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Abstract—This paper presents an automatic procedure for
the optimization of the hyperparameters of a delay rational
model approximating the frequency-domain behavior of high-
speed interconnects. The proposed model is built via a kernel-
based regression, such as the Least-Square Support Vector
Machine (LS-SVM), by considering an ad-hoc kernel with two
hyperparameters related to the propagation delays introduced
by the system. Such hyperparameters, along with the Tikhonov
regularizer used by the LS-SVM regression, are carefully tuned
via an automatic approach based on a k-fold cross-validation and
Bayesian optimization. The feasibility of the effectiveness of the
proposed modeling approach are investigated on a high-speed
link.

Index Terms—High-speed link, delay rational model, Machine
Learning regression, cross-validation.

I. INTRODUCTION

In high-speed links, the availability of accurate and fast
interconnect models is essential for signal and power in-
tegrity (SPI) and electromagnetic interference (EMI) predic-
tions through simulations. The simulations of the channel can
be performed in an early phase of the system design, and
thus represent an useful tool for the design optimization and
the assessment of its performance. Due to the inherent linear
time invariant nature of the link interconnects, their models are
usually based on the so-called rational models. However, ac-
curate rational models of long interconnects usually require a
large number of poles. Such large number of poles unavoidably
has an impact on the simulation time required by a transient
simulation involving systems composed by such interconnects.
An alternative to reduce the model complexity and speed up
those analyses is the use of delay rational models (DRM) [1]–
[3], which account explicitly for the delay present in such
structures.

A promising method for the estimation of a DRM is to
use the least-squares support vector machine (LS-SVM) [4].
This kernel-based technique allows the manipulation of infinite
dimensional spaces, such that the model ensures that the
exact delays of the system are accounted. By doing so, it
is possible to accurately identify the delays of the original
transfer function [5], [6], which is the hardest step to build
a DRM. However, some parameters of the model and kernel
should be tuned in order to obtain a better performance. The
tuning of these so-called hyperparameters is a critical step in

the estimation of this approximated model, and the optimal
approximation can only be reached through an optimization
of such hyperparameters.

Due to the complex structure of the model, the above op-
timization is a non-convex problem, which may achieve local
minima if performed with standard optimization techniques.
This paper presents an automatic approach for the optimization
of the model hyperparameters and thus of its accuracy, based
on the combination of a k-fold cross-validation (CV) [7]
scheme and a Bayesian optimization [8]. The strength and
the robustness the proposed approach are investigated on a
high-speed link.

II. KERNEL-BASED DELAY RATIONAL MODEL

Delay rational models are a natural choice to represent dis-
tributed systems [1], [2]. Those models approximate sampled
pairs of data from a transfer function {(sk, H(sk))}Kk=1 as a
linear combination of basis functions containing poles pj ∈ C
and delays τi ∈ R as

H(sk) ≈ H̃(sk) = r0 +

nτ∑
i=1

np∑
j=1

rij
sk − pj

e−skτi , (1)

where the residues rij ∈ C are the coefficients of this linear
combination and r0 is a constant bias term.

Kernel-based techniques are a class of machine learning
(ML) regression models which can be applied to fit the data
of a transfer function. For that regression, they use as input
s ∈ C and output H̃(s) ∈ C. The dual space formulation of
this model reads:

H̃(s) =

K∑
k=1

αkk(s, sk) + b, (2)

where b ∈ C is a bias constant, αk ∈ C represent the K
model coefficients and k(s, sk) is the so-called kernel function.
This is a non-parametric model where the number of estimated
coefficients is always equal to K + 1 (the number of training
samples plus one), independent of the number and shape of
the basis functions that such kernel reproduces. On the other
hand, the model in (1) requires the estimation of npnτ + 1
coefficients, a number that changes according to the number
of basis functions accounted for by the model.



Considering the LS-SVM framework, the dual formulation
model in (2) can be suitably estimated by solving a system of
linear equations [9]. The main requirement for this represen-
tation is the definition of the kernel function, which can be
done through [10]:

k(s, sk) = 〈ϕ(s),ϕ(sk)〉 . (3)

where ϕ(s) are the basis functions used in the model.
In order that the above model corresponds to a DRM, the

kernel function equates to:

k(s, sk) = kp(s, sk)kτ (s, sk), (4)

with

kp(s, sk) =

np∑
j=1

|p′j |
(s− pj)

(
s∗k − p∗j

) , (5)

and

kτ (s, sk)=


(
e−τM (s∗+sk)−e−τm(s∗+sk)

)
−(s∗+sk) , s∗ + sk 6= 0

τM − τm, s∗ + sk = 0
. (6)

The above kernel depends on the definition of the np poles
pj = p′j + jp′′j , and of an interval from a minimum delay
τm to a maximum τM where the system’s propagation delays
should be located. Once defined, such kernel represents a space
formed by bases in the following form:

ϕj(s; pj , τ) =
|p′j |1/2

s− pj
e−sτ , (7)

which is equivalent to the basis of the DRM in (1). In
the specific case of (4), the poles are a discrete set (i.e.,
{p1, . . . , pnp}), while kτ (s, sk) accounts for all possible delay
terms between τm and τM . Indeed, the use of such kernel
provides a feature space with an infinite number of dimensions,
i.e., an infinite number of basis.

Taking into account the kernel definition, the kernel-based
model can be equivalently represented in its primal space
formulation as

H̃(s) =

np∑
j=1

∫ τM

τm

w′j(τ)ϕj(s; pj , τ)dτ + b, (8)

where

w′j(τ) =

K∑
k=1

αk
|p′j |1/2

s∗k − p∗j
e−s

∗
kτ (9)

are constant coefficients defined for every combination of pj
and τ considered in the model.

After estimating the model, the weight w′j(τ) provides
information on the values of pj and specially, τ , that have
a larger influence in the model. Indeed, we can define the
following total weight W (τ):

W (τ) =

√√√√ np∑
j=1

‖w(τ, pj)‖2, (10)

which sums the contributions of all the poles in the final
model, leading to a τ -dependency only. The analysis of (10)

allows the accurate identification of the dominant propagation
delays of the system [5]. Those delays are the τ values where
the peaks of W (τ) occur. Those few identified delays can be
used to estimate compact delay rational models with a small
number of poles [1].

The above format of model was shown to be accurate
without the use of optimal poles [5]. However, similar to
the standard formulation of the DRM, the considered delay
interval has a large impact in the performance of the model,
and therefore must be carefully tuned.

III. TUNING OF THE MODEL HYPERPARAMETTERS VIA
CROSS VALIDATION AND BAYESIAN OPTIMIZATION

The accuracy of the modeling scheme presented in the
previous section unavoidably depends on the tuning of the
kernel hyperparameters τm and τM , which provide informa-
tion on the minimum and maximum candidate delays of the
system, and of the Tikhonov regularizer γ used by the LS-
SVM regression. As an example, if a small value for the
hyperparmetr τM is used, the model may be unable to follow
the dynamic phase variations produced by the system. On the
other hand, if a more conservative strategy is considered, as
an example by using the largest delay interval allowed by the
frequency sampling (i.e., τm = 0 s and τM = 1/∆f ), the delay
identification procedure can be rather cumbersome, since the
values of W (τ) must be analyzed in a large interval. The
regularizer γ provides a trade-off between the model error on
the training samples and the 2-norm of the model coefficients
‖w′j(τ)‖22, thus preventing over-fitting.

Techniques such as k-fold CV [7] and Bayesian optimiza-
tion [8] can be seen as promising candidates to overcome the
above issues, since they are widely used within ML techniques
to select, without any manual tuning, the best configuration
of the model hyperparmeters. In the k-fold CV [7], the
training set is split into k smaller sets, called folds. Then,
for each of the k folds, the model is trained using k − 1
folds as training data and by using a given configuration of
the hyperparameters λ = {γ, τm, τM}, while the remaining
fold is kept as a validation set (i.e., to evaluate the model
accuracy on data which were not used during the training).
The above scheme is iterated for all the k-folds. Then, for each
analyzed combination of the hyperparameters λ, the overall
model performance is assessed by the k-fold CV error CV (λ)

error,
which is the average of the values computed during the k
iterations, according to

CV (λ)
error =

1

k

k∑
n=1

CV (λ)
error,n, (11)

where CV (λ)
error,n is the mean squared error of the model on the

n-th test fold.
The common choice for k is usually 5 or 10, as these values

have been shown empirically to yield test error rate estimates
that suffer neither from excessively high bias nor from very
high variance. An illustration of the k-fold CV for the case
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Fig. 1. Example: a k-fold cross-validation with k = 5 and K = 100 training
samples.

with K = 100 training samples and 5 folds (i.e., k = 5) is
shown in Fig. 1.

The optimum value of the hyperparameters λ? =
{γ?, τ?m, τ?M} is selected as the one that minimizes the cor-
responding overall CV error CV (λ)

error, i.e.,

λ? = arg min
λ
CV (λ)

error. (12)

Together with the CV, a Bayesian optimization algorithm is
used to solve the minimization problem in (12). This algorithm
specifically selects the next evaluated configuration of the
hyperparameters λ in order to maximize the reward towards
finding the global optimum of a non-convex function [8].
By using this sampling scheme, the search converges to the
optimum solution in fewer iterations than with standard search
schemes, while keeping the capacity to avoid local minima.
An open-source implementation of this optimization scheme
is available in the scikit-optimize Python library [11].

IV. APPLICATION EXAMPLE

The proposed methodology is exemplified by considering
the transfer function H(s) = Vout(s)/E(s) for s = jω =
j2πf of the high-speed link circuit in Fig. 2. The link consists
of three transmission lines based on microstrips, together with
lumped elements that represent the parasitic effects of the link,
in order to approximate the structure of a realistic interconnect.
This structure has been implemented and simulated in HSPICE
in a bandwidth from 0 to 20 GHz. Simulation results consists
of K = 1001 frequency points with a frequency spacing ∆f =
20 MHz. A subset containing 101 samples, randomly selected
among the available data, has been used as a validation dataset,
whilst the remaining 900 samples are used as training set to
construct the LS-SVM model.

A DRM based on the modeling approach presented in
Sec. II is constructed to approximate H(s). The set of poles
p is defined by drawing its real and imaginary parts randomly
and independently from a normal distribution N (0, 4π× 109)
with zero mean and standard deviation of 4π × 109 rad/s.
In the cases where the real part of the pole was positive,
corresponding to an unstable pole, it was forced to be negative
by flipping its sign.

During the model training, the optimum set of hyperparam-
eters γ, τm and τM is selected via the CV-based Bayesian
optimization scheme presented in Sec. III using 5 folds and
50 iterations. The parameters search space is restricted to

E(s)
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Fig. 2. Schematic of the circuit modeled in the application example.

the intervals γ ∈ [103, 1025] and τm, τM ∈ [0, 50] ns. The
constraint τM > τm is not enforced, however it is expected as
the logical outcome of the optimization. After the 50 cycles,
the obtained optimized parameters are γ? = 6.56 × 1021,
τ?m = 5.68 × 10−8 and τ?M = 7.39 ns. Figures 3 and 4 show
that these parameters provide a very accurate model when
applying it to the validation data, where the model output
almost perfectly matches the original points of H(s).
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Fig. 3. Magnitude comparison of the LS-SVM model output and the original
transfer function H(s).

Additionally, the proposed LS-SVM model of H(s) can
be used to identify the dominating propagation delays of the
system of Fig. 2. These delays should be searched only within
the optimized delay interval τ?m to τ?M , making it possible
to perform a more fine discretization without incurring into
an unreasonable computational time. The delays are identified
from W (τ), which is computed according to (10). All this
computational procedure took only 940.7 s, of which 937.2 s
were used for the estimation of the optimized model and 3.5 s
for the delay identification. The plot of W (τ) is shown in
Fig. 5. In this figure, the black curve provided by the optimized
model is compared with the blue one obtained by means of a
basic tuning of the parameters, where τm is set to its minimum
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Fig. 4. Phase comparison of the LS-SVM model output and the original
transfer function H(s).

and τM and γ are set to their maximum possible values. It is
observed that the peaks of the black curve are much more
identifiable than in the blue curve, while it is also less noisy.
Moreover, τM in the blue curve goes up to 50 ns, which results
in a worse resolution of the τ -axis if a fixed number of points
is considered in the discretization. The peaks of such plot
correspond to the propagation delays produced by the original
transfer function. For example, the first marked peak occurs
at 0.76 ns, while the two transmission lines in the main signal
path have a total length of 13 cm. Those values represent
a propagation speed of 1.71 × 108 m/s, which is compatible
with the real speed in such structures. The additional peaks
are also clear in the plot, together with smaller peaks that can
be identified if necessary. Such obtained delays are useful to
the estimation of compact and accurate DRMs.

V. CONCLUSION

Kernel-based techniques are a very flexible tool to deal
with systems with delays. They provide a way to model the
data using a very large or infinite number of basis. This fact
makes it possible to ensure that the true propagation delays of
the distributed system are accounted in the estimated model.
However, the added flexibility comes at the cost of tuning
some extra parameters. Those parameters were optimized via
a Bayesian method together with a 5-fold cross validation.
Such optimization provided an accurate kernel-based model
after few iterations. The optimized model provides an easy
way to identify the system dominant propagation delays, where
the delays should be searched in a small interval given by the
optimized parameters, making it a simpler task than if the
whole possible interval would be considered.
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Fig. 5. Plot of W (τ) obtained from the LS-SVM model of H(s) indicating
the dominating propagation delays of the system of Fig. 2. The detail amplifies
it in the interval from τ?m to τ?M .
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