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Summary  

During the last decades, the World's population witnessed an exponential 
intensification of Natural Hazards, such as floods, droughts, fires, and landslides, 
affecting urban and natural areas. Most of these phenomena have been attributed 
by the scientific community to the effects of climate change and the lack of 
environmental planning and management. In planning for natural risk reduction and 
prevention, monitoring the most vulnerable areas has become crucial for 
policymakers. Mainly, high-resolution analysis plays a pivotal role in forecasting 
natural hazards and in understanding resilience-related processes. Nevertheless, 
monitoring activities can be resources consuming and limited by extreme 
conditions. This is particularly true in those areas of the World characterized by a 
lack of infrastructures, peculiar land morphology, extreme climate conditions, and 
large-scale homogeneous land cover. In these critical areas, emerging technologies 
can be a powerful tool to monitor the processes taking place in areas affected – and 
potentially affected – by natural hazards and detecting Land Cover (LC). This 
research aims to propose a methodology for the multi-resolution, multi-temporal, 
and multi-thematic analysis of LC in the spotlight of natural hazards, providing a 
very high-resolution land cover Atlas of the areas of the World that are considered 
critical for the reasons mentioned above. 

The atlas has a new level of detail to ensure meaningful information to data 
users. The maps are built upon the data collected through emerging technologies 
and analyzed through machine learning algorithms. The methodology is tested for 
two natural hazards: floods and rockfalls. The test areas are Tillabery in the sub-
Saharan region of Niger and the subalpine regions of Alpine Arch.  
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Chapter 1 

Introduction  

Land Cover (LC) maps are representations of the real land cover and describe 
the covering of the Earth's surface at a certain time using well-defined features. 
They result from the classification process, which is an abstract representation of 
land cover at a given time using diagnostic criteria. The classification is defined as 
(Sokal, 1974): 

  
"The ordering or arrangement of objects into groups or sets on the basis of 

their relationships." 
 
LC is generally meant as the physical cover on the Earth's surface (FAO, 2000). 

If we strictly consider the definition, only the vegetation and human-made features 
should be considered covers, since bare rock or bare soil describes land itself rather 
than land cover. However, the scientific community recognizes under the term land 
cover also bare soil and water. Land Cover is often confused with land use; although 
the terms are often used interchangeably, their actual meanings are quite distinct.  

Land use describes the cover but the human's usage of the cover. It is defined 
by the arrangements, activities, and inputs that people undertake in a specific land 
cover type to produce, change, or maintain it. Land use refers to the purpose the 
land serves. For example, "bare sandy soil" is a cover term, while "recreation area" 
or "beach" refers to the use of a sandy cover. "Recreation area" is a land use term 
that may apply to different land cover types: for instance, grasslands like urban 
parks, bare red soil like a tennis court, etc. (Table 1), (FAO, 2000).  
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Mapping Land Cover has many applications, and it is fundamental for Earth 
monitoring studies, resource management, and planning. According to the 
agreement on Disaster Risk Reduction of the United Nations document, also known 
as the Sendai framework (UNDRR, 2015), the Earth observation data are 
fundamental and relevant for reducing disaster risk. To meet climate planning and 
natural hazard monitoring, Very High Resolution (VHR) data are needed, and they 
must be repeatable, replicable, standardized, and affordable. Usually, land cover 
properties are measured via remote sensing using specific techniques from which 
LC is interpreted with ancillary data or a priori knowledge. These classification 
techniques are commonly ascribable to Machine Learning (ML) classification 
algorithms. The classification techniques are part of complex classification systems 
composed of several steps that result in the Land Cover maps. These systems, called 
Land Cover Systems (LCS) or Land Cover Classification Systems (LCCS), consist 
of specific methodologies that regulate, among the others, the nature of input data, 
the selection of the classes to group the objects of the classification in, the 
classification algorithms, the modality of validation, and the characteristics of the 
restitutions.  

Nowadays, there is a scarcity of tools and methodology able to provide LCS 
information to satisfy VHR monitoring requirements. The main reasons are 
ascribable to: 

 
 Lack of exhaustive research that analyzed the entire process of  VHR Land 

Cover data extraction, considering the LCS as a whole from the selection of 
proper sensors for data collection to the LC map restitution; 

 Lack of adequate low-cost technologies able to provide the LCS users with 
the VHR data; 

 Need for optimization of the VHR Land Cover map generation process; 
 Lack of standardized methodology for VHR Land Cover detection for 

mapping landscape-complex areas; 
 Most of the present solutions are not replicable and automatic. 
  
This framework emerges from the need for new technologies and tools to create 

VHR LC maps according to well-defined and shared methodologies that consider  
multi-temporal, and multi-thematic aspects of Land Cover classifications. 
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Table 1. According to Land Cover (LC) and Land Use (LU) rules, classification labels of some 
sample areas.  

 LC LU 

 

Grasslands Recreation 
area 

 

Bare red soil Recreation 
area 

 

Bare sandy 
soil 

Recreation 
area 
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  These considerations naturally give rise to the following questions that have 
been the starting point of this investigation: 

 
 How can reliable spatial data for climate planning be obtained?  
 Which is the most i) low-cost, ii) standardized, iii) replicable, and iv) high-

resolution way to get information regarding natural risk?  
 Which is an adequate LCS for natural risk monitoring?  
 Which are the main limitations related to the standard classification 

methodology applied to VHR? 
  Does the literature address these limits? 
  Is there a solution to mitigate or remove them? 
 
Answering these questions led to this thesis's development, which analyzes the 

methodology for the generation of Land Cover Maps of critical areas at high 
thematic, temporal, and spatial detail. This work is focused on the optimization of 
the Land Cover map process: from the data collection to the final result. The idea 
behind this work is that it is possible to simplify the classification process of VHR 
resolution imagery and semi-automatically generate high thematic detailed LC 
maps with a multi-temporal approach using few input features, with low 
computational effort, new technologies, and open and free software. As far as the 
author's knowledge, it does not exist exhaustive work that analyzed the entire 
process of Land Cover data extraction considering the selection of the proper sensor 
from the flight to the Land cover Map restitution, especially for Unmanned Aerial 
Vehicles (UAVs) systems. The VHR imagery LC classification is a relatively 
emerging field, mainly applied in critical areas, even though critical areas are the 
ones that may benefit more from it. The case studies analyzed in this work are two 
critical areas located in the Alpine Arch and the Sub-Saharan region of Niger. These 
areas are bonded by the heterogeneous land cover, the challenging environmental 
conditions, and being prone to specific natural hazards (respectively, rockfall and 
floods). These common aspects are the significant constraints to the data collection 
and data analysis. The final product of this work is a multi-resolution LC Atlas of 
natural hazards-prone areas of the World. The classification system is tailored 
according to the planning-related needs for risk reduction as identified by the 
planners. 

 
This thesis was possible thanks to the data collected within two pilot projects: 

ANADIA 2.0 and ROCKTHEALPS. Even if the pilot projects' study areas are 
geographically distant, they share the focus on natural hazard prevention. The 
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possibility of working on specific natural hazards (i.e., rockfalls and floods) in such 
different environments has been an opportunity to validate the methodology 
developed in this research, demonstrating its broad applicability. 

A further aim of the research is to minimize human intervention into the Land 
Cover classification process. Automation had been one of the most relevant 
obstacles faced during the investigation since it requires high computational power 
and the harmonization of the variables and algorithms for classification. Google 
Earth Engine (GEE) platform provided the needed computational power, and it is a 
no-cost service provided by Google. The harmonization of the algorithms and the 
classification steps was possible thanks to the knowledge and the inputs of the Earth 
Observation research group of the Space Research Center of Poland (CBK-PAS). 
Professor Edyta Wozniak supported this investigation in the development of the 
harmonized steps for optical imagery classification. During the five months of 
research in CBK premises, the classification methodology structure for satellite 
imagery was created. It is entirely coded in the Google Earth Engine API platform.  

The final result is an atlas composed of three Land Cover Maps of the Sub-
Saharan region and two LC maps of the Alpine arch case study. The maps differ in 
resolution and thematic detail. Two maps are realized using Sentinel-2 data, with 
10 m of spatial resolution. The remaining maps are realized with UAV datasets. 
Table 2 lists the available maps in the atlas. 

The manuscript is organized into nine chapters (considering introduction and 
bibliography). Chapter 2 provides a literature overview of the relation between 
climate planning, land cover, and the current complexity and constraints in land 
cover monitoring. Chapter 3 analyses the existing data collection tools for LC 
mapping and presents the workflow to realize this research. Chapter 4 analyzes the 
existing algorithms for the LC classification. Chapter 5 analyses the pre-processing 
of optical data for the generation of Land Cover Maps. The pilot projects and the 
test areas of the study are presented in Chapter 6. Chapters 7 and Chapter 8 concern 
the description of used sensors and their calibrations, the information gathering 
surveys and the pre-classification analysis performed on the dataset, the 
classification, its validation, and the generation of the LC Atlas respectively for the 
Alpine Arch (Chapter 7) and the Tillaberì region (Chapter 8). A general discussion 
on the proposed methodology's effectiveness that summarises the archived results 
and underlines future potential investigation directions planning is presented in 
Chapter 9. 
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Table 2. List of the LC maps in the Atlas. The spatial and spectral resolutions are referred to 
as the raw input data of the classifications. The number of considered classes correspond to the 
number of sub-classes, and the page indicates where to find the final map products. 

Case 
study 

LC map 
name 

Data 
source 

Spatial 
resolution 

(m) 

Spectral 
resolution 

(nm) 

Number 
of LC 
classes 

Type of 
classification Appendix 

Sub-
Saharan 

Satellite_1 Sentinel-
2 10 492– 2202 

(13 bands) 7 Pixel-based G 

UAV_1 
UAV-

mounted 
optical 
sensors 

0.06 400-900 
(6 bands) 

11 Object-
oriented H 

UAV_2 

1, 
temporary 

surface 
water 
body 

Object-
oriented E,F 

Alpine 
Arch 

Satellite_2 Sentinel-
2 10 492– 2202 

(13 bands) 12 Pixel-based D 

UAV_3 

UAV-
mounted 
optical 
sensors 

0.10 450-850 
(6 bands) 

1, single 
tree 

crown 

Object-
oriented C 

 

1.1 Keywords 

Keywords: LC (Land cover); Land Cover Classification; Landscape 
Complexity; Machine Learning; Random Forest; Optical sensors; UAV 
(Unmanned Aerial Vehicles); GEE (Google Earth Engine); Natural Hazards; 
Critical areas; Alpine arch; Sub-Saharan; Low-cost; FOSS. 
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Chapter 2 

Land Cover mapping and its role in 
environmental studies and regional 
planning 

The Land Cover (LC) classifications order the objects on the Earth’s surface 

into groups. These groups are called classes, and their definition should be clear, 
precise, possibly quantitative, and based upon objective criteria (FAO, 2000). Land 
cover classification systems (LCCS) should use classes that can be applied at any 
spatial scale or detail level (scale independence). Moreover, the classification needs 
to be source independent, which means that it must be applied independently of the 
data collection methodology (satellite, UAV, field survey, etc.). The classification 
classes and their descriptions constitute the legend of a classification. It depends on 
the area of application of the classification: a legend is the application of a 
classification in a specific area using a defined mapping scale and a specific dataset. 
Therefore, a legend may contain only a proportion, or sub-set, of all the possible 
classes of the classification. The legend is scale- and cartographic representation- 
dependent. Indeed, mixed mapping units are not rare if the elements composing this 
unit are too small to be delineated independently.  

Moreover, the legend is data- and mapping methodology- dependent. The 
sensors used for the data collection strongly influences these aspects, as explained 
in Chapter 3. During the last decades of the 19th century, when satellite information 
for LC monitoring was a new-born approach to LCCS and still not consolidated, 
ten criteria that LCCS should meet to be applied to satellite imagery were identified 
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(Anderson, 1976). Some of these criteria can be generally applied to the 
classification systems based on optical imagery and they are described in Table 3. 

Table 3. Criteria for Land Cover Classification Systems described by (Anderson, 1976) and 
author’s comments. 

N. Criteria Comments 

1 

The minimum level of interpretation 
accuracy in the identification of land use 
and land cover categories from remote 
sensor data should be at least 85 percent.  

This first criterion is generally acceptable, 
although the classification accuracy also depends 
on the system's complexity and the landscapes. 
From 1976 till today have been produced LC 
maps less than 85% accuracy, although these 
classifications provided novel methodologies, a 
new level of detail and extension. Some examples 
can be found in Table 4. 

2 The accuracy of interpretation for the 
several categories should be about equal.  

This criterion is still valid and sharable. All the 
classes in an LCCS should have very similar 
accuracies.  

3 
Repeatable or repetitive results should be 
obtainable from one interpreter to another 
and from one time of sensing to another.  

The repeatability of LCCS and, generally, of 
classification methodology is a fundamental 
aspect of LC analysis. Especially through time. 
Indeed, the monitoring and the study of landscape 
evolution are based on comparing different time 
LC comparison to detect changes. 

4 The classification system should be 
applicable over extensive areas.  

The statement refers to the spatial replicability of 
the classification. Indeed, at an equal data source, 
an LCCS should provide the analyst with 
coherent results when applied to different areas 
characterized by the same landscape conditions. 
LCCS created for desert areas will not provide a 
significant result from its application in coastal 
areas.  

5 
The categorization should permit 
vegetation and other types of land cover to 
be used as surrogates for activity.  

The classes, or categories, of LCCS should be 
exact and scale-independent to guarantee their 
use and interpretation by different users.  

6 
The classification system should be suitable 
for use with remote sensor data obtained at 
different times of the year.  

The statement refers to temporal replicability. 
The LCCS should provide the analyst with 
reliable results of LC from datasets of different 
sending time.  

7 

Effective use of subcategories that can be 
obtained from ground surveys or from the 
use of larger-scale or enhanced remote 
sensor data should be possible.  

The classes, or categories, of the LCCS should be 
organized in a multi-level structure that can be 
modified and integrated with subcategories at any 
moment. 

8 Aggregation of categories must be possible.  

Similarly to point 7, the LCCS should be 
organized in a multi-level structure that can be 
modified and aggregated in macro-classed at any 
moment. 

9 A comparison with future land cover data 
should be possible. 

LCCS should include and present the results to 
guarantee the comparison to future LC maps. 

10 Multiple uses of land should be recognized 
when possible. 

This aspect is valid only for Land Use maps. 



 

9 
 

Modern LCS satisfy most of these criteria. Today, several LC information 
exists, and it is open access. The table 4 lists the most used existing land cover 
datasets and their main characteristics—only dataset with spatial resolution below 
1000m are presented. 

Table 4. Existing land cover datasets and their main characteristics: producer, geographical 
coverage (global does not include poles), spatial resolution in meters, the span time (the time range 
dataset used for the classification), and the archived overall accuracy declared by the producer. Only 
dataset with a spatial resolution below 1000m were taken into consideration. 

LC dataset Producer Coverage Spatial 
resolution 

Reference 
period 

Declared 
accuracy 

Global Land Survey 
(GLS) 

USGS and 
University 
of 
Maryland 

Global 30 m 2000 – 
2012 91% 

Climate Change 
Initiative (CCI) Land 
Cover V2 

ESA Global 300 m / 75% 

MCD12Q1 0.5 km 
MODIS-based Global 
Land Cover 
Climatology 

NASA Global 500 m 2001-2010 / 

USGS – Global Land 
Cover Characterization 
(GLCC) 

USGS Global 1000 m 1992 - 
1993 

67% 
accuracy. 

Globe Land 30 

National 
Geomatics 
Centre of 
China 

Global 30 m 2000 - 
2010 80%. 

UN FAO Global Land 
Cover Network (GLC-
SHARE) 

FAO Global 1000 m / 80% 

CORINE land cover Copernicus Europe 100 m 
(2018) 

1985, 
2000, 
2006, 

2012, 2018 

≥ 85% 

ESA Climate Change 
Initiative Land Cover 
Sentinel-2 Prototype 

ESA Africa 20 m 2016 / 

2.1. Climate Change and planning against climatic 
risk: Sendai Framework 

In the last years an exponential intensification of natural hazards all over the 
World has been detected (IPCC, 2012), affecting the safety of persons and 
communities as a whole (UNDRR, 2015). Besides, small-scale disasters are more 
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frequent and intense (IPCC, 2012). Climate change and poorly planned 
development are considered the drivers of this intensification (in frequency and 
intensity) of hazards (UNDRR, 2015). In this framework, the need for planning to 
forecast and reduce disasters is unneglectable. Indeed, the United Nations (UN) 
recognize the importance of planning against climate change. To more effectively 
protect persons, communities, and countries, their livelihoods, health, cultural 
heritage, socioeconomic assets, and ecosystems (UNDRR, 2015). Thus, monitoring 
the World's areas that are more vulnerable to natural hazards has become crucial all 
over the World. In order to reduce disaster risk, effective tools and relevant data are 
needed. According to the agreement on Disaster Risk Reduction of the United 
Nations document, the Sendai framework (UNDRR, 2015), the collection of 
satellite data (i.e., Earth observation programs) and in situ information should be 
promoted encouraging tools for the management of geographic data, such as the  
Geographic Information Systems (GIS).  

The Sendai Framework for Disaster Risk Reduction 2015-2030, with its seven 
targets and four priorities for action, was adopted at the Third UN-World 
Conference on Disaster Risk Reduction on March 18, 2015 (Figure 1). It was 
endorsed by the UN General Assembly on June 3, 2015. The Sendai Framework is 
a 15-year, voluntary, non-binding agreement which recognizes that the State has 
the primary role to reduce disaster risk but that responsibilities are to be shared with 
other stakeholders including local government and the private sector. It aims for the 
following outcome: the substantial reduction of disaster risk and losses in lives, 
livelihoods and health and in the economic, physical, social, cultural and 
environmental assets of persons, businesses, communities and countries. 

The targets focus on substantial reductions in i) disaster mortality, ii) the 
number of affected people, iii) direct economic losses, and iv) reducing damage to 
critical infrastructure and disrupting basic services. The Sendai Framework also 
seeks a substantial increase in v) national and local disaster risk reduction strategies 
by 2020, vi) enhanced cooperation in developing countries and vii) a substantial 
increase in multi-hazard early warning systems, disaster risk information, and 
assessments. The Sendai Framework identifies four priorities. 

Understanding disaster risk requires relevant data from different sources, such 
as satellite information and land survey data (priority 1, Figure 1). Those data must 
be collected and analyzed with innovative tools and new technologies and managed 
and elaborated on sharing-information platforms. As in point (f) of priority 1 of the 
document:  
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“To promote real time access to reliable data, make use of space 

and in situ information, including geographic information systems 
(GIS), and use information and communications technology 
innovations to enhance measurement tools and the collection, 
analysis and dissemination of data”. 
 

In this framework, this thesis presents a methodology for the collection of 
reliable LC data from satellite imagery, new technologies, such as Unmanned 
Aerial Vehicles (UAV), and performant data analysis platforms. The LC legend is 
tailored to Natural Hazard monitoring. It is fundamental to understand the deep 
connection between geophysical hazards and Land Cover. 

 

 

Figure 1. The priorities of the Senday Framework, (UNDRR, 2015) 

Priority 1. Understanding disaster risk: Disaster risk management needs to be
based on an understanding of disaster risk in all its dimensions of
vulnerability, capacity, exposure of persons and assets, hazard characteristics and
the environment. Such knowledge can be used for risk assessment, prevention,
mitigation, preparedness, and response.

Priority 2. Strengthening disaster risk governance to manage disaster risk:
Disaster risk governance at the national, regional and global levels is
very important for prevention, mitigation, preparedness, response, recovery, and
rehabilitation. It fosters collaboration and partnership.

Priority 3. Investing in disaster risk reduction for resilience: public and private
investment in disaster risk prevention and reduction through structural
and non-structural measures are essential to enhance the economic, social,
health and cultural resilience of persons, communities, countries and their assets,
as well as the environment.

Priority 4. Enhancing disaster preparedness for effective response and to “Build
Back Better” in recovery, rehabilitation, and reconstruction: The growth of
disaster risk means there is a need to strengthen disaster preparedness for
response, take action in anticipation of events, and ensure capacities are in place
for effective response and recovery at all levels. The recovery, rehabilitation,
and reconstruction phase is a critical opportunity to build back better,
including through integrating disaster risk reduction into development
measures.
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2.1.1. Land cover as a proxy of climate change and 
environment indicator 

Disaster mapping has been instrumental in our understanding of climate planning. 
Risk models represent reality but are only as good as the data used (UNISDR 2015, 
Magliocca 2013). Effective mapping requires good resolution data in terms of space 
and time. LC is a valuable tool for monitoring risky areas (Lacoste et al., 2008). 
Indeed, the systematic study of LC, also named Land Change Science (LCS), helps 
understand natural hazards, disaster risk, and resilience-related processes. 
Therefore, to achieve a general understanding of natural hazards and their 
consequences across different places and times, a synthesis of local land change 
knowledge collected at varying scales and diverse methods is required (Magliocca 
et al., 2015). 
Natural hazards can be the cause and effect of land cover. It can cause uncontrolled 
and unmanaged expansions in areas poorly planned, but at the same time, the lack 
of planning may exacerbate the harmful effects of climate change (increasing the 
frequency of extreme climatic events) (Pyke and Andelman, 2007). Indeed, the 
Earth’s albedo (Earth’s surface reflectance) directly depends on the land cover, and 
its variation can lead to changes in micro-climate and climate (Dale, 1997). The 
changes in climatic conditions are not the unique cause of land cover change, but 
the alteration in land management practices and land use (e.g., agricultural 
intensification or deforest for cropland) performs a lead role in the phenomenon. 
The distribution of vegetation strongly depends on the Earth’s climate; thus, the 
alterations in its distribution are a proxy of climate change monitoring. Land cover 
changes influence and reshape most of Earth's elements cycles by modifying water 
and energy interrelation with the troposphere and consequentially distorting 
greenhouse gas and sinks (Townshend et al., 2008). As support of this thesis, land 
cover characteristics represent the dynamic evidence of ongoing Earth surface 
processes as part of a global change, which includes the loss of biodiversity and 
ecosystem functions (due to phenomena such as deforestation, desertification, and 
unmanaged urbanization) leading to the intensification of extreme natural events 
(Lacoste et al., 2008). For these reasons, land cover change data have long been 
used to drive land surface models in climate, water, and ecosystem models (Lacoste 
et al., 2008), providing predictions and reliable scenarios for the researcher who 
furnishes synthesized (and elaborated) information to policy-makers. These, based 
on the information gathered on LCS patterns, may act with strategic applications of 
specific management practices to increase the resilience of vulnerable ecological 
systems and facilitate climate adaptation (Pyke and Andelman, 2007). This 
statement underlines how experts and planners cover a vital role in interpreting the 
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environmental and ecological impacts of climate change and developing strategies 
for adaptation (Pyke and Andelman, 2007). Nevertheless, several practical limits to 
the use of LC-based tools exist, introducing essential considerations regarding the 
reliability and the effectiveness of data and, consequentially, the information used 
in climate planning.  

Nowadays, enormous quantities of land observations data are collected and 
regularly used for climate and environmental decision-making, but the lack of 
global (or regional) standardization of data gathering and elaboration processes 
makes comparisons between different source data difficult, impeding, or even 
obstructing, the understanding of land processes at a global scale. As an example, 
the same land change phenomenon may be interpreted in several ways due to the 
vast diversity of scientific approaches (Magliocca et al., 2015). Several methods 
exist for LC analysis, which applies qualitative, quantitative, or both methods. 
Besides the disharmonized LC methodologies, the insufficiency of data impedes an 
adequate forecast of disasters’ effects and adaptive planning. Frequently, reliable 

and constant observations are insufficient, and decisions are based on experts’ 

estimations, interpolations, or information extrapolated from spatially incomplete 
information. Consequentially, the identification, assessment of and solutions to 
environmental problems are still underdeveloped by our observational capacity, 
even though several international conventions, such as the Sendai framework, the 
UN Sustainable Development Goals, and the UN New Urban Agenda (UN, 2016; 
UNDRR, 2015), and programs explicitly require such information (Townshend et 
al., 2008). The scientific community defines natural hazards in two classes: the 
biological natural hazards and the geophysical (Burton et al., 1993). The firsts are 
connected to biology and epidemiology and embrace hazards, such as spreading 
infections, human, animal, and plant disease. Geophysical natural hazards are 
mainly connected to geology and meteorology. Some examples are landslides, 
eruptions, floods, and wildfires. In this thesis, only geophysical hazards are 
analyzed. As illustrated in paragraph 2.1, page 9, monitoring natural hazards 
activities have a crucial role in Disaster Risk Reduction (DRR). In the Natural 
Hazard Encyclopaedia, monitor is defined as follow (Jaboyedoff et al., 2013): 

 
“The verb ‘to monitor’ comes from the Latin ‘monere’ which means 
to warn. In geosciences, it means to watch carefully at a hazardous 
situation and to observe its evolution and changes over a period of 
time. It is also used to define the activity of a device that measures 
periodically or continuously sensitive states and specific 
parameters”. 
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Thus monitoring means detecting the changes in hazardous situations and tracking 
the evolution of the parameters that influence the phenomenon and the ones that are 
influenced by it.  
Monitoring geophysical natural hazards is undertaken through specialist data 
gathering and communication systems, exploration, site visits, and collaborative 
studies of current and historical events. In past times, the only way to periodically 
measure those changes was via land survey, but, thanks to the new technologies, 
today, hazards can be remotely monitored. These techniques are ascribable to the 
class of remote sensing. The two methodologies are not mutually exclusive: 
nowadays, monitoring activities are often realized via remote sensing and validated 
through direct data collection in the field (Kustas and Norman, 1996; Rogan and 
Chen, 2004; Shalaby and Tateishi, 2007; Sobrino and Raissouni, 2000; Zhang et 
al., 2003). In this work, both phases (remote data collection and validation) are 
taken into consideration. The LC establishes the baseline for monitoring and 
provides the ground cover information for baseline thematic maps (Natural 
Resources Canada, 2016). 

2.2. Criticalities of Land Cover monitoring 

As underlined previously, Land Cover plays a key role in environmental 
monitoring, but also in many other disciplines, such as sustainable land 
management, land resource monitoring, urban vegetation mapping landscape 
ecology, and climate-related researches (Feng et al., 2015; Rizeei et al., 2016; 
Sekertekin et al., 2017; Shelestov et al., 2017; Turner and Gardner, 2015). The wide 
spectrum of land cover maps' applications makes them highly demanded (Carrasco 
et al., 2019; Delalay et al., 2019; Sekertekin et al., 2017; Thanh Noi and Kappas, 
2018).  
Land Cover maps are commonly derived from machine learning classifications of 
satellite optical imagery, which represents one of the prevalent applications of 
remote sensing, and many authors have described it (Achard et al., n.d.; Aksoy et 
al., 2009; Baamonde et al., 2019; Carrasco et al., 2019; Delalay et al., 2019; 
Ghamisi et al., 2019; Herold et al., 2008; Rizeei et al., 2016; Sekertekin et al., 2017; 
Shelestov et al., 2017; Sidhu et al., 2018; Thanh Noi and Kappas, 2018; Yu et al., 
2014). In the last decades, satellite land cover research has spread, followed by 
Unmanned Aerial Vehicles (UAV) for image classification. According to the 
literature review of (Yu et al., 2014), who analyzed 6771 papers on land cover, 
87.9% of existing works have been realized starting from 2000.  
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This exponential growth is attributable to four main factors: 
 

i. The availability of free satellite datasets (such as Landsat and Sentinel) (Yu 
et al., 2014) 

ii. New Earth observation programs and missions (such as Sentinel) (Yu et al., 
2014) 

iii. The diffusion and affordability of more powerful analysis devices (Gavish 
et al., 2018) 

iv. The development of more sophisticated classification algorithms that permit 
the reduction of human contribution in LC analysis (Gavish et al., 2018) 
 

Indeed, LC classification has taken significant steps forward: a wide range of free 
satellite medium-high optical imagery, reduction of the cost of UAV, specific 
classification algorithms, many processing platforms and machines with more and 
more high computational power are now available (Carrasco et al., 2019; Khatami 
et al., 2016; Lu and Weng, 2007; Rizeei et al., 2016; Sidhu et al., 2018; Yu et al., 
2014). Apparently, besides the increasing Land Cover application, the past twenty 
years have been witnesses of a general growth of the classifications' accuracy (Yu 
et al., 2014). Besides today's achievements and high availability of information, the 
generation of land cover maps through remote sensing techniques still faces some 
major constraints. Taking apart the limitations regarding the analyst’s choices (and 
his/her experience), such as the design of the classification methods, the selection 
of appropriate algorithms, eventually the identification of correct and significant 
training sample, which will be explored in Chapter 4, the remaining constraints can 
be grouped in environmental constraints and technical constraints. The 
environmental constraints regard the typical characteristics related to the area to be 
classified. Indeed the major limits depend on the landscape's complexity, namely 
the topography, the degree of heterogeneity of the land cover, the seasonality, and 
the climatic conditions. On the other side, the technical constraints are related to the 
limit of the technology and the tools necessary for the Land Cover Maps generation. 
 
The technical constraints depend on the characteristic of the sensor selected for the 
data collection. Thus, they vary according to the sensor selected by the analyst. 
Since several sensor data sources are readily available, the analyst has more choice 
to select suitable remotely sensed data for a specific study, taking into consideration 
the relative limitations (Lu and Weng, 2007). Along with the technical 
characteristics, the economic condition is another essential factor that affects the 
selection of remotely sensed data and the time and labor devoted to the 
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classification process, thus affecting the quality of the classification results (Lu and 
Weng, 2007). Another critical factor affecting the classification data selection is the 
atmospheric condition (Lu and Weng, 2007). The frequent cloudy or rainy 
conditions prevent the collection of useful data. The satellites-mounted sensor can 
capture the images even with rainy or partially cloud covers, but they would result 
in low-quality data. In the case of total cover, the optical data cannot be used for 
LC classification, and in the case of partial cover, the missing data can be integrated 
with time-close information (Carrasco et al., 2019; Dorren et al., 2003). Generally, 
aerial sensors are not affected by partially clouded data, but they are susceptible to 
windy and rainy conditions. 
Consequently, the areas of the World in which such conditions are frequent are 
hard-to-map through remote sensing. For example, the rainy season in tropical areas 
and the desert of sub-deserted areas in which sand storms and the presence of earth 
particulates in the air may alter the sensed data's spectral value. The weather 
conditions are limits to the collection of good-quality data, although, even with data 
collected with good meteorological conditions, it is possible to face criticalities in 
the classification process. This is the case of heterogeneous areas, in which in few 
adjacent pixels, different classes exist. This condition decreases the accuracy of the 
classification. Heterogeneous land is frequent in mixed forests, grasslands, and 
farmlands (Herold et al., 2008; Yu et al., 2014). (Yu et al., 2014) defined 
heterogeneity as land cover complexity and indicator for the mapping difficulty of 
a particular location. Earth’s most difficult-to-map areas have not been frequently 
mapped. Besides the heterogeneity of the land cover, the homogeneity of the land 
cover types' spectral response is an additional limiting factor. Similar spectral 
characteristics of land cover classes may complicate the classification process. This 
is particularly evident for the single-epoch classification of plantations using 
medium-resolution data (Eisavi et al., 2015). For example, summer crops can be 
classified as orchards and pastures. The built-up areas may be easily confused with 
the soils because both are highly-reflectance surfaces. In some areas of the World, 
the buildings are constructed with local laterite, and buildings' discrimination from 
bare soils can be very challenging. The intra-annual phenological patterns may help 
in distinguish the classes. Indeed, some areas present an annual-based land cover 
change cycle, which can be integrated into the classification ad multi-temporal 
approach to mitigate the confusion of similar spectral types. For example, 
agricultural lands in temperate areas have different land cover during the spring and 
the autumn seasons. Using images collected during the autumn and the spring can 
significantly help discriminate between crops (Eisavi et al., 2015). 



 

17 
 

In some areas, the inclusion of spring images allows discrimination between 
urban areas and soils, which are usually covered by grass in the spring (Eisavi et 
al., 2015). On the other hand, some land covers' high seasonality might represent a 
limitation for the generation of orthomosaics and, consequentially, for the 
classification. The atmospheric disturbance and the high seasonal variability are the 
main environmental constraints of the land cover classification and the topography 
variation.  

The topography may influence the classification in two ways: by altering the 
spectral values in satellite imagery, especially in steep areas, and distorting the 
image, especially in UAV imagery. These alterations are caused by high slopes, 
such as steep mountainous sides.  
Practically, the spread shadows are the main effect of the topography on satellite 
imagery (Dorren et al., 2003). Shaded areas have lower spectral values, and the 
classification algorithm might not assign shaded pixels to the correct class. It is not 
rare that shaded pixels are classified as water. This aspect concern mainly the 
satellite data more than the UAV because of the extension of the study areas. 
Generally, UAVs cover smaller areas in which the light condition is uniform.  

The image distortion is rare neither. The distorted images can alter the area's 
texture, making such information not usable as a class discriminant for the 
classification. For example, the topography-derived distortions alter the spectral 
value and mismatch data captured from different points of view. This may prevent 
the correct co-registration of different bands (or datasets). For what concerns the 
UAV, distorted photograms reduce the accuracy of the Structure from Motion 
(SfM) -sourced products (i.e., orthophoto and Digital Terrain Models). The 
topography limitations are partially solved in the pre-processing phase with the 
topographical correction (presented in chapter 5, paragraph 5.1.4 page 99), even if 
the classifications might still encounter problems with some spectral types (Dorren 
et al., 2003) (see the application of topographic correction in Alpine Arch case 
study, paragraph 7.2, page 162). 

Additional factors related to the study environment's specificity are the ease of 
data collection in the field. In complex landscapes, ground samples are not easy to 
realize, because in steep mountainous terrain it is very time and labor consuming to 
obtain such a dataset (Dorren et al., 2003). In some remote areas, the lack of 
communication infrastructures and/or prohibitive and extreme climatic conditions 
(poles, deserts) may increase the difficulty for data in field data collection, as 
happened in the study in Niger (paragraph 8.1, page 193). These unfavorable 
conditions can be exacerbated by emergencies, like during (or immediately after) 
natural hazards. The data collection to train and validate models is the limiting 
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factor for efficient land cover maps generation. Thus, to fully realize the data 
revolution's potential, it needs to optimize limited and expensive ground-truth data 
(Gavish et al., 2018).  
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Chapter 3 

Sensors and tools for Land Cover 
Generation 

3.1. Sensors for remote sensing 

Remote sensing encompasses all the techniques for information gathering about 
objects or areas from a distance that does not include direct contact between the 
sensor for data collection and the source of data (Chuvieco, 2016). Remote sensing 
is described in Introductory Digital Image Processing (Cowell, 1997; Jensen and 
Lulla, 1987) as:  
 

“The art, science, and technology of obtaining reliable information 
about physical objects and the environment, through the process of 
recording, measuring and interpreting imagery and digital 
representations of energy patterns derived from non-contact 
sensor systems.” 
  

It is a tool or technique similar to mathematics that uses optical sensors to measure 
the amount of Electro-Magnetic Radiation (EMR) exiting an object or geographic 
area from a distance and then extracts valuable information from the data using 
mathematic and statistical measures. It functions in harmony with the mapping 
sciences' spatial data-collection techniques or tools, including cartography and 
Geographic Information Systems (GIS) (Clarke, 2001). Remote sensors can be 
passive or active. Passive sensors respond to external stimuli. They collect energy 
that is reflected or emitted from a surface (Earth’s surface). The most common 

source of radiation detected by passive sensors is reflected sunlight (NOAA, 2019). 
In contrast, active sensors use internal stimuli to collect data about Earth. Active 

sensors emit the stimuli and record the reflected energy of the stimuli. For example, 
a LiDAR remote sensing system projects a laser on Earth's surface and measures 
the time that it takes for the laser to reflect back to its sensor. The raw data of remote 
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sensing analysis are EMR values of a specific area stored in a fixed-size pattern 
depending on the acquisition sensor's resolution. EMR values can be collected by 
different sensors, which in turn can be supported by aerial or terrestrial means. LC 
usually employs nadiral information collected through aerial means. Figure 3 
(Jensen and Lulla, 1987) schematizes the remote sensing process, identifying four 
steps in i) statement of the problem, ii) Data Collection, iii) Data-to-information, 
iv) Information presentation. For each step, the passages applied in this research are 
highlighted. This work focuses on passive remote sensing, using only optical 
multispectral data deriving from sensors installed on satellites and UAV. The 
Global Navigation Satellite System (GNSS) technique has been used to 
georeference the multispectral data. The next paragraphs provide an overview of 
the above mentioned means and sensors. 

3.1.1. Optical sensors 

The digital image is a matrix composed of many thousands of single elements, 
each too small to be individually detected by the human eye. It is acquired using 
digital optical sensors that record photons reflected from defined portions of Earth’s 

surface. These portions constitute the single unit of the image and are called pixels 
and together compose the array of discrete brightness that form an image (Campbell 
and Wynne, 2011). The acquisition of aerial images relies on the digital optical 
sensor. These sensors are composed of essential components that are common to 
satellite-mounted, UAV-mounted, and terrestrial sensors (Figure 2): 

i) a lens to gather light to form a scene in real-world;  
ii) a sensor (or detector), which is a light-sensitive surface to record the image; 
iii) a shutter that controls the entry of light; 
iv) a camera case (or body) contains the other components together and 

maintains them in their correct position. 

 

Figure 2. Scheme of a general optical sensor. M and N are the dimensions of the image, which 
is proportional to the dimension of the sensor (m and n). Modified from (Oliveira et al., 2019).
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In photogrammetry, the Ground Sample Distance (GSD) is the single-pixel 
projection onto the Earth’s surface. The focal length (h) of the selected sensor and 
the dimension (d) of m x n size of the sensor, and the distance between the sensor 
and the sensed object (which in the case of aerial means, it is the height of the flight, 
H) define the GSD according to the following relation (equation 1 ): 

𝐺𝑆𝐷 =
𝑑×𝐻

ℎ
      [ 1 ] 

 
The shutter is a device that allows the light to enter the camera and reach the 

sensor by opening and closing. Depending on the opening time, a certain quantity 
of light hits the sensor and influences the final result. Digital cameras can be 
embedded with a rolling shutter or a global shutter. The global shutter allows the 
sensor to be entirely exposed simultaneously, and it is generally associated with 
specific sensors called CCD (see next paragraph). The rolling shutter exposes the 
sensor line-by-line in the below-second interval, instead of the entire image at once. 
It is commonly associated with CMOS sensors (Figure 4).  
 

 

Figure 4. Global shutter (left) and rolling shutter (right) functioning. The global shutter at time 
t1 exposes the entire frame, while the rolling shutter at t1 exposes only one line out of n. 

The rolling shutter may cause distortion when the sensed object is fast-moving. 
This happens because the sensed object moves/changes when the shutter moves 
from time tn to tn+1. Consequentially, the distortion can because also if the scene is 
static, but the means of acquisition in moving, such as images captured from cars 
and aerial vehicles. Figure 5 shows the typical effects of a rolling shutter. 
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Two main typologies of digital sensors exist, and they are classified according to 
the nature of the detector chip. Detectors are chips made of light-sensitive 
substances that generate minute electrical currents when they intercept photons 
from the lens. They create an image from the matrix of brightness proportional to 
the strengths of the electrical charges that reach the focal planes (Campbell and 
Wynne, 2011). Detectors can be Charged-Coupled Devices (CCDs) or 
Complementary Metal Oxide Semiconductor (CMOS) chips.  
 

  
Figure 5. Two widespread effects of rolling shutter sensors. An example of the distortions 

caused by the rolling shutter of a fast-moving object (car) is on the left. On the right, the distortion 
caused by the rolling shutter is used for capturing an image of a static scene (fence) from a moving 
means. CC BY-SA 4.0 via wikimedia. 

CCDs are formed from light-sensitive material embedded in a silicon chip. 
They are tiny, usually around 1μm in diameter, and organized in arrays to form a 
micro-circuit. The light-sensitive part of CCD is stimulated by the photons filtered 
by the lens (i.e., photodiode). Each CCD transforms the photon stimuli into an 
electrical charge. Once all the CCD has a small charge, it is transported to an 
amplifier and then to a transformer to be quantified and converted into a numerical 
value (Figure 6). CCDs have been widely applied for scientific purposes because 
they are compact and easily transported and embedded in moving vehicles. 
Moreover, CCDs are efficient in detecting photons also in reduced light conditions 
and respond linearly to brightness. Thus they produce a high-quality picture. These 
aspects influence the use of CCDs in aerial photogrammetry, which has been relied 
on CCD-based linear arrays to acquire imagery line by line as the satellite's motions 
carry the field of view forward along the flight track. 
Contrary to CCDs, the CMOS sensors do not expose all the pixels (each 
photodiode) to the light simultaneously, but a single line at a time. While data from 
a line are transferred and stored, the next line is exposed. Therefore, pixels within 
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a CMOS image are not exposed simultaneously, but the data storage is relatively 
quick.  

 

Figure 6. Representation of the CCD sensors that have only one converter of charge. The 
charges are moved within the sensor photocells to reach the converter, from 
https://meroli.web.cern.ch. 

CMOS are composed of one sensor for each resulting pixel, and the 
quantification and conversion is realized at a single sensor level and not by an 
amplifier. They can be assembled with fewer components and generally require less 
power than CCDs. These aspects make CMOS widely used for low-cost and low 
power requirements devices (Figure 7). 
 

 

Figure 7. Representation of the CMOS sensors that have one small converter for each 
photocell. The conversion of charge happens in the photocell fastening the image acquisition 
process. From https://meroli.web.cern.ch. 
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Today CMOS sensors dominate the image detectors market. Because they ensure 
good data quality with minimum data consumption in rather quick acquisition time. 
Nevertheless, CCD still dominates the space applications; for example, a CCD 
sensor is mounted on Sentinel 5 satellite and Hubble telescope.  

Regardless of the type of detector, optical sensors are sensitive to a specific 
portion of the electromagnetic spectrum (Figure 8) that usually encompasses the 
visible spectrum (with a maximum in the green region) and the InfraRed (IR). Most 
sensors can capture imagery in visible light that is perceptible to the human eye. 
Optical visible light cameras operate in the wavelength range, approximately from 
400 to 700 nm (Pádua et al., 2017). 
 

 

Figure 8. Electromagnetic spectrum. Optical sensors are generally sensitive to the visible 
(400nm) till the Short Wave Infrared (SWIR) (3000nm), (Akhloufi and Bendada, 2013). 

For remote sensing purposes, the digital sensors must have spectral sensitivities 
focused on a narrow range of wavelengths of the electromagnetic spectrum. The 
sensitivity of a sensor is defined as spectral detail or spectral resolution. It indicates 
the portions of the electromagnetic spectrum that stimulate the sensor. Each portion 
has an image output called band. The set of outputs from each band of the same 
sensor is defined as a multi-band image. The aspects that describe the spectral 
resolution of a sensor are the peak of sensitivity for each band and the bandwidth. 
The peak allows the analyst to describe a specific feature from a spectral point of 
view, while the bandwidth indicates the precision of the band's spectral description. 
For example, the Flavescence dorée is a vineyard disease which is spectrally 
manifested by a decrease of the reflectivity between 500 nm and 700 nm and an 
increase of reflectivity between 800 nm and 1300 nm (Al-Saddik et al., 2019). To 
correctly monitor the effect of Flavescence dorée a sensor sensitive to the spectral 
range affected by the disease is needed. Moreover, the bandwidth should precisely 
describe that range. Particularly a band that peaks at 600 nm and has a bandwidth 
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of 200 nm would be acceptable for monitoring Flavescence dorée (Al-Saddik et al., 
2019).   

 

Figure 9. Example of sensor sensitivity. The spectral sensitivity represents in the graph is of 
Multispec 4C camera by Sensefly, (Sensefly, 2014). 

Sensors can achieve band information using multiple cameras/lines (one per band) 
or the Bayer filter (Remondino, 2011). Bayer filter is a specialized filter applied to 
select the wavelengths that reach each pixel. A Bayer filter is specifically designed 
to allocate 50% of the pixels in an array to receive a specific wavelength (generally 
the green for the visible light sensor, because the human eye is susceptible to green 
light) and 25% each to other wavelengths.  

 

Figure 10. Bayer filter. Each cell stores data of Blue (B), Green (G), or Red (R) information. 
Then, each color band is interpolated to fill the data gap, (Campbell and Wynne, 2011). 

The missing values for the omitted pixels for each band are then interpolated (or 
extrapolated). For example, the blue recorded pixels are used to interpolate the blue 
values omitted in the array and complete the blue band. Bayer filter has been 
optimized and primarily used for NIR cameras (Campbell and Wynne, 2011). 
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Another essential aspect of optical sensors is the number of pixels composing the 
sensor. The number of pixels of the sensor indicates the number of photodiodes (in 
CMOS sensors), which is proportional to the final pixel's spatial resolution. This 
aspect is particularly important in aerial images since the number of pixels, and the 
sensor defines the Ground Sample Distance during the acquisition (Equation 1). 
The optical sensors can be embedded in different platforms for data acquisition. 
Only satellite and Unmanned Arial Vehicles (UAV) will be analyzed for the 
purpose of this thesis. The optical sensors embedded on satellite platforms are built 
ad hoc and have the specific characteristics to function outside the Earth’s 

atmosphere. 

3.1.2. Satellite 

In the last two decades, land quantitative synthesis analysis has been frequently 
realized via remote sensing using satellite imagery (Anderson, 1976; Herold et al., 
2008; Leone et al., 1995; Wu and Li, 2009; Yuan et al., 2009). Remote sensing 
techniques via satellite imagery had been a revolutionary and powerful tool for 
monitoring the Earth’s surface on a global, regional, and local scale, providing 
important information regarding coverage and cover features.  

The Earth observation constellation of satellites continually provides a broad 
collection of optical imagery, which differs in terms of spatial, spectral, radiometric, 
and temporal resolutions. The National Aeronautics and Space Administration 
(NASA) of the United States and the European Space Agency (ESA) provide public 
access to satellite imagery collections of most of their constellations. The range of 
available and free products are continually increasing. Since the launch of the first 
civil satellite for Earth observation (NASA Landsat mission in 1972), the satellite 
image's spatial resolution has dramatically improved, making the GSD reaching 
0.10 m at the nadir in panchromatic images (Al-Wassai and Kalyankar, 2013; 
Maglione, 2016). 

The resolution is defined as: 
 

“The ability of an entire remote-sensing system to render a sharply defined 
image.” 

 (Jensen and Lulla, 1987) 
 

Nevertheless, satellite optical sensor limitations are most often a severe 
drawback. Even if satellite platforms have a frequent revisit time, no single sensor 
offers at the same time the optimal spectral, spatial, and temporal resolution for 
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detailed scale analysis. Table 5 contains an overview of the existing Optical satellite 
imagery products and their main resolution characteristics. 

Table 5. Most popular commercial VHR and HR satellites. The table shows the main 
characteristics and parameters. The interval bands are referred to as panchromatic. (P) Indicates 
payment services and (F) the free to download ones. The temporal resolution varies based on the 
inclination of the satellite on the earth's surface. V in spatial resolution means “visible”, PAN means 
“panchromatic” and MS means “multispectral”. *SPOT, Sentinel, and Landsat programs’ 

specifications are considered for the latest satellite in orbit (SPOT-7, sentinel-2B, and Landsat-8) 
with an exception for the launch date, which takes into consideration the first satellite of the 
constellation in orbit. **16 days for Landsat 8 and 16 for Landsat 7, but with eight days-offset. 

