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Abstract. The paper is devoted to asymptotic behavior of synchronization systems, i.e.
Lur’e–type systems with periodic nonlinearities and infinite sets of equilibrum. This class
of systems can not be efficiently investigated by standard Lyapunov functions. That is why
for synchronization systems several new methods have been elaborated in the framework of
Lyapunov direct method. Two of them: the method of periodic Lyapunov functions and the
nonlocal reduction method, proved to be rather efficient. In this paper we combine these two
methods and the Kalman-Yakubovich-Popov lemma to obtain new frequency–algebraic criteria
ensuring Lagrange stability and the convergence of solutions.

1. Introduction
In this paper we give further development for stability investigation of Lurie–type systems
of indirect control with periodic nonlinearities. This class of systems involves damped
pendulums, electric motors, power generators, vibrational units, synchronization circuits (phase
and frequency locked loops). It also involves certain biological systems. Such systems are
often called synchronization systems. They are featured by denumerable sets of equlibria (both
Lyapunov stable and unstable ones). The desired asymptotic behavior for synchronization
systems is the convergence of every solution to a certain equlibrium. This type of stability
is often mentioned as gradient–like behavior.

The qualitative investigation of synchronization systems started almost a hundred years ago
in paper [1] where the second order equation

σ̈ + aσ̇ + ϕ(σ) = 0 (a > 0) (1)

with a periodic function ϕ(σ) was considered. In case ϕ(σ) = sinσ − β equation (1) is a
well-known equation of the viscously damped pendulum. It may also serve as mathematical
model for synchronous machine. The paper [1] was succeeded by a series of published works [2–6]
It turned out that there exists a bifurcation value acr such that for a > acr every solution of (1)



13th Multiconference on Control Problems (MCCP 2020)
Journal of Physics: Conference Series 1864 (2021) 012065

IOP Publishing
doi:10.1088/1742-6596/1864/1/012065

2

converges. Later in [7] the stability regions for a second order synchronization system were
established by qualitative and numerical methods.

Of course, the Lyapunov second method was used for synchronization systems of low order
but only for Lyapunov stability of isolated equlibria. It was clear that standard Lyapunov
functions destined for systems with single equlibrium are of no good for gradient–like ones.

For synchronization systems special tools were elaborated within the framework of Lyapunov
direct method. The most efficient proved to be the method of periodic Lyapunov functions
proposed in [8] for synchronization systems of the third order. It used the Lurie-Postnikov
function modified by special technique (Bakaev–Guzh procedure). In [9] this method was
generalized and combined with Kalman-Yakubovich-Popov (KYP) lemma, so that efficiently
verified stability conditions could be obtained.

In parallel to the method of periodic Lyapunov functions, in [9] another method was proposed.
It exploited for high order system the information about a low-order synchronization system with
known asymptotic properties. It was called the method of nonlocal reduction. Trajectories of
low-order system (reduction system) were involved into Lyapunov function.

In this paper the ideas of these two methods and the KYP-lemma are combined. Investigation
of Lagrange stability started in [10] is supplemented with investigation of gradient–like behavior.
As a result, new criteria of the convergence of solutions for Lurie-type synchronization system
are obtained.

2. The problem setup
Consider the system

dz(t)
dt = Az(t) + bϕ(σ(t)),

dσ(t)
dt = c∗z(t) + ρϕ(σ(t)).

(2)

Here A ∈ Rm×m, b, c ∈ Rm, ρ ∈ R, z : R+ → Rm,
σ : R+ → R, ϕ : R → R, the symbol (*) is used for the Hermitian conjugation.

We suppose that the pair (A, b) is controllable, the pair (A, c) is observable and matrix A is
Hurwitz. The function ϕ is C1-smooth, ∆–periodic and

ϕ2(σ) + ϕ′(σ)2 6= 0. (3)

It has two zeros: 0 ≤ σ1 < σ2 < ∆ with

ϕ′(σ1) > 0, ϕ′(σ2) < 0. (4)

We suppose for the definiteness that ∫ ∆

0
ϕ(σ)dσ ≤ 0. (5)

Notice that if (z(t), σ(t))T is a solution of (2) then (z(t), σ(t)+∆k)T (k ∈ Z) is also a solution
of (2). So (2) has a cylindric phase space.

System (2) has a denumerable set of Lyapunov stable and Lyapunov unstable equlibria
Λ = {(0, σj + ∆k)T : j = 1, 2, k ∈ Z}. Its asymptotic behavior is described by two types
of stability: Lagrange stability (every solution is bounded) and gradient–like behavior (every
solution converges). Notice that gradient-like behavior does not guarantee Lyapunov stability
of a specific equlibrium.

