POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards a complete software stack to integrate Quantum Key Distribution in a cloud environment

Original

Towards a complete software stack to integrate Quantum Key Distribution in a cloud environment / Pedone, I.; Atzeni, A.;
Canavese, D.; Lioy, A.. - In: IEEE ACCESS. - ISSN 2169-3536. - STAMPA. - 9:(2021), pp. 115270-115291.
[10.1109/ACCESS.2021.3102313]

Availability:
This version is available at: 11583/2924012 since: 2021-09-15T13:52:04Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/ACCESS.2021.3102313

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

17 April 2024

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 13, 2021, accepted July 25, 2021, date of publication August 3, 2021, date of current version August 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3102313

Toward a Complete Software Stack to Integrate
Quantum Key Distribution in a Cloud
Environment

IGNAZIO PEDONE™, ANDREA ATZENI™, DANIELE CANAVESE ",
AND ANTONIO LIOY", (Member, IEEE)

Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Ignazio Pedone (ignazio.pedone @polito.it)

This work was supported by the European Union’s Horizon 2020 Project “CyberSec4Europe’ under Grant 830929.

ABSTRACT The coming advent of Quantum Computing promises to jeopardize current communications
security, undermining the effectiveness of traditional public-key based cryptography. Different strategies
(Post-Quantum or Quantum Cryptography) have been proposed to address this problem. Many techniques
and algorithms based on quantum phenomena have been presented in recent years; the most relevant example
is the introduction of Quantum Key Distribution (QKD). This approach allows to exchange cryptographic
keys among parties and does not suffer from the development of quantum computation. Problems arise when
this technique has to be deployed and combined with modern distributed infrastructures that heavily depend
on cloud and virtualisation paradigms. This paper addresses the issue by presenting a new software stack
that effortlessly introduces QKD in such environments. This software stack allows for agnostic integration,
monitoring, and management of QKD, independent from a specific vendor or technology. Furthermore,
a QKD simulator is presented, designed, and tested. This latter contribution is suitable as a low-level testing
device, as an independent software module to check QKD protocols, and as a testbed to identify future
practical enhancements.

INDEX TERMS Quantum cryptography, QKD, quantum communication, softwarised infrastructures.

I. INTRODUCTION

Quantum Computing (QC) is a ground-breaking field that
promises to solve problems otherwise impossible to tackle
with classical computation. This holds for many scientific
fields such as physics, chemistry, molecular biology, and
computer science. However, some applications of QC intro-
duce potential threats for IT systems. The primary concern is
security, and in particular classical cryptographic algorithms.
Some widely used public-key algorithms are endangered
from the QC advent, since this new paradigm can solve
cryptographic problems in polynomial time.

Traditional public-key cryptographic techniques are used
as a fundamental security pillar in modern IT infras-
tructures that are increasingly becoming ‘‘Softwarised
infrastructures’, an umbrella term used to indicate Cloud
Computing, Network Functions Virtualisation (NFV) tech-
nologies, Edge or Fog Computing, and Internet of Things

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya

115270

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

(IoT). Since the strength of these crypto-systems is at risk,
the use of quantum-resistant cryptographic techniques in
cloud environments is a desirable feature today, but it will
become a vital requirement in the not-so-distant future.
In fact, quantum threats appear consistent in the next 10-
15 years.!

Over the past decades, several approaches have been
proposed to address the potential fall of the classical
public-key algorithms. The most effective ones are Post-
quantum Cryptography (PQC) and Quantum Cryptography.
The first approach relies on new classical algorithms that
shall be designed to be quantum-resistant and replace the
current public-key ones. Some examples are SPHINCS™?2
and Dilithium?® for digital signatures, and NTRU* for key

1 https://globalriskinstitute.org/download/quantum-threat-timeline-
report-2020/

2https://sphincs.org
3 https://pg-crystals.org/dilithium/index.shtml
4https://ntru.org

VOLUME 9, 2021

https://orcid.org/0000-0001-9637-2404
https://orcid.org/0000-0002-9095-8241
https://orcid.org/0000-0002-4265-7743
https://orcid.org/0000-0002-5669-9338
https://orcid.org/0000-0003-0360-7919

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

exchange. These algorithms have been submitted to the
National Institute of Standards and Technology (NIST) PQC
challenge’ for replacing and standardising the new quantum-
resistant public-key cryptographic algorithms. The second
approach leverages Quantum Cryptography. In particular,
Quantum Key Distribution (QKD). This technique is based
on the no-cloning theorem and — for specific protocols — on
entanglement [1]. The main idea is to detect an eavesdropper
on the quantum channel when a key exchange takes place.
In this paper, we mostly rely on this technique, even though
we also use PQC to support specific tasks — mostly as a
complement rather than an alternative.

The recent literature focuses on the simulation of
Quantum Networks and quantum protocols. In addition,
recent approaches underline the importance of integrating
quantum-based technology within modern infrastructures.
In particular, the European Telecommunications Standards
Institute (ETSI) is working on defining clear specifications
on how to build quantum devices, design QKD networks,
and even implement standard APIs to facilitate the inter-
connection among devices from different vendors. However,
the integration efforts in a softwarised infrastructure have
been made so far mostly as high-level analyses, i.e. without
considering real infrastructures or technologies that could
fit the goal. Moreover, the standards are quite general, not
envisioning consistent optimizations that could be adopted
within the scope of modern infrastructures.

To fill the gap, this paper discusses the integration of
QKD in a softwarised infrastructures scenario, a challenging
perspective considering the new constraints and requirements
(i.e. a dedicated quantum channel, single-photon sources,
public authenticated classical channel). We started from the
ETSI GS QKD specifications [2] keeping compliance with
the ETSI standard in terms of software interfaces. We devoted
a significant effort to address the issues of designing and
implementing a complete software stack for efficient QKD
integration in modern infrastructure. In particular, we intro-
duced the abstraction of the QKD devices up to a centralized
Key Server to serve as an interface for security applications.

This paper also contributes to a framework to simulate
QKD networks, towards a scalable and flexible simulation
platform for QKD that enhances the testing of QKD pro-
tocols. We present a practical implementation suggesting
technologies, such as Docker? containers, that could easily fit
current cloud-native infrastructures facilitating the adoption
of this kind of key distribution systems.

By adopting the aforementioned technologies as build-
ing blocks for a distributed simulation platform for QKD,
we show that this can be integrated with the software stack
and thus can be made easily available. This allows experi-
menting with the different quantum simulation technologies
to verify if they could fit different use cases.

5 https://csrc.nist.gov/projects/post-quantum-cryptography
6https://www.docker.com

VOLUME 9, 2021

Setting aside the design and implementation of the current
version of both software stack and simulator, we aim at laying
the basis for the evolution of these two parts separately.
Therefore, we mainly propose a framework with foreseen
evolution: for the software stack towards extending coordina-
tion and routing functionalities among QKD network nodes,
for the simulator towards simulating complex Quantum Net-
works beyond QKD in an efficient and distributed approach.

To summarise, the main contribution of this work is the
design and implementation of this software stack that could
easily be integrated with modern infrastructures and lever-
ages a cloud-native approach for development. This software
stack allows the integration, monitoring, and management of
many QKD systems within the infrastructure regardless of
the specific vendor and technology. In addition, we designed
and implemented a QKD simulator that could serve both as
a low-level testing device and as an independent software
module to test QKD protocols. In the end, we analysed a
testing scenario in which we reproduce the exchange among
two different nodes using the aforementioned QKD simula-
tor. In this scenario, we also tested the performance of our
simulation platform and proposed possible enhancement.

We report in the following the remaining structure of the
paper. Section II provides a background on the technolo-
gies that we adopted and widely mentioned in the paper.
Section III discusses the threat model of a softwarised
infrastructure, mainly with respect to secure communica-
tions. Section IV describes the high-level architecture of
our solution. Section V presents the implementation of the
QKD module. Section VI describes the Quantum Key Server.
Section VII provides further details about our QKD sim-
ulator. Section VIII explains the results of our testing and
validation process. Section IX presents some work related
to Quantum Networks, QKD, and quantum technologies in
softwarised infrastructures. Section X discusses the achieve-
ments presented in this paper and possible future work.
Finally, the appendices contain a description of the BB84 and
E91 QKD protocols (Appendix A), our framework’s APIs
(Appendix B) and illustrates our software stack’s complete
workflow showing further details on the interaction among
different components (Appendix C).

Il. BACKGROUND

To completely understand this work’s essence, we provide
an overview of QKD, softwarised infrastructures, and ETSI
QKD GS specifications.

A. QUANTUM KEY DISTRIBUTION (QKD)

Quantum communication and quantum networks are top-
ics of utmost importance for the future of the Internet and
classical communication. Several papers [3], [4] show how
a Quantum Internet will work alongside the classical one
over the foreseeable future. The main idea is to leverage
quantum phenomena (such as entanglement) to design and
implement algorithms and protocols that do not have classical
equivalents.

115271

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

Quantum Cryptography is a Quantum Communication
branch and involves algorithms and protocols that could be
applied, depending on the specific case, to protect either
quantum or classical communication. The most suitable
example is QKD.

This technique leverages quantum phenomena to exchange
keys among different parties with Information-Theoretic
Security [5]. QKD strongly relies on a quantum channel that
allows many peers to exchange qubits encoded generally
as photons. Beyond the quantum channel, QKD protocols
rely on a public authenticated classic channel to exchange
out-of-band information necessary to coordinate peers dur-
ing the exchange. Roughly speaking, there are two main
classes of QKD systems: discrete-variable QKD (DV-QKD)
and continuous-variable QKD (CV-QKD). In the first type,
encoding and decoding are performed leveraging qubits or
other quantum systems with finite-dimensional Hilbert space.
For this reason, it is also called qubit-based QKD. In CV-
QKD, instead, keys are encoded in quadratures of the quan-
tised electromagnetic field and decoded by coherent detec-
tions [6]. This kind of detection is beneficial in modern QKD
implementations because it is compatible with existing tele-
com equipment and shows high detection efficiencies without
the requirement to provide cooling [1]. This paper discusses
only a subset of DV-QKD systems for the simulator part since
their implementation is more straightforward with our current
framework. In the future, we aim to extend this work also to
CV-QKD. Regarding the software stack, that part is agnostic
to the class of QKD adopted; moreover, we see in that context
the QKD as a “black box’.

So far, many DV-QKD protocols have been proposed.
Some well-known DV-QKD examples include BB84,
E91, SARG04, BBM92, and COW [5] (whereby COW
belongs to a special class, sometimes known as dis-
tributed phase-reference pulse [7]). We could classify
them into distinct categories depending on the adopted
scheme: prepare-and-measure, entanglement-based, and
Measurement-device-independent QKD (MDI-QKD). The
first scheme involves only two actors (Alice and Bob), one
preparing the qubits sent to the second, which performs the
final measurements. The other two schemes involve three
modules: Alice, Bob, and Eve. Eve is a third-party module
used as an untrusted entangled-pairs sender in entanglement-
based protocols and an untrusted receiver in MDI-QKD.

Appendix A presents two protocols falling in the two
first categories: BB84 (prepare-and-measure) and E91
(entanglement-based). In section VII, we show how we
implemented both protocols in our QKD simulator. We chose
these two protocols as they are the most employed for basic
experiments on QKD and serve as representatives for two
relevant QKD approaches. It is also worth mentioning that
companies such as ID Quantique’ and Toshiba® already com-
mercialise devices that allow performing point-to-point QKD

7https://www.idquantique.com
8https://Www.toshiba.co.jp/qkd/en/products.htm

115272

(e.g., Cerberis XG). In particular, Toshiba’s latest product
runs BB84 in its decoy-state version.

The security definition for the QKD is available in [8], [9].
This is a composable security definition that is rigorously
stated and widely accepted. Several composable security
proofs are available ([1], [5], [10], [11]) for both DV-QKD
and CV-QKD.