Commercial 
satellite Launch Orbit 

(km) 

Coverage 
swath 
(km) 

Spatial 
Resolution 

(m) 

Temporal 
resolution 

(days) 

Interval 
Bands 
(μm) 

Note 

IKONOS-2 
(P) 1999 681 11.3 

PAN: 
0.82 

Ms: 3,28 
3 0.335-

0.900 

mission 
ended in  

2008 

QuickBird-2 
(P) 2001 350 16.8 PA: 0,61 

MS: 2,4 2-12 0.305-
1.053 

mission 
ended in  

2015 

SPOT (1-7) 
(P) 2001* 822 60 

PAN: 
1,5 

MS: 6 
26 0.380-

0.710 
SPOT 7 
ongoing 

GeoEye-1 2008 681 5.3 V: 0.50 
MS: 2 <3 0.350-

0.800 active 

WorldView-4 
(P) 2016 613 13.1 V: 0.30 

MS: 1,2 1.1-3.5 0.450-
0.800 active 

Rapid eye 
(P) 2008 630 77 V: 6.5 

MS: 6.5 5.5 0.440-
0.850 

Retired 
in 2020 

Sentinel-2 
(F) 2015* 786 290 V: 10 

MS: 20 5 0.442-
2.202 active 

Landsat (7-8) 
(F) 1972* 703 185 V: 30 

MS: 30 8** 0.433-
1.390 active 

 
Many events can be studied by analyzing satellite imagery, but the extracted 

information can be ineffective for small-scale and punctual-shaped phenomena. 
Free satellite data are available at fixed time intervals (i.e., temporal resolution), 
preventing a complete analysis of the hazard for lack of data regarding the study 
period or bad weather conditions (ESA, 2019; NASA, 2019). The increasing 
number and improving the quality of space-borne sensors have altered the capacity 
to observe land change (Turner et al., 2007), reducing the information across time 
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and space. In fact, while satellite imagery is fundamental for a large scale, it is 
strongly limited for detailed classification (Magliocca et al., 2015). The satellite 
imaging still depends on atmospheric conditions, although extensive archives are 
now available, often with stereo-pairs for geomatics applications. This is a gap-
filler that brings photogrammetric methodologies closer to traditional remote 
sensing (Remondino, 2011). Moreover, the satellite data provide information about 
the top layer covering the land, excluding the lower layers' information (vertically 
developed environments, 45° imagery). In the framework of natural hazard 
monitoring and detailed land cover studies, the need for new tools for high-
precision (better resolutions) is not negligible. 

3.1.3. UAV  

The UVS international1 define Unmanned Aerial Vehicles (UAVs) as generic 
aircrafts designed to operate with no human pilot on-board. UAVs are known by 
several names. Among the others, Unmanned Aerial Systems (UAS), aerial robot, 
Remotely-Piloted Aerial Systems (RPAS), or simply drones are the most popular 
terms. UAVs' usage has gained approval in the scientific community for different 
applications related to acquiring information, becoming common in a wide range 
of applications, and geospatial research (D’Oleire-Oltmanns et al., 2012). The cost-
effectiveness of these technologies (compared to traditional ones, such as field 
surveys and aerial photos from aircraft) is partially responsible for UAVs' 
increasing popularity. An additional factor contributing to their popularity is that 
they can be equipped with several sensors, such as optical and hyperspectral 
camera, Laser, SAR, IMU, GPS (D’Oleire-Oltmanns et al., 2012; Hruska et al., 
2012; Skoglar et al., 2012). Today, using only a simple optical Near InfraRed and 
visible sensor grants the possibility to apply several radiometric indexes, 
performing meaningful analysis useful for most scientific applications. 

The numerous applications of UAVs in the geospatial realm generally fall 
under the detailed mapping activities. Contrary to traditional ground surveys, 
UAVs can cover large areas in a relatively short time (Banu et al., 2016). Moreover, 
the cost-effectiveness and low time consumption allow frequent repetition of 
surveys to facilitate the multi-temporal studies and monitoring activities. Compared 
to satellite systems, UAVs can acquire imagery more often than satellites, allowing 
users to collect information whenever moment (e.g., immediately after extreme 
events, specific punctual conditions, etc.). Besides these innovative aspects, UAVs’ 

                                                 
1 UVS is a non-profit international association focused on UAV activities, http://www.uvs-

international.org/ 

http://www.uvs-international.org/
http://www.uvs-international.org/
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flights are strongly conditioned and limited by the low-atmospheric conditions: 
heavy rain, strong winds, and fog may impede the data collection. 

Additionally, UAVs are limited in the equipment that they can carry onboard 
(Paneque-Gálvez et al., 2014), and the autonomy of the survey depends on the 
battery system. In some areas of the world, traditional field surveys can be 
problematic. This is particularly true in areas where dangers to personnel exist. For 
example, in post-hazard areas in which structures have collapsed or explosions have 
occurred (Towler et al., 2012). UAV system has been widely used in these 
dangerous conditions, like in Fukushima after the nuclear reactor explosion. 
Considering that UAVs are generally cheaper and more versatile than traditional 
remote-sensing techniques, they can be a valuable alternative for acquiring imagery 
and other physical parameters before, during, and after a natural hazard event 
(Giordan et al., 2017).  

UAVs systems' continuous and fast evolution has made necessary the constant 
categorization of such systems by the scientific community. There is not a unique 
and universal classification of UAVs (Colomina and Molina, 2014; Nex and 
Remondino, 2014), although UAV systems are usually classified according to the 
weight-based system (i.e., Maximum Take-Off Weight, MTOW), and the flight 
range (Colomina and Molina, 2014). The flight range is meant as the farthest 
operating distance from the location of the ground control. The MTOW indicates 
the maximum weight (the entire system, sensors included) that allows the drone to 
take off. One of UAVs' first proposed classifications is based on the flight range 
and the MTOW (van Blyenburgh, 1999). The Medium Range Endurance group 
encompasses the UAVs that can fly over the stratosphere. They are complex 
technologies and are only allowed to fly under specific special regulations by ultra-
qualified teams, generally military units. The close-short-medium-range UAVs are 
characterized by a MTOW between 150 and 1250 kg and an operating range 
between 10 km and 70 km. Finally, the nano-micro-mini UAV class is defined by 
low flying altitudes and an operative range of fewer than 10 km. Quick operational 
deployments characterize these systems; they are allowed to fly lower than national 
ceilings of segregated airspaces. The power autonomy is generally less than two 
hours, and the MTOW is 30 kg. The nano-micro-mini UAVs represent the largest 
group, and they are broadly used in the detailed mapping. It is worth underling that 
the MTOW specifications may vary from country to country depending on the 
national legislation. Figure 11 shows the distribution of drones based on the height 
range and the maximum distance (van Blyenburgh, 1999). 

An alternative classification adopted for the UAVs regards the physical 
features, and it is possibly the most frequently used in the geomatics realm. This 
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classification is based on the technology adopted for the flight (Nex and 
Remondino, 2014). The UAVs group lighter than air, do not need engines nor fuel 
to flight (e.g., kites, balloons) (Figure 12a). The multirotor group includes the 
UAVs equipped with propellers. They can be either electric or with a combustion 
engine (e.g., single-rotor, multi-rotor, multicopter). The structure often reminds of 
helicopters (Figure 12b). Finally, fixed wings are able to fly thanks to structures 
similar to the ones of airplanes, based on the physical lift force (Figure 12c).  

 

 

Figure 11. UAV classification is based on the height range and the maximum distance, 
according to (van Blyenburgh, 1999). 

 
  

(a) (b) (c) 
Figure 12. a) Example of lighter than air UAV. The balloon with an inboard sensor; b) Example 

of multirotor UAV. This is an exacopter (6 propellers) produced by DJI called MATRICE 600; c) 
Example of fixed-wing UAV eBee classic. 
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In geoscience applications, mini- and micro- UAVs are the most used systems in 
both multirotors and fixed-wings type. Although they are both efficient for mapping 
purposes, they differ in several aspects. Due to their structure and the engines' 
redundancy, the multi-rotors systems are more stable than fixed-wings systems. 
Moreover, they can be flexibly piloted, allowing the pilot to collect with ease 
information from different angles (i.e., oblique acquisitions). On the contrary, 
fixed-wings systems can acquire only nadiral information, but their endurance is 
generally higher than their maximum flight altitude, making it possible to cover 
larger areas at an equal time of flight.  

Fixed-wings cannot hover on a fixed point, but they are generally more user-
friendly and easy to use, as long as the systems are integrated with GNSS systems 
for take-off and landing. Fixed wings can land only horizontally; thus, they need a 
clean and non-obstacle space, which can be challenging in some areas (e.g., cities, 
forests). On the other hand, multi-rotors can perform the vertical landing in less 
space. Both can be equipped with different sensors, limited by the maximum 
payload and the available power. (Nex and Remondino, 2014) proposed a table to 
summarize the main characteristics and differences between fixed-wing and multi-
rotor systems with electric and Internal Combustion Engine (ICE). Table 6 proposes 
the same analysis but considering electric motors only and the advancement of 
UAVs’ technologies till today.  

Table 6. Evaluation of UAV platforms performances in geomatics applications. The evaluation 
ranges from 1 (very low) to 5 (very high), n.a. means “not available”. It was adapted from the work 
of (Nex and Remondino, 2014). 

 Lighter than air Rotatory Fixed-wings 
Payload 3 4 3 
Wind resistance 4 3 2 
Minimum speed 4 4 2 
Flying autonomy n.a. 2 3 
Portability 3 3 2 
Landing distance 4 4 3 

 
The spreading applications of UAVs are also attributable to the versatility of 

the technology and the possibility of being equipped with many different sensors, 
with the limit of the size and the weight. Besides the fundamental navigation 
sensors, the most common sensors are cameras, multispectral sensors (Baluja et al., 
2012; Berni et al., 2009.; Kelcey and Lucieer, 2012) and LiDAR (Light Detection 
and Ranging) (Chisholm et al., 2013; Tulldahl et al., 2015; Wallace et al., 2012). 
UAVs can fly autonomously, using an integrated GNSS system, stabilizer platform, 
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and data collection sensors. However, on-board sensors' choice must be compatible 
with the UAV’s payload capacity and the application requirements. Some of the 
most sought-after characteristics of on-board sensors are the low-costing (Aden et 
al., 2013; Kingston and Beard, 2003), the customizability, and the lightweight. 
Several low-cost optical multiband sensors have entered into the market in the last 
few years, providing UAV-users with several solutions. Besides these, inexpensive 
alternatives to commercial radiometric sensors exist. UAV can benefit from a large 
scale of mass-market cameras to professional-grade cameras with prices varying 
accordingly. In the next paragraphs will be briefly presented today available sensors 
that can be embedded into UAV systems. They are presented in groups based on 
their spectral sensitivity: visible, InfraRed, Thermal, and Multispectral. 

RGB sensors 

The RGB cameras acquire the visible part of the electromagnetic spectrum and 
do not differ from sensors for non-photogrammetric purposes. Recent UAV models 
have an RGB camera embedded in the UAV system and synchronized with it. In 
this way, the pilot has direct control over the camera during the flight. Table 7 
displays some examples of the currently used RGB cameras suitable for UAV and 
generally for photogrammetric applications. 

Table 7. Examples of optical cameras commonly used on UAVs for RGB image acquisition. 
The price is expressed using the following scale: $ = 100 – 600$; $$ = 600 – 2000$ ; $$$ = >2000$. 

Name Type  

Embedd
ed in the 

UAV 
system 

Spectral 
resolution MP Price 

S.O.D.A. BSI 
CMOS 

 

Yes, 
eBee RGB 19.9 $$ 

Sony 
ILCE-
5100 

APS-C 
CMOS 

 

No RGB 20 $ 

Phantom 
4 

Advanced 
CMOS 

 

Yes, 
phantom 

DJI 
RGB 20 $$ 
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Infrared sensors 

The infrared portion of the electromagnetic spectrum ranges from around 
700 nm (Near InfraRed) to 10,000,000 nm (Far InfraRed, FIR), covering longer 
wavelengths than the visible spectrum. The boundaries of the infrared spectrum, 
between NIR and visible from one side and between FIR and microwave on the 
other, are still discussed (Pádua et al., 2017). The spectrum approximately between 
700 nm and 850 nm represents the NIR region, and it is typically where plants have 
the highest reflectance. This makes the NIR information crucial for most 
vegetation-related studies, such as agriculture, forestry, algae monitoring, etc. NIR 
sensors are frequently used in precision agriculture and constitute the basis for 
vegetation analysis. Healthy vegetation that is actively growing and producing 
energy from photosynthesis absorbs in red (the red light stimulates photoreceptors 
of the chlorophyll) and reflects more in the NIR region. Vegetation with very low 
reflectance in the red channel and very high in the NIR channel can be defined as 
strongly photosynthetic and thus very healthy. Most of the standard commercial 
cameras have filters blocking NIR. However, it is relatively easy to transform an 
RGB camera into a NIR camera by removing the filter and replacing it with one 
that is filtering the visible red, green, or blue bands. Table 8 shows some RGN 
camera in which the IR blocking filter was removed. 

Table 8. Examples of optical cameras commonly used on UAVs for NIR image acquisition. 
The price is expressed using the following scale: $ = 100 – 600$; $$ = 600 – 2000$ ; $$$ = >2000$. 

Name Type  Embedded 
in UAV  

Spectral 
resolution, band 

width 
MP Price 

Mapir 
3N 

Sony 
Exmor R 
IMX117 
CMOS  

No 
R: 655 nm, n.a. 
G: 550 nm, n.a. 
N: 850 nm, n.a. 

12 $ 

Canon 
S110 
NIR 

back-
illuminated 

CMOS  

Yes, EBee 
Classic 

R: 625 nm, 
100nm 
G: 550 nm, 
100nm 
N: 850 nm, 
150nm 

12.1 $$ 

While NIR is totally invisible and imperceptible for humans, FIR can be 
experienced as heat. Thermal cameras operate approximately in the spectrum at 
wavelengths from 5000 to 14,000 nm. Each pixel’s intensity can be transformed 
into a temperature measurement. Thermal cameras have several applications, 
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although NIR cameras are much more expensive, and the spatial resolution is much 
lower (Mejias et al., 2015).  

Multispectral sensors 
NIR and RGB sensors can be combined together in multispectral sensors. 

Multispectral and hyperspectral cameras, meant as devices with more than three 
acquisition channels, have become commercially available in recent years. 
Multispectral sensors are usually sensitive between the visible and the infrared, 
focusing on the Red-Edge (that refers to the portion of the Electromagnetic 
spectrum between visible light and NIR in which some plants are particularly 
active). Recently, also ultraviolet light and thermal bands have been included in 
multispectral sensors. (Nebiker et al., 2008) compared a multispectral camera and 
a low-cost NIR camera showing significant differences. As expected, the 
multispectral sensor provided good results, consistent with the reference values 
obtained by a hyperspectral spectrometer, while the low-cost camera showed a 
reasonable correlation with the multispectral system with some significant biases. 
However, high spatial resolution low-cost cameras proved to be useful for the 
qualitative monitoring of crops, including disease detection. Table 9 presents three 
examples of multispectral cameras. 

Table 9. Examples of optical cameras commonly used on UAVs for multispectral image 
acquisition. The price is expressed using the following scale: $ = 100 – 600$; $$ = 600 – 2000$ ; 
$$$ = >2000$. 

Name Type  
Embed
ded in 
UAV  

Spectral resolution, band 
width MP Price 

Slantra
nge 

Si 
CMOS 

 

Yes 
DJI 

matrice 

1) Red wide: 620 nm, 110 nm 
2) Green: 520 nm, 110 nm 
3) Blue: 470 nm, 110 nm 
4) Red Edge: 715 nm, 30 nm 
5) Red narrow: 650 nm, 40 nm 
6) NIR: 850 nm, 70 nm 

3.2 $$$ 

multiS
PEC CMOS 

 

Yes 
eBee 

classic 

1) Green: 550 nm, 50 nm 
2) Red: 660 nm, 50 nm 
3) Red Edge: 735 nm, 40 nm 
4) NIR: 790 nm, 50 nm 

1.2 $$$ 

P4 
multis
pectral 

CMOS 
 

Yes 
Phanto

m 4 

1) Red: 650 nm ± 16 nm 
2) Green: 560 nm ± 16 nm  
3) Blue: 450 nm ± 16 nm 
4) Red Edge: 730 nm ± 16 nm 
5) NIR: 840 nm ± 26 nm 

2.08 $$$ 
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Multispectral cameras sense few wide bands compared with hyperspectral cameras, 
capable of sensing hundreds of narrow bands, up to 2 nm in wavewidth. These 
cameras are the most innovative optical sensors that can be mounted on UAVs. 
Although, they have different functioning and structure with respect to traditional 
multi-band sensors. For this reason, they are not analyzed in this work. 

Characteristics of the UAV flight and planning 

A fundamental aspect of UAV data collection for geomatics applications is the 
flight planning or mission plan. The planning phase aims to find the balance 
between the data requirements and the available UAV platform, the sensors, and 
the survey's goal. It is generally realized in a laboratory using specific software. The 
input data are the knowledge of the area of interest, the needed Ground Sample 
Distance (GSD), the type of datum (multispectral, NIR, thermal, etc), the available 
UAV platform, and the information needed from the survey (Figure 13). 

 
 
 
Figure 13. Main variables that should be taken into consideration on mission planning phase. 

The camera perspective centers (or waypoints) are computed fixing the forward 
(or longitudinal) and lateral (or transversal) overlap of the flight-lines, which 
generally ranges between 60% and 80%. The overlaps it is fundamental for the 
Structure from Motion (SfM) technique (paragraph 3, page 103). Large overlaps 
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compensate for aircraft instability (typical of mini UAVs) to reach enough overlaps 
for finding the conjugates for the SfM process. To achieve small GSDs high 
overlaps and low-altitude flights are usually needed (Figure 14). 

 
Figure 14. Example of lateral and forward overlap of a UAV flight. Image modified from  

https://www.nrcan.gc.ca/. 

 Once the mission is planned, it is possible to realize the flight. It can be manual, 
autonomous, or assisted. These three flight modalities differ in the number of inputs 
of the pilot during the flight. Experience shows that a careful design of the UAV 
trajectory (lines, height, speed, etc.) and a flexible real-time mission management 
capacity (flying directions, sensor configuration, triggering events, etc.) are 
instrumental in achieving productive and safe acquisition missions (Colomina and 
Molina, 2014). The GNSS navigation device is a fundamental component for the 
autonomous flight (take-off, navigation, and landing) and guides the image 
collection. The GNSS, along with the navigation system, can facilitate image 
acquisition. The autopilot performs a flight according to the planning and 
communicates with the platform during the mission. It is worth mentioning that 
these GNSS systems have been proven to be sufficient for auto-piloting but not for 
accurate georeferencing (Piras et al., 2010). 
UAVs equipped with double-frequency GNSS for RTK positioning exist. These 
systems can improve the quality of positioning to a decimeter level, but they are 
expensive solutions (Nex and Remondino, 2014).  
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Besides the above mentioned principal aspects, in mission planning, several 
secondary aspects should be taken into consideration: 
 

i) The characteristics and the size of the area to be covered in relation to 
the space needed for the take-off and the landing and any obstacles or 
obstructions present in the area; 
 
 

ii) The flying height variations according to the topography of the surveyed 
area; 
 

iii) The required and available payload in relation to the expected final result; 
 
 

iv) The overlapping images from multiple locations and angles (acquisition of 
the same feature from multiple angles to reduce occlusions and systematic 
errors); 
 
 

v) The features to be reconstructed should be visible at least in three 
images (five or six images for dense vegetation); 
 
 

vi) The illumination conditions, the scene must be sufficiently illuminated 
(constant lighting is preferable); 
 
 

vii)  The features of interest should be fixed (e.g., no movement from branches 
in the wind). 
 

In mission planning, the users have many parameters that vary depending on 
the equipment and pursued results. For some equipment, the users have full control 
during the flight (e.g., ISO, shutter speed), although several other can only be 
estimated in the planning phase. The factors influencing the success of a UAV 
survey (meant as the planning and data collection as a whole) can be divided into 
four categories (Iglhaut et al., 2019), as presented in Table 10. 
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Table 10. Factors influencing a UAV survey and some recommendations to improve the quality 
of the acquisition. The recommendations are focused on forest surveys, (Iglhaut et al., 2019). 

Category  Variable  Recommendations 

Scene  

Texture High surface contrast to allow for small features 
detection  

Pattern 
repetition 

Increase overlap and increase the number of 
geotags  

Moving features Avoid, if possible. 
Occlusions Increase overlap and viewing angles  

Lighting 
conditions  

Sun angle Possibly high. Solar noon is ideal to avoid shading 

Weather 
Overcast provides is acceptable for structural 
(RGB) surveys. 
For spectral surveys, a clear sky is recommended. 

Changing 
illumination Avoid it if possible. 

Camera 
parameters  

Focal length Wide but not too wide to minimize distortions. 28–

35 mm is a good basis. 
Exposure Well exposed. 
Aperture f/8 an advisable default  

Shutter speed High for reduced motion blur, but depends also on 
the ground speed (m/s)  

ISO Low for min noise, auto-ISO an advisable default 

Pixel pitch As high as is practical. Physical pixel size 
positively influences dynamic range and sensitivity  

Survey 
characteristics  

Overlap 
High (> 80% forward and lateral). Especially for 
high patter repletion surveys to increase 
redundancy and matchability.  

View angles 

Convergent for reduction of systematic errors 
(RGB) 
Parallel (Nadir) for multi-spectral sensing 
(reflectance)  

Survey range 
With increasing distance to the object/scene 
(decreasing GSD) survey precision degrades. 
Increased GSD requires a higher overlap.  

 

3.1.4. GNSS receivers 

The accuracy of the position and the scale of a survey is determined by the 
referencing approach (e.g., direct georeferencing, manual scaling). When using 
Ground Control Points (GCPs) and direct georeferencing to obtain accurate results, 
the Global Navigation Satellite System (GNSS) is compulsory. GNSS refers to 
satellites' constellation providing signals from space that transmit positioning and 
timing data to GNSS receivers. The receivers then use this data to determine 
location. By definition, GNSS provides global coverage. Examples of GNSS 
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include Europe’s Galileo, the USA’s NAVSTAR Global Positioning System 

(GPS), Russia’s Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), 
and China’s BeiDou Navigation Satellite System (EGA, 2019). GNSS dual-
frequency receivers are enhancements to the Global Positioning System (GPS), 
which provide improved location accuracy from 15 m to about 10 cm (they receive 
information from GPS and other constellations).  

In the past years, GNSS systems have progressively overcome traditional 
survey methods, becoming standard tools in many sectors. Nowadays, GNSS 
systems play a lead role in data acquisition thanks to the increasing number of 
satellites, the low-costing, the efficiency, and the variety of available products. 
GNSS measures can be acquired through two primary modalities: static or 
kinematic. In the static survey, the GNSS receiver is positioned on each point to be 
measured for a few minutes, while in the kinematic survey, the receiver is 
continuously moving. A typical application of the static mode in the measurement 
of topographic network vertex, while the kinematic technique is employed mostly 
for rapid measurement of GCPs using RTK (Real-Time Kinematic) technique. 
Three main strategies for GNSS data acquisition exist: absolute positioning, relative 
positioning, and differential positioning (Figure 15).  
The absolute positioning is the most straightforward strategy. Only one GNSS 
receiver is needed, which directly receive information from GNSS constellations. 
This strategy allows for the 5-10m precision, which is usually applied for navigation 
purposes and not for topographic applications. 
In relative positioning, two receivers are used: one is positioned on a known-
coordinates point, the second on an unknown-coordinates point. Both receivers 
positioning information from the GNSS constellations. This strategy aims to 
estimate the vector connecting the two receivers, which is called the baseline. The 
relative positioning required simultaneous observations and long stationing time 
(depending on the baseline length). In relative positioning, the coordinates are 
estimated a posteriori.  
In differential positioning, two receivers are used: one is placed on a known-
coordinates point (called Master), while the second receiver is placed on an 
unknown-coordinates point (called Rover). The position of the unknown-
coordinates receiver can be established relative to the known-coordinates point by 
defining the baseline. The estimations are done in real-time thanks to the connection 
between the master and the rover (radio transmission, internet, GSM). 

Indeed, from 2002 forward (Eren Kamil et al., 2009), Real-Time Kinematic 
networks (NRTK) have spread. These networks are composed of GNSS stations of 
known coordinates, called Continuously Operating Reference Station (CORS), and 

https://en.wikipedia.org/wiki/Global_Positioning_System
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managed by a network software installed in a control center. The introduction of 
the CORSs has allowed users to collect data in differential positioning using one 
GNSS multi-frequency receiver (instead of two). This is possible thanks to the 
direct connection between the CORS, through the control center, and the dual-
frequency receiver. The NRTK has revolutionized the data acquisition modalities 
(Grejner-Brzezinska Dorota A. et al., 2007; Rizos, 2007). A dense network of 
permanent stations is available to process GNSS data (Kim et al., 2014). Despite 
today CORSs covering most of the world's countries, some areas are still not 
included in the network, such as some sub-Saharan countries (see paragraph 8.1., 
page 193). Considering the real-time positioning and the NRTK method, the rover 
receiver needs to be within a short distance (less than 60 km) from the reference 
stations. This is fundamental to minimize the distance-dependent errors induced by 
the troposphere, the ionosphere, and the orbital errors (El-Mowafy, 2012). This 
specific requirement can be an obstacle for the realization of NRTK surveys where 
there are no CORS within hundreds of kilometers (Elmezayen and El-Rabbany, 
2019). A possibility to overcome the lack of CORS is resorting to two GNSS dual-
frequency receivers in the rover-base modality. When a known-coordinates point 
for the “base” receiver is not available, post-processing operations to obtain the 
base's correct position is compulsory.  
One of the most common post-processing methods is the PPP (Precise Point 
Positioning). To perform it, data regarding satellites’ orbits and the ionosphere are 

needed to process the pseudo-range and carrier phase measures of GNSS multi-
frequency receivers (Bisnath and Gao, 2009; Kouba and Héroux, 2001; Zumberge 
et al., 1997). These data are collected by permanent stations that can also be located 
very far from the surveyed area (Kouba and Héroux, 2001). In terms of East, North, 
and Up components, the PPP can provide centimeter-level precisions in static mode 
(Bisnath et al., 2003; Pan et al., 2015), if the phase ambiguities are fixed as integer 
values in a correct way (Collins and Bisnath, 2011; Ge et al., 2008). The precision 
of the PPP corrections is also strictly dependent on the measurement session's 
duration (Mohammed et al., 2018; Yigit et al., 2014). Its effectiveness for the 
estimation of the positions has been demonstrated by several authors (Gao et al., 
2003; Gao and Shen, 2002; Kouba and Héroux, 2001; Zumberge et al., 1997), using 
precise orbits and satellite clocks from IGS (Gao and Chen, 2004; IGS, 2019) and 
many other providers (Jamieson Marian and Gillins Daniel T., 2018; Mohammed 
et al., 2018; Wang et al., 2018). Until some years ago, the satellites’ data, the 

ionosphere information, and the specific software that are necessary to perform PPP 
were not easily obtainable, and consequentially the PPP limited to few expert users, 
such as academia and research institutes. Today the PPP technique has raised the 
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interest not only of the academia but also of industry and governments (Bisnath and 
Gao, 2009). In particular, the last ones have dedicated specific attention to PPP, and 
some of them shared the socio-economic benefits of PPP with the public, providing 
ad hoc coordinates online estimation services (Bisnath and Gao, 2009). 
 

Regardless of the GNSS strategy adopted, the estimated-coordinates points are 
used for georeferencing the UAV-models (see paragraph 3, page 103). In this phase, 
it is fundamental to consider the precision and accuracy of the GNSS survey. 
 

 
Figure 15. Three main strategies for GNSS data acquisition exist: absolute positioning, relative 

positioning, and differential positioning. Adapted from htttp://fig.net/. 

 
3.1.5. Some considerations about UAVs and satellite 

imagery 

The availability of optical remote sensed imagery is limited mainly by weather 
conditions and, specifically for UAV's aerial images, restrictions on flights. Indeed, 
among the satellites' technical constraints, the low temporal resolution is one of the 
most cited (Carrasco et al., 2019; Lu and Weng, 2007; Zhai et al., 2018). To date, 
most classification methods require input images with few clouds because the 
presence of cloud cover increases the difficulty of image analysis. However, 
satellites hardly meet the absence of cloud cover with low temporal frequency, 
especially in the areas particularly prone to clouds (e.g., monsoon season in tropical 
areas, autumn in temperate season). The limits caused by the low temporal 
resolution have been partially overcome with the introduction of medium-high 
resolution satellites that increase the free data available and make possible 
integrating the datasets from different acquisitions (Remondino, 2011). However, 
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integration and high-spatial-resolution require managing a large amount of data, 
and thus a large amount of storage, as well as significant computing power and time 
(Carrasco et al., 2019). 
On the one hand, the available software may not be able to deal with this large 
volume of data, while on the other hand, the increased number of input variables 
may introduce additional complexity regarding the increase of computational time. 
Managing satellite datasets requires considerable data storage capability, and the 
high spatial resolution further increases this requirement. Indeed, the antinomy 
between spatial resolution and computational power is another pervasive technical 
constraint. During the last few years, some geographic cloud computing platforms 
that allow the analysis and storage of geographic data were born. These services 
(such as Google Earth Engine) decrease the computational and storage limits of 
satellite data processing (Farda, 2017; Kumar and Mutanga, 2018).  
It is worth mentioning that satellite imagery is usually more expensive than aerial 
images (Remondino, 2011). Although they have low spectral resolution compared 
to satellite imagery, the UAVs' sensors are still very attractive. UAVs’ sensors have 
a wide variety of camera configurations. The new satellite missions with 0.3 m 
spatial resolution (such as Cartosat-3 and GeoEye-2) will help keep the two 
technologies closer, particularly for mapping applications (Remondino, 2011).  
 

3.2. Tools for data elaboration: proprietary and 
FOSS software 

Despite the Free and Open Source Software (FOSS) are not the focus of this 
work, whenever it was possible, they have been used. FOSS are free software which 
source-code is obtained under a specific license that permits users to use, modify, 
and improve a product or service. The users are allowed to redistribute the 
modified-code in the FOSS license. Usually, FOSS are considered in contraposition 
to proprietary software, which are associated with the copyright holder. Proprietary 
software has non-public source code, generally are created by private companies, 
and the users need to pay to use them. There has been significant discussion on the 
advantages and disadvantages of FOSS against proprietary software. The economic 
advantages and characteristics of FOSS are persuasive. Sigh et al. (Singh et al., 
2015) propose an interesting comparative analysis between FOSS and proprietary 
software. Table 11 proposes a similar analysis. 
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Table 11. comparative analysis of FOSS and proprietary software, adapted from (Singh et al., 
2015).  

Factor  Free Open Source Software  Proprietary Software  

C
os

t 

Although open source software vendors 
are increasingly charging for add-ons, 
additional administrations, and joining, 
there is no FOSS cost. Thus the final cost 
of ownership for FOSS may be equivalent 
to some proprietary software alternatives. 

They are free. Users are charged for the 
whole work behind the software: 
programming, administrations, 
assistance, etc. Generally, the expense 
guarantees a more tweaked item from a 
trusted brand that incorporates more 
massive amounts of security and 
usefulness, continuous advancement, a 
more prominent capacity to scale, 
progressing preparing and packing, and a 
lower prerequisite for specialized 
abilities. 

Se
rv

ic
e 

an
d 

Su
pp

or
t FOSS do not provide assistance or 

support to users. The user can consult 
specific online community systems and 
get support from forums and blogs. 

Proprietary software suppliers offer 
progressing backing to clients, a key 
offering point for clients without 
specialized mastery. 

In
no

va
tio

n 

Open source programming empowers 
innovation by providing users with the 
opportunity to modify and suit the 
software, without confinement. 
This innovation can be transmitted to the 
community of the users of the software. 

Proprietary software’s source code is not 

available for users. This guarantees the 
security and the quality of the product. 
Proprietary software suppliers also 
customize their products for particular 
clients. 

U
sa

bi
lit

y FOSS are generally created for expert 
users and specialists. Most FOSS are 
considered as hardly usable by the larger 
part of the computer users. 

Proprietary software generally invest 
many resources in usability and user-
friendly interfaces. 

Se
cu

ri
ty

 a
nd

 
re

lia
bi

lit
y 

Several developers develop FOSS code, 
and anyone can hinder the security of the 
software. On the other hand, this may 
represent an additional security level 
because more people are looking for 
potential vulnerabilities to be fixed. 

Proprietary software is considered much 
more secure since it is developed in 
supervised and trackable conditions only 
by professional companies.  

A
va

ila
bi

lit
y 

Open Source Software is freely available. 

Proprietary software are accessible 
through the developing companies that 
own the rights. Often trial version or 
demo version is freely distributed too. 

Fl
ex

ib
ili

ty
 

As organizations continually look to do 
more with less, adopting open source 
software can deliver greater flexibility. 

When using proprietary software, it 
requires to keep upgrading both software 
and hardware. Updates must be installed 
(and paid) for the proper working. 
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Chapter 4 

Classification of optical imagery, 
literature review 

 Image classification is one of the most basic operations of digital image 
processing (Campbell and Wynne, 2011; Jensen and Lulla, 1987). In simple terms, 
image classification is the process of distributing image into classes or categories 
of the analogous type by assigning each pixel to a meaningful category (Figure 16) 
(Campbell and Wynne, 2011).  

Figure 16. Graphic representation of the classification process (simplified). On the left the 
representation of a raster single band image and of the classified image (right). Similar values of the 
left image have been grouped for a class in the image on bright. Class “A” is defined by bright values 

(>6) and class “B” describes the dark pixels (< 3). (Campbell and Wynne, 2011). 
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In other terms, it can be expressed as a computer-assisted analysis of images 
for information extraction. Thus, classification can also be defined as information 
extraction. In information extraction from multiband optical imagery, pixels are 
assumed to be individual units that carry several band values (Jawak et al., 2015). 
A pixel is a vector composed of several Digital Numbers (DN), one for each spectral 
band of the image Figure 17 (Campbell and Wynne, 2011; Salah, 2017a). In the 
multiband optical images process classification, the pixels of an image having 
comparable spectral values are assigned to one specific class. Classes should be 
homogenous (Campbell and Wynne, 2011) because, within the same image, pixels 
of one class differ spectrally from the pixels of another class. This is the idea behind 
image classification, different features on the Earth's surface have a different 
spectral reflectance (Campbell and Wynne, 2011). Thus the pixels that describe 
those features can be grouped in different spectral classes. In a map or a digital 
image, these classes constitute regions and results in a mosaic of consistent classes, 
each identified by a specific symbology.  

 

 

Figure 17. Graphical restitution of pixel vector in the multiband image. In this case, the 
highlighted pixel is the vector [23 42 89 94]. (Campbell and Wynne, 2011) 
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In the field of Remote Sensing from optical imagery, numerous attempts have 
been made for developing a practical approach for the information extraction 
processes. The recent availability of a range of high resolution (HR) and Very-High 
resolution (VHR) images offers an advantage for more precise extraction of 
information by developing advanced classification schemes. Indeed, the 
classification is a complex process and requires consideration of many factors. 
Comprehensive and exhaustive reviews of Land Cover classification techniques 
and algorithms exist (Franklin and Wulder, 2002; Jawak et al., 2015; Jog and Dixit, 
2016; Lu and Weng, 2007; Ma et al., 2017b; Salah, 2017a). Generally, the authors 
provide an overview of current practices and the existing classification methods and 
compare them. Most of them focus specifically on comparing classifiers (Jog and 
Dixit, 2016; Talukdar et al., 2020). The literature is rich in classification reviews 
on specific technique or techniques for Land Cover classification, such as Jawak 
who provide a review on the Land Cover supervised object-oriented classification 
focused on cryospheric application (Jawak et al., 2015). They focus only on most 
recent object-oriented classification methodologies (Ma et al., 2017b). More 
comprehensive analysis regarding the entire classification process is rarer in 
literature as much as the analysis of Land Cover classification methods for VHR 
imagery. The works of (Lu and Weng, 2007; Pandey et al., 2019; Thyagharajan and 
Vignesh, 2019) are the most complete, even if limited to the spaceborne-generated 
dataset. However, the remotely sensed data process classification is composed of 
several sub-processes, or steps, which are compulsory for relevant results 
(Campbell and Wynne, 2011; Lu and Weng, 2007; Salah, 2017a). Indeed, the 
classification itself is the core of the classification process, but it cannot exist 
without preparing the dataset, selecting the classes, and the accuracy assessment.  

The present chapter provides an overview of the existing and most applied 
classification techniques for the LC maps' production, focusing on the entire 
classification process. The chapter is structured following the foremost steps of 
image classification. The order and steps of a classification workflow depend on 
the type of classification algorithm used, the nature of the input data, and the 
analyst's time and needs. This structure is developed basing on (Campbell and 
Wynne, 2011)’s steps for the classification process, initially proposed in 
“Introduction to Remote Sensing, fifth edition”. It was then enriched following (Lu 
and Weng, 2007)’s classification main steps, which traces most of the land cover 
classification publications and many other authors share it (Jawak et al., 2015; Jog 
and Dixit, 2016; Salah, 2017a; Talukdar et al., 2020). The general strategy 
workflow adopted in this work is shown in Figure 18. 
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Figure 18. The general workflow of the classification structure as identified by (Lu and Weng, 
2007) and (Campbell and Wynne, 2011). This methodology is particularly adapted for supervised 
classification algorithms. The image pre-processing step is analyzed in Chapter 5. 

4.1. Definition of classes  

 Land Cover maps are composed of contiguous classes forming regions. 
According to the classification needs, meaning the needed study area's information, 
the analyst identifies them. Thus, the classes are the categories of interest to the data 
users (Campbell and Wynne, 2011). The classes represent the specific 
characteristics of the Land Cover, and they can be, for example, the different kinds 
of forest units, different kinds of soil, or the different kinds of land cover that 
provide information to planners and scientists who are the final users. The classes 

Image pre-processing

Choice of a suitable 
classification system

Design image classes 

Extraction and 
selection of features

Selection of suitable 
classification methods

Selection of training 
and test samples

Image classification 
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that describe a particular aspect of the classified scene are high thematic resolution 
classes. For example, high thematic classes are forest burnt areas, landslides, or 
asbestos roof buildings. Low thematic resolution classes are generally easier to 
identify: they are directly visible on the image and spectrally uniform. 

 

Unfortunately, it is not always so easy. Some very detailed classifications are not 
directly recorded on remotely sensed images, but they can be derived indirectly, 
using multiple aspects of the image. For example, the image cannot directly show 
soil types, but the analyst can identify and describe them considering the 
topography, the vegetation, the pixel reflectance, and other factors. Classes are 
strictly dependant on the spatial resolution of the image. A single pixel should 
capture the characteristics of the classification target (Torres-Sánchez et al., 2015). 
Classification targets smaller than the spatial resolution cannot be detected. For 
example, it is impossible to define a single tree from 30m spatial resolution 
imagery, but only the forested areas. 

The classes of land cover are created based on spectral similarity. The pixels 
are grouped (manually or automatically) according to the DN values (or brightness) 
of single pixels on the images dataset. The classes are spectrally uniform and 
homogeneous categories. Thus, remote sensing Land Cover classification matches 
these spectral categories to informational categories. If the match can be made with 
confidence, then the information is likely to be reliable. If spectral and 
informational categories do not correspond, then the image is unlikely to be a useful 
source for that particular form of information (Campbell and Wynne, 2011). 

Figure 19.  An example of increasing thematic detail. a) is the analysed area; b) is the analysed 
area classified as "vegetation"; c) in the classification distinguish between grassland (light green), 
forest (dark green) and shadows (black); d) is more thematically detailed classification where single 
tree crowns are detected (red outlines). 
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In supervised classification, this aspect is defined during the preparation of the 
training sample before applying the classification algorithm. In contrast, for 
unsupervised classification, it is defined after applying the algorithm and the 
clustering (see paragraph 4.4, page 66 for the definition of supervised and 
unsupervised classifications). 

Of course, classes can have little variations due to the natural variations within 
the class. For example, the land cover class “water” may include rivers, streams, 

sea, and lakes, which differ in spectral appearance. Moreover, the illumination and 
the shadowing produce additional variations even within otherwise spectrally 
uniform classes. These aspects are a source of inaccuracies in some environments, 
such as the mountainous areas.  

Typical classification systems are composed of classes, subclasses, and macro 
classes organized in a hierarchical system. The subclasses are spectrally distinct 
groups that together may be assembled to form a class. Similarly, classes providing 
similar information can be grouped in macro-classes. For example, the class 
“forest” can be composed of the subclasses “conifers” and “broadleaves”, and being 

part of the macroclass “vegetation” with the “grasslands” (Figure 20).  

Figure 20. Example of a classification system. It is composed of classes (grasslands, Forests, 
Rivers, Stream, Lakes, Sea, Metal roofs, Brick roofs, Concrete roofs), subclasses (broadleaves and 
conifers), and macro classes (Vegetation, Water, and Urban areas) organized in a hierarchical 
system. 

This hierarchical system helps the analyst in the organization of the 
information, but it can also be used as a stratagem for those homogeneous classes 

Vegetation
Grasslands

Forests Broadleves
Conifers

Water

Rivers
Streams
Lakes
Sea

Urban areas
Metal roofs
Brick roofs

Concrete roofs



 

51 
 

from an informational point of view but inhomogeneous from a spectral point of 
view. Temporary subclasses are created, and in post-processing, merged in the 
hierarchically upper class of interest. For example, in the classification of “urban 

areas,” roofs of buildings can be made of spectrally different materials, such as 

metal, concrete, wood, or bricks. Even if distinguishing the buildings according to 
the single material is not informational relevant, the analyst does it to correctly 
describe the “urban area” class (Figure 20). The analyst treats spectral subclasses 
as distinct units during classification and displays several spectral classes under a 
single symbol for the final image or map. 

4.2. Pixel-based and object-oriented classifications 

The pixel has been the single unit of image classification since the early 
applications of Remote Sensing (Hussain et al., 2013; Lu and Weng, 2007; Rastner 
et al., 2014). As described in the previous paragraph, the pixel in multispectral 
images represents the atomic unit of the image, and it is a vector composed of 
Digital Numbers as much as the bands that compose the image. Most often, 
classifications and statistical operators are applied at the single pixel level. Each 
pixel is analyzed and labeled by the algorithm. This classification approach is called 
pixel-based. The pixel is the single and fundamental unit of image processing, but 
it is not a geographic unit. Indeed it is a cell of a grid that stores numbers and whose 
boundaries lack real-world correspondence (Hussain et al., 2013). This means that 
generally one pixel does not describe a geographical object. The representativeness 
of pixels depends on their projection in real space. When the pixel is bigger than 
the geographical object, the DN of the pixel will be the mixture of the reflectance 
values of the target object, and the surrounding ones. When the pixel size is smaller 
than the target, object its DN will be the reflectance of only a part of it, which may 
be non-representative of the entire object in case of high-spectral variability. The 
high reflectance variability within individual features and the number of classes 
present in the images, especially at the high-spectral resolution, has restricted the 
traditional per-pixel analysis (Hussain et al., 2013). A more recent image 
classification option is object-based image analysis (OBIA) (Whiteside et al., 
2011).  

This technique considers as the unit of the classification homogeneous groups 
of pixels instead of single pixels. Pixels are grouped based on their spectral 
characteristics and the geometrical properties of their spatial distribution (Figure 
21). This phase is called segmentation, and it predates the classification itself, 
Figure 22 (Gao et al., 2018; Lu and Weng, 2007; Rastner et al., 2014).  
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Figure 21. A graphic example of the segmentation process. Pixels with homogeneous 

information (in this case, spectral information) are grouped to form polygons (or objects) with 
specific characteristics. 

 
Table 12. Advantages and disadvantages of Pixel-based and Object-oriented classification 

systems. 

 Advantages Disadvantages 

Pi
xe

l-b
as

ed
 

 Lower sensitivity to selected 
threshold 

 Low computational time 
 Capture of details 
 Extensive area mapping of 

satellite images 
 Low computational power 

demand 

 High amount of speckled pixels 
 Limited transferability 
 Expert knowledge requirement 
 Salt and pepper effect on VHR 

imagery. 

O
B

IA
 

 Better accuracy on VHR imagery 
 No anesthetic effects (salt-and-

pepper effect) 
 image objects can be created at 

various scales (e.g., from a single 
tree crown to groups of trees) 

 statistic attributes can be 
obtained from image objects 
deviation using the DN 

 The final accuracy is strongly 
dependant on the segmentation 
process 

 The goodness of the 
segmentation is hard to assess 

 High computational cost 
(dependant on the no. of 
segments) 

 Still implemented in few 
software 

 High need for graphical 
restitution for the segmentation 

 
The segmentation is the core process of OBIA, and several steps generally 

characterize it. Starting with individual pixels, OBIA algorithms merge contiguous 
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pixels into groups (i.e., objects) based on three parameters: scale, shape, and 
compactness (Lu and Weng, 2007; Meneguzzo et al., 2013; Rastner et al., 2014). 
The objects should represent the land cover features (e.g., agricultural fields, 
buildings, and roads) (Hussain et al., 2013). Scale, shape, and compactness are user-
defined parameters. The scale represents the degree of spectral heterogeneity 
allowed in each object. Generally, the higher the scale value (that is unitless), and 
larger the object will be because it is more heterogeneous (Hussain et al., 2013; 
Rastner et al., 2014). The compactness can be defined as the degree of similarity of 
a polygon to a circumference. The compactness parameter optimizes the resulting 
objects regarding the compactness.  

 

 

Figure 22. Main steps for the pixel-based and OBIA classification, starting from a ready-to-
classify input dataset. 

In the VHR image classification realm, the OBIA approach dominancy is 
undiscussed. However, its efficiency in medium-spatial resolution is questionable. 
The segmentation process of medium-spatial resolution datasets requires 
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experienced analysts and good intuition to ensure fully representative objects. It is 
computationally demanding, and the geometrical attributes of the objects are poorly 
significant (Table 12). Ontologically, OBIA allows the identification and 
extraction of real-world features more accurately and reliably from remotely sensed 
data only on more appropriate scales (Hussain et al., 2013).  

4.2.1. Single epoch and multi-temporal classification 

Assuming the availability of spectral data relative to the same target area but 
captured in a different time, it is possible to perform multi-temporal analysis. It is 
proved that the use of multi-temporal than single-date classification for Land Cover 
mapping increases accuracy with improved tools (Langley et al., 2001; Long et al., 
2013; Ma et al., 2017b). The multi-temporal approach's main advantage is the 
possibility of using image data from different dates to better capture spectral 
diversity in the same Land Cover class. Namely, some covers are more prone to 
spectral variabilities than others are, such as agricultural fields, deciduous forests, 
and small rivers. The multi-temporal classification approach has been successfully 
used to map and monitor vegetation (Long et al., 2013). It has been applied largely 
in crops’ phenological stages (Eisavi et al., 2015; Langley et al., 2001; Long et al., 
2013), mapping wetlands (Corcoran et al., 2013), and semi-arid areas (Langley et 
al., 2001; Mohamed and El-Raey, 2019). Two main approaches for multi-temporal 
classification exist.  
The first scheme used for multi-temporal analysis consists of stacking the input 
images of a different time and classify the entire dataset. This method is also called 
a multi-date approach (Ghamisi et al., 2019). The multi-date approach's main idea 
is to characterize pixels by stacking the feature vectors of the images acquired at 
different times. The classification is then carried out by training the classifiers to 
produce a map describing the land cover (Ghamisi et al., 2019). This method has 
been applied with a seasonal declination (Hepinstall-Cymerman et al., 2009; Long 
et al., 2013). Namely, the multi-temporal datasets are created on a (phenological, 
natural, or growing) season basis. The multi-date approach is broadly applied 
(Corcoran et al., 2013; Eisavi et al., 2015; Hepinstall-Cymerman et al., 2009). 
Although it is based on two essential assumptions: 

I.  the considered image acquisition dates do not differ in cover classes (i.e., 
there is no change in land cover, for example, from Agricultural fields to built-
up areas);   

II.  the applied classification algorithm can model the data distributions' 
complexity (Ghamisi et al., 2019).  
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The second scheme used for multi-temporal analysis consists of classifying the land 
cover of each image of the time series separately, thus producing a land cover map 
for each available acquisition time. This approach permits explicitly identify 
eventual transitions in the land cover, and, mostly, it removes the assumption that 
there are no changes in cover between the considered dates. This methodology's 
principal limit is the need for training samples that can adequately represent all the 
classes in each image, thus excluding those associated with changes. 
Indeed, a proper multi-temporal classification would require multi-temporal ground 
reference samples in both approaches. For this reason, great attention has been -and 
is still- devoted to the use of methods that address the limitations of the training set 
(Ghamisi et al., 2019). 
Besides introducing a certain grade on uncertainty, the multi-temporal classification 
has two other strong constraints than single epoch classification. Working on large 
time-series requires handling more massive data sets and consequentially a demand 
of computational time and power (Langley et al., 2001), and when working with 
multi-temporal dates, the images need to be co-registered, calibrated, and 
atmospherically corrected.  
It is worth mentioning that the multi-temporal approach can have different 
meanings and roles according to the classification's goal. The multi-temporality 
may serve for the generation of a single land cover map; a land cover map for each 
item of the time series, thus producing a set of multi-temporal land cover maps; an 
annual or seasonal land cover map with classes that represent the behavior of the 
temporal signature of each pixel or region in the images in a year or season. Each 
of these methods requires extra attention and approach.  