Lagrange stability is the basic property of synchronization systems. If a Lagrange stable
system is monostable (every bounded solution converges), it is gradient-like.
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3. Frequency–algebraic criteria for Lagrange stability of synchronization systems
In this section we demonstrate two various frequency-algebraic criteria of Lagrange stability
based on different modifications of Bakaev–Guzh procedure.

Consider the equation (1). It is equivalent to the system

ż = −az − ϕ(σ) (a > 0),
σ̇ = z.

(6)

which has been exhaustively investigated (see for example [11, pp. 185-201] and the bibliography
there). System (6) has Lyapunov stable equlibria (0, σ1 +∆k) and saddle–points (0, σ2 +∆k).
Here k ∈ Z.

Proposition 1 [11, pp. 185-201]. For any ϕ(σ) there exists a bifurcational value acr such that
for a > acr every solution of (6) converges to some equilibrium and for a ≤ acr the system (6)
has both converging solutions and solutions with z(t) = σ̇(t) ≥ ε > 0.

The phase portrait of (6) in case a > acr (σ1 = 0, (0, 0)T is a stable focus) is shown in Fig. 1.
System (6) is associated with a first-order equation

F (σ)
dF (σ)

dσ
+ aF (σ) + ϕ(σ) = 0 (F (σ) = σ̇ = z). (7)

Two separatrices z1 and z2 “going into” the saddle point (0, σ2) (see Fig. 1) “merge” and form
a solution F0(σ) of (7). Consider solutions

Fk(σ) = F0(σ +∆k) (k ∈ Z). (8)

Proposition 2 [9, 11, pp. 185-201]. If a > acr, then the solutions Fk(σ) have the following
properties:

P1)Fk(σ2 +∆k) = 0;
P2)Fk(σ) 6= 0 for σ 6= σ2 +∆k;
P3)Fk(σ) −→ ±∞ as σ −→ ∓∞.

(9)

We are going to use the solutions Fk(σ) in Lyapunov-type functions.
Our argument combines new Lyapunov-type functions and KYP–lemma. So we need the

transfer function of (2) from ϕ to −σ̇:

K(p) = −ρ+ c∗(A− pIm)−1b (p ∈ C), (10)

where Im is an m×m - unit matrix.
Introduce the constants

µ1
∆
= inf

σ∈[0,∆)
ϕ′(σ), µ2

∆
= sup

σ∈[0,∆)
ϕ′(σ) (µ1, µ2 < 0), (11)

ν0
∆
=

∫ ∆
0 ϕ(σ)dσ∫ ∆
0 |ϕ(σ)| dσ

. (12)

λ0
∆
= min

i=1,...,m
|Reλi| (i = 1, . . . ,m), (13)

where λi is an eigenvalue of the matrix A.
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Figure 1. A phase portrait of (6) for a > acr

Theorem 1 . Suppose there exist positive τ, ε, δ,
λ ∈ (0, λ0), α1 ≤ µ1, α2 ≤ µ2 such that the following conditions are satisfied:
1) for all ω ≥ 0 the inequality is valid:

π(ω, λ)
∆
= Re{K(iω − λ)− τ(K(iω − λ)+

+α−1
1 (iω − λ))∗(K(iω − λ) + α−1

2 (iω − λ))} − ε|K(iω − λ)|2 ≥ δ;
(14)

2) for κ1 ∈ [0, 1] the quadratic form

P (x, y, z) = λx2 + εy2 + δz2 + (1− κ1)ν0yz + acr
√κ1xy (15)

is positive definite.
Then system (2) is Lagrange stable.

Proof. Consider the system

dy

dt
= Qy(t) + Lη(t),

dσ

dt
= D∗y(t). (16)

where y(t) = (z(t), ϕ(σ(t)))T , η(t) = d
dtϕ(σ(t)),

Q =

[
A b
0 0

]
, L =

[
0
1

]
, D =

[
c∗

ρ

]
. (17)
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Introduce the quadratic form

G(y, η) = 2y∗H((Q+ λIm+1)y + Lη) + δ(L∗y)2 + ε(D∗y)2+

+y∗LD∗y + τ(D∗y − α−1
1 η)(D∗y − α−1

2 η) (y ∈ Rm+1, η ∈ R).
(18)

By KYP lemma, the inequality (14) guaranties that there exists a matrix H = H∗ [9] such that

G(y, η) ≤ 0, ∀y ∈ Rm+1, η ∈ R. (19)

Let

H =

[
H0 h
h∗ α

]
(H0 ∈ Rm×m, h ∈ Rm, α ∈ R). (20)