QKD protocols assume authentic classic channels to prove
security. By virtue of the composability of the QKD pro-
tocols, one can employ composable Information-Theoretic
Security (ITS) authentication for this channel with 2-
universal hash functions [12]. Moreover, one could adopt
an efficient authentication scheme using 2-almost strongly
universal hash functions. This will ensure the final secu-
rity parameter epsilon by the composability statement of
the respective security proofs of QKD and ITS authentica-
tion [13]. This parameter shows that the key is epsilon-close
to the ideal one. In the rest of the paper, we introduce alter-
native authentication mechanisms (sections VII and VIII).
From a practical perspective, however, no attack is known
or conceivable to break them, while, these methods are
more flexible in a cloud environment scenario. For instance,
in several cases of PQC, no shared secret is required and in
the foreseeable future we might also leverage the so called
Post-Quantum PKI [14].

Besides the point-to-point QKD, where only two peers
share a quantum channel, some scenarios involve an entire
network, namely a QKD network. This ensemble of nodes
could exchange keys with each other, regardless of their posi-
tion within the network. Two main strategies could be adopted
to manage endpoints in a long-distance scenario: using
trusted or quantum repeaters. In the first case, the assumption
is to have intermediate trusted nodes that leveraging point-to-
point communications build a chain that starts from the source
and ends with the destination endpoint. The second strategy
involves the usage of quantum repeaters based on entangle-
ment swapping. This drops the hypothesis of using trusted
repeaters and allows secure end-to-end exchanges. In this
case, the endpoints verify the presence of an eavesdropper
without assumptions on the repeaters.

B. QISKIT

Qiskit? is a Python framework that allows to work with quan-
tum computers in terms of quantum circuit simulations, algo-
rithms, and pulses. This framework allows to both simulate
quantum circuits locally or submit jobs to IBM Q backends.'?
The main Qiskit elements are:

o Terra: this is the basis for all the other Qiskit compo-
nents. It provides a layer for developing quantum pro-
grams by means of quantum circuits or pulses, a module
for circuit optimization also according to specific device
constrains, and interfaces to both facilitate the end-user

9https //qiskit.org
lOhttps://WWW.ibm.com/quantum-computing/

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

experience and to access to diverse backends for simu-
lation or execution on real devices.

e Aer: it provides an high-level performance quantum
circuit simulator which could be used to simulate the
circuits compiled using Terra. This is useful to quickly
test and verify the functionalities of the designed quan-
tum circuits. It also contains configurable noise models
to perform realistic noisy simulations of the errors occur-
ring on real devices.

o Ignis: it is a module which provides tools to better
characterize errors and run circuits in presence of noise.
It has been designed for working on quantum error
correction codes.

o Aqua: this module contains algorithms that could be
used in different domains (e.g. Al, Chemistry, finance).
Aqua allows to analyze the benefits of using quantum
computing in the respective domains and build cus-
tomized solutions on top the proposed algorithms.

This framework is mainly adopted for simulating quantum
algorithms and circuits. In our case we could leverage a quan-
tum circuit representation of the QKD phases for simulation
purposes.

C. ETSI QKD GS

The ETSI has a specific working group for the standardisation
of QKD technologies: ETSI GS QKD.!! The related stan-
dards collect many specifications regarding hardware devices
and software interfaces needed to implement QKD systems
and networks. Here a list of the specifications of interest for
this paper:

o ETSI GS QKD 004: this specification on “Application
Interface” [15] defines a standard API to interact with
QKD devices. Moreover, a preliminary high-level archi-
tectural view of a QKD network site is provided.

o ETSI GS QKD 014: the “Protocol and data format of
REST-based key delivery API” [2] specification defines
a standard REST API that could be used by high-level
security applications to request keys to a Key Man-
agement Entity (KME). The latter is a software layer
between the security applications and the QKD devices.
The KME within a specific QKD network site manages
key exchanges and coordinates with other KMEs within
the same network.

D. SOFTWARISED INFRASTRUCTURES
The expression “‘softwarised infrastructures” indicates all
modern infrastructures that strongly rely on virtualisation
technologies and allow the adoption of paradigms such as
Cloud, Edge, and fog computing, NFV, and IoT. Nowadays,
many virtualisation technologies are adopted depending on
the specific use case and the service model that has to be
offered.

A recent trend in application development proposes to
divide them into smaller components, namely microservices.

1 https://www.etsi.org/committee/qkd

VOLUME 9, 2021

These microservices could be deployed using lightweight vir-
tualisation technologies such as Docker, Podman,!? or cri-o!3
that run them in isolated environments called containers.
Containers and the related application components can com-
municate with each other using a TCP/IP network. We refer
to the applications running on such environments as cloud-
native. To deploy and manage containers, an orchestration
container platform (e.g. Kubernetes!#) is usually adopted.

Regardless of the virtualisation technology, applications
running on infrastructures may require exchanging crypto-
graphic keys for different security protocols. Simple exam-
ples could be Transport Layer Security (TLS) for building
a secure channel among two applications or Internet Key
Exchange (IKE) in the scope of Virtual Private Networks
(VPNG5). As they may rely on RSA and Diffie-Hellman (DH)
for the key exchange, TLS and IKE could be compromised by
the advent of Quantum Computing and, in particular, Shor’s
algorithm.

lll. THREAT MODEL

Most public-key cryptography (PKC) schemes are based on
the assumption that some mathematical problems are com-
putationally intractable for present computers (e.g. prime
number factorisation in RSA). Quantum computers (QCs)
break this assumption, making such problems “easy”, i.e.
reduce the mathematical problems to polynomial com-
plexity (for example, RSA can be attacked by exploiting
Shor’s algorithm). Less groundbreaking, but still a significant
risk-incrementor for symmetric-key cryptography, is the QCs
capability to investigate a 2" large solution space in 2(/2)
steps.

A softwarised infrastructure is composed of many virtual-
isation actors and agile deployment components (e.g. hyper-
visors, orchestrator, containers) that interact in a complex
manner and can be the target of attacks (both in terms of
single components and the communication channels among
them). A large amount of mitigations to those attacks is based
on authentication and confidentiality countermeasures, often
based directly or indirectly on PKC and public-key infras-
tructure (PKI). Assuming that QC is available, no softwarised
infrastructure can longer rely on traditional PKC since private
keys based on standard algorithms would become vulnera-
ble and insecure. The core point of the QKD is to provide
Information-Theoretic Security to the process of key dis-
tribution, allowing robust security even after the advent of
practical Quantum Computers.

For the inner nature of QC, a QKD based on quantum cryp-
tography is particularly prone to Denial-of-Service (DoS)
attacks. If an exchanged key exhibits an error rate above a
specific threshold over an ideal channel, this shows an eaves-
dropping attempt. A robust security strategy is to discard the
key and re-do the exchange. Thus, for an attacker would be

lzhttps://podman.io
13https://cri—o.io
14https://kubernetes.io

115273

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

sufficient to “read” the exchange to deny the service. While
some amount of DoS possibility is accepted in almost any real
case (e.g. any local wireless communication can be drastically
reduced by pretty cheap and easy to buy WiFi jammers),
a robust architecture must address this aspect by appropriate
countermeasures, e.g. the presence of Intrusion Detection and
Prevention systems to identify and isolate the attack source.

Even if the adoption of QKD provides in principle
Information-Theoretic Security, implementations can violate
theoretical assumptions; thus, many developed QKD systems
suffer security flaws. The architecture we propose is agnos-
tic to the practical realisation of the Quantum devices. So,
while we do not discuss real device problems, we advise that
theoretical key strength must be supported by robust secu-
rity implementations. In particular, a large body of literature
exists to analyse real device weaknesses, as well as how
to manage practical imperfections to remove physical side
channels [5].

Apart from the core threat to the involved cryptography,
a softwarised infrastructure still suffers from other common
key management and use issues. Typical key weaknesses
involve scarce entropy (the key is not long enough and/or
has been generated by a poor RNG), inappropriate re-use,
both in terms of use in multiple scenarios and encrypting a
large amount of data (since it jeopardises forward secrecy and
increases brute-force attacks and key-relevant information
leakage likelihood), insecure storage (obviously on Hard disk
but even in device RAM, since in the absence of countermea-
sures even central memory could be accessed with well know
vulnerabilities like, for example, Heartbleed and Spectre).

We assume in our solution the presence of either a True
Random Number Generator (TRNG) or a Quantum Random
Number Generator (QRNG) able to provide random numbers
with a high source of entropy. As in the previous point, a prac-
tical implementation of these modules may suffer security
flaws, but this is out of the scope of our research.

Key re-use in our architecture is treated flexibly. Since
we propose different options, according to the scenarios,
an appropriate security policy should be implied, guarantee-
ing an appropriate lifetime for the derived keys, as it happens
in nowadays organisations. OSs and applications may suffer
from implementation flaws, but again this is out of the scope
of our investigation.

Even if robust QKD is involved, a key might still be
compromised (e.g. due to an implementation defect), so a
procedure to destroy it (i.e., securely delete the key and its
traces beyond recoverability) should be available. This last
aspect can be challenging since it conflicts with the need of
logging the key lifecycle to identify possible breaches and
apply revoking and destruction options, as well as foren-
sics investigations. The adoption of QKD for generating the
master secret to derive cryptographic keys does not change
this aspect, which is a matter of the adopted organisational
policies.

Finally, to counter insecure access to the key store, Key
access must be limited on a need-to-use basis, complemented

115274

by separation-of-role based access control (e.g., an entity that
uses a key should not be the entity that stores that key). Key
recoverability after accidental loss must be assured through
secure backup and recovery solutions in place. Best practice
suggests internal custody of keys (or service at a provable
similar security level), managed by central key storage tech-
nology. This key aspect in our architecture is managed by the
Quantum Key Server, a flexible component that can adopt
different configuration to adhere to organisational security
policies, such as log level and adopted QKD protocols, and
is flexible enough to exploit different existing secure secret
manager (like Vault, in the concrete testbed described in this
article).

IV. QKD SOFTWARE STACK HIGH-LEVEL ARCHITECTURE
The main goal of our architecture is to facilitate the adop-
tion of QKD in software infrastructures (e.g., cloud envi-
ronments). Developing the software stack depicted in Fig-
ure 1 brings this purpose closer. In particular, the problem
of exchanging keys among two cloud instances or services is
mapped in four logical layers and components:

o QKD device: this represents the QKD physical device
capable of running QKD protocols on a real or simulated
quantum channel. Since we designed and implemented
a simulator for QKD that could be integrated into our
software stack, this paper also refers to the previous level
as “QKD simulator™.

o« QKD Module (QKDM): this level is an abstraction of
the low-level QKD device and it provides a standard
interface to interact with different apparatuses. Regard-
less of the technology used to implement the QKD, addi-
tional functionalities are provided to monitor, manage
and use the underlying devices.

o Quantum Key Server (QKS): at this level, the QKD
management across different nodes takes place. In par-
ticular, coordination is required among different QKSs
to establish the key exchange process among distributed
infrastructures. QKS provides an interface to high-level
security applications that require cryptographic keys and
selects the best path to follow in scenarios where there
are several nodes between the two endpoints of the key
exchange.

o Security Application Entity (SAE): this is the higher
level and represents the security applications willing to
use the QKD for specific purposes (i.e., to setup a VPN).

This architectural framework is compliant with the ETSI
specifications [2].

Let us consider a point-to-point QKD connection; two
infrastructures may be equipped, as in Figure 1, with QKD
devices that are able to exchange keys at a specific rate. Those
devices have to share a quantum and a classical authenticated
channel to carry out a QKD protocol. In our architecture,
the QKD device (or Simulator) identifies the physical system
and the QKDM an abstraction for operating it.

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

Infrastructure A

Infrastructure B

Security Security
Application Application
Entity (SAE) Entity (SAE)

Quantum Key Server

Security Security
Application Application
Entity (SAE) Entity (SAE)

~~

Northbound Interface

Quantum Key Server

(QKs)

QKD Module QKD Module

(QKs)
TN

Southbound Interface

QKD Module QKD Module

(QKDM)

(QkDM™)

(QKDM) (QKDM)

QKD device QKD simulator

——— TCP/IP secure communication = Quantum Channel

FIGURE 1. QKD software stack architecture.

If we switch to a more complex scenario, where a complete
QKD network is in place, then we need to manage several
aspects regarding the coordination of this network. More-
over, we must provide mechanisms to efficiently store the
exchanged keys, routing functionalities to allow the exchange
among each possible SAE combination, and monitoring
mechanisms to log relevant events of the QKD-system life-
cycle. Here comes into play the QKS. Each infrastructure
shall expose at least one QKS, which represents the central
management unit of the QKD systems.