4.3. Feature extraction and feature selection 

The single unit of image classification, regardless of its nature (i.e., pixel or object), 
is characterized by several attributes deriving from the bands on the image to be 
classified. These bands are called features of the classification. Effective use of 
features as input data for a classification procedure can improve classification 
accuracy (Lu and Weng, 2007; Maxwell et al., 2018; Salah, 2017b). The basic 
features used in the optical-imagery classification process are the ones deriving 
from the spectral information of the image. For example, a Sentinel-2 input dataset 
consists of 13 spectral features (one per band) (ESA, 2019). Besides the spectral 
features, a wide variety of variables are available which includes, spectral-derived 
indices, processed images, textual information, height or surface roughness, non-
spectral geographical information (ancillary data), and shape and size of objects 
(only for OBIA) (Lu and Weng, 2007; Salah, 2017b). These features can be derived 
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from elaborating one or more spectral bands or can have an external source, thus 
independent from the classified image's spectral information. The selection of the 
set of features for the classification process has a crucial role in absolute accuracy 
(Salah, 2017b; Thyagharajan and Vignesh, 2019). The feature extraction step within 
the classification process has two main functions: it allows one to identify and select 
the most useful features in the classification process, and it reduces the 
classification dimensionality and simplifies the model (Thyagharajan and Vignesh, 
2019). Maxwell et al. (Maxwell et al., 2018) distinguish the two feature extraction 
and feature selection functions.  

The feature extraction generates new features (variables) by combining 
information from the original features to provide more meaningful information than 
the one contained in the original variables (Maxwell et al., 2018; Thyagharajan and 
Vignesh, 2019). A well-known example is Principal Component Analysis (PCA), 
in which the original variables are transformed into uncorrelated variables. On the 
other hand, feature selection identifies a subset of the input features determined to 
be valuable for the classification (Maxwell et al., 2018). Figure 23 shows the 
combination of the two processes. 
 

  

Figure 23. Graphical restitution of feature extraction and feature selection processes. Features 
A, B, C, and D are the spectral information. The feature extraction identifies new features E, F, G, 
and H that are a function of A, B, C, and D data. The feature selection process identifies the most 
significant and essential features for the classification (B, D, F, G, and H).  

4.3.1. Feature extraction 

The feature extraction begins from an initial set of measured data and forms a new 
feature. The diversification of the input features is crucial for a useful classification 
and can improve the final accuracy. For example, textural elements can facilitate 
Land Cover class discrimination (Jin et al., 2018; Lewiński et al., 2015; Zhang et 

al., 2003) and the histogram-based ones (Drzewiecki et al., 2013). The number of 
features depends on the level of thematic detail required for the final product and 
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the type of classifier. For practical reason, classification features are grouped 
according to their nature in:  

I. Radiometric-based features 
II. Histogram-based features 

III. Textural-based features 
IV. Other features 

Radiometric-based features 
Radiometric –based features, or spectral features, include all those features 

resulting from the simple combination of other spectral bands. These features have 
been proven to effectively separate land cover categories with similar spectral 
signatures (Zhang et al., 2003). Generally, they are indices for the monitoring of 
specific characteristics of the environment. The most common and applied index is 
the Normalized Difference Vegetation Index (NDVI) (Jin et al., 2018; Merciol et 
al., 2019; Pelletier et al., 2016; Zhang et al., 2003), which is used for the 
discrimination of vegetation classes, also in multi-temporal classification 
approaches. Other radiometric-based standard features are the built-up indices, 
water indices and tasselled cap features (Pelletier et al., 2016). The radiometric 
indices should be extracted according the needs of the classification. For example, 
NDVI is indicated for the identification of mid-low vegetation, while the Enhanced 
Vegetation Index (EVI) is more appropriated for the identification of high-biomass 
regions. Table 13 lists some of the most common spectral indices in classification 
software (i.e. ENVI and Orfeo toolbox) grouped according their application. 

 
Histogram-based features  
Histogram-based features are indices that can be obtained from the density 

histograms of an image band. The density histogram on the band plots the DNs 
values against their frequency (Figure 24). Some authors recognize the histogram-
based features as textural describers.  

 
Figure 24. Example of a distribution histogram. On the abscissae, the digital number (DN) 

values and on the ordinates the frequency of DN values. 
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Table 13. List of some of the most applied radiometric indices grouped according to their 
application. 

Application Acronym Index Reference 

V
eg

et
at

io
n 

NDVI Normalized Difference 
Vegetation Index (Rouse, 1973) 

RVI Ratio Vegetation Index (Pearson et al., 
1972) 

PVI Perpendicular Vegetation Index 
(Richardson, 

1977; Wiegand et 
al., 1991) 

SAVI Soil Adjusted Vegetation Index (Huete, 1988) 

GEMI Global Environment Monitoring 
Index 

(Pinty and 
Verstraete, 1992) 

EVI Enhanced Vegetation Index (Huete et al., 
1994) 

W
at

er
 

SRWI Simple Ratio Water Index (Zarco-Tejada 
and Ustin, 2001) 

NDWI Normalized Difference Water 
Inde (Gao, 1996) 

NDWI2 Normalized Difference Water 
Index (Mcfeeters, 1996) 

NDPI Normalized Difference Pond 
Index 

(Lacaux et al., 
2007) 

NDTI Normalized Difference 
Turbidity Index 

(Lacaux et al., 
2007) 

B
ui

lt-
up

 

NDBI Normalized Difference Built Up 
Index (Zha et al., 2003) 

Fi
re

 

BAI Burn Area Index (Harris et al., 
2011) 

So
il CMR Clay Minerals Ratio (Mallick, 1987) 

 
Mean, Variance, Skewness, and Kurtosis are some of the most applied and 

representative histogram-based features (Drzewiecki et al., 2013). Mean, and 
Variance are easily interpretable, in contrast to Kurtosis and Skewness. They 
represent the disparity deviation of a histogram when compared with a Gaussian 
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distribution. Kurtosis describes how sharply peaked a histogram is. This means that 
a Gaussian distribution has a Kurtosis of zero. A more peaked histogram than a 
Gaussian distribution has a positive kurtosis value (Figure 25).  
 

 
Figure 25. Representation of Kurtosis. Image source: https://community.sw.siemens.com  

Skewness describes the degree of asymmetry of a histogram. When the 
distribution is perfectly symmetrical, it has a skewness of zero. Asymmetrical 
distributions have positive or negative values. For example, a histogram with a long 
tail to the right has a positive skewness value, Figure 26. 
 

 

Figure 26. Representation of the Skewness (or skew). Image source: Diva Jain, CC BY-SA 
4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons 

Textural-based features 
The inclusion of texture features can improve classification accuracy 

(Drzewiecki et al., 2013; Lewiński et al., 2015). Its role in the classification process 
has been recognized in numerous studies (Jin et al., 2018; Zhang et al., 2003). The 
texture refers to spatial variation in digital image spectral brightness due to spatial 
variation in the land surface (Berberoğlu et al., 2010). In satellite imagery, it is 
referred to as a specific spectral band and can be described as the frequency of tonal 
values (brightness or color) of neighboring pixels (Haralick et al., 1973). Because 
the texture concerns the neighborhood and can be related to a direction or a scale. 
The textural characteristic can be calculated on the entire image (called global 
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features), on an object within the image defined by segmentation process (OBIA 
classifications) or small groups of pixels formed by fixed or moving window (like 
kernels) (Drzewiecki et al., 2013; Lewiński et al., 2015). Generally, when operating 
on moving windows, kernel filters are constituted by n x n size, where n is an odd 
number. The textural index value is calculated for the central cell (pixel (n, m) in 
Figure 27) considering its relation with the n x n neighborhood. 
 

 

Figure 27. Visual representation of neighborhoods. The black pixel is the object of reference, 
and it is defined by (n, m) size. The Surrounding grey pixels constitute its 3 x 3 neighborhoods. The 
white pixels delimit the 5 x 5 neighborhood (which includes the 3 x 3 neighborhood). 

 Texture analysis techniques can be divided into four groups (Lewiński et al., 2015): 

structural texture (e.g., mathematical morphology), statistical texture (e.g., image 
first-order and second-order statistics), model-based texture (e.g., fractals or 
multifractals) and transform texture extraction techniques (e.g., wavelets) 
(Lewiński et al., 2015). Statistical texture features are in turn categorized into the 
first order that relates to the intensity of the individual pixels, and into second-order 
that relates to the occurrence of neighboring pixels. Basically, first-order statistical 
parameters are directly based on histogram features of an image (histogram-based 
features), while the second-order textural features are based on the grey level co-
occurrence matrix (GLCM) (Qadri et al., 2016).  
The most popular textural analysis in 2D optical remote sensing is the grey level 
co-occurrence matrix (GLCM) (Jin et al., 2018; Lewiński et al., 2015; S.V.S.Prasad 

et al., 2015; Zhang et al., 2003). GLCM is calculated on subgroups of pixels or an 
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n x n filter. In GLCM, the number of columns and rows is estimated based on the 
number of grey levels in the image (Berberoğlu et al., 2010; Haralick et al., 1973). 
The GLCM matrix elements show the statistical estimated values that happen 
between the grey-level value and j at a special direction θ and distance d (Haralick 
et al., 1973). Base on the Grey level co-occurrence matrix Haralik in 1973 (Haralick 
et al., 1973) proposed 14 measures (Angular Second Moment, Contrast, 
Correlation, Sum of squares, Inverse Difference Moment, Sum Average Sum 
Variance, Sum Entropy, Entropy, difference Variance, Difference Entropy, 
Information measure of correlation, Maximal correlation coefficient), which have 
been broadly applied on Land Cover classification studies and are now 
implemented in most of the existing classification software.  
Two aspects need to be carefully addressed in the computation of textural features 
for land cover mapping: the size of n (size of the filter) and the base spectral 
information for the analysis (Jin et al., 2018). Indeed, too small n may not be able 
to detect the brightness variance within the neighborhood, but on the contrary, too 
large n may consider a non-representative area. Since the texture analyzes DN's 
variance in a specific area, n size also depends on the target land cover. For 
example, the coniferous forests may have a very different textural behavior 
compared to graveled soils. Similarly, some spectral bands can be more textured 
than others can. For example, the near-Infrared is expected to be more textured for 
a forest than the red band. This means that to distinguish effectively specific classes, 
it may be necessary to consider different n size and different spectral information. 
GLCM textural features are applied especially in HR and VHR imagery, mainly for 
the for vegetation structure modeling (Jin et al., 2018; Ostad-Ali-Askari et al., 2017) 
for the identification of built-up areas (Eslami and Mohammadzadeh, 2017; Jin et 
al., 2018; Lewiński et al., 2015). 
Within model-based textural features, the fractal models are the most applied. Since 
the 1970s, the Mandelbrot fractals geometry models have been used in several 
image processing and classification processes. (Mandelbrot, 1982) defined as 
fractal the complex geometries that cannot be characterized by an integral 
dimension. Fractal objects can define and describe the irregular shapes of natural 
features and other complex objects that traditional Euclidean geometry fails to 
analyze (Lopes and Betrouni, 2009). Many authors have applied fractal geometry 
analysis to describe complex land surfaces, and the role of fractals in the 
improvement of classification accuracy has been proven by several researchers 
(Drzewiecki et al., 2013; Lewiński et al., 2015; Nowakowski et al., 2017). The 
applications of fractal techniques to image analysis rely heavily on the estimation 
of fractal dimensions. The fractal dimension, D, is a crucial parameter developed in 
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fractal geometry to measure complex objects' irregularity. Varieties of methods 
have been developed to compute the D of features. A comprehensive review of 
these methods is proposed by (Sun et al., 2006) and by (Lopes and Betrouni, 2009). 
The fractal dimension has been applied for segmentation too. (Zeide and Pfeifer, 
1991) showed that tree crowns' fractal dimension could be useful in crown 
classification and foliage distribution within a single tree crown analysis. 
Nevertheless, (Sun et al., 2006) report some inaccuracy of the texture described by 
fractal dimension due to the complexity and inhomogeneous of optical dataset. This 
is the reason behind the recent application of multifractal formalism for image 
classification process (Aleksandrowicz et al., 2016; Lewiński et al., 2015; Sun et 

al., 2006). 
 

  
(a) (b) 

Figure 28. Two examples of fractals in (a) the Roman broccoli, Source treccani.it (b) Norway 
fjords. Source: http://paulbourke.net/ 

The multifractal formalism states the extension of fractal theory, and it is 
connected with a group of parameters, which permit a more detailed 
characterization of the considered data (locally and globally). In particular, 
multifractal image analysis methods are based on the assumption that there is a 
measure defined in terms of pixel intensities. The local degree of regularity of this 
measure is described by singularity exponents (Hölder exponents), while the global 
regularity is summarized in the form of the multifractal spectrum (Stojić et al., 

2006a; Véhel and Mignot, 1994). Global multifractal characteristics have already 
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been applied to VHR optical data (Jenerowicz et al., 2019; Wawrzaszek et al., 
2014), mostly to distinguish between different land cover types. One can also find 
their application in the context of the study of forest cover, such as in (Danila et al., 
2019)’s work or to perform the segmentation of images of vegetation leaves 
diseases (Wang et al., 2013). In this work, the Holder exponent, a multifractal local 
measure of texture, is used (see paragraph 7.1, page 135). The local multifractal 
description by using Hölder exponents has been used rarely, mainly to perform 
segmentation of medical data (Stojić et al., 2006a; Véhel and Mignot, 1994), or in 
the change detection aspects of satellite images (Aleksandrowicz et al., 2016; Véhel 
and Mignot, 1994).  
 

Other features 
Besides the radiometric-based and textural features, other features can constitute 
the input dataset for the classification. This group encompasses all those features 
that are not computed from the spectral information of the original bands. These 
features are often called ancillary data, and they can be constituted of raster and 
vector information both. The most frequent are the Digital Elevation Models (Salah, 
2017b), and its derived features such as height models (obtained ad the difference 
between Digital Surface Models and Digital Terrain Models). Information deriving 
from census (population) road density, road coverage are often used too. Indeed, 
each information that can help separate specific classes can be used as long as the 
selected classifier tolerates a heterogeneous input dataset. For example, DEM can 
distinguish between built-up areas and bare soil, and population density to facilitate 
the identification of town and city. 

4.3.2. Feature selection 

After the feature extraction process, the input dataset should carry significant and 
no-redundant information for the separability of classes (Thyagharajan and 
Vignesh, 2019). Nevertheless, feature extraction can result in a dimensionally large 
dataset, increasing the computational time for the classification and requiring a 
large amount of storage space. Thus, it can be necessary to reduce datasets' 
dimensionality without scarifying accuracy (Lu and Weng, 2007). Feature selection 
reduces the dimensionality of the input feature by decreasing the number of features 
in the classification. It aims to identify and remove redundant information so that 
the dataset can include maximum information using the minimum number of 
features (Campbell and Wynne, 2011). In fact, due to different capabilities in land-
cover separability, a large number of features can lead to a lower classification 
accuracy compared to classification with a subset of those features (Hughes 
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paradox). This is particularly true when the subset features are chosen focusing on 
the features that are most important in discriminating the classes (Maxwell et al., 
2018). 
Additionally, feature selection simplifies the model, even if the accuracy does not 
improve. For example, a model that requires a small number of input variables is 
easily replicable or easily extrapolated to another area since a smaller number of 
features will need to be computed. Machine learning methods have been noted to 
be less affected by high dimensionality datasets than parametric methods. Indeed 
some algorithms are robust to high-dimensionality, such as Support Vector 
Machine and Random Forest (S.V.S.Prasad et al., 2015). Although a reduced 
feature space may not improve the interoperability of ‘black box’ classifiers, such 

as Support Vector Machine and Artificial Neural Networks, on the other hand, a 
reduced feature space may make the structure of a Decision Trees (DT) classifiers 
easier to understand (Maxwell et al., 2018). Regardless of the nature of the 
classification and the algorithm used, the feature selection should be effective 
(Thyagharajan and Vignesh, 2019). Feature selection can be realized with different 
techniques, such as principal component analysis (PCA), minimum noise fraction 
(MNF), transform discriminant analysis (TDA), decision boundary (DP), feature 
extraction (FE), non-parametric weighted feature extraction (NPWFE), wavelet 
transform (WT) and spectral mixture analysis (SMA) algorithms (S.V.S.Prasad et 
al., 2015; Thyagharajan and Vignesh, 2019).  
PCA is one of the most applied method algorithms (Thyagharajan and Vignesh, 
2019). It consists of the optimized linear combination of the original spectral 
features (i.e., bands) that can account for pixel values' variation within an image 
(Campbell and Wynne, 2011). PCA transforms the original variables into 
uncorrelated variables (Maxwell et al., 2018). In contrast, PCA analysis may require 
high computational capabilities, and, in the case of high dimensionality dataset, it 
is complicated to identify the correct linear combinations that prevent the decrease 
of the final accuracy. Feature selection can be realized with statistical analysis, such 
as average divergence, transformed divergence. Generally, the comparison of 
different combinations of selected variables is implemented (Lu and Weng, 2007). 

Most feature selection methods rely on the feature importance assessment 
method, the feature subset assessment method, and other selection methods (Ma et 
al., 2017b). These analyses result in a chart of importance. The most important 
features occupy the top of the chart in the classification. Methods such as GINI, RF, 
Chi-square, and SVM-RFE, are broadly applied. Table 14 sums up the pro and cons 
of feature selection methods, as identified by (Ma et al., 2017b). 
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Table 14. Advantages and disadvantages of feature selection algorithms, grouped in feature 
importance methods, feature subset assessment methods, and miscellaneous methods (Ma et al., 
2017b). 

Category Method Advantages and disadvantages 

Fe
at

ur
e 

im
po

rta
nc

e 

Random 
Forest 
(RF) 

Adaptable to the random forest only. It ensures the 
accuracy of the feature selection and generates sorted 
features. 

GINI 
More efficient feature selection. It sorts the features, and 
it is easily combined with Decision trees. It is based on the 
impurity criterion. 

Support 
Vector 

Machine 
(SVM) /RF-

RFE 

Generate feature sorting results while achieving the best 
classification accuracy, generally combined with SVM 
and RF. 

Relief-F 
Able to generate sorted features; independent of the 
classification model, difficult to determine optimal 
subsets. 

Chi-square Able to generate sorted features and classification rules. 

Information 
Gain 

Able to generate sorted features and classification rules, 
difficult to determine optimal subsets. 

Fe
at

ur
e 

su
bs

et
 

as
se

ss
m

en
t 

m
et

ho
ds

 

CFS Directly generate feature subsets, independent of the 
classification model, featuring fast processing speed. 

Wrapper 
(RF/SVM) 

Easy adaptation to classifiers. Point-based cross-
validation is adopted in most cases, susceptible to over-
fitting or over-adapting to classifiers. Time-consuming. 
They are usually applied in combination with RF and 
SVM. 

M
is

ce
lla

ne
ou

s JM distance 
Able to generate classification distances amongst classes. 
They are generally used for rule-based classification or 
NN classifier. 

FSO 
It is integrated into eCognition with easy use: black-box 
manipulation, lack of feature importance sorting. It is 
typically used for the NN classifier. 

GA Black-box manipulation, lack of feature sorting results. 
Normally used for ANN classifier. 



 

66 
 

How feature selection affects the final accuracy is still uncertain regarding some 
classifiers (Ma et al., 2017b). For example, SVM seems to be insensitive to changes 
in the feature's dimensionality, although some studies found that SVM 
classification accuracy improved with decreased dimensions. Similarly, Random 
Forest’s response to the dimensionality of the input dataset is not clearly defined. 
Some studies found that feature selection improves classification accuracy. On the 
other hand, others proved that the RF classifier is a more stable object-based remote 
sensing image classification method regardless of the feature selection application 
(Ma et al., 2017b). Although, these observations are focalized on the accuracy 
assessment without considering the computational time and the ease to reproduce 
the entire classification process.  
Defining the correct number of features in Land Cover classification is not possible 
without generalization. Generally, OBIA classification needs fewer features than 
pixel-based (less than 30) (Ghosh and Joshi, 2014; Guan et al., 2013; Ma et al., 
2017b). The number of features also depends on the number of classes of the system 
and their thematic detail. In particular, a useful representative dataset for each class 
is vital for implementing an effective supervised classification (Lu and Weng, 
2007). 

4.4. Type of classification algorithms 

A large variety of classification techniques and algorithms for the Land Cover 
mapping exists. Generally, these classifiers can be grouped into two categories 
according to their nature:  

I. supervised and unsupervised classifiers, based on the type of learning; 
II. parametric and non-parametric classifiers, based on assumptions on data 

distribution; 

Figure 29 represents the distribution of some of the most popular classifiers in 
the two categories (Jawak et al., 2015; Lu and Weng, 2007). In the following 
paragraph, the two groups' discriminant aspects will be defined, and the main 
classification algorithms will be briefly analyzed. 
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Figure 29. Classification algorithms are grouped according to the assumption of the data 
distribution and on the type of learning. 

4.4.1. Supervised and Unsupervised classifications 

Unsupervised classifications 

Unsupervised classifications consist of the automatic identification by the 
classification algorithm of natural groups, or structures, within multispectral data. 
The units of the classification (pixels or objects) are grouped according to the 
similarity of the input features. This pixels-grouping phase is defined as clustering, 
and each group identified by the classifier is called a cluster. The definition of the 
clusters depends on the input parameters that usually are set by the analyst 
according to the information that he/she needs to extract from the dataset (see 
classes design paragraph), like the number of classes to identify and the part of the 
dataset to be issued (i.e., which band) (Campbell and Wynne, 2011; Salah, 2017a). 
The analyst needs to label the clusters identified by the classifier and, if necessary, 
merge the clusters representing the same information (i.e., class). The unsupervised 
classification is applied when identifying the training samples is hard to accomplish 
and/or the analyst has poor knowledge regarding the study region. This condition 
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is not frequent in Land Cover analysis, in which the supervised classification 
application still dominates. Recent and fascinating applications of unsupervised 
classification in Land Cover regard the Mars surface's mapping activities (Dundar 
et al., 2019; Jones et al., 2011; Ramachandra, 2019). 

The study area's not required knowledge represents for sure one of the 
significant advantages of unsupervised classification. It is not required a priori 
knowledge of the area, but it is fundamental knowing how to interpret and label the 
cluster identified by the algorithm.  

 The unsupervised classifications have as recognized advantages as the 
minimization of human error, since human input is limited compared to supervised 
classifications. On the other hand, this aspect also has a negative connotation since 
it also lead to limited control of the analyst on the creation of classes, in their 
number and in their nature. This aspect is a substantial limitation when the target 
classes have high thematic detail. 

The unsupervised classification can recognize unique classes. It means that 
even the small (in size and extent) classes that would be embedded in bigger classes 
in supervised classifications are clustered separately. On the other hand, clustering 
may identify non-informative groups that the analyst has to merge into other 
classes. Finally, unsupervised classification should be used carefully in 
multiresolution classification since some classes can change on a seasonal basis, 
and consequentially the grouping may change.  
In this work, the unsupervised classification will be not further explored, neither in 
the literature review, nor in the applications presented in the next chapters. This 
choice is due to the poor control that the analyst has on the unsupervised 
classification, most of the Land Cover scientist shares this view, as the benefit of 
supervised classification in Land Cover are well known and shared by the scientific 
community.  

Supervised classifications 

The Supervised classification consists of assigning a specific class to small 
representative sample pixels and using them to classify unknown class pixels. The 
sample pixels are located in training areas, or training fields identified by the analyst 
(Campbell and Wynne, 2011). The analyst must know a priori the location of the 
land cover type he/she is interested in and label them according to the information 
he/she needs to extrapolate from the dataset (Campbell and Wynne, 2011; Jawak et 
al., 2015; Salah, 2017b). Training areas should be homogeneous and must typify 
the spectral properties of the classes they represent. Each class corresponds to a 
specific spectral value used to guide the classification and train the classification 



 

69 
 

algorithm (Campbell and Wynne, 2011; Jawak et al., 2015). The reflectance value 
of each new pixel is compared to the sample pixels' spectral value and assigned to 
the most similar class. The analyst defines the classification algorithm (or the 
decision rules for each class) and provides the training data for each class to assist 
the classification.  
In supervised classification procedure: 

I. the decision rules for each class are defined directly; 
II. training data (class prototypes) for each class are provided to assist the 

classification.  

The main difference between the supervised and the unsupervised classification 
is the moment of data labeling. In unsupervised classification, the labeling happens 
after the grouping of data into different classes (clustering), while in supervised 
classification, the labeling happens before the grouping of the pixels of the entire 
image. Figure 30 shows the main logical steps of supervised and unsupervised 
classifications (Salah, 2017b). 
 

 

Figure 30. Main steps of the unsupervised and supervised classification process. 

In supervised classifications, the analyst controls a selected menu of classes tailored 
to a specific purpose and geographic region. This is crucial when there is the need 
to define specific classes, and, opposite of unsupervised classification facilitates the 
realization of multi-temporal classifications and high thematic resolution 
classifications. Additionally, the analyst does not have to match the clusters to maps 
and assign o each specific spectral response to a class because this aspect is 
addressed darting the samples' selection. Even if supervised classification is usually 
more intuitive when there is knowledge of the study land cover, it has many 
disadvantages (Campbell and Wynne, 2011). First, the analyst, who imposes a 
classification structure on the data, forces the supervised classification in structure. 
Supervised classification may not identify special or unique categories if they are 
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not in the training data. This might results in less accurate classification since there 
is no match between the classes identified by the analyst and the “natural” classes, 
and the identified classes are heterogeneous. The training dataset is often first 
created based on the land cover class information instead of spectral information. 
For example, the sample area of class “conifers” can include high spectral 
information variability: different species composition, shade areas, the density of 
the stands, etc. 
Moreover, the training dataset needs to represent the whole variety of every single 
class, and it cannot be representative. The principal limit of supervised 
classification, which to some extent is also the main advantage, is the high 
subjectivity of the results. Bedside this, supervised classification is still the most 
applied in Land Cover analysis. The common supervised classification algorithms 
are the minimum distance (MD), Mahalanobis distance (MhD), parallelepiped (PP), 
maximum likelihood classifier (MXL), K-nearest neighbor (KNN), SVMs, and 
spectral angle mapper (SAM) (Jawak et al., 2015).  

4.4.2. Parametric and non-parametric classifiers 

In the last decades, several new classifiers have been created and introduced in 
Land Cover analysis. Even if all these classifiers have the same goal, their 
performances are affected by several factors such as choice of training samples, 
heterogeneity of study area, number of classes to identify (Jog and Dixit, 2016; Lu 
and Weng, 2007). As Figure 29 shows, another way to group the classification 
algorithms is according to the assumption of the data distribution: parametric and 
non-parametric  

Parametric classifiers 

Parametric algorithms are based on the assumption that the classification 
parameters (i.e., classification dataset organized in spectral classes) are typically 
distributed and described by a Gaussian function. Thus, parametric classifiers 
assume that the mean and the covariance matrix represent the classification dataset 
(Lu and Weng, 2007). In other terms, they are based on the statistical probability 
distribution of each class. Traditional parametric classifiers provide excellent 
results as far as the input data is unimodal (Belgiu and Drăguţ, 2016; Liu et al., 

2011). However, parametric classifiers often lead to poor performance when this 
assumption is violated. In practice, if one class, or more,  is multimodal, it may lead 
to poor performance by the resulting classifier (Chaudhuri et al., 2009). Some of 
the algorithms most applied and broadly used in Land Cover classification are the 
Maximum Likelihood and the minimum distance.  
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Maximum likelihood  

The Maximum likelihood is a supervised parametric classifier that uses statistics of 
second-order Gaussian probability distribution function (Jog and Dixit, 2016). This 
classifier is based on the Bayesian theory of probability and uses an array of patterns 
and a covariance matrix from a Gaussian distribution sample set (Salah, 2017b). It 
assigns each pixel to the appropriate class based on the pixel's probability values, 
which are computed by estimating the average and the variances of the training data 
(Campbell and Wynne, 2011). The maximum likelihood classifiers require large 
training dataset to allow accurate estimation of the mean vector and the variance-
covariance matrix (Campbell and Wynne, 2011; Jog and Dixit, 2016; Salah, 2017b), 
which need to be highly homogeneous within each class (Campbell and Wynne, 
2011). The input parameter should not be correlated to avoid the instability of the 
variance-covariance matrix's inverse matrix (Salah, 2017b). Generally, the 
Maximum likelihood requires intensive calculations, which is considered time-
consuming (Campbell and Wynne, 2011; Salah, 2017b).  

Minimum distance 

The minimum distance is a supervised parametric classifier based on the distance 
computed between the training data and the classified data. It uses the central values 
of the spectral data that form the training data as a mean to assign the pixel to class 
(Campbell and Wynne, 2011). The minimum distance between a single pixel and 
the sample cases represents the maximum similarity. Thus the pixel is assigned to 
the closest (less distant) class. The distance can be computed as Euclidean distance, 
Normalized Euclidean distance, or Mahalanobis distance (Jog and Dixit, 2016). 
This method has a low-computational requirement, but in its simplest form 
(Euclidean Distance), the minimum distance classifier is not always accurate 
because there is no provision for accommodating differences in variability of 
classes, and some classes may overlap. It is rarely applied in Land Cover 
classification, especially in its simplest form. The classifier in Mahalanobis distance 
form is still applied. 

Parallelepiped 

It is a supervised classifier that defines the pixel class parallelepiped-shaped boxes 
for each class. Parallelepiped boundaries for each class are determined on the ranges 
of values within the training data to define regions within a multidimensional data 
space. These boundaries identify checks pixels of test images and determine the 
class of the pixel. The unclassified pixels' values are projected into the same space 
and assigned to the classes in which they fall into.  
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The parallelepiped method is fast and easy to run, but the overlap of training values 
may produce false results. The parallelepiped classifier has been one of the first 
classifiers applied to classify satellite imagery (Landsat) (Campbell and Wynne, 
2011). It is now overcome and substitute by more accurate classifiers. 

Non-parametric classifiers 

As suggested by the name, non-parametric classifiers do not assume a normal 
distribution of the dataset. Indeed, no statistical parameter is needed to separate the 
classes. This makes non-parametric classifiers particularly suitable for the 
incorporation of non-spectral data into a classification procedure. These basilar 
aspects are the main reasons behind the increasing popularity of non-parametric 
classifiers in remote sensing. Sensed data are seldom normally distributed (Belgiu 
and Drăguţ, 2016), and the application of non-spectral information has recently 
spread in the classification of complex landscapes. 
Machine Learning (ML) algorithms can be found among the supervised non-
parametric classification algorithms. Machine Learning classifiers are considered 
among the most reliable approaches for the classification of non-linear systems 
(Belgiu and Drăguţ, 2016; Maxwell et al., 2018) and are increasingly used for the 
Land Cover analysis from Remote Sensed imagery  (Belgiu and Drăguţ, 2016; Lary 

et al., 2016; Maxwell et al., 2018; Rodriguez-Galiano and Chica-Rivas, 2014a). 
These classifiers produce better accuracy than traditional parametric classifiers  
(Maxwell et al., 2018; Yu et al., 2014), and they can be used not only for 
classification but also for regressions (Lary et al., 2016; Richards, 2013). Among 
the aspects that made them so appreciated in the last years there is their ability to 
learn complex patterns, even if they are non-linear, and deal with many parameters 
(Lary et al., 2016; Maxwell et al., 2018). Machine Learning classification 
algorithms are also appreciated for their low sensitivity to noisy datasets, for the 
possibility of integrating non-spectral-based information, such as Digital Elevation 
Models and categorical information (Rodriguez-Galiano and Chica-Rivas, 2014b; 
Rogan and Chen, 2004). Despite the evident advantages of machine learning 
techniques, the traditional parametric metrics are still widely applied (Maxwell et 
al., 2018). In 2014, (Yu et al., 2014) compared more than 1000 scientific manuscript 
on Land Cover analysis from Remote Sensed data and discover that around 30% of 
the analysis were realized using Maximum Likelihood classification, even if they 
smaller accuracy than ensemble machine learning methods (such as Random 
forest). The dominant popularity of parametric methods over ML is due to the high 
availability of classification software (Yu et al., 2014). 
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Among the ML Classifiers, CART, RF, k-Nearest Neighbour (k-NN), SVM, 
Artificial Neural Network  (ANN) are some of the most popular and applied (Lary 
et al., 2016; Lu and Weng, 2007; Maxwell et al., 2018; Rodriguez-Galiano and 
Chica-Rivas, 2014b; Talukdar et al., 2020). In the next paragraph, their functioning 
and the main characteristics will be briefly expanded. For more detailed 
information, (Richards, 2013) and (Duda et al., 2012) s' works are recommended. 

Classification and Regression Trees (CART) classifier 

CART is a supervised non-parametric classification technique based on the 
creation of a series of decision trees (Richards, 2013). Decision trees (DT) are 
intuitive binary classifiers that recursively split the input data to achieve a certain 
result (classification) as specified by the analyst (Campbell and Wynne, 2011; 
Maxwell et al., 2018). For example, the data can be spilt according to a threshold 
over a specific variable. The splits are called nodes, and the first one is the root 
node. As for the structure of a tree, the classifier is constituted by several nodes that 
are repeated and connected to each other (like the branches of a tree) until reaching 
the target class (the leaf) (Figure 31). In the CART classification process, the entire 
unclassified dataset is fed to the root node and split in two groups according to the 
threshold, which should ensure the minimization of the mixture of classes in the 
two groups. For example, if there are six separate classes in the training set then we 
would expect the sub-groups to have pixels from fewer than six classes and, in some 
cases, hope that one sub-group might have pixels from one class only. The CART 
keep splitting the data into groups as we go down the tree structure, and the last 
node leads to groups containing pixels from only one class. This class represents a 
pure group, and it is represented by the leaf (Richards, 2013).  
CART classifiers are recognized as having many advantages. The classification 
model can be visualized as a set of dichotomies (Campbell and Wynne, 2011; 
Maxwell et al., 2018; Richards, 2013). CART utilizes categorical data. Thus it can 
deal with ancillary data and non-linear distribution. Generally, the classification is 
rapid because no further complex mathematics is required, apart from creating the 
classification tree (Campbell and Wynne, 2011).  
One of CART classifiers' main limits is the overfitting (Campbell and Wynne, 2011; 
Maxwell et al., 2018; Richards, 2013). The overfitting is a specific condition 
characterized by very high accuracy values when using many variables, but results 
that are tailored to specific datasets. The overfitting is usually addressed by 
removing one or more layers of splits (i.e., branches), creating a more concise, more 
robust, and generally applicable division rules system. This process is called 
“pruning” since it removes part of the decision tree branches. Generally, the pruning 
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reduces the accuracy of the training data but increases the unknown dataset's 
accuracy. 
The CART classifiers require an accurate training dataset. It is essential to have 
equal size classes because the classifier performs better when the numbers of pixels 
in training data sets are approximately equal (Campbell and Wynne, 2011).  
Besides the classification or decision tree, CART is also composed of the regression 
trees, which function is similar to the Decision trees, but the final leaves are 
constituted by continuing variable instead of discrete. Since the regressions are not 
the object of study of this work, they are not described and analyzed. 
The CART tree growing methodology is possibly the most commonly encountered 
because it restricts and simplifies the possible options for how the decision nodes 
function. Only one feature is involved in each decision step, and a simple threshold 
rule is used in making that decision.  

 

Figure 31. Example of CART classifier. It represents four layers-decision trees, where Layer 
1 is the Root node, and Layer 4 is the Leaf node where the class is assigned to the unit of 
classification in the exam. 

K-nearest neighbor 

k-Nearest Neighbour (k-NN) is a supervised non-parametric classifier. It is 
particularly simple in concept, and, unlike other machine learning classifiers, it does 
not need to be trained to produce a model (Campbell and Wynne, 2011; Maxwell 
et al., 2018; Richards, 2013). It is based on the assumption that pixels projected in 
the same spectral space and close to each other belong to the same class. The 
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algorithm analyses each unclassified pixel, and it finds the k number of sample 
pixels that are closer to the unclassified one. The analyzed pixel is then assigned to 
the class represented by the most samples among the k neighbors (Campbell and 
Wynne, 2011). Typically, k is set to be a relatively small integer divisor. A small 
value of the k parameter produces a very complicated decision boundary, but on the 
other hand, a higher k will result in greater generalization (Maxwell et al., 2018). 
K-NN classifiers need consistent time for computation because they need to 
calculate each pixel's distance to the k neighbors. This is particularly true for large 
training datasets and spectral bands (Campbell and Wynne, 2011; Maxwell et al., 
2018; Richards, 2013; Thyagharajan and Vignesh, 2019).  

Support Vector Machine (SVM) 

SVM is a non-parametric supervised machine learning technique that was 
introduced in remote sensing in 1998 to solve binary classification problems 
(Maxwell et al., 2018; Richards, 2013; Salah, 2017b; Talukdar et al., 2020). It is 
based on the concept of structural risk minimization (SRM), and it separates 
multidimensional data into two classes using hyperplanes (Figure 32). The 
hyperplanes define the class's margins, and they are identified to ensure the 
maximum space between the classes (Salah, 2017b; Talukdar et al., 2020). The 
hyperplanes should be equidistant on average from the sample points  projected into 
the feature space (Richards, 2013). The definition of the hyperplanes is the first aim 
of the SVM algorithms. Support Vectors are the samples that delineate the 
hyperplanes (Maxwell et al., 2018). The SVM can support multiple continuous and 
categorical variables as well as linear and non-linear data distribution in different 
classes.  
The SVM algorithm needs a proper kernel function to project the data from the 
input space into feature space to accurately establish the hyperplanes (can be non-
linear) and minimize the classification errors. The selection of the kernel function 
represents the essential part of the SVM. Four kernels that can be used for SVM 
exist: i) Gaussian Radius Basis Function (RBF); ii)  Linear; iii) Polynomial, and iv) 
Sigmoid (Quadratic). In remote sensing classification, the Gaussian RBF kernel is 
the most popular, and it has proved to be effective with reasonable processing times 
and accuracies (Maxwell et al., 2018; Salah, 2017b; Talukdar et al., 2020). In a 
perfect scenario, the training samples are correctly separated, and the hyperplanes 
are linear features. This is not always true. In the case of overlapping classes, the 
hyperplanes have soft margins, and observations can lay on the wrong side on the 
hyperplane if a cost, defined by the analyst, is respected (Maxwell et al., 2018; 
Salah, 2017b). Since SVM was born for binary classifications, to apply it in the 
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multi-category analysis is necessary to create a multilevel SVM. There are basically 
two approaches. 
 

 

Figure 32. Optimum separation plane (hyperplane) and support vectors data that define it. 
(Salah, 2017b). 

The first, called one-against-the-rest or one-against-all (OAA), consists of 
creating a SVM classifier tree, the first distinguish in class 1 and “all the rest”. All 

the rest in then input dataset for class 2 and so on. This method is largely applied, 
but it is sensitive to an unbalanced training dataset (Richards, 2013; Salah, 2017b). 
The second approach consists of using several binary classifiers in parallel. All the 
possible combinations between the classes are analyzed. All the classifiers classify 
each pixel/object, and it is assigned to the class with major classification in favor. 
This part constitutes the logic decision rule. This method is defined as one-against-
one (OAO) (Figure 33). It requires higher computational time and power since it 
runs many binary classifiers in parallel (Richards, 2013; Salah, 2017b). Apparently, 
the results of OAA and OAO are very similar (Salah, 2017b).  
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Figure 33. Example of a simple SVM decision tree (a) and a multiclass decision using SVM 
classifiers in parallel with final decision logic (b). (Richards, 2013). 

Artificial Neural Networks (ANN) 

Artificial Neural Networks are non-parametric classification systems that are 
conceptualized as human brains. Their structure is composed of several axons 
(neurons) interconnected by synapses, like animals’ brains. Besides the human-
likely structure, ANNs are compared to the human brains also for their functioning. 
Indeed, ANN are considered a form of artificial intelligence that simulates some 
functions of the human brain to associate the correct meaningful labels to image 
pixels (Maxwell et al., 2018; Salah, 2017b; Talukdar et al., 2020). The neurons are 
processing units organized in layers. Each neuron is connected to the neurons of 
adjacent layers, and these connections are weighted. The weights on the 
connections, combined with the typically non-linear activation function that further 
modifies values at each neuron, determine how input values are assigned to values 
on the output nodes. The transfer of information between neurons through the 
weighted connection is called a forward connection (Talukdar et al., 2020). A 
peculiar characteristic of ANN is the presence of hidden layers in the network that 
increases the potential for describing very complex class delineation (Maxwell et 
al., 2018). An ANN has minimum input and output layers, a neuron for each input 
variable, and a neuron for each output class (Maxwell et al., 2018). During the 
training, the ANNs learn the regular structure of training data and, through 
interactive guessing and adjusting of the connection weights, define the final 
network (classification model) (Maxwell et al., 2018). 
Several ANN algorithms for remotely sensed images classification exist (Salah, 
2017b). Some of the most common in Land Cover classification are Multi-layer 
perceptron (MLP), Fuzzy ArtMap classification, Self-Organized feature Map, and 
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Radial Basis Function Network (Salah, 2017b). It is recognized that ANN are 
generally very slow to train, they need a large training dataset, and they are 
particularly prone to overfitting. Additionally, there are many user-determined 
parameters to specify (Maxwell et al., 2018). Their use has recently spread in 
parallel with the increment of computational power and data storage of computers. 
For this reason, few remote sensing classification software have ANNs algorithms 
implemented.  

Random forest  

The Random Forest is a supervised non-parametric ensemble classifier. Ensemble 
classifiers have become quite popular in the last years (Belgiu and Drăguţ, 2016). 
They consist of many algorithms, or a single algorithm, that operate on the same 
dataset to produce individual, sometimes competing, classification of a single pixel. 
The results of these classifications are fed to a final decision maker, or chairmen, 
for the assignment of the final label to the pixel (Belgiu and Drăguţ, 2016; Gislason 

et al., 2006; Richards, 2013). The ensemble classifiers are based on many 
supervised classifiers trained using bagging or boosting approaches (Belgiu and 
Drăguţ, 2016; Richards, 2013). 
The bagging training approach (also known as the Bootstrap AGGregation 
approach) works on randomly chosen subsets of the training dataset. This process 
is called bootstrapping. The training dataset is sub-grouped into several different 
datasets, each containing n training pixels/objects. The n pixels/objects are chosen 
randomly from the entire training dataset, with replacement. This means that the 
same pixel could appear more than once among the n chosen. Each of the sub-
groups to train a classifier. The results of the individual classifiers are then 
combined by voting (Richards, 2013). 
The boosting approach, which is also called Adaptive Boosting or Adaboost, 
consists of several classifiers that are trained sequentially. After the first training, 
the training pixels are classified and the ones that are found to be in error are trained 
again by the second classifier, and so on. The final label is allocated to a pixel-
/object based on the outputs of all the classifiers (Richards, 2013).  
Bagging and boosting methods have been proven to improve the goodness of the 
Land Cover classification compared to single classifiers, and generally, boosting 
provides better results than bagging (Belgiu and Drăguţ, 2016). Nevertheless, the 
boosting approach requires consistent computational power, it is prone to 
overfitting if there are insufficient training samples, and it is sensitive to noisy 
training dataset and outliers (Belgiu and Drăguţ, 2016; Gislason et al., 2006). In 
contrast, the bagging approach reduces the classification variance, but they have 
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little effect on the classification bias. The ensemble classifiers are more stable and 
robust to noise in the training data (DeFries and Chan, 2000). Random Forest in an 
ensemble classifier composed of several CART classifiers trained with a bagging 
approach and was introduced by (Breiman, 2001). Since it is composed of CART 
classifiers, it can be applied for regressions and classifications both. It is called 
random forest because it comprises several decision trees (CART) that are random 
in their construction (Belgiu and Drăguţ, 2016; Richards, 2013). The Random 
Forest uses around two-thirds of the training dataset to train the model and the 
remaining one third is used for the internal cross-validation of the model's 
performance (Belgiu and Drăguţ, 2016; Breiman, 2001). The two-third of the 
sample is defined as an in-bag dataset or in-bag samples, and the one-third for the 
cross-validation is called out-of-bag (OOB) samples. The decision trees are built 
according to the parameters identified by the analyst and without pruning. The 
analyst defines the number of trees and the number of features needed to split a 
node. In this way, the random forest algorithm creates trees that have high variance 
and low bias (Breiman, 2001).  

The final decision-maker of the classification consists of the modal logic of the 
class assignment probabilities calculated by all produced trees (Belgiu and Drăguţ, 

2016; Richards, 2013), (Figure 34). The Random Forest's decision trees need to be 
uncorrelated to be effective, and this is ensured by the bagging approach (Breiman, 
2001; Richards, 2013). The number of trees (Ntrees) and the minimum number of 
nodes to split the tree (Nnodes) are the only two parameters that the analyst needs 
to set for the Random Forest classifiers. The review about the Random Forest in 
Land Cover classification of (Belgiu and Drăguţ, 2016) highlights that the goodness 
of the classification is less sensitive to the number of trees than to the minimum 
number of features parameter. Indeed, the number of trees is generally set as larger 
as possible because there is no overfitting risk. In Land Cover classification, the 
Ntrees is generally set between 500 and 1000 to obtain reliable results. According 
to other research (Belgiu and Drăguţ, 2016; Du et al., 2015; Topouzelis and Psyllos, 

2012), the Random Forest can also be efficient with a lower value Ntrees. Some 
software packages (e.g. Image Processing Package in matlab©) allows the 
optimization of the number of trees parameter. Generally, the Ntrees parameter 
depends on the dataset to be classified. The minimum number of nodes necessary 
to split the tree is a relatively easier parameter to be defined, and it depends on the 
number of input features. (Gislason et al., 2006) suggest setting as Nnodes the 
number of input variables' root square value. Large values of Ntrees and Nnodes 
influence the computational time of Random Forest classifiers (Belgiu and Drăguţ, 

2016). 
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Figure 34. Structure of Random Forest classifier. It is composed of n trees with a different 

number of nodes. Each tree defines a class for each element to be classified, and the most frequent 
(majority voting) is the final class assigned to the element. Modified from Venkata Jagannath, CC 
BY-SA 4.0 

An additional interesting aspect of the Random Forest classifier is the possibility of 
evaluating the importance of the features in the classification (Breiman, 2001; 
Grömping, 2009). This parameter indicated the role of each feature within the 
classification model. In this way, low-importance variables or the ones that 
introduce noise can be removed from the classification.  
Also, a few parameters to set good accuracy values and the ability to deal with small 
training samples are other causes behind the method's recent popularity (Biau and 
Scornet, 2016). It has been successfully applied in various fields. The Random 
Forest algorithm is the most successful general-purpose algorithm in modern times 
(Bowles, 2012).  
Various studies have been realized in the theoretical aspects of Random Forest. 
Nevertheless, some difficulties emerged, which can be explained by the method's 
collage nature (Biau and Scornet, 2016). Indeed it is composed mainly of the 
bagging algorithm and the CART that are difficult to analyze with rigorous 
mathematics. According to Biau and Scornet, this is the reason why most of the 
theoretical studies on Random Forest have so far considered simplified versions of 
the original procedure. Nevertheless, Random Forest can estimate patterns that are 
more complex than classical ones, and they are still to be discovered, quantified, 
and mathematically described method (Biau and Scornet, 2016). 
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4.4.3. Machine Learning classifiers for Land Cover  

Some of the most popular classifiers are presented in the previous paragraphs. Some 
of them, such as K-NN, use the information about the neighboring pixels to model 
the training dataset pattern. Others result from the application of several single 
classifiers, such as RF that uses a random subset of training data to construct 
multiple decision trees, or, in a certain way, the SVM classifier composed of several 
binary SVM classifiers. ANN builds multiple layers of nodes to pass input 
observations back and forth during the training until it reaches a stable condition.  
In the Land Cover analysis realm, which is the most effective classifier? Many 
authors have tried to answer this question. Excellent reviews for machine learning 
in Land Cover exist (Lary et al., 2016; Maxwell et al., 2018; Pandey et al., 2019; 
Richards, 2013; Salah, 2017b; Talukdar et al., 2020). Most of the literature suggests 
that machine learning performs better than traditional methods (Lu and Weng, 
2007), and especially Random Forest and SVM proved the best accuracy values 
(Belgiu and Drăguţ, 2016; Maxwell et al., 2018).  
In general, these methods appear to produce higher overall accuracies compared to 
other machine learning classifiers such as single DT and k-NN. However, each 
classification may have a different answer to selected classifiers. The best algorithm 
may be case-specific. It depends on the selected classes, the quality of the training 
data, and the dataset to be classified (Lu and Weng, 2007; Pandey et al., 2019). 
There is currently no theory that can be used to predict how classifier performance 
may relate to these attributes. Thus, if possible, users should experiment with 
multiple classifiers to identify the best method. Generally, machine-learning 
methods, especially SVM, RF, and boosted DTs, have been more robust to large or 
complex feature spaces than parametric methods. SVM and RF have been found in 
many studies to be of value for classifying hyperspectral data. On the other hand, 
k-NN generally does not perform well in complex feature spaces (Belgiu and 
Drăguţ, 2016; Maxwell et al., 2018). 
According to other research (Pandey et al., 2019), the Random Forest performs 
equally well to SVM when all parameters are considered similar to both classifiers. 
However, SVM is more sensitive to the nature of the input features. (Ma et al., 
2017b) analyzed 173 papers on object-based classification of Land Cover and 
observed that Random Forest provides the best performance in object-based 
classifications. Indeed, they notice that it has attracted significant attention in recent 
years, followed by SVM. Furthermore, they underline that k-NN is the most applied 
algorithm in object-based classification, despite appearing unsuitable for more 
extensive use in object-based classification (Ma et al., 2017b). According to the 
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analysis of (Belgiu and Drăguţ, 2016), Random Forest outperforms in terms of 
classification accuracy DTs and ANN. 

