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Abstract: Water in rock masses is a key factor in geo-mechanics, hydrogeology, mining, geo-thermics,
and more. It is relevant in interpreting rock mass behavior (e.g., water-rock interaction or slope
stability), as well as in defining heat transfer mechanisms. Pointing out the contribution of secondary
porosity in increasing advective heat transfer instead of the conduction phenomenon, this study aims
to highlight a different thermal response of sound rocks and faulted zones. Moreover, it provides
some methodological suggestions to minimize environment disturbance in data collection and
a robust interpretation of the results. An interesting outcrop was identified in a carbonate quarry near
Valdieri (north-west Italian Alps): it was studied coupling a geo-mechanical and a thermo-physical
approach. In particular, geo-mechanical and photogrammetric surveys, InfraRed Thermography
(IRT), and Thermal Conductivity (TC) measurements were conducted. The rationale of the research is
based on the fact that, when a substantial temperature difference between flowing groundwater and
rocks was detected, IRT can reveal information about geo-mechanical and hydrogeological properties
of the rock masses such as a degree of fracturing and joint interconnection. A comparative field and
laboratory analysis using different devices enabled a more detailed insight providing values in both
dry and wet conditions. A different thermal response was highlighted for the cataclastic zone as well.
IRT results showed an evident inverse relationship among the number of joints per meter and the
detected surface temperature. This is probably caused by the higher water flow within the cataclastic
fault zone. Moreover, low fractured portions of the rock mass presented higher cooling rates and
conducted heat far more than those with poor geo-mechanical characteristics (difference up to 40%).
A negligible ratio between wet and dried thermal conductivity (about 1%) was also detected in lab
measurements, which confirmed that primary porosity is not usually relevant in influencing thermal
properties of the sound rock.

Keywords: infrared; conductivity; thermal transient; groundwater flow; faults

1. Introduction

Groundwater flow in fractured rock masses has been studied by many earth scientists. It reveals
one of the most important factors to be considered in slope stability problems [1–3] as well as in
the hydrogeological assessment and in heat transfer mechanisms [4,5]. In particular, understanding
geo-mechanical features, thermo-physical patterns, and their relationship with groundwater flow,
is particularly important when facing non-homogeneous rock masses (flysches, calcschists, or faulted
hard rock lithologies). The presence of groundwater flow can significantly improve the heat transfer
mechanism [5], which increases the general heat budget. If the groundwater flow is negligible,
the subsurface system is heat-conduction dominated and the amount of heat stored and removed
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depends only on the rate at which heat is conducted through the geologic media. When the
groundwater flow is relevant, heat removal via conduction can be negligibly small because heat
is rapidly dissipated through convection or advection [6]. A relevant advective heat transfer can be
ruled by the presence of fractures acting as secondary porosity and making the rock mass even much
more permeable than the matrix.

In order to understand groundwater paths, as well as its discharge and role, a complete
characterization of rock masses is essential, especially regarding the definition of orientation, aperture,
persistence, and interconnection of discontinuities [7]. This kind of information is usually obtained
through geo-mechanical surveys. On the other hand, since water flow with a different temperature
than surrounding medium can produce a thermal anomaly, a supplemental remote survey technique
as the Infrared Thermography (IRT) coupled with Thermal Conductivity (TC) measures can provide
useful data too.

IRT is widely applied in civil engineering and architecture especially for building diagnostics
and insulation inspections [8,9]. In Earth Sciences, it is mainly used for the surveillance of volcanic
systems [10], to calculate lava discharge rates [11] and fumarole emissions [12,13]. Reference [14]
resume an interesting application, such as the study of heat capacity of rocky walls and monitoring of
waste disposal sites. Moreover, some authors [15–17] used IRT to characterize the thermal response of
rocks and joints, as well as landslide mapping [18–21]. On the other hand, TC measurement techniques
are usually applied in engineering to test buildings materials, such as concrete and insulations [22],
in the electronics industry [23], in developing new materials (e.g., nanomaterials and polymers, [24]),
and for fire prevention [25]. Furthermore, thermal conductivity methods are widely employed in the
Earth sciences such as testing heat transfer from rocks and soils [26] to evaluate thermal evolution of
oil-bearing basins [27], to assess the thermal potential for geothermal exploration [28–30], or aim at the
study of the Earth’s thermal regime [31,32]. This study aims to recognize different thermal behaviors
between sound rocks and faulted zones.

In this context, an interesting test site located in a carbonate quarry in the Argentera Massif
(Southern Piedmont, Italian Western Alps) was identified. In this case, a well exposed fault with a clear
cataclastic belt is easy to reach and to photograph, so it is a very good site where both the cataclastic
fault zone and the sound rock can be compared. In detail, the following was completed.

• Geo-mechanical and a photogrammetric survey of the faults and the surroundings to characterize
the rock mass;

• time-lapse sequences of IRT thermal images in order to detect thermal transient within both the
fault zone and the low fractured mass rock sectors;

• thermal conductivity measurements to characterize thermal properties of rocks.