Then for ȳ = (z, 0)T it is true that

G(ȳ, 0) = 2z∗H0(A+ λIm)z + (ε+ τ)(c∗z)2 ∀z ∈ Rm. (21)

Since the pair (A+λIm, b) is controllable, the matrixH0 is positive definite [12]. So if ϕ(σ(t̄)) = 0,
one has

y∗(t̄)Hy(t̄) > 0, z(t̄) 6= 0. (22)

Consider the condition 2) of the Theorem. It implies that

ε >
a2crκ1

4λ
+

(1− κ1)
2ν20

4δ
. (23)

Let ε = ε1 + ε2, where

ε2
∆
=

(1− κ1)
2ν20

4δ
. (24)

Then

ε1 >
a2crκ1

4λ
. (25)

System
ż = −2

√
λε1z − κ1ϕ(σ),

σ̇ = z.
(26)

by linear change of variable t can be transformed to the system (6) with a = 2
√

λε1
κ1

. So the

equation

F (σ)
dF (σ)

dσ
+ 2

√
λε1F (σ) + κ1ϕ(σ) = 0 (27)

in virtue of (25) has the solutions Fk(σ) with the properties P1, P2, P3.
Introduce the Lyapunov functions

Vk(t) = y∗(t)Hy(t)− 1

2
F 2
k (σ(t)) + κ2

∫ σ(t)

σ2

Ψ0(ζ)dζ. (28)

Here, H is from (19), κ2 = 1− κ1,

Ψ0(ζ)
∆
= ϕ(ζ)− ν0|ϕ(ζ)|. (29)

It is obvious that ∫ ∆

0
Ψ0(ζ)dζ = 0. (30)
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In virtue of system (16)

V̇k(t) + 2λVk(t) = 2y∗(t)H((Q+ λIm+1)y(t) + Lϕ̇(σ(t)))−

−F ′
k(σ(t))Fk(σ(t))σ̇(t) + κ2Ψ0(σ(t))σ̇(t)− λF 2

k (σ(t)) + 2λκ2

∫ σ(t)

σ2

Ψ0(ζ)dζ.
(31)

Now we can apply the inequality (19)

V̇k(t) + 2λVk(t) ≤ −εσ̇2(t)− δϕ2(σ(t))− σ̇(t)ϕ(σ(t)) + 2
√
λε1Fk(σ(t))σ̇(t)+

+κ1ϕ(σ(t))σ̇(t) + κ2ϕ(σ(t))σ̇(t)− κ2ν0|ϕ(σ(t))|σ̇(t)− λF 2
k (σ(t)) + 2λκ2

∫ σ(t)

σ2

Ψ0(ζ)dζ.

(32)
It follows from (5) and (30) that ∫ σ(t)

σ2

Ψ0(ζ)dζ ≤ 0, ∀σ. (33)

Then
V̇k(t) + λVk(t) ≤ −(ε2σ̇

2(t) + δϕ2(σ(t)) + κ2ν0|ϕ(σ(t))|σ̇(t))−
−(ε1σ̇

2(t)− 2
√
λε1Fk(σ(t))σ̇(t) + λF 2

k (σ(t))), ∀t ≥ 0,
(34)

whence in virtue of (24)
V̇k(t) + 2λVk(t) ≤ 0 ∀t ≥ 0. (35)

Hence
Vk(t)e

2λt ≤ Vk(0), ∀t ≥ 0, ∀k ∈ Z. (36)

Notice that

Vk(0) = y∗(0)Hy(0)− 1
2F

2
k (σ(0)) + κ2

∫ σ(0)

σ2

Ψ(ζ)dζ. (37)

The property P3 of Fk(σ) implies that one can always choose a natural k0 ∈ N in such a way
that V±k0(0) < 0. Then

V±k0(t) < 0, ∀t ≥ 0. (38)

Suppose t̄ is such that
σ(t̄) = σ2 +∆K, K ∈ Z. (39)

Then ϕ(σ(t̄)) = 0, ∫ σ(t̄)

σ2

Ψ0(ζ)dζ = 0 (40)

and it follows from (22) that

y∗(t̄)Hy(t̄) = z∗(t̄)H0z(t̄) ≥ 0. (41)

The inequality (38) implies that
F 2
±k0(σ(t̄)) 6= 0. (42)

Hence, for any z(0), σ(0) there exist a k0 ∈ N such that

σ2 −∆k0 < σ(t) < σ2 +∆k0, ∀t ≥ 0. (43)

Theorem 1 is proved. �
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Introduce the function

Φ(σ) =

√
(1− α−1

1 ϕ′(σ))(1− α−1
2 ϕ′(σ)), (44)

with α1 ≤ µ1, α2 ≥ µ2 and the constant

ν =

∫ ∆
0 ϕ(σ)dσ∫ ∆

0 Φ(σ) |ϕ(σ)| dσ
. (45)

Theorem 2 . Suppose there exist λ ∈ (0, λ0),κ, ε, τ, δ > 0, α1 = −α2 such that the following
conditions are satisfied:
1) for all ω ≥ 0 the inequality (14) is true:
2)

4λε > a2cr(1−
2
√
τδ

|ν|
); (46)

3) maxΦ(σ) ≤ |ν|−1.
Then (2) is Lagrange stable.