SAEs running on top of the infrastructure can only see the
QKS as a component, which from their perspective provides
QKD-as-a-Service. They are able, in fact, to exchange quan-
tum keys with all the other peers within the QKD network.

The underlying QKD network topology can vary based
on low-level infrastructural choices. Two typical adopted
schemes are switched QKD and trusted repeater net-
works [16]. In a switched QKD network, we typically find an
SDN controller dynamically adjusting the paths among the
endpoints (QKD devices). As an alternative, a network with
trusted repeaters creates a chain of intermediate trusted nodes
that must be traversed to perform the exchange. Regardless of
the topology, the assumption is that every device leverages
a quantum and a classical channel to carry out the QKD
protocol.

If physical devices support more than one connection at a
time (i.e., multiple quantum channels), then we could asso-
ciate more than one QKDM to the same device. The basic
idea is to have an abstraction where a QKDM pair identifies a
single keystream over a quantum channel. Those keystreams
and QKDMs can be efficiently operated by a QKS in charge
of deciding when a key exchange has to start, stop, and keys
must be retrieved to the higher-level applications.

VOLUME 9, 2021

QKD simulator QKD device

Public authenticated channel

We identified two primary interfaces in our architecture:
the Northbound Interface and the Southbound Interface.
These allow, in turn, SAEs-QKS and QKS-QKDMs commu-
nication.

In sections V, VI, and VII, we provide a more
detailed description of the software stack’s subcomponents.
In Appendix C, we describe in details the interaction among
them.

A. SCENARIOS
This section clarifies the potential applications of our soft-
ware stack as well as the assumptions and limitations of
the current solution. Our software stack is currently com-
posed of a set of Docker containers deployable on a software
infrastructure through Docker Compose. As a matter of fact,
our software is a lightweight cloud-native application that
could be deployed even on minimal infrastructures (i.e., edge-
, fog- computing and IoT scenarios). This allows within that
infrastructure to manage QKD as a cloud service, requiring
keys on-demand (from a security application perspective).

Clearly, the end-user of this service is a SAE inside the
infrastructure. Likely, a security application requires the keys
derived from the QKD to set up a secure channel with another
SAE in the same QKD network. This process may leverage
protocols such as TLS and IKE [17]. These protocols must
be adapted to be enhanced by QKD, and our solution could
simplify this process by providing a manageable way to
access the keys. Even in this case, the arbitrary mixture of
these protocols with QKD must be carefully handled from a
security point of view (section II).

An even more suitable use case is integrating our software
stack in Infrastructure-as-a-Service (IaaS) platforms such as

115275

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

OpenStack! or container orchestrator such as Kubernetes.
As in the OpenStack case, this type of platform already
manages secrets, keys, and certificates leveraging some of its
specific services (e.g., Barbican16). In addition, utilities such
as VPN-as-a-Service are available in the scope of OpenStack
to create site-to-sitte VPN with other data centres. These
utilities are integrated with Barbican to simplify the manage-
ment of the cryptographic material required by the protocols
(e.g., IKE).

A reasonable idea could be to integrate our software stack
in the scope of these platforms and provide a way for those
utilities to leverage QKD-exchanged keys directly. This kind
of integration is feasible and straightforward due to the sim-
plicity and modularity of our architecture.

The assumptions and the limitations of the current soft-
ware, such as the available authentication mechanisms, are
described in the following Sections V, VI, and VII.

In the end, our solution allows for various integrations and
usages regardless of the size of the infrastructure and the
specific context as long as we are in the scope of software
infrastructures.

V. QKD MODULE

In this section we start describing the high-level software
stack for QKD integration in a softwarised infrastructure. The
QKD module is an abstraction within an infrastructure aiming
to provide a standard communication method with quantum
devices. As we will see in section VII, the QKD node is the
entity that maps within our solution the physical device (or
simulator) that enables the QKD low-level exchange (e.g. ID
Quantique Clavis®). In our paper, we use the QKD simulator
to provide a complete solution without relying on physical
devices. The role of the QKD Module is to act as a wrapper
for the QKD node, exposing the standard API compliant
to the ETSI QKD standard [15], and providing high-level
functionalities to the upper layers such as retrieving a key
exchanged with low-level devices. In our solution, the partic-
ular implementation and the vendor-specific devices adopted
do not change the interaction between the QKS and the
QKDM. In the following, we have a description of the APIs
that shall be exposed, and the methods that have to be imple-
mented/overridden to provides the functionalities expected
from the quantum devices. We implemented a template of
QKDM according to this strategy and provided a GitHub
repository!” that could be forked to implement a new QKDM
for a specific device. The idea is that each device or simulator
has its own QKDM, but the effort to implement it consists of
overriding a few methods that we describe in the following.
QKDM has been designed following modern cloud-native
paradigms for developing applications and the Docker con-
tainer technology. This simplifies the integration of QKDM
component within the scope of cloud-native infrastructures

15 https://www.openstack.org
16https://wiki.openstack.org/wiki/Barbican
17https:// github.com/ignaziopedone/qkd-module.

115276

QKD Module *
| QKs

4 i N

Southbound Interface]

Key Sync QKDM
Manager Interface

QKD Node
—
Simulator | web Public
Core Server authenticated
F channel
(Qiskit) (Flask) S "
Quantum
Channel
\ J

FIGURE 2. QKD module architecture.

(e.g. Kubernetes). A complete description of the QKDM APIs
is available in appendix B-A.

A. ARCHITECTURE

As depicted in Figure 2, the QKDM architecture is composed
of four different submodules: QKD node, Key manager,
Sync interface, and Southbound interface. In this architecture,
we also integrated the quantum device simulation part, which
in Figure 1 is indicated as the QKD simulator. This provides
a complete understanding of how the QKDM could interact
with the underlying components.

The QKD node represents the quantum device. In this
paper, this component is precisely the one described in
section VII and includes a core component (for QKD pro-
tocol simulation) and a REST interface to communicate with
the other QKD nodes during the exchange (i.e. for the key
sifting process). In a real use case scenario, the communi-
cation among devices and the implementation of the proto-
cols strictly depend on the adopted technology. In that case,
we could treat the QKD node as a black box with a provided
interface.

The core component of the QKDM is the Key Manager,
which is in charge of mapping the requests coming from
the Southbound Interface to the instructions for the QKD
node. It is also in charge of managing keys coming from the
exchange process, typically relying on resources provided by
the QKS (e.g. Vault in section VI).

The Southbound Interface is in charge of providing the
communication among QKS and QKDM. This interface
exposes the REST APIs proposed by the ETSI GS QKD
004 [15], especially the first three in table 3.

In the end, the Sync Interface is a set of REST APIs for
the synchronization among different QKDM during the key
exchange.

VI. QUANTUM KEY SERVER
As described in section V, QKDM is an independent compo-
nent capable of managing the process of key exchange within

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

anode. In principle, an infrastructural node only requires this
module for integrating point-to-point QKD. Indeed, in our
solution, besides the exchange process the QKDM can store
the collected keys in a specific secret engine provided by
Hashicorp Vault. The only requirement is for a SAE to have
access to this engine and get a new key.

Unfortunately, this might not work in complex infras-
tructures where different SAEs requires sharing QKD keys
exchanged with one or more different destinations. Because
of this, a software layer is required between SAEs and
QKDMs allowing to centralise the management of the
exchange process, the key storage, the destination discovery,
and the evaluation of the shortest path to reach them. This
module is the QKS.

ETSI [2] focuses on the final security applications and
foresees a strict binding among two SAEs belonging on two
different nodes. This means that once a key exchange is
required and communication among two QKDM takes place,
a key stream is created and only the two involved SAEs
could access it to get keys. The role of the Key Server is to
facilitate this binding and managing the start and stop of the
key exchange process.

Considering the complexity of softwarised infrastructures
and their requirements in term of flexibility, our solution
adopts a different approach. Even if we maintain most of the
logic regarding the interactions among the entities, the inter-
faces and part of the data model, we change to some extent
the role of the Key Server and design our QKS.

Our QKS acts similarly to a SAE in the sense that it is the
one in charge of deciding whether or not a specific stream
should be created and is the conceptual final “endpoint™ of
all key exchanges towards the node, albeit it is still in charge
of the management of the exchange and the coordination
with the other QKSs. In our solution, the QKS is a sort of
middleware, which collects all the keys coming from all the
destinations and provides them to all the registered SAEs,
regardless of the binding that could happen between two
specific SAEs. This allows to continuously exchange keys
among QKDM point-to-point connections over the QKD
networks and potentially use those keys for each SAE-to-
SAE pairs over the same physical link. This is a relevant
advantage for a virtualised scenario in which keys could be
easily delivered among different virtual instances.

QKS has also been designed as a cloud-native application,
which could be efficiently integrated into a modern infras-
tructure scenario. The interaction with the QKDM is pivotal.
Indeed, QKS could support different QKD modules that shall
register to it before starting any task. It is also the case of
the SAEs that must be authenticated and authorised before
accessing the key server and request any key. Further details
on the interaction among all the components are in appendix
C. In the following, we describe the architecture of the QKS.

A. ARCHITECTURE
As depicted in Figure 3, the architecture of QKS is composed
of three interfaces and four main components as follows:

VOLUME 9, 2021

[Northbound Interface (ETSI GS QKD 014 Extended)]
Keycloak :‘_L'|
(1AM)
Vault External
QKSs
(secret « AR SBty | Interface |« >
T (core component) (QKS-t0-OKS)
-)
Database = d
[Southbound Interface (ETSI GS QKD 004 Extended)]

'y

QKDMs
v

FIGURE 3. Quantum Key Server architecture.

o Northbound interface: this is the interface towards the
SAEs and provides these with an extended version of the
ETSI API to query the QKS. This is mainly involved in
the process of requesting keys from the SAEs.

o Southbound interface: this is the interface that allows
the communication between the QKS and the QKDM.
As reported in section V, this interface is mainly imple-
mented on QKDM side. Nevertheless, this interface is
bi-directional and also QKS exposes some calls to serve
the QKDM.

« External interface: this interface serves as a synchro-
nisation interface among QKSs. It is pivotal for sharing
information such as the KSID and routing information.

« QKD manager: this is the core component in charge
of providing all the core functionalities such as serv-
ing Northbound Interface requests or registering new
QKDMs. This is also involved in the process of key
aggregation to serve multiple keys of an arbitrary length
to the upper layer.

« Keycloak'® (IAM): this is an additional component
that is useful in scenarios where the number of SAEs
and QKDM is large. Keycloak provides IAM function-
alities that allow to authenticate and authorize SAEs
and QKDMs. This is useful for both Northbound and
Southbound Interfaces and could be easily extended for
the External Interface as well.

o Vault'® (secret mgmt): this is a secret management tool
by Hashicorp which provides a flexible and scalable way
for managing secrets. This tool allows the creation of
separated secret engines (one for each QKDM), where
the keys could be stored.

« Database: this component is used to store information
regarding the whole QKD exchange process, the regis-
tered QKDMs, and the QKD protocols supported.

18https://www.keycloak.org
19https://www.vaultproject.io

115277

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

For the authentication and the authorisation of the South-
bound and Northbound interfaces, we use Keycloak and
OpenID connect. For the interaction among different QKSs
we have not implemented those mechanisms yet. We could
easily extend the Keycloak solution also in the case of the
External Interface. The point is that, in a ‘“quantum sce-
nario”’, the communication over a secure channel within a
QKD network should be protected with a quantum-resistant
set of algorithms and protocols. Thus it is not just a matter
of authentication and authorisation, but we aim at building
quantum-resistant secure channels among them. We explored
different possibilities that we would like to integrate with our
solution. The first that we considered is to integrate post-
quantum algorithms, such as SPHINCS™ and NTRU, to build
a secure TLS channel among QKSs. In addition, the authori-
sation part could still be performed using Keycloak. Another
solution that we have lies in adopting TLS-PSK, which could
be used in combination with the QKD keys already generated
at the lower level. This envisions the QKS acting as a special
SAE and able to require specific keys for the communication
with other QKSs.

