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Firstly formulated to solve unconstrained optimization problems, the common way to solve constrained ones with the meta-
heuristic particle swarm optimization algorithm (PSO) is represented by adopting some penalty functions. In this paper, a new
nonpenalty-based constraint handling approach for PSO is implemented, adopting a supervised classification machine learning
method, the support vector machine (SVM). Because of its generality, constraint handling with SVM appears more adaptive both
to nonlinear and discontinuous boundary. To preserve the feasibility of the population, a simple bisection algorithm is also
implemented. To improve the search performances of the algorithm, a relaxation function of the constraints is also adopted. In the
end part of this paper, two numerical literature benchmark examples and two structural examples are discussed. )e first
structural example refers to a homogeneous constant cross-section simply supported beam. )e second one refers to the op-
timization of a plane simply supported Warren truss beam. )e obtained results in terms of objective function demonstrate that
this new approach represents a valid alternative to solve constrained optimization problems even in structural optimization field.
Furthermore, as demonstrated by the Warren truss beam problem, this new algorithm provides an optimal structural design
which represents also a good solution from the technical point of view with a trivial rounding-off that does not jeopardize
significantly the optimization design process.

1. Introduction

Many optimum design engineering problems can be
modelled as continuous nonlinear optimization problems, in
which the search space is reduced due to the existence of
various constraints:

min
x∈Ω

f(x) ,

s.t. gq(x)≤ 0 ∀q � 1, . . . , nq,

hr(x) � 0 ∀r � 1, . . . , nr,

(1)

in which x � [x1, . . . , xn]T is the design variable vector, f(x)

is the objective function (OF) to be minimized, and Ω is a
box-type search space, defined as Cartesian products among
the admissible intervals within a lower and an upper bound
for each design variable Ω � [xl

1, xu
1] × · · · × [xl

n, xu
n]. )e

equality constraints can also be rewritten in order to have
inequality constraints only, i.e., gp(x)≤ 0, for p � 1, . . . ,

nq, nq+1, . . . , np, with np � nq + 2nr. )e modern approaches
to solve them are related to the Soft Computing techniques;
in particular, the particle swarm optimization (PSO) algo-
rithm [1] is adopted in this paper. )e swarm exhibits an
intelligent search behavior because of the social and cog-
nitive interactions among the individuals of the population.
)is mechanism is inspired by natural aggregations such as
bird flocking, fish schooling, or swarming of insects in
nature. )e PSO was successfully adopted in structural
optimization fields and one can refer to, e.g., [2–6] for truss
problems, to, e.g., [7, 8] for composite structures, to, e.g., [9],
for shape optimization of arch dams under earthquake
loading, or to, e.g., [10] for optimization of steel frames. )e
starting positions and velocities are randomly sampled using
the Latin Hypercube Sampling (LHS) technique to generate
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an initial population with minimum correlation between
samples [11]. In the Newtonian dynamics-based algorithm,
each ith particle (with i � 1, . . . , N, in which N is the
population size) is completely defined by the position kxi and
the velocity kvi at the kth generation.)e update rules for the
next generation are the following:
(k+1)vi �

kvi + c
(k+1)
1 r1i ∗

kxPb
i −

kxi  + c
(k+1)
2 r∗2i

kxPb
i −

kxi ,

(2)

(k+1)xi �
kxi + τ(k+1)vi (τ � 1), (3)

in which the symbol ∗ denotes the term-by-term vector
multiplication (Hadamard product, [12]). Each particle is an
intelligent agent with memory of its best visited position
until the current iteration in terms of minimal OF kxPb

i

(denoted as pbest), whereas the term kxGb (denoted as gbest)
is usually the best individual of the entire swarm in terms of
minimal OF (fully connected neighborhood topology). It is
possible to adopt also a local strategy limiting the sharing of
information about the gbest to a certain number of neighbor
particles [13–15]. )e velocity update rule (2) depends on a
inertia term related to the previous velocity vector, on a
cognitive term related to the pbest attraction, and on a social
term related to the gbest, which are randomly weighted by
(k+1)r1i,

(k+1)r2i � rand[0, 1]. )e positive scalar acceleration
factors c1 and c2 are, respectively, called cognitive and social
parameters. To protect the cohesion of the swarm, each
velocity component is limited by a maximum value typically
assumed as vmax � c(xu − xl)/τ, where τ � 1 is a time-related
parameter, whereas c ∈ [0.1, 1] (generally set to 0.5) defines
how far a particle can move starting from its current position
[13]. After the update phase, the algorithm checks if the
particles are inside the box-search space. A stopping cri-
terion is usually set through a maximum number of itera-
tions L; however, the strictly required ones to reach the
optimum are not know a priori; therefore, one can refer to
the suggestions of [16]. Later, to improve the exploration
capacity of the swarm, Shi and Eberhart [17, 18] introduced
an inertia weight term kw multiplied to the previous velocity
in (2), which changes during iterations from an initial value
0w to a final one Lw with a linearly decreasing law. Some
other inertia weight laws were proposed during the years
[14]. )e performance of the algorithm is strongly affected
by the choice of the parameters such as the swarm size N,
usually set in a range of [20, 100] with n≤ 30, or the ac-
celeration factors, which are usually assumed statically fixed
to c1 � c2 � 2 [13]. In this study, it is assumed that all of them
are constant values equal to c1 � c2 � 2, 0w � 0.90, and Lw �

0.40 [2].
Despite several studies (e.g., [19]) demonstrating that this

optimizer has a good convergence rate, the PSO, such asmany
other Soft Computing techniques, was originally proposed to
solve unconstrained optimization problems. )erefore, the
implementation of some effective constraint-handling
mechanisms is considered a crucial issue for all biological
inspired optimizers [20–23]. )ese methods have been
classified by different authors into certain categories (see, for
instance, the state-of-the-art review by [21, 24, 25]): penalty

functions-basedmethods; methods based on special operators
and representations; methods based on repair algorithms;
methods based on the separation betweenOF and constraints;
hybrid methods. )e most adopted method due to its sim-
plicity is the exterior penalty approach which allows to
convert the problem in an unconstrained one [26, 27]. Many
different approaches such as the death, static, dynamic, or
adaptive penalty functions have been proposed in time, e.g.,
see [26]. A proper choice of the constraint-handling mech-
anism affects the performance of the algorithm, and one of the
critical issues to take into account is the preservation of the
diversity of the population [28]. )e brutal elimination of the
unfeasible particles, such as in the death penalty rule, can
jeopardize the exploration performances due to a loss of
information [21, 29]. Moreover, it has been verified that
several traditional penalty-based approaches may not be
adequate to deal with highly complex search spaces, especially
for problems in which several constraints are actively close to
the optimum [30]. Specific constraint handling operators
have been implemented in PSO, as presented in [26], and can
be classified in four main groups: penalty-based mechanisms;
separatist mechanisms; hybrid mechanisms; other constraint
handling mechanisms (such as Del Valle’s ranking approach).
Many variant of the PSO have been proposed in the years, e.g.,
the ILS-PSO by [31] which adopts a local search operator to
deal with equality constraints or the PSO+by [27] which is
based on the preservation of the feasibility. In the last decades,
to overcome the drawbacks of a single heuristic approach,
many hybridization have been proposed such as with the
simplex method [32], with sequential quadratic programming
[6], with radial basis function approximations [33], with fuzzy
logic [9, 34], with neural networks [35], with parallel com-
puting techniques [36], with genetic algorithm GA-PSO [12],
with differential evolution algorithm DEPSO [37], with ant
colony optimization [5], and with many other algorithms
such as exposed in [14]. In the following, a new nonpenalty
constraint handling approach based on the support vector
machine (SVM) is reported in detail, and, after that, two
numerical problems are discussed to verify the convergence
properties of the new PSO-SVM algorithm. Subsequently, the
proposed PSO-SVM is adopted into the structural optimi-
zation field analyzing two examples, respectively, related to
the size optimization of a simply supported beam and to the
size and shape optimization of a Warren truss beam.

2. Constraint Handling in the Proposed
Framework: The PSO-SVM Approach

In this paper, a new nonpenalty-based constraint handling
approach is implemented using the SVM. )is machine
learning approach is based on statistical learning theory [38].
During the learning process, the machine learns from ex-
amples contained in a known training dataset which could
be composed of both input and output data (supervised) or
only input data (unsupervised) [39]. )e SVM is able to map
the input data to another space (feature space) usually with a
higher dimension [40] where the data are linearly separable
and it will search the optimal separating hyperplane
according to the principle of the maximal margin [41]. )e
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transformation is performed by a Kernel Function which
represents the inner product in the feature space (the so-
called kernel trick procedure [39]). )en, after the remap-
ping of the optimal separating hyperplane in the starting
design space, the result of this process is the definition of a
predictive model that could map the output of other new
input data. If the output is a variable from a finite set, which
represents the class (or category or label) of the input data,
the problem is called classification (or pattern recognition)
problem [39, 42]. After a training phase on the current
positions of the swarm, the new trial positions are labelled as
feasible or unfeasible using the trained predictive model. In
this case, since the algorithm has to separate feasible posi-
tions from unfeasible ones, it is performing a binary clas-
sification problem.)e SVM is based on the inner product in
feature space, so it is possible to avoid explicitly writing the
transformation of training data into the feature space, but it
is possible to directly operate defining a proper kernel
function, as stated in [39]. )is approach is called in [40] as
implicit mapping or implicit embedding. According to [43],
typical widely spread kernel functions are polynomial ker-
nels and Gaussian kernel [39, 40] which is the isotropic form
of the radial basis kernels, RBF [42]. In the proposed ap-
proach, the Gaussian kernel is adopted. It can occur that
training data are nonseparable, i.e., which cannot be linearly
divided without committing a certain error [41]. In this case,
the SVM operates with a soft margin defining a hyperplane
minimizing the error. )is is governed by a penalty coef-
ficient C> 0 also know as regularization parameter which
controls the tolerance on training classification errors and
the margin position related to the complexity of the model
[39, 42, 43]. For the proposed algorithm, it was found that a
good trade-off between accuracy and computational effort is
obtained using C between 100 and 1000.

)e new proposed approach is implemented in Matlab ®code, and its aim is to integrate the PSO algorithmwith SVM
in order to separate feasible positions from the unfeasible
ones and reduce the search space.

In Figure 1(a), the flowchart of the proposed algorithm is
shown. )e initial random positions, which are obtained by
the LHS technique, are labelled with respect to the con-
straints, and the SVM is able to construct the nonlinear
boundary of the feasible region, thanks to the kernel trick. In
order to get very accurate results still from the beginning, it
would be necessary to sample a very huge swarm size.
However, since the particles move in another configuration
at each iteration, new available positions can be used to train
a new SVM model at each iteration; therefore, this incre-
mental approach is adopted in the PSO-SVM. Since the
constraints are defined as gq ≤ 0, if at least one of them is
greater than zero the entire n-tuple (which is a single in-
dividual candidate solution) is labelled as unfeasible
(yi � −1), otherwise it is labelled as feasible (yi � +1).
Unfortunately, sometimes, the SVM really struggles to work
properly, e.g., with a very narrow search space. In fact, the
preservation of the feasible points only, into a wide un-
feasible space, leads to instabilities such as overfitting or
underfitting problems of the SVM. To improve the per-
formance of the algorithm, a relax constraint function ψi(k)

is defined, wherein the subscript i refers to ith constraint and
the k refers to the current iteration. )is approach leads to
enlarge the real feasible space to a fictitious wider one be-
cause of a relaxation of the actual constraints. )is means
that the real constraints are “moved” from their actual
position to a fictitious one through a proper choice of ψi(k)

which is not trivial to generalize. )is procedure acts as
substituting the original inequality constraints with the
following relaxed constraints:

gi,k(x)≤ψi(k)⟶ gi,k(x) − ψi(k)≤ 0. (4)

)e ψi(k) factor is tuned on the standard deviation σu,k

of the amount of all unfeasible points detected in all gen-
erations until the current one. )is approach allows a better
exploration during the first generations and, subsequently, it
could be forced to zero implementing a decreasing function,
which directly depends on the current generation k and the
number of maximum generations kmax. Defining a further
reduction factor λ of the standard deviation directly chosen
by the user, the following relaxation functions are
implemented:

(i) Constant relax: ψi(k) � λσu,k

(ii) Piecewise constant relax:ψi(k) � λσu,k, if k≤

kmax/20, otherwise
(iii) Linear decreasing relax: ψi(k) � λσu,k − λσu,k/kmaxk

(iv) Piecewise linear decreasing relax:

ψi(k) �
λσu,k − 2λσu,k/kmaxk, if k≤ kmax/2
0, otherwise

(v) Parabolic decreasing relax: ψi(k) � λσu,k

−λσu,k/k2
maxk

2

(vi) Piecewise parabolic decreasing relax:
ψi(k) � λσu,k −4λσu,k/k

2
maxk

2
, if k≤ /20, otherwise

)e proposed algorithm implements the SVM with soft
margin with regularization parameter C � 100. Indeed, with
respect to a hard margin, to speed up the algorithm, it is
numerically convenient to adopt a high box-constraint
value, e.g., between 100 and 1000, allowing a certain mis-
classification rate but assuring all the possible solutions lie in
the feasible space boundary respecting the constraints with a
certain engineering tolerance. After the training phase, the
unfeasible points of the initial population have to be ran-
domly resampled in the feasible region adopting the LHS
technique, and, therefore, they are discarded and sampled
again until their label becomes yi � +1. At this point, the
initial velocity of the particles is randomly sampled always
using LHS, and then, the evolutionary phase of the algorithm
can begin. )e velocity for the next generation is calculated
as in equation (2), but it is necessary to check if it respects the
allowable maximum velocity (“Max Velocities Correction”
block in Figure 1(a)). )e next block “Max Position Cor-
rection” is a fundamental step because it is the check of the
feasibility of the position given by (3), and, for greater clarity,
it is expanded in Figure 1(b). First of all, a temporary final
position is computed with equation (3) for each particle, and
the algorithm checks if it lie inside the box-search space or
moves it to the nearest boundary of Ω if it lies outside. If the
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temporary position label is yi � +1, the new temporary
position lies in the feasible region and it is stored, otherwise a
simply bisection approach is performed. )e velocity vector
which leaded to the temporary position is firstly divided by
p � 2 and a new temporary final position is computed. If the
label of this new temporary position becomes positive, so
this new position is accepted and stored for the next gen-
eration. Instead, if it is still negative, the algorithm will
redouble p, getting a new velocity vector and a new tem-
porary position to label and so on. When all the elements of
temporary velocity vector tend to zero, it is possible to leave
the original position for the next generation. In this way, the
particle can move only if the landing position is into the
feasible region, otherwise it stands still. After that, new
positions are available to increase the database set and train a
new refined SVM model getting a new boundary of the
feasible region. It is possible that some of the points which
were inside the previous boundarymay lie outside of the new
boundary. In this case, it is necessary to resample them as
before using LHS until their label becomes positive. Despite
this, the latter naive approach may slow the algorithm, and it
is beneficial for the diversity of the population, allowing new
starting search positions. )e update of the gbest is per-
formed considering only the real feasible points respect to
the actual constraints and not the relaxed ones. )is pro-
cedure ensures that the algorithm gets good and feasible
results also using a constant relax constraint function during

the generations. )e stopping criterion can be set to the
achievement of a maximum number of iterations kmax. A
further strategy to improve the behaviour of the PSO is
reducing the maximum possible velocity range of the par-
ticles, governed by c, updating this latter during generations.
For example, it is possible to set c/2 starting from kmax/3 and
to the minimum value (c � 0.1) in the last generations to
improve the exploitation. In the following, the PSO-SVM is
firstly tested on some numerical mathematical literature
problems and statements are reported in Appendix. Tomake
some comparison of the results, in these last examples, the
OF value is compared with the genetic algorithm ofMatlab ®and the PSO with penalty approach provided from the code
proposed by [44].

3. Numerical Example 1: Sickle Problem [45]

)e first numerical example (from literature [45]) is the
benchmark test 1 stated in the Appendix also known as sickle
function. Since this optimization problem has two design
variables, it is possible to follow the optimization process of
the PSO-SVM in the design variables’ plane. In Figure 2(a),
the objective function and the constraints are graphically
represented as a three-dimensional graph.)e projection on
the design variables’ plane of the feasible region is really
narrow because it is formed by the space between the two
constraints’ parabolas. For this problem, a population size of

Start

Population randomic
generation

Label individuals
from constraints

SVM first train model
and define boundary

of feasible region

Resampling
unfeasible data

Swarm initialization
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etc.)

Swarm evolution
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End
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Max iteration?
No

Update pbest
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k+1xtmp,i = xi, max

k+1vi = k+1xtmp,i – kx
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k+1vi = k+1xtmp,i – kx
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Figure 1: Flowchart of the proposed PSO-SVM algorithm. (a) General flowchart of the proposed algorithm; (b) flowchart of “Max Position
Correction” block.
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50 individuals is set, and in Figure 2(b), the first random
generation is shown and the support vectors are emphasized.
After that, the unfeasible points are resampled until all the
population falls inside the SVM-based boundary. At each
generation, new points are added to the SVM training data
and the boundary is improved. Since the search space is
really narrow, running the algorithm with no relax con-
straint function results in poor performance in defining the
SVM boundary (black solid line) with respect to the actual
one (dashed lines), as shown in Figure 2. It is possible to
improve the performance in terms of the OF decreasing
history adopting the relax of constraints, e.g., the constant
relax function, as shown in Figure 3. In this latter example,
the reduction factor of the standard deviation of the un-
feasible point is chosen as λ � 0.5. )e PSO-SVM perfor-
mances using constant relax function is compared with
other algorithms in Table 1.)e comparison is carried out in
terms of the objective function value to the optimal solution
after 50 runs with kmax � 100 each run and collecting mean
value μ, standard deviations σ, best OF, and worst OF. As
one can check, the convergence of the new proposed method
is satisfied since the objective function value is getting close
to the global optimum with a little standard deviation as the
other existing methods.

4. Numerical Example 2: Five Design Variables’
Optimization Problem

)e second numerical example, in which the statement is
reported in Appendix, is a literature benchmark test opti-
mization problem with five design variables and six con-
straints. In this example, a comparison between different
histories of the objective function using different relax
constraint functions is performed. As shown in Figure 4, all

the examples give a good result and tend to converge to the
exact solution with different decreasing rates. In general, one
can notice that, in piecewise functions, in the first iterations,
the algorithm generally boosts the exploration instead of the
exploitation, which is usually enhanced in the second half
with a zero relax coefficient. )is feature is important be-
cause it can affect the performance of the proposed algo-
rithm with different kinds of problems and the user needs to
try different relax functions in order to find the most suitable
for the specific problem to solve. In Tables 2 and 3, a
comparison with the GA and the PSO-Penalty is performed
in terms of OF value and optimal design points, running the
codes 50 times with kmax � 100 each run and collectingmean
value μ, standard deviation σ, worst, and best. Also, with this
more complex optimization problem, the convergence of the
new PSO-SVMmethod is satisfied, getting an OF value close
to the global optimum with a little standard deviation as the
other existing methods.

5. Structural Example 1: Simply
Supported Beam

In Figure 5, it is considered as an ideal simply supported beam
of length L with a constant cross-section A � b · h loaded with
a distributed constant load q which is supposed to be much
greater than the self-weight for the sake of simplicity.)e aim is
to minimize the weight of this structure respecting the ten-
sional constraints and maximum deflection constraint due to
only the q load.)e self-weight is proportional to the volumeV

of the material, as stated by [47]. )e objective function is
f(d) � ρV � ρAL, where d is the design vector and ρ is the
material density which is supposed to be constant. In this case,
only stress constraints on normal stress σ, tangential stress τ,
and maximum deflection v(z) are considered. )is is a typical
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Figure 2: Example 1 (sickle problem [45]): case no relax constraints’ function. (a) 3D graph of sickle problem design space. (b) Generation 1.
(c) Generation 2. (d) Generation 50. (e) Generation 100. (f ) Objective function history.
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sizing optimization problem. )e design vector d � [d1, d2]
T

contains the design variables which are changed during the
optimization process, i.e., in this case, d1 � b and d2 � h. Since
the cross-section as well as the cross-sectional dimensionsmust
be greater than zero, it implies the presence of a new constraint
to satisfy. Performing an elastic analysis, the maximum al-
lowable stress is the yielding stress σy, and it is possible to use
the Navier Formula and the Jourawsky Formula for the normal
and tangential stress, respectively.)emaximummoment is in
the middle span, whereas the maximum shear force is in
correspondence of the supports z � 0 and z � L:
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Figure 3: Example 1 (sickle problem [45]): case constant relax constraints’ function. (a) Generation 2. (b) Generation 50. (c) Generation
100. (d) Objective function history.

Table 1: Numerical Example 1 (sickle problem [45]): comparison
of PSO-SVM, GA, and PSO-penalty.

PSO-SVM PSO-Penalty GA
μx1

0.8433 0.8721 0.8502
σx1

0.0004 1.121e− 15 0.0172
μx2

14.0952 14.1091 14.0986
σx2

0.0002 8.972e− 15 0.0087
μOF −6.9614e+ 03 −6.9291e+ 03 −6.9537e+ 03
σOF 0.4609 4.59e− 12 19.2968
Best OF −6.9595e+ 03 −6.93e+ 03 −6.9618e+ 03
Worst OF −6.96e+ 03 −6.93e+ 03 −6.8547e+ 03
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ME d z �
L

2
  �

qL
2

8
, VE d(z � 0, L) �

qL

2
. (5)

Recalling the elastic resistance modulus for a rectangular
section and using the Navier formula, it is possible to write
the maximum normal stress in the middle span as

Wel �
bh

2

6
�

d1d
2
2

6
, σ z �

L

2
  �

ME d

Wel

�
3
4

qL
2

d1d
2
2
. (6)

Using the Jourawsky formula, it is possible to write the
maximum tangential stress in the middle of cross-section y � 0
(parabolic tangential stress diagram on a rectangular section) as

τ(z � 0, z � L) �
VE dS
∗
x(y � 0)

Ixb
�
3
2

VE d

bh
�
3
4

qL

d1d2
. (7)

In order to take into account both normal and tangential
stresses, it is necessary to refer to a yield criterion. In this
case, the Von Mises yield criterion is adopted:

������������

σ2(z) + 3τ2(z)



≤ σi d. (8)

Substituting (6) and (7) into (8), respectively, it is
possible to obtain the two expressions of the stress con-
straints in middle span z � L/2 (pure moment) and z � 0, L

(pure shear):

3
4

qL
2

d1d
2
2
≤ σi d,

3
4

qL

d1d2
≤
σi d�
3

√ . (9)

)e maximum deflection v(z � L/2) can be calculated
using the virtual work principle obtaining

v z �
L

2
  �

5
384

qL
4

EIx

�
5
32

qL
4

Ed1d
3
2
. (10)

)e complete statement of the optimization problem is
the following:

min f d1, d2(  � d1d2,

s.t.

d1 > 0, d2 > 0,

3
4

qL
2

d1d
2
2

− σi d ≤ 0,

3
4

qL

d1d2
−
σi d�
3

√ ≤ 0,

5
32

qL
4

Ed1d
3
2

− vmax ≤ 0,

(11)

where the constant ρL is dropped by the objective function
as stated in similar problems analyzed in [48], σi d is the ideal
Von Mises normal stress, and vmax is the maximum de-
flection admissible by reference design codes, i.e., in this
case, it is fixed to vmax � L/250. It is possible to define the
fixed variables’ vector b � [b1, b2, b3, b4, b5]

T which contains
problem data which does not change during the optimi-
zation process, i.e., in this case, b1 � q, b2 � L, b3 � σi d,
b4 � E, and b5 � vmax. Because of the amount of fixed pa-
rameters, it is more convenient to work with a dimensionless
form of the same problem. Posing d1 � b/L and d2 � h/L, the
new dimensionless objective function become f(d1,

d2) �

f(d1, d2)/L2 � d1
d2, whilst the normal stress constraint (9),

the shear constraint (9), and the deflection constraint (10)
become, respectively, as

3
4

q

Lσi d

 
1

d1
d
2
2

≤ 1,
3

�
3

√

4
q

Lσi d

 
1

d1
d2

≤ 1,
5 · 125
16

q

EL
 

1
d1

d
3
2

≤ 1.

(12)

It is useful to define two dimensionless nonnegative
parameters, collected in b, which completely characterize the
fixed variables of the problem:

ψσ �
q

Lσi d

,ψE �
q

EL
. (13)
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Figure 4: Numerical example 2: objective value history comparison
among different relax constraint functions for a single run.
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Finally, the dimensionless version of problem (11) is
given by

min f d1,
d2  � d1

d2,

s.t. d1 > 0, d2 > 0,

3
4
ψσ

1
d1

d
2
2

≤ 1,

3
�
3

√

4
ψσ

1
d1

d2
≤ 1,

5 · 125
16

ψE

1
d1

d
3
2

≤ 1.

(14)

To solve this problem, the PSO-SVM is adopted with the
piecewise linear decreasing relax constraint function with a
user coefficient λ for standard deviation of the unfeasible
points fixed to λ � 0.05. For academic purposes, in order to

graphically analyze the behavior of the constraint handling,
the dimensionless parameters are fixed as ψσ � ψE � 0.2,
looking for an optimal solution in the design domain for the
dimensionless design variables as 0≤ d1 ≤ 1.5 and 0≤ d2 ≤ 1.
In this way, with this particular choice of the dimensionless
parameters, the constraints intersect each other creating
discontinuous nonlinear boundary of the feasible region.
)e population size is always 50 individuals and the max-
imum iterations are 100. After 50 runs, the results show a
quite great variability of the design variables but always at
the same objective function value. )is fact enlightens the
presence of a front of possible optimal solutions. In fact, as
shown in the graphical representations in Figure 6, for this
specific choice of b, only two constraints are active, and there
exists a region of optimal solutions on the τ constraint
boundary line.)e comparison in Table 4 among PSO-SVM,
PSO-Penalty, and GA shows the mean value and the
standard deviation of the best objective function value
obtained after 50 runs.

In order to find the entire front of the all optimal possible
solutions for this specific problem, it is necessary to find all
the pairs (d1,opt,

d2,opt) posing the objective function as
f(d1,

d2) � d1 · d2 ≈ 0.2598. As one can see in Figure 6, this
optimal front corresponds to a part of the τ constraint (12)
posed as an equality. Referring to the d1 optimal possible
values, the optimum front is upper bounded from the σ
constraint (12) posed as an equality and lower bounded from
the box search space limits. )en, to calculate the optimal

Table 2: Numerical example 2: comparison among PSO-SVM with different relax constraint functions (check Appendix and [46]).

Comparison among constraint relax functions in PSO-SVM
Design Var. No relax Const. relax Piecewise Const. Lin. relax Piecewise lin. Parabolic relax Piecewise Par.
μx1

78.0004 78.0086 78.0026 78.0009 78.0006 78.0027 78.0077
σx1

0.0013 0.0243 0.0120 0.0038 0.0041 0.0100 0.0526
μx2

33.0062 33.0040 33.0056 33.0104 33.0107 33.0740 33.0052
σx2

0.0158 0.0183 0.0143 0.0438 0.0322 0.2274 0.0158
μx3

30.0027 29.9985 30.0037 30.0009 30.0038 30.0366 30.0027
σx3

0.0101 0.0105 0.0125 0.0235 0.0178 0.1217 0.0160
μx4

44.6569 44.2360 44.3643 44.9858 44.8002 44.0814 44.6662
σx4

1.5986 2.9630 2.0027 0.0617 1.0734 3.2862 1.3233
μx5

36.8981 37.0755 37.0136 36.7671 36.8360 37.0446 36.8931
σx5

0.6444 1.1956 0.8036 0.0652 0.4310 1.3843 0.5324
μOF −3.0655e+ 04 −3.0644e+ 04 −3.0647e+ 04 −3.0664e+ 04 −3.0659e+ 04 −3.0634e+ 04 −3.0655e+ 04
σOF 43.0187 78.9205 53.7773 3.9918 28.9931 87.9967 36.2059
Best OF −3.0666e+ 04 −3.0666e+ 04 −3.0666e+ 04 −3.0666e+ 04 −3.0666e+ 04 −3.0666e+ 04 −3.0666e+ 04
Worst OF −3.0375e+ 04 −3.0185e+ 04 −3.0449e+ 04 −3.0643e+ 04 −3.0468e+ 04 −3.0186e+ 04 −3.0452e+ 04

Table 3: Numerical example 2: results from PSO-SVM without
relax constraints, PSO-Penalty, and GA (check Appendix and [46]).

PSO-SVM PSO-Penalty GA
μx1

78.0004 78 78.0004
σx1

0.0013 0 0.0024
μx2

33.0062 33 34.2398
σx2

0.0158 0 0.7052
μx3

30.0027 29.9967 30.801
σx3

0.0101 2.15E− 14 0.378
μx4

44.6569 45 45
σx4

1.5986 0 0
μx5

36.8981 36.7736 34.8023
σx5

0.6444 0.00e+ 00 0.9057
μOF −3.0655e+ 04 −3.0665e+ 04 −3.0531e+ 04
σOF 43.0187 1.47E− 11 65.8031
Best OF −3.0666e+ 04 −3.0665e+ 04 −3.0660e+ 04
Worst OF −3.0375e+ 04 −3.0665e+ 04 −3.0378e+ 04

b

xh

z

yy

q

v (z)

L

Figure 5: Problem formulation: simply supported beam with
constant cross-section.
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Figure 6: Continued.
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upper bound d1,opt,UB, it is necessary to calculate the in-
tersection between the two aforementioned constraints:

3
4
ψσ

1
d1

d
2
2

� 1,

3
�
3

√

4
ψσ

1
d1

d2
� 1,

⟶

�����
3
4
ψσ

1
d1



�
3

�
3

√

4
ψσ

1
d1
⟶ d1,opt,UB �

9
4
ψσ � 0.45.

(15)

As before, to calculate the optimal lower bound d1,opt,LB,
it is necessary to calculate the intersection between the
equality τ constraint and the horizontal line d2 � 1,
obtaining

3
�
3

√

4
ψσ

1
d1

d2
� 1,

d2 � 1,

⟶ d1,opt,LB �
3

�
3

√

4
ψσ � 0.2598.

(16)

Finally, considering (15) and (16), it is possible to obtain
all the optimal pairs (d1,opt,

d2,opt) using the following
equation:

d2,opt �
0.2598
d1,opt

, with 0.2598≤ d1,opt ≤ 0.45. (17)

Since the algorithm works with dimensionless param-
eters, in order to find the physical dimensions of the op-
timized cross-section, it is sufficient to multiply the obtained
values (d1,opt,

d2,opt) by L.
To show a technical possible application coming from

this simple example, only a concrete beam with span length
L � 3m is now considered. Disregarding for the moment the
self-weight load, the q load set to 15 kN/m represents only a
live load. )e concrete modulus is set to E � 25 GPa and the
Von Mises ideal stress is related to the tensile stress of
concrete set to σi d � 3 MPa. Considering the box search
space as 0≤ b≤ 40 cm and 0≤ h≤ 45 cm, the algorithm found
the minimum weight respecting the constraints with
b � 16.67 cm and h � 42 cm. Rounding-off these values, the
self-weight associated to a concrete beamwith b � 18 cm and
and h � 45 cm is equal to

G � cconcrete · b · h � 24 · 0.18 · 0.45 � 1.944 kN/m. (18)

For sake of simplicity, adding G to q a new load equal to
16.944 kN/m which takes into account also the self-weight is
defined. Launching again the algorithm, new optimal exact
dimensions are now obtained: b � 18.83 cm and h � 45 cm.
Rounding-up the exact solution, a new self-weight equal to
G � 2.16 kN/m is coming from a section with b � 20 cm and
h � 45 cm. Now, the convergence is reached because the new
optimal exact solution is b � 19.07 cm and h � 45 cm. Fi-
nally, the optimal cross-section for this concrete beam which
minimizes the self-weight is given by b � 20 cm and
h � 45 cm.
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Figure 6: Structural example 1: simply supported beam, case piecewise linear decreasing relax function. (a) 3D graph of simply supported
beam problem design space. (b) Generation 1. (c) Generation 2. (d) Generation 50. (e) Generation 100. (f ) Objective function history.

Table 4: Structural Example 1: results from PSO-SVM piecewise
linear decreasing relax constraints, PSO-Penalty, and GA.

PSO-SVM PSO-Penalty GA
μOF 0.2598076 0.2598076 0.2610035
σOF 2.04e-09 5.61e-17 2.58e-03
Best OF 0.2598076 0.259808 0.2598076
Worst OF 0.2598076 0.259808 0.2664507
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6. Structural Example 2: Optimization of a
Warren Truss Beam

)e second structural example comes from [49]. In that
work, the weight optimization of an in-plane Warren truss
simply supported beam, depicted in Figure 7, is performed
with Differential Evolutionary Algorithm (DEA). )e steel
profile used for truss members is a square hollow core
section, as shown in Figure 7. )is kind of profile ensures
good stability against buckling, and it represents a good
solution for this type of structure because of its high
strength-to-weight ratio [49]. On the contrary, joint con-
nections are usually welded, and so, in order to reduce the
total cost, it is important to reduce the size of sections to be
welded. Regarding to the size optimization problem, as
shown in Figure 7, this kind of sections are completely
described by only two independent design variables: the
outer dimension of the cross-section B and the thickness of
the webs s. In this problem, the truss has m members be-
longing to four different types of cross-sections, as reported
in Figure 7: lower chord (B1, s1), upper chord (B2, s2), in-
ternal webs (B3, s3), and external webs (B4, s4). To perform
the shape optimization further, two design variables are
considered: vertical height of the external webs Hmin and the
maximum height Hmax. )e design vector is therefore de-
fined as

x � B1, B2, B3, B4, s1, s2, s3, s4, Hmin, Hmax( , (19)

and the box search space domain Ω is defined by
60 ≤Bi ≤ 360mm, 4≤ si ≤ 30mm, and 50 ≤H≤L mm,
where i � 1, 2, 3, and 4 and L is the total span length.
Considering the maximum value of thickness
smax � 30mm, the minimum value of dimension B cannot
be assumed less than 2smax due to geometric limits. )e
objective function is represented by the total weight of the
structure [49]:

W(x) � 
m

i�1
ρiliAi, (20)

where ρi � 7.85 t/m3 is the steel density supposed equal for
all members, li is the length, and Ai is the cross-section of the
ith member. )e structural steel used in this example is a
S275, and the modulus of elasticity of the steel is 210GPa.
Regarding topology optimization, in [49], for fixed length
L � 20m, the optimal number of bays which divides the
lower chord is 20. )e external load is as a uniformly dis-
tributed load q � 100kN/m applied on the lower chord
acting as point loads in the nodes of the truss. )e con-
straints are represented by the strength verifications about
tensile stress (without any holes), compression stress, and
buckling instability according to Eurocode 3 (EN 1993-1
2005 and EN 1993-2 2006). Despite the Eurocode cM0 � 1
and cM1 � 1.1 for bridges being recommended, to be more
safe, the partial safety factors are set both equal to
cM0

� cM1
� 1.1. Another constraint to satisfy is the maxi-

mum deflection which is usually set to ulim � L/500 for
bridges like that. For the current case, model uncertainty was
not considered; however, the eventual adoption of specific

model uncertainty coefficients (e.g., Castaldo et al., [50]) can
be easily included in resistance or deformability checks. In
order to make a comparison with the results of [49], for
academic reasons, there is no distinction of the load com-
bination for the strength verifications and for the deform-
ability checks. )e verification equations do not need deeper
examination because this is beyond the scope of the present
document.)erefore, the optimization problem statement is
the following [49]: Find x ∈ Ω such that

min f(x) � W(x),

s.t.

NE d

Nt,R d

≤ 1,

NE d

Nc,R d

≤ 1,

NE d

Nb,R d

≤ 1,

umax ≤ ulim.

(21)

In order to solve (21), the FEM structural analysis was
performed in the Matlab® CALFEM and PSO-SVM was
adopted for the optimization process. In the PSO-SVM, a
population size of 100 individuals is set with kmax � 200
iterations and a constant relax function with user parameter
λ � 3 is applied to standard deviation of unfeasible points. It
is performed 50 time runs, and the best-obtained solutions
are collected in Figure 8. As one can see in Figure 8, due to
the complexity of the problem, sometimes the algorithm
does not reach the optimum and stack in a local minimum.
As shown in the graph, the optimum solution is around 3.1 t;
then, it is possible to cut the graph considering only the 21
runs over the total 50 which are characterized by a best OF
solution lower than 3.1 t (dashed line). In this way, the
possible outliers are excluded and now it is possible to
perform the postprocessing searching for the real best
solution.

Considering the abovementioned solutions, the obtained
results shown in Table 5 have a quite large standard devi-
ation in terms of design variables but very low in terms of
objective function.)is means that it is possible to findmany
combinations of design variables which are giving always the
almost same objective function. )e best design value of the
50 runs, also reported in Table 5, is taken into consideration.
It is possible to compare this latter objective function
(3.074t) with the optimal exact solution given by the original
DEA code output [49]. )e DEA optimal solution was
characterized by the weight of 2.95t, so this is in the right
order of magnitude. )e comparison of the design variables
is based only on general observation in accordance with the
literature, as affirmed in [49]. In fact, for instance, it is
expected that, mainly due to instability problems, upper
chord and external diagonals would be bigger than the lower
chord and internal diagonals. Finally, the best exact solution
may be trivially rounded-up to get an industrialized more
realistic design. )e new design variables are reported in 5,
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and as one can see, this solution is more conservative, and it
leads to an increased total weight (3.189t).

If one wants to find a more accurate industrial solution,
it is necessary to perform a more accurate analysis of the
obtained results. Since the topology optimization was al-
ready taken into account in [49], one has to remember that,
in the design variables, the algorithm is performing the size
optimization and the shape optimization. )is latter is re-
garding to the definition of the Hmin and Hmax values.
Considering only the abovementioned 21 solutions and the
standard deviations of Hmin and Hmax, it is possible to as-
sume that the rounded-up values of the best exact solution
can represent a good result for shape optimal parameters
values: Hmin ≈ 410mm and Hmax ≈ 4145mm.

Once the shape optimization is solved, regarding the size
optimization, firstly the best exact solution as the optimal
one, one has to remember that Bi and si were chosen as
design parameters because of their independence, but in the
optimization process, they are connected. In fact, in both
objective function evaluation and constraints evaluation,
these two parameters are combined into the resisting cross-
section value. It is possible to obtain almost the same value of
cross-section with different combinations of the design

parameters. In particular, one can refer to the optimal exact
solution in terms of resisting cross-sections which represent
the best solution in terms of both strength verification and
minimization of the weight. As one can check, for the best
exact solution, the section class of all members is 1, but other
optimal solutions within the 21 considered are characterized
by class 4 profile. In this case, to get the strength verification
satisfied, it is necessary to refer to the resisting effective area.
Usually in the design, when it is possible, it is preferred to
avoid class 4 profiles, and the best condition is to find an
optimal solution with class 1 profile. )erefore, the best
industrial solution which respects all the constraint is given
by all the pairs (Bi, si) with i � 1, 2, 3, and 4 which gives class
1 profiles and the minimum value of area greater or equal to
the effective areas requested by the best solution in Table 6.
)is procedure allows us to find the best solution which
respects the strength verification only. For the instability
verification, it is necessary to take into account also the
second moment of inertia which conditions Euler’s critical
load Ncr and consequently the dimensionless slenderness λ
which influences the reduction factor χ. Fixing the thickness
si to discrete values (rounded with 1mm of precision),
starting from the best-found solution and making an iter-
ative discrete research to find Bi (rounded with 5mm of
precision) respectful of our abovementioned design rule, the
best optimal industrial solution is found and reported in the
last column of Table 5. As one can check, the minimum cross
area of internal webs could be assured by the pair
(B3, s3) � (105; 5)mm, but, due to instability problems, it is
necessary to take into account the inertia and choose a
profile that ensures both strength and instability verifica-
tions. )e best industrial structure is verified by all strength
and instability constraints. Making a comparison between
the two last columns of Table 5, the trivial rounded-up
solution represents a good optimal solution in terms of
objective function. In fact, minimizing the weight is im-
portant, but the total cost is also affected by other aspects,
e.g., welding and detailing and labour cost. So, the solution
obtained by trivial rounded-up the exact one; it can be
considered as an acceptable optimal result. In Figure 9(a),
the undeformed and the deformed shape are depicted. It is
possible to appreciate that the node 7 and, due to symmetry,
the node 15 are the nodes that undergo the most deflection
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Figure 7: On the left, problem formulation of simply supported truss Warren beam. On the right, square hollow core tubular section with
the indication of the design variables.
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Figure 8: Structural example 2: Warren truss. Results from 50
times run PSO-SVM.
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umax � 39.8mm; however, it is respectfully of the service
limit L/500 � 40 mm. In order to assess the validity of the
results of the optimization process, theWarren truss beam is
modelled with FEM professional software MIDAS Gen®.)e assessment is made not only in terms of axial force for
each member, but in particular, in terms of the performance
ratio. )is latter represents an efficiency percentage of the
usage of the steel and is given by the strength ratio between
the demand and the capacity. )e simply supported Warren
truss is modelled through truss elements in order to guar-
antee pure axial behaviour of each member. )e section
properties of the trivial best industrial results from Table 5

are assigned to each element. )e adopted steel is always a
S275 and the uniformly distributed load q � 100 kN/m
acting on the lower chord is reconducted as a hanged load
directly applied at lower chord nodes acting as concentrated
forces, as depicted in Figure 9(b). As already remarked, in
order to get results which are directly comparable with the
Matlab code and with DEA code from [49] and for the sake
of simplicity, no load combination is considered. )e aim is
to demonstrate that the proposed algorithm provides
comparable results with DEA code which is used as a
benchmark and not to make a perfect design completely
respectful of the current codes. In order to take into account

Table 5: Structural example 2: mean values μ and standard deviations σ of best results from 21 solution over 50 runs of PSO-SVM with OF
less than 3.1 t. Last three columns: best exact solution, trivial rounded-up solution, and refined industrial solution.

(mm) μ exact sol. σ exact sol. Best sol. Trivial industrial sol. Best industrial sol.
B1 72.5 15.7 94.2 95 95
B2 190.2 70.2 128.1 130 105
B3 128.9 1.4 128.8 130 130
B4 211.7 107.9 132.1 135 110
s1 6.0 1.5 4 4 4
s2 14.7 7.4 18.8 20 26
s3 4.0 0.03 4 4 4
s4 14.0 8.4 14.7 15 19
Hmin 399.4 21.5 410.5 410 410
Hmax 4064.7 113.5 4145.0 4145 4145
OF (t) 3.0898 0.0071 3.074 3.189 3.092

Table 6: Structural example 2: comparison between best exact solution and best industrial solution and relative requested and provided
areas.

(mm,mm2) (B; s)exact Requested area (B; s)bestindustrial Provided area

Lower chord (94.2; 4) 1442.46 (95; 4) 1456
Upper chord (128.1; 18.8) 8206.18 (105; 26) 8216
Internal webs (128.8; 4) 1996.81 (130; 4) 2016
External webs (132.1; 14.7) 6907.21 (110; 19) 6916
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Figure 9: Structural example 2. (a) Optimal Warren truss, solid Line: undeformed shape; dashed line: deformed shape. (b) View of the
model of the Warren truss beam on Midas Gen®. (c) Planar view of the Warren truss beam on Midas Gen® with the axial force values.
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this latter issue, it is sufficient to consider the correct the load
combination at ULS for the strength verification and SLS for
the maximum allowable displacement.

As reported in Figure 9(c), the results obtained from the
Matlab code are equal to the FEM software. )e overall
behaviour shows that the upper chord is entirely com-
pressed, whereas the lower chord is entirely tensed. )e
internal webs are alternatively compressed and tensed as
usual for truss beam of this typology. Calculating the
strength ratio, it is worth noting that a performance ratio
between 75% and 98% is obtained for the members. )ese
remarkable results show the importance of the optimization
process during the design phase which can strongly support
the decision process of the designer.

7. Conclusions

After an introductory part on PSO and the state of the art of
constraint handling techniques, the paper presented a new
valid alternative not-penalty method to solve constrained
optimization problems. )e main advantage with respect to
the most-used nowadays penalty approach is represented by
the generality of the machine learning SVM algorithm. Since
it depends intrinsically on the inner product of the data, it is
more adaptive even with discontinuous and nonlinear
boundary of the feasible region in the design space. In order
to improve the behavior of the proposed algorithm to deal
with very sharp and narrow feasible regions, a relax con-
straint function is also implemented. From the computa-
tional point of view, the trade-off has been found adopting a
population size not too large and using an incremental
boundary update. It would be also possible sampling a huge
initial random data and leaving the boundary fixed during
the generations; however, this procedure does not lead to a
good result in terms of objective function. Finally, the two
numerical benchmark examples demonstrated the conver-
gence of the new method in comparison with another
penalty approach and with a GA. )e last two examples
highlighted the adaptability of this newmethod even into the
structural optimization field. In particular, in the Warren
truss beam problem, the optimization algorithm provided a
numerical exact solution which can be easily industrialized
by the designer with a trivial rounding-off without

jeopardizing the optimization process. Although theWarren
truss beam example is performed under simplified as-
sumption in order to make comparisons with DEA code
from [49], from the technical point of view, the new opti-
mization algorithm becomes a really useful and powerful
support for the designer during the design and the decision
process. It is important to stress that working with meta-
heuristic algorithms always involves the definition of the
value of many arbitrary parameters. Starting from literature
suggestions for these values, it is always strongly suggested to
perform a fine-tuning of some of these parameters also with
a trial-and-error approach for each specific problem in order
to find the best optimal results in terms of objective function
convergence, computational effort, and elaboration time.

Future applications of the proposed PSO-SVM frame-
work in structural engineering are different. Among the
different possibilities, an effective exploitation could address
reliability-based calibration of partial safety factors or
semiempirical coefficients included in design expressions
(e.g., Mancini et al. [51]). Other applications could include
seismic reliability or expected annual loss optimization for
structural problems which could benefit (e.g., Di Trapani
et al. [52] and Cavaleri et al. [53, 54]).

Appendix

Test Functions’ Constrained Problems

)e following mathematical problems were tested for the
proposed PSO-SVM algorithm.

)e following problem is taken by [45], and it is called
sickle function:

min f(x) � x1 − 20( 
3

+ x2 − 10( 
3

s.t. g1(x) � x1 − 5( 
2

+ x2 − 5( 
2

− 100≥ 0

g2(x) � − x1 − 5( 
2

− x2 − 5( 
2

+ 82.81≥ 0,

(A.1)

where the search space is defined as 0≤ x1 ≤ 10 and 14≤
x2 ≤ 15.5. )e global optimum is located at x∗ �

[14.095, 0.84296], where f(x) � −6961.8139. )e following
problem is taken from [46], and it is a multivariable problem
with five design variables and six constraints:

min f(x) � 5.3578547x
2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141,

s.t.

g1(x) � 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92≤ 0,

g2(x) � −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0,

g3(x) � 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x
2
3 − 110≤ 0,

g4(x) � −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x
2
3 + 90≤ 0,

g5(x) � 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25≤ 0,

g6(x) � −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20≤ 0,

(A.2)
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where the search space is defined as 78≤x1 ≤ 102, 33≤x2 ≤ 45,
and 27≤ x3, x4, x5 ≤ 45. )e optimum is located at x∗ �

[78, 33, 29.995256025682, 45, 36.775812905788], where f

(x) � −30, 665.539.
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