1 − Pcore(t))

]︂i
(5.8)

In detail, when the fault mitigation feature is active, a failure in the overall
system occurs when k=(m+1) execution units (SPs or SSPs) are faulty, hence it
is not possible to complete the thread operations without errors. On the other
hand, if both features are active, the system produces a failure when k=m exe-
cution unit fails since one SSP is used as a comparator during the in-field fault
detection. Finally, in case the fault detection feature is enabled or both detection
and mitigation features are disabled, there are no available SSPs dedicated to fault
mitigation, therefore k=0 and m=0.

In order to determine the advantage, in terms of probability of correct operation,
for the SM using the DYRE architecture, we introduce the equation 5.9. Equation
5.9 is composed of two terms. The first term corresponds to the probability of cor-
rect operation of the SM without the DYRE architecture (PSM (t)). In contrast, the
second term represents the improved probability of correct operation by adopting
the DYRE architecture (△RDY RE). This term also includes the probabilities of
correct operation for the switching modules (Psw(t)) and the controller (Pc(t)).
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As it can be noted in equation 5.9, the number of SSPs (m) determines the
probability of correct operation in the GPU. The behavior of △RDY RE concerning
the probability of correct operation on SPs (Pcore(t)) has been plotted in Fig. 5.13.
The graph describes the relationship between Pcore(t) and △RDY RE for multiple
values of m. The almost stable behavior of about 20% to 40% of positive increment
impacts △RDY RE when m increases and Pcore(t) thoroughly decreases.
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Figure 5.13: Reliability benefit in the system for multiple probabilities of correct
operation.

Figure 5.14: Reliability comparison of a standard GPU and other using the two
features of the DYRE architecture with two SSPs.

Furthermore, the comparison between the reliability behavior of a standard
GPU (PSM (t)) and the one of an architecture adopting the two features of the DYRE
architecture (mitigation only (R1DY RE) and detection+mitigation (R2DY RE)) is
plotted in Fig. 5.14., using a typical probability function (Pcore(t) = e−αt) in both
cases. This figure shows the reliability when adding two SSPs in the system. As
it can be observed, the reliability of a DYRE GPU (R1 and R2) remains higher
than without DYRE, so extending its operative life. Under these conditions, a
detailed analysis revealed that in some points the reliability is increased by up
to 57%, when the mitigation and detection features are active, and 72% with the
mitigation only feature. However, it must be noted that a precise evaluation of the
reliability features of both modes of operation of the DYRE architecture (detection
and detection+mitigation) requires the consideration of technical characteristics of
the final transistor technology.
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5.4 Conclusions
This chapter introduced three hybrid and flexible mechanisms to increase the

reliability of GPU cores by adding and activating special infrastructures during the
operative stage of the system. These mechanisms are called DDWC, BISR and
DYRE.

DDWC targets the in-field detection of permanent faults in the execution units
(SPs) in SMs of a GPU. DDWC is based on the duplication with comparison
strategy and exploits the structural regularity of the SP cores. The SP core to be
monitored can be dynamically selected, resorting to one ad-hoc instruction. Thanks
to its flexibility, low hardware overhead, and moderate performance degradation,
this strategy could be effectively employed to increase the reliability of GPUs when
they are adopted in safety-critical applications.

Experimental results show that the proposed DDWC mechanism introduces a
limited area overhead while it provides a significant increase in the in-field fault
detection capabilities of the GPU. Its flexibility allows selecting the best trade-off
between fault detection latency and performance overhead.

The dynamic BISR targets the mitigation of permanent faults possibly affecting
the execution units (SPs) in the SM of a GPU. The BISR mechanism is based on
the addition of spare modules, which are controlled via software using a custom
instruction. This instruction allows removing a faulty SP from the set of active
ones, substituting it with one of the available spare SP cores. Results show that
the structures required to implement the proposed technique introduce a relatively
low hardware overhead (<4% with a single spare core). Moreover, we showed that
the area of the modules where faults can be tolerated with the BISR structure can
achieve about 55% of the total SM area.

The strategy seems particularly suitable for long-term missions since it allows
mitigating the effects of fault accumulation in the SP cores. Although the validation
experiments were performed on a specific NVIDIA-based GPU architecture, the
proposed solution can be easily extended to other architectures as well.