Even the communication within the infrastructure, among
the different layers (i.e. QKS vs QKDM) has to be protected.
According to ETSI GS QKD 014 [2] that communication
could rely on the classical TLS v1.2 as a minimum require-
ment. We disagree on this, envisioning that in quantum sce-
nario also the communication within the infrastructure should
be protected with quantum-resistant approaches. In addition,
it is not mandatory that the QKS has to be deployed on the
same physical node as the quantum device, and this leaves
room for other attack strategies. Our idea is to integrate
within the infrastructure a secure communication mechanism
based on post-quantum cryptography in order to completely
overcome the aforementioned issue.

In Appendix C, we clarify other aspects regarding the
interaction among all the components of our solution. The
QKS’s code is available on GitHub.?® This implementation
is completely based on a cloud-native approach and leverages
Docker technologies. Each subcomponent has been modelled
as a separate Docker container. To provide an effortless
deployment, we additionally defined a Docker Compose?!
descriptor. In the end, we also describe the QKS APIs in
appendix B-B.

VII. QKD SIMULATOR

To consistently test our solution and provide a different
approach to the simulation of QKD protocols, we designed
and implemented the QKD simulator described in the follow-
ing. The current version of this software is at its early stages
and provides the minimum functionalities for testing two
QKD protocols: BB84 and E91. Even though the low-level
simulation part has to be enhanced, our design principles
allow to extend and scale our simulator providing all the

20https ://github.com/ignaziopedone/qkd-keyserver
21 https://github.com/docker/compose

115278

required capabilities to become a full-fledged QKD simula-
tor. In principle, it could also be extended to simulate proto-
cols beyond QKD in the broader field of Quantum Networks.

The high-level QKD simulator architecture is depicted
in Figure 4. All components have been designed as inde-
pendent Docker containers. This allows them to run in
lightweight virtual instances and communicate over classical
TCP/IP networks with the others. Using Docker technology
as Container Runtime (CR) provides an effortless way to
scale the simulation across different infrastructural nodes.
Thinking of this solution as being deployed on a Kubernetes
cluster quickly arranges a way to test complex QKD network
scenarios.

The main QKD simulator components are:

o QKD node: this is the component that models the QKD
device. In the QKD scope, this is one of the parties
involved in the key exchange (e.g. Alice, Bob). The
QKD node is equipped with all the software capable of
simulating the qubit encoding as well as the operation
on the quantum states. It provides mechanisms to seri-
alise qubit-related data and communicate with the other
components over a TCP/IP network.

o Quantum channel and Eve: this entity is a particular
QKD node, which includes the same underlying soft-
ware for the quantum simulation, but it is designed to
reproduce the specific effects of certain entities acting
on a quantum channel (e.g. noise, eavesdroppers). It acts
on the qubits encoded by QKD nodes leveraging the
specifically chosen representation.

« Entanglement pairs generator: the latter provides
pairs of qubits that are maximally entangled and still
compliant to the chosen representation. This is useful
within the scope of entanglement-based protocols.

o QKD Simulator Manager: this manager implements
a central management unit that collects data about the
simulation and gives a handy interface for triggering
protocol simulations or configuring QKD nodes. Both
command-line and graphic interfaces have been pro-
vided, even though they are at their early stages.

To replicate quantum phenomena and develop the under-
lying software to simulate qubit encoding, manipulation and
measurement, we use Qiskit (section II). The basic idea is to
leverage State Vectors (SVs) for the qubit encoding process
and Quantum Circuits (QCs) to simulate the evolution of
these SVs following the interaction among Alice, Bob, and
Eve. In our scope, the first two act as parties involved in the
key exchange and the last one acts as an eavesdropper on
the quantum channel. Regardless of the specifically selected
protocol, we discuss some aspects of our simulation platform.
Afterwards, we present the implementation of both BB84 and
EO91 protocols.

The first interesting common aspect concerns the qubit
encoding. In particular, we used the Statevector class to
create an ensemble of qubits. This class allows to initialise
the qubit vector with specific values (e.g. |00000)), provides

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

QKD
node

Alice

2 £

= ~

Container Engine

FIGURE 4. QKD simulator high-level architecture.

a method to evolve its state according to a supplied quantum
circuit, and a method to measure the final state. These are
three macro operations required to simulate all we need for
QKD protocols.

Another crucial feature is each component’s ability to com-
municate over a TCP/IP network for exchanging quantum and
classical data. The idea is to serialise SVs objects and send
them over a classical network, using HTTP at the application
level. For this purpose, the pi ck 1e Python module for object
serialisation has been used. Once an SV object has been seri-
alised, we could embed it into the body of an HTTP request
and send it to another entity within a QKD network. This pro-
cess applies to all the communication that require quantum
bits exchange within our simulated network. In our solution,
we leverage Flask?? web servers to expose REST-based API
that could be used to communicate among peers. The use
of HTTP and Flask web service is not mandatory and could
be easily changed in the future, making room for a custom
application-level protocol.

As depicted in Figure 4, all the communication among
parties are mediated - see Alice and Bob - by an entity rep-
resenting both the quantum channel and a possible attacker.
This is because, directly on a TCP/IP network, we can nei-
ther simulate the quantum effects acting on transmission nor
manipulate the qubits as an attacker over a quantum channel.
Because of this, we proposed a new entity - Quantum Channel
and Eve - that could apply those effects on quantum bits.
Undoubtedly, this strategy could be extended by adding dif-
ferent intermediate nodes between Alice and Bob and make
them affecting the qubits arbitrarily. The only capability that
both QKD nodes and these ‘“‘special nodes” have to share

22https://ﬂask.palletsprojects.com/en/2.0.x/

VOLUME 9, 2021

a QKD Simulator
S manager

Entanglement
pairs generator

docker

Docker container

Docker + E
Qiskit framework i

Bob

@ Docker + Qiskit +

g
‘-;-, Quantum channel + Eve

Public auth channel

(Key sifting)
____., Entanglement pairs 1
exchange '
— Encoded qubits 1

is a standard communication method leveraging an identical
qubit representation.

In Section II, we claim that, regardless of the protocol that
we adopt, we do need a public classical channel to exchange
additional information during the QKD process. This channel
has to be authenticated, and the technique that we use to
perform this task should be flexible and scalable to fit real
distributed use case scenarios. We proposed and implemented
two different strategies: using SPHINCS™, a post-quantum
algorithm, or AES with Galois/Counter Mode (AES-GCM)
authenticated encryption. The first solution requires signing
the messages exchanged over the public channel. This is a
highly flexible approach since it does not require pre-shared
secrets among Alice and Bob, but only to know the pub-
lic key of the counterpart. Some efforts are going towards
a new “‘Post-Quantum PKI” which involves post-quantum
X.509 certificates, giving a scalable solution to the authen-
tication problem. The downsides are that it still relies on
computational assumptions and post-quantum algorithms -
including SPHINCS™ - are not standardised yet. Fortunately,
the authentication has to be granted only during the QKD
exchange process, meaning that no sensitive information
about the key could be extracted from data stolen from the
public channel, and no attack could be performed using that
information aftermath.

The second option involves the usage of an encrypted
and authenticated channel through AES-GCM. This could be
done using a pre-shared key between the parties that could
be rotated using a portion of the key exchanged during the
QKD process. Under the assumption of adopting a certain key
length, this solution is also quantum-resistant, but it needs
initial pre-shared secrets and a priori knowledge of those
secrets among parties. In addition, this solution is vulnerable
to DoS attacks. Indeed, if an attacker makes the exchange

115279

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

process continuously fail, the parties will consume all the
pre-shared key material, leading to a denial of service. This
could be mitigated by a fallback strategy in which, when that
happens, instead of using a pre-shared key, a new secret could
be obtained by using public-key cryptography.

The QKD simulator manager is in charge of monitoring
and managing the key exchange process. Exposing both a
CLI and a GUI, this module is able to trigger the exchange
process between parties, set the parameters of this exchange
(e.g. protocol, key length, eavesdropper presence) and show
the simulation results. In principle, this component could
be used as an orchestrator for the whole reproduced QKD
network. This means it could potentially add new nodes and
configure them. The current version is still at an early stage
and only allows to manage Alice and Bob’s exchange with
the two supported protocol. Nevertheless, considering the
adopted technologies, the simulator manager’s improvement
towards those features is not too ambitious.

A QRNG simulation module has been included within
the QKD node. This allows reproducing the generation of
random bits for the key to be exchanged. The module has a
straightforward implementation consisting of a circuit acting
on a quantum register that is initialised to |0). Applying a
set of Hadamard gates to this register (H®"), where n is the
number of qubits, the evolution of the circuit results in n
qubits in the state (|0) + |1))/«/§ = |4). If we measure all
these qubits in the computational basis, we get either 0 or
1 with a 50% probability: we obtained the QRNG. Since
this module consistently affects the whole system in terms
of performance, we also foresaw an option that allows using
a classical pseudo-random number generator.

The last global consideration is according to the extension
of our simulator to support other protocols. The current ver-
sion of our software provides the abstract QKD class with the
following methods that could be overridden:

e begin: this initialise the connection among two QKD

nodes;

« exchangeKey: this starts the key exchange;

« end: this closes the connection among the nodes.

Maintaining all the features regarding the communication
and the underlying Qiskit framework, it is possible to create
a new version of our simulator that support other protocols
simply overriding those methods.

Moreover, we are not even tied to the framework that we
use for the simulation. Indeed, we could also extend the
QKD node to support various frameworks, for instance, using
the ones cited in section IX. Afterwards, depending on the
protocol and the simulation requirements, it is possible to
leverage the most suitable libraries for the specific implemen-
tation. For the sake of simplicity, we provided a Docker image
on Docker Hub?® with all the current underlying software
required by the QKD node. This image could be used to
deploy several QKD nodes and run the code related to the spe-
cific protocol simulation. Extending the simulator adopting

236n hub.docker.com: ignaziopedone/qkd:simulator-1.2

115280

other frameworks could be achieved by extending this Docker
image. On a side note, it is reasonable to leverage diverse
orchestration platforms for deploying that image and creating
an arbitrary simulated QKD network. For this specific pur-
pose, we automated our solution’s deployment using Docker
Compose. The QKD simulator’s code and documentation are
available on GitHub.>*

A. BB84 IMPLEMENTATION

In appendix A, we give a general description of the BB84 pro-
tocol. Now we discuss how it is possible to implement it
with Qiskit. We assume that the architecture is the one
depicted in Figure 4 and Alice and Bob are the parties wishing
to perform the QKD. To simulate both quantum channel
and Eve’s attack, all traffic has to pass through the con-
tainer that applies those effects. Each container has a single
interface on the overlay network provided by the Container
Runtime. The two types of traffic - for both public and quan-
tum channel - reach this interface when two nodes need to
communicate.

Starting from these assumptions, a key exchange could
start when one of the parties (assume Alice) requires it. The
first phase requires that Alice generates two sequences of
random numbers: one corresponding to the bits of the key to
be exchanged, the other one to the sequence of bases in which
we could measure those bits. In order to encode those bits in
quantum bits, we need to prepare an array of Statevectors in
the correct bases. A first consideration is that the number of
bits required for a key (e.g. 256, 4096) is consistently larger
than the number of qubits manageable in a Qiskit register.
Because of this, we implemented a mechanism to manage
an arbitrary number of bits iterating the quantum operations
required in the process according to the size of the qubit
register available in Qiskit. Moreover, we tested different
register sizes (section VIII), and we chose the one that better
fit according to the performance. Nevertheless, it is possible
to change this dimension in the simulator settings. Assuming
that we are using a 5-qubit register and the key is of the same
size, the BB84 scenario could be described by Figure 5.

In practice, we start with a quantum register initialised to
|00000) in the computational basis (z-basis). We could use
as a basis either the computational basis or the Hadamard
basis (x-basis). These bases are conjugate; namely, if we
encode a qubit in z-basis and then perform a measurement
in x-basis, we get a 50% chance to have either 0 or 1 and
vice versa. According to BB84, we need four different states.
Since all the qubits within a register are initialised to 0, if a
1 is required than the corresponding bit should be flipped.
To perform this operation, we could use an X gate where we
need a 1. Afterwards, we need to decide if we want to encode
employing the computational or Hadamard basis. By default,
we work with the computational basis, so to change this
behaviour, we need to apply a Hadamard gate (H gate) where
the change of basis has to occur. The result of this process

24https:// github.com/ignaziopedone/qkd-sim

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

Alice Eve Bob
/—)\—V_A_V A
\
m
+ JHE
Tl m
Sy |
H u n
a2 . |
m
a: Bk [
o Jil— ?—
0 1 2 3 4
meas

FIGURE 5. BB84 quantum circuit with 5-qubit register.

(performed by Alice) is shown in Figure 5 according to the
first four qubits:

e go encodes a 1 in x-basis;
¢ g1 encodes a 0 in x-basis;
e g2 encodes a 0 in z-basis;
e g3 encodes a 1 in z-basis.

Once the qubits have been correctly encoded in the chosen
bases, Alice sends the corresponding SVs to Bob. This is
possible by means of serialisation process. Afterwards, Bob
could choose which bases he will use to measure the qubits
and perform this action. As you may notice, the choice regard-
ing the bases depends on whether we apply the Hadamard
gate. So if both Alice and Bob make the same choice, they will
have a consistent qubit, otherwise, there will be an error with a
probability of 1/4. This is exactly the principle that allows the
detection of an eavesdropper (Eve). In our case, we introduce
Eve, and the presence of a Hadamard gate indicates that she
has chosen a wrong basis. There are different approaches to
simulate BB84. One of them is to apply the basis as in the
Alice and Bob case and measure the resulting state. Then
it is possible to proceed with Bob’s measurements. In our
solution, we assume that when Eve chooses the same basis
as Alice, we do not apply the H gate, otherwise, we do. This
allows having the same result for BB84.

After the qubit exchange process, Alice and Bob start the
Key Sifting process. They share their choices in terms of
bases and exclude from the key the qubits where the basis
does not match. In practice, according to Figure 5 only g
and g3 are left. In the first case, Eve chooses the same basis,
so no error is expected from Bob’s side. This means that we
cannot detect Eve. In the second case, Eve chooses a wrong
basis and then we have a 50% chance to detect her action.

The overall process could be repeated using the same
register until we get all the qubits we need for the key.
In section VIII, we discuss the intercept-resend attack and we
show the results of its simulation.

The following steps involve the QBER estimation. This
process could be done right after Alice and Bob publish a sub-
set of bits within the key (in our case, half of them). QBER is
the metric that allows us to establish Eve’s presence. In litera-

VOLUME 9, 2021

Entanglement E Alice’s
Pairs ve measurements

Bob’s
{—A—Y_f_\ measurements

qo — Wb —H — E A ﬂ
a1 — o g 5 ?
2 0 1
meas

FIGURE 6. E91 quantum circuit.

ture [18], the classical threshold is the value of 11%. In prac-
tice, it depends on the key distillation process: for instance,
adopting Advantage Distillation techniques enhances the per-
formance up to 20%, as reported in [19]. In our case, we do
not take into account non-idealities and quantum channel
noise yet. Thus, the only error introduced is by Eve. If we
assume that all the qubits of the key have been attacked
independently of each other, then QBER should be around
25%. This threshold has to be calculated according to the PA
technique adopted. In a real scenario, we have both quantum
channel noise and Eve, so as we discuss in appendix A,
we need error correction code to correct the bits flipped due to
the noisy channel and also a technique to reduce the quantity
of information gained by Eve. We have not implemented error
correction and privacy amplification yet, but we are working
on the integration in our prototype of the Cascade protocol
[20] for error correction and PA techniques based on Toeplitz
universal hash functions [21]. The general workflow already
includes these two steps that have to be executed right after
the QBER estimation.

B. E91 IMPLEMENTATION

The implementation of the E91 protocol is also at its early
stage. We took inspiration from Qiskit community?> to imple-
ment this one. According to the architecture, we provided
another module to perform the entanglement pair generation.
As depicted in Figure 6, we obtain a singlet state (maximally
entangled) initialising go and g to |1}, applying a Hadamard
gate to the first qubit, and employing a controlled NOT gate
(C-NOT) controlled by the first qubit and applied to the sec-
ond one. This gives us the state described by the Equation 1.
After this phase, the representation of the entangled pair
is sent to the quantum channel. Here we perform all the
quantum operations without sending any qubits to Alice and
Bob. At this stage, we used this strategy to simplify the
entanglement simulation.

For next releases we are working on a more effective solu-
tion. When the entangled pair representation reach the quan-
tum channel, the latter performs the measurement according
random choices provided by Alice and Bob nodes. The mea-
surement choices for E91 are described in appendix A. Alice

2 https://github.com/qiskit-community/qiskit-community-tutorials/tree/
master/awards/teach_me_qiskit_2018/e91_gkd

115281

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

4o

‘hj’T
qu‘S—H—T—H—
Q3T‘S—H—T*—H—

FIGURE 7. E91 Alice and Bob’s possible measurements.

could choose among three different choices (4;) and the same
goes for Bob (B;). In Figure 7 we have the implementation of
these measurements as a circuit. In particular:

o Alice: go (#5 = 90°), q1 (9] = 0°), ¢2 (¢‘%‘ = 45°);

« Bob: go (95 = 90°). 42 (¢] = 45°). g3 (¢35 = 135°).

Eve could perform the exact measurements on both Alice
and Bob’s branches. In Figure 6 we did not add the measure-
ment part regarding Eve, but it is implied.

After the measurement part, we divide the bits into two
groups as described in appendix A: one for the key and one
for the CHSH inequality verification. We calculate the value
described in Equation 4, using also Equation 3 and 2. If the
value is close to the correlation (anti-correlation) expected,
then we keep the key, otherwise, we drop it.

VIIl. TESTING

For testing purposes, we developed a testbed following the
schema depicted in Figure 1. Here are the details of the
environment:

e two bare-metal nodes equipped with an Intel Core
i5-5300U CPU @ 2.30 GHz, 16GB of RAM, and an
Ubuntu 20.04 LTS server Linux distribution;

o Docker Engine CE v20.10.1 - API v1.41, Docker Com-
pose v1.27.4, and our software stack integrated with the
QKD node component of the simulator (all installed on
both nodes).

For functional testing, we performed with success the fol-
lowing operations:

1) plug-and-play installation of the whole environment
with Docker Compose;

2) registration of the QKD nodes to the respective QKSs;

3) start the key exchange process among the two nodes
(through the QKSs);

4) installation of two SAEs - one on each node - and test-
ing of get_key and get_key_with_id methods
for key of different lengths (e.g., 256, 1024, 4096 bits).

5) repeat tests (2) and (3) with different protocols (e.g.,
BB84, E91) and public channel protections (e.g.
SPHINCS™, AES-GCM)

No major flaws have been identified during the functional

testing.

As quantitative tests, we investigated the performance

of the QKD simulator. We relied on two typical metrics

115282

50 3 % 500

40 T 400
B
= £
2 30 | £300 =2
Q o
£)
= =
]
N /././J | é

10 + 100

01 2 3 4 5 6 7 8 9 1011 12
qubits (#)

FIGURE 8. Time for a 4096 bits key exchange depending on the qubit
register length.

for a QKD system: QBER and throughput (bit-rate) of the
exchanged keys.

The first test in Figure 8 analyses the differences in using
various quantum register lengths in Qiskit. In section VII,
we show how quantum registers are used to support the simu-
lation of the QKD and the possibility to set an arbitrary length
in our solution. The test shows that, varying the number of
qubits from 1 to 10, the performance is nearly the same
with a pick when we choose a 5-qubit register. Because of
this, we adopted this length for the other tests. Nevertheless,
there is no significant enhancement in picking a specific
length value. The case of a length greater than 10 is quite the
opposite. Indeed, in this case, the performance collapses due
to the limit of qubits that can be simulated. IBM Q20 allows to
simulate on their servers up to 32 qubits and also to execute
the job on actual quantum devices up to 65 physical qubits
and a quantum volume of 128. On our machine, which is a
standard laptop, we barely achieve a 12 qubits simulation.
In this case, the key exchanged was composed of 4096 bits.

Using the same number of qubits within a quantum register,
we then tested, varying the length of the key, the time needed
for a complete key exchange. We analysed the following four
scenarios:

« using the QRNG and SPHINCS™;

« using only SPHINCS™;

« using only AES-GCM;

¢ using no protection on public channel and no QRNG

(baseline).

As we depicted in Figure 10, the global trend is for the
bit-rate to grow as the key length increases. This stops when
we reach the maximum in terms of throughput, according
to our system. In our case, the maxima with respect to the
different scenarios are provided in Table 1.

The first three maxima were reached at the key length
of 4096 bits. Going further and increasing the key length

26https://www.ibm.com/quantum-computing/

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

TABLE 1. BB84 key exchange rate and time.

SCENARIO BIT-RATE (BPS) EXCHANGE TIME (S)
Baseline 440.43 9.30
AES-GCM only 419.67 9.76
SPHINCS™* only 338.79 12.09
QRNG + SPHINCS* 24.75 82.78

gave no more growth in terms of bit rate. The last maximum
was reached at 2048 bits, even though the saturation started
around 512 bits.

Further considerations on Figure 10 are related to the com-
parison among the different case scenarios. Using a QRNG
simulation is resource consuming, and the impact on the
performance is clear looking at the blue line with the squared
marker in Figure 10. For this reason, we do not proceed in
showing further tests on this case scenario.

The other three lines are comparable. As we can see,
the black line (with the circular marker) is the baseline.
In that case, we got rid of all the overheads introduced by
the authentication process and the QRNG. Adding to this
baseline, the encryption and the authentication of the public
channel with AES-GCM we have no consistent overhead. The
red line with the diamond marker is really close to the black
one. This is clear starting from a key length of 1024; indeed,
until that threshold, the variance of the time needed for the
quantum operations is mixed up with the other variables.
In the case we only use SPHINCS™ (green line with the
triangular marker) instead, as we expected, it introduces a
significant overhead compared to AES-GCM. Indeed, this
post-quantum algorithm according to the variant we used
(SHAKE256-128f) introduces an average overhead for sign-
ing and verifying in turn of 275 ms and 11 ms.

All the values have been evaluated as average over 100 iter-
ations of a key exchange of a specific size. We also provided
a vision of the same graph according to the time instead of
the throughput in Figure 9. In this case, we left out the case
of the QRNG, for the reasons we mentioned before. It is
worth mentioning that most of the values depicted in Table 1
are comparable with real devices currently available on the
market. In particular, if we refer to ID Qauntique Clavis?’ we
could notice that the secret key rate is 1.4 kbps, which is close
to the throughput of our simulator.

In the end, we also implemented an intercept-resend attack
scenario on the BB84 protocol. According to Figure 4, all
the traffic (related to Alice and Bob’s communication) pass
through Eve’s node, which is capable of measuring an arbi-
trary quantity of qubits before they reach Bob’s node. Once
Eve measures a quantum bit, he could introduce (section VII)
an error related to that bit with a probability of 1/4. This
happens because he has to choose random bases, as in the
Alice and Bob’s cases.

27 https://www.idquantique.com/quantum-safe-security/products/clavis3-
qkd-platform-rd/

VOLUME 9, 2021

14 | —— SPHINCS™*
—— AES-GCM
12 || —=— Dbaseline
107
o
g 81
6 4
4 4
2 - - - -
0 512 1,024 2,048 4,096

key length (# bits)

FIGURE 9. BB84 key exchange time depending on the key length.

600 %
550 +| —=— QRNG + SPHINCS™*
500 | —— SPHINCS*

450 | —— AES-GCM

400 H—* baseline

350 +
300 +
250 +
200 +
150 |
100 ¢

50 |

bit rate (bps)

il "
2,048 4,096
key length (# bits)

0 : :
0 512 1,024

FIGURE 10. BB84 key exchange bit rate depending on the key length.

Moreover, this type of attacks could be more sophisticated
than that in [5]. There are three types of attacks in theory:
individual, collective, and coherent. The intercept-resend is
an individual attack, which is the simplest type where each
qubit is attacked independently. The other types are more
sophisticated and involve the preparation of ancilla qubits
for the interaction with the target qubits either to perform a
collective measurement on them or to entangle the ancillas
and then perform the measurements. These processes allow
Eve to retrieve more information than the previous case.
Today’s technologies do not allow to perform collective and
coherent attacks since they require quantum memories.

Returning to the intercept-resend attack, an attacker could
decide to perform partial measurements as well as to mea-
sure all bits at once instead of doing that independently.
We explored the primary case in which Eve either measure
all qubits or a subset of them but always independently to
each other.

In a real case scenario, the error introduced by the attacker
could be tolerable, since with some PA techniques, we could

115283

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

251

20 +

IS5 +

QBER (%)

10 |

e

500 1.000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5.000 5.500 6.000 6.500 7,000 7,500 8,000

attacked qubits (#)

FIGURE 11. BB84 intercept-resend attack: QBER estimation.

reach the threshold of 11% for the QBER until we need to
drop the key. This allows to reach better bit-rate performance
and works well on very noisy quantum channels.

Setting aside the importance of the QBER, in Figure 11
we analyse the variation of the QBER as a function of the
number of the attacked qubits. This operation has been per-
formed for an exchange of an 8192-bit key. In particular,
we consider our ideal scenario in which there is no noise over
the quantum channel, and Eve attack an arbitrary number of
qubits. As the number of qubits attacked (measured) by Eve
increases, the QBER grows. We plotted all the data that we
retrieved from our experiment and calculated the regression
line, which shows accordingly to the theory that the QBER
linearly grows. More specifically, if we zoom on the frame
within the picture, we could see that the more we get closer
to attack all the qubits, the closer we get to a 25% QBER
value. This is the theoretical value for this type of attack
in a situation where non-idealities are not in place. This
shows how this first version of our simulator and the attack
implemented work as expected.

IX. RELATED WORK
The literature on Quantum Computing and Quantum Com-
munication has been particularly prolific in recent years.
Indeed, a study published by Elsevier?® highlights that pub-
lication in these fields have been steeply increasing since
2015. Among those publications, several works address this
paper’s issues; therefore, we report in the following some
of the most captivating ones. We divide the papers into two
groups: one addressing the integration of the QKD and the
other the simulation.

The first group of papers discusses the integration of QKD
in softwarised infrastructure scenarios. In [22], the authors

28https :/Iwww.elsevier.com/solutions/scopus/who-uses-scopus/research-
and-development/quantum-computing-report

115284

present an interesting perspective from a telecommunica-
tion provider’s point of view. They describe how, leveraging
Software-defined networking (SDN), QKD can be deployed
in modern infrastructures and provide insightful thoughts
on real use case scenarios. The authors of [23] provide a
solution for integrating QKD in an NFV scenario using
SDN-controlled optical switches. Their work mainly focuses
on the quantum channel’s reconfiguration (using the pro-
grammable switches) rather than the key management within
the infrastructure. Lopez et al. [24] demonstrate a practical
QKD integration over a standard telecommunication network
leveraging SDN. Finally, the authors of [25] present the
SDQaaS framework. This framework endeavours to imple-
ment a QKD-as-a-Service (QaaS) approach, where the QaaS
functions are developed within an SDN controller. Essen-
tially, QaaS is a pattern that allows sharing of QKD services
among different users. All these works leverage SDN for
decoupling the control and management plane from the data
plane (i.e., forwarding of the keys) within QKD networks.
This is a valid strategy that allows dynamic changes in a
QKD network, exploiting the available quantum channels
effectively. Our solution is different because it focuses on
the software stack that is required within an infrastructure
to provide security applications with quantum keys. This
is achieved by developing a cloud-native application that
could run directly on the target infrastructure and do not
require the adoption of the SDN paradigm. Nevertheless,
according to the specific use case, SDN could still be adopted
to optimize the usage of the quantum channel as discussed
in [23] and to centralize the management of all QKD nodes.
Moreover, it is possible to extend our solution by adopt-
ing a Software-defined QKD (SD-QKD) approach described
in [26]. This implies that our QKS has to interoperate with
an SDN controller (i.e., by means of an SDN agent within
the infrastructure), which shall control the QKD modules.
The latter adjusts the configuration of the modules according

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

TABLE 2. BB84 protocol steps. (source: [34]).

QUANTUM CHANNEL
Alice’s random bits
random sending bases
photons Alice sends
random receiving bases
bits as received by Bob

—mNOo
O m—
»—U/‘U.—

ml mo
— s S —
U —
cgUl mo
oxml mo

o/ 9~
—mNOo
—Uo 0 —
-0/ O~

ONUTOo
cUONUOo
— e T —

PUBLIC AUTH CLASSICAL CHANNEL

Bob reports bases of received bits

Alice says which bases were correct
presumably shared information (if no eavesdrop)
Bob reveals some key bits at random

Alice confirms them

=
-\ T

AN
o

o

o\®m

ool

o

SN
\ooNU
N

FINAL KEY
remaining shared secret bits 1

to the key exchange requests and retains information about
the applications involved. So far, we believe that a more
straightforward solution could be easily adopted in limited
infrastructures and for diverse use cases. Nevertheless, our
solution could be extended to support SD-QKD.

The second group of papers targets the topic of quan-
tum simulation. Several works ([27], [28]) directly focus on
simulating QKD protocols such as BB84 and B92. These
works aim at capturing the peculiarities of the specific pro-
tocols, taking into account the non-idealities of the practical
implementations. The aforementioned works also provide a
framework to simulate a key exchange. Comparisons with
real testbeds have been provided to show the consistency of
their solutions. Our approach, on the contrary, is more general
and aims to reproduce quantum nodes that can communicate
over a simulated QKD network, regardless of the type of
protocols involved. In this sense, our approach is not tied to
a specific technology or framework, but its goal is to provide
a scalable framework that is adaptable to different use case
scenarios.

Finally, several works address the problem of Quantum
Network simulation ([29]-[32]). These works try to match
some proposed abstracted quantum network architectures
([3], [33]) and simulate a Quantum Internet scenario with
several quantum nodes. This is a difficult task since there
is no standard or agreement on the evolution of these net-
works. One of the most recent and consistent approach is
NetSquid [32]. This is a generic discrete-event based platform
for simulating all the aspect of quantum networks and mod-
ular quantum computing systems: ranging from the physical
to the application level. The authors of [32] also provide evi-
dence of processing nodes based on NV centres in diamond
and repeaters based on atomic ensembles. In this case, their
solutions are more generic than the one proposed with the
QKD simulators and focus on the quantum network protocols
needed for building a Quantum Internet rather than Quantum
Cryptography. In this sense, our solution is different because
it aims at simulating QKD networks and providing a tool for
testing QKD in real infrastructures. This does not exclude the
possibility of evolving our solution in a more generic simu-

VOLUME 9, 2021

lator which could also leverage some of those frameworks
to simulate Quantum Networks using specific technologies
(e.g., NV centres in diamond).

X. CONCLUSION

This paper describes a complete software stack for integrat-
ing QKD in softwarised infrastructures. The main contribu-
tions lie in a straightforward design and implementation of
a QKS, which could be easily integrated into several kinds
of infrastructure, and the development of a QKD simulator
that could reproduce both BB84 and E91 protocols. These
software components could efficiently be extended since they
have been implemented using cloud-native technologies and
according to the requirements of modern distributed infras-
tructures. Experimenting on both QKD and Quantum Com-
puting frameworks and contributing to architectures and pro-
tocols related to Quantum Networks are of utmost importance
for improving the state of the art of quantum technologies.
This paper gives a different perspective on how to design and
build software components that could enhance the adoption
of quantum technologies.

As future work, it is possible to separately work on both
the software stack for the QKD integration and the QKD
simulation platform. This because the QKD simulator could
evolve into something much more effective if extended to the
case of the Quantum Networks and the Quantum Internet.
We aim at building a scalable and flexible simulation platform
where quantum nodes are independent entities that could
be programmed to act as quantum devices. In this scenario,
the communication over a TCP/IP network could serve as a
mean of communication among them, and yet special nodes
- as the case of the quantum channel - could reproduce
non-idealities of the real case scenarios. Our next step will be
to integrate within our framework the simulation of a noisy
channel.

Regarding the work on the software stack, it could be
improved by integrating a scenario in which the commu-
nication within the QKD network is extended beyond the
point-to-point connections. Here trusted repeaters could be
considered, and according to the ETSI standard, a real use

115285

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

case scenario could be implemented. In this case, routing
mechanisms could be integrated at the QKS level, and tests
on real infrastructures could be performed.

So far, two other research interests have arisen: the first
regarding the error correction and privacy amplification tech-
niques and the second according to the authentication of the
public channel. It would be interesting to integrate within
the simulator protocols to implement the key distillation pro-
cess. Moreover, this integration could provide a complete
testing framework for QKD protocols. The authentication
of the public channel could be achieved with several tech-
niques. We show in section VII our approach. Nevertheless,
the problem is far from being completely solved. In fact,
the authentication mechanisms, especially when it comes to
softwarised infrastructures, need to be flexible. Because of
this, further studies are required to find an optimal solution to
both preserve the security of the protocol and the flexibility of
the QKD network. Also, for the secure communication with
the QKS a standard approach has to be found, and it should
be quantum-resistant.

APPENDIX A

QKD PROTOCOLS

In this appendix we provide a description of two QKD proto-
cols that we investigated in our work: BB84 and E91.

A. BB84

The BB84 protocol is a prepare and measure protocol which
Bennett and Brassard describe in [34]. We provide a synthetic
overview of the protocol starting from the Table 2.

BB84 deeply relies on the no-cloning theorem: an eaves-
dropper on the quantum channel could be detected when
he measures one or many qubits since he introduces errors.
BB84 could be divided into two principal phases: a quantum
phase and a classical phase.

During the first phase, the idea is to encode a train of qubits
starting from a random sequence of bits representing the clas-
sical key and a random sequence of bases that could be used
to measure those qubits in a specific reference frame. This
operation is performed by the sender (Alice), who chooses
both bits and bases and encodes them in a sequence of qubits.
Afterwards, she sends those qubits to Bob over the quantum
channel. Once Bob receives the qubits, he chooses another
random string of bases and measures Alice’s qubits with these
bases.

According to Table 2 (Quantum Channel), we see that the
chosen bases are either “Rectilinear” (R) or “Diagonal” (D).
This convention comes from a real use case related to the
linear polarization of photons, which is traditionally used to
implement QKD. Rectilinear means that we use the basis
of vertical ($) and horizontal (<»), corresponding in turn to
the polarization angles of 0° and 90°. Diagonal means that
we use the basis of (,#) and (), corresponding in turn to
the polarization angles of 45° and 135°. The four possible
encoded states in BB84 are: <> and 2 for 0 in Rectilinear
and Diagonal bases, and ¢ and N for 1 in Rectilinear and

115286

Diagonal bases. Bob, measuring Alice’s qubits with his bases,
produces a classical key string that is araw version of the final
key.

After the quantum phase, there is a classical phase in
which Alice and Bob have to share information regarding the
chosen bases. This allows cancelling the bits corresponding
to the bases that do not match. This process is called Key
Sifting. Without considering non-idealities (e.g., quantum
noisy channel), the key retrieved from this process holds if
we demonstrate that no eavesdropper measured qubits on the
channel. The basic idea is that, as in Bob’s case, Eve has to
choose random bases and measure all the qubits she wants
during the exchange introducing an error on each qubit with
probability 25% (see section VIII for further details). This
refers to a simple intercept-resend attack; clearly, it is pos-
sible to perform more sophisticated attacks varying the error
probability. In the simplest scenario without noise, we could
drop every key that contains at least one wrong bit. In a real
scenario with non-idealities, this does not hold. As in the
Eve’s case, a noisy channel introduces an error that could be
estimated as Quantum Bit Error rate (QBER). As a solution,
it is possible to combine Error Correction (EC) and Privacy
Amplification (PA) techniques to, on the one hand, correct
potential error within the final key, and on the other hand,
reduce the quantity of information that Eve could gain from
the key at the expenses of several bits of the key. The metric
that we use to establish whether or not a key is valid is the
QBER itself. The state of the art techniques allows reaching
11% of QBER, even more with advantage distillation. This
means that a key has to be dropped if it exceeds this error
rate. Clearly, EC and PA have to be applied after the QBER
estimation. This allows avoiding the correction of error intro-
duced by Eve as they depended on the quantum channel. The
role of EC is clear. PA, instead, serves the decisive purpose
of increasing the number of valid keys during the exchange:
even if a subset of qubits has been measured by Eve, we could
keep the key as long as the quantity of information gained by
her is limited.

The final step in which we apply both EC and PA is known
as Key Distillation. After this classical phase, the exchange
process is completed, and Alice and Bob could use the final
key.

B. E91

E91 proposed by Ekert [35] is an entanglement-based proto-
col. The idea is to leverage a source that emits pairs of spin-
1/2 particles in a singlet state:

1
= — — 1
¢ ﬁ(ITAiB) Natg)) ey

These particles are maximally entangled and anti-
correlated. This means that if particle A is in the state |0)
then particle B shall be in the state |1) and vice versa.
This coordination is beyond any classical equivalent: when
a measurement is applied to one of the particles, even if
they are far away from each other, the other will assume

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

the opposite state. After the generation phase, one of the
entangled particles is sent to Alice and the other one to Bob
over a quantum channel. Once qubits have been received from
the parties, they are measured according bases represented by
unit vectors a; and b;(i, j = 1, 2, 3). Given an x-y-z reference
frame, suppose the particles travel according the z direction,
than a; and b; lie on the x-y plane and could be described,
starting from the x axis, by the following angles: on Alice’s
side {qbf = 0°, qbg = 45°, ¢§‘ = 90°}, on Bob’s side
{¢h = 45°, ¢b = 90°, gL = 135°}.

Superscripts a, b are related in turn to Alice and Bob’s anal-
ysers. Alice and Bob shall randomly choose the orientation
angle of the measure with a 1/3 chance to pick up a specific
value.

The quantity related to the Eq. 2 is the correlation of the
measurements performed by Alice and Bob according to the
bases a; and b;.

E(ai, bj) = Py (a;, b)) + P__(a;, by)
— Py _(ai, bj) — P—1(ai, b)) (2)

The value P14 (a;, b)) is the joint probability of getting a
£1 (+1 for |0), —1 for |1)) along a; and b;.

When compatible bases are chosen (same orientation),
as in the case of (ap, b;) and (a3.by), we have the total
anticorrelation of the results: E(a», a;) = E(az, by) = —1.
In the other cases, we could define the quantity (3), which is
the sum of all correlation coefficients when Alice and Bob
used different orientations. This is the correlation value used
in the CHSH inequality (one of Bell’s inequalities).

S = E(a1,b1) — E(a1, b3) + E(a3, b1) — E(a3, b3) (3)

In the specific case of maximally entangled particles,
according to quantum mechanics, this correlation value has
to be equal to (4), which is also known as Tsirelson’s bound.

S=-2v2)

This violates the CHSH inequality (5), which provides
classical correlation boundaries. Violating this inequality
demonstrates that the system exhibits a quantum correlation;
in this case, the two particles are entangled.

S| <2 &)

Ekert also demonstrated that for every eavesdropping strat-
egy and direction of Eve’s measurements, the inequality (6)
holds. This inequality violates (4), thus demonstrating that
Bell’s inequalities could be used as a practical mean to check
the presence of an eavesdropper.

—V2<85<V2 (6)

Once measured and collected all the bit values, the next
step of the algorithm is to exchange information regarding the
measurement bases. That information could be used by Alice
and Bob to divide the obtained bits into two groups: one with
the results from compatible bases and another one with all
the other measurements. The first group is used as the secret

VOLUME 9, 2021

key, the second one for checking if the exchange has been
intercepted. According to (3), Alice and Bob could calculate
the correlation value and check if it is close to (4). If (5)
has been violated, then the key has to be rejected; otherwise,
we have a complete and successful key exchange.

APPENDIX B

APIs

In the following paragraphs we present the web APIs of the
QKDM and QKS components.

A. QKDM APIs

In the following, we detail the APIs exposed by a QKDM.
We start from the Southbound Interface, which exposes the
ETSI compliant APIs (the ones in bold) and some function-
alities useful during the interaction with the QKS. The first
group of calls gives access to functionalities related to the
key exchange process, while the others serve as utilities:

e /api/vl/gkdm/actions/open_connect: this
call reserves an association identified by a Key Stream ID
(KSID) among two different QKDMs. This association
represents a key stream between two QKD modules and,
as a consequence, two Quantum Key Servers. Once this
call is invoked, the key exchange process starts by means
of the underlying QKD node component.

e /api/vl/gkdm/actions/close: this call stops
the key exchange process, but the keys that have already
been exchanged are still available.

e /api/vl/gkdm/actions/get_key: this call
allows retrieving specific keys from a key stream using
the KSID and KIDs. The latter contains a collection
of identifiers associated with the keys (both KSID and
KIDs are defined as UUID_v4 on 128 bit).

e /api/vl/gkdm/actions/get_kids: this call
returns a set of KIDs associated with keys that could
compose many aggregate keys of different length. The
input parameters are KSID and key_info. The lat-
ter contains information such as the number and the
length of the required keys. For the sake of simplicity,
by default, this module stores keys of the same length
(e.g., 128 bits). Because of this, we may want to aggre-
gate more keys to create a larger one.

e /api/vl/gkdm/available_keys: this call
retrieves information about the keys that are currently
available at the QKDM level.

e /api/vl/gkdm/actions/attach_to_server:
this call is available for an external management tool to
trigger the process of registration of the QKDM to the
QKS.

The Sync interface exposes instead the following API:

e /api/vl/gkdm/actions/stream_create:
this call is used after the open_connect to notify the
value of KSID to the peer QKDM.

e /api/vl/gkdm/actions/sync_KID: this
method is used to notify the KID associated to a fresh

115287

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

TABLE 3. Southbound interface API.

API

ACCESS METHOD ETSI’S METHOD NAME

/api/vl/gkdm/actions/open_connect

/api/v1l/qkdm/actions/get_key
/api/vl/gqkdm/actions/close
/api/vl/gkdm/actions/get_kids
/api/vl/gkdm/available_keys

POST open_connect
POST get_key
POST close

GET -

GET -

TABLE 4. Northbound interface API.

API

ACCESS METHOD ETSI’S METHOD NAME

/api/vl/keys/{slave_SAE_ID}/status
/api/vl/keys/{slave_SAE_ID}/enc_keys
/api/vl/keys/{master SAE_ID}/dec_keys

/api/vl/preferences

/api/vl/preferences/{preference_ID}

/api/v1l/information

GET get_status
POST get_key
POST get_key _with_ID

GET -

PUT -

GET -

generated key to the peer once the key exchange process
has terminated.

B. QKS APIs

According to the ETSI standard QKD 014 [2], the North-
bound Interface implements the communication between the
SAE and the QKS. The following API calls (table 4) have
been implemented; the bold ones are compliant with the
standard while the other ones are an extension:

o /api/vl/keys/{slave_SAE_ID}/status:this
call returns to the master SAE (the one which starts
the key exchange) the status of a specific slave SAE
(the target of a key exchange). In particular, it retrieves
information regarding the available keys to be requested.

o /api/vl/keys/{slave_SAE_ID}/enc_keys:
it returns the single or multiple keys requested by the
master SAE for the communication to a specific slave
SAE. In this case, the QKS in charge of managing the
key exchange of the slave SAE shall be informed to
reserve those keys to its own SAE.

o /api/vl/keys/{master_SAE_ID}/dec_keys:

after receiving an Aggregate Key ID (AKID) from the
master SAE, the slave SAE could call this method
using that information to access the keys that have been
reserved by its QKS.

e /api/vl/preferences: this call returns the cur-
rent status of the preferences that have been set for
the QKS. These preferences involves global settings
regarding the Quantum Key Server, such as the log level,
the preferred QKD protocols, and the timeout for the
requests to other QKSs.

e /api/vl/preferences/{preference_ID}:
this call allows to change a specific QKS setting.

115288

e /api/vl/information: this call could be used by
an administrator to retrieve specific info on the QKS
(e.g., QKD devices, log).

At the moment, the QKS ‘“side” of the Southbound
Interface provides a single API call: /api/v1/gks/
actions/register. This call allows registering a new
QKDM to the QKS. The registration process involves the
exchange of all the information required by the QKS to
manage the specific QKDM. The registration also implies
giving the QKDM limited access to the Database and the
Vault resources.

In the end, we implemented the External Interface API.
This allows the communication among different QKSs.
In particular, we provide the following calls:

e /api/vl/saes/{slave_SAE_ID}: this call could
be used to query a specific QKS to check if a SAE is
reachable through it.

e /api/vl/kids/actions/reserve_key: this is
used to reserve a specific key for the communication
among two SAEs. Moreover, when a key has been cho-
sen by the master QKS, then we have to reserve that key
for the specific communication and make sure that the
slave QKS has not used it yet.

e /api/vl/keys/actions/send_KSID: thisis an
utility call for supporting the key exchange among two
QKDMs. In particular, this call is used to forward the
KSID among two different QKSs.

APPENDIX C

WORKFLOW

This appendix clarifies the interaction of all components
within our solution. Three different phases could be distin-
guished within our software stack’s operational workflow:
the QKD module registration, the initialisation of the key
exchange process, and the request of a single or multiple keys

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

IEEE Access

Alice's QKDM

Bob's QKDM

: a) QKD Module registration lr

© register_module(mod_info) |

| ‘ ' ACK, env_info !

T e e,
'
'
'
'
'

| register_module(mod_info) | H

ACK, env_info

é : b) Start key exch | i f

' open_connect(src,dst,QoS) !

stream_create(src, dst, |
QoS, KSID)

L=l |

' 1]

' ']

KSID, QoS

send_KSID(KSID)

. _continuous key exchange .

| open_connect(src,dst,QoS) ! ‘
1 KSID, QoS
i |

' ' '
' '

[K : -

ey request

! get_key(slave_SAE_ID, i |
! key_info) !

get_KIDs (KSID, 2
key_info) !

>

_ACK,KIDs]

e ey

' ']

reserve_key(KSID, master_SAE_ID, slave_SAE_ID; AKID, key_info, KIDs)

ACK

E check_KIDs(KSID, KIDs)
‘ r ACK J

']
i '

get_key(KSID, KIDs)
ACK, keys u
. key_material, akey 5

AKID, key_info:

Bob's QKDM

; ! get_key_with_ID(master_SAE_ID, !
[] AKID, key_info)

| get_key(KSID, KIDs) i
o ACK.keys . :
key_material, akey

FIGURE 12. Workflow of the complete solution: a) registration phase; b) starting key exchange process; c) key request from a SAE and usage.

from a SAE. Before describing each one of these phases,
we assume that a working system involves the correct deploy-
ment of at least a pair of SAEs and the related QKDMs and
QKSs.

As depicted in Figure 12, we analyse these phases in a
scenario in which Alice and Bob are aiming at starting a key
exchange among their nodes, and Alice is the one opening
the connection and requiring a key to communicate with
Bob. The first phase (a) involves Alice and Bob’s QKDMs
registering themselves to the respective QKSs. In this phase,
each module has to use the register_module call, pro-
viding information regarding the destinations that it could
reach and the QKD protocols that it supports. Supplementary
information could be added, such as the current size of the
key buffer and the technology used for the key exchange.

VOLUME 9, 2021

As a response, the QKS create a new isolated user on the
DB and a new separated secret engine in Vault, returning
the credentials to access both to the QKDM. To perform this
request, the QKD module has to provide a token that has been
generated using Keycloak. This means that only the QKDMs
that possess a valid token could operate with the QKS. This
process describes a new physical device that is installed on a
specific node and wants to be integrated into the scope of the
QKS.

The previous phase enables the QKD module to operate
as an independent entity; that is, the key exchange process
could be performed - once started - without the intervention
of the Quantum Key Server, and the resulting keys could be
stored directly with a specific KID within the secret engine.
To optimise the usage of the dedicated channel, this process of

115289

IEEE Access

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment

exchange could be continuous until the key buffer is full. This
should be unlikely, considering multiple SAEs continuously
requiring keys for their security applications. To start the pro-
cess, the QKS has to call - in phase (b) - the open_connect
on the QKD module. This double-checks if the destination
provided is reachable and send a stream_create to the
peer module, sending information regarding the Quality-
of-Service (refer to the standard [2]) and a new KSID
which identifies the stream of key that will be exchanged
among the QKDM pairs. Afterwards, the module retrieves
the KSID information to the Quantum Key Server (Alice’s
QKS in Figure 12), which could propagate this information
to the peer QKS on Bob’s side. Once the latter receives this
information, it could perform the same process starting the
open_connect. After this, the QKD low-level devices (in
our case, the QKD nodes) start exchanging their keys, and
once an exchange is completed, the QKDMs store the fresh
key in the secret engine. This process heavily depends on the
implementation of the open_connect on both sides.

Moreover, other interactions (the calls presented in
appendix B-A) are required to forward the information about
the KID to assign to the key. In our solution, we define
a parameter for the length of the individual keys at the
QKDM level. This allows to combine them to form keys
of arbitrary length. In a case with real devices, the length
of the exchanged keys could vary, and it is also possible to
work directly with longer streams. The QKDM abstraction
could also serve as an interface to customise the length of
resulting keys. We set this parameter to 128 bits for our
experiments.

Perhaps the most interesting phase is the last one (c),
in which we describe the SAE perspective and analyse
Alice and Bob’s request for a key. According to the ETSI
standard [2], the Security Application Entity could use the
get_key method to request a new key to the Quantum Key
Server. The slave SAE and the characteristics of the key
(key_info) have to be provided as parameters. In partic-
ular, information such as the key length and the number of
keys have to be supplied. Once the request reaches the QKS,
this latter asks for a collection of KIDs related to keys that
could be used to serve the request. If granted, those KIDs
are forwarded to the peer QKS with the reseve_key. The
receiver checks if also on its side those KIDs are available
and notify the result to the sender QKS. The idea is to reserve
those keys for the communication among the pair of SAE.
This mechanism replaces the strict binding of the original
version of the standard, which imposes a one-to-one ratio
among key streams and SAE pairs. Once we have reserved
those keys, the next step involves the standard get_key to
the QKDM to retrieve the actual keys and forward them to the
SAE level.

At this point, we have on both sides the right keys reserved;
we could proceed (as shown in [2]) to inform the peer
SAE of the correct AKID to use. This Aggregate Key ID
is pivotal because it allows retrieving the composed key all
at once. After this, the receiver (Bob’s SAE) shall perform

115290

the symmetric process and retrieve the required key with
the method get_key_with_ID passing the right AKID.
Clearly, the same mechanism could be easily extended work-
ing with different AKIDs. This means that a SAE could ask
for multiple keys at a time to get back a map {AKID, key}.

ACKNOWLEDGMENT

The authors would like to acknowledge Chiara Ruggeri, who
received the M.Sc. degree in computer engineering from
Politecnico di Torino, for her work.

REFERENCES

[1] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar,

R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira,

M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone,

P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” Adv.

Opt. Photon., vol. 12, no. 4, pp. 1012-1236, 2020.

Quantum Key Distribution (QKD); Protocol and Data Format of Rest-

Based Key Delivery API, Eur. Telecommun. Standards Inst. (ETSI), Sophia

Antipolis, France, Feb. 2019.

S. Wehner, D. Elkouss, and R. Hanson, ‘“Quantum internet: A vision for

the road ahead,” Science, vol. 362, no. 6412, pp. 1-9, Oct. 2018.

[4] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum net-

work protocol,” in Proc. 16th Int. Conf. Emerg. Netw. Exp. Technol.,

Barcelona, Spain, Nov. 2020, pp. 1-16.

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key

distribution with realistic devices,” Rev. Modern Phys., vol. 92, no. 2,

pp. 025002-1-025002-60, May 2020.

[6] C. Weedbrook, S. Pirandola, R. Garcfa-Patrén, N. J. Cerf, T. C. Ralph,

J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod.

Phys., vol. 84, no. 1, p. 621, May 2012.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek,

N. Liikenhaus, and M. Peev, “The security of practical quantum key

distribution,” Rev. Mod. Phys., vol. 81, no. 3, p. 1301, Sep. 2009.

[8] R. Renner and R. Konig, “Universally composable privacy amplification
against quantum adversaries,” in Proc. Theory Cryptogr. Conf. Berlin,
Germany: Springer, 2005, pp. 407—425.

[9] R. Renner, “Phd thesis,” Ph.D. dissertation, Swiss Federal Inst. Technol.
Ziirich, Ziirich, Switzerland, 2005.

[10] C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Continuous-
variable measurement-device-independent quantum key distribution:
Composable security against coherent attacks,” Phys. Rev. A, Gen. Phys.,
vol. 97, no. 5, May 2018, Art. no. 052327.

[11] V. Scarani and R. Renner, “Quantum cryptography with finite resources:
Unconditional security bound for discrete-variable protocols with one-way
postprocessing,” Phys. Rev. Lett., vol. 100, no. 20, 2008, Art. no. 200501.

[12] Quantum Key Distribution (QKD); Security Proofs, Eur. Telecommun.
Standards Inst. (ETSI), Sophia Antipolis, France, Dec. 2010.

[13] B.Liu, B. Zhao, C. Wu, W. Yu, and I. You, “Efficient almost strongly uni-
versal hash function for quantum key distribution,” in Proc. Inf. Commun.
Technol.-EurAsia Conf. Cham, Switzerland: Springer, 2015, pp. 282-285.

[14] P. Kampanakis, P. Panburana, E. Daw, and D. Van Geest, “The viability of
post-quantum X. 509 certificates,” JACR Cryptol. ePrint Arch., vol. 2018,
p. 63, Jan. 2018.

[15] Quantum Key Distribution (QKD); Application Interface, Eur. Telecom-
mun. Standards Inst. (ETSI), Sophia Antipolis, France, Aug. 2020.

[16] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin,
S. Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum key distribu-
tion: A networking perspective,” ACM Comput. Surveys, vol. 53, pp. 1-41,
Sep. 2020.

[17] Quantum Key Distribution (QKD); Use Cases, Eur. Telecommun. Stan-
dards Inst. (ETSI), Sophia Antipolis, France, Jun. 2010.

[18] P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum
key distribution protocol,” Phys. Rev. Lett., vol. 85, no. 2, pp. 441-444,
Jul. 2000.

[19] G. Murta, F. Rozpedek, J. Ribeiro, D. Elkouss, and S. Wehner, “Key
rates for quantum key distribution protocols with asymmetric noise,” Phys.
Rev. A, Gen. Phys., vol. 101, no. 6, pp. 062321-1-062321-10, Jun. 2020.

[2

—

3

—

[5

—

[7

VOLUME 9, 2021

I. Pedone et al.: Toward Complete Software Stack to Integrate QKD in Cloud Environment IEEEACC@SS

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

M. Toyran, M. Toyran, and S. Oztiirk, “Optimized cascade protocol for
efficient information reconciliation in quantum key distribution systems,”
Quantum Info. Comput., vol. 18, nos. 7-8, pp. 553-578, Jun. 2018.

B.-Y. Tang, B. Liu, Y.-P. Zhai, C.-Q. Wu, and W.-R. Yu, “High-speed and
large-scale privacy amplification scheme for quantum key distribution,”
Sci. Rep., vol. 9, no. 1, pp. 1-8, Dec. 2019.

V. Lopez, A. Pastor, D. Lopez, A. Aguado, and V. Martin, “Apply-
ing QKD to improve next-generation network infrastructures,” in Proc.
Eur. Conf. Netw. Commun. (EuCNC), Valencia, Spain, Jun. 2019,
pp. 283-288.

A. Aguado, E. Hugues-Salas, P. A. Haigh, J. Marhuenda, A. B. Price,
P. Sibson, J. E. Kennard, C. Erven, J. G. Rarity, M. G. Thompson, A. Lord,
R. Nejabati, and D. Simeonidou, “First experimental demonstration of
secure NFV orchestration over an SDN-controlled optical network with
time-shared quantum key distribution resources,” in Proc. 42nd Eur. Conf.
Opt. Commun., Dusseldorf, Germany, Sep. 2016, pp. 1-3.

D. R. Lopez, V. Martin, V. Lopez, F. de la Iglesia, A. Pastor, H. Brunner,
A. Aguado, S. Bettelli, F. Fung, D. Hillerkuss, L. Comandar, D. Wang,
A. Poppe, J. P. Brito, P. J. Salas, and M. Peev, “Demonstration of software
defined network services utilizing quantum key distribution fully inte-
grated with Standard telecommunication network,” Quantum Rep., vol. 2,
no. 3, pp. 453-458, Sep. 2020.

Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, ““SDQaaS: Software
defined networking for quantum key distribution as a service,” Opt. Exp.,
vol. 27, no. 5, pp. 6892-6909, Mar. 2019.

Quantum Key Distribution (QKD); Control Interface for Software Defined
Networks, Eur. Telecommun. Standards Inst. (ETSI), Sophia Antipolis,
France, Mar. 2021.

R. Chatterjee, K. Joarder, S. Chatterjee, B. C. Sanders, and U. Sinha,
“QkdSim, a simulation toolkit for quantum key distribution including
imperfections: Performance analysis and demonstration of the B92 pro-
tocol using heralded photons,” Phys. Rev. A, Gen. Phys.pplied, vol. 14,
no. 2, pp. 024036-1-024036-64, Aug. 2020.

L. O. Mailloux et .al, “‘A modeling framework for studying quantum key
distribution system implementation nonidealities,” IEEE Access, vol. 3,
pp. 110-130, 2015.

X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and
M. Suchara, “SeQUeNCe: A customizable discrete-event simulator of
quantum networks,” Sep. 2020, arXiv:2009.12000. [Online]. Available:
http://arxiv.org/abs/2009.12000

S. DiAdamo, J. Nétzel, B. Zanger, and M. M. Bese, “QuNetSim: A soft-
ware framework for quantum networks,” Apr. 2020, arXiv:2003.06397.
[Online]. Available: http://arxiv.org/abs/2003.06397

A. Dahlberg and S. Wehner, “SimulaQron—A simulator for developing
quantum internet software,” Quantum Sci. Technol., vol. 4, pp. 1-15,
Sep. 2018.

T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten,
J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpedek,
M. Skrzypczyk, L. Wubben, W. de Jong, D. Podareanu, A. Torres-Knoop,
D. Elkouss, and S. Wehner, “NetSquid, a NETwork simulator for
QUantum information using discrete events,” 2020, arXiv:2010.12535.
[Online]. Available: http://arxiv.org/abs/2010.12535

R. Van Meter, Quantum Networking. Hoboken, NJ, USA: Wiley, 2014.
C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7-11,
Dec. 2014.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev.
Lett., vol. 67, no. 6, pp. 661-663, Aug. 1991.

VOLUME 9, 2021

IGNAZIO PEDONE received the M.Sc. degree
in computer engineering from the Politecnico di
Torino, where he is currently pursuing the Ph.D.
degree in computer engineering. He is also a mem-
ber of TORSEC Security Group, Politecnico di
Torino. His research interests include security of
network infrastructures, quantum computing and
cryptography, and trusted computing.

ANDREA ATZENI received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino. He is currently a Senior
Research Fellow and an Adjunct Professor with
the TORSEC Security Group, Politecnico di
Torino. In last 20 years, he contributed to a number
of large scale European research projects under the
FPS5, FP6, FP7, CIP, and Horizon 2020 programs,
addressing, among the others, the definition of
security requirements in multi-platform systems,
mobile security, modelisation of user expectation on security and privacy,
security specification, risk analysis and threat modeling for complex cross-
domain architectures, development of cross-domain usable security, digital
and cloud forensics, development and integration of cross-border eldentity,
novel authentication mechanisms, malware analysis, and modeling.

DANIELE CANAVESE received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, in 2010 and 2016, respec-
tively. He is currently a Research Assistant with
the Politecnico di Torino. His research interests
include security management via machine learning
and inferential frameworks, software protection
systems, public key cryptography, and models for
network analysis.

ANTONIO LIOY (Member, IEEE) received the
M.Sc. degree in electronic engineering and
the Ph.D. degree in computer engineering from
the Politecnico di Torino. He currently leads the
Cybersecurity Research Group TORSEC, Politec-
nico di Torino. He is also a full professor of cyber-
security. His research interests include electronic
identity, PKI, trusted computing, and policy-based
management of large IT systems.

115291