In detail, efforts were focused on comparing IRT and TC data with geo-mechanical parameters
acquired on two scanlines following a standard ISRM procedure. In addition, a photogrammetric
modelling of the area was conducted, and its derivative products such the orthomosaic and the
texturized 3D model were used to double check the geo-mechanical features.

2. Study Site

The quarry is located close to the village of S. Lorenzo di Valdieri, nearby Cuneo village
(North-Western Alps, Piedmont, Italy, Figures 1 and 2). The geological units outcropping in the area
belong to the Middle Jurassic–Lower Cretaceous Provençal succession located at the North-Eastern
side of the Argentera Massif. The quarry produces pure calcium carbonate (99.9% volume of Calcite,
Carbocalcio Cuneese S.p.A., and personal communication) treated and selected for sale as granulated
and micronized.

The carbonate rock mass (Lausa Limestone) consists of fine-grained limestone, with abundant
decimeter-thick beds of polymictic breccias, generally clast-supported, and with millimeter to
decimeter sized clasts of mudstones, coarsely crystalline dolostones and finely crystalline dolostones.
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Lausa Limestones are followed by grey mudstones and crinoid-rich wackestones, in centimeter to
decimeter thick beds, with abundant silicified portions. Fault rocks (Carnieules) and Entracque Marl
outcrops toward SW while, in the uppermost part of the quarry, Aptian–upper Cretaceous rocks
(Puriac Limestones and Marne Nere fm.) are present (Figure 2). Carbonates are locally affected by
a diffuse hydrothermal dolomitization occurring in the Early Cretaceous period at a very shallow burial
depth, which is related to the expulsion of hot fluids (about 200 ◦C) through faults and fractures during
episodes of fault activity. The studied outcrop can be considered as belonging to the Valdieri Marbles
according to Reference [33].

The quarry is at an elevation roughly between 900 and 1250 m. The front has an envelope slope
of approximatively 53◦ and the dip direction is southeast (about 125◦). It is structured in benches
(10 m high, 2–2.5 m wide). The dip of the single terrace face is approximatively 62◦–65◦ with local
situations of greater acclivity. The front perpendicular to the cultivation has an envelope slope of
approximatively 45◦ and is set on the schistosity planes. The dip direction of the front envelope is
towards the South-West (about 200◦). The dip of the single step elevation is that of the schistosity and
is approximately equal to 50◦ but is locally higher.
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respectively (Figure 3a), according to the ISRM procedures [7]. Data were elaborated aiming at 
highlighting joint density (number of joints per meter, [J/m]) across the fault zone. 

Figure 2. Location and geological map of the test site. Legend: 1—Slope and talus debris.
2—Undifferentiated glacial deposits. 3—Carnieules. 4—Puriac Limestone. 5—Marne Nere.
6—Lausa Limestone. 7—Entracque marl. Completed and modified after Reference [33].

3. Procedure and Methods

3.1. Geo-Mechanical Surveys

The outcrop was investigated by two geo-mechanical scanlines (SL1 and SL2), 73 and 20 m
long, respectively (Figure 3a), according to the ISRM procedures [7]. Data were elaborated aiming at
highlighting joint density (number of joints per meter, [J/m]) across the fault zone.
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real time RTK mode. MicMac, an open source software, was used to perform tie point extraction, 
bundle block adjustment, dense image matching, and 3D reconstruction. The obtained cloud 
consisting of 7.7 million points has been interrogated by means of CloudCompare software for 
checking structural data using the Compass plugin [34]. A high resolution orthophoto (Figure 3a) 
with a Ground Sample Distance (GSD) of 1 cm/pixel was produced in order to measure joint spacing 
in non-reachable portions of the outcrop. 
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(8–14 μm) due to the peak energy emissions for ambient Earth surface temperatures and to the 

Figure 3. Details of the study area. (a): orthomosaic. (b): Image of the dense cloud reconstructed using
MicMac software. In the red box is the surveyed area.

In Figure 3b, the 3D reproduction of the test site is shown. The photogrammetric survey consists
of a series of overlapping images acquired with a Canon full frame DSLR coupled with a 50 mm
lens. Ground control points for model orientation were dislocated over the quarry front and were
acquired by using a rugged GPS tablet (Leica CS25 plus) able to reach a positioning error below
2 cm in the real time RTK mode. MicMac, an open source software, was used to perform tie point
extraction, bundle block adjustment, dense image matching, and 3D reconstruction. The obtained
cloud consisting of 7.7 million points has been interrogated by means of CloudCompare software for
checking structural data using the Compass plugin [34]. A high resolution orthophoto (Figure 3a) with
a Ground Sample Distance (GSD) of 1 cm/pixel was produced in order to measure joint spacing in
non-reachable portions of the outcrop.