Finally, DYRE targets the detection and mitigation of permanent faults affect-
ing the execution units in GPUs. DYRE provides a solution that can be employed
during the operative life of a GPU and extend the reliability capabilities by 20% to
40% for most configurations of the execution units of these devices. Moreover, the
overall reliability can be increased in up to 72% when using the mitigation feature.
The experimental results let us affirm that adding the proposed DYRE mechanism
into a GPU design requires a minimum to moderate cost that directly depends on
the number of additional cores included to support fault detection and/or mitiga-
tion.
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Chapter 6

Conclusions

6.1 Summary
The main conclusions and contributions of the research activities are listed in

this chapter. Moreover, some future activities and possible directions in the field
of fault testing and mitigation of GPU architectures are also described. It is worth
noting that a considerable part of the performed research activities was possible
due to the availability of a microarchitectural GPU model (FlexGripPlus), which
also represents a first and important contribution of this work.

6.2 Main contributions

6.2.1 Reliability evaluation of GPUs
The detailed microarchitectural evaluation of individual modules in a GPU core

allows identifying specific effects and trends in the execution of applications in GPU
devices when affected by transient faults. For example, the impact of transient
faults in the scheduler controller denoted a proportional relation with the workload
and the percentage of use of this module. Interestingly, other modules showed dif-
ferent relations, such as the register file (highly sensitive) and the divergence stack
(poorly impacted by faults). Moreover, for the first time, individual microarchitec-
tural evaluations were performed on GPU modules, which contribute to determine
and understand the most sensitive modules in the parallel architecture.

The evaluation of the scheduler controller allows the evaluation of the fault
sensitivity of this module. In fact, it was possible to quantitatively evaluate the
proportional relation between increasing the workload of an application and the
impact on fault sensitivity of the scheduler controller. Similarly, the microarchitec-
tural evaluation provides relevant information on the main sensitive sources in the
pipeline registers of the GPU core. The control path registers in the pipeline are
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highly sensitive and are responsible for more than 80% of the observed faults but
only represent about 16% of the size of the module. In contrast, other modules in
the data path of the GPU denoted higher impact to transient faults, such as the
register file and the pipeline registers. According to results, the pipeline registers
and the register file are sensitive locations, these conclusions acts in accordance
to related works in the field suggesting and proposing mechanisms to mitigate the
fault effects on those modules. Unfortunately, in some cases (i.e., the variation
in the number of parallel cores), the evaluations do not provided clear trends and
complementary reliability evaluations are required to determine effects and trends
of the fault impact on GPUs.

6.2.2 Functional software-based self-testing of GPUs
The main core of this research work was devoted to devising functional test

strategies aiming at fault detection in GPUs during the in-field operation. The
functional test strategies were developed based on the SBST strategy, and sev-
eral modules were targeted and tested using custom, multi-kernel, modular and
automated approaches.

The custom approach was used to develop test strategies for particular modules
in GPU architectures such as the scheduler controller and its memories. The pro-
posed approach also considered the targeted fault model and reached more than
80% of faults detected in each case. This approach proves that deterministic pro-
cedures can be employed in the development of test programs for GPUs. However,
microarchitectural details of the target GPU are required in order to guarantee
a high fault coverage. Similarly, the use of lower level languages (i.e., Assembly
language) in the development and implementation of the test programs was re-
quired, when observing that the traditional compiler optimize the high-level code
for performance, so translating the test routines incorrectly.

In the case of the multi-kernel approach, this method was employed on modules
relevant for the GPU operation but included configurable parts that remain fixed
during the operation of a parallel program, such as the pipeline registers. In this
case, several parallel test programs were required to provide the test patterns and
propagate most fault effects. Moreover, new parallel strategies of fault propagation
were devised, including the signature per thread approach to identify and detect
faults on parallel and singular units in the GPU. Moreover, it was proved that these
signatures could also provide diagnosis features during the test. This approach can
be exploited on configurable modules in the GPU, but also can be used when testing
other modules in the GPU, which require of specific kernel configurations, such as
the memory interconnections not targeted in the present work.