Proof. Proceeding from (46), choose a κ1 ∈ (0, 1) such that

4λε

a2cr
> κ1 (47)

and

κ2
∆
= 1− κ1 <

2
√
τδ

|ν|
. (48)

Henceforth our argument is analogous with the proof of Theorem 1. Introduce Lyapunov-type
functions

vk(t) = y∗(t)Hy(t)− 1
2F

2
k (σ(t)) + κ2

∫ σ(t)

σ2

Ψ(ζ)dζ. (49)

Here, H is from (19), Fk(ζ) (k ∈ Z) is a solution of (27) with properties P1–P3, and

Ψ(ζ)
∆
= ϕ(ζ)− ν|ϕ(ζ)|Φ(ζ). (50)

Notice that ∫ ∆

0
Ψ(ζ)dζ = 0. (51)

In virtue of (16) we have

v̇k(t) + 2λvk(t) = 2y∗(t)H[(Q+ λIm+1)y(t) + Lϕ(σ(t))]− F ′
k(σ(t))Fk(σ(t))σ̇(t)+

+κ2Ψ(σ(t))σ̇(t)− λF 2
k (σ(t)) + 2λκ2

∫ σ(t)

σ2

Ψ(ζ)dζ.
(52)

It follows from (27) and (50) that

v̇k(t) + 2λvk(t) = 2y∗(t)H[(Q+ λIm+1y(t)) + Lϕ(σ(t))] + 2
√
λεFk(σ(t))σ̇(t)+

+κ1ϕ(σ(t))σ̇(t)− κ2ν|ϕ(σ(t))|Φ(σ(t))σ̇(t) + 2λκ2

∫ σ(t)

σ2

Ψ(ζ)dζ − λF 2
k (σ(t)).

(53)
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Then from (19) we have

v̇k(t) + 2λvk(t) ≤ −εσ̇2(t)− δϕ2(σ(t))− τ σ̇2(t)Φ2(σ(t)) + 2
√
λεFk(σ(t))σ̇(t)−

−λF 2
k (σ(t)) + λκ2

∫ σ(t)

σ2

Ψ(ζ)dζ − νκ2|ϕ(σ(t))|Φ(σ(t))σ̇(t),
(54)

whence
v̇k(t) + 2λvk(t) ≤ [−δϕ2(σ(t))− τ(σ̇(t)Φ(σ(t)))2−

−νκ2|ϕ(σ(t))|Φ(σ(t))σ̇(t)] + 2λκ2

∫ σ(t)

σ2

Ψ(ζ)dζ.
(55)

The inequality (48) implies that the first summand in the right-hand part of (55) is a negative
definite quadratic form of |ϕ(σ(t))| and Φ(σ(t))σ̇(t). From (4) and (51) we have∫ σ(t)

σ2

Ψ(ζ)dζ < 0. (56)

Thus,
v̇k(t) + 2λvk(t) ≤ 0. (57)

Hence,
vk(t)e

2λt ≤ vk(0). (58)

Since

vk(0) = y∗(0)Hy(0)− 1
2F

2
k (σ(0)) + κ2

∫ σ(0)

σ2

Ψ(ζ)dζ, (59)

one can always choose a natural k0 ∈ N in such a way that v±k0(0) < 0. Then

v±k0(t) < 0, ∀t ≥ 0. (60)

Henceforth one can repeat the proof of Theorem 1 beginning with (38). �

4. Gradient–like behavior
Theorem 3 . Suppose there exist positive τ, ε, δ,
λ ∈ (0, λ0), α1 ≤ µ1, α2 ≤ µ2 such that

α−1
1 α−1

2 = 0, (61)

(α−1
1 + α−1

2 )ρ ≤ 0 (62)

and all the conditions of Theorem 1 or Theorem 2 are satisfied. Then the following relations are
true:

lim
t→+∞

z(t) = 0, (63)

lim
t→+∞

σ(t) = q, ϕ(q) = 0. (64)

Proof. Consider separately a Lyapunov function W (t) = y∗(t)Hy(t). In virtue of system (16)
one has

dW

dt
+ 2λW (t) = 2y∗(t)H[(Q+ λIm+1)y(t) + Lϕ̇(σ(t))]. (65)

Since the frequency–domain inequality (14) is fulfilled, there exists a matrix H = H∗ such that
the inequality (19) is valid, whence

dW

dt
+ 2λW (t) + εσ̇2(t) + σ̇(t)ϕ(σ(t)) + δϕ2(σ(t)) ≤ 0. (66)



13th Multiconference on Control Problems (MCCP 2020)
Journal of Physics: Conference Series 1864 (2021) 012065

IOP Publishing
doi:10.1088/1742-6596/1864/1/012065

9

It follows from (61) that the quadratic form G(y, η) is linear with respect to η. Since G(y, η) is
nonnegative for all y, η, we conclude that

2HL = τ(α−1
1 + α−1

2 )D. (67)

Taking into account (17), we get

2h = τ(α−1
1 + α−1

2 )c, 2α = τ(α−1
1 + α−1

2 )ρ. (68)

Then

W (t) = z∗(t)H0z(t) + τ(α−1
1 + α−1

2 )c∗z(t)ϕ(σ(t)) + 1
2(α

−1
1 + α−1

2 )τρϕ2(σ(t)). (69)

The relations (66) and (69) together with the equations (68) imply that

dW

dt
+ (2λτ(α−1

1 + α−1
2 ) + 1)σ̇(t)ϕ(σ(t))− λτ(α−1

1 + α−1
2 )ρϕ2(σ(t))+

+2λz∗(t)H0z(t) + εσ̇2(t) + δϕ2(σ(t)) ≤ 0,
(70)

whence
d

dt
{W (t) + (2λτ(α−1

1 + α−1
2 ) + 1)

∫ σ(t)

σ(0)
ϕ(ζ)dζ}+ εσ̇2(t) + δϕ2(σ(t)) ≤

≤ λτ(α−1
1 + α−1

2 )ρϕ2(σ(t))− 2λz∗(t)H0z(t).

(71)

Notice that since H0 is positive definite and the inequality (62) is true, the right-hand part
of (71) is negative.

Then one can deduce from (71) that

ε

∫ t

0
σ̇2(τ)dτ + δ

∫ t

0
ϕ2(σ(τ))dτ ≤ W (0)−W (t)− (2λτ(α−1

1 + α−1
2 ) + 1)

∫ σ(t)

σ(0)
ϕ(ζ)dζ. (72)

All the conditions of Theorem 1 or Theorem 2 are fulfilled here. So every solution of system (2)
is bounded for t ∈ R+. It follows that the right part of (72) is also bounded, for t ∈ R+. Thus

σ̇(t), ϕ(σ(t)) ∈ L2(0,+∞). (73)

It is easy to establish that the relations (63), (64) follow from (73) [11]. Theorem 3 is proved.
�

Example. Consider a phase-locked loop (PLL) with

K(p) = T
Tsp+ 1

Tp+ 1
(T > 0, s ∈ (0, 1)) (74)

and
ϕ(σ) = sinσ − β (β ∈ (0, 1)). (75)

We choose α−1
1 = 0, α−1

2 = 1. Then the frequency domain inequality (14) takes the form

ω2T 2(−(ε+ τ)T 2s2 − δ + (1 + τλ)Ts+ τ(1− s)) + (T (1 + τλ)(1− Tsλ)(1− Tλ)−
−δ(1− Tλ)2 − (ε+ τ)T 2(1− Tsλ)2 > 0 (λ < 1

T , ω ≥ 0).
(76)

Consider the case of small T 2 and choose κ1 = 1. Then from (15) and (23) we have

4λε > a2cr (77)

Let λ = (2T )−1. It is clear that (76) is valid for δ and τ small enough and 4λε < (T 2(1−0.5s))−1.
We can borrow the value of a2cr from [11, Fig.2.16.7]. For example, if β ≤ 0.98, we have a−2

cr > 0.8.
It follows that Theorem 1 and Theorem 3 give for capture value β the estimate 0.98 if T 2 < 0.8
(we choose 4λε = 1.25). Meanwhile the Bakaev–Guzh technique gives for s = 0.2 and small T 2

the estimate β = 0.93 [13].
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5. Conclusion
In this paper two novel Lyapunov–type functions for systems of indirect control with periodic
nonlinearities are constructed . With the help of the Kalman–Yakubovich–Popov lemma, new
frequency-algebraic criteria ensuring the gradient–like behavior are obtained.
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