Nevertheless, its performance against other ensemble classifiers, such as 
Adaboost, is slightly lower. For all above-selected algorithms, the Random Forest 
is easy to define and requires less number of user-defined parameters as compared 
to other classifiers, and moreover, it outperforms others in terms of classification 
accuracy for the same set of parameters and training time (Belgiu and Drăguţ, 2016; 

Pandey et al., 2019). Despite the better performance, ANN require a large training 
dataset. It has been discussed by (Biau and Scornet, 2016) the similarity between 
Random Forest and the deep network architectures since it allows the 
discrimination of classes in an extensive dataset. This can be one of the reasons 
behind the success of Random Forest's application on large-scale data. The 
connections between random Forests and Neural Networks are still unexamined 
(Biau and Scornet, 2016). The decision of the best classification algorithm depends 
on several factors, such as the type of classification, the nature of the input dataset, 
the information needed, the experience of the analyst, and the computational power 
and the time available. Nevertheless, the facility of application and availability of 
algorithms in classic classification software might influence the diffusion of certain 
algorithms that others. Table 15 is derived from (Maxwell et al., 2018)'s work and 
shows the software that has implemented machine learning algorithms.  

Table 15. Machine learning algorithms are implemented in some of the most used image 
classification software by author’s analysis in 2020. 

 Algorithms 

Software k-NN ANN DTs Booste
d DTs RF SVM 

Geospatial 
software 

ArcGIS 
10.5/ArcPro 
2  

    ● ● 

eCognition 
Developer 9  ●  ●  ● ● 

ENVI 5.4   ●    ● 
Erdas 
Imagine 2016       

TerrSet/IDRI
SI 18.3  ● ● ●    

QGIS 2.18 ● ● ● ● ● ● 
Statistical 
software 

Matlab 9.3  ● ● ● ● ● ● 
R 3.4  ● ● ● ● ● ● 
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4.4.4. Selection of the training samples for supervised 
classification 

The definition of the training samples has a fundamental role in supervised 
classification and can strongly influence the classification results since it feeds the 
classification model. The training samples are a set of statistics that describes the 
spectral response for each land cover class to be classified (Salah, 2017b). Four 
aspects regarding the nature of the training samples are fundamental for a good 
classification (Belgiu and Drăguţ, 2016; Lu and Weng, 2007; Salah, 2017b): 

i. Training dataset and the validation dataset are statistically independent; 
ii. Training samples are class balanced; 

iii. Training samples are representative of the selected classes; 
iv. Training samples are large enough to accommodate the increasing number of 

data dimensions. 

A sufficient number of training samples and their representativeness are critical for 
image classifications (Lu and Weng, 2007; Ma et al., 2017b). The creation of the 
training dataset is a time consuming, expensive, and subjective (Belgiu and Drăguţ, 

2016). Namely, to generate the training samples, the analyst has to know the study 
area, he/she needs to have field experience with the landscape (i.e., Land Cover), 
and he/she should be familiar with the particular problem the study is addressing 
(Lu and Weng, 2007). The analyst practically identifies a certain number of 
pixels/objects (can be grouped in polygons or single points) for each class. In the 
past years, the training samples were collected from fieldwork. However, this 
method has been abandoned for large-scale classifications, and nowadays, training 
samples are collected from visual interpretation of aerial images or extracted from 
already existing Land Cover maps. The number of training samples selected for 
each class can influence the classification's goodness, especially with some 
classifiers such as Random Forest (Belgiu and Drăguţ, 2016). The exact number of 
training pixels required depends not only on the type of classifiers but also on the 
number of classes, the features, and the image's size to be classified. The training 
dataset has to be large enough to provide precise information regarding the 
characteristics of each class. Namely, it should include a sufficient number of pixels 
to estimate each class's spectral characteristics reliably. 
Nevertheless, the training samples should not be too large because large datasets 
may increase the possibility of including outliers (pixels/objects that do not 
represent the target class). As a general guideline, the analyst should select at least 
100 pixels for each class (Lu and Weng, 2007), and the optimum size of training 
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samples depends on the heterogeneity of each landscape (i.e., area) and each class 
legend. Thus, each analyst should develop his/her own guidelines based on 
experience acquired in specific circumstances (Lu and Weng, 2007). This view is 
shared by (Lu and Weng, 2007), who wrote that: 
 

The selection of training samples must consider the spatial resolution of the 
remote-sensing data being used, availability of ground reference data, and 
the complexity of landscapes in the study area.  
 

 Other authors (Kavzoglu and Mather, 2003) propose a different approach for 
defining the training sample size that depends on the number of input features. It 
should range between [30 * Ni *(Ni + 1)] and [60 * Ni *(Ni + 1)].  
Ni is the number of input features (Kavzoglu and Mather, 2003; Salah, 2017b). 
Similarly, (Richards, 2013) identifies the needed number of training samples in the 
minimum of 10Ni training pixels per spectral class is recommended, with as many 
as 100Ni per class. Nevertheless, he underlines the difficulty of reaching such 
values of training samples in large Ni such as hyperspectral datasets.  
It is essential to underline that the above methods were born for the Maximum 
Likelihood classifier, a parametric algorithm based on the classification of the 
covariance matrix and, therefore, may require more training samples non-
parametric methods. If the training sample is small in number, or data quality is 
uncertain, an algorithm that is robust to these issues should be used, such as 
ensemble Decision Trees (DT) methods (e.g., Random Forest or boosted DTs) 
(Maxwell et al., 2018).  
Besides the number of training pixels, the location and the distribution of the 
training samples within the scene may affect the classification (Campbell and 
Wynne, 2011). Indeed, the training samples collected in contiguous blocks tend to 
underestimate the variability within each class and overestimate categories' 
distinctness (Campbell and Wynne, 2011). The sample pixels should be distributed 
throughout the image to provide a basis for the representation of the diversity 
present within the scene. The training pixels must be placed away from the edges 
of different land covers, but at the same time, they should also be ensured the 
representation of each spectral subclass. It is also proven that it is generally better 
to use a large number of small training fields rather than a few broad areas 
(Campbell and Wynne, 2011).  
Different strategies for the collection of the training sample exist. The analyst 
should decide if the training samples are constituted by single pixel (point-based 
classification) or polygons (area-based classification). It is worth highlight that in 
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object base classifications, the training dataset needs to be composed of objects, 
thus polygons. When the OBIA classification is point-based, the polygons in which 
the training points lay are used as samples. Differently, in pixel-based classification, 
the training pixels can be isolated or grouped in homogeneous areas. In both cases, 
the classifier will merge the information regarding the pixels on class basis.  
(Ma et al., 2017b) carried out a study on the relation of the number of training 
samples, their nature (points or polygons), and OBIA classifications' accuracy. 
They observed that in general, with an increase in the size of training samples, the 
classification accuracy increases accordingly, even if this positive correlation 
between size and accuracy is very weak, especially in the point-based classification 
that detects a very poor increment of the accuracy. Point-based training samples 
may not be able to represent each class correctly. On the other hand, area-based 
training samples can include outliers, especially in high spectral variability classes.  
The proportion of pixels per class is another aspect of the classification that needs 
to be taken into account when creating the sample dataset. The pixels per class can 
be random sampling, the number of samples per class can be proportional to the 
expected covering area, or each class can have an equal number of samples. 
Therefore, it is essential to evaluate the sensitivity of the classification to sampling 
design and imbalanced training samples. This aspect assumes more importance for 
some algorithms than others, such as Random Forest (RF). RF classifier fails to 
cope with imbalanced training data and favors the most representative class (Belgiu 
and Drăguţ, 2016).  
The most common methodology for creating the training samples is the manual 
detection and creation of a single sample by the analyst. Recently some other 
application has been used, such as simple random sampling and stratified random 
sampling. The single random sampling algorithm randomly locates a user-defined 
number of pixels within the study area. The analyst can analyze each of them and 
assign the proper class. The stratified random sampling algorithms randomly locate 
a user-defined number of pixels within the given classes. This allows the analyst to 
use existing land cover maps as a basemap for the training sample creation (Ma et 
al., 2017b). 
The feature space can be simplified using feature extraction or feature selection. 
Unfortunately, these techniques are not commonly implemented into commercial 
remote-sensing software packages, so statistical or data analysis software may be 
required. Methods of feature selection based upon the Random Forest algorithm 
have been shown to be promising. 
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4.5. Accuracy assessment methodologies and 
measures 

After the classification, its accuracy needs to be assessed. Accuracy assessment is 
necessary to understand the goodness and allow the analyst to evaluate the 
effectiveness of the results of the land cover map for the intended applications 
(Richards, 2013; Salah, 2017b). There are several measures for expressing the 
accuracy of classification (Richards, 2013). The accuracy assessment generally 
includes three essential components: the creation of test samples, detection of 
classification’s response to the test, and estimation and analysis procedures. The 
samples are randomly selected and generated similarly to the training samples used 
to train a classifier in the first instance. In most cases, the analyst labels as many 
pixels/objects as practicable and then uses a subset for training and another subset 
for assessing the accuracy of the final product (Richards, 2013). 
 As for selecting the training sample, identifying a suitable test sampling strategy is 
one of the most critical steps (Lu and Weng, 2007). Indeed, training samples and 
test samples can be selected in the same way. Polygons or points can constitute 
them. The influence of the test samples' nature on the classification accuracy can 
be attributed to the ones of the training samples.  Different from training sample 
identification, significant accuracy assessment needs a lower number of samples. 
Unfortunately, very few studies have explored candidate samples' labeling during 
supervised object-based image classification to date. Moreover, the labeling process 
is not clearly stated in numerous studies on supervised classification. Because it 
was already explicitly demonstrated that accuracy performance benefits more from 
homogeneous objects (Li et al., 2016), which signifies when the area-based method 
is used in accuracy assessment, the more homogeneous objects selected as training 
samples or test samples, the higher the classification accuracies. 
Many sources of errors can affect the classification result. Before implementing a 
classification accuracy assessment, one needs to know them. The error can derive 
from the classifier errors, the registration of the images, the low quality of training, 
and/or interpretation errors (Salah, 2017b). They may lead to uncertainties and 
influence the classification accuracy, as well as the estimated area and distribution 
of land-cover classes (Salah, 2017b). When analyzing a classification's accuracy, it 
is generally assumed that the errors descend from the classification (Lu and Weng, 
2007). The accuracy assessment is based on comparing the results of the 
classification and the reference (or test) samples. The most applied accuracy 
assessment of land cover classification is the error matrix (Campbell and Wynne, 
2011; DeFries and Chan, 2000; Long et al., 2013; Lu and Weng, 2007; Richards, 



 

87 
 

2013; Salah, 2017b). The error matrix is the base for many accuracy measures such 
as overall accuracy, producer’s accuracy, user’s accuracy. In OBIA classifications 
of Land Cover, the goodness of the segmentation is an additional source of error. 
As presented in paragraph 4.2, page 51, the segmentation process is a key step of 
the OBIA approach and strongly influences the final classification. For this reason, 
its goodness needs to be assessed too. In fact, the test samples affect the assessment 
of classification accuracy performance because (Ma et al., 2017b):  

I. The actual interpreted image layer objects cannot fully coincide with the 
segmentation objects; 

II. Segmentation objects consist of mixed land cover types. 

 
Besides the spread application of object-based classification technique, it still 

does not exist a shared and well-established methodology for assessing 
segmentation. A briefs review of the existing methods for the segmentation 
assessment is presented in paragraph 4.5.2, page 90. 

4.5.1.  Error matrix and its derived measures 

Regardless of the nature of the reference dataset (i.e., test samples), it is 
common to express the results in an error matrix that lists the reference data classes 
by column and the classes indicated on the thematic map by row. It identifies the 
overall errors for each class and the misclassifications (due to confusion between 
categories) by class. Other important accuracy assessment elements, such as overall 
accuracy, omission error, commission error, and kappa coefficient, can be derived 
from the error matrix. The error matrix is an n x n matrix where n is the number of 
classes in the classification. Conventionally, the existing samples classes on the 
map are indicated in the rows, and columns contain the same n categories from the 
reference data (Figure 35). Here values in the matrix represent numbers of pixels 
for which the analyst has been able to compare the evaluated and reference images. 
The matrix cells indicate the samples in common between reference sample classes 
and classes from the resulting classification. The diagonal values represent the 
correctly classified test samples. Thus, the best-case scenario is when all the values 
outside the diagonal are equal to zero (or very small), which indicates a perfect 
classification. The column sums in the error matrix represent the number of 
reference samples available per class, and the row sums represent the total number 
of samples labeled by the classifier as coming from a particular class. These values 
indicate the errors of omission and errors of commission. The omission errors are 
the pixels that the classifier has failed to recognize, and the classifier label is 
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different from the reference label. The commission errors correspond to those 
samples belonging to other reference classes that the classifier has placed in the 
class of interest. Some of the error matrix measures are the overall accuracy, 
producer’s accuracy, user’s accuracy, k coefficient, and f1 score.  
 

The overall accuracy is the most applied approach for the evaluation of the 
goodness assessment of classification. It is calculated as (equation 2): 

𝑂𝐴 =  
𝐶𝐶

𝑅𝑆
     [2] 

Where OA is the overall accuracy (often expressed as a percentage), CC is the total 
number of correctly classified samples, and RS is the total number of reference 
samples. The level of agreement between the classified dataset and test dataset can 
be measured in 5 classes, poor or very poor, fair, good, very good, and excellent, 
corresponding to the values lower than 0.4, from 0.4 to 0.55, from 0.55 to 0.70, 
from 0.70 to 0.85, and higher than 0.85, respectively, between images and ground 
reality (Talukdar et al., 2020). 
 
 

 
Reference data 

Class 1 Class 2 Class 3 Class 4 Total 
(omission) 

C
la

ss
ifi

ed
 d

at
a 

Class 1 x1,1 x1,2 x1,3 x1,4 x1+ 

Class 2 x2,1 x2,2 x2,3 x2,4 x2+ 

Class 3 x3,1 x3,2 x3,3 x3,4 x3+ 

Class 4 x4,1 x4,2 x4,3 x4,4 x4+ 
Total 

(commission) x+1 x+2 x+3 x+4  

Figure 35. Example of error matrix. The elements on the diagonal are the correctly classified 
samples. 

The producer's accuracy (PA), equation 3, is the number of correctly classified 
samples (CC) of a particular category (m) divided by the total number of reference 
samples for that category (𝑅𝑆𝑚).  
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𝑃𝐴 =
𝐶𝐶𝑚

𝑅𝑆𝑚
     [3] 

It is a measure of the error of omission (Story and Congalton,1986). The user's 
accuracy (UA) is the number of correctly classified samples (CC) of a particular 
category (m) divided by the total number of reference samples being classified as 
that category (including the misclassified) (RS). It measures the error of 
commission (equation 4).  

𝑈𝐴 =
𝐶𝐶𝑚

𝑅𝐶𝑚
     [4] 

The K measure (kappa) is the difference between the observed agreement 
between two maps (as reported by the diagonal entries in the error matrix) and the 
agreement that might be attained solely by chance matching of the two maps, 
equation 5. Not all agreements can be attributed to the success of the classification. 

𝑘 =
𝑁 ∑ 𝑋𝑖𝑖−∑ (𝑋𝑖+∗𝑋+1)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2−∑ (𝑋𝑖+∗𝑋+𝑖)𝑟
𝑖=1

     [5] 

Where r  is the number of rows in the error matrix; Xii is the number of combinations 
along the diagonal; Xi+ is the total observations in row I; X+i is the total observations 
in column I; and N is the total number of cells. Kappa analysis is recognized as a 
powerful method for analyzing a single error matrix and for comparing the 
differences between various error matrices (Campbell and Wynne, 2011; Lu and 
Weng, 2007; Salah, 2017b) 
 
The relation between UA and PA is described by the F1 score [6]: 

𝐹1 =  
2×𝑃𝐴×𝑈𝐴

𝑃𝐴+𝑈𝐴
          [6] 

Previous literature has defined the meanings and provided computation methods for 
these elements (Lu and Weng, 2007). The assessment of the classification can be 
realized using as test sample the total number of pixels present in the scene. This 
approach is a point-by-point basis accuracy assessment and allows one to determine 
exactly how each of the validation samples is represented in the classification. The 
validation samples and the map must be well co-registered to one another. 
Registration errors will appear as errors in classification, so registration problems 
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will create errors in accuracy assessment. For this approach, the reference sample 
is a Land Cover map. 

4.5.2.  Measures for the assessment of the segmentation 
process of object-based classifications 

In object-based high-resolution remote-sensing image classification, 
researchers are more inclined to view the object as an individual point. Thus the 
classification of this object is either correct or incorrect (Ma et al., 2017). However, 
its classification accuracy increased with increasing scale, which is not reasonable 
over large scales because an increase in the number of mixed objects may reduce 
classification accuracy. The area-based validation method essentially assesses 
classification accuracy based on the scope and spatial distribution of segmentation 
objects (Ma et al., 2017). The main issue is that the accuracy assessment unit is no 
longer a regular pixel unit, and each object is a geographical object of differing 
sizes (Ma et al., 2017). The literature is rich in methodologies for evaluating the 
goodness of segmentation and extraction of specific objects from imagery (Clinton 
et al., 2010). Nevertheless, a shared and accepted methodology for the accuracy 
assessment does not exist (Persello and Bruzzone, 2010). Besides this, the methods 
applied are quite similar to each other, and generally, as for the pixel-based 
classification, they are based on the comparison between manually digitalized 
reference objects and the segmented objects (Clinton et al., 2010; Hussin et al., 
2014; Ke and Quackenbush, 2011; Persello and Bruzzone, 2010; Radoux and 
Defourny, 2007; Yurtseven et al., 2019). The most common validation 
methodologies can be distinguished in visual evaluations and quantitative 
measures. The visual evaluations are based on comparing reference objects to the 
segmented ones and their attribution to the match or non-match categories by the 
operator. The omission and commission errors are then calculated (Ke and 
Quackenbush, 2011; Mohan et al., 2017; Qiu et al., 2020; Wolf and Heipke, 2007). 
The quantitative measures focus on comparing the reference dataset and the 
segmentation results based on specific metrics. The perimeter, the area, and the 
distance between centroids of the objects are some of the most calculated metrics 
for the goodness of the segmentation assessment (Clinton et al., 2010; Hussin et al., 
2014; Persello and Bruzzone, 2010; Yurtseven et al., 2019). Generally, the 
evaluation of the metrics is performed by applying normalized indices (Clinton et 
al., 2010; Hussin et al., 2014; Persello and Bruzzone, 2010; Yurtseven et al., 2019) 
or by calculating the Root Mean Square Error (RMSE) (Hussin et al., 2014; Ke and 
Quackenbush, 2011; Yurtseven et al., 2019). The normalized indices can provide a 
value representing the goodness of the segmentation that can be easily compared to 
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other segmentation. The quantitative methods are almost entirely applied only to 
evaluate satellite imagery segmentation of heterogeneous land cover scenes 
(Talukdar et al., 2020). In this work, VHR images' segmentation was assessed 
through quantitative and qualitative methods; see paragraph 7.1, page 135, and 
paragraph 8.3, page 235. 

4.6. Lesson learned 

This chapter intends to analyze the workflow for the analysis and the generation of 
Land Cover maps, from collecting the raw data to the generation of the final maps. 
Some of the paragraphs in this chapter treats only a small part of comprehensive 
arguments that, in some cases, constitute an entirely separate field of research. 
Hence, this chapter does not aim to consider each aspect of Land Cover analysis 
classifications deeply, but its goal is to consider the entire classification as a whole 
in a relevant literature framework. With this aim, the literature review emerged that 
the non-parametric supervised classification algorithms (i.e., machine learning) are 
the most used and studied for the Land Cover Classification. Specifically, machine 
learning dominates the LC scene for the last ten years. In summary, some 
considerations are proposed below: 
 

I. High spatial resolution remote-sensing imagery remains the most common 
input data for supervised land cover classification, and the dominant image 
resolutions range between 0–2 m. Generally, data are spaceborne-collected. 
Little work on higher resolution derived from UAV exists. 
 

II. In supervised classifications, the sample size and quality of training data 
significantly impact classification accuracy. Generally, it is best to obtain 
many high-quality training samples that fully characterize the target classes. 
However, there are practical limits to the collection of many and error-free 
training samples. Wheatear the training dataset is small in samples and/or 
data quality is uncertain, an algorithm that is robust to these issues should 
be used, such as ensemble DT methods (e.g., RF or boosted DTs).  

 
III. Machine-learning classifiers have several parameters that should be 

optimized. 
 

IV. Some algorithms have been reported to be robust to parameter settings, such 
as RF, it outperforms parametric classifiers, such as Maximum Likelihood, 
even without optimization. Selecting many trees (e.g., 500) appears to 
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produce a classification accuracy close to what can be achieved through 
optimization. 

 
V. Additional output information generated by some classifiers may be useful. 

For example, RF provides an estimation of variable importance, useful 
information for the feature selection process. RF attracted significant 
attention in recent years (followed by SVM). 

 
VI. Furthermore, aNN provides excellent results in Land Cover classification, 

but it requires vast training datasets. Unexpectedly, aNN appears less 
suitable for more extensive use in object-based classification.  

 
VII. Currently, implementations of machine learning in commercial remote-

sensing software packages is limited. It is more frequent in statistical or data 
analysis software. Besides, the commercial implementations do not 
facilitate automated tuning, feature selection, training data balancing, or 
comparison of algorithms. 

 
VIII. Feature selection is a fundamental step, especially for high-resolution 

classification. Texture analysis has been proven to improve the 
classification accuracy and discriminants of built-up ad soil areas. 

 
IX. Concerning segmentation algorithms, the multi-resolution segmentation 

technique is the most popular. A negative correlation exists between the 
optimal segmentation scale and the spatial resolution of imagery. 
 

X. Classification accuracy can be affected by training data. Generally, overall 
accuracy may not decrease significantly due to imbalance, though the user’s 

and producer’s class accuracies of the rare classes can be significantly 
affected. Thus, it is important to consider training data imbalances, 
especially if there is a need to map rare classes with accuracy. 

 
XI. A negative correlation exists between overall classification accuracy and the 

number of classes defined. 
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Chapter 5 

Pre-processing of images 

The remotely sensed input dataset needs to be treated and made suitable for the 
classification process to obtain reliable results. This step is fundamental, and it is 
realized before the selection of the classification system. Image pre-processing 
deals with sensor characteristics and atmospheric conditions and includes many 
operations such as georeferencing, geometric rectification, radiometric calibration, 
and atmospheric and topographic corrections. The number and the nature of 
operations needed in the pre-processing stage vary according to the type of use 
sensor and raw data type. For the purpose of this thesis, the first distinction needs 
to be made between top-of-atmosphere-sourced data, such as satellite optical 
imagery, and bottom-of-atmosphere-sourced data, such as Unmanned Aerial 
Vehicles (UAV) and airplanes imagery. The raw data format and the atmospheric 
effect on the data are the main differences between the two imagery types. Indeed, 
satellite imagery is generally provided in the form of a georeferenced orthophoto 
that needs to be cleaned from the distortions caused by the atmosphere and the 
topography. Thus, the dataset provided to the analyst is already partially pre-
processed. 

On the other hand, the top-of-atmosphere imagery needs to be entirely 
generated or combine single pictures in georeferenced orthophoto. Once the 
orthophoto is correctly created, it needs to be radiometrically corrected. The UAV 
data are not influenced by the atmosphere effect as much as the satellite data 
because they collect data in the proximity of the Bottom Of the Atmosphere (BOA), 
and consequentially the layers of the atmosphere do not interfere. The next 
paragraph will explore the steps required to prepare UAV- and the satellite-
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generated imagery to the classification core (algorithm application). Paragraph 5.1 
treats the steps required for the Satellite imagery pre-processing, while paragraph 3 
explores the workflow for the pre-processing of UAV datasets.  

 

Figure 36. Simplified scheme of needed data corrections and calibrations due to the 
atmosphere. Satellite-mounted sensors collect data in the form of radiance that needs to be 
transformed into reflectance at the surface (or bottom-of-atmosphere). The UAV-mounted sensor is 
not subjected to atmosphere distortions because they are close to the Earth’s surface. Modified from 
(Young et al., 2017). 

5.1. Satellite optical imagery 

Images acquired from satellites are characterized by distortions caused by the 
effects of the sensor, the light, the atmosphere, and the topography of the scene. 
Many pre-processing steps are needed to minimize or delete such distortions. Some 
of them are compulsory, and they need to be realized in a specific order. The general 
workflow is proposed in Figure 37. 

The requirement for a particular step of the workflow depends on the sensor 
type but also on the final application of the dataset. For example, if a single epoch 
classification is performed, the atmospheric corrections may not be required (Hurni 
et al., 2017; Young et al., 2017). If the study area includes mountainous regions, a 
topographic correction becomes necessary. The entire workflow for the preparation 
of satellite images is fundamental and composed of many specific steps. The 
Sentinel (ESA, 2019) and Landsat (USDG, 2020) user guides are suggested for 
deep analysis. Since satellite data providers, such as NASA and ESA, make 
available data partially correct the decompacting and conversion of data, denoise 
pixel-response correction, and, generally, all those specific actions realized before 
the geometric calibration (ESA, 2019) are not considered in this pre-processing 
overview.  
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Figure 37. Potential workflow for the correction of the satellite images. Not all the steps are 
always necessary. The figure is adapted from the work of Young et al. (2017). 

5.1.1. Geometric correction 

The processes of georeferencing (alignment of imagery to its correct 
geographic location within a given and specific reference frame) and ortho-
rectifying (correction for the effects of relief and view direction on pixel location) 
are the components of the geometric correction necessary to ensure the exact 
positioning of an image. The georeferencing involves the resampling of the image 
and the use of know-location points on the Earth's surface, with sub-pixel accuracy. 
These Ground Control Points (GCPs) are used to project the image into the correct 
geographic location. The products follow slightly different georeferencing process 
according to the belonging Earth Observation mission. For example, Sentinel 2, the 
Earth Observation satellite mission of the European Space Agency, first compute 
the tile's monolithic geometry and then resample each image according to it. The 
bands are then co-registered using tie points identified within the tiles (ESA, 2019). 

In contrast, Landsat uses GCPs for the definition of the parameters of 
polynomial transformation function to correct the image and result in a ‘map-
accurate’ dataset (Young et al., 2017). The ortho-rectification step involves the 
correction of local topography using a Digital Elevation Model (DEM) to further 
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enhance the image geometry by accounting for the significant spatial distortion 
caused by relief displacement. Its application in the study area was of particular 
importance because of the high incidence of varied topography. 

5.1.2. Absolute correction 
The Absolute radiometric correction refers to a collection of preprocessing steps 

that account for sensor, solar, atmospheric, and topographic distortions. The absolute 
correction is meant to obtain true and comparable values of the scenes, although these 
values are still approximations (Young et al., 2017). The image's absolute corrected 
can be compared to images that have undergone the same level of processing. Indeed, 
Digital Numbers (DN) cannot be used to compare spectral values across time due to 
differences between sensors and single sensor degradation (Young et al., 2017). Thus, 
the first step of absolute radiometric correction transforms the Digital Numbers 
(DN) in the Top Of Atmosphere (TOA) reflectance units. This aspect is 
fundamental when working with multi-temporal and multi-tile datasets because it 
can minimize the variations between the images due to sensor differences, the 
Earth-sun distance, and the solar zenith angle (Hurni et al., 2017). The 
transformation of DN to TOA radiance can be obtained from the application of 
equations 7 and 8. 

 

𝐿λ = 𝐺𝑎𝑖𝑛 ∗ 𝐷𝑁 + 𝑂𝑓𝑓𝑠𝑒𝑡    [7] 

 
Where Lλ is the spectral radiance as function of spectral bandwidth (λ); DN is 

the Digital Number value recorded in a single pixel, Gain is equal to (Lmax – Lmin) ⁄ 

maximum DN; the Offset is equal to Lmin that is the lowest radiance measured by 
the sensor in mWcm-2sr-1, and Lmax is the radiance measured at sensor saturation in 
mWcm-2sr-1. 

ρλ =
π𝑑2𝐿λ

𝐸0λcosθ 𝑠
       [8] 

Where: ρλ is the Top Of Atmosphere (TOA) reflectance as a function of 
bandwidth; d is the Earth-sun distance correction; Lλ is the spectral radiance; E0λ is 
the atmospheric irradiance and θs is the solar zenith angle. These data can be 
obtained from the sensor information and as supplementary data from the image 
provider. 
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5.1.3. Absolute atmospheric correction 

When the TOA reflectance data are georeferenced, orthorectified, with co-
registered bands, and radiometrically calibrated, their single-image analysis 
provides reliable results. Nevertheless, these data still suffer from the effect of the 
atmosphere's scattering: molecules of water vapor, fog, desert dust, air pollutants, 
and other particulates are atmospheric components that may alter the satellite 
imagery reflectance due to their different scatter characteristics and absorption 
capacity. These effects are multiplicative and additive, and they differ horizontally 
and vertically and are also band-dependent (Bruce et al., 2006). Thus, the 
atmospheric correction is considered fundamental in multi-temporal analysis and 
mosaic of images (Hadjimitsis et al., 2004; Lantzanakis et al., 2017; Martins et al., 
2017; Sola et al., 2018). The atmospheric correction removes the scattering effect 
of the Earth’s atmosphere, and it can be based on Radiative Transfer Models or 
Image-Based Correction Techniques  (Hadjimitsis et al., 2004; Lantzanakis et al., 
2017; Martins et al., 2017). On the one hand, the Radiative transfer models (also 
called physical-based models) (Lantzanakis et al., 2017) are specific mathematical 
models that consider external information, which is independent of the image, such 
as the latitude, season, and atmospheric conditions, for the removal of the scattering 
effect of the atmosphere. On the other hand, the image-based models estimate the 
atmosphere scattering using information and data derived within the image (Martins 
et al., 2017).  

Radiative transfer models use as input parameters for atmospheric modeling 
independent data obtained from historical data, standard or meteorological data, 
and also field measurements. The models that require in situ measurements for 
retrieving the spectral properties of ground samples during the satellite overpass 
are resource-consuming and thus used only in major projects (Hadjimitsis et al., 
2004). Nevertheless, when in situ, data cannot be obtained from ground 
measurement, aircraft, UAVs, and other satellites can be used. During the last 
40 years, many radiative transfer models have been developed. Some examples 
are: 6S model that it is based on the method of successive orders of scatterings 
approximations (Vermote and Vermeulen, 1999); ATCOR-2 that includes 
topographic corrections (Richter, 1990); SMAC (Simplified Method for 
Atmospheric Correction) model that is largely derived from the 6S model 
(Rahman and Dedieu, 1994); DART based on the discrete ordinate method 
(Gastellu-Etchegorry et al., 2004); FLAASH (Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes) based on MODTRAN 4 Radiative Transfer Code 
(Anderson et al., 2002). Some of these models also include additional features such 
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as spectral smoothing, topographic correction, and adjacency effect correction (Gao 
et al., 2006). The most applied Radiative Transfer Models for Sentinel 2 is 
SEN2COR (ESA, 2019; Sola et al., 2018; Young et al., 2017), incorporated in the 
Sentinel-2 processing toolbox. The Radiative Transfer Models are considered more 
accurate than the image-based corrections and, therefore, more applied (Bruce et 
al., 2006). However, Radiative Transfer Models pre-processing steps are time-
consuming, imperfectly address the artifacts to be removed, and can introduce 
additional sources of error (Young et al., 2017). 

The Image-based models for atmospheric corrections use data derived from 
statistical analyses of the raw pixel data. Most of these models are based on Darkest 
Pixel (DP) method. The darkest Pixel method consists of subtracting the minimum 
DN value in each band from all the other DNs in that band. It provides a reasonable 
correction (Hadjimitsis et al., 2004a), and it is based on the assumption that most 
of the signal reaching a sensor from a dark object is contributed by the atmosphere 
at visible wavelengths. If the radiance at the sensor  (Lλsensor) of any objects is the 
sum of atmospheric distortions (𝑎𝑡𝑚) and the radiometric response of the object 
surface (Lλ) and dark objects radiance at the sensor is approximately null, then the 
radiance values at the sensor of dark objects must represent the atmospheric 
component, equation 9.  

 Lλsensor =  Lλ + 𝑎𝑡𝑚        [9] 

Therefore, in the Darkest Pixel approach, the pixels from dark targets are 
considered indicators of the amount of upwelling path radiance in a specific band 
(Hadjimitsis et al., 2010). The most widespread image-based techniques are the 
Darkest Object Subtraction or Histogram Minimum method described above 
(Chavez, 1988). Other methods based on Chavez’s work exist, such as the DDV 

(Dense Dark Vegetation) (Kaufman and Sendra, 1988) and the MDDV (Modified 
Dense Dark Vegetation) (Song et al., 2001) techniques. 
 

(Song et al., 2001) found that the best overall results with respect to their 
impacts on image classification and change detection accuracies were achieved by 
using the more straightforward Dark Object Subtraction method (Chavez, 1988), 
rather than the more complex atmospheric corrections that combine both 
atmospheric models and the dark object concept (Song et al., 2001). They 
concluded that simple atmospheric correction algorithms are recommended for 
applications in which surface reflectance is not required. Similarly, (Hadjimitsis et 
al., 2010) have found that the Dark Object Subtraction technique seems to be the 
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most efficient in visible and near infrared and short-wave infrared spectral areas. 
The Radiative transfer often requires ancillary data about atmospheric conditions at 
the time of image collection and can introduce additional errors (Bruce et al., 2006). 
Moreover, many authors underline that atmospheric correction is not always needed 
(Bruce et al., 2006; Hurni et al., 2017; Lu and Weng, 2007; Song et al., 2001; Young 
et al., 2017). Indeed, the atmospheric correction is compulsory only when the 
dataset is heterogeneous, for example, when it is composed of images collected by 
different sensors (integration of satellite-satellite, but also satellite-UAV and 
satellite-spectrometers) or collected by one sensor at different time, and thus 
atmospheric, conditions. Also, datasets composed of more than one footprint should 
go through the atmospheric correction process (Hurni et al., 2017). The atmospheric 
correction of heterogeneous datasets analyzes the same domain (i.e., classification 
samples collected on one image may be applied to another image) (Young et al., 
2017).  

5.1.4. Topographic correction 

In mountains and hills, the changes of the illumination conditions caused by the 
sun position, the slope, and the aspect, can result in variations of the reflectance in 
the same land cover type. For example, the same types of forest placed in different 
mountainsides can have different reflectance values between the sunlit and shaded 
slopes. Consequently, the classifier might assign the sides of a mountain to different 
LC classes even if they have the same Land Cover. The reason behind the need for 
topographic corrections is to vary the reflectance of sloped areas derived by the 
inclination of the terrain and the sun elevation and flat their reflectance (Poortinga 
et al., 2019; Shepherd and Dymond, 2010), namely approximate reflectance values 
of sloped areas to the ones that would be recorded over a flat surface (Figure 38). 
Different approaches for the topographic illumination correction exist, and they can 
be classified into three categories:  

I. Empirical methods 
II. Physical methods 

III. Semi-empirical methods 

 
The simplest methods are empirical topographic corrections, which uses only 

image-derived information. For example, the image is corrected through the 
calculation of band ratios. These methods are based on the assumption that radiance 
values distortion due to topography is proportional in all spectral intervals. They 
are easily implemented; however, these methods are rarely applied because they 
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lead to the loss of spectral resolution and, consequentially, to the loss of 
classification accuracy (Sola et al., 2018). 

The physical methods do not derive any information from the image, but they 
model the full radiance path through the atmosphere to the target object and 
backward (Sola et al., 2018). These methods do not consider the diffusive effect of 
the atmosphere, which influences the radiance and increases along with the slope 
and vegetation presence. The topography and the is not considered either. These 
physical methods lead to the overcorrection of steep and vegetated areas (Hurni et 
al., 2017). The semi-empirical models are midway between empirical and physical 
models. They consider the topography of the area by introducing the Digital 
Elevation Model (DEM) information. The DEM, which can be a DSM or a DTM 
according to the needs of the work, is used to simulate the illumination conditions 
by deriving correction parameters through a linear regression between each image 
band and the illumination condition at the time of the image acquisition (IL or (𝑖𝑠)). 
The semi-empirical methods outperform the other methods in the majority of 
studies, although they are computational expensive (Sola et al., 2018).   

 

   
Morning Noon Afternoon 

Figure 38. Shadow's effect depending on sun elevation and position. From 
https://www.youtube.com/watch?v=LgZbhogv9Q8. The proposed example regards some trees, but 
the same effects exist over hills and mountains. 

The most applied algorithms are the Cosine Correction, the C-correction, and 
the Minnaert correction that considers non-Lambertian behavior of vegetated 
surfaces. The Sun-Canopy-Sensor-correction (SCS-correction) has been developed 
specifically for removing topographic effects in Landsat TM images of forested 
areas. A clear and concise overview of these methods is provided by (Soenen et al., 
2005), and some of the most applied correction methods are described in Table 16.  

For this thesis, only the SCS+C correction is analyzed in detail. The cause of 
the overcorrection in the SCS model is similar to that of the cosine correction. 
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Table 16. Some examples of most applied topographic correction methods and coefficients. 
The table shows the mane, the type of correction, and a brief description.  

Methods Category Notes 

Cosine Correction Physical correction 
Takes into account the solar 
zenith angle but not the diffuse 
solar irradiance 

Minnaert Correction Physical correction 

It considers the type of 
reflection of surfaces. the 
Minnaert constant will range 
from 0 (specular reflector) to 1 
(Lambertian surface). 

Sun-Canopy-Sensor-
correction (SCS) Physical correction 

The SCS correction improves 
on the cosine correction by 
normalizing the illuminated 
canopy area. It overcorrects the 
image 

C-Correction Semi-empirical 
correction 

Addition of a semi-empirical 
moderator (C) to the cosine 
correction. A linear relationship 
exists between the reflectance 
and the incidence angle based 
on an examination of image 
data. 

Sun-Canopy-Sensor-
correction + C 

Semi-empirical 
correction 

Combination of the SCS 
physical correction with the C 
semi-empirical moderator 

 
As the angle of incidence approaches 90°, the correction factor becomes 

excessively large. In the C-correction, parameter C has a moderating influence on 
the cosine correction by emulating the effect of diffuse sky illumination, and it is 
derived from the Minnaert and C-correction by (Teillet et al., 1982). The SCS+C 
correction is calculated as follow (equation 10):  

𝐿𝑁 =
𝑐𝑜𝑠𝛼∗𝑐𝑜𝑠𝜃+𝐶

cos 𝑖+𝐶
      [10] 

 
Where LN is the normalized radiance, α is the terrain slope derived from the 

DEM, θ is the solar Zenit angle, i is the incidence angle (defined as the angle 
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between the normal to the pixel surface and the solar zenith direction). C is the 
semi-empirical correction factor, from Teillier theory (Teillet et al., 1982), which 
is based on the assumption that a linear relationship between the radiance and the 
cosine of the incidence angle exist (equation 11):   

𝐿 = 𝑎 + 𝑏 cos 𝑖      [11] 

Thus he calculated C as the ration between a and b, (equation 12): 

𝐶 =
𝑎

𝑏
                       [12] 

 
This correction approach has been proven to outperform SCS topographic 

methods, providing good results, especially in sloped forested areas (Soenen et al., 
2005).  

 
Usually, corrections for atmospheric and topographic effects are applied 

sequentially and independently. In addition to error propagation issues, sequential 
processing does not reflect the physical interactions between these effects, because 
all these effects are inter-related, it is not possible to correct for each effect without 
making simplifying assumptions about the others or using an explicit physically-
based approach (Laurent et al., 2011). 

Satellite imagery is often interested by cloud cover on the scene. Two solutions are 
commonly used for cloud removal in multi-temporal images. One method is to 
replace the cloudy temporal data with data from images without clouds or snow 
taken in the same season but in different years. As a result, most land cover products 
are mapped at intervals of 5 or 10 years, which significantly reduces “currency”. 

The other method entails filling cloudy locations using per-pixel temporal 
compositing procedures via adjacent temporal interpolation, a time-series curve 
filter, or inversion of n-day observations to estimate reflectance based on the 
bidirectional reflectance distribution function. These methods do not increase 
information content but may introduce gross errors, mainly when continuous 
temporal data are unavailable. It is worth noting that, because of the low temporal 
frequency of the Landsat satellite, the data obtained are rarely completely cloudless, 
and most images contain cloud cover. When cloud coverage reaches a threshold 
such as 30%, the temporal image is deemed unusable, and the remaining 70% of 
the image will also be discarded. In other words, for a given satellite time series, 
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the temporal dimension of each pixel might not be the same, despite using the same 
period. Therefore, only methods that work with unequal time series will fully 
exploit the available data (Zhai et al., 2018). 

5.2. UAV-derived imagery: SfM for orthophoto 
generation 

UAV-derived images are elaborated to generate a 3D model of the object of the 
study. This elaboration is realized through the application of photogrammetric 
techniques. In recent years, the Structure from Motion (SfM) technique has become 
very popular within photogrammetric techniques and has quickly reached the 
consolidated traditional digital photogrammetric techniques. SfM is a computer 
vision technique that allows users to transform 2D data into 3D data. Mainly, SfM 
aims to recover the structure of the scene (i.e., 3D coordinates of object points, and 
the camera motion, i.e., the exterior orientation (position and attitude) of the 
images) starting from multiple images of a stationary scene (Figure 39). Similar to 
classic stereo-photogrammetry, SfM uses images acquired from multiple points of 
view to return the three‐dimensional geometry of an object (Fonstad et al., 2013; 
Iglhaut et al., 2019). Traditional photogrammetry methods are based on the 
similarity to the human binocular vision. Indeed, as human eyes can perceive the 
depth, traditional photogrammetry methods perceive it by knowing the relative 
position of two points of view. The depth, or 3D features, can be perceived from a 
single observing point, too, if the observer, or the object, is moving (Iglhaut et al., 
2019). 

 

Figure 39. Structure from Motion technique. The acquisition of moving (black cameras) to get 
data from a static object (red dots) creates a 3D model (Iglhaut et al., 2019). 
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SfM relies on these two pillars: i) depth can be perceived from binocular vision 
and, ii) depth can be perceived by changing the vision of an object moving or 
observed from a moving point. The main differences between SfM and traditional 
photogrammetry are three: 

 
i) Approach of the image matching algorithms.  

Traditional photogrammetric methods typically rely on strips of overlapping 
images acquired in parallel flight lines. SfM algorithms automatically identify and 
match the conjugate features (physical features present in many images) of the 
images regardless of the changes in the scale (i.e., resolution), the point of view, 
and orientation. Clearly, in SfM, each physical point on the resulting object must 
be present in multiple images as per traditional photogrammetry. This is a 
significant advancement compared to traditional photogrammetry techniques 
because it allows the 3D reconstruction and unorderly positioned acquisitions. 

 
ii) In SfM, camera positions or ground control points are not 

compulsory for 3D reconstruction, although they can be calculated. 
Another difference between SfM and traditional photogrammetry is the point 

in the workflow at which the results are georeferenced. In traditional digital 
photogrammetry, the collinearity equations, which identify the relationship 
between three‐dimensional features and their projections into two‐dimensional 

images (Iglhaut et al., 2019; Snavely, 2008), are solved after the user identifies and 
inputs Ground Control Points (GCPs) and/or the positions and orientations of the 
camera. While in SfM, the collinearity equations are solved before the introduction 
of GCPs. The Ground Control Points are points of known coordinates and position. 
Indeed, the SfM technique can solve the collinearity equations in an arbitrarily 
scaled coordinate system thanks to the large number of conjugate points identified 
during the automated image matching phase (Iglhaut et al., 2019; Snavely, 2008). 
In SfM, a massive number of conjugate points are automatically generated. A 
disadvantage of this procedure is the potential introduction of errors that became 
systematic and underestimated the deformations. 

 
iii) Camera calibration can be refined during the process. 

The large number of conjugate points identified during the automated image 
matching phase allows a full camera calibration. This SfM phase results in a relative 
point cloud of X, Y, and Z positions, which is not registered in a local reference 
system (nor in any real‐world coordinate system). At this point, the analyst can 

introduce GCPs and the camera positions to register the point cloud to a specific 
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coordinate system. This transformation is linear and rigid and results in a point‐

cloud suitable for mapping applications.  
 
Cameras' geometric calibration is a fundamental step for the 3D reconstruction 

of a real-world scene since it allows the identification of the camera's location 
within the scene. Moreover, the cameras' geometric calibration allows for the 
correction of lens distortion and the measure of the size of an object in real-world 
units. These applications are used not only for 3D reconstruction but also in 
machine vision, robotics, and navigation systems. The geometric calibration 
identifies the correction parameters of a camera’s lens by applying specific 
equations that relate the coordinate systems of the camera’s picture, the real world, 

and the camera’s sensor, Figure 40 and Figure 41 (Forsyth and Ponce, 2012).  
A known-measure object in the real-world is needed to estimate the geometric 

correction parameters. Several images are needed for such an object, and using the 
correspondence between the measured object and the digital image, it is possible to 
estimate the camera parameters. Camera parameters include the intrinsics, extrinsic, 
and distortion coefficients. The intrinsic parameters refer to the camera coordinates' 
projective transformation into sensors coordinates, and it includes the focal length, 
the skew coefficient, and the optical center. The extrinsic parameters regard the 
rigid transformation of the real world coordinates into camera coordinates. They 
are the Rotation (R). the Translation (t), and the optical center of the camera, which 
is the origin of the camera’s coordinate system (Forsyth and Ponce, 2012). 

To accurately represent a camera, it is also necessary to consider the radial and 
tangential lens distortions. The radial distortion can be positive or negative and 
depends on the distribution of light rays on the lens, while when the lens and the 
image are not parallel, there is a tangential distortion (Figure 42). Radial distortion 
of the lens is expressed by K1, K2 , and K3 coefficients. Tangential distortion of the 
lens is expressed as p1 and p2 coefficients. The estimated focal length is expressed 
in millimeters. The principal point (i.e., the optical center of the camera) is in pixels. 
The mean reprojection error is an extrinsic parameter representing the average 

Real world 
coordinates

(x,  y, z,)

Rigid
3D to 3D

EXTRINSIC 

Sensor 
coordinates

(x y)

Projective 3D 
to 2D

INTRINSIC

Digital 
image 

coordinates 
(x,, y,, z,,)

Figure 40. Geometric calibration workflow. 
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Euclidean distance between reprojected and detected points and is expressed in 
pixel. SfM automatically solves the camera calibration, using the matching points 
detected in the automated image matching phase. 

 
 
 

 

Figure 41. Camera calibration defines the relation between the sensor, real-world, and image 
reference frames and calculates the camera's intrinsic and extrinsic parameters. 

   
No distortion Negative distortion Positive distortion 

Figure 42. Example of the effects of positive and negative radial distortions on an image. 
Adapted from https://it.mathworks.com. 

These three main differences between SfM and traditional photogrammetry are 
some of the reasons behind the quick-increasing popularity of SfM. Particularly, 
SfM is appreciated for its ability to extract 3D information from unordered and 
heterogeneous images, such as video sequences, pictures of smartphones, and 
standard cameras. Usually, the SfM term indicates the entire workflow of transition 
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from 2D images to 3D models. Although precise, SfM refers exclusively to the 
bundle adjustment, which is only a specific step in the workflow (Figure 43). 

 

Figure 43. Structure from Motion processing steps, (Wu et al., 2012). 

Incremental steps carry out the 3D model generation. First, the key-points are 
extracted from the images based on contrast and texture-related rules. The process 
is initialized by computing the epipolar geometry between two images and 
calculating the projection matrices and the fundamental matrix (Hartley and 
Zisserman, 2003). The key-points were identified in all input images and then 
matched across different images. Before the final match, eventual outliers are 
eliminated to improve the coherence and the stability of the future matching to this 
purpose, robust estimation algorithms, such as the RANdom SAmple Consensus 
(RANSAC) paradigm (Fischler and Bolles, 1981; Raguram et al., 2008) are used. 

If there is a sufficient number of matched key-points, SfM performs the bundle 
adjustment (Agarwal et al., 2010; Snavely, 2008; Triggs et al., 2000; Wu et al., 
2012, 2011). It is a non-linear least-square optimization algorithm that minimizes 
the re-projection error caused by measurement noise. Specifically, it is solved using 
sequences of randomly selected matched key-points and parameters from the 
cameras along with a non-linear refinement. Besides containing the error 
accumulation, the bundle adjustment computes the camera parameters and 
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generates the sparse point cloud. Usually, after the bundle adjustment, the sparse 
point cloud is scaled and georeferenced based on GCPs and/or the data from 
navigation devices mounted on the camera or its platform, unless the initial extrinsic 
parameters were not provided (e.g., the coordinates of the acquisition center). 

The georeferenced sparse point cloud is then densified. Specific algorithms, 
such as Multi-View Stereo MVS, are used in a subsequent step to densify the point 
cloud. Contrary to SfM, MVS aims to extract as much information from all the 
pixels of the input images and not only from a subset of the images. Several MVS 
algorithms exist, although they are not fundamental for the understanding of this 
work. For additional information, (Seitz et al., 2006)'s work is suggested. The whole 
process of 3D model generation is also called SfM-MVS. A dense point cloud 
characterized by spectral information extracted from the input images is the SfM-
MVS workflow's output (Figure 44). 

 

 

Figure 44. SfM-MVS workflow for the generation of the Dense Point Cloud, (Seitz et al., 2006) 
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 In aerial surveys, the following step involves the 2D information extraction 

from the 3D model. Particularly, it is derived from the Digital Surface Model 
(DSM) due to the mesh-grid generator, namely the 2D grid containing the elevation 
information of the dense cloud's points. Eventual outliers points need to be filtered 
by some appropriate algorithms interpolated to substitute the outliers’ values. Most 

commercial SfM-MVS software provides the users with classification tools to 
classify ground points and extrapolate DTM.  

Similarly, through the rasterization of the model, it is possible to extract the 
orthomosaic. Technically, the orthomosaic is a series of individual photos that are 
programmatically matched up to form a new composite image, consisting of all the 
smaller ones. In the final mosaic image, each source image contributes data to a 
small region (Mills and McLeod, 2013). Additionally, image metrics like 
radiance/reflectance values and texture may be extracted.  

SfM photogrammetry is firmly dependant on the quality of the input images. 
To obtain a reliable input dataset, some basic rules and expedient should be 
followed (paragraph 3.1.3, page 29). Today, many software for the SfM-MVS 
workflow exist. Table 17 sums up the most frequent and their main characteristics.  

Table 17. Most popular software for SfM-MVS workflow. The type (meant as aerial or terrestrial), 
the file output format, the operating system, and the price are analyzed. The pricing should be 
interpreted carefully. It referrers to single-user license in April 2020. Source: https://all3dp.com/ 

Name Type Output File Formats Operating 
System Price 

COLMAP 
Aerial, 
Terrestrial ply, vrml 

Windows, 
macOS, 
Linux 

Free 

Meshroom 

Aerial, 
Terrestrial abc, obj Windows, 

Linux Free 

MicMac 

Aerial, 
Terrestrial geotiff, ply, xml 

Windows, 
macOS, 
Linux 

Free 

Multi-View 
Environment  

Aerial, 
Terrestrial MVE Windows, 

macOS Free 

OpenMVG 

Aerial, 
Terrestrial Ply 

Linux, 
Windows, 
MacOS 

Free 

Regard3D 

Aerial, 
Terrestrial obj, ply 

Windows, 
macOS, 
Linux 

Free 

Continue in the following page (1) 

https://all3dp.com/1/best-photogrammetry-software/#regard3d
https://all3dp.com/1/best-photogrammetry-software/#meshroom
https://all3dp.com/1/best-photogrammetry-software/#openmvg
https://all3dp.com/1/best-photogrammetry-software/#multi-view-environment
https://all3dp.com/1/best-photogrammetry-software/#micmac
https://all3dp.com/1/best-photogrammetry-software/#multi-view-environment
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VisualSFM 

Aerial, 
Terrestrial Ply 

Windows, 
macOS, 
Linux 

Free 

3DF Zephyr  

Aerial, 
Terrestrial 

ply, obj, fbx, pdf 3D, 
u3d, dae, pts, ptx, xyz, 
txt, las, e57 

Windows 

Limited free 
version and 
paid version 
from €149+tax 

Autodesk ReCap 

Aerial, 
Terrestrial 

asc, cl3, clr, e57, fls, 
fws, isproj, las, pcg, 
ptg, pts, ptx, rds, txt, 
xyb, xyz, zfs, zfprj 

Windows  €40/month 

Agisoft 
Metashape 

Aerial, 
Terrestrial Fbx 

Windows, 
macOS, 
Linux 

From €179 

Bentley 
ContextCapture 

Aerial, 
Terrestrial 

3ms, 3sm, kml, dae, 
fbx, obj, dae, stl Windows On request 

Correlator3D 

Aerial .asc, geotiff, .las Windows €250/month 

DatuSurvey 

Aerial, 
Terrestrial 

ENH, NEH, DXF, 
PLY, PDF, LAS, 
PNG, GTIFF 

Windows €350/month 

DroneDeploy 

Aerial dxf, GeoTIFF, las, 
obj, xyz 

Windows, 
macOS, 
Android, 
iOS 

€149/month or 

€99/month 

when billed 
annually 

Elcovision 10 

Aerial, 
Terrestrial 

All currently known 
image formats Windows On request 

iWitnessPRO 

Aerial, 
Terrestrial 

TXT, CSV, PTS, 
LAS, PLY, DXF, 
KML 

Windows €2,495 

IMAGINE 
Photogrammetry 

Aerial 

img, igg, ovr. l, noaa, 
rpf, ddf, dem, til, dt2, 
ecrg, hdr, xml, ecw, 
url, ant, dig, alg, ers, 
gis, … 

Windows On request 

LiMapper 

Aerial, 
Terrestrial PLY, OBJ, LAS  On request 

Photomodeler 

Aerial, 
Terrestrial 

3ds, 3dm, dxf, igs, 
kml, kmz, las, ma, ms, 
obj, pts, byu, facet, iv, 
ply, stl, txt, wrl 

Windows 
One time fee 
of €995 

€49/month 

Pix4D Aerial 
obj, fix, dxf, las, las, 
kml, tif, osgb, slpk, 
shp 

Windows, 
macOS, 
Android, 
iOS 

€260/month or 

€217/year 

Continue in the following page (2) 

https://all3dp.com/1/best-photogrammetry-software/#autodesk-recap
https://all3dp.com/1/best-photogrammetry-software/#agisoft-metashape
https://all3dp.com/1/best-photogrammetry-software/#pix4d
https://all3dp.com/1/best-photogrammetry-software/#correlator3d
https://all3dp.com/1/best-photogrammetry-software/#photomodeler
https://all3dp.com/1/best-photogrammetry-software/#bentley-contextcapture
https://all3dp.com/1/best-photogrammetry-software/#visualsfm
https://all3dp.com/1/best-photogrammetry-software/#3df-zephyr
https://all3dp.com/1/best-photogrammetry-software/#dronedeploy
https://all3dp.com/1/best-photogrammetry-software/#imagine-photogrammetry
https://all3dp.com/1/best-photogrammetry-software/#datusurvey
https://all3dp.com/1/best-photogrammetry-software/#bentley-contextcapture
https://all3dp.com/1/best-photogrammetry-software/#limapper
https://all3dp.com/1/best-photogrammetry-software/#elcovision-10
https://all3dp.com/1/best-photogrammetry-software/#imagine-photogrammetry
https://all3dp.com/1/best-photogrammetry-software/#iwitnesspro
https://all3dp.com/1/best-photogrammetry-software/#agisoft-metashape
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RealityCapture 
Aerial, 
Terrestrial 

jpg, png, XYZ, 
XYZRGB, tiff, bmp, 
dib, rle, jpeg, jpe, jfif, 
exif, exr, tif, wdp, jxr, 
dds, KML, KMZ, obj, 
ply, partlist, fbx, dxf, 
dae, bvh, htr, trc, asf, 
amc, c3d, aoa, mcd, 
wmv, mp4 

Windows From €33/ 

months 

SOCET GXP Aerial  Windows On request 

Trimble Inpho 
Aerial, 
Terrestrial  Windows On request 

WebODM Aerial GeoTIFF, png, las, 
obj 

Windows, 
macOS From €57 

 
 

https://all3dp.com/1/best-photogrammetry-software/#trimble-inpho
https://all3dp.com/1/best-photogrammetry-software/#socet-gxp
https://all3dp.com/1/best-photogrammetry-software/#webodm
https://all3dp.com/1/best-photogrammetry-software/#realitycapture
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Chapter 6 

Study areas and materials 

The present work considers two cases study: the villages along the Sirba River 
in Sub-Saharan areas and the protection forests of Alpine Arch. Both cases are the 
object of study of specific projects on natural hazard risk prevention, the areas along 
the Sirba River for the prevention against flood hazard, and the Alpine forest as a 
mitigation entity of rock falls. Besides having the susceptibility to natural hazards 
in common, both areas can be considered complex landscapes and difficult-to-map 
areas. The choice of these two case study is ascribable to these three common 
aspects: 

I. Critical areas to classify for their landscape complexity, remoteness, 
and difficult gathering of in situ data; 

II. Natural hazards-prone zones; 
III. Significant differences in the case studies to test the applicability of the 

proposed methodology for the LC atlas generation. 

Paragraphs 6.1 and 6.2 of this chapter describes the main aspects of the case 
study. 

6.1. Study area A, protection forests of Alpine arch: 
ROCKTHEALPS project 

Forests provide us with many services, so-called ecosystemic services, and the 
regulation of hydrogeology cycle and slope stability. This service is vital in 
mountainous areas where forest stands have a mitigation effect on slope-related 
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phenomena (i.e., rockfall avalanches, landslides). In this context, the stands' 
structure is a crucial parameter in defining forests' protection function against 
natural hazards (Maier et al., 2008). Forest protection and management benefit from 
a complete knowledge of trees' shape and distribution in forest stands. In this 
scenario, the EU Gothenburg priorities (Priority 2 2015) focus on the effective 
management of forest ecosystems and risk prevention, as well as the protection and 
preservation of forest ecosystems. Many national and European projects aim to 
contribute to the future sustainable development of the environment and land use. 
One of these is ROCKTHEALPS project, which studies the protection forest of the 
Alpine Arch in the function of rockfall hazard. Even if the international scientific 
community broadly recognizes the role of forest stands in rockfall-related risk 
mitigation, the information regarding single events is still scarce. 

In most cases, historical records do not exist or are approximate. The test area 
is studied within ROCKTHEALPS (RTA) project. Its goal is to develop an 
innovative common regional rockfall model considering protection effects of 
forests and derived information for producing the first Alpine Space wide 
harmonized map of rockfall risk and protection forests. The areas showing high 
vulnerability to rockfalls are the object of the study. The methodology proposed in 
this work easily fits the needs of ROCKTHEALPS. A forest in Northern Italy was 
monitored and classified to provide data (i. High-resolution, ii. Multi-layered, iii. 
Multi-temporal) to evaluate the barrier effect of woods in rockfall processes using 
UAV. ROCKTHEALPS project is interested in different sites places all over the 
Alps. In this work, only the site of Cesana Torinese (Italy) was considered for the 
analysis (44°56'46.1"N 6°46'29.5"E). The test study is a coniferous forest (Figure 
45). It is dominated by Silver fir (Abies alba Mill.), Norway spruce (Picea abies 
(L.) H. Karsten), and European larch (Larix decidua Mill.). Scots pines (Pinus 
sylvestris L.), and Swiss pines (Pinus cembra L.) are sporadically present. The 
study area extends approximately 38 hectares over a high-sloped mountainous area 
with North exposure. The steep mountainsides make the area particularly prone to 
rockfall and avalanches.  
Despite the extreme condition of the study phenomena, comprehensive knowledge 
of the territory is required, for example, by adopting geomatics techniques and 
innovative cartographic products. To this purpose, aerial surveys using UAVs have 
increased for monitoring applications (Banu et al., 2016; Berie and Burud, 2018; 
Paneque-Gálvez et al., 2014; Tang and Shao, 2015; Torresan et al., 2017; 
Vepakomma et al., 2015). Successful implementation of drones in forestry depends 
on UAV's following features: flexibility of use in flight planning, low cost, 
reliability and autonomy, and capacity to produce high-resolution data (Torresan et 
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al., 2017). UAV can have many benefits in surveying and monitoring the protection 
forest to maintain and regenerate the barrier effect of forests. 
 

 
Figure 45. The study area in Cesana Torinese 

The remote sensing techniques UAV offers a versatile opportunity to improve forest 
mapping and monitoring regarding natural hazards (Giordan et al., 2017). Remote 
sensing techniques face various challenges in mountainous regions. The complex 
terrain limits the availability of observations. In narrow elevation zones of 
mountainous areas, mountainside can be permanently shadowed (Dietz et al., 
2018). Moreover, the snow cover prevents the classification in the winter months. 
High-peaked areas are prone to frequent orographic rains and clouds, which 
mechanisms are influenced by the terrain (Houze, 2012). These conditions lower 
the possibility of accurate classifications. Mountainous forests are particularly 
susceptible to the shadows’ effect within the crowns. In fact, it has been proven that 
forest stand maps of less-rugged or flat terrain are generally more accurate (Dorren 
et al., 2003). One of the reasons for this is that both land cover and topography 
determine the spectral values in remote sensing imagery, especially in steep or high 
relief energy areas. Substantial variability in the reflectance from canopies of 
similar forests and direct shadows as well as cast shadows are indissoluble results 
of the topography in such areas, which complicate the classification. Data gathering 
in the field is time consuming due to the difficulty of the terrain morphology (i.e., 
steep slopes) and road access. Operators can be exposed to several risks during the 
field survey; Personal protective equipment (PPE) is always required during the 
surveys. A substantial limitation is presented by the tree canopy, which excludes 

https://context.reverso.net/traduzione/inglese-italiano/toughen
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GPS signals and impedes the use of aerial imagery to study the undergrowth. 
Combining these factors makes the generation of the land cover maps of 
mountainous areas particularly challenging and generally recognized as fairly-low 
accurate (Dorren et al., 2003; Itten and Meyer, 1993).  
A land cover high thematic resolution analysis of the land cover was performed 
starting from aerial images. Specifically, the single tree crowns were segmented to 
measure the main parameters needed to define the forest's protective effect from 
rockfall risk. Since June 218 four land surveys have been carried out.  
 

 

Figure 46. Timeline of land surveys in the Alps region. 

6.2. Study area B, Sub-Saharan areas along Sirba 
River: ANADIA 2.0 project 

Over three-fourths of the Sahara has an annual average rainfall of less than 100 
mm, and one-fourth has less than 20 mm. in these areas, local enhancements of 
temperature and heavy rains occasionally occur (Warner, 2004) owing to the 
sudden change of weather patterns that brings more extreme weather events, of 
which, flash floods of the dry valleys are the most devastating (Moawad et al., 
2016). Floods in the Sahara are often characterized by deep, fast-flowing water, 
which, combined with the short time available to respond, increases the risk to 
people and property (Sene, 2013). In the last decades, it has been recorded evidence 
of an increasing number of massive rainfall events over the West Sahel (Bigi et al., 
2018; Oguntunde et al., 2018). The climatic conditions of the Sahelian zone of the 
Niger basin is not an exception. It fits the changing climate pattern of Sahel. 
Catastrophic flooding has become an increasing threat during the last decades, 
leading to more than ten million people affected since 2000 (Aich et al., 2016). 
Sirba River, a tributary of Niger River, crosses Burkina Faso and Niger (Figure 47). 

June 2018: 
UAV in Colle 
Santa Lucia 

(Belluno), Italy

July 2018: UAV 
in Cesana 

(Torino), Italy.

July 2019: UAV 
in Cesana 

(Torino), Italy.

July 2019: UAV 
in Mompantero 
(Torino), Italy.
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Its basin is prone to floods, and villages along the river are vulnerable to life and 
economic losses (Massazza et al., 2019, 2018; Tamagnone et al., 2019).  

 

 

Figure 47. Sirba River in Niger country 

Along the Nigerienne branch of Sirba (about 100 km length), the only existing 
route connecting the upstream villages to the capital (Niamey) is often flooded and 
getting complicated by the people during the rainy season’s movement. The Sirba 

basin is 39138 km2, and direct monitoring is almost impossible due to the vastness 
of the area, the difficult climatic conditions, and the lack of a developed road 
network. In this area, the need for climatic planning and the development of 
adaptation strategies to climate change at the local level is not negligible (Tiepolo 
et al., 2018). Despite this undeniable need, there is no appropriate risk mapping of 
the area; indeed, subnational risk mapping lacks detail (Tiepolo et al., 2018). The 
Sirba basin in Niger territory is the study area of the ANADIA 2 project. The Italian 
Agency for Development and Cooperation (AICS) funds it (Massazza et al., 2019). 
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It aims to create an Early Warning System to face climate change effects in Sirba 
River Basin2, enhance local technicians’ knowledge regarding floods forecasting, 

and create an adaptation strategy planform two villages along the Sirba River. The 
data gathered and the information provided by this research will be directly 
involved in ANADIA 2.0, by feeding the adaptation strategy plan and investigating 
the cause-effect relation of floods. The villages of Larba Birno and Touré are 
interested in adaptation planning strategy, and they will be the object of Very High-
Resolution Unmanned Aerial Vehicles (VHR-UAV) analysis. The difficulty of land 
cover mapping of this area is due to the high spectral homogeneity of cover types. 
One of the most significant problems in the remote sensing of Sub-Saharan regions 
is that reflectance from soil and rock during the dry season is often much greater 
than that of the sparse vegetation making it difficult to separate the vegetation. 
Some of the specific problems involved with remote sensing of arid vegetation 
include multiple scattering of light (nonlinear mixing) between vegetation and soil 
(Huete, 1988). Moreover, it is hard to separate built-up areas from the soil even 
from VHR imagery. Most of the buildings along the Sirba River are made of locally 
produced brick. This production is realized using clays from the Sirba riverbed and 
the buildings are not plastered (Figure 48).  

 

 
Figure 48. Example of local architecture. Aerial view. 

                                                 
2 The transboundary basin of Sirba river lies between the countries of Burkina Faso and Niger 

in the centre of the Sahel strip. It is a sparsely populated area whose inhabitants are dedicated to 
food and farming activities. 
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The main road and the streets of the villages are unpaved. As a consequence, 
the spectral response of buildings is the same as roads and bare soil.  The strong 
seasonality adds further complexity to the classification as the frequent cloud cover 
during the rainy season and sand presence in the air may alter the sensed data's 
spectral value. From the geodetic point of view, the Sirba River area is 
disadvantaged. A dense network of permanent stations is not available to process 
GNSS data (Kim et al., 2014). Despite today CORSs covering most of the world's 
countries, some areas are still not included in the network, such as some sub-
Saharan countries and the Sirba basin (Figure 49). Indeed, the lack of CORS and 
known coordinates points is quite a frequent condition in sub-Saharan rural areas, 
strongly affecting topographic surveys. Indeed, there is poor access to general 
services (e.g., electricity, computers) and few people with enough expertise to use 

Figure 49. CORS in Africa continent. The dots indicate the stations that provided raw 
observations to the International GNSS Service (IGS) in the last ten days. The map is daily 
updated. This image is referred to the 17 January 2020. Source: International GNSS Service 
(IGS). 
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GNSS software. These unfavorable conditions can be exacerbated by emergencies, 
like during (or immediately after) natural hazards. 

 
This research tries to overcome the criticalities of LC mapping in the Sirba 

basin by using low-cost geomatics. Specifically, a Digital Terrain Model and a 
Digital Surface Model were created. Potentially flooded areas were mapped using 
images collected via UAVs using low-cost optical sensors and via VHR satellite. 
On the same data, LC classification was performed. The case study required two 
land surveys in 2018, Figure 50. 

 

 
Figure 50.  Land surveys in the Tillaberì region. 

Multiband imagery was collected by RGN (Red-Green-NIR), and RGB (Red-
Green-Blue) sensors mounted on UAV systems. The imagery was used for the 
creation of multiband orthophotos for the detection of waterlogging. 

6.3. Tools and Hardware 

The tools are intended as the optical sensors used for the data collection. They 
are presented in the next sections grouped according to the platform they are 
integrated into: Unmanned Aerial Vehicles and Satellites. As previously 
mentioned, both commercial and non-commercial solutions were used for the 
collection of UAV datasets. The performances and the functioning of non-
commercial sensors were tested in the laboratory before the field application. 

6.3.1. Hardware: UAV-mounted optical sensors 

The optical sensors employed in this thesis are RGB and NIR sensors embedded 
in fixed-wing UAVs. Optical sensors mounted on UAVs can have two types of 
relationships with the drone. It can be direct, in which the sensor communicates 
directly with the drone. In this case, the photo shooting is optimized, and the 

February 2018: Topographic 
analysis to define riverbed 

morphology. 

September 2018: High-
resolution imagery survey.
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pictures are taken according to the flight speed and the UAV position using a trigger 
concerning the mission plan. In this type of relation, usually, the power is provided 
to the sensor by the drone. Although the optical sensor on-board can be independent 
of the UAV: the power supply can be an extra battery independent from the UAV 
system and the frequency of shooting set by the pilot before the flight. In this case, 
the planning phase needs further caution to find the perfect shooting parameters for 
the selected flight.   
For this thesis, both types of relations were used for different sensors. Two RGB 
mass-market sensors were employed (S.O.D.A. and Sony ILCE-5100), one mass-
market NIR sensor (Canon S110) and a low-cost ad hoc created NIR sensor 
(Raspberry Pi camera). The next paragraphs will briefly describe the characteristics 
of the mass-market sensors and the functioning and calibrations realized of the 
Raspberry Pi camera.  
 

Mass-market cameras 

S.O.D.A.  
The Sensor Optimized for Drone Applications (S.O.D.A.) is a camera 
commercialized by Sensefly3, which is embeddable on eBee and eBee Plus drones. 
It has a global shutter, and it collects 3-band (Red, Green, Blue) imagery 
simultaneously on a single CMOS sensor. The S.O.D.A. has a lens with focal length 
of 10.6 mm and a 20 MP (5472 x 3648) RGB sensor (13.2×8.8 mm). 
 
Sony ILCE-5100 
The Sony ILCE-5100 is a mass-market mirrorless RGB digital camera. It is also 
broadly used for non-photogrammetric purposes. It has an APS-C type Exmor 
CMOS sensor to collect three-band imagery. It has a 24 MP resolution and 1.5x 
multifocal length. 
 
Canon S110  

The Canon Powershot S110 NIR is an RGN (Red Green NIR) camera sensor 
created to be mounted on eBee drones. It can directly communicate with the drone. 
The Canon S110 has a resolution of 12.1MP (4000x3000) and a focal length of 5.2 
mm. It has a modified filter that acquires the NIR in place of the blue band. The 
central wavelengths of the bands are 500 nm (Green), 625 nm (Red), and 850 nm 

                                                 
3 https://www.sensefly.com/ 
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(NIR), but all bands partially overlap across the range 350 and 1150 nm (Figure 
51).  

 

 
Figure 51. Spectral response of Canon Powershot S110 NIR. Since the NIR filter was 

removed, the NIR channel is broad and encompasses the visible electromagnetic spectrum. Source: 
Sensefly 

Raspberry Pi camera 

To pursue the principle of low-cost sensors, it was developed a multispectral, 
UAV-mountable sensor using a Raspberry System (Raspberry Pi 3) and two 
Raspberry cameras. The sensor collects information from the visible and infra-red 
range of the electromagnetic spectrum (Belcore et al., 2019b; Piras et al., 2019).  

The Raspberry Pi 3 is a personal computer board with a Linux-based operating 
system installed. Users can integrate any hardware. It is cheap, and its 
commercialization aims to encourage young people to learn to program (Agrawal 
and Singhal, 2015). Although initially developed to increase interest in software 
engineering, it has soon became accepted as a programmable control unit in many 
different applications (Sobota et al., 2013). Indeed, it can connect to numerous 
external accessories (Foundation Raspberry, 2019), including optical cameras. 
Many camera modules for Raspberry are available. Among others, some sensors 
can collect InfraRed light. The Raspberry device developed for photogrammetric 
purposes (Figure 52) is composed of i) a central Raspberry Pi 3 board; ii) a 3.5 
inches touch screen; iii) a multiplexer chip; iv) a Raspberry Pi 3 V.2 camera; v) a 
Raspberry Pi 3 V.2 NoIR camera; vi) a 5v power bank (Table 18).   
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The device's size was 85mmx56mmx32mm, the final weight (battery included) 
was 300 g, and it cost around 100€. The Raspberry Pi was coded to shoot and save 
pictures automatically from both cameras at a given frequency. 

Table 18. Components of the Raspberry-based device 

Component Description 
Central Raspberry Pi board Raspberry PI 3 Model B+ 

3.5 inches touch-screen Standard touchscreen connected (and powered) 
to the Central board 

Multiplexer chip Component that allows the use of two cameras 
on the same Raspberry board 

Raspberry Pi 3 V2 8MPx camera, RGB, 3g, Sony IMX219 
Raspberry Pi 3 V2 NoIR 8MPx camera, NoIR-GB, 3g, Sony IMX219 

 
The Raspberry Pi 3 cameras v2 employed were a regular RGB Pi 3 camera v2 

(Red, Green, Blue) and a NoIR Pi 3 camera v2 (NoIR-RGB). The RGB and NIR 
cameras did not work simultaneously, but with a 0,1-second delay between them, 
which was considered negligible for UAV's flights’ speed. Additionally, the data's 
resolution was reduced to 5 MP to allow the device to store the pictures at 1Hz 
frequency correctly.  

Since camera calibration is fundamental for any metric reconstruction from 
images (Nex and Remondino, 2014), the NoIR camera module was tested in the 
laboratory. (Pagnutti et al., 2017) realized an in-depth study on the Raspberry Pi 3 
v2 RGB camera. Considering the already existing study regarding the RGB 
Raspberry sensor, the calibrations were realized only on the NoIR Camera Module. 

Figure 52. Raspberry-based device used in this study 

http://www.sony-semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html
http://www.sony-semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html
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Specifically, the geometric calibration, the dark frame assessment, and the 
radiometric tests were performed.  

 
Geometric Calibration 
The geometric calibration allows identifying the coefficient of geometrical 

image distortion. The lens’ flaw usually causes distortion, and it is around some 
millimeters (see paragraph 5.1.1, page 95). it is necessary to take pictures of several 
known-size objects and check the ratio between them in the pictures to perform 
such analysis. Using specific algorithms is then possible to extract the distortion 
coefficient based on the difference between real wold measures and picture 
measures.  

The Raspberry Pi NoIR camera was geometrically calibrated using a known 
size chessboard (Figure 53). Twenty pictures were taken from different angulations. 
The camera's distortion was then estimated using MATLAB camera calibration tool 
(MATLAB, Computer Vision ToolboxTM). Table 19 shows the results and, for each 
parameter, shows the σ (standard error) value on x and y components that represents 
the uncertainty of the estimated parameters.  

Table 19. Geometric calibration results 

 x y x-error y-error 
Radial distortion 0.1913 -0.3323 0.0093 0.0363 
Tangential distortion -0.0026 -0.0113 0.0013 0.0015 
Estimated focal length [mm] 2.28 2.29 0.0033 0.0039 
Principal point [pixel] 1233 969 6.301 5.991 
Mean reprojection error [pixel] 0.663 

 

 

Figure 53. Known-size chessboard used for the geometric calibration 
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The errors have the same unit of measure on the corresponding parameter and 
are expressed for both x and y components. σ can be used to calculate confidence 
intervals. 

 
Dark frame knowledge  
The dark frame assessment identifies the background noise of the sensors. It is 

based on the assumption that in total-dark conditions, the DN values should be zero. 
A picture in the dark condition and the DN values registered are considered 
correction values for the acquisition in normal-light conditions. Since the dark noise 
is ISO- and temperature-dependent, this passage must be done for each ISO setting 
and constant temperature.  

The test was performed in stable conditions of temperature (indoor, 21°C). The 
sensor was covered with a black stopper, and 50 pictures were captured at different 
ISO (100, 200, 300, 300, 500, and 600) and constant exposure of 5ms. It was noticed 
that the first three pictures acquired were overexposed, thus discarded. The DNs of 
each band were spatially averaged. The results are three matrices (NoIR channel 
dark frame; green channel dark frame; blue channel dark frame) for each ISO 
setting. As expected, the dark frame is ISO dependant: its values increase for higher 
ISO (Figure 55). Table 20 reports DN distributions' histogram for the dark frame 
assessment for ISO 100 and ISO 600. 

Spectral response  
Pagnutti et al. (2017) realize a study on the Raspberry Pi 3 v2 camera 

identifying its bands' spectral resolution (Figure 54). A far as we know, there are 
no studies on the spectral response of the Raspberry NoIR.  

Figure 54. Raspberry Pi camera spectral response. Source: Pagnutti et al.,2017 



 

125 
 

 

Ba
nd

 1
 

 

ISO 
100 

 Ba
nd

 2
 

 

 

Ba
nd

 3
 

 

 

Ba
nd

1 

 

ISO 
600 

 Ba
nd

 2
 

 

 

Ba
nd

 3
 

 

The producer does not reveal information in its regard, but the NoIR camera is 
a “standard” Raspberry PI camera without the IR filter (RaspberryFoundation, 

2019). This means that the camera can detect InfraRed light, but it is unknown 

Figure 55. Histograms of frequency for the DN of dark frame assessment at 100 ISO (for Band 
1, 2 and 3) and 600 ISO (for Band 1, 2 and 3). 
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which part of the electromagnetic spectrum. A clue regarding the sensor derives' 
radiometric resolution derives from the work of (Hobbs et al., 2016). They created 
a spectrometer using a Raspberry Pi NoIR, and it is sensible between 315 nm and 
775 nm. This includes part of the Near-InfraRed spectrum. NoIR data were checked 
against one of a hyperspectral camera, Sonap Rikola, to define the device's spectral 
resolution better. Ten pictures of a calibration target and a plant were captured with 
the Raspberry and the hyperspectral sensor simultaneously. The data were spatially 
averaged and dark frame subtracted. The hyperspectral camera cannot detect values 
below 500nm (Blue) of the spectrum. Consequentially the blue band of the 
Raspberry was not taken into consideration. Thirteen bands between 630 nm and 
900 nm were acquired (amplitude of bands of 20 nm). The spectral signatures of 
sample pixels from the scene were extracted. The reflectance values of the green 
channel of Raspberry (i.e., 550mn) were subtracted to the one of the hyperspectral, 
showing a constant difference for the sample pixels (Table 21).  

Table 20. Dark frame assessment per band for different ISO settings. 

ISO Band Min DN Max DN Mean DN Median DN STDev 

100 
1 0.00 32.60 0.33 0.20 0.13 
2 0.70 35.90 1.81 1.60 0.17 
3 0.00 32.30 0.25 0.00 0.13 

200 
1 0.00 30.80 0.01 0.00 0.03 
2 0.00 31.00 0.08 0.00 0.05 
3 0.00 30.00 0.01 0.00 0.03 

300 
1 0.00 19.60 0.03 0.00 0.06 
2 0.00 19.30 0.03 0.00 0.06 
3 0.00 19.90 0.03 0.00 0.05 

400 
1 0.00 33.60 0.23 0.10 0.09 
2 0.00 25.00 0.23 0.20 0.08 
3 0.00 22.60 0.23 0.15 0.08 

500 
1 0.00 50.00 0.58 0.30 0.13 
2 0.00 33.30 0.36 0.30 0.10 
3 0.00 35.20 0.33 0.30 0.11 

600 
1 0.00 35.80 0.66 0.50 0.15 
2 0.00 32.90 0.60 0.50 0.11 
3 0.00 36.80 0.61 0.50 0.12 
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The values of the NoIR channel of Raspberry were subtracted to the ones of 
each hyperspectral band between the 630nm and 900nm. Then the differences were 
compared to evaluate constant distances between the spectral values. Apparently, 
there are no correlations with any band of the hyperspectral. In both the Green and 
NoIR band, the reflectance values of the black panel are very close. The remaining 
panels show small differences for the bands of 680nm and 700nm, although the 
white panel values are very close. There are no significant results from the 
comparison.  

Table 21. Distances between Raspberry reflectance values of the green band and Hyperspectral 
ones. The data are referred to as sample pixels of the calibration panels. 

Figure 56. Picture of the calibration scene taken by the NoIR camera. On the left, the 
calibration target comprises four panels (white, light grey, dark grey, and black). On the right side 
of the picture, a plant. At the bottom of the picture is visible, the irradiance sensor of the 
hyperspectral. 

 
Table 22 shows a comparison between the spectral signatures (Figure 57). The 

laboratory tests show that Raspberry Pi-based sensors are affordable and 
trustworthy multiband (NoIR-RGB) alternatives to commercial radiometric 
sensors. The possibility of coding and personally designing the device adds further 
potentialities, such as the sensor's connection with the UAV system. The coding 
broadens the application prospects of this low-cost sensor, making it adaptable to 
several unmanned vehicles. Nevertheless, the uncertain radiometric resolution is a 
limit to the employment of the sensor in scientific fields.  

Raspberry NoIR and hyperspectral reflectance 
difference on Green band (550nm) 

Dark Grey White Light Grey Black Vegetation 
 0.23 0.26 0.25 0.03 0.25 
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Figure 57. Plots of spectral 
signatures on the SONAP (grey 
dots) and the Raspberry NoIR 
(orange squares). The wavelength 
is on the x-axis, while the 
reflectance (0-1 scale) on the y-
axis. 
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Table 22. Difference between the Band NoIR of the raspberry NoIR and one of the 
hyperspectral bands between 630nm and 880nm ion the 5 sample points selected for the comparison. 

Bands Dark Grey White Light Grey Black Vegetation 
630nm 0.25 0.03 0.25 0.07 0.36 
660nm 0.29 0.17 0.29 0.08 0.39 
680nm 0.32 0.17 0.31 0.09 0.37 
700nm 0.29 0.03 0.31 0.07 0.28 
720nm 0.30 0.09 0.31 0.07 0.23 
730nm 0.28 0.05 0.30 0.06 0.18 
760nm 0.33 0.23 0.35 0.08 0.26 
780nm 0.30 0.12 0.32 0.07 0.21 
800nm 0.32 0.15 0.31 0.07 0.22 
820nm 0.33 0.23 0.33 0.07 0.26 
830nm 0.33 0.23 0.35 0.08 0.26 
860nm 0.35 0.27 0.36 0.08 0.28 
880nm 0.35 0.29 0.33 0.07 0.30 

We can presume that the NoIR camera is sensitive to the Near InfraRed light from 
this study and the literature. This is partially confirmed by validating the data 
collected in the field, which provides reasonable results. This specific sensor was 
applied for data collection in South-west Niger. 

6.3.2. Satellite sensors 

Sentinel-2  

Sentinel-2 is an Earth observation mission of the European Space Agency (ESA). 
It comprises a constellation of two polar-orbiting satellites that aims to: 

1. Systematic global acquisitions of high-resolution, multispectral images 
allied to a high revisit frequency; 

2. Continuity of multi-spectral imagery provided by other satellite Earth 
observation programmes ( such as the SPOT series of satellites and the 
USGS LANDSAT Thematic Mapper instrument); 

3. Observation data for the next generation of operational products, such 
as land-cover maps, land-change detection maps, and geophysical 
variables. 

The satellites (Sentinel-2A and Sentinel-2B) are placed in the same sun-
synchronous orbit, phased at 180° to each other. They have a wide swath width (290 
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km) and high revisit time (ESA, 2019). Namely, each satellite has ten days of 
revisiting time at the equator. Since Sentinel-2A and Sentinel-2B are phased, data 
of a specific point on Earth are available every five days (with cloud-free 
conditions). This corresponds to in 2-3 days at mid-latitudes. The data acquisition 
is limited between latitudes 56° south and 84° north. 

SENTINEL-2 carries an optical instrument, MultiSpectral Instrument (MSI), 
that samples 13 bands: four bands at 10 m, six bands at 20 m, and three bands at 60 
m spatial resolution (Table 23). 

Table 23. Spatial resolution and bandwidth of Sentinel-2A (S2A) and Sentinel-2B (S2B). 

Band 

S2A S2B 
Spatial 

resolution 
Central 

wavelength 
(nm) 

Bandwidth 
(nm) 

Central 
wavelength 

(nm) 

Bandwidth 
(nm) 

1 442.7 21 442.2 21 60 
2 492.4 66 492.1 66 10 
3 559.8 36 559.0 36 10 
4 664.6 31 664.9 31 10 
5 704.1 15 703.8 16 20 
6 740.5 15 739.1 15 20 
7 782.8 20 779.7 20 20 
8 832.8 106 832.9 106 10 
8a 864.7 21 864.0 22 20 
9 945.1 20 943.2 21 60 
10 1373.5 31 1376.9 30 60 
11 1613.7 91 1610.4 94 20 
12 2202.4 175 2185.7 185 20 
MSI is a pushbroom sensor that collects rows of data (i.e., several pixels 

’projections on the ground) across the orbital swath and utilizes the forward motion 
of the spacecraft along the path of the orbit to provide new rows for acquisition 
(Figure 58). In particular, in the MSI, the light reflected by the Earth is collected by 
a three-mirror (M1, M2, and M3) telescope and focused on two Focal Plane 
Assemblies: the visible and NIR spectrum and one for the three SWIR spectrum. 
To achieve the required 290 km swath width, both the Focal Plane Assemblies are 
composed of 12 detectors, spaced in two horizontal rows.  
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Figure 58. Pushbroom sensor functioning. Modified from http://fao.org 

The commercial products of Sentinel-2 are TIFF images representing a 
100kmx100km of Earth’s surface. ESA distributes them with two possible 
processing levels: Level-1C is the Top-Of-Atmosphere reflectance in cartographic 
geometry and level-2A Bottom-Of-Atmosphere reflectance in cartographic 
geometry. Level-1C imagery is the geometric and absolute calibration object, while 
Level-2A is also radiometrically calibrated (paragraph 5.1, page 94). The data can 
be downloaded by the Sentinel-2 toolbox, the Copernicus project platform Sci-Hub, 
and after a couple of days from Copernicus and ESA. They can be download also 
from other services such as Google Earth Engine. 

6.4. Tools for data processing  

Software, platforms and online services were used to pre-process, classify, and 
validate this work. The choice of the tools was accurately selected based on the 
cost, the source code's openness, and the performances. The selection of some tools 
required specific effectiveness tests and analysis, namely the Canadian PPP service. 
In the following sections will be presented the main tools used divided according 
to their functions: Image processing and classification, Structure from Motion, and 
GNSS-PPP. 
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6.4.1. Image processing and classification 

Google Earth Engine 

GEE is a web-based platform for geospatial analysis launched in 2010, and it 
is free for research and education purposes (Gorelick et al., 2017; Kumar and 
Mutanga, 2018). The GEE data catalog comprises continuously updated geospatial 
datasets provided by different national and international programs, such as NASA 
and ESA (Hu et al., 2018; Kumar and Mutanga, 2018; Shelestov et al., 2017; Sidhu 
et al., 2018). The datasets included some already elaborated satellite data. GEE's 
real innovation is the possibility of interacting with massive datasets and computing 
basic geospatial analysis directly on GEE servers through JavaScript/Python-based 
API (GEE API) (Goldblatt et al., 2017; Google Earth Engine, 2020). GEE makes 
available the imagery captured by Sentinel 2. Sentinel 2 is a mission of the 
European Space Agency (ESA), and it is composed of twins satellites (Sentinel-2A 
and Sentinel-2B) that carry multispectral optical sensors. The significant limits 
were detected in the memory available for single users, the inadequate information 
regarding the available functions, and the lack of some useful functions (like layers 
importance). Nevertheless, it is a relatively young service that is continuously 
enriched with new functions and features, and our analysis was quite ambitious 
from the computational point of view. 

Orfeo toolbox 

Orfeo ToolBox (OTB)4 is a FOSS project for state-of-the-art remote sensing. 
OTB's goal is to provide users with remote sensing tools that can deal with large 
datasets from resource-limited PC. The initial project was funded in 2006 by the 
French space agency. It is developed to process high resolution optical, 
multispectral, and radar images. It can process data at the terabyte scale. OTB 
provides users with a wide variety of optical imagery applications, from ortho-
rectification or pan-sharpening to object-oriented classification. The OTB’s 

algorithms are accessible from the GIS platforms, such as Qgis. 

eCognition Developer 

eCognition Developer is proprietary software for object-based image analysis. 
It is based on the Cognition Network Technology analysis method that extracts 
information from images using a hierarchy of groups of pixels (i.e., object-oriented 
approach). eCognition was launched in 2000, and today its use for geospatial 

                                                 
4 https://www.orfeo-toolbox.org/ 

https://www.orfeo-toolbox.org/CookBook/Monteverdi.html
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analysis is consolidated in several fields. Table 24 shows a brief analysis of the 
software's usability and effectiveness in this thesis, according to the author’s 

experience.  

Table 24. Author's experience over the image processing software used in this work. 

Software Usability Power Notes 

Google 
Earth 

Engine 

 Basic coding 
knowledge 
compulsory; 

 Many algorithms, 
but little control 
over the parameters; 

 Little memory 
allocated for the user 
(out of memory 
error) for large VHR 
datsets; 

 Fast computing 
of very large 
dataset; 

 Computing is 
user’s machine-
independent, 
since on cloud; 

 Long time to 
download the 
results; 

Working with GEE has 
been extremely time-
consuming for the 
limitation of memory 
consumption over 
Google servers and the 
impossibility of 
communication between 
the GEE asset and the 
GEE visual editor (no 
direct edits of the files 
imported from non-
GEE-environment. 

Orfeo 
toolbox 

 Can be used as 
stand-alone software 
or as add-on of 
Qgis; 

 Many algorithms 
and parameters that 
the user can easily 
control; 

 Few segmentation 
algorithms, with 
little control of the 
user; 

 

 
 Fast computing, 

although 
depending on 
PC 
specification; 

 Batch process 
possible; 

Extremely performant 
and easy to use. I 
detected some bugs in 
the Qgis (version 3.4) 
add-on. It is better to use 
it as a stand-alone (with 
graphical interface). 

Ecognition 

 User-friendly; 
 Good visualization 

and control over 
segmentation 
algorithms; 

 Long time 
requirements for 
computing, but 
the possibility of 
realizing the 
analysis on 
sample area; 

The interface is 
straightforward to use, 
and the user has much 
control over the 
segmentation results. 
Nevertheless, most of 
the algorithms seem to 
be black boxes. It is 
hard to manage large 
amounts of data. 
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6.4.2. Structure from Motion 

Metashape 

Agisoft Metashape (the previous version was called Agisoft Photoscan) is 
stand-alone proprietary software that performs SfM-MVS photogrammetric 
processing. It allows processing images from RGB and multispectral cameras, 
including multi-camera systems. Besides the production of georeferenced true 
orthomosaics and DEMs, it also proposed post-processing features, such as 
algorithms for shadows and texture artifacts removals and radiometric indices' 
computation. It can also work with satellite imagery and LiDAR data. An additional 
benefit of Agisoft Metashape is the out-of-core implementation that reduced the 
memory consumption fastening the SfM process.  

6.4.3. GNSS post-processing Service  

CSRS-PPP 

Operative since 2003, the CSRS-PPP is an online free tool provided by the 
Canadian government (Mireault et al., 2008). It calculates with high accuracy the 
positions of the information collected by GNSS receivers based on the RINEX files 
(Natural Resources Canada, 2016). The CSRS-PPP uses GNSS ephemerids to 
produce absolute constant accuracy coordinates, meaning using accuracy values that 
do not depend on the position in the globe in which they have been collected or on 
the distance between GNSS receiver and CORS. The position is as much accurate as 
long in the acquisition session. The CSRS-PPP uses ephemerids of three types, Final, 
Rapid, and Ultra Rapid.  
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Chapter 7 

Case study A: Alpine Arch forest 

The Alpine case study is located in Cesana Torinese (TO, Italy) and analyzed a 
rockfall-prone area. In this framework, two classifications were realized, which 
differ in thematic detail and the data sources. Table 25 summarizes the 
characteristics of the three classifications in the Alpine arch environment. 

Table 25.  Classifications that interest the Alpine arch area. 

NO. Classification Temporal Spatial Thematic Reference 
publication 

i UAV-ITD Low Very High High (Belcore et 
al., 2020) 

ii SAT-LC High Medium Low (Belcore et 
al., 2020) 

7.1. UAV- ITD 

UAV application in forestry inventory and, more generally, in the extraction of 
the primary forest parameters (e.g., forest stand density, crowns widths, basal area, 
average diameter at breast height, height) is well established. The structural 
information of forest stands is vital for silviculture and forestry inventories. The 
tree crowns' accurate detection is necessary to estimate the dendrometric attributes 
of forest stands, such as the tree position, the stem diameter, height, crown 
extension, and volume (Magnard et al., 2016; Qiu et al., 2020; Sačkov et al., 2014). 
Besides, these forest parameters can be valuable ecological indicators, which 
determine, among others, the carbon sequestration, the shading, the risk of wind-
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breakage, and the tree growth (Panagiotidis et al., 2017). The determination of these 
parameters is performed at the individual tree level and requires information about 
single trees.  

7.1.1. Class identification 

Up to this time, many approaches have been proposed for Individual Tree 
Detection (ITD) via remote sensing. Generally, they are based on Digital Elevation 
Models (DEM) that can be generated from LiDAR acquisitions (Bottai et al., 2013; 
Dong et al., 2020; Moe et al., 2020; Sačkov et al., 2014; Wang et al., 2019; Yao et 

al., 2012; Zaforemska et al., 2019) or Structure from Motion (SfM) (Abdullah S et 
al., 2019; Grznárová et al., 2019; Moe et al., 2020; Mohan et al., 2017; Panagiotidis 
et al., 2017). SfM uses optical images acquired from multiple perspectives to 
recreate the three‐dimensional geometry of an object (Fonstad et al., 2013; Iglhaut 
et al., 2019). The 3D model generation is carried out by incremental steps. See 
paragraph 3, page 103, for more information about the SfM process.   