We also explored the use of high-level constructs in combinations with assembly
instructions. Several advantages, constraints, and limitations were found regard-
ing the compiler optimizations and the lack of direct mapping from a high-level
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constructs with assembly instructions.
The proposed modular approach to design generic test programs is able to ex-

ploit the main microarchitectural features of a target module in combination with
the target fault model. In this case, a generic test program is designed and intended
to be mapped as several software routines, then it is finally mapped considering
the available instructions in the GPU. Moreover, the modular testing approach al-
lows the exploration of different implementations for a given test program. This
approach was effective in detecting permanent faults in several internal memories
of the GPU core and the divergence stack of the convergence management module.

The adoption of automatic approaches from CPUs into GPUs proved to be effec-
tive on regular structures of the parallel architectures, such as functional units. In
the results, the automatic approaches, based on ATPG-based and pseudorandom-
based methods, denoted a high capability to test permanent faults on the functional
units of the GPU. Thus, the automatic approach can be employed as a complemen-
tary testing technique for the GPU.

In the end, the developed functional test strategies were evaluated on the com-
plete GPU core. According to results, up to 92.6% of the permanent faults in the
GPU core can be detected using SBST strategies. These results support the claim
that SBST strategies can be effectively employed as complementary and alterna-
tive solutions for in-field test of GPU devices. Nevertheless, additional effort is
still required when functionally testing the memory hierarchy in the GPU. For the
purpose of this work, the test of memory hierarchy in GPUs is still considered as
an open point.

Regarding the functional-safety analysis, this analysis provided the main fea-
tures of the SBST strategy when applied into GPUs. In the analysis, the SBST
strategy showed a promising performance when employed as safety mechanism for
GPUs targeting the safety-critical domain. In the result, the analysis shows that
functional solutions based on SBST strategies applied to GPU cores can assess an
ASIL B level. Thus, STLs based on SBST strategies can be consider as alternative
and complementary safety mechanisms for GPUs.

6.2.3 Fault mitigation strategies for GPUs
Three flexible strategies were proposed and evaluated, combining hardware

structures and controlled, employing custom instructions added to the ISA of the
GPU. The three strategies target the protection of the functional units by perform-
ing in-field fault detection, fault mitigation, or both. The first strategy (DDWC)
exploits the high regularity of the functional units in the GPU core to implement
a dynamic duplication with comparison and provide a mechanism to evaluate and
detect faults during the execution of an application. The results showed that less
than 20% of hardware overhead is required for an implementation of this strategy.

The second strategy (BISR) targets the mitigation and repair of fault by adding
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spare functional units in the GPU. The proposed strategy is programmable during
the in-field operation, so allowing the change of a faulty module by an available
spare one. The cost of the BISR strategy is similar to the one of the DDWC.

Finally, the third strategy (DYRE) allows in-field fault detection and fault mit-
igation by combining the main features of the DDWC and BISR strategies and
allowing the simultaneous operation of both reliability features. This strategy is
controlled by one custom instruction allowing the enabling and disabling of one or
both features during the GPU execution. The reliability estimation showed that
the reliability benefits could reach up to 50%. Furthermore, the hardware overhead
is lower than 10% for this strategy.

The observed performance of the flexible strategies in the GPUs shows that
alternative mechanisms can be included in GPU devices with the main purpose of
extending the in-field operation with a limited cost in hardware and performance. In
some cases, the limited hardware changes (<10%) on the original design can extend
the reliability benefits in up to 50% (in the DYRE architecture) in comparison with
the original design. These results also suggest that one or more flexible mechanisms
can be employed as alternative fault-tolerance and provide in-field test and in-field
mitigation capabilities on GPUs.

6.3 Future works
As future works, the development of hardware, hybrid, and software fault-

tolerance strategies for GPUs can be explored using the new microarchitectural
GPU model. FlexGripPlus allows the implementation and also evaluation in terms
of hardware, performance, and power overhead of any hardware-based solution, as
performed in the proposed strategies of chapter 5. Moreover, the access to microar-
chitectural details also allows the tracing of individual modules when executing
any reliability strategy. These advantages are not always possible and feasible in
architectural models of GPUs, so FlexGripPlus can be used to implement and eval-
uate such strategies. Moreover, the GPU model’s available ISA and architectural
description also allow the exploration of new extensions based on software-based
hardening for GPUs. Similarly, the exploration and development of software solu-
tions based on pseudo-assembly languages, such as PTx represents a challenge for
GPU architectures and has not been fully exploited.

Similarly, other future works include the exploration of functional test tech-
niques based on SBST for other modules in the GPU, such as crossbar units and
global scheduler controllers that were not targeted in the present work. In fact,
these modules have minimal observability mechanisms in real devices. Moreover,
the missing microarchitectural details limit the injection of test patterns. However,
innovative or indirect mechanisms to test such modules could be explored for GPUs.
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Reliability evaluations and hardening solutions can be extended to other par-
ticular modules in the GPU architecture, such as the scheduler controllers and the
special accelerators, including Tensor Core Units (TCUs) and Texture Mapping
Units (TMUs).

The exploration and development of fault detection and mitigation strategies
in the GPU may also require targeting other fault models, such as transition delay
faults affecting the execution unit of GPUs.

Finally, the high complexity of modern applications may suggest exploring and
developing high-level fault models to be employed during the development and
validation of online fault tolerance and mitigation mechanisms. Hence, accurate
high-level models for parallel architectures have not being exploited at all.
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Appendix A

The FlexGripPlus GPU model

As briefly introduced in Chapter 2, the FlexGripPlus model provides a microar-
chitectural description of a GPU core using the G80 architecture by NVIDIA. This
section describes the control modules of the FlexGripPlus model and the Instruc-
tion Set Architecture of the GPU model (SASS) supported and compatible with
the NVIDIA Programming environment (CUDA) under the SM_1.0.

General microarchitecture of FlexGripPlus
This section describes the main modules in the SM of the FlexGripPlus model.

These modules are: i) The warp scheduler controller, ii) Convergence management
unit, iii) Memory Hierarchy, and iv) the functional units.

A.0.1 Warp Scheduler controller
A warp scheduler controller unit manages the thread execution in the FlexGrip-

Plus architecture with a limit of 32 threads per warp.
The warp scheduler controller is mainly composed of a warp generator, warp

scheduler, warp checker, and two main memories to store information about the
warp threads, namely the warp state memory and the warp pool memory. The
warp pool memory stores the ID, the execution program counter, and the thread
mask for each warp. The warp state memory stores the warp’s actual state (active,
wait, stop and finish). Each entry line in both memories corresponds directly to
a warp that is or will be executed in the SM. For every thread in a warp, the
fence registers store in a bit the thread’s state, indicating whether the thread is in
use or a waiting state. The warp scheduler reads and checks the fence registers to
identify when all warp threads are waiting. If this condition is true, it means that
all previous divergence paths converged, and the synchronization barrier is released
so that warps can return to normal operation.
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Figure A.1: A general scheme of the scheduler controller in one SM of the Flex-
GripPlus model.

More in detail, the warp generator defines the total number of warp pool lines
to be employed by the application and assigns the entry lines in the pool memory
needed to manage them. Moreover, this unit writes the initial value of every warp
entry line in the pool memory.

The warp checker modifies the fields in the warp lines after comparing the real
state values from the SM’s pipeline stages and the predefined values in the warp
pool memory. Moreover, this module writes and reads the state memory. The warp
scheduler is composed of a state machine and coordinates every warp execution in
the SM.

The configuration of FlexGripPlus starts in the block scheduler. This block
defines and controls (among other configuration parameters useful for the SM ex-
ecution) the block and warps dimension for the application. The block scheduler
controls and manages the execution of block threads in the SM, adopting a round-
robin scheme. It sends the configuration parameters to the warp scheduler con-
troller unit and into one additional local controller (SMP controller) to control the
execution of multiple warps.

The SMP controller is an extension of the block scheduler and calculates the
addresses per block to address all SM’s memory resources. This module is only
operative during the configuration and submission phases of a parallel program in
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the SM.

A.0.2 Convergence management unit
This specific module is also often called Divergence Management Unit (DMU),

Branch Divergence Controller, Branch Controller, or Divergence Controller. DMU
is devoted to controlling and tracing the operation of multiple paths in the same
group of threads. Internally, the DMU evaluates control-flow instructions and uses
a stack memory to store relevant information concerning the execution paths. Most
DMUs can manage divergences composed of two paths. However, other locations
in the stack memory can be employed to manage more than two divergence paths.
Thus, the DMU is crucial for the correct operation of an application in the GPU.

The DMU module is located in the SM’s Execute stage. It comprises stack
memory and a state machine managing each control flow instruction generating
any conditional (depending on any predicate flag) or unconditional thread branch
operation. Moreover, this module also controls the operations indicating any pos-
sible intra-warp divergence and the calling to a specific routine, the return from
a routine, and exit conditions. Thus, enabling and disabling paths of divergence.
More in detail, the stack stores the starting and ending points of any conditional
assessment.

Finally, for the branch unit’s correct execution, the G80 architecture supports
synchronization barriers that allow the convergence of all threads in a warp and a
block. At the microarchitectural level, this generation implies using convergence
points, which are employed to define a memory address for the program counter. In
case of divergence, all threads reach this instruction address. Then the execution
of the parallel program can continue.

A.0.3 Memory hierarchy
FlexGripPlus is mainly based on the operation of the SIMD taxonomy, so each

SM uses a large set of data operands to execute in parallel the same instruction
on the available functional units. This structure generates bottlenecks and race
conditions when accessing operands from the memory system. For this purpose,
the GPUs include multiple memory levels to reduce latency. These mechanisms are
optimized to process data operands mainly organized as arrays or matrices. In this
way, each SM includes multiple data memory resources to optimize the information
flow for each thread. These resources are the Register File, the shared memory, the
Global (or main) memory, the constant memory, and the local memory. Moreover,
some special-purpose memories in the core are devoted to storing the memory
addresses (indirect addressing) and predicate registers per thread.

In terms of performance and latency, the Register File, the address register file,
the predicate registers, and the shared memory present similar access times for the
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threads. These are distributed as banks and accessed in parallel. In contrast, the
local, constant and global memories are access in the GPU model as a sequence of
operations. It is worth noting that the GPU model does not include any caches in
the memory hierarchy.

More in detail, the memory hierarchy includes several controllers and arbiters
to access every memory resource. Initially, a master memory controller activates
a separate memory controller when accessing an operand from that particular re-
source. In the FlexGripPlus architecture, the controllers are located inside the
Read/Issue and the Write-back pipeline stages to perform the operands’ load and
store, respectively.

When processing a program, the compiler usually selects the best trade-off in
terms of performance to locate the data operands using the available memory re-
sources in the SM. In particular, the Register File stores individual operands. The
Local memory stores the operands behaving as arrays. Similarly, the constant mem-
ory stores constant variables during a program’s operation, and the shared memory
stores those operands used among the threads in a block. Finally, Global memory
is used to locate all input data sources and the program’s output results.

The master memory controller decodes the commands coming from the incoming
fetched warp instruction. This controller selects the target memory resource and
submits a request to the specific memory controller. It is worth noting that both
the Read and the Write-back stages can activate up to 3 simultaneous operations
on the memories considering the required number of sources or destinations by the
instruction. Some modules operate in parallel and determine the target memory
locations to perform the reading or writing operations, depending on the source or
destination number.

Memory arbiters manage and order access into the target memories. These
arbiters organize the memory access for the threads in a warp, considering that up
to 32 loads or stores can be generated per warp in parallel.

The Register File is a massive structure composed of 16KB general-purpose
registers and located inside of an SM. The scheduler controller divides the Register
File among the available SPs and the configured threads in a program kernel. The
Register File is one of the most critical units in the operation of a thread in the
SM since most instructions require a load or a store from/to memory. Moreover,
this unit feeds the execution units with the data operands for each thread. The
Register File also stores the indices for memory addressing, the kernel parameters,
and the data and address operands during the execution of one warp instruction.

The predicate register file stores the predicate flags after each comparison or
logic-arithmetic instructions. When the model is configured with 8 SPs, 512 reg-
isters of one-bit size are assigned per SP. These registers are distributed in groups
of four registers among the available threads. The four registers store the logical
state of the zero (Z), the sign (S), the carry (C), and the overflow (O) flags for
each thread. The flags remain constant in the subsequent clock cycles until the
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execution of a new instruction affects their state.
Finally, the address register file addresses the shared and constant memories

with additional indices indirectly. Shared memory is commonly used in programs
to optimize performance. It is used to access sectors of data organized as arrays or
matrices by multiple threads in a program kernel efficiently. Moreover, the address
register file reduces the latency in data used frequently by a kernel. Each of the
eight SPs has an associated address register module composed of 512 registers of
32 bit-size holding up to 128 threads. In this way, four registers (A0, A1, A2, and
A3) are assigned to each thread.

A.0.4 Functional units
The FlexGripPlus model includes a set of functional units on each SM core.

The main feature of the original FlexGrip model is maintained, and the number of
cores is configurable before simulation or synthesis. The available functional units
in FlexGripPlus include integer cores (INT), floating-point units in single precision
format (FP32), and Special Function Units (SFUs) in single precision. The possible
configuration in the SM is combinations of (8,8,2), (16,16,2), and (32,32,4) units of
INT, FP32, and SFUs modules, respectively.

The integer core is a combinational unit devoted to performing logic, integer
arithmetic, and conversion operations for signed and unsigned values in byte (8
bits), half-word (16 bits), and word (32 bits) sizes. Similarly, the Floating point unit
is an extension performed in the FlexGripPlus model, and it can execute floating-
point operations in the single-precision format (32 bits). The Float multiply-add
operation was also included as part of the FP32 module, and this extension also
includes the conversion unit (Int-to-Float) and (Float-to-Int).

The SFU extension in the model allows the execution of trigonometric and tran-
scendental operations supported by the CUDA programming environment. More-
over, a range reduction module was included for specific angle reductions. For
this purpose, two different SFU modules are available for the model and can be
exchanged during the compilation process. The first SFU version is based on a
combination of iterative and compacted non-iterative arithmetic circuits describing
the operations of the SFU. These compacted non-iterative circuits are commonly
employed in accelerators dedicated to mobile applications. The second SFU mod-
ule is based on a biquadratic non-iterative minimax approximation that allows the
execution of all functions on an overlapped modules optimized for precision and
area.
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A.0.5 Supported instructions
The SASS assembly language is used in FlexGripPlus and it is compatible with

codes generated from the CUDA programming environment using the SM_1.0. Ta-
bles A.1, A.2, A.3, A.4 and A.5 provides the pnemonics, the formats per instruction
of the control-flow, arithmetic and logic, data and memory handling. floating-point
and trigonometric instructions, respectively.

The parameter COMP_TYPE in the Tables refers to the comparison type and
modifies the state of predicate flags as the effect of an arithmetic or logic operation.
Similarly, the COND parameter is related to the conditional execution of an instruc-
tion, considering the state of a predicate flag. The g[] and c[0x1][] fields correspond
to instructions using operand sources coming from the shared memory and the
constant memory, respectively. Detailed information regarding the instructions’
op-code formats can be found in the programmer’s manual of the FlexGripPlus
model.

Table A.1: Control-flow instructions supported in FlexGripPlus.

Mnemonic Description Formats

BRA Branch BRA CX.COND Imm
BRA Imm

BAR barrier synchronization BAR.ARV.WAIT b0, 0xFFF

RET Return from kernel RET
RET CX.COND

SSY Set synchronization point SSY Imm

NOP No operation NOP
NOP.S

TRAP Trap interruption TRAP

CAL Call to subroutine CAL.NOINC
CAL

206



The FlexGripPlus GPU model

Table A.2: Arithmetic and logic instructions in FlexGripPlus.

Mnemonic Description Formats

I2I Integer to integer conversion

I2I.U32.U16/S16 RZ, RX(L|H) / g[].U16
I2I.U32.S32 RZ, |RX| / -RX
I2I.U32.U16.BEXT RZ, RX(L|H) / g[].U8
I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8

IMUL/

IMUL32/

IMUL32I

Integer multiplication

IMUL.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H)
IMUL.S16.S16 RZ, RX(L|H) / g[].S16, RY(L|H)

IMUL32.U16.U16 RZ, RX(L|H)/g[].U16, RY(L|H)

IMUL32I.U16.U16 RZ, RX(L|H), Imm
IMUL32I.S16.S16 RZ, RX(L|H), Imm

SHL Shift left
SHL RZ, RX, RY / Imm
SHL RZ, g [], Imm
SHL.U16 RZ(L|H), RX(L|H), Imm

SHR Shift right

SHR.S32 RZ, RX, RY / Imm
SHR.S32 RZ, g [], Im
SHR.U16 / S16 RZ(L|H), RX(L|H), Imm
SHR RZ, g[], Imm
SHR RZ, RX, RY / Imm

IADD/

IADD32/

IADD32I

Integer add

IADD RZ, RX / -RX, RY
IADD RZ, g[], RX / -RX
IADD RZ, RX, c[0x1][]

IADD32 RZ, RX, RY / -RY
IADD32 RZ, g [0x..], RX / -RX
IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) /-RY(L|H)

IADD32I RZ, RX / -RX, Imm
IADD32I RZ, g[], Imm

IMAD/

IMAD32/

IMAD32I

Integer multiply
and Add

IMAD.U16/ S16 RZ, RX(L|H), RY(L|H), RW
IMAD.U16/ S16 RZ, RX(L|H), c[0x1][], RY
IMAD. RZ, RX(L|H), c[0x1][], RY

IMAD32.U16 RZ, RXL|H, RYL|H, RZ

IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ

LOP Bitwise logical
Operation

LOP.AND/OR/XOR/PASS_B RZ, RX/ g[], RY
LOP.AND/OR/XOR/PASS_B RZ, RX, c[0x1] []
LOP.U16.AND/OR/XOR/PASS_B RZ(L|H), RX(L|H), RY(L|H)

ISET Integer comparison

ISET RZ, RX, RY / c[0x1][], COMP_TYPE
ISET RZ, g[], RX, COMP_TYPE
ISET.S32 RZ, RX, RY / c[0x1][], COMP_TYPE
ISET.S32 RZ, g[], RX, COMP_TYPE
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Table A.3: Data handling and memory instructions in FlexGripPlus.

Mnemonic Description Formats
MVC Load from constant memory MVC RX, c [0x1] []
GLD Load from global memory GLD.U32|U16|S16|U8|S8 RZ, global14[]
GST Store to global Memory GST.U32|U16|S16|U8|S8 global14[], RX

MOV/

MOV32

Move register to register/load
from shared memory

MOV RZ, RX / g[]
MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8)

MOV32 RZ, RX / g[]
MOV32.U16 RZ(L|H), RX(L|H)

MVI Move immediate to destination MVI RX, Imm

R2G Store from register to shared Memory
R2G.U32.U32 g [], RX
R2G.U16.U16 g [], RXL|H
R2G.U16.U8 g [], RX

R2A Move data register to address register R2A AX, RX
A2R Move address register to data register A2R RX, AX

ADA Movement from
address register to address register ADA Ax, Ax, Offset

Table A.4: Floating Point Unit (FPU) instructions supported in FlexGripPlus.

Mnemonic Description Formats
FADD32 /
FADD /
FADD32I

Floating-point addition
FADD32 Rx, Ry / g[Ax + Imm], Rz
FADD.COND Rx (Cx), Ry, -Rz / c[0xX][Imm]
FADD32I Rx, Ry, Imm

FMUL /
FMUL32 /
FMUL32I

Floating-point multiplication
FMUL Rx(Cx.COND), Ry / g [Ax + Imm], Rz / c[0xX][Imm]
FMUL32 Rx, Ry / g [Ax+Imm], Rz
FMUL32I Rx, Ry, Imm

FMAD /
FMAD32 /
FMAD32I

Floating-point multiply
and addition

FMAD Rx, Ry / - g [Ax+Imm], Rz / c[0xX][Imm], Rw
FMAD32I Rx, -Ry, Imm, Rz

F2F Floating-point conversion F2F.F32.F32 Rx (CX.COND), -Ry / |Ry|

F2I Conversion from
Floating-point to Integer F2I.S32.F32.COND Rx, Ry

I2F Conversion from
Integer to Floating-point I2F.F32.S32/U32 Rx (CX.COND), Ry

FSET Floating-point set FSET.C0 o[0x7f] (Cx.COND), Rx / |Rx|, Ry / c[0xX][Imm], COND
RCP /
RCP32 Reciprocal value RCP Ry (Cx.COND), Rx

RCP32 Ry, Rx

Table A.5: Special Function Unit (SFU) instructions supported in FlexGripPlus.

Mnemonic Description Formats
SIN Single precision SIN (32 bits) SIN Rx, Rx
COS Single precision COS (32 bits) COS Rx, Rx
RRO Range Reduction Operator (phase) RRO Ry, Rx, (SIN/EX2)
EX2 Find the base-2 exponential of a value EX2 Ry, Rx

RSQ Reciprocal of the square root
in single-precision (32 bits) RSQ Ry, Rx

LG2 Calculates the Log, base 2, of a value LG2 Ry, Rx
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