3.2. Infrared Thermography

3.2.1. Principles

Thermography is based on the physical principle stating that, any object having temperature
higher than absolute zero, produces electromagnetic radiation. The electromagnetic spectrum is
divided arbitrarily into several wavelength regions, called bands, which are distinguished by the
methods used to produce and detect the radiation. Thermal radiation occurs in the portion of the
spectrum between 0.1 and 100 µm, including parts of the ultraviolet along with visible and infrared
regions. However, most of the thermal radiation falls within the IR band [15,35,36]. Thermal cameras
for a remote sensing purpose are usually designed and calibrated for the Long-Wavelength IR band
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(8–14 µm) due to the peak energy emissions for ambient Earth surface temperatures and to the
presence of atmospheric windows ([20]). The relation between the total emissive power and an object’s
temperature is stated by the Stefan-Bolzmann’s Law [37,38].

W = ε σ T4, (1)

where W, is the total radiant emittance from the body, expressed in Watt m−2, ε is the object emissivity,
σ, is the Stephan Boltzmann constant = 5.6697 × 10−8 Wm−2 K−4, and T is the absolute temperature
(expressed in K) of the emitting material.

When a surface is sensed by a thermal camera, the thermal radiation pattern acquired depends
not only on the surface temperature but also on the emissivity of the material, on the atmospheric
absorption, as well as on the reflection observed on the radiation surface, due to the surrounding
bodies [10,39]. These variables must be taken into account at the time of measurement, and their
contribution must be known in order to estimate the real temperature of the object.

3.2.2. Surveys Methodology

Two measurement sessions were carried out in 2018 including the first one on January 23
(winter session) and the second one on June 18 (summer session). The aim was to evaluate the behavior
of the rock mass in different seasons, insulation conditions, and water content within the fault zone.
In every session, a series of thermal images were acquired at an hourly rate. The instrument employed
was a FLIR E8 thermal camera (FLIR Systems Inc, [40]) equipped with an uncooled FPA micro
bolometer sensor, with a resolution of 320 × 240 pixel, IFOV = 2.6 mrad. It can perform measurements
in the thermal infrared band (between 7.5–13 µm). The device was placed on a stable tripod 80 m away
from the target, giving a GSD, Ground Sample Distance, of approximatively 0,18 m/pix. In addition
to the thermal image, this device produces an optical image, which helps identify the measured area
and interpret more easily the obtained thermal data. Thermal data and frames were imported and
calibrated by using Flir Tools software (FLIR Systems Inc, version 5.13.17214.2001). After that, the data
matrix and optical images were exported to be aligned and to calculate differentials by using the
ArcGis Raster Calculator (ESRI ArcMap 10.2.2).

Images were labelled using the following convention: the letter F means the Frame, followed by
two numbers identifying the hour when the image was taken, omitting minutes (e.g., F16 refers to an
image taken at 16.00 p.m.). During both measuring sessions, the air temperature and humidity were
recorded. The first session, conducted from the late morning, allowed for detecting both the heating
and the onset of the cooling phase of the rock mass. The air temperature varied between −1 and 11 ◦C.
The second one recorded only the cooling phase of the rock wall, avoiding the contribution of the
solar radiation. The measurement session lasted from 19:00 to 23:00, while the air temperature ranged
between 24 and 14 ◦C. In this session, an appreciable run-off flow coming from the top of the quarry
front was detected on the Bench 1, steaming from East to West (Left to right in Figures 1 and 3).
The temperature of the water flowing was 16.0 ◦C. The environmental conditions are shown in Table 1.

Table 1. Environmental conditions at survey time.

Winter Session Summer Session

Data 23 January 2018 18 June 2018
Start–End Time 11:40 ÷ 18:07 19:00 ÷ 23:00
Sunrise–Sunset 7:58 ÷ 17:27 5:46 ÷ 21:17

Direct Insolation (start ÷ end) 10:30 ÷ 16:30 – ÷ 18:50
Air Temperature −1 ◦C ÷ +11 ◦C +14 ◦C ÷ +24 ◦C

H2O Temperature no water ~ 16 ◦C
Air Humidity not measured 55% ÷ 60%

Shooting Length 80 m 80 m
Emissivity 0.95 0.95

Reflected Temperature not measured 18◦C ÷ 22 ◦C
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The emissivity of the rock, the reflected temperature, the shooting length, and the relative humidity
have been set appropriately for each shot (except for the winter session, when humidity and reflected
temperature were not recorded). In particular, emissivity has been detected by means of lab tests on
a rock sample heated in the hoven up to 40 ◦C. A piece of black electrical tape with a known emissivity
of 0.95 was used as a reference, following the “reference emissivity material method” as given in
Reference [41]. By assuming emissivity equal to one and by placing a crumpled and re-flattened piece
of aluminum foil in front of the camera, the reflected temperature was measured by using the reflector
method [42,43]. In particular, the reflector was positioned trying to reproduce the same slope angle and
filling the frame. Although outdoor conditions could affect this measure, we consider this approach
the one optimizing time saving and accuracy.

3.3. Thermal Conductivity Analysis

Thermal conductivity defines the ability of a material to transfer heat corresponding to the
amount of heat transferred from a body per unit area, as it is expressed by the Fourier’s Law of thermal
conduction defined using the formula below.

q = −λ
δT
δX

(2)

where q is the heat flow in the direction of X, and T is the temperature. The coefficient of proportionality
λ is the thermal conductivity [43].

A sequence of field and laboratory measures adopting two different methods such as Transient
Line Source (TLS, [44]) and Transient Divide Bar (TDB, [43]), was, therefore, carried out on a meaningful
number of samples. This is important in order to understand the influence and the accuracy of some
experimental conditions, as well as to compare obtained results with known mixing models for
measuring bulk thermal conductivity, as proposed in the literature [45].

Aiming at obtaining precise and reliable values of thermal conductivity, density, and porosity
parameters were also measured in intact rock specimens. Because of the irregular shapes of the
collected samples, bulk density was obtained by water saturation and by weighing all the collected
rocks, which refers to Archimede’s Principles [23]. Each specimen was then oven-dried at 70 ◦C for
one day in order to obtain the dry mass and to infer porosity [46].

3.3.1. Transient Line Source (TLS)

K2DPro, which is a thermal property analyzer developed by Decagon Devices, compliant to
standards ASTM D5334 and IEEE 442 [47,48] was used. It relies on the Transient Line Source (TLS)
method, assuming a heat production at a constant rate by a heated wire and predicting an infinitely
long and small source inside an infinite and homogeneous medium.

The obtained temperature, can be found in (Equation (3)).

T2 − T1 =
q′

4πλ
·(ln t2 − ln t1), (3)

where q′ (W m−1), is the specific rate at which the heat is generated, T1 and T2 (◦C) are the recorded
temperatures at time steps t1 and t2 (s), respectively, and λ is the thermal conductivity.

The device uses a specific algorithm based on References [49,50] line heat source analysis.
This permits measurements during a heating and a cooling interval, and the separation of the effects
of the heat pulse from ambient temperature changes. The algorithm fits time and temperature data
using an exponential integral function through a non-linear least squares method. Based on this
theory, the K2Dpro device allows for measures with an accuracy of ±10% [47]. It consists of four
specific sensors designed for well-defined samples. In this study, the most proper single needle
probe (RK-1 sensor, 0 cm long, 3.9 mm diameter) was directly inserted into the investigated materials.
With regard to field measures, since thermal conductivity gives a punctual value, two “end members”
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were tested: sound rock and cataclastic zone. The needle probe was easily introduced in the abundant
fine-grained matrix of the cataclastic zone, ensuring a good coupling. Regarding the sound rock,
a 4 mm hole was drilled on the surface, and a low quantity of thermal grease was introduced to
improve thermal contact between the needle and the rock. Since thermal conductivity is strictly linked
to physical, mechanical, and mineralogical characteristics of the material [51,52], laboratory measures
both in dry and in wet conditions were conducted too. Due to the difficulty to collect undisturbed
samples of the cataclastic fault zone, only sound rock was tested in the laboratory. Each final value
achieved is an average over 10 measurements.

3.3.2. Transient Divided Bar (TDB)

The Transient Divided Bar (TDB) is an implemented apparatus designed by Reference [44].
It consists of a stack of two copper blocks acting as a heat sink (the upper one) and a heat source
(the lower one), respectively, and, in between the cylindrical rock specimen, is interposed. It is based on
Reference [53], adapted for defining thermal conductivity of semiconductors. It predicts that thermal
conductivity is obtained through temperature changes between the heat sink and the heat source
during the test as well. Temperature changes are recorded and defined by the amount of heat removed
from the upper copper block Cu∆Tu in a specific period of time ∆T, according to the Fourier’s postulate.
This is given by (Equation (4)).

Cu∆Tu =
λS
h

∫ t2

t1
(Tu − Tl) dt (4)

where Cu, is the volume heat capacity (J m−3 K−1) at a constant pressure, ∆Tu (◦C) is the temperature
variation of the upper copper block during a time step dt, λ (W m−1 K−1) is the thermal conductivity
of the rock sample, h (m) is the height, S (m2) is the cross-sectional area of the rock sample respectively,
T is the temperature, and u and l are suffixes that refer to the upper and lower block. Details of the TDB
device as well as the procedure followed to conduct tests, are described in Reference [43]. In particular,
TDB is designed for laboratory analysis on sound rocks. For this study, it was applied as a comparative
methodology with the TLS apparatus, in order to obtain more reliable thermal conductivity data.
Cylindrical specimens 25 ± 0.1 mm in diameter and 20 ± 0.5 mm in thickness, and with parallel,
flat (within 0.1 mm) and smooth (within 0.03 mm) surfaces, were prepared. A film of silicone paste
(0.1 mm) was applied to improve thermal contact between the rock sample and copper blocks of the
used device. Similar to TLS, each final value obtained is averaged over 10 measurements.

4. Results

4.1. Geo-Mechanical Surveys

Bench 1 and 2 are characterized by four main intersecting discontinuity systems (Figure 3a) wich
are the schistosity (188/63) and three persistent joint systems, K1, K2, and K3 (respectively, 170/50,
208/79 and 022/81). Fractures are generally closed or with aperture <2 mm while the filling, present as
an abundant fraction only in the fault zone, is mostly soft and made of sandy/silty weathered material.
No water flows were reported in the winter survey session (probably due to freezing), while a certain
humidity degree was present in the summer session. Surface alteration increases approaching to the
fault zone. The main geo-structural parameters are summarized in Table 2 and Figure 4.

Table 2. Main geo-mechanical features from the surveys.

Set Spacing (mm) Persistence (m) Roughness Aperture Infilling Weathering Groundwater

S 200 ÷ 600 3 ÷ 10 rough closed none slight dry to damp
K1 40 ÷ 200 3 ÷ 10 rough closed to partly open none-soft none to slight dry to damp
K2 60 ÷ 600 3 ÷ 10 rough closed to tight none-soft none to slight dry to damp
K3 40 ÷ 200 3 ÷ 10 rough closed to tight none-soft none to slight dry to damp
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The number of fractures per linear meter (J/m) provides a good estimate for the potential water
circulating through the rock mass. This indicator is consistent with more standardized indexes, such as
RQD [54], GSI [55], and RMR [56], as can be seen in Figure 5.

With respect to the Hoek & Brown classification, the GSI value was inferred according to rock
mass interlocking and surface conditions, while UCS and mi values were chosen based on an empiric
field observation, according to authors’ suggestions [55].

Considering arbitrary joint density thresholds, four lithotechnical units are identified and labelled
RT1, RT2, RT3, and RT4, respectively. Quality (latu sensu) of the rock mass decreases from RT1 to
RT4 (from Blocky, to Very blocky, to Disturbed to Disintegrated) since the number of joints per meter
increases, and RQD, GSI, and RMR decrease.

Figure 5 shows the location of the four litho-technical units on the two surveyed benches.
In Figure 6, some geo-mechanical parameters [55] are calculated for every lithotechnical unit, by using
the RocData software (Version 5.009, RocScience Inc.) (Figure 7).
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4.2. IRT Winter Field Acquisition

The winter measurement session was conducted from the late morning to the late afternoon
on Bench 1. Figure 8 shows raw images and differences between every image and the first one.
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The solar radiation affects heavily the temperature pattern over the rock outcrop: a quite homogeneous
increasing in temperature is shown, with some difference due to the orientation of the surfaces with
respect to the position of the sun. For example, the darker loose deposit on the benches (C) has the
higher surface temperatures at the start of the survey, and the lower ones at the end. They show a lower
thermal inertia than the rocks outcropping in the quarry front. Moreover, it is evident that shaded
sectors tend to heat less than the surroundings (cfr. Point S in Figure 8). This is consistent with literature
data, which highlights the massive disturbance induced by sun heating [15,17,39]. Only the cooling
down phase seems to highlight some peculiar pattern of the fault zone. However, images acquired
after the sunset are not enough for providing data necessary for retrieving a cooling rate.Remote Sens. 2019, 11, x FOR PEER REVIEW  8 of 15 
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4.3. IRT Summer Field Acquisition

The summer measurement session was conducted entirely after the sun had set, with a decreasing
air temperature. An appreciable flow of water (T ~ 16 ◦C) was present on the top the bench (not visible
from the IR camera position due to the presence of the loose deposit), and a certain degree of humidity
was visible in the filling of the fault zone fractures.

Looking at the raw images (Figure 9) from a to e (from 19:00 to 23:00), it can be noted that RT1
and RT2 portions are systematic with a higher surface temperature than RT3, RT4, and C portions
(loose deposits with vegetation). The temperature trend over time shows an evident decrease, in every
sector of the frame. Making some spot measurements (Sp1 to Sp6), it is possible to quantify the cooling
rate of the single measurement points along a meaningful profile. The measured points are chosen
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along a line and include portions of sound rock, wet sectors, and fault rocks. Although a punctual
measure may be affected by errors due to tripod instability and camera vibrations, this does not
undermine measurement representativeness. Actually, images were aligned before measuring.
Furthermore, variations in terms of the temperature of the adjacent pixel are not so significant. The error
committed could be regarded as negligible.
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Figure 9. Summer measurement session (a) = image at 19:00 (F19), (b) = image at 20:00 (F20),
(c) = image at 21:00 (F21), (d) = image at 22:00 (F22), (e) = image at 23:00 (F23), (f) = position of
measurement points, and (g) = temperature trends of the spot measurement points. RT stands for the
ambient temperature.

Full lines represent the temperature measured at every time step, while the dashed line correspond
to the measured air temperature over time. Wet portions (Sp3 and Sp6, detected during the field
survey) are characterized by a lower surface temperature in a, and show a lower average cooling rate,
with respect to drier ones (Sp1, Sp2, Sp4, and Sp5). Moreover, all the curves tend to have a lower
steepness in the right part of the graph, showing a decrease in the cooling rate over time, as illustrated
in Figures 9 and 10.
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(d) = F22-F19, (e) = F23-F19, (f) = position of measurement points, and (g) = temperature differentials of
the spot measurement points.

Figure 10 shows thermal differentials of every image compared to the first one, ∆TC. Portions of
the bench with different thermal behavior are emphasized. In general, ∆TC between 0 ◦C and −8 ◦C
are shown over the whole frame. Among the six measured spots, the wet portions (Sp3 and Sp6) have
a lower final thermal differential (in e→ ∆TC Sp3 ~ −4.0 ◦C and ∆TC Sp6 ~ −3.5 ◦C) while the dry rock
areas show more consistent thermal losses (e→ ∆TC Sp2 ~ −6 ◦C).

Figure 11 shows thermal differentials between consecutive images ∆TH. In general,
hourly variations correspond to ∆TH between −2.5 ◦C and +0.1 ◦C. The hourly cooling rate is
not constant over time, but generally decreases with a fluctuating trend. This fact could be due
to equipment sensitivity, environmental disturbance, and position of the spot measures. In fact,
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the environmental temperature constantly decreases over time. Wet and dry areas do not show
peculiar behavior with respect to this parameter.Remote Sens. 2019, 11, x FOR PEER REVIEW  11 of 15 
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Figure 11. Summer measurement session 1-hour thermal differentials ∆TH. (a) = image at 19:00 (F19),
(b) = F20-F19, (c) = F21-F20, (d) = F22-F21, (e) = F23-F22, (f) = position of measurement points, and
(g) temperature differentials of the spot measurement points.

4.4. Thermal Properties

The main results of thermal conductivity, porosity, density, and temperature analysis are
summarized in Table 3. The field five measurements on the main representative portion of the sound
rock mass (EM1) as well as on the cataclastic zone (EM2) were conducted (Figure 12). Laboratory tests
in dry and wet conditions (Table 3) were also performed. In both cases, each test represents an average
of five values over 10 measures.



Remote Sens. 2019, 11, 179 16 of 23

Table 3. Results from field and laboratory activities. Keys: TLS (Transient Line Source methods) and TDB (Transient Divided Bar technique), EM2 and EM1, fault and
rock respectively. The symbol percentage indicates the percentage between two measurements of thermal conductivity. T is the temperature (◦C), ϕ indicates the
porosity (% vol), and $ defines density (g/cm3). λb, is the bulk of thermal conductivity (W m−1K−1). St.dev., the standard deviation of λb.

Test
Field Lab Dry Lab Wet Other Properties

TLSEM2 TLSEM1 % EM2vsEM1 TDBEM1 TLEM1 % TDBvsTLS TDBEM1 TLSEM1 % TDBvsTLS ϕ $ TEM1 TEM2

1 1.69 2.53 33.20 2.67 2.06 22.85 2.70 2.10 22.22 0.33 2.62 26.97 25.73
2 1.68 2.38 29.41 2.71 2.15 20.66 2.77 2.22 19.86 0.44 2.74 26.53 24.30
3 1.63 2.67 39.95 2.72 2.20 19.12 2.77 2.30 17.56 0.47 2.72 26.02 23.41
4 1.58 2.6 39.23 2.68 2.07 22.76 2.72 2.25 17.88 0.48 2.54 25.92 23.56
5 1.58 2.6 39.23 2.69 2.13 20.82 2.72 2.18 19.85 0.30 2.60 26.29 24.20
λb 1.632 2.556 2.694 2.122 2.744 2.210

St. dev. 0.053 0.110 0.021 0.058 0.036 0.075
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Thermal conductivity measured in the field ranges from 1.58 ÷ 1.69 W m−1K−1 in the EM2 to
2.38 ÷ 2.67 W m−1K−1 for EM1, which shows a difference of about 30 ÷ 40%. At the same time,
temperature varies 23.41 ÷ 25.73 ◦C for EM2 to 25.92 ÷ 26.97 ◦C for EM1 (Table 3, Figure 13).
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Figure 13. Field data relative to thermal conductivity (above) and temperature (below) both for
cataclastic fault zone (Orange) and low fractured rock mass (Blue). Estimated errors in the measurement
are represented by vertical error bars.

On the whole, a general underestimation of TLS than TDB both in dry (TLS: 2.06 to 2.20 W
m−1K−1; TDB: 2.67 to 2.72 W m−1K−1) and in wet conditions (TLS: 2.10 to 2.30 W m−1K−1; TDB:
2.70 to 2.77 W m−1K−1), with a maximum of 22.85% and of 22.22% in dry and in wet conditions,
respectively, is observed (Table 3, Reference [31]).

Taking into account only the sound rock, if we compare averages values of thermal conductivity
for field and laboratory data, the underestimation of TLS with respect to TDB decreases if the TLS
technique is used in the field. Moreover, a clear difference of the EM2 with respect to EM1, can be
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further highlighted. It behaves differently with both TDB and TLS rock data. Moreover, very low
standard deviations (0.021 to 0.110) can be observed (Table 3).

Looking at the more representative portions of the sound rock mass, relationships of wet thermal
conductivity with porosity (η, vol %) and density ($, g/cm3) are summarized in Figure 14.
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Figure 14. Wet thermal conductivity (λw, W*K−1m−1) from TLS (green circles) and TDB methods
(blue circles) vs. density ($, g/cm3) in (A), and porosity (ϕ, vol %) in (B), respectively. Error bars
represent standard deviation.

Density ranges from 2.54 to 2.74 g/cm3 (Figure 14A, Table 3), which are quite high values for
a carbonatic rock. Since the negligible porosity (0.30 to 0.48 vol %, Figure 14B, Table 3) and a lack of
interconnection between factures, water content does not affect measurements.

5. Discussion

As a general point of view, good agreement between geo-mechanical characteristics of rock masses
and their thermophysical behavior is highlighted. Thermal imaging results obtained during rock
mass heating and cooling phases, differ in significance depending on several reasons. First of all,
the heating trend depends more on the sun position than on the rock mass characteristics. In fact,
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the relatively uniform and constant slope aspect and surface roughness do not affect substantially
thermal measurements.

Then, a reflected and scattered solar radiance play a major role during the day, and considerably
affect the rock mass emission term. Thermal contrast between rock mass and air temperature is higher
after the sunset. This highlights the rock mass behavior (Figure 8). This is consistent with literature
data [15,17]. For those reasons, the results obtained under daylight conditions are affected by a not
insignificant source of error.

The summer measurement session, aimed at recording the cooling phase, highlights the different
thermal response of the fault zone (RT3 and RT4) with respect to the low fractured sectors (RT1 and
RT2). In fact, raw images show that the temperature of the fault zone, characterized by a higher degree
of fracturing and low GSI, RQD, and RMR, is sensibly lower in every time step. This outcome is
dissimilar from what is obtained in Reference [15]. In fact, authors report higher surface temperature
for a high fractured portion of the rock mass. The difference can be ascribed to the hydraulic conditions
of the discontinuities. In the case examined herein, there is a consistent water circulation, while, in the
reference, the rock mass is in dry conditions. Figure 15 shows the comparison between the number
of joint per meter and the measured temperature for the F19 frame on the SL1 scanline (Figure 9a).
It is evident that an inverse relationship among these two parameters exist. This is due to the higher
water content of RT3 and RT4 units. In fact, while the higher temperature is registered for the sound
rock (~32 ◦C), the water that circulates in fractures at 16 ◦C cool down the fault zone up to 4 to
5 degrees (F19, Figure 9a). The inverse solution is also possible to apply toward detecting cooler sectors.
Thus, the information on the degree of fracturing is possible to retrieve (i.e., SP6, Figure 9).
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Figure 15. Comparison between the number of joints per meter and the measured temperature for the
F19 frame on the SL1 scanline.

Hot and dry areas—and, thus, less fractured one—are characterized by a higher cooling rate,
while the cold and wet ones (with poor geotechnical characteristics) shows lower temperature
differentials. This is in agreement with the Newton’s law of Cooling, stating that the rate of heat
loss of a body is directly proportional to the difference in the temperatures between the body and
its surroundings.

The sound rock seems to conduct far more than cataclastic fault (in dry conditions), due to the
better thermal conductivity values both from field and laboratory surveys (Table 3). This could be
due to many factors ranging from different physical, mechanical, and mineralogical characteristics.
In particular, lower thermal conductivities of the cataclastic fault zone could be due to a higher content
of clay minerals in its matrix or to a higher porosity in dry conditions.

Laboratory experiments were focused on the characterization of the sound rock including
comparative and multiple measurements, which allow the obtainment of more reliable values of
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thermal conductivity through different methodologies and working conditions. In this case, a constant
underestimation of TLS data than TDB (Transient Divided Bar technique) for both dry and wet thermal
conductivity can be observed. However, this underestimation abruptly decreases when comparing
field data on the same rock type. In this case, thermal conductivity using TLS in the field results
in higher values, approaching those from the TDB device during laboratory activity. A negligible
λw/λd ratio (ratio between wet and dry thermal conductivity) retrieved in comparative analysis of
bulk thermal conductivity of sound rock confirm that porosity does not play an important role in
the sampled outcrop. As reported in the literature [57–59], fractures can highly increase the λw/λd
ratio, but only when fractures are interconnected and affected by groundwater circulation. On the
other hand, some different factors (e.g., air or re-crystallized calcite aggregates or some other low
conductive materials fulfilled fractures [60]) can contribute to lowering the λw/λd ratio even if fractures
are abundant in the rock mass. In spite of the very low fracture porosity, the negligible λw/λd ratio
can be ascribed to the mono-mineralic content (around 99.9% volume of Calcite, Carbocalcio Cuneese
S.p.A., personal communication), as well. The laboratory tests demonstrate, once more, as the thermal
conductivity is strictly connected to the porous medium, the structure and the mineralogy of the
rock [61]. Reliability of the obtained results is supported thanks to low standard deviations (Table 3)
as well.

6. Conclusions

Both mesoscopic and microscopic characteristics influence thermal properties of the rock masses.
The thermal response of an outcrop in heating and in cooling phases, which was confirmed in this study,
is caused by different and simultaneous heat transfer processes. At a sample scale, thermal behavior
is led by the microscopic features (mineralogical composition, microstructure, interstitial fluid
characteristic, etc.) and by the heat conduction process. Thermal conductivity values are systematically
higher in the sound rock with respect to the fault zone. A negligible λw/λd ratio shows that, in his case,
fracture porosity is not relevant in influencing thermal properties of the sound rock. Heat conduction
is less efficient at the mesoscopic and macroscopic scale, where convection and advection processes
due to water circulation into the fracture network are predominant. Thus, the thermal imaging,
which highlights a portion of the outcrop characterized by a higher water content, can be a useful tool
for detecting a densely fractured litho-technical unit. This can be used when a direct investigation of
rock masses (or part of them) is not possible and can be successful in defining portions characterized
by similar mechanical and hydro-geological behavior.
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51. Yaşar, E.; Erdoğan, Y.; Güneyli, H. Determination of the thermal conductivity from physico-mechanical

properties. Bull. Eng. Geol. Environ. 2008, 67, 219–225. [CrossRef]
52. Pribnow, D.; Umsonst, T. Estimation of thermal conductivity from the mineral composition: Influence of

fabric and anisotropy. Geophys. Res. Lett. 1993. [CrossRef]
53. Joffé, A.F. Heat transfer in semiconductors. Can. J. Phys. 1956, 34, 1342–1355. [CrossRef]
54. Deere, D.U.; Hendron, A.J.; Patton, F.D.; Cording, E.J. Design of Surface and Near-Surface Construction in

Rock; American Rock Mechanics Association: Alexandria, VA, USA, 1966; Available online: https://www.
onepetro.org/conference-paper/ARMA-66-0237 (accessed on 18 January 2019).

55. Hoek, E.; Carranza-Torres, C.; Corkum, B. HOEK-BROWN FAILURE CRITERION—2002 EDITION. In Proceedings
of the Fifth North American Rock Mechanics Symposium, Toronto, ON, Canada, 7–10 July 2002; pp. 267–273.

56. Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining,
Civil, and Petroleum Engineering; Wiley: New York, NY, USA, 1989.

57. Popov, Y.; Tertychnyi, V.; Romushkevich, R.; Korobkov, D.; Pohl, J. Interrelations Between Thermal Conductivity and
Other Physical Properties of Rocks: Experimental Data. Pure Appl Geophys 2003, 160, 1137–1161. [CrossRef]

58. Moh’d, B.K. Compressive Strength of Vuggy Oolitic Limestones as a Function of Their Porosity and Sound
Propagation. Jordan J. Earth Environ. Sci. 2009, 2, 18–25.

59. Bagrintseva, K.I. Carbonate Reservoir Rocks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015.
60. Horai, K.; Simmons, G. Thermal conductivity of rock-forming minerals. Earth Planet. Sci. Lett. 1969, 6, 359–368.
61. Surma, F.; Geraud, Y. Porosity and Thermal Conductivity of the Soultz-sous-Forêts Granite.

Pure Appl. Geophys. 2003, 160, 1125–1136. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2136/sssaj1993.03615995005700060008x
http://dx.doi.org/10.1007/s10064-008-0126-5
http://dx.doi.org/10.1029/93GL02135
http://dx.doi.org/10.1139/p56-150
https://www.onepetro.org/conference-paper/ARMA-66-0237
https://www.onepetro.org/conference-paper/ARMA-66-0237
http://dx.doi.org/10.1007/PL00012565
http://dx.doi.org/10.1007/PL00012564
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Site 
	Procedure and Methods 
	Geo-Mechanical Surveys 
	Infrared Thermography 
	Principles 
	Surveys Methodology 

	Thermal Conductivity Analysis 
	Transient Line Source (TLS) 
	Transient Divided Bar (TDB) 


	Results 
	Geo-Mechanical Surveys 
	IRT Winter Field Acquisition 
	IRT Summer Field Acquisition 
	Thermal Properties 

	Discussion 
	Conclusions 
	References