Regardless of the data source, some 2D ITD methodologies include the 
computation of the Canopy Height Model (CHM) to detect and delineate tree 
crowns (Mohan et al., 2017; Vastaranta et al., 2012). First, the local maxima of the 
CHM are computed to detect treetops (Mohan et al., 2017; Vastaranta et al., 2012), 
and then, the crowns are delineated using image-processing and segmentation 
algorithms (Bottai et al., 2013; Dong et al., 2020; Ke and Quackenbush, 2011; 
Wang et al., 2019). The most common technique for delineating crowns consists of 
the watershed segmentation using as input seeds the local maxima. Segmentation 
works on contiguous pixels grouped based on similar Digital Numbers (DN) values 
(De Luca et al., 2019; Dong et al., 2020; Torres-Sánchez et al., 2015; Wang et al., 
2019). When the local maxima are identified, they are used as input seeds or starting 
points for the segments' generation. Many other 2D ITD spectral information 
methodologies have been explored, but unlike the others, these procedures mainly 
work on the segmentation based on brightness levels (Bottai et al., 2013; 
Panagiotidis et al., 2017; Pouliot et al., 2002; Sačkov et al., 2014; Vastaranta et al., 

2012; Wolf and Heipke, 2007). They consider the brightest pixel in a neighborhood 
as the tree crown apex and identify the tree crown perimeters using dark-pixel and 
valley-following approaches. Most of the ITD techniques depend on CHM 
generation methods that may affect trees’ crowns delineation (Dong et al., 2020; 
Mielcarek et al., 2018). CHM is calculated as the difference between the Digital 
Surface Model (DSM) and the Digital Terrain Model (DTM). Thus, a good DTM 
is a fundamental prerequisite for CHM's accurate characterization (Moe et al., 
2020).  
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When the DTM of a forest stand is interpolated from LiDAR or 
photogrammetric point clouds, their accuracy is strongly influenced by the forest 
stand's density, meaning the number of ground points identified by the sensor (Moe 
et al., 2020). Indeed, the CHM-based methods for ITD assume that local maxima 
analysis detects treetops. However, in structurally complex forest stands and steep 
slope areas, the results should be carefully interpreted (Panagiotidis et al., 2017). In 
this framework, LiDAR data is much more accurate (Mohan et al., 2017) than the 
SfM-based approaches since LiDAR can penetrate tree crowns and obtain terrain 
information by reaching the ground (Pearse et al., 2018).  Because of that,  and the 
commercialization of light-weighted sensors that can be mounted on UAVs, the 
most recent applications of ITD methodologies work on 3D datasets acquired with 
Aerial Laser Scanners (ALS) (Mohan et al., 2017; Wang et al., 2019; Yao et al., 
2012). Besides generating more accurate point clouds, LiDAR technologies are 
more expensive than optical ones (Pearse et al., 2018; Vastaranta et al., 2012). Even 
if some countries, such as Norway, Sweden, and Canada, use LiDAR technology 
for national forest inventories, several annual acquisitions at local and regional 
scales are generally cost-prohibitive (Pearse et al., 2018). Therefore, many 
countries are not in the economic position to rely on LiDAR technologies. 
Generally, SfM-derived data for forestry inventories are more cost-effective than 
LiDAR data and can cost about one-half to one-third of LiDAR data (White et al., 
2013). 

Moreover, LiDAR sensors are heavier than multispectral cameras and need to 
be mounded on UAVs with higher payload capacity. Besides being more expensive, 
larger UAVs with heavy payloads may require additional training and licensing 
(most UAV license national systems are based on Maximum Take-Off Weight, 
MTOW, categories). LiDAR also requires high data storage structures (Vastaranta 
et al., 2012) and powerful computational techniques to obtain accurate results 
(Mohan et al., 2017). The LiDAR data do not provide the users with the spectral 
information, although some models have a camera integrated into the acquisition 
systems. Table 26 provides an advantages and disadvantages analysis of the optical 
and LiDAR systems focused on UAV data acquisition for ITD. The ITD approaches 
based on UAV aerial images turn to be a cost-effective and valid alternative to  
LiDAR. They provide users with good accurate data with little usage of resources.  
Several studies have been carried out on the accuracy of ITD from UAV-derived 
information. Some methods identify the tree crowns from the brightness values of 
visible and infrared images (Pouliot et al., 2002; Wolf and Heipke, 2007), some 
more recent ones work on multiscale filtering, segmentation of imagery, and math 
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morphology algorithms (Qiu et al., 2020) to define tree crowns (Abdullah S et al., 
2019; Ke and Quackenbush, 2011; Maschler et al., 2018). 

Table 26. UAV and LiDAR systems' advantages and disadvantages for the acquisition of data 
in forested areas with UAV for the Individual Tree crown Detection (ITD) from literature and 
authors’ personal experience. 

 Advantages Disadvantages 

O
pt

ic
al

 

Low-costing (Pearse et al., 2018; 
Vastaranta et al., 2012); 

No advanced-trained personnel 
needed; 

Provides multispectral information 
(Campbell and Wynne, 2011); 
Requires medium data storage 

structures; 

Incapable to penetrate tree crowns; 
Inaccurate DTM in case of high-density 

stands (Mohan et al., 2017); 
Sensitive to varying illumination 
conditions (Iglhaut et al., 2019); 

Incapable of collecting data of trunks (2D-
nadiral information only) (Moe et al., 

2020).(Moe et al., 2020); 
Requires powerful computational 

technology; 

Li
D

A
R

 

High accurate (Mohan et al., 2017); 
Penetrates tree crowns (Moe et al., 

2020; Pearse et al., 2018); 
Provides trunks and lower forest 

strata information (Moe et al., 
2020). 

 

Expensive (Moe et al., 2020; Pearse et al., 
2018; Vastaranta et al., 2012);  

Requires UAV systems with high MTOW 
capability; 

No multispectral information available 
(Campbell and Wynne, 2011) ; 

Requires high data storage structures 
(Vastaranta et al., 2012); 

Powerful computational technology 
needed (Mohan et al., 2017). 

 
These methods usually have complex segmentation workflows and require 

image filters, such as Laplacian filters, Gaussian filters, and math morphology 
algorithms. Complex segmentation processes are necessary because UAV optical 
imagery of forested areas is frequently affected by shadows, slope-derived 
distortions, and low contrast (Dorren et al., 2003; Itten and Meyer, 1993). These 
aspects, which are enhanced by the high spectral variability of VHR imagery, make 
the segmentation difficult. VHR images represent a challenge for segmentation and 
classification because, unlike in lower resolution images, single pixels no longer 
capture the classification targets' characteristics (Torres-Sánchez et al., 2015). 
Image-based methodologies for ITD, even if efficient, usually require several steps. 
Therefore high computational time is needed. This is one of the reasons why CHM-
based methods have partially overcome the image-based processes for ITD. 

Nevertheless, when CHM is not accurate enough or too expensive, such as 
structural complex stands, image processing methods that do not require CHM 
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exist, and they can be a valuable alternative to CHM-based methods. Indeed, image-
based segmentation techniques can provide good accuracy results, especially when 
a textural analysis is applied (Blaschke, 2010; Lewiński et al., 2015). A shared 
methodology of texture analysis for segmentation (and classification) is based on 
the Gray Level Co-occurrence Matrix (GLCM) according to the Haralick measures 
(Haralick et al., 1973). For the images of complex structures, some researchers 
proposed to use segmentation algorithms based on fractal and multifractal analysis 
(Stojić et al., 2006a; Véhel and Mignot, 1994; Voorons et al., 2003). It is worth 
reminding here that a fractal is a rough or fragmented geometrical object that can 
be subdivided into parts, each of which is (at least approximately) a reduced-size 
copy of the whole object (Mandelbrot, 1982). Fractals are described by one 
quantitative number – a fractal dimension, for computation of which various 
methods have been proposed (see, e.g. (Sun et al., 2006)),  but generally, it can be 
treated as information about the considered objects’ measure of complexity and 

self-similarity. 
Fractal dimension has been used together with other features for image texture 

description and segmentation, e.g., (Keller et al., 1989), see paragraph 4.3.1, page 
56. The fractal dimension has also been utilized in the forestry and classification 
fields. For instance, an interesting description of fractals in forest science can be 
found in (Lorimer et al., 1994). (Zeide and Pfeifer, 1991) showed that tree crowns' 
fractal dimension could be useful in crown classification and foliage distribution 
within a single tree crown analysis. Similarly, (Mandelbrot, 1982) suggested 
applying fractals to modeling trees and analyzing their structure. A comprehensive 
review of the application of fractal description in forest science can be found in 
(Lorimer et al., 1994).  

 At the beginning of the multifractal image analysis, a measure is assigned to 
of the image and in the next steps, the measure regularity of this measure is analyzed 
as the information on the image complexity/inhomogeneity. It is worth to underline 
that various measures defined based on pixel intensities can be applied (Stojić et 

al., 2006a; Turner et al., 1998; Véhel and Mignot, 1994). The local (pointwise) 
degree of regularity of a given measure is described by so-called Hölder exponent 
values that strongly depend on the actual position on the image and identify points 
that differ from the background (Stojić et al., 2006a). On the other hand, the 
distribution of Hölder exponents on the image is summarized in the form of the so-
called multifractal spectrum treated as the global characteristic of a measure 
regularity (image complexity/inhomogeneity) (Stojić et al., 2006a; Véhel and 

Mignot, 1994). Global multifractal characteristics have already been applied to 
VHR optical data (Jenerowicz et al., 2019; Wawrzaszek et al., 2014), mostly to 
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distinguish between different land cover types. One can also find their application 
in the context of the study of forest cover, such as in (Danila et al., 2019) ’s work, 
or to perform the segmentation of plants’ diseases images (Wang et al., 2013). 

On the other hand, the local multifractal description by using Hölder exponents 
has rarely been used, mainly to perform segmentation of medical data (Stojić et al., 

2006a; Véhel and Mignot, 1994), or in the change detection aspects of satellite 
images (Aleksandrowicz et al., 2016; Véhel and Mignot, 1994). Anyway, the results 
obtained in papers (Aleksandrowicz et al., 2016; Stojić et al., 2006a; Véhel and 

Mignot, 1994) suggested the usefulness of the Hölder exponent in the context of 
image content description. In particular, the authors of these studies underlined the 
fuller description of complex shapes, heterogeneous measures, and structures 
typical for satellite remote sensing. It is worth mentioning that to the best of our 
knowledge. The Hölder exponent parameter has not been determined both for VHR 
UAV-derived imagery yet and in the context of the forest analysis. Therefore, in 
this study, we focus on determining the local Hölder exponent connected with 
multifractal theory and using it to segmentation single tree crowns from VHR 
UAV-derived imagery. More precisely, we propose to apply this quantitative 
descriptor as the unique input for the efficient identification of single tree crowns 
using only a cycle of the multiresolution segmentation algorithm (Ke and 
Quackenbush, 2011; Mohan et al., 2017; Qiu et al., 2020; Wolf and Heipke, 2007).  

7.1.2. Data collection and pre-processing 

UAV technology was used in this research to generate photogrammetric 
products to be used as input data for the segmentation of single tree crowns using 
multifractal analysis.  

Orthomosaic generation 

The UAV system used was chosen to consider the characteristics of the study 
area, regarding the topography, and the environmental conditions that could affect 
the execution of flights, the resolution of the products to be generated and the 
sensors to be integrated. Besides the radiometric information regarding the visible 
part of the electromagnetic spectrum (Red, Green, Blue), the Near InfraRed (NIR) 
part was necessary. Indeed, NIR information can enhance vegetation in the image-
processing phase, and, generally, NIR information helps distinguish shadows from 
dark objects, which have higher reflectance in the NIR. Due to the large area 
involved in this application and the steep terrain, with an elevation difference of 
about 400 m, we used a commercial fixed-wings solution, an eBee Plus made by 
senseFly. The eBee has a payload of up to 0.3 kg, a flight autonomy of 59 minutes, 
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and it can reach a cruise speed of 40-110 km/h. Moreover, it does not require expert 
users because take-off and landing are entirely automatic, thanks to the built-in 
GNSS receiver.  

Two different camera devices were employed for the collection of the RGB and 
NIR electromagnetic spectrum. To perform the RGB flight, the eBee Plus was 
equipped with the RGB senseFly S.O.D.A. digital camera (paragraph 6.3.1, page 
119). A fixed number of frames per second equal to 0.25 fps (4 Hz frequency) was 
automatically acquired by the camera using a shutter cable. The flight with the eBee 
was planned using the eMotion software considering a photogrammetric overlap 
between images of 80% in the lateral and longitudinal direction, an altitude of 220 
m, a speed of 9 m/s, and an average ground resolution of 5 cm.  

Due to the extension of the area and the significant difference in the height of 
the terrain, which could have adversely affected the battery's autonomy, not 
allowing the flight to end, it was decided to survey the area through two distinct 
flights (Table 28). The flights were planned using as a base a Digital Surface Model 
(DSM) of the area from which the flight height was fixed. Given the steep terrain, 
the flight plan was created so that the flight path's survey lines would be parallel to 
the contour lines of similar elevation and then at a constant height. In order to 
acquire NIR images, we used a commercial camera, the Canon S110 NIR 
(paragraph 6.3.1, page 119). Taking into account the characteristics of the camera 
sensor, the flight was performed with the eBee at a height of 220 m and a speed of 
11 m/s, in order to guarantee an image overlap of 80% on both directions and an 
average ground sample distance (GSD) of about 6 cm. Table 27 recaps the 
characteristics of the sensors and Table 28 shows the characteristics of the 
photogrammetric flights. The data acquisition is a crucial step of the 
photogrammetric process since the quality of the final result depends on it. The data 
acquisition phase includes flights, but, if necessary, the measurement of Ground 
Control Points (GCPs), for the point clouds georeferencing, and of Check Points 
(CPs) for the evaluation of the accuracy of the final results. To this purpose, before 
performing flights, 20 colored markers of size 40 x 40 cm were placed within the 
study area. Fourteen of them were used as GCPs during the data processing phase, 
while six markers were employed as CPs for the validation of the model (Figure 
59). The position of the GCPs and CPs was acquired through a GNSS (Global 
Navigation Satellite System) receiver using a Real-Time Kinematic (RTK) (with 
GSM connection for real-time correction) approach, considering a session length 
of about 10 seconds for each point. The points’ coordinates were estimated with 

fixed-phase ambiguities. The centimeter-level accuracy (≅3 cm) ensured a high 
level of precision for the georeferencing process.  
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Table 27. Characteristics of the sensors of the flights 

Characteristics RGB senseFly S.O.D.A Canon S110 NIR 
Resolution 20 MP 12.1 MP 
Bands sensor RGB RGN 
focal length 10.6 mm 5.2 mm  
Shutter frequency 4 Hz 1 Hz 
Sensor size  13.2×8.8 mm 7.53×5.64 mm 
Lateral overlap 80% 80% 
Longitudinal overlap 80% 80% 
Number of flights 2 1 
Average duration of flight 15 minutes 19 minutes 
Height of flight from the ground  220 m  220 m 
GSD 5 cm/pixel 6 cm/pixel 

Table 28. Characteristics of the three flight plans (Num. = Number). 

 S.O.D.A. _ Ist flight S.O.D.A. _ IInd 
flight Canon S110 NIR 

Area [ha] 60 40 76.4 
Num. of 
images 

221 137 176 

Camera 
orientation 

Nadir  Nadir  Nadir 

 

 

 

Figure 59. The study area in Cesana Torinese. The light blue circles are the CPs and the orange 
squares are the GCPs. 
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The aerial image acquisitions aimed to produce the RGB and RGN (Red, Green, 
NIR) orthomosaics. All the UAV data were post-processed through the SfM 
approach (Turner et al., 2012). These algorithms, which are now implemented in 
several commercial software, allow to rapidly and accurately align the images, 
compute a three-dimensional dense point cloud, and then reconstruct a textured 
mesh of the object of study. In this case study, the photogrammetric process was 
carried out using the AMP (Agisoft Metashape Professional) commercial solution 
(see 6.4.2, page 134 for more information regarding AMP).  

The RGB datasets, acquired in two different flights, were processed together in 
the same project. A specific project was then dedicated to the processing of the 
RGN images. Nadiral images, in both projects, were aligned together, setting up the 
“high” level of accuracy of AMP, removing any limit on the key and tie points 
number. Subsequently, the measured GCPs and CPs were collimated in all the 
images, obtaining a 3D georeferenced model of known accuracy, as shown in Table 
29. The Root Mean Square Error express the accuracy, as per equation 13. 

 

𝑅𝑀𝑆𝐸 (𝑚) = √
∑ (𝑅𝑖

𝑛
𝑖=1 −𝑆𝑖)2

𝑛
,     [13] 

 

Where the 𝑅𝑖  is the reference (check points measured coordinates) and 𝑆𝑖  is 
the same point measure from the orthomosaic (check points measured points from 
the orthopmosaic). The 3D dense point clouds were produced using a “high” level 

of details to obtain products suitable for medium/large-scale representations (1:500) 
and an “aggressive” depth filtering in order to remove the noise due to the presence 

of dense vegetation. The next step involved the generation of a “high” quality level 

mesh, from which we were able to generate the DSM of the study area. The UAV 
image data processing results were two orthomosaics in the RGB (Figure 59) and 
RGN (Figure 60) channels of the area of interest in the WGS84 – UTM 32N 
coordinates system. According to the model's accuracy, the orthomosaics were 
produced with a resolution of 10 cm, setting the “mosaic” blending mode option in 

AMP. The borders of the orthomosaics were cut out from the study area to avoid 
distortion of the images and get a regular shape. 
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Figure 60. Resulting RGN orthomosaic. 

Table 29. Estimated residuals on the GCPs and CPs and characteristics of the obtained dense 
point clouds (where N = Number and RMSE=Root Mean Square Error). 

Input 
dataset 

Data 
resolution 

[pixel] 

N. of 
images 

RMSE on GCPs  [m] RMSE on CPs  [m] N. of 
points  
(dense 
cloud) 

x y z x y z 

RGB 5472×3648 358 0.026 0.050 0.048 0.052 0.039 0.029 35144184 

RGN 
4048 × 
3048 

176 0.045 0.061 0.053 0.018 0.051 0.080 27624422 

 

Comparing the two orthomosaics obtained, it can be observed that the product 
in the RGN channels is incomplete concerning the central part of the study area. It 
was impossible to align the RGN images related to this portion of the area, probably 
due to the considerable difference in altitude of the terrain, due to an almost vertical 
rock wall. However, the vegetation present in this area was relatively low and 
sparse, and, therefore, this does not affect the application of the algorithms 
described below. Finally, in addition to the two products already described, it was 
possible to generate the DTM of the area, using the dense point cloud as input data. 
Due to the complex terrain orography and the presence of dense vegetation, a semi-
automatic approach was chosen. In a first step, the points belonging to the ground 
were classified with a specific AMP algorithm by setting the maximum angle equal 
to 45 (i.e., the maximum angle between the terrain model and the line to connect a 
point with a point from a ground class). Subsequently, the classification was 
optimized manually to replace the points not correctly classified by the software. 
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Exploiting the ground's identified points, it was, therefore, possible to generate the 
DTM with a resolution of 10 cm. 

Features extractions 

This analysis focused on the local description of VHR UAV-derived imagery 
using parameters related to multifractal formalism. More precisely, we determined 
the singularity strength α (known as the Hölder exponent), which depends on the 
pixel’s actual position in the structure (i.e., the single-band image) and makes 
possible to describe the local degree of regularity of the measure around the pixel 
(Aleksandrowicz et al., 2016; Stojić et al., 2006b). The procedure used to calculate 
the Hölder exponent 𝛼 is graphically presented in Figure 61 and briefly summarized 
below.  

For each pixel (𝑚, 𝑛) of the NIR channel, we considered a square neighborhood 
of size 𝜀𝑖 = 2𝑖 − 1, 𝑖 = 1, 2, … , 𝑗, where 𝑗 denotes the total number of squares, 
while 𝜀𝑖 is the size of a region centered on the pixel (𝑚, 𝑛). In this notation, 𝜀𝑖 =

1 denotes a square, which contains only a single pixel, 𝜀𝑖 = 3 represents a square 
of size  3 ×  3 containing pixel’s neighbors, while 𝜀𝑖 = 5  is a square of size 5 ×

 5, etc. It is worth to stress that during the computation of 𝛼(𝑚, 𝑛) various sizes of 
pixel neighborhoods 𝑗 as well shapes can be applied, allowing to describe localized 
or more widespread singularities. Here, we consider cases where the maximum 
neighborhood (maximum square size) of a pixel is 5 ×  5 (𝑗 =  3). The next 
important aspect of Hölder exponent determination stated the use of various 
capacity measures (𝜇), which emphasizes various effects on the image (Jenerowicz 
et al., 2019; Stojić et al., 2006a). In the frame of this work, based on the initial tests 
we applied the following type of capacity, equation 14: 

 

𝜇𝑖
𝐼𝑆𝑂(𝑚, 𝑛) = 𝑐𝑎𝑟𝑑{(𝑘, 𝑙)|𝑔(𝑚, 𝑛)  ≡ 𝑔(𝑘, 𝑙), (𝑘, 𝑙) ∈ 𝛺𝑖},     [14] 

 

where 𝑚, 𝑛 denotes the pixel position, 𝑔(𝑘, 𝑙) is a gray-scale intensity at point 
(𝑘, 𝑙), Ω𝑖 is the set of all pixels (𝑘, 𝑙) in the ith square. Capacity measure ISO (Eq. 
1) gives the number of pixels in the considered neighborhood, which have the same 
values as centered pixel (𝑚, 𝑛). A more detailed discussion about the used measures 
can be found in  (Stojić et al., 2006a; Turner et al., 1998; Véhel and Mignot, 1994).
 After calculation of capacity 𝜇𝑖

ISO, in the pixel neighborhood 𝜀𝑖, the discrete 
set of coarse Hölder exponents has been determined: 

 



 

146 
 

𝛼𝑖(𝑚, 𝑛) =
𝑙𝑜𝑔(𝜇𝑖

𝐼𝑆𝑂(𝑚,𝑛))

𝑙𝑜𝑔 𝜀𝑖
,      [15] 

 
Finally, the limiting value of the Hölder exponent for each pixel from the NIR 
channel has been estimated using the formula:  

 

𝛼(𝑚, 𝑛) = lim
𝜀𝑖→1

log(𝜇𝑖
ISO(𝑚,𝑛))

log 𝜀𝑖
,    [16] 

 

as the slope of the linear regression through points on a log-log plot, where 
log 𝜀𝑖 is plotted on the x-axis, and log 𝜇𝑖

ISO(𝑚, 𝑛) on the y-axis, as shown in the 
middle section of Figure 61 (Aleksandrowicz et al., 2016). In the final step of the 
analysis, a two-dimensional ’α-image’, which collects Hölder exponents, is 
calculated. As we underlined in the Introduction, next to the local Hölder exponent, 
the multifractal description also enables to analyze the global distribution of the 
regularity in a whole scene and to summarize it in the form of the multifractal 
spectrum, see, e.g. (Stojić et al., 2006a). However, the usefulness of this function 
in the context of tree detection will be the topic of separate analysis. 

7.1.3. Methods 

Segmentation 

In the further analysis steps, the Hölder exponent layer (α-image) determined 
using ISO capacity has been used as the base raster for the ITD through the 
segmentation process. First, it was smoothed with a simple average filter to remove 
small variations on the crown surface. The degree of smoothness was defined by 
the size of the filter (3x3). The segmentation was realized with eCognition 
Developer software. Two steps accomplished the crown extraction. In the first step, 
the high-fractality pixels were separated from the low-fractaly ones using a multi-
threshold algorithm applied to the Hölder exponent layer calculated on the InfraRed 
band. It was necessary to find the threshold value that represented the breakpoint 
between tree crowns and other elements. Table 30 shows the adopted parameters. 
The threshold parameters were selected to satisfy the spectral difference between 
crowns and other elements, and they are designed to consider overexposed areas.  
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Figure 61. The procedure used to calculate the Hölder exponent 𝛼, adapted from Figure 1b in 
(Aleksandrowicz et al., 2016) 

The second step consists of selecting single crowns applying a multiresolution 
segmentation algorithm (Table 30). The segments' borders were redefined by 
growing them of 1 pixel and the objects with an area less than 80 pixels were 
considere outliers and removed.  
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Table 30. Algorithms, parameters, and computational time are used for the segmentation. 
The input band is the Hölder exponent image. 

Algorithm Parameters values Computing 
time  Notes 

Contrast split 
segmentation 

Minimum 
threshold  0.4 

5’ 42’’  

Maximum 
threshold 1 

Step size 5 
Stepping type Add 

Class for bright 
objects 

Other 

Class for dark 
objects Trees 

Multiresolution 
segmentation 

Scale parameter 11 

5’ 31’’ 
Only on 

Trees 
class 

Shape 0.05 

Compactness 0.5 

Chessboard 
segmentation Object size 3 12’’ 

Only on 
Other 
class 

Assign class 
Use class Temporary class 

5’’ 
Only on 
Other 
class condition Border to Trees 

>0px 

Grow region Candidate classes Temporary class 6’’ 
Only on 

Trees 
class 

Remove object Condition  Area < 80Px <0,001’’ 
Only on 

Trees 
class 

 

Validation 

The literature is rich in methodologies for evaluating the goodness of 
segmentation and extraction of specific objects from imagery (Clinton et al., 2010). 
Nevertheless, as far as we know, a shared and accepted methodology for the 
accuracy assessment does not exist (Persello and Bruzzone, 2010). Besides this, the 
methods applied are quite similar to each other, and generally, they are based on 
the comparison between manually digitalized reference objects and the segmented 
objects (Clinton et al., 2010; Hussin et al., 2014; Ke and Quackenbush, 2011; 
Persello and Bruzzone, 2010; Radoux and Defourny, 2007; Yurtseven et al., 2019). 
The most common validation methodologies can be distinguished in visual 
evaluations and quantitative measures. The visual evaluations are based on 
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comparing reference objects to the segmented ones and their attribution to the 
match or non-match categories by the operator. The omission and commission 
errors are then calculated (Ke and Quackenbush, 2011; Mohan et al., 2017; Qiu et 
al., 2020; Wolf and Heipke, 2007). The quantitative measures focus on comparing 
the reference dataset and the segmentation results based on specific metrics. The 
perimeter, the area, and the distance between centroids of the objects are some of 
the most calculated metrics for the goodness of the segmentation assessment 
(Clinton et al., 2010; Hussin et al., 2014; Persello and Bruzzone, 2010; Yurtseven 
et al., 2019). Generally, the evaluation of the metrics is performed by applying 
normalized indices (Clinton et al., 2010; Hussin et al., 2014; Persello and Bruzzone, 
2010; Yurtseven et al., 2019) or by calculating the Root Mean Square Error (RMSE) 
(Hussin et al., 2014; Ke and Quackenbush, 2011; Yurtseven et al., 2019). The 
normalized indices can provide a value representing the goodness of the 
segmentation that can be easily compared to other segmentation. The quantitative 
methods are almost wholly applied only to evaluate the segmentation of satellite 
imagery of heterogeneous land cover scenes. As far as we know, few applications 
have been realized in the ITD context. 

The accuracy was evaluated in terms of correspondence between the reference 
crowns and the segmented ones. The evaluation methodology translates specific 
pixel-based accuracy measures (user’s and producer’s accuracy and F1 score) in 

object-based measures. Particularly, the producer’s accuracy (PA) and the user’s 

accuracy (UA) are calculated using the following equations: 

𝑃𝐴 =  
𝑀

𝑅𝐶
,       [17] 

 

𝑈𝐴 =  
𝑀

𝐷𝐶
,       [18] 

where PA is Producer’s accuracy, UA is User’s accuracy, M the number of 
matching crowns, RC is the number of reference crowns, and DC the number of 
defined crowns. The relation between UA and PA is described by F1 score, from 
the equation: 

𝐹1 =  
2×𝑃𝐴×𝑈𝐴

𝑃𝐴+𝑈𝐴
.      [19] 

 
The situation shown in Figure 62a was considered as matching crowns (M), 

while the relations of reference and segmented crowns in Figure 62b, Figure 62c, 
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and Figure 62d were considered as non-matching crowns. The segmented crowns 
were counted based on their overlap with the reference crowns. For example, the 
segmented crowns in Figure 62b are zero, in Figure 62c is one, and in Figure 62d 
are three. Even if significant, these measures provide a partial view of the goodness 
of the segmentation. The Omission and Commission errors can describe more 
precisely the goodness of the segmentation. As illustrated by (Ke and Quackenbush, 
2011), we took into consideration four possible cases of the relation between the 
reference dataset and the segmented one: i) Match, ii) Simple omission, iii) 
Omission through under-segmentation, and iv) Commission through over-
segmentation, (Figure 62). 

 
(a) Match (b) Simple omission 

  
(c) Omission through under-

segmentation 
(d) Commission through over-

segmentation 

  

Figure 62. Possible cases of the relation between reference crowns (blue border) and 
segmented crowns (red border) 

It is based on the works of (Persello and Bruzzone, 2010), (Clinton et al., 2010), 
and (Yurtseven et al., 2019). The areal difference, the perimeter, the centroid's 
distance, the Under-segmentation index, the Over-segmentation index, and the 
Completeness index are the evaluated metrics. The Root Mean Square Error 
(RMSE) was calculated for the area and the perimeter. 
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The areal distance is the most common metric used as an indicator of 
segmentation goodness. It was calculated for reference objects and the segmented 
objects. In the case of over-segmentation, the reference area was compared to the 
sum of the segmented objects in the reference tree's correspondence. 

The perimeter measures the length of the object borders. In the case of more 
than one crown corresponding to the reference, the segmented perimeter was 
calculated as the sum of the perimeters on every object composing the crown in the 
exam. With this approach, over-segmented objects have high RMSE values. It is 
worth mentioning that the perimeter metrics results should be considered with 
caution. Indeed the values can vary according to the shape and the number of tree 
branches considered.  

The centroid distance represents the Euclidean distance between the 
gravitational centers of two shapes. The Euclidean distance between the centroids 
is calculated as the RMSE (Yurtseven et al., 2019); thus, it can be considered as the 
indicator of an error on the distance between gravitational centers. In the case of 
more than one crown corresponds to the reference, the centroid distance was 
calculated between the reference crown and the closer centroid. 

The RMSE of perimeter and area were calculated with eqation 13, where Ri is 
the value of metric m of the reference crown, and Si is the metric m for the 
segmented crown. Four indicators for the evaluation of the goodness of the 
segmentation were applied. For each reference tree were evaluated the Over 
segmentation index (OS), the under-segmentation index (US), the Intersection over 
Union index (J), and the Completeness (D).  

The OS and US were proposed by Clinton et al. (2010) and Persello (2010) 
(Clinton et al., 2010; Persello and Bruzzone, 2010). Their estimations are based on 
the relation between the segmented (S) area and reference objects (R). The 
following equations describe OS and US: 

 

𝑂𝑆 = 1 −
|𝑅𝑖∩𝑆𝑖|

|𝑅𝑖|
,    [20] 

 

𝑈𝑆 = 1 −
|𝑅𝑖∩𝑆𝑖|

|𝑆𝑖|
 ,    [21] 

 
where 𝑅𝑖 ∩ 𝑆𝑖 in the overlapping area between the reference crown (𝑅𝑖) and the 

segmented crown (𝑆𝑖) of object i. The indices describe a perfect match with a value 
of 0, while values that approach 1 indicate disagreements between the reference and 
the segmented object and, respectively, under-segmentation for the US and over-
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segmentation for OS. The OS and US indices were considered the maximum, 
minimum, median, and average values.  

The Intersection Over Union (J), also known as the Jaccard index, also 
quantifies the false positives within the segmentation, and it is calculated as the 
ratio between the overlapping area and the union area  

 

𝐽 =
|𝑅𝑖∩𝑆𝑖|

|𝑅𝑖∪𝑆𝑖|
.     [22] 

 
It is worth to stress that when J is equal to 1 there is a perfect segmentation. 
Finally, the completeness of the segmentation was evaluated through the 

Completeness index (D) (Clinton et al., 2010), calculated as the distance between 
the OS and the US, as follows: 

𝐷 = √𝑂𝑆𝑖
2+𝑈𝑆𝑖

2

2
.     [23] 

 
The Completeness index D should be interpreted as the closeness to an ideal 

segmentation result concerning the reference set. When D index is close to 0, it 
indicates a perfect segmentation. 

Comparison with segmentation methodologies based on spectral, textural, 
and elevation information 

The results were checked against four different segmentations based on the 
elaboration of spectral, textural, and elevation information to evaluate the Hölder 
exponent segmentation's goodness. Namely, were used as terms of comparison: i) 
original spectral bands (Red, Green, NIR), ii) Normalized Difference Vegetation 
Index; iii) Haralick’s Sum Variance measure from GLCM (Haralick et al., 1973), 
iv) the CHM, and v) a multi-sourced approach that considers both the CHM and the 
sum variance. This validation aimed to evaluate on equal terms the performances 
for ITD of Hölder exponent against other more common input data. Thus, the ITD 
from each of these measures was performed using the same ruleset applied for the 
Hölder exponent, but tuning the input parameters to achieve the best possible 
results. Basically, they were realized using Contrast split and Multi-resolution 
segmentation algorithms with minor differences in the sequence to improve the 
final segmentation. Appendix A recaps the applied rules and parameters of each 
segmentation. As mentioned in the introduction, the CHM was calculated as the 
difference between the Digital Surface Model (DSM) and the Digital Terrain Model 
(DTM). The treetops' location was then calculated by applying the Local Maxima 
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algorithm and used in the multi-sourced segmentation. The NDVI, the Sum 
Variance GLCM measure, the CHM, and the local maxima were calculated using 
Quantum GIS. The selection of Sum Variance among all the GLCM existing 
measures is based on the visual evaluation.  

7.1.4. Results 

Results of the Hölder exponent analysis and the Individual Tree Crown 
definition in Figure 63c and Figure 63f show the result in a sample area of Hölder 

exponents α. It is apparent that the contrast between the tree crowns and other 
elements of the background. The top of the trees (black in Figure 63c and Figure 
63f) have lower DNs values than the lower branches (grey in Figure 63c and Figure 
63f), which is generally lower than 0.2. The screes have the DNs close to 0.3, while 
shaded areas vary from 0.4 to 1 (white areas in Figure 63c and Figure 63f). From the 
visual comparison of Figure 63 (e) and Figure 63 (f), we can see that the Hölder 
exponent reduces the DN variability of tree crowns and enhances the contrast 
between crowns and shaded areas. This aspect facilitated the segmentation process. 
The entire segmentation process was realized in about 13 minutes.  

Table 31 shows the computational time for each applied algorithm and the 
graphic restitution of their results. The final segmented objects were 9215 with an 
average area of 21 m2 and an average perimeter of 18 m. Figure 64 provides a 
sample of the segmentation result. From a very first visual evaluation appears that 
most of the crowns were detected. Some smaller crowns neighboring the scree 
appear slightly over-grown. 

Results of validation  

The visual assessment of the segmentation provides positive results. Indeed 
only 3 crowns out of 200 references were not detected (simple omissions). Table 
32 summarizes the results of the visual assessment of Hölder exponent 
segmentation (and of the validation datasets). Even if the simple omissions are rare, 
the ones through under-segmentation (OUS) are 27. The results underline the 
process tends to under-segmenting. Although the PA is slightly better than the UA, 
it reaches 79% against 69% of UA, while commission errors are much lower (only 
13 out of 200). These affect the F1 score, which despite the OUS, reach an 
acceptable value (73%). 
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Figure 63. (a) and (d) Details of RGB dataset; (b) and (e) Detail of RGN dataset of the same 
area presented in (a) and (d); (c) and (f) Map of the Hölder exponents determined for the area 
presented in (a) and (d). The Hölder exponent layer restitution is in greyscale visualization, where 0 
is black, and 1 is white. The shadows are mitigated, and the single crowns are easily identified as 
well as the grassland that are large areas of low DNs.  

 
Figure 64. Detail of the delineation of single crowns (red border) on RGB orthomosaic. The 

red square in the bottom-right corner indicates the sample area's location within the entire study 
area. 
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Table 31. Computational time Graphic restitution of each step (algorithm) of the 
segmentation process. Figures in blue have no classification. The class Trees is green; the 
class Other is yellow, the class Temporary is red. 

Algorithm 
Computing 

time 
Visual restitution 

Starting image / 

 

Contrast split 
segmentation 

5’ 42’’ 

 

Multiresolution 
segmentation 

5’ 31’’ 

 

Chessboard 
segmentation 

12’’ 

 

Assign class 5’’ 

 

Grow region 6’’ 

 

Remove object <0,001’’ 
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Table 32. Results from the Visual evaluation of the Hölder exponent segmentation.  

Validation of ITD Hölder Spectral NDVI Texture CHM 
Multi-

Sourced 

No. References  200 200 200 200 200 200 

No. Segmented 228 289 529 248 247 330 

Matches 157 85 39 64 57 68 

Simple omission 3 1 9 3 38 8 

Omission through under-segmentation 27 59 9 45 70 56 
Commission through over-

segmentation 13 55 143 88 35 68 

Producer’s accuracy 0.785 0.425 0.195 0.320 0.285 0.340 

User’s accuracy 0.689 0.294 0.074 0.258 0.231 0.206 

F1-score 0.734 0.348 0.107 0.286 0.255 0.257 
 
The area-based analysis positively confirms the outcome. As Table 33 shows, 

the RMSE on the area represents only 14% of crowns' average dimension. It is 3 
m2 over 21 m2 of average crown extension. The RMSE on the perimeter is almost 
3 m over 18 m of the average perimeter, corresponding to 15%. This may be caused 
by the difficulties related to the definition of the reference tree, but also the non-
appropriate threshold value selected for the contrast split algorithm. 

Table 33. Root Mean Square Error, the Average and the % of an error on the Average, of the 
Perimeter, the Area, and the Compactness metrics of the Hölder exponent segmentation and 
the validation datasets 

 Metric RMSE Average RMSE/Average 
Hölder Area [m2] 2.903 21.099 14% 

Perimeter[m] 2.727 17.972 15% 

Spectral 
Area [m2] 4.367 21.299 21% 

Perimeter[m] 10.378 18.055 57% 

NDVI 
Area [m2] 3.758 21.407 18% 

Perimeter[m] 6.590 18.130 36% 

Texture 
Area [m2] 4.025 20.885 19% 

Perimeter[m] 5.574 17.863 31% 

CHM 
Area [m2] 2.090 23.126 9% 

Perimeter[m] 5.961 18.982 31% 

Multi-Sourced 
Area [m2] 3.432 21.772 16% 

Perimeter[m] 4.812 18.356 26% 
 
Table 34 presents the summary statistics regarding the Over Segmentation 

(OS), Under Segmentation (US), Completeness (D), Intersection over Union (J) 
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indices, and the distance between centroids. The minimum, maximum, and average 
values for each index were computed. What stands out is the high values of Under 
Segmentation, which confirm the visual estimation results. The Completeness (D) 
and the Intersection over Union (J) indices show significant positive results that 
confirm the accuracy of the ITD. The median values of D and J are respectively 0. 
18 and 0.72. The mean distance between the centroids of the reference and 
segmented crowns is 83 cm, while the median distance is exceptionally 45 cm. This 
value is promising and indicates that the results are close to 4 pixel-error in crown 
localization. 

Table 34. Summary statistics of the Over-segmentation index (OS), the Under-segmentation 
index (US), the Completeness index (D), the Jaccard index (J), and the Distance between 
centroids. 

Parameter OS US D J Centroids 
distance 

daverage 0.084 0.284 0.227 0.661 0.830 
min 0.000 0.002 0.037 0.047 0.021 
max 0.533 0.953 0.674 0.935 4.077 

median 0.056 0.214 0.181 0.718 0.458 
 
Overall, the assessment pictures an optimistic scenario. The method used 

identifies the crowns' location (centroid distance is below 50 cm) as well as their 
extensions, with a segmentation mean error of 14% on the area. Figure 65 presents 
the median values of the Jaccard index plotted against the area of the reference 
crowns. It can be seen that the proposed method is very efficient on more massive 
crowns and prone to under-segmenting on smaller crowns. Indeed, the J index for 
the medium extension crowns (10-30 m2) is mostly above 0.5. The lowest values of 
J are recorded on tiny crowns (less than 5m2). 

Concerning the comparison with the ITD based on spectral, textural, and 
elevation information, Table 32 and Table 33 respectively show the results from the 
visual evaluation and the RMSE for the other validation segmentation 
methodologies. Generally, the Hölder exponent performs better as an input feature 
for the segmentation ruleset. Regarding the visual assessments, at equal conditions, 
the results from the Hölder exponent outclassed the ones obtained from the other 
five validations datasets. For all methods, the producer’s accuracy shows higher 

values. Indeed, the number of objects describing the reference dataset, in any case, 
is less than 228 (the number of segments from Hölder analysis). The segmentation 
generated from the spectral information has the highest F1 score within the 
validation datasets, although it is very far from the F1 score of Hölder exponent 
segmentation (0.734 of Hölder against the 0.348 of spectral bands). The CHM 
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methods show a larger number of Simple Omission, which might be attributable to 
the inaccuracies of photogrammetric DTM in areas with sloping. 

 

Figure 65. Distribution of the Jaccard index (y-axis) values according to the Crown size (x-
axis) 

The geometrical accuracy does not reflect the performance of the visual 
assessment. Indeed, even if quite-well performing in the F1 score, the spectral 
information does not provide an excellent geometrical match with the reference 
crowns, while the geometrical accuracy of the CHM method outperforms the 
Hölder exponent results. It is worth underlining that the CHM samples are only 162 
reference objects due to the simply omitted crowns. Within the RMSE analysis, the 
multi-sourced approach's performances are the closest to the ones of the Hölder 
exponent. 

Analyzing the indices' Median values in Figure 66, the Under-Segmentation 
(US) index does not reveal any significant difference between the Hölder exponent 
and other segmentation procedures. While on the Over-Segmentation (OS) 
analysis, we have similar values from Hölder, Sum Variance, and the NDVI. The 
mixed and the CHM approaches show the worst results in the completeness (D) and 
OS. The lowest value of the centroid distance is CHM. It appears that the results of 
the segmentation based on the NDVI and the multi-sourced inputs (CHM and Sum 
Variance textural analysis) are the closest to the ones of the Hölder exponent. 
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Nevertheless, no methods provided results as accurate as of the one of Hölder 
exponent by using the same simple segmentation. 

 

 

Figure 66. The plot of the Over-segmentation index (OS), Under-Segmentation index (US), 
Completeness index (D), Jaccard index (J), and the distance between centroids (CD) calculated 
on the Hölder exponent dataset and the validation datasets (Spectral information, NDVI, Sum 
Variance textural information, CHM, and the mixed input data).  

7.1.5. Discussion  

The results of this very first application of multifractals analysis of UAV 
imagery for the identification of single tree crowns are promising. In a relatively 
short time (around 13 minutes), it was possible to analyze 38 hectares of forest using 
only one input layer. The Hölder exponent analysis results in a clear image of the 
single tree crowns (Figure 63). The pixels corresponding to the border of crowns 
present higher values of the Hölder exponent. This most probably led to the 
underestimation of the dimension of the crowns after the Contrast split 
segmentation. Nevertheless, growing the segmented objects of three pixels and 
smoothing them allowed us to limit such errors on most crowns.  

The assessment of the classification reveals promising results. The visual 
evaluation suggests more than 73% of the F1 score, which is according to similar 
research. Indeed, the very recent application of (Qiu et al., 2020) reaches the 
accuracy of 76% in the VHR imagery segmentation but also higher than the 
Producer’s and User’s accuracy obtained by (Ke and Quackenbush, 2011). (Mohan 
et al., 2017; Vieira et al., 2019) ’s works, respectively, reached 86% and 70% of the 
F1 score. It is worth mentioning that these comparisons should be interpreted with 
caution since many aspects can influence the goodness of the ITD. First, the high 
level of subjectivity affects visual evaluations. Secondly, the characteristics of the 
study areas have a dominant role in the results of the ITD. Indeed the illumination 
distortions due to the topography, the density, and the structure of the stand and the 
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dominant species, can influence the results (and the goodness) of the segmentation. 
To fairly compare the results, we should have at least similar case studies. Indeed 
the works mentioned above are realized in flat or low-sloped areas over different 
types of forest stands. The selected ruleset is an additional influencing factor: it 
must be underlined that the segmentation applied in this study is intentionally direct 
and can be further improved, especially in the refining phase.  

As already mentioned, the visual evaluation is limited in the assessment of the 
goodness of the segmentation. Several other aspects regarding the shape and the 
size of the individual tree crowns can be considered. The results of the quantitative 
assessment are precise: the positions of the crowns, as well as their extension, are 
very well-identified. As evidence, the median value of the centroid distance is 45 
cm. The area difference is not particularly relevant since the RMSE represents only 
14% of the average crown area. Thanks to the smoothing process, there is an evident 
match between the segmented and reference objects' borders (the RMSE on the 
perimeter is almost 3 m). Although the validation indicates a good segmentation, it 
is essential to underline the difficulty of the manual segmentation of references: 
even for the human eyes, the identification of single trees is not immediate. This is 
a relatively common weakness of ITD (and more generally segmentation) 
researches. The RMSE of the perimeter has been calculated by Yurtseven et al. in 
their ITD research (Yurtseven et al., 2019). They obtain 6 m RMSE on the perimeter 
metric, even though they had the chance to identify the crowns on 1.2 cm/pixel 
RGB orthomosaic, as an additional demonstration of the subjectivity and 
complexity of the reference dataset identification. Compared to the existing works 
of ITD and segmentation, the Hölder exponent provides results perfectly in line 
with the literature. 

The tendency of the proposed method to under-segmenting more than over-
segmenting is evident also from the comparison of US (0.284) and OS indices 
(0.084). The Jaccard indicator is 72%, which results in line with other research, 
despite the high variability of the delineation of the reference dataset. (Hussin et al., 
2014) applied the OS and US indicators to assessing tree segmentation using 
satellite imagery of 2 m resolution, and obtained comparable values for both under-
segmentation and over-segmentation. Although in their work, they faced the 
opposite situation: over-segmentation errors are dominant in under segmentation 
ones. (Clinton et al., 2010; Persello and Bruzzone, 2010) obtained very similar OS 
and the US too, even though both studies are focused on the segmentation (and 
classification) of satellite imagery in urban areas. The 0.18 median value resulting 
from the D index mirrors the values in literature, and it is a relatively good result. 
The literature reports values between 0.31 and 0.42. Again, these metrics and 
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comparisons should be interpreted with caution since they are the results of 
segmentation from satellite imagery, and that does not include the extraction of 
single tree crowns. Finally, the Jaccard index, or Intersection over Union index, 
values vary between 0.05 and 0.95, with 0.72 as the median value. 

On the same segmentation process, Hölder exponent segmentation results 
clearly outclass the others from spectral, textural, and CHM information. From this 
first application, it emerged that Hölder exponent can facilitate the ITD from UAV 
VHR imagery. Applying a basic segmentation process, we obtained satisfying 
results in line with the literature, but in a relatively short time and with one 
elevation-independent input layer only. With this approach, the ITD from optical 
imagery of densely forested areas might be more accurate than simple spectral and 
elevation-based analysis. Naturally, this work should not be interpreted as an 
attempt to discredit ITD from spectral and CHM dataset, but as an alternative and 
computational low-demanding solution to ITD. 

The purpose of the current study was to determine the local Hölder exponent 
connected with multifractal theory and use it to describe VHR UAV optical imagery 
and the detection of individual single tree crowns. Although multifractals analysis 
has been applied in image processing in many different fields, from the medical to 
satellite remote sensing, their use on UAV imagery has not been confirmed. The 
high radiometric variability is typical of the VHR datasets that often introduced 
noise, reflected in imprecision in automatic segmentation and classifications. This 
aspect was reduced by the multifractal analysis and the single tree crowns clearly 
emerged. The Hölder exponent makes the segmentation easier and simply based on 
the threshold of the local contrast. The validation results are generally satisfying 
and in line with similar research realized on optical and LiDAR datasets. The main 
detected errors were classified as under-segmentation problems.  

Unfortunately, as far as we know, little research on ITD applies quantitative 
methods similar to the ones we used to assess the segmentation. Indeed, a strong 
limit in the assessment of ITD is the subjectivity in the definition of the reference 
dataset. Nevertheless, the obtained results confirm the Hölder exponent applied to 
VHR imagery as a potentially powerful tool in the ITD. The analysis required a 
relatively short time and low computational power. Additionally, RGB and NIR 
sensors mounted on UAVs are systems that are becoming cheaper and easily 
operable. The present study lays the groundwork for future research into ITD from 
VHR optical imagery. Since this is its very first application, several aspects still 
need to be addressed and further investigated. Our focus area was characterized by 
the only presence of conifers, which crown present fractal patterns from a nadiral 
view. We might have very different results on broadleaves forests. 
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Moreover, we worked on Hölder exponent only and it would be interesting to 
explore additional measures in different forest types and try to work with different 
spatial resolutions, spectral bands and parameters. 

Additionally, it may be worth testing different neighborhood sizes to calculate 
the Hölder exponent to verify its influence on the analysis. It is worth mentioning 
that multifractal descriptors can be applied in parallel with the DEM-based method 
by defining the treetops from the CHM and the delineation of the crown's boundary 
with segmentation from the multifractal analysis. This may help to ease up the 
process with an optical sensor on the Individual Tree Crowns detection.  Among 
the others, some of the most interesting applications of the Hölder-ITD might be 
for the update of forestry inventories at the local scale and the multi-temporal 
monitoring of specific forest indicators (and parameters) related to the crown size. 
Additional application of this methodology might be on VHR satellite imagery. 
Several additional analyses and tests can still be conducted. 

 

7.2.  Satellite 

During the last years, LC classification has taken significant steps forward: a 
wide range of free satellite medium-high optical imagery, specific classification 
algorithms, many processing platforms and machines with more and more high 
computational power are now available (Carrasco et al., 2019; Rizeei et al., 2016; 
Sidhu et al., 2018). Besides today's achievements, we still face some major 
constraints in LC classification, distinguished from environmental constraints and 
technical constraints (see paragraph 2.2, page 14). Among the technical constraints, 
the low temporal resolution of satellites is one of the most popular. However, it has 
been partially overcome by introducing medium-high resolution satellites that 
increase the free data available and make possible integrating the datasets from 
different acquisitions. However, data integration and high-spatial-resolution require 
managing a large amount of data and a large amount of storage and significant 
computing power and time (Carrasco et al., 2019). Managing satellite datasets 
requires considerable data storage capability, and the high spatial resolution further 
increases this requirement. Indeed, the antinomy between spatial resolution and 
computational power is another pervasive technical constraint. During the last few 
years, some geographic cloud computing platforms that allow the analysis and 
storage of geographic data were born. These services (such as Google Earth Engine) 
decrease the computational and storage limits of satellite data processing (Kumar 
and Mutanga, 2018). The atmospheric disturbance and the high seasonal variability 
are some of the leading environmental constraints in LC classification along with 
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the topography variation. The topography strongly influences the spectral values in 
satellite imagery, especially in the case of steep areas. Indeed, the substantial 
variability in the reflectance and the spread shadows are the main effect of the 
topography on satellite imagery, which may complicate the classification (Dorren 
et al., 2003). This is particularly true in narrow valleys of mountainous areas, where 
some mountainside are permanently shadowed in winter months. The LC 
classification of mountainous areas is affected by other major environmental 
constraints due to climatic conditions. For example, the snow cover prevents the 
classification in the winter season, and the orographic rains and clouds, which 
mechanisms are influenced by the terrain (Houze, 2012), lower the possibility of 
accurate classifications. Combining these factors makes the generation of the land 
cover maps of mountainous areas, particularly challenging and generally 
recognized as fairly-low accurate (Dorren et al., 2003; Itten and Meyer, 1993).  

In this paragraph, a specific methodology for the classification of the Land 
Cover in mountainous areas using Sentinel 2, 1C-level imagery is proposed. Several 
analyses and tests were carried out to pursue the best optimization for the entire 
classification process. The classification considers some specific high-altitude 
mountainous classes: clustered bare soil areas that are particularly prone to erosion; 
glaciers; and solid-rocky areas. The methodology tries to overcome the above-
mentioned environmental limitations, and it consists of a pixel-based multi-epochs 
classification using a random forest algorithm. The analysis was performed in 
Google Earth Engine (GEE) environment because of its high computational speed 
and the large dataset of satellite imagery it makes readily available. Appendix B 
show the GEE code.  

7.2.1. Data collection and pre-processing 

The images regarding the entire Sentinel-2 (both Sentinel-2A and Sentinel-2B) 
activity of sensing were filtered by location according to the extension of Cesana 
Torinese case study. The tiles must satisfy two parameters: the cloud cover 
percentage, which must be less than 10% over a single scene, and by the sensing 
period. Only images sensed during summertime (from June to August) were 
selected to minimize the effect of the shadows and avoid snow cover. Level 2A and 
Level 1C of processing were considered (see paragraph 6.3.2, page 129). The time-
filter reduced the data available from level 2A (i.e., Sentinel-2 highest level of 
processing product that geometrically and atmospherically corrected): only ten 
images from level 2A satisfied the filter criteria against 29 images of level 1C. 
Therefore, to ensure a larger classification dataset, 1C level dataset was used (Table 
35). It is worth mentioning that the study area is located in the overlapping area 

https://context.reverso.net/traduzione/inglese-italiano/toughen
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between tile T31TGK and tile T32TLQ, as Figure 67 shows. Both tiles were 
considered for the analysis. 

 

 

Figure 67. Tiles T31TGK (western tile, blue) and tile T32TLQ (eastern tile, red). The study 
area Cesana Torinese indicated by the yellow pointer lies in the overlap between T31TGK and 
T32TLQ. 

Atmospheric correction 

The atmospheric correction of satellite imagery is considered fundamental in 
remote sensing applications, especially in multi-temporal analysis (Hadjimitsis et 
al., 2004; Lantzanakis et al., 2017; Martins et al., 2017; Sola et al., 2018). The 
atmospheric correction removes the scattering effect of the Earth’s atmosphere and 

it can be based on Radiative Transfer Models (Specific mathematical models that 
consider latitude, season, and atmospheric conditions) or on Image-Based 
Correction Techniques (that estimate atmosphere scattering using information and 
data within the image) (Hadjimitsis et al., 2004; Lantzanakis et al., 2017; Martins 
et al., 2017). The existing atmospheric correction models are analyzed and 
described in paragraph 5.1, page 94.  
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Table 35. Sentinel 2 level 1C and 2A images of the classification dataset 

 Tile Year No. Sentinel Image Identification Code 

2A
 L

EV
EL

 
 

K 

2017 0 20170818T103021_20170818T103421_T31TGK  
2018 1 20180719T103019_20180719T103020_T31TGK  

2019 

2 20190604T103029_20190604T103616_T31TGK  
3 20190719T103031_20190719T103715_T31TGK  
4 20190803T103029_20190803T103728_T31TGK 
5 20190808T103031_20190808T103026_T31TGK  
6 20190818T103031_20190818T103539_T31TGK  

Q 
2017 7 20170818T103021_20170818T103421_T32TLQ  
2018 8 320180719T103019_20180719T103020_T32TLQ  
2019 9 20190803T103029_20190803T103728_T32TLQ  

 

1C
 L

EV
EL

 

K 

2017 

0 20170704T103019_20170704T103637_T31TGK 
1 20170714T103019_20170714T103022_T31TGK 
2 20170818T103021_20170818T103421_T31TGK 
3 20170823T103019_20170823T103018_T31TGK 

2018 

4 20180619T103019_20180619T103559_T31TGK 
5 20180719T103019_20180719T103020_T31TGK 
6 20180719T103019_20180719T103820_T31TGK 
7 20180729T103019_20180729T103815_T31TGK 
8 20180828T103019_20180828T103013_T31TGK 

2019 

9 20190604T103029_20190604T103616_T31TGK 
10 20190629T103031_20190629T103537_T31TGK 
11 20190704T103029_20190704T103317_T31TGK 
12 20190714T103029_20190714T103635_T31TGK 
13 20190719T103031_20190719T103715_T31TGK 
14 20190729T103031_20190729T103230_T31TGK 
15 20190803T103029_20190803T103728_T31TGK 
16 20190808T103031_20190808T103026_T31TGK 
17 20190818T103031_20190818T103539_T31TGK 

Q 

2017 

0 20170704T103019_20170704T103637_T32TLQ 
1 20170714T103019_20170714T103022_T32TLQ 
2 20170818T103021_20170818T103421_T32TLQ 
3 20170823T103019_20170823T103018_T32TLQ 

2018 

4 20180619T103019_20180619T103559_T32TLQ 
5 20180704T103021_20180704T103023_T32TLQ 
6 20180719T103019_20180719T103020_T32TLQ 
7 20180828T103019_20180828T103013_T32TLQ 

2019 

8 20190604T103029_20190604T103616_T32TLQ 
9 20190619T103031_20190619T103536_T32TLQ 
10 20190704T103029_20190704T103317_T32TLQ 
11 20190729T103031_20190729T103230_T32TLQ 
12 20190803T103029_20190803T103728_T32TLQ 
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Usually, the Radiative Transfer Models are more accurate and, therefore, more 
applied. For example, for producing atmospherically corrected imagery of Sentinel 
2 (level-2A), ESA applies the Sen2Cor Radiative Transfer model. For the time 
being, there is no atmospheric correction model to be applied to Sentinel 2-level 1C 
implemented in GEE.  

This means that Sentinel 2 at 1C processing level cannot be easily 
atmospherically corrected using Radiative Transfer Models in GEE environment. 
This is a severe limit to the performing of multi-temporal analysis. To overcome 
this limitation, in this work, the author applied a linear model for the atmospheric 
disturbance reduction: Dark Object Subtraction (DOS) (Chavez, 1988), which is 
recognized to perform similarly to radiative transfer models on homogeneous 
surfaces such as grass, water, and bare soil (Lantzanakis et al., 2017). DOS 
correction consists of subtracting the minimum value of the scene to the entire 
image. The application also considered the low values on each tile's borders, which 
are usually errors, and cut them off by applying a metric buffer on the edges of the 
image. 

DOS methods are generally less accurate than Radiative transfer Models, 
mainly if applied to multi-temporal datasets because DOSs are sensitive to intense 
light and weather variations. However, the selected Alpine dataset is composed of 
imagery of a short time range, which has very similar weather and scene-
illumination conditions. Thus, the DOS correction method should be accurate 
enough for this application. Moreover, its effects on the final results are expected 
to be weak because it classifies each epoch of the dataset separately. A significance 
analysis to evaluate DOS correction's suitability to this Land Cover classification 
was carried out. Specifically, the same images atmospherically corrected with two 
different methods (level 2A and the DOS-corrected) and the non-atmospherically 
corrected images (level 1C) were compared.  

The sample for the significance analysis is composed of 1/5 of the entire images 
dataset. Namely, it constituted 2 tiles for each study year (2017, 2018, 2019) sensed 
in the same day, as Table 36 reports. All analyses were performed in Qgis and 
MATLAB environments in WGS84/32N, EPSG:32632 coordinate system. Tile K 
images were converted from WGS84/31N to WGS84/32N. Ten bands for each 
image (Table 37) were taken into consideration for the analysis. By sing point 
sample tool plugin of Qgis 3.4.8, 213 points (randomly placed in same period 
scenes) were extracted from the three datasets:  DOS-derived images, S2A images, 
and 1C images. Using Matlab, each analyzed DOS-corrected image was compared 
to the corresponding one of 1C and 2A correction. 
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Table 36. List of datasets used for the Dark Object Subtraction (DOS) accuracy evaluation. 

Year Id code Name 
2017 I4_2017_K 20170818T103021_20170818T103421_T31TGK 
2017 I5_2017_Q 20170818T103021_20170818T103421_T32TLQ 
2018 I16_2018_K 20180828T103019_20180828T103013_T31TGK 
2018 I17_2018_Q 20180828T103019_20180828T103013_T32TLQ 
2019 I28_2019_K 20190803T103029_20190803T103728_T31TGK 
2019 I29_2019_Q 20190803T103029_20190803T103728_T32TLQ 

Table 37. Bands of Sentinel-2 imagery considered in the DOS accuracy analysis. 

Band Wavelength (nm) Channel name 
2 490 Blue 
3 560 Green 
4 665 Red 
5 705 Vegetation Red Edge 
6 740 Vegetation Red Edge 
7 783 Vegetation Red Edge 
8 842 NIR 

8A 865 Vegetation Red Edge 
11 1610 SWIR 
12 2190 SWIR 

 
The following analysis of atmospheric corrections was performed 

1. Difference (∆1𝐶−𝐸𝐸 ) between 1C level (𝐷𝑁𝑖,𝑗
1𝐶) and Earth Engine DOS (𝐷𝑁𝑖,𝑗

𝐸𝐸) 
for band 𝑛 of test point (i,j) 

∆1𝐶−𝐸𝐸(𝑛) = 𝐷𝑁𝑖,𝑗
1𝐶 − 𝐷𝑁𝑖,𝑗

𝐸𝐸     [24] 

2. Difference (∆1𝐶−2𝐴 ) between 1C level (𝐷𝑁𝑖,𝑗
1𝐶) and DOS (𝐷𝑁𝑖,𝑗

2𝐴) for band 𝑛 of 
test point (i,j) 

∆1𝐶−2𝐴(𝑛) = 𝐷𝑁𝑖,𝑗
1𝐶 − 𝐷𝑁𝑖,𝑗

2𝐴   [25] 

 
3. Difference (∆2𝐴−𝐸𝐸 ) between 1C level (𝐷𝑁𝑖,𝑗

2𝐴) and Earth Engine DOS (𝐷𝑁𝑖,𝑗
𝐸𝐸) 

for band 𝑛 of test point (i,j) 

∆2𝐴−𝐸𝐸(𝑛) = 𝐷𝑁𝑖,𝑗
2𝐴 − 𝐷𝑁𝑖,𝑗

𝐸𝐸    [26] 

4.  Distribution, linear trend line, Root Mean Square Error (RMSE) and 
significance for each sample of points1, 2, and 3, grouped by band 𝑛; 
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5. Comparison of spectral signatures for each Corine Land Cover (CLC) class 
calculated for 2A, DOS, 1C.  

The 0 values of DOS and 2A Digital Numbers were considered outliers since 
they record the null values of cloud masking. Furthermore, too bright pixels (Digital 
number over 1000) were considered outliers too because of not properly masked 
clouds (Figure 68). 

 

 

Figure 68. Example of outliers. The test points 7 and 63 are placed on the cloud-masked area 
(Digital Number 0), while point 68 is located on non-masked clouds due to the cloud-masking 
algorithm's inaccuracy, and it has Digital Number over 1000. 

The distributions of the differences for points were plotted grouped by the 
spectral band. The trend lines and the dispersion of Earth Engine DOS (EE) and 2A 
datasets were calculated. Figure 69, Figure 70, and Figure 71 show the plots of 
∆2𝐴−𝐸𝐸(𝑛) respectively for 2017, 2018 and 2019. Figure 72 shows the aggregated 
results. The distribution are represented in different graphs for the visible, red-edge, 
NIR, and SWIR bands. The r2 unadjusted was calculated for each distribution.  
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2017 

Figure 69. 
Graphs of ∆2𝐴−𝐸𝐸 of 

2017. The 
distributions are 

represented in 
different graphs for 

the visible, red-edge, 
NIR, and SWIR 

bands. 
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2018 

Figure 70. 
Graphs of ∆2𝐴−𝐸𝐸 of 

2018. The 
distributions are 

represented in 
different graphs for 

the visible, red-edge, 
NIR, and SWIR 

bands. 
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2019 

Figure 71. 
Graphs of ∆2𝐴−𝐸𝐸 of 

2019. The 
distributions are 

represented in 
different graphs for 

the visible, red-edge, 
NIR, and SWIR 

bands. 
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The c show high dispersion in all the samples, although, as clearly visible in 
Figure 72, it is particularly low in bands 6, 7, 8, and 8A. The marked difference 
between bands 6, 7, 8, and 8A also emerged from the visual comparison between 
1c, 2a, and DOS spectral signatures (Figure 73). 

Table 38. r2 values for 2017, 2018, 2019 and aggregated (total) distributions of ∆2𝐴−𝐸𝐸. 

r2 2017 2018 2019 total 
B2 0.0845 0.0089 0.0527 0.0002 
B3 0.0718 0.0097 0.0068 0.0035 
B4 0.0682 0.0181 0.0024 0.0087 
B5 0.0601 0.0160 0.0002 0.0162 
B6 0.0021 0.0005 0.0085 0.0040 
B7 0.0019 0.0024 0.0066 0.0031 
B8 0.0003 0.0033 0.0293 0.0017 

B8A 0.0003 0.0021 0.0039 0.0022 
B11 0.0323 0.0071 0.0084 0.0089 
B12 0.0530 0.0155 0.0088 0.0102 

 
A great distance of DOS from other variables was detected in visible bands, 

especially in band 2 (Blue). The blue band is the most affected by atmosphere 
interferences. Other remarkable distances are shown in band (NIR) for 2A from 1C 
and DOS. The other bands have non-significant differences. 

The final analysis was performed in the overlap area of Q and K tiles in the 
same sensing period to evaluate the correction methods' robustness and 
replicability. Thirty-five sample points were randomly located in the area of overlap 
of K and Q tiles. Reasonably, a general pixel with LAT, LON coordinates in K and Q 
tiles and sensed at the same time should have an approximately equal DN value, at 
least for 1C data values.  

Unexpectedly, this is not true since some differences were recorded. In order to 
check the statistical significance of differences between the overlapping points in 
1C, 2A, and DOS atmospheric corrections, was performed a Kolmogorov-Smirnov 
test on the visible and infrared bands (2, 3, 4, 8) that shows the highest differences 
between the two tiles (Figure 73).  
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Total 

 

Figure 72. Graphs of ∆2𝐴−𝐸𝐸 of 2017, 2018, and 2019. The distributions are represented in 
different graphs for the visible, red-edge, NIR, and SWIR bands. 
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The Kolmogorov-Smirnov test (K-S test) was selected because it is a non-
parametric test applied on Gaussian and non-Gaussian distributions reliable also on 
a small dataset (like in this case, 35 observations for each band). The Null 
hypothesis was that DN values from tile k and DN values from tile Q are from the 
same continuous distribution (equation 27). 

 
𝐷𝑁𝑖,𝑗𝐾 ∈ 𝑓(𝐷𝑁) 𝑎𝑛𝑑 𝐷𝑁𝑖,𝑗𝑄 ∈ 𝑓(𝐷𝑁)    [27] 

 
When the significance factor (h) is equal to 1, the null hypothesis is rejected, 

which means that DN values from tile k and DN values from tile Q are from 
different distributions (at a given alpha) and their difference is significant. 
Otherwise, when h is equal to 0, the rejection of the null hypothesis is failed, which 
means that DN values from tile k and DN values from tile Q are from the same 
distributions (at a given significance level, alpha), thus their difference is not 
significant. No significant difference was detected in any analyzed dataset: not in 
single year analysis nor total (all years aggregated) analysis (Table 39).  
From the test performed, no remarkable differences were detected between the 
linear and energy transfer models. The main concerns may regard the blue band (2); 
indeed, it was not considered in the classification. The DOS application did not 
negatively affect the final results because the method we propose classifies each 
epoch of the dataset separately. 

Table 39. Results of the Kolmogorov-Smirnov significance test carried out for the overlap area 

 2017, alpha 0.005 2018, alpha 0.005 2019, alpha 0.005 Total, alpha 0.005 

 p h p h p h p h 

B1-1c 0.999 0 0.967 0 0.839 0 0.969 0 
B2-1c 0.962 0 0.967 0 0.967 0 0.994 0 
B3-1c 0.962 0 0.967 0 0.999 0 0.994 0 
B7-1c 0.999 0 0.967 0 0.967 0 0.994 0 

B1-ee 0.999 0 0.839 0 0.839 0 0.706 0 
B2-ee 0.825 0 0.999 0 0.999 0 0.910 0 
B3-ee 1.000 0 0.999 0 0.999 0 0.994 0 
B7-ee 0.999 0 0.640 0 0.640 0 0.818 0 

B1-2a 0.999 0 0.441 0 0.839 0 0.588 0 
B2-2a 0.962 0 0.839 0 0.839 0 0.706 0 
B3-2a 0.962 0 0.967 0 0.967 0 0.588 0 
B7-2a 0.999 0 0.967 0 0.839 0 0.910 0 
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Figure 73. Spectral 
signature obtained by the 

median value of each point of 
vegetation (from CLC) of 

Earth Engine DOS, 2A and 
1C datasets 
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Topographic correction 

The topographic correction allows the variation in the reflectance derived by 
the terrain's inclination and the sun elevation (Poortinga et al., 2019; Shepherd and 
Dymond, 2010). This pre-processing phase is crucial in mountainous areas because 
of the steep mountainsides and the consequent alteration of reflectance values. The 
entire dataset was corrected by applying a semi-empirical correction. The code was 
initially implemented in GEE by Patrick Burns and Matt Macander and then 
adapted to the dataset. The correction is based on a semi-empirical method that 
takes into consideration not only the topography of the area (as for the empirical 
methods) but also the solar angle (both zenith and azimuth) (Shepherd and Dymond, 
2010). The topographic correction is based on sun-canopy-sensor with a semi-
empirical moderator (c) (SCSc) method (Poortinga et al., 2019; Soenen et al., 2005). 
A Digital Elevation Models (DEM) to detect the area's slopes and the solar position 
information (i.e., the sun inclination and sun irradiance) are the input data. These 
data are available from the satellite images' metadata, while elevation information 
was extracted from the Shuttle Radar Topography Mission (SRTM) digital 
elevation data with 30m spatial resolution that is available in the GEE catalog (Farr 
et al., 2007). 

The topographic correction's effectiveness and goodness were checked by 
comparing the illuminated and non-illuminated mountainsides of the topographic 
corrected and non-topographic-corrected datasets. The validation was run on two 
datasets created ad hoc. One composed of 1C-level topographically corrected K 
tiles and original 1C-level images for 2017, 2018, and 2019. One hundred pairs of 
sample points were placed within the study area on illuminated and non-illuminated 
correspondent areas with the same land cover. The points were manually placed 
using as help i) CLC and, ii) Hillshade raster generated from USGD 30m DTM 
(Figure 74). 
The following measures were calculated: 

The absolute value of the difference between each illuminated point and its 
non-illuminated correspondents ∆𝑖𝑙−𝑛𝑖𝑙 for each of 1C –topographically 
corrected (𝑇𝐶)  point for of band 𝑛: 

𝑇𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛) = |𝐷𝑁𝑖,𝑗
𝑇𝐶−𝑖𝑙 − 𝐷𝑁𝑖,𝑗

𝑇𝐶−𝑛𝑖𝑙|   [28] 

The absolute value of the difference between each illuminated point and its 
non-illuminated correspondents ∆𝑖𝑙−𝑛𝑖𝑙 for each of 1C –topographically original 
points (1𝐶), of band 𝑛:  
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1𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛) = |𝐷𝑁𝑖,𝑗
1𝐶−𝑖𝑙 − 𝐷𝑁𝑖,𝑗

1𝐶−𝑛𝑖𝑙|   [29] 

Comparison of 𝑇𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛) and 𝑇𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛): based on the assumption that the 
topographic correction should reduce the difference in the shadow of two 
mountainsides having the same land cover, where considered as positive 
validation (i.e., correct functioning of topographic correction algorithm) when  
𝑇𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛) is smaller than 1𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛). 
 

(a)

 

(b)

 
(c) 

 
Figure 74. a) RGB visualization of a sample area; b) hillshade+CLC visualization; c) example 

of a pair of points on two mountainsides (orange and blue points). 

It is worth mentioning that since the points placements are based on CLC 
(MMU 25 ha), it may be possible that the points do not sample the same LC. The 
results show 88% of topographic correction effectiveness. Again, the worst results 
are recorded for the Blue band (band 2). Table 40 reports the results of the 
validation.  
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Table 40. Percentage of validated topographic correction for 1C level dataset 

Percentage of verified points per 1c level 
Bands B2 B3 B4 B5 B6 B7 B8 B8A B11 B12 total 
2017 57% 74% 68% 83% 76% 71% 73% 74% 76% 70% 82% 
2018 62% 74% 67% 82% 77% 76% 75% 77% 81% 77% 90% 
2019 65% 79% 72% 78% 75% 73% 75% 75% 79% 72% 90% 
Entire 
dataset 

61% 76% 69% 81% 76% 74% 75% 76% 79% 73% 88% 

 
The correction validity on sen2cor-corrected data was checked. Equations 28 

and 29 were used to calculate and then compare 𝑇𝐶∆𝑖𝑙−𝑛𝑖𝑙(𝑛) and 2𝐴∆𝑖𝑙−𝑛𝑖𝑙(𝑛). 
Table 41 shows the obtained results. From this analysis, the topographic correction 
on Sentinel-2 appears less effective on 2A level imagery than on 1C level imagery. 

Table 41. Percentage of validated topographic correction for 2A level dataset 

Percentage of verified points per 21A level 
Bands B2 B3 B4 B5 B6 B7 B8 B8A B11 B12 total 
2017 33% 54% 40% 32% 56% 55% 59% 74% 78% 99% 77% 
2018 36% 38% 34% 43% 53% 61% 54% 57% 53% 52% 65% 
2019 48% 48% 43% 54% 65% 66% 60% 65% 66% 59% 70% 
Entire 
dataset 

39% 47% 39% 43% 58% 61% 58% 65% 66% 70% 71% 

 
Features extraction 

The diversification of the input information is crucial for a good classification. 
For example, textural elements can facilitate Land cover class discrimination 
(Lewiński et al., 2015) and histogram-based ones (Drzewiecki et al., 2013). Ten 
radiometric features, five histogram-based features, 19 textural, and one edge-
detector feature were computed (Table 42). Specifically, the texture metrics from 
the Gray Level Co-occurrence Matrix in the 7x7 neighborhood of each pixel of 8 
(Near InfraRed, NIR) were computed (Conners et al., 1984; Haralick et al., 1973; 
GEE, 2020).  The derivate features improved the goodness of the classification but 
required high computational power. Indeed GEE exceeded the memory limit by 
running the entire code: the filtering of the Sentinel-2 data catalog, the topographic 
and atmospheric corrections of the filtered features, the derivative bands 
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computation for each epoch, and the classification itself. Thus, to slim out the 
classification process and reduce the classification's computational time, the 
correlation analysis and the layer's importance in the classification analysis were 
realized. 

Table 42. Derivative features are calculated for each epoch. They are divided into 4 groups: 
histogram-based, radiometric, edge extractor, and textural. 

 Feature Formula/note 

R
ad

io
m

et
ric

 

Alteration B11/B12 
Chlorophyll IndexRedEdge 

CRE (B9/B5)−1 

Enhanced Vegetation Index 
EVI 2.5*((B9−B5)/((B9+6*B5−7.5*B1)+1)) 

HUE Arctan((2*V5−B3−B1)/30.5)*(B3−B1)) 
Normalized Difference Vegetation 

Index NDVI (B8−B4)/(B8+B4) 

Soil-Adjusted Vegetation Index 
SAVI ((B8−B4)/(B8+B4+L))*(1+0.5) 

Soil Composition Index 
SCI (B11−B8)/(B11+B8) 

Specific Leaf Area Vegetation Index 
SLAI B9/(B5+B12) 

Wetnss Index WET 
(0.1509*B2)+(0.1973*B3)+(0.3279*B4)+(0.03406*B8)

-(0.7112*B11)-(0.4572*B12) 
Triangular Vegetation Index TVI 0.5*(120*(B8-B3))-(200*(B4-B3)) 

Edge Sob Sobel edge extractor 

H
is

to
gr

am
-

ba
se

d 

Var Variance 
Mean Mean 
Skew Skewness 
Kurt Kurtosis 
Contr Contrast; measures the local contrast of an image 

Te
xt

ur
al

 G
LC

M
 

Entr Entropy 

Asm Angular Second Moment; measures the number of 
repeated pairs 

Corr Correlation; measures the correlation between pairs of 
pixels 

Var Variance; measures how spread out the distribution of 
gray-levels is 

Idm Inverse Difference Moment; measures the homogeneity 
Savg Sum Average 
Svar Sum Variance 
Sent Sum Entropy 

Ent Entropy. Measures the randomness of a gray-level 
distribution 

Dvar Difference variance 
Dent Difference entropy 

Imcorr1 Information Measure of Corr. 1 
Imcorr2 Information Measure of Corr. 2 
Maxcorr Max Corr. Coefficient. 

Diss Dissimilarity 
Inertia Inertia 
Shade Cluster Shade 
Prom Cluster prominence 
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7.2.2. Methods 

The classification is realized using 1260 training points on 9 classes (Table 43).  

Table 43. Classes of Land Cover considered in this work. 

No. Class Description  

1 Coniferous 
forest Conifers trees areas 

 

2 Broadleaves 
forest Broadleaves trees forests 

 

3 Grasslands Includes pastures and moors 

 

4 Water Internal waters 

 

5 
Clustered 
bare soil 

areas 

Clustered rocks, bare soil, and sparse vegetation. 
Generally in high slope mountainsides. Highly prone 

to erosion. 
 

6 Solid-rocky 
areas 

Continuous non-clustered rocky cover. Typical of 
Alpine mountain peaks. 

 

7 Urban areas Buildings, roads, artificial infrastructures. 

 

8 Glaciers Perennial snow/ice cover. In the Alpine zone, only in 
areas above 3000 m a.s.l. 

 

9 Agricultural 
lands 

Areas interested by agricultural activities that require 
tillage or present rows of fruit trees/bushes. 

 



 

181 
 

Training and test datasets 

The training and test datasets were generated semi-automatically through 
randomly sampling (stratify samples) a base layer generated from existing land 
cover classifications. Besides accelerating the training and test dataset creation, this 
approach also ensured the minimization of the subjectivity in the identification of 
the training points (Gromny et al., 2019). The information of ESA High-resolution 
Layers (VHR) 10m (Forest cover, Imperviousness, Grassland and Water and 
Wetness, http://land.copernicus.eu/) (Lefebvre et al., 2016), CORINE Land Cover 
(CLC) (Copernicus, 2020), and RUSLE 2015 at 100 m  from ESDAC (Panagos et 
al., 2015) constitute the base layer. The classes of CORINE land cover, as well as 
other input data, were converted in classes of interest, as Table 44 shows. The base 
layer had 20m spatial resolution and nine classes. Using stratified sampling 
algorithm of Gdal, 280 pixel per class were selected from the base layer (2520 
pixels in total). Each selected pixel was visually checked and eventually modified 
according to vicinity and representativeness criteria. The vicinity of the training 
pixels of same class was avoided ensuring, and the strict correspondence between 
class definition and training pixel evaluated (representativeness). The dataset was 
spilt in 50-50 for the training and the validation of the classification.  

Table 44. Input datasets for the training layer and the translation to the reference classes. 

Reference classes VHR mosaics 2015 ESDAC 2015 CLC 
Coniferous forest 

Forest Type - 
312 

Broadleaves forest 311 

Grasslands Grassland - 321-231 

Water Water and Wetness - 511,512 
Clustered bare soil and 

sparse herbaceous 
vegetation areas 

- RUSLE 
(> 20 t/he/yr) 323-331 

Solid-rocky areas -  332 

Urban areas Imperviousness 
Density - 111-133 

Glaciers -  335 

Agricultural lands -  211-244 

 

http://land.copernicus.eu/
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Feature selection: Correlation analysis 

The slimming out workflow was designed to reduce the computational time 
without losing accuracy. First, a correlation analysis was performed between the 
radiometric derivative features and the original bands to avoid information 
redundancy. 

The correlation between bands was analyzed using July 2017 as a reference. 
The analysis was based on the DN values randomly sampled within the classes. 4 
was used as a reference band. Correlation coefficients equal to 1 indicate a total 
correlation—this analysis considered highly-correlated variables greater or equal to 
0.85 (dark green in Table 46). Then, the correlation analysis between textural bands 
was carried out. Since the textural bands were much less correlated to each other 
than the radiometric bands, the importance of textural predictors in the 
classification was computed by running the classification each time, excluding one 
different predictor. The Overall Accuracies of these classifications were considered 
as the importance value of the removed predictor. This indirect strategy to estimate 
each feature's importance within the classification was necessary because the 
evaluation of predictors’ importance is not implemented in GEE. The importance 

analysis was performed on July 2017 tile. The OA of the classification computed 
with all textural features is 0.825. The features that exclusion caused the increasing 
on the OA of 0.01 points were considered less important (negatively affecting the 
classification). To further reduce the computational effort, the bands were 
normalized and then transformed into integer values (int16). Since running the 
normalization on GEE required too much memory was realized a “pseudo-
normalization”. For each was identified the multiplicative factor that allows 
obtaining integer values no bigger than 32767 (max values for signed integer data 
format). The pseudo-normalization does not affect the classification. 

Classification and aggregation 

Each image was separately classified using the machine learning algorithm 
random forest with 50 rifle decision trees per class and four as the minimum size 
for terminal nodes. The same training dataset was used for each image. This means 
that for one image were sampled, 37 DN values in correspondence with every 
training point. This datum was used to train the classifier and finally to apply it to 
the starting image. The results are 13 classifications that were aggregated. Five 
different aggregation methods were tested by comparing the Overall Accuracy. The 
most accurate was the modal value (Table 45). Thus, the classifications were 
aggregated according to the most frequent pixel value between 1 and 9 (no data 
values excluded) to obtain the area's final classification. The aggregation allowed 
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us to minimize the single classifications' mistakes and take out from the final result, 
the no data values of the cloud masking (Nowakowski et al., 2017). 

Table 45.  Aggregation methods comparison. 

Aggregation method Overall Accuracy value 
mode 0.945 

median 0.940 
max 0.564 
min 0.647 

 

Accuracy assessment 

The accuracy assessment is based on 1260 pixels and consisted in the 
computation of the error matrix and the derived accuracy measures for each single-
epoch classification and the aggregated one. The error matrix-derived measures are 
the overall accuracy, the producer’s accuracy, the user’s accuracy, and the F1 score.  

7.2.3. Results and discussion 

Feature selection 

Table 46 shows the results from the correlation analysis between radiometric-
based derivative features. The correlation coefficient ranges between 0 (no 
correlation, light green) and 1 (total correlation, dark green) (Table 46). The 
radiometric derivative features with a correlation coefficient larger than 0.85 were 
excluded from the classification dataset: SLAI, NDVI, Alteration, and SAVI. The 
correlation between the original bands was not taken into consideration. 
Nevertheless, Sentinel bands 1, 2, 9, 10 were excluded from the analysis as too 
influenced by the atmospheric component. The final bands considered were: B4, 
B2, B3, B5, B6, B7, B8, B8A, B11, B12, CRE, EVI, SCI, HUE, WET, TVI. The 
correlation between the textural features is not particularly remarkable (Table 47): 
only the GLCM Contrast feature appears highly correlated to Dissimilarity, 
Variance, and Shade. Table 48 reports the results of the importance analysis of 
textural information: only the Shade and Prominence negatively affect the 
classification, as their removal  increased the overall accuracy of 0.01. They were 
excluded from the classification dataset. The correlation and the importance of the 
predictors' analysis on the bands resulted in 7 highly-correlated and low-importance 
bands removed from the dataset (2 textural-based). 
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Table 46. Correlation analysis of radiometric-based features. The dark green cells indicate a 
correlation coefficient >0.85. 
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B4                     

B2                     

B3                     

B5                     

B6                     

B7                     

B8                     

B8A                     

B11                     

B12                     

NDVI                     

ALT                     

CRE                     

EVI                     

SCI                     

HUE                     

SAVI                     

SLAI                     

WET                     

TVI                     
 
The final results are 37 bands in each one of the 13 images. The following bands 

used: 'B3', 'B4', 'B5', 'B6','B7', 'B8', 'B8A', 'B11', 'B12', 'CRE', 'EVI', 'SCI', 'HUE', 
'WET', 'TVI', 'entr', 'sob', 'var', 'mean', 'skew', 'kurt', 'asm', 'contrast', 'corr', 'idm', 
'maxcorr', 'var', 'svar', 'dent', 'imcorr2', 'savg', 'imcorr1', 'diss', 'sent', 'ent', 'dvar',  
'inertia'. 
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Table 47. Correlation analysis of textural and edge-detector features. The dark green cells 
indicate a coefficient >0.85. 
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Contrast                   
Corr                   
Idm                   
Maxcorr                   
Var                   
Svar                   
Dent                   
Imcorr2                   
Savg                   
Imcorr1                   
Diss                   
Sent                   
Dvar                   
Shade                   
Prom                   
Ent                   
Inertia                   

 
Classification 

It was not possible to perform the entire classification in one GEE script. Thus, 
it was carried out using some expedients. First were performed the filtering and the 
correction. The pre-processed dataset was then exported to the GEE personal Asset. 
A new script was written for the computation of the classifications in which was 
imported the pre-processed dataset. The slimming out tests were realized in a 
separate script. Finally, the single classifications were converted into int8 data 
format, stacked in a single image, and exported (Figure 75). Figure 76 provides 
some examples of the classification results in high-altitude areas (left) and lowlands 
(right). 
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Table 48. Importance analysis of the textural features. The features that exclusion caused 
increasing on the OA of 0.01 points were considered less important (negatively affecting the 
classification). 

Excluded features OA value  
All features 0.825 

entr 0.829 
sob 0.826 
asm  0.824 

contrast  0.819 
corr  0.822 
var  0.822 
idm  0.823 
savg  0.822 
svar  0.824 
sent  0.827 
ent  0.825 

dvar  0.826 
dent  0.822 

imcorr1  0.824 
imcorr2  0.829 
maxcorr  0.825 

diss  0.828 
inertia  0.825 
shade 0.834 
prom  0.835 

 
Intra-validation 

0.661 to 0.747 in the case of only radiometric derivative features and from 
0.791 to 0.900 for the radiometric and textural derivative features. Table 49 reports 
the accuracy assessment results deriving from the classification of i) the Sentinel 
radiometric bands and the radiometric-based features, and ii) the Sentinel 
radiometric bands, the radiometric-based features, and the textural features. The F1 
scores of clustered bare soil areas along with the OA accuracy values rapidly 
increase. The classification with the derivative features shows an overall accuracy 
of 86%. The OA of 94% deriving from the dataset with radiometric and textural 
features results from the aggregation of 13 images. 

Figure 77 reports the accuracy and the F1 score for every single classification. 
The accuracy values have very unstable results within the classification scene. This 
is partially due to the incorrect classification of the areas covered by clouds (no 
data) and the pixels in the masked area's immediate surroundings that may suffer 
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from radiometric alteration for cloud proximity but not detected by Sentinel cloud 
masking. 

Table 49. Producer's and User's accuracies and F1 score for the classification with and without 
textural features. 

 

Conifers Broad-
leaves Grassland Water Clustered 

bare soils 

Solid 
rocky 
areas 

Urban 
areas 

Agri-
cultural 
lands 

OA 

Radiometric bands and radiometric-based features 

PA 0.986 0.979 0.965 1.000 0.636 0.520 0.949 0.938 

0.863 UA 0.986 0.979 0.993 0.971 0.250 0.829 0.936 0.964 

F1 0.986 0.979 0.979 0.986 0.359 0.639 0.942 0.951 

Radiometric bands, radiometric-based features and textural features 

PA 1.000 0.986 0.898 1.000 0.812 0.915 0.993 0.995 
 

0.945 UA 0.993 1.000 0.993 0.979 0.957 0.771 0.950 0.946 

F1 0.996 0.993 0.943 0.989 0.879 0.837 0.971 0.970 
 

 

Figure 75. Classification of tile Q. 
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Figure 76. Some detail of 
the tile classification in high-

altitude mountainous areas (left, 
scene 1) and lowlands (right, 

scene 2). Images a.1 and a.2 show 
the RGB orthophoto (Source: 

Bing Satellite); b.1 and b.2 shows 
the classification; c.1 and c.2 
shows the overlapping of the 

orthophoto and the classification 
(low opacity). 

 

 
 

 

Figure 77. The changes in F1-score for each class through the epochs (tile no., on the 
abscissae). 
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Replicability 

The replicability of the classification methodology was tested on the dataset of 
tile K and the overlapping area of tiles Q and K. The accuracy assessment from tile 
K Table 50 shows very similar results to the one of tile Q. It appears that on both 
tiles, the classes that describe the mountainous areas have lower F1 value. The 
accuracy assessment based on 700 test points (identified by stratify sampling the 
base layer described in 7.2.2) was realized for the overlapping area to check the 
stability of tiles K and Q's classifications in the most challenging areas (mountains 
peaks). Only 7 classes are present in the scene, but the rocky areas classes dominate 
the scene (Table 51).  

Table 50. Producer's and User's accuracies and F1 score for the classification on tile K. 

 

C
onifers 

B
roadleaves 

G
rassland 

W
ater 

C
lustered 

bare soils 

Solid rocky 

areas 

U
rban areas 

A
gricultural 

lands 

G
laciers 

O
verall A

cc. 

PA 0.993 0.943 0.927 0.914 0.824 0.727 0.899 0.905 1.000 

0.907 UA 0.979 0.950 0.907 0.993 0.771 0.836 0.829 0.886 0.974 

F1 0.986 0.947 0.917 0.952 0.797 0.777 0.862 0.895 0.987 

 
Table 51. Producer's and User's accuracies and F1 score for the classification on the 

overlapping area between tiles Q and K. 

 

C
onifers 

B
roadleaves 

G
rassland 

W
ater 

C
lustered 

bare soils 

Solid rocky 

areas 

U
rban areas 

O
verall A

cc. 

PA 0.990 1.000 0.990 1.000 0.855 0.750 0.961 

0.928 UA 1.000 0.980 1.000 0.970 0.949 0.870 0.730 

F1 0.995 0.990 0.995 0.985 0.900 0.806 0.830 
 
The filter for selecting only the summertime images with a very low percentage 

of cloud cover, on the one hand, ensured uniform illumination and atmospheric 
conditions; but on the other hand, impeded the use of Sentinel 2 highest processing 
level (2A). Besides, the classification of the 1C-level dataset achieved interesting 
results. The independent classification of each image and the frequency-based 
aggregation minimized the distortions and the errors derived from the topography 
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and the atmosphere. Moreover, the summertime filter reduced the variability in the 
meteorological and atmospheric conditions, allowing for a linear model of 
correction. Even if the pre-processing phase is consistent, it had a low impact on 
the methodology thanks to GEE cloud computing and the ease with which it is 
replicable in GEE. We faced some significant constraints in GEE related to the 
memory available for single users, the poor information regarding the available 
functions, and the lack of some useful functions (like layers importance). 
Nevertheless, it is a relatively young service that is continuously enriched with new 
functions and features, and our analysis was quite ambitious from the computational 
point of view.  

Considering the results in detail, the derivative features considerably increased 
the goodness of the classification. It is interesting to note the role of textural bands 
in the discrimination of confusion between clustered soil class and solid-rocks class. 
Indeed, F1 scores of clustered bare soils jumped from 0.359 to 0.879 by adding the 
textural features to the classification (Table 49). Figure 77 clearly shows that the 
clustered bare soil and the solid-rocky areas are the classes with a lower F1 score 
in every single classification as evidence of the difficulty of separation of the two 
classes. Generally, a single classification accuracy shows a similar trend throughout 
the classes, such as image 6 (low F1 values) and classification no. 7 (high F1 values 
for all its classes) from Figure 77. 

Regarding the aggregated classification, the overall accuracy achieves 0.945 
with a clear improvement in clustered-rocky and solid-rocky areas (respectively F1-
scores 0.827 and 0.890), proving the aggregation method's validity reduces the main 
errors from the single classifications (Table 49). The replicability analysis on tile K 
reported in Table 50 shows trends in clustered and solid rock classes close to the 
ones of tile Q. The overall accuracy of K is 0.907. The training dataset can cause 
the difference between K and Q overall accuracy, and it is negligible. It is worth 
mentioning that in tile K there is one class more: glaciers. Indeed, glaciers' land 
cover is relatively small and present only in K tile (in the Écrin National Park, FR). 
Even if the glaciers classification is excellent, some small glaciers were not 
detected. The overlapping area between K and Q provides promising results if we 
consider that the most confusing classes clustered and rocky areas are the dominant 
LC (Table 51). 

On the other hand, the few classes present in the area provide better values of 
Overall accuracy. Generally, the solid-rocks are frequently misclassified as urban 
areas. This is attributed to the high spectral similarity of the classes and their similar 
textural characterization. A frequent error in Alpine areas is the classification of 
buildings with rocky roofs as solid-rocky areas, the same for the small rivers where 
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the water flow during the summertime is reduced. Also, some pixels classified as 
water are detected in mountainous areas, probably due to shaded rocky/snowed 
areas. 
This study proposes a simple method for the classification of Land cover in 
mountainous areas in GEE platform, which includes some steps to reduce the 
computational effort and the time for the classification. The methodology 
minimizes the error introduced by the atmospheric component and the terrain 
inclination using only images captured during a short time range in limited cloud 
cover conditions and by applying atmospheric and topographic corrections. The 
textural derivative features played a crucial role in distinguishing the most 
challenging classes (clustered bare soil and solid-rocky areas). An additional 
positive value of the methodology is the aggregation method. Indeed, by 
considering the modal value of the single classifications, the final accuracy was 
significantly raised. All the aspects allowed us to reach good accuracies in mountain 
areas. Since the entire classification is performed in GEE, it can be easily modified 
and updated. Further investigation needs to be carried on regarding the DOS 
validation, for example, by considering different linear atmospheric correction 
models. 
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Chapter 8 

Case study B: Sirba River in South-
west Niger 

In the Sirba River basin have been investigated the villages of Larba Birno and 
Tourè. These two villages are located on the river's left bank and have been selected 
for the analysis because particularly prone to floods and temporary water 
stagnation, also known as Temporary Surface Water Bodies (TSWB). In these 
villages were realized three classifications, one from satellite imagery and two from 
UAV. Namely, in this chapter will be analyzed the realization of: 

i) classification of UAV imagery for the identification of Temporary Surface 
Water Bodies (TSWB); 

ii) classification of UAV imagery for the definition of Land Cover (LC) 
iii) classification of Satellite imagery for identification of LC. 
Table 52 reports the three classifications' main characteristics in terms of 

spatial, temporal, and thematic resolution. 

Table 52.  Classifications that interest the South-Niger area. 

No. Classification Temporal Spatial Thematic Reference 
publications 

i UAV-TSWB Low Very 
High 

High (Belcore et al., 2019; 
Belcore et al., 2019) 

ii UAV-LC Low Very 
High 

Medium / 

iii SAT-LC High Medium Low / 
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8.1. Classification of UAV imagery for the identification 
of Temporary Surface Water Bodies (TSWB) 

Temporary surface water bodies (TSWB) in sub-Saharan areas have important 
socio-cultural values, providing freshwater for the population and many agro-
pastoral services. Indeed, the TSWB, which are temporary pools, has a crucial role 
in maintaining biodiversity by providing nutrients and recovery for wild species 
(Haas et al., 2009; WHO, 2020). They provide freshwater, grazing areas, and other 
ecosystem services to pastoral communities (Haas et al., 2009; Hein, 2006).  
Nevertheless, in urban areas, they can be a threat to human health. The TSWB 
within villages and cities may have adverse effects on the population’s health: pools 

or slow-flowing standing water fosters the development of insects, including the 
ones vectors of diseases (Robert et al., 2016). According to the World Health 
Organization (WHO, 2020), the TSWB may be a sanitation and hygiene (WASH) 
issue: inadequate provision of WASH can lead to an increased risk of several 
diseases, including diarrhoea, Hepatitis A, Cholera, Typhoid, and Shigella 
Dysentery, Intestinal helminths, Malaria and Trachoma (WHO, 2020). Where 
TSWB is close to latrine sanitation facilities, residuals can rise and create an insane 
living environment. Moreover, temporary water bodies can cover vast areas of cities 
and villages, hindering the practicability of road networks. In urban areas, TSWB 
issues can be managed through well-designed drainage systems or channel 
networks. Addressing the TSWB problem at the local level is fundamental to reduce 
the health risk.  

The health risk deriving from the TSWB is linked to the floods. Stagnant water 
after a floods is very common. Indeed, flood events can overload the drainage and 
sewage management systems, causing the rise-up of water in the drains and creating 
pools of standing water enriched with organic waste favourable for mosquito 
breeding. This is well documented in developing countries, where infectious 
disease outbreaks have been reported following major flood events (Few et al., 
2004).  

In sub-Saharan Africa, surface water resources are characterized by high 
variability at inter and intra year level and conditioned not only by the weather 
conditions and the characteristics of the soil but also by the land cover and use 
(Descroix et al., 2013; Gal et al., 2017; Haas et al., 2011, 2009). Due to their spatial 
and temporal variation, TSWB can be easily missed in mapping activities (Haas et 
al., 2009) that are mostly realized via remote sensing from satellite (Gardelle et al., 
2010; Haas et al., 2011, 2009; Robert et al., 2016). Many events can be studied by 
analyzing satellite imagery, but the extracted information may be ineffective for 
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small-scale and punctual-shaped phenomena. Remote sensing from satellite 
imagery is very useful in TSWB-related studies on a large scale (Gardelle et al., 
2010; Haas et al., 2011, 2009; Robert et al., 2016), although limited at the local 
scale by temporal and spatial resolutions of satellites. Free satellite data are 
available at fixed time intervals (i.e., temporal resolution), preventing a complete 
analysis of the TSWB for lack of data regarding the study period or bad weather 
conditions (Remondino, 2011).  

Recent works related to the detection of stagnant water rely on aerial imagery 
(Suduwella et al., 2017), which is becoming prevalent thanks to the spreading of 
Unmanned Aerial Vehicles (UAVs). UAVs have been employed in TSWB 
detection too. (Amarasinghe and Wijesuriya, 2020; Carrasco-Escobar et al., 2019) 
identified TSWB using radiometric sensors mounted on UAV. The radiometric 
information is still the most common type of data used for these applications. 
Nevertheless, it allows identifying the stagnant water land cover at the specific time 
of the flight. Even if very useful, the application is compromised by the survey 
period, the meteorological conditions, and the intensity of the TSWB phenomenon 
in the season (high inter and intraseasonal variation). For a proper TSWB 
identification with the purpose of flood-related health risk reduction, knowing the 
location and the maximum potential extension of the stagnant water bodies is 
fundamental. The maximum seasonal extension of TSWB depends on the soil 
characteristics (which define the soil infiltration and runoff), the land topography, 
and vicinity to the aquifer. From a topographic point of view, TSWB are 
depressions that, because of intense rainfall (especially in sub-Saharan areas), are 
recharged by water. Thus, the first step in the identification of TSWB is the detailed 
study of land morphology. In this framework, there is a need for new technologies 
and methods to rapidly localize depressed zones in urban areas that may become 
TSWB in case of intense precipitations.  

Topographic depression is generally detected from Digital Elevation Models 
(DEMs). Since hydro-geomorphic applications depressions are commonly removed 
from DEMs because they are considered human artifacts that may alter water flow 
simulations (Lindsay and Creed, 2006), the scientific literature is rich in depression 
detection from DEMs (specifically Digital Terrain Models, DTMs). Many 
depression-detection applications are based on high-resolution (approximately 5-1 
m/pixel) DTMs are generated by LIDAR techniques (Dhun, 2011; Lindsay and 
Creed, 2006; Vaze et al., 2010; Wang and Liu, 2006). The most recent studies are 
focused on the relation between DTM resolution and topographic depressions 
(Burdziej and Kunz, 2007; Liu and Wang, 2008; Vaze et al., 2010; Vesakoski et al., 
2014; Yang Jun and Chu Xuefeng, 2013). As far as the author knows, very few 
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studies were realized on topographic depressions identification from Very High 
Resolution (VHR) DTMs (< 0.5m/pixel) generated by aerial photogrammetry and 
Structure from Motion technique (see paragraph 3, page 103). The goal of this work 
is to classify the areas of potential water stagnation from UAV very high-resolution 
DEM, to validate the results through the comparison with radiometric analysis and 
ground inspections data.  

8.1.1. Data collection 

UAV flight  

The data collection consisted of the acquisition of images in visible (Red Green 
Blue, RGB) and infrared (Near Infrared Green Blue, NGB) spectral resolution from 
Unmanned Aerial Vehicles (UAVs). Using a GNSS dual-frequency receiver, the 
Ground Control Point for the precise georeferencing of the UAV imagery was 
collected. The UAV system was provided by a Nigerien enterprise based in 
Niamey, Drone Africa Service (DAS)5. DAS uses self-constructed and no-brand 
drones. A fixed-wing UAV was built explicitly by DAS to be used in this survey 
(Figure 78). The flight was planned and automatically controlled by the ArduPilot 
software. Two optical sensors were mounted on the system: a Sony ILCE-5100 
camera (its main characteristics are described in paragraph 6, page 119) and an 
experimental sensor created with a Raspberry Pi computer and two Raspberry Pi 2 
cameras as illustrated in paragraph 6, page 119 and in (Belcore et al., 2019). The 
sensors were not simultaneously used because they were too heavy to be held up 
together by the UAV during the same flight. Furthermore, they had different 
characteristics, and each camera requires specific flight settings (i.e., height and 
speed of flight) to ensure imagery of similar Ground Sample Distance (GSD) and 
the same overlapping between the pictures. The Sony camera has 23.3 megapixels 
of resolution. 3.91 cm/pixel images were obtained in about 20 minutes of flight at 
280 meters above each village's ground.  

Table 53 presents the characteristics of the flights. The Raspberry camera 
allows the collection of Near InfraRed (NIR) information and acquires information 
with 5 Megapixel resolution to obtain a Ground Sample Point (GSP) of 6.1 cm/pixel 
images was necessary to reduce the height of flight to 130 meters above the ground. 
To cover the same area of the Sony flight, were necessary two flights of about 30 
minutes, which is the maximum duration of the UAV battery. The surveyed area 
covered the Niger villages of Tourè and Larba Birno, as described in paragraph 1, 
page 112. Six UAV flights covering a surface of about 600 hectares were performed 

                                                 
5 http://drone-africa-service.com/  

http://drone-africa-service.com/
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in two days (Belcore et al., 2019). In particular, were covered 320 hectares on Larba 
Birno and 280 hectares in Tourè; the study area includes urban areas and rural areas 
surrounding the villages.  579 images on Larba Birno and 507 images on Tourè 
were collected with the Sony camera, while 993 pictures on Larba Birno and 636 
pictures on Tourè with the Raspberry NIR (Figure 79). The UAV did not power the 
Raspberry Pi camera, and there was no interaction between the UAV and camera. 
Despite the critical conditions, the sensor provided satisfactory results.  

 

  

Figure 78. Left: UAV system built by Drone Africa Service. Right: Detail of the UAV body.  
It is visible that the Raspberry Pi sensor is mounted on the UAV system. 3.5 inches screen and 
the GPS receiver. 

 
Table 53. Main characteristics of the sensors and the flights performed on Larba Birno and 

Tourè. 

Characteristics Sony ILCE-5100 Raspberry PI 
Resolution 23.3 MP 5MP 
Bands sensor RGB RGBN 
ISO settings 1/125 1/100  

Shutter frequency Automatically set by the 
navigation software 1 Hz 

Lateral overlap 70% 70% 
Longitudinal overlap 60% 60% 
Number of flight to cover each 
village 1 2 

Average duration of flight 30 minutes 30 minutes 
Height of flight from the ground  270 m  120 m 
GSD 2.5 cm/pixel 6 cm/pixel 
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Sony ILCE-5100 Raspberry PI 

Figure 79. Sample pictures of the same area in Larba Birno acquired by Sony-ILCE-5100 and 
Raspberry Pi.  The SONY picture (6000x3000 pixels) has a 2.5 cm/pixel resolution and is in RGB. 
The raspberry picture (2592x1933 pixels) has a 6 cm/pixel resolution, and it is visualized in NIR 
Green Red. 

GNSS survey 

In each village, a campaign of measure using two GNSS dual-frequency 
receivers, STONEX S10 models, in RTK rover-base modality was performed for 
georeferencing the data. The instruments were rented in Niamey. In RTK rover-
base survey where the station master coordinates are unknown, are used two 
receivers: a GNSS receiver works as “master” station, storing the satellite-based 
measure of its position with a specific frequency (in this case, the rate was set to 1 
Hz) and a receiver called “rover”, connected to the master receiver (during Sirba 

survey the transmission was via radio) that measures the points of interest based on 
its position concerning the master station (paragraph 3.1.5, page 42). The master 
station coordinates are estimated in post-processing using the Precise Point 
Positioning technique (PPP). The Up component was recorded in ellipsoidal heights 
and converted in orthometric heights using the EGM08 model (Pavlis et al., 2012). 
In Tourè, were measured 20 points, while in Larba Birno, were measured 16 points. 
The raw measurements were saved in the Receiver Independent Exchange Format 
(RINEX) 3.1 version with a sampling rate of 1s.  

 
The services taken into consideration are the Canadian Spatial Reference 

System Precise Point Positioning tool (CSRS-PPP), the Automatic Precise 
Positioning Service (APPS), and the AUSPOS Online GPS processing service 
(AUSPOS). The precision, the convergence time (meant as the length of time 
required to reach centimeter-level positional solutions), and the structure and 
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condition of use of this paper's services. The data used for the comparison were 
collected in February 2018 along Sirba River (south-west Niger) in the ANADIA 
2.0 project framework. 

It was realized a 
topographic survey, which 
aimed to define the 
transversal sections along 
100km of Sirba River (one 
section per km). 
Unfortunately, there are no 
CORS in Niger: the nearest 
ones are in Nigeria and 
Ivory Coast. Although the 
study area is close to the 
border between Niger and 
Nigeria, the CORS is more 
than 400 km from the Sirba 
region: this distance is too 
much to guarantee the 
requested accuracy. 
Besides, the closest known-
coordinates points are 
placed in Niamey (around 
200 km from the surveyed 
area). Considering these 
particular conditions, the 

only feasible way to collect data was an RTK survey in a master-rover modality with 
a radio-modem connection. The PPP technique was used to post-process the data and 
to estimate the coordinates of the base stations.  

The data were collected with two STONEX S10 receivers hired in Niamey. The 
master receiver was placed in 18 different stations along the Sirba River, and 3150 
points were measured with the rover receiver. Each master station acquired data for 
two hours at least, considering a session length of 3 hours and 22 minutes as 
maximum. The high temperature (around 40°C) limited the base receiver's correct 
functioning that overheated and stopped the communication with the rover receiver. 
This prevented acquisition longer than 3 hours. The receivers' communication was 
even more limited by the local topography and by the abundant vegetation along the 
river. If the receivers were more than 3 km far from each other, the communication 

Figure 80. Section of Sirba River interested by the 
survey. The green squares identify the locations of the 
stations along the river. The circled ones are analysed in 
this contribute. 
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stopped. In order to exploit the use of more than two GNSS constellations, the data 
collected by the base receiver were stored in RINEX 3.x version and then post-
processed using the online free services: The Canadian Spatial Reference System 
(CSRS-PPP), Precise Point Positioning tool (AUSPOS) and Automatic Precise 
Positioning Service of the Global Differential GPS System (APPS). Table 54 
describes the main characteristics of the PPP services.   

Table 54. Summary of the main characteristics of the three services. *calculated on 10Mb file. 

 CSRS-PPP APPS AUSPOS 

RINEX version 3.x 2.x 2.11 

Maximum file size Not specified 10 Mb Not specified 

Multi-file upload No Yes Only via FTP 

FTP No Yes Yes 

Height of the antenna Automatically 
detected 

Automatically 
detected Manually set 

Elevation-dependent 
data weighted No Yes No 

Cut-off angle No Yes No 

L1 code No Yes No 

Upload of pressure 
model No Yes No 

Direct results No Yes No 

Compulsory 
registration to the 

website 
Yes No No 

Processing time 
(minutes)* 20 3 20 

Reference system(s) 
of the results 

ITRF 2014, 
NAD83 ITRF 2014 ITRF 2014 

Orthometric heights Yes No Yes 

Elaboration report Yes No Yes 

Graphic restitution of 
the elaborations 

statistics 
Yes No Yes 
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Canadian Spatial Reference System (CSRS) Precise Point Positioning tool 

(CSRS-PPP), https://www.nrcan.gc.ca/maps-tools-publications/maps/tools-applications/10925#ppp 
The service, also described in paragraph 6.4.3, page 134, can process data in 

Kinematic and Static mode. It requires the selection of the reference system among 
NAD83 (inserting the referring epoch) or ITRF (International Terrestrial Reference 
Frame). Optionally, it is possibly converted ellipsoid height in geodetic height by 
choosing between CGDV28 (Canadian Geodetic Vertical Datum of 1928) or 
CGDV2013 (Canadian Geodetic Vertical Datum of 2013). The vertical datum is used 
to provide the user the orthometric height only if the survey is realized in Canada. 
The user can share his/her data with CSRS. In “more options” section, it is possible 
to upload an Ocean Tidal Loading (OTL) file. In August 2018, the uploading of 
RINEX files in version 3 has been enabled (before just in version 2.x was accepted). 
Only one file at a time can be processed. The results are sent by email. The results 
are sent by email in a compressed (ZIP format) folder. Table 55 lists the results output 
folder contents. 

Table 55. Files in the CSRS-PPP results folder and their contents. The * indicates the files 
available since August 2018. 

File format Contents 
Portable Document Format (PDF) Report on the processing 
comma separated value (CSV) file Positioning and clock information 

text (TXT) file Errors or warnings from the processing 

position (POS) file Positioning information for each epoch 
processed 

summary (SUM) file* Results of the PPP 
JSON format residual file (RES)* Solution residuals 
 
The pdf-report contains a section summarized the essential information regarding 

the survey (such as starting and end time, duration of the data acquisition, antenna 
height). Estimated coordinates are provided in a dedicated results section in two 
different reference systems: WGS84 (or WGS 84 projected in UTM zones) and 
ITRF2014 (Altamimi et al., 2016). The σ values (95% confidence level) are 

calculated for each component (i.e., East, North, and Up). The difference in meters 
between the a priori coordinates and the estimated ones is also provided. The last 
section presents the statistic observation of the survey and the PPP (i.e., pseudo-range 
Residuals, Sky Distribution, Ellipsoidal Height Profile, latitude, longitude, height 
differences, Zenith delay, Ambiguities, tropospheric delay e Phases residuals). The 
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comma separated values (CSV) file contains the estimated geographical coordinates 
in decimal degree of each position acquired by the antenna. 

 
Automatic Precise Positioning Service (APPS), 

https://apps.gdgps.net/apps_file_upload.php 
The APPS is an online free service provided by the Jet Propulsion Laboratory 

(JPL) of the California Institute of Technology of USA National Aeronautics and 
Space Administration (NASA). Its elaboration is based on the Global Differential 
GPS System (GDGPS) products of JPL and the software GIPSY-OASIS developed 
by JPL too. It applies a broad and spread geodetic structure (more than 200 stations 
distributed worldwide). The GDPS operates since 2000 and declares a 99.999% 
reliability and precisions under 10 cm (APPS, n.d.). Without registration, users can 
use the reduced version of the service: indeed, it is possible to upload 5Mb at 
maximum to be analyzed in static mode. In order to have full access to the service, 
registration is compulsory (Figure 81).  

 

The available options for the PPP are the processing mode (static or kinematic); 
the L1 code (C/A or P), if an atmospheric pressure model is requested (it can be 
useful for the calculation of the hydrostatic delay for the troposphere modeling), the 
type of weight to assign to the elevation datum (flat, sin or sqrt). The advanced 
options allow the user to set the value of the “cut off angle” and the output rate in 

seconds (clearly available just for kinematic surveys). 10 Mb is the maximum file 
size allowed, and the files must be in RINEX version 2.x. The results are provided 

Figure 81. APPS service upload webpage. 



 

202 
 

directly in the upload window. As soon as the data are uploaded, the user is 
readdressed to a new web page. After a few minutes, a web map of uploaded 
coordinates is loaded. A download link allows the user to get a compressed folder 
(TGZ) that contains five files: a “NINJALOG” file containing the characteristics of 

the survey; a “TDP” file of the coordinates converted in GIPSY format; a GIPSY 
STACOV file with full covariance (for static only) values; a LOG file containing 
GIPSY run-time messages and statistics; and finally a SUM file that summarises 
the results of the conversion, including the  Cartesian and the geographic 
coordinates in and their respective σ values. The results folder also includes a 

Google Earth URL of the survey's trajectories (just in kinematic). 
 
AUSPOS Online GPS processing service, https://gnss.ga.gov.au/auspos 
It is an online free service provided by the Australian Government. It uses the 

relative positioning technique, which can estimate the coordinate of an unknown-
positioned mark when it is over a reference station of known coordinates (Jamieson 
Marian and Gillins Daniel T., 2018). The coordinate correction is realized with the 
Bernese Software System that is very rigorous in the definition of orbital parameters, 
and everything concerns the modeling of the geodetic aspects (AUSPOS, 2014). The 
information and the parameters regarding the orbit and the Earth's orientation are 
obtained from the IGS, and, like the CSRS-PPP, the best ephemerids available are 
used. It is fundamental underlining that AUSPOS does not provide a real PPP service 
since the applied data correction is based on the nearest IGS and Asia Pacific 
Reference Frame (APREF) stations. Consequentially, the confidence of the data and 
the time-dependence are influenced by the distance of the reference stations used for 
the coordinates estimation. The service can be used without any registration. The only 
information needed for the elaboration is the model and the height of the antenna 
used, and an email address (Figure 82). The files must be in RINEX version 2.11. A 
maximum of 20 files can be uploaded simultaneously, but they must be referred to a 
period within seven days. The results are sent via email. 

 

Figure 82. AUSPOS service upload webpage. 
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The conversion report of AUSPOS is a pdf file structured in five sections: User 
data, Processing Summary, Computed Coordinates, Ambiguity resolution, 
Computation Standards. The first section contains the user’s data and the survey's 
basic information: height and type of antenna, duration of the data acquisition, 
number of sent files. The second section graphically shows the reference stations 
used for the processing and their position in the globe. 

The computed coordinates section provides the processed coordinated in the 
ITRF2014 system and GRS80 (Geodetic Reference System 1980, adopted by 
Australia in 1979, Moritz, 1979), the ellipsoid and geoid heights (obtained from the 
Gravitational Earth Model, Pavlis et al. 2012). The percentages values of the 
CORS's ambiguity resolution used for the PPP and the distance between the master 
station and the CORS are reported in the section ambiguity resolution. The 
standards and the methodologies applied by AUSPOS for the data analysis are 
presented in the last section of the report. AUSPOS report includes warning 
messages and suggestions in case of low levels of confidence in the results.  

The RINEX data collected along the Sirba River have been processed using the 
abovementioned online free services. Some attention was necessary to elaborate on 
the data correctly. The RINEX files version 3 were converted into RINEX version 
2.11 with the RTKCONV tool that is part of the open source software RTKLIB 
(http://www.rtklib.com/), the only version supported by AUSPOS. Furthermore, 
the frequency rate of acquisition was reduced to one observation every 5 seconds 
to have less than 10 Mb size files, which is the file size limit of the APPS service. 
The precisions of the estimation of each service and the relative accuracy (measured 
as the difference between coordinates) of four sample points (02, 09, 14 e 18) (Table 
56) were taken into consideration for the comparison of the results. All final 
coordinates have been converted into WGS84/ UTM 31N coordinates system. The 
APPS service provides the σ values with 68% confidence, while CSRS-PPP and 
AUSPOS calculate 95% confidence σ, the σ values of APPS were transformed in 

95% confidence. The CSRS-PPP values had been taken as a reference for 
comparing software, as shown in Equation 30 and 31.  

 
Δ CSRS-APPS = Estimated coord. CSRS - Estimated coord. APPS              [30] 

 
 

ΔCSRS-AUSPOS = Estimated coord. CSRS - Estimated coord. AUSPOS          [31] 
 
Where Estimated coord. CSRS are the North, East, and Ellipsoidal height 

coordinates of each sample point estimated by CSRS; and Estimated coord. APPS 

http://www.rtklib.com/
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are the North, East, and Ellipsoidal height coordinates of each sample point 
estimated by APPS; Estimated coord. AUSPOS are the North, East, and Ellipsoidal 
height coordinates of each sample point estimated by AUSPOS. 

Moreover, three different scenarios of time acquisition were created to 
investigate the effectiveness of the services on short acquisition time: entire 
acquisition session, session of one hour, session of half-hour. The RINEX files were 
reduced to 1 hour and half-hour for each sample point using RTKLIB.  

Table 56 reports the full acquisition times of the sample station.  
Table 57 presents the values of Δ CSRS-APPS and ΔCSRS-AUSPOS, 

calculated as illustrated in equations 30 and 31. The Δ of the samples ranged 
between 1 cm and 6.7 cm (that is the maximum value recorded on the longitude 
difference between CSRS and AUSPOS of point 02). Δ CSRS-APPS and Δ CSRS-
AUSPOS show similar values on points 18, 14, and 09 in latitude and longitude. 
Station number 02 differs from other stations for the longitude and the up 
component. Even if the Up component's σ values almost reach 5 cm, the obtained 
results are sufficiently precise for the ANADIA 2.0 project purposes.   

Table 56. Characteristics of the positions of the base receivers (Stations) analyzed. * 
gg/mm/yyyy format 

Station no. Date of 

acquisition* Session  length 

02 12-02-2018 1h 50m 56.00s 
09 20-02-2018 2h 47m 39.00s 
14 19-02-2018 2h 47m 16.00s 
18 18-02-2018 3h 22m 50.00s 

 
Table 57. Differences between the coordinates estimated by CSRS, APPS, and AUSPOS in 

WGS84/UTM 31N system for each sample station. 

PPP Service UTM 31N STATION 
02 18 14 09 

Δ 
CSRS-APPS (m) 

East 0.012 0.012 -0.026 -0.012 
North 0.008 -0.003 0.011 0.005 
Up 0.024 -0.001 0.015 -0.008 

Δ 
CSRS-AUSPOS (m) 

East -0.067 0.022 -0.013 -0.008 
North 0.001 -0.002 0.004 0.002 
Up -0.029 -0.006 0.009 -0.023 
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The delta of the up component ranges between 3 cm and 1 mm. The σ values 

estimated by the CSRS-PPP Canada are comparable to the ones of AUSPOS. APPS 
provides values that are lower than the ones of other services (Table 58).  

Table 58. σ, 95% confidence, values estimated for full-time acquisitions. 

PPP Service  STATION- full acquisition time 
02 σ (m) 18 σ (m) 14 σ (m) 09 σ (m) 

CSRS Canada 
East 0.027 0.019 0.016 0.026 
North 0.011 0.005 0.008 0.009 
Up 0.048 0.027 0.040 0.041 

APPS 
East 0.006 0.0042 0.0042 0.004 
North 0.006 0.004 0.004 0.004 
Up 0.028 0.016 0.018 0.020 

AUSPOS 
East 0.045 0.010 0.011 0.011 
North 0.014 0.008 0.009 0.009 
Up 0.074 0.036 0.042 0.046 

 
The higher σ values are recorded on the Up component by AUSPOS, which 

peaks to 0.074m on point 2 (Table 58). The entire acquisition session of point 02 is 
slightly less than the other samples. Indeed, it is 1 hour and 50 minutes, while other 
sample stations exceed the 2 hours of acquisition. 

The precision of CSRS-PPP processing shows major bias on the East and up 
coordinates, while APPS and AUSPOS present very similar σ values on the East 

and North components. Station 02 is characterized by different trends from the 
others; this is attributable to the short stationing time. Table 59 shows the σ obtained 

from the analyses of the 1-hour acquisition time data. Again, CSRS and AUSPOS 
provide the higher values, even if APPS appears less confident in up component for 
stations 18 and 14. For example, the σ of point 2 calculated by AUSPOS is 0.612 

m. 
This specific value moves away from the equivalent of the entire acquisition 

time of 50 centimeters, and AUSPOS alerts users and invites them to use the 
corrections with caution since the provided values exceed the confidence level. The 
σ of the services on 1-hour acquisition exceed 0.095m on the up of almost every 
sample stations, revealing low reliability. With shorter acquisition time, the 
confidence levels of CSRS-PPP and APPS get closer (Table 60), while AUSPOS 
shows similar trends for some stations (i.e., 14 and 18) and very different for other 
(station 2). Figure 83 shows the values of the difference between the coordinates 
elaborated with the services, in WGS84/UTM31N, with 1 hour of session. 
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Table 59. σ, 95% confidence, estimated for acquisition time reduced to 1-hour. 

PPP Service  
STATION 1-hour 
02 
σ (m) 

18 
σ (m) 

14 
σ (m) 

09 
σ (m) 

CSRS 
East 0.069 0.087 0.058 0.056 
North 0.028 0.025 0.023 0.024 
Up 0.104 0.099 0.110 0.129 

APPS 
East 0.014 0.082 0.058 0.056 
North 0.010 0.022 0.020 0.024 
Up 0.060 0.134 0.140 0.108 

AUSPOS 
East 0.261 0.031 0.086 0.062 
North 0.180 0.020 0.021 0.057 
Up 0.612 0.098 0.130 0.141 

 
The up component elaborated on one hour and the one elaborated on half-hour 

distance each other until 10 cm. As expected, a significant distance between the up 
components can be observed: the Δ CSRS-APPS 1h of point 09 peaks 17 cm. Table 
60shows the analysis of 30 minutes-acquisition time. AUSPOS did not provide any 
results because one hour is the minimum acquisition time required. CSRS-PPP and 
APPS performances exceed in East and Up components of 20 cm (Table 61). The 
difference between coordinates estimated by CSRS-PPP and APPS (acquisition 
time of half-hour) is limited to a few millimeters, like the North component of point 
09 (Table 61). An opposite scenario emerged from the Up component: points 18 
and 14 reach 25 cm. 

Table 60. Difference between the coordinates estimated by CSRS, APPS, and AUSPOS in 
WGS84/UTM 31N system for each sample station (1hour stationing). 

PPP 
Service UTM 31N STATION 1-hour 

02 18 14 09 

Δ 
CSRS-APPS 1h (m) 

East 0.019 -0.024 -0.004 0.025 
North 0.006 0.006 0.010 0.001 
Up 0.013 0.101 0.12 -0.010 

Δ 
CSRS-AUSPOS 1h (m) 

East 0.000 -0.018 0.052 0.290 
North -0.024 0.005 0.018 -0.020 
Up -0.094 0.100 0.169 -0.173 

 
 
 



 

207 
 

Fu
ll 

ac
qu

is
iti

on
 ti

m
e 

 

1-
ho

ur
 a

cq
us

iti
on

 ti
m

e 

 
Figure 83. Graphical analysis of the σ values of East, North, and Up coordinates 
of the three services, obtained considering the full acquisition time. 
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Table 61. σ values, 95% confidence, values estimated for acquisition time reduced to 0.5-hour. 

PPP  
Service 

 STATION 0,5-hour 
02 σ (m) 18 σ (m) 14 σ (m) 09 σ (m) 

CSRS 
East 0.165 0.215 0.155 0.149 
North 0.072 0.068 0.060 0.061 
Up 0.202 0.260 0.245 0.362 

APPS 
East 0.138 0.198 0.152 0.248 
North 0.140 0.124 0.056 0.084 
Up 0.174 0.334 0.302 0.544 

AUSPOS N/A N/A N/A N/A N/A 
 
Table 62. Difference between the coordinates estimated by CSRS, APPS, and AUSPOS in 

WGS84/UTM 31N system for each sample station (acquisition time 0.5-hour). 

PPP 
service UTM 31N STATION 0,5-hour 

02 18 14 09 

Δ 
CSRS-APPS 0,5 h (m) 

East 0.039 0.016 -0.031 -0.013 
North -0.010 0.002 -0.008 0.006 
Up 0.016 0.247 0.139 0.043 

 

As previously described, CORS are not available neither in the Sirba region nor 
in Niger. Thus, it is impossible to estimate the accuracy obtainable in this area 
because there are no known points for this kind of analysis, but only the precision 
values can be evaluated, as shown previously. One of the possible ways to analyze 
accuracies of PPP solutions in sub-Saharan areas is to consider CORS settled in 
countries close to Niger, more or less at the same latitude in order to guarantee both 
the mean atmospheric conditions (in terms of ionospheric and tropospheric delays) 
and the satellites geometry distribution. Another possible approach could be to 
collect 24-hours of data to obtain results independent of the satellite geometry 
distribution and guarantee the convergence of the solution, as described in the 
literature (Li and Zhang, 2014; Ren et al., 2015). However, the impossibility of 
realizing long-stationing sessions, due to climate effects and the lack of known-
coordinates points, impeded the evaluation of the services' accuracy. Hence, to 
check the estimations' accuracy, raw-observations of a CORS close to the surveyed 
area were analyzed with PPP online services. The selected CORS was the YKRO 
station (Yamoussoukro Tracking Station), placed in Cote d’Ivoire and part of the 

IGS network (Table 63). This station was chosen because it is the closest station 
(considering latitude) to the investigated area, and it was operative in February 
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2018. This station is also away from the sea: this may ensure atmosphere conditions 
as similar to those of the study area. Hence, RINEX data of YKRO were 
downloaded for the days of the surveys. Unfortunately, data on 18 February (station 
no. 18) were not available. The RINEX were clipped according to the starting and 
end time of each acquisition. PPP coordinates estimated by online services were 
compared to the reference ones of the YKRO CORS (Table 64). 

Table 63. Main characteristics of YKRO. Source: IGS website 

YKRO Site Information 

City Yamoussoukro 

Country Cote d'Ivoire 

Tectonic Plate African Plate 

Approximate Position (ITRF) LAT: +065214.0170 
LON:-0051424.3347 

Elevation ellipsoid (m) 270 

Date Installed  1999-07-18 
 
The results are never below the 15 cm on East and North components while 

reaching 27 cm on the Up component. It must be considered that the IGS provides 
the elevation of the station with a meter level of precision. It appears that the three 
services provide constant accuracy values. 

Table 64. Differences between the estimated and reference (IGS) coordinates of the YKRO 
station 

PPP Service  YKRO_ 02 (m) YKRO_14 (m) YKRO_09 (m) 

CSRS Canada 
East 0.193 0.210 0.210 
North 0.188 0.186 0.187 
Up 0.269 0.258 0.183 

APPS 
East 0.210 0.210 0.210 
North 0.170 0.180 0.180 
Up 0.260 0.257 0.254 

AUSPOS 
East 0.240 0.213 0.258 
North 0.175 0.188 0.197 
Up 0.261 0.276 0.235 
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According to the analysis performed in this paper related to the Niger area, the 
three services are adequate and effective for the master-rover RTK survey's post-
processing corrections. APPS reveals the most precise PPP free online service 
among the ones investigated in this paper, followed by CSRS-PPP that guarantees 
satisfying performances in an easily interpretable report. Finally, AUSPOS presents 
less precise results, but it is incredibly intuitive. Additionally, APPS is the most 
rapid service in terms of data processing, and it permits the analysis of the large 
quantity of data (industrial application) uploading the RINEX files on an FTP 
provided by JPL (this option was not tested in this contribute). Nevertheless, APPS 
has an interface that may be complicated for non-GIPSY-expert users, and the 
results are not easy to be read because they are not organized in a report.  CSRS-
PPP is very functional because the upload process is intuitive, and the results report 
is easily interpretable. AUSPOS is a user-friendly service. Little information for the 
data elaboration is requested, and the restitution time is comparable to the one of 
CSRS-PPP. Even if the report is rich in the elaboration's statistical analysis, it is not 
complete as the one of CSRS-PPP. Nevertheless, AUSPOS results being the less 
precise service in this specific analysis. 

The relative accuracy analysis of the services results in closer estimations of 
coordinates between CSRS and APPS. The coordinates estimated by AUSPOS and 
CSRS are up to 17 cm apart in 1-hour stationing. The analysis of the estimated 
coordinates of YKRO CORS has shown poor accurate results. Nevertheless, they 
are acceptable for the ANADIA 2.0 project.  

This paragraph aims to assess PPP online service quality as free solutions for 
topography surveys in critical areas. Nevertheless, it was impossible to perform a 
complete and exhaustive statistical analysis since the available dataset is relatively 
low. Moreover, the lack of known-coordinates points and stationing's impossibility 
for more than 3 hours prevented a proper accuracy analysis of PPP services by real 
framework comparison.   

 
In the ANADIA 2.0 project framework, the Canadian CSRS-PPP was used, 

which, although it is less precise than APPS, provides exhaustive statistics 
regarding the coordinates’ corrections and is user-friendly. The obtained results 
have ± 4 cm precision and 17 cm accuracy that satisfy the ANADIA 2.0 project's 
needs in Niger. The CSRS-PPP was used to post-process the GNSS data collected 
for georeferencing the orthomosaics. Table 65 reports the final coordinates used for 
the master station in Larba and Tourè to collect the GCPs. 



 

211 
 

Table 65. Description of the characteristics of the GNSS surveys in Larba Birno and Tourè. 
The Delta is the difference between the base station's measured coordinates and the estimated 
coordinates by Precise Point Positioning. 

L
ar

ba
 B

ir
no

 

DATE 14/09/2018  
STARTING TIME 13:06:02.00 
END TIME 14:15:40.00 
H ANTENNA (m) 1.81 

  LAT (+n) LONG (+e) ELL.HEIGHT 
ESTIMATED 
COORD, 
geographic 

13° 42' 12.62923"  1° 32' 54.87735" 235.28 

ESTIMATED 
COORD, 
cartographic (m) 

1515407.211 343045.802 235.262 

2SIGMA (m) 0.014 0.045 0.054 
DELTA (m) -0.062 0.663 0.3235 

T
ou

rè
 

DATE 13/09/2018 
STARTING TIME 14:24:41.00 
END TIME 17:00:28.00 
H ANTENNA (m) 1.89  
 LAT (+n) LONG (+e) ELL.HEIGHT 
ESTIMATED 
COORD, 
geographic 

13° 36' 49.66473" 1° 26' 24.00953" 238.339 

ESTIMATED 
COORD, 
cartographic (m) 1505555.569 331238.476 238.339 
2SIGMA (m) 0.004 0.012 0.024 
DELTA (m) 0.154 0.327 0.677 

8.1.2. Data pre-processing 

Orthophoto and DEM generation 

The data collected were processed according to a traditional Structure from 
Motion (SfM) workflow (paragraph 3, page 103). The results are one Digital 
Terrain Model (DTM) and one multiband orthophoto in Red Green Blue Near 
InfraRed.  The images collected with the Raspberry and the Sony sensors were 
elaborated using the software Photoscan version 1.3.3 (see paragraph 6.4.2, page 
134), and two multiband orthomosaics for each study village were generated. Figure 
84 reports the workflow of the orthophoto generation. The pictures captured by each 
camera were analyzed on a separate set. The software automatically aligned each 
set, then the sparse cloud generated and georeferenced using the points measured 
with the GNSS receivers. Eight points out of 20 were used as checkpoints (CPs) in 
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Larba, and 6 points out of 16 were used as CPs in Tourè. After the cloud's 
densification, the point clouds of the RGB and RGN datasets were aligned based 
on the Ground Control Points (GCPs) locations.  

Table 66 shows the final RMSE (Root Mean Square Error) values obtained for 
the GCPs for each village, while Table 67 shows the ones for the CPs. 

Figure 84. The workflow of the orthophoto and Digital Terrain model generation. 
 
Table 66. RMSE value of the ground control points (GCPs) 

Errors (cm) 
Larba Birno Tourè 

Sony ILCE 
RGB 

Raspberry 
RGN 

Sony ILCE 
RGB 

Raspberry 
RGN 

X error-easting 4.80 4.21 3.52 5.40 
Y error-northing 7.48 4.75 3.77 5.05 
Z error-altitude 4.66 2.64 3.79 2.93 

Total error 10.03 6.88 6.40 7.95 
 
Table 67. RMSE value of the checkpoints (CPs) 

Errors (cm) 
Larba Birno Tourè 

Sony ILCE 
RGB 

Raspberry 
RGN 

Sony ILCE 
RGB 

Raspberry 
RGN 

X error-easting 1.83 5.88 3.75 5.41 
Y error-northing 6.89 7.21 3.81 6.54 
Z error-altitude 4.84 4.17 7.90 3.03 

Total error 8.62 10.20 5.67 9.02 
 
Once the sparse cloud was georeferenced, the “high quality” dense cloud was 

generated. It was then created an interpolated mesh of the point cloud, the texture, 
and finally, the orthomosaic. The same process was followed for the photos 
acquired by the raspberry Pi camera and the Sony ILCE. The final orthophotos have 
a resolution of 4 cm in RGB and 6 cm in NGB. The Sony ILCE point cloud was 
used to extrapolate The DTM because of the higher spatial resolution than the 
Raspberry-point cloud. For each dataset, the dense cloud was cropped into a “high 

interest” area that coincides to the village's centre The cropped dense cloud was 
classified using a specific ground classification tool inbuilt in Photoscan to identify 
the ground points. The classification is automatic and based on three parameters: 
Maximum Degree Angle, Maximum Distance, and Cell size. Table 68 shows the 
settings used for the ground classification in each village.  
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Table 68. The parameters set of the ground classification algorithm. Maximum degree angle 
describes the maximum slope of the study area expressed in degree; Maximum distance in the 
maximum distance between the ground and the highest feature in the scene; Cell size in the side size 
of the most extended cell in which are no detectable ground points (i.e. very dense woods, big 
buildings). 

 Larba Birno Tourè 
Maximum degree angle [degree] 1 1.5 
Maximum Distance [meters] 20 25 
Cell size [meters] 30 30 

 
The ground points were used for generating the DTM with 7.81 cm/pixel of 

resolution and 164 points/m2 in Tourè and Larba Birno. The DTM was not 
interpolated. This means that there is no elevation information in correspondence 
of buildings and permanent water, where the DTM has a NULL value. Two reasons 
can justify this choice: i) the final goal is to identify the depressed area on the 
ground as potential areas of waterlogging and water stagnation; thus, no water 
stagnation can occur in the presence of buildings or other permanent land covers; 
ii) interpolation produced false positive in TSWB analysis. The resulting DTM is a 
raster reporting the orthometric heights of the study area only where available (i.e., 
where the point cloud has information regarding the ground) and no-data values 
were unavailable (Figure 85).  

  

Figure 85. On the left, a detail of the ground classification was performed on the point cloud 
on Tourè. The brown area is the one classified as “ground” by the Photoscan algorithm. Right: 
extract of the non-interpolated DTM of Tourè.  

8.1.3. Methods 

Identification of topographic depressions  

The detection of potential seasonal water bodies was based on the assumption 
that all depressed areas can fetch (and store) water after precipitation regardless of 
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the type of soil, the vegetation cover, and the permeability. Based on this 
assumption, the localization of the depressed areas corresponds to the potential 
TSWB. The detection of Potential TSWB was performed using a fill sinks 
algorithm (Li and Wong, 2010; Liu and Wang, 2008; “On depressional storages,” 

2006; Vaze et al., 2010; Yang Jun and Chu Xuefeng, 2013) on the non-interpolated 
DTM. 

Fill sinks algorithms are commonly used in hydrology analysis to modify and 
calculate the water flow direction of a DEMs (Digital Elevation Models) layer 
(Wang and Liu, 2006). Filling sinks allows for the removal of any local depressions 
from DEMs. This operation reduces the inaccuracy when determining channel 
networks. Otherwise, the catchment area is considered flow accumulation and 
prevents stream-flow patterns (Lindsay and Creed, 2006). Modern GIS platforms 
provide, within the hydrologic analysis toolbox, fill sinks algorithm tools. Many 
algorithms lead to similar results though different ways: most of the algorithms 
identify the local minima and fills them from the bottom to the top by using the 
outlet's values of their neighborhood (Planchon et Darboux, 2002; Wang and Liu, 
2006). Quantum GIS and SAGA GIS under hydrologic analysis tools propose three 
algorithms: Fill Sinks (Planchon et Darboux, 2002), Fill Sinks (Wang & Liu, 2006) 
and Fill Sinks XXL (Wang et Liu, 2006). Regardless of the fill sinks algorithm, the 
results are very similar (Wang et Liu, 2006): the depressed are identified and filled, 
meaning that the raster values of the depression are pushed to the surrounding areas' 
values (Figure 86).  The main difference between the algorithms is processing time. 
Fill sinks by (Planchon et Darboux, 2002) is generally slower than the Wang et Liu 
(2006) one. The fill sinks XXL is based on (Wang et Liu, 2006)’s algorithm but 

modified and designed for large datasets.  
This application used the fill sinks algorithm designed by (Wang et Liu, 2006) 

to identify the depressions by subtracting the filled-DTM from the original DTM. 
The input parameters are the input DTM, the slope degree, and optional parameters 
for the generation of flow direction and watershed basin that were not considered 
in this analysis. It is worth underlying that depressions in very high resolution 
(VHR) DTMs are attributable to natural terrain roughness. The topographic 
depressions detected from VHR DTM can be spurious or real terrain features 
(Vesakoski et al., 2014). Indeed, the spreading of high-precision and high-accuracy 
DTMs leads to a very detailed topographic representation of the terrain, describing 
also not significant features, as well as noticeable in Figure 88. (Lindsay and Creed, 
2006) underline how artifacts and actual depressions should be distinguished in 
DTMs. For this purpose, the topographic depressions characterized by low depth 
and small extension were considered natural terrain roughness. 10 m2 and 4 cm are 



 

215 
 

the thresholds selected respectively for the extension and the depth. These specific 
requirements are valid in the study area and, generally, in similar sub-Saharan 
environments. Only deeper depressions may maintain water for a more extended 
period than the less deep ones that are more affected by the evapotranspiration 
process. The same parameters may results ineffective in different environments, 
such as temperate areas (Lindsay and Creed, 2006). 

 

 

Figure 86. Simplified representation of fill sinks algorithms functioning, the depressed areas 
(i.e., DN value 4) are rise up based on the neighborhood. Depending on the algorithm used, the 
number of neighbor cells considered may vary. 

The relevant water depressions were identified through a basic decision tree 
classifier composed of two nested levels (Figure 87).  

 
Figure 87. Graphic restitution of the decision tree structure applied for the identification of 

TSWB. 
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The analysis was realized with SAGA 2.3.2 and Qgis 3.4.8. First, the pixels 
with DN value (depth expressed in meters) larger than 0.04 were selected, and the 
raster converted in binary format whew 0 value is given to DN smaller than 0.04 
and 1 to the others. A mode 5x5 filter was then applied to delete smaller features 
caused by soil roughness (mode value equals 0) and smooth the raster. Finally, 
using the Saga Sieve module were deleted the groups of adjacent cells smaller than 
10 m2.  

8.1.4. Accuracy assessment 

(Lindsay and Creed, 2006) recognize five approaches for the validation of 
DTM-derived depressions: i) comparison to ground inspection data; ii) 
Examination of the source data; iii) Classification; iv) Knowledge-based 
approaches; and v) Modelling. In this research, the TSWB were validated through 
a double approach based on ground inspection data and comparison to TSWB 
extracted from radiometric analysis (knowledge-based approach).  

Ground inspection validation 

The results obtained were checked against the data collected in the field on the 
14th of August 2018 (one month earlier than the UAV survey) by governmental 
staff. The ground data were collected using a Garmin GPS receiver in the center of 
Larba Birno and Tourè villages. The local staff mapped nine waterlogged areas in 
Larba Birno. Only the biggest stagnations (according to local staff) were 
considered. The average size of the provided ponds is 820 m2. In Tourè, only one 
TSWB was reported, but it was not mapped.  

Radiometry-based validation 

The detected topographic depressions were compared to the spectral data 
collected by the NIR sensor. The orthophoto obtained from the Raspberry Pi 
acquisitions elaboration was used to calculate the Normalized Difference Water 
Index (NDWI) by (McFeeters, 2013), equation 32.  

 

NDWI = (Green-NIR) / (Green+NIR)                                   [32] 

The NDWI provides values between 1 and -1, where surface cover by water 
has values near 1, while soil or dry surface presents values around -1. Values 
between 1 and 0 indicate waterlogged or wet areas (El-Asmar and Hereher, 2011; 
Memon et al., 2015; Qiao et al., 2012; Yang et al., 2017). A specific classification 
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was created for these values, considering that the River Sirba NDWI water presents 
mean DN 0.05 (Table 69). In this study, 1,34% of pixels in Larba show values 
bigger than 0.025, while in Tourè, 8.86% (classes 6 and 7) (Table 69). The pixels 
belong to classes 6 and 7, considered the one of water and intense waterlogging. 
Pixel groups larger than 10m2 were vectorized and compared to the DTM-based 
model.  

Table 69. Pixels distribution (percentage) of the NDWI raster within the identified 
classification. Column 1 shows the class's name, column two the interval of values describing the 
class (low-value ≤ DN < higher-value), in column three, are reported the pixel distribution in each 
class in Tourè village analysis, while the fourth column presents the NDWI pixels distribution of 
Larba Birno. 

Class NDWI interval Percentage of 
cover in Tourè (%) 

Percentage of 
cover in Larba (%) 

1 -1 – -0.112 1.66 4.35 
2 -0.112 – -0.069 8.06 20.59 
3 -0.069 – -0.026 28.15 35.68 
4 -0.026 – 0.005 41.09 31.68 
5 0.005 – 0.025 11.17 6.25 
6 0.025 – 0.030 7.16 0.45 
7 0.030 – 1 2.70 0.89 

8.1.5. Results 

The filled sinks raster results in a model of little roughness and uniform Digital 
Numbers (DN) values. The surface depressions were calculated as the difference 
between the filled DTM and the original one. The result is a raster of the same 
resolution and extension of the non-interpolated DTM that contains the “depth” of 

the depressions and, in flat areas, a DN 0 value. The depth ranges between 0.005 
and 0.1 m. 

Table 70. DN distribution within the reclassified raster of depressions for the villages of Tourè 
and Larba Birno 

Class Depth interval 
(m) 

Percentage of 
cover in Tourè (%) 

Percentage of 
cover in Larba (%) 

1 0.005 –0.04 94.16 78.94 
2 0.04 – 0.05 2.50 9.18 
3 >0.05 3.34 11.88 
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The relevant depression resulting from the decision tree classifier are 240 
features in Larba Birno, for an average extension of 32 m2. While in Tourè 167 
depressions were detected with 19 m2 average extension. 

Validation: ground inspection 

In Larba Birno the local staff mapped nine water ponds. Five ponds matched 
the DTM analysis. The omitted ponds are located in NULL values zones of the 
DTM, which means that those areas were considered non-ground during the points 
cloud classification. It is worth mentioning that no detailed information regarding 
the methodology used for the mapping activities was available. The TSWB 
estimated from the DTM-analysis are smaller than the TSWB identified by ground 
inspection (Table 71). The difference in extension reaches 862 m2. This aspect must 
be considered with caution because of the unknown precision and accuracy of the 
validation data. The local staff did not map the TSWB in Tourè, but they only report 
a temporary secondary branch of Sirba River. 

Validation: radiometric analysis 

The NDWI analysis in Larba Birno resulted in only one TSWB that satisfied 
the extension requirements. Some other areas with high NDWI values were 
detected, but they corresponded to the bank river. The DTM-based analysis matches 
the NDWI-based TSWB (Figure 90). Even though the location of the TSWB 
matches, the extensions are slightly different. The NDWI-based TSWB extends 89 
m2, while the TSWB extends 122 m2.  

 

 

Figure 88. Detail of the depressions identified through the DTM analysis in Larba Birno. The 
small and shallow depressions are DTM artifacts created by the roughness of the soil. Some 
depressions are well defined (blue spots), while others are noisy due to irregularities on the ground 
due to mud and water.  
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Figure 89. Example of matched TSWB between the ground inspection (green polygon) the 

DTM-derived (pink polygon). 

 
In Tourè, six TSWB were detected by radiometric analysis. Only one partially 

matches the DTM-based TSWB. The remaining are omitted. It worth underling that 
the NDWI method is not sensitive enough to detect mud and wet areas, such as the 
example in Figure 91. 

 
(a) (b) 

  

Figure 90. a) RGN visualization of the Temporary Surface Water Body (TSWB) in Larba 
Birno.  b) Match of NDWI-based (green) and DTM-based (blue) TSWBs. 
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Figure 91. Sample TSWB in Larba Birno. A scene is extracted from the orthophoto. B scene 
shows the information originated from the DTM analysis. In this case, the NDWI analysis results in 
the total absence of water. From picture A, it is possible to identify the loam residuals in 
correspondence with the potential TSWB. Moreover, the path seems to be created in order to avoid 
TSWB. 

Table 71. Larba: comparison between ground inspection TSWB and DTM-detected 

ID Ground measure area (m2) DTM-derived area (m2) Difference area (m2)  
1 1153 290 862 
2 359 20 340 
3 521 Not detected / 
4 302 Not detected / 
5 399 Not detected / 
6 530 139 391 
7 211 122 88 
8 666 166 499 
9 3242 Not detected / 
 

8.1.6. Discussion and conclusion 

The proposed method efficiently identifies the topographic depression from 
Very High-Resolution Digital Terrain Model. It is a fast and straightforward 
method for potential temporary surface water bodies (TSWB) detection. The results 
demonstrate the validity of the method that detected most of the existing TSWB in 



 

221 
 

the 2018 rainy season. Nevertheless, this approach still needs to be tuned and 
improved. The ground inspections emerge that four out of nine TSWB in Larba 
Birno were not detected because they are located outside the non-interpolated 
DTM. This underlines two primary limits of the method related to the ground points' 
classification and the DTM quality. The method considers as non-depressed all 
areas covered by buildings, infrastructures, but also the vegetation. This is an 
imprecision since TSWB can also be in densely vegetated areas. The second 
consideration regards the quality of UAV-generated DTM. Contrary to LiDAR 
data, UAV-based point clouds hardly provide users with ground data in dense tree 
cover. Consequentially, even if the vegetate areas are potentially TSWB, it would 
be impossible to detect them from UAV-derived data. 
The comparison to the ground truth should be carefully interpreted. The information 
regarding the ground data collection methodology is inferior and base only on local 
staff impression. Furthermore, the data are poorly detailed and mapped with a low-
precision GPS receiver. Nevertheless, the DTM analysis tends to underestimate the 
TSWB extension from the ground inspection validation. This leads to assuming that 
additional analysis should be carried on to understand the possible connection 
between close TSWBs.  
It must be considered that such analysis was complicated by the topography, the 
land cover, and use of the study area. Indeed, both villages are characterized by a 
very low difference in height and homogeneous land cover environment: the low 
density of buildings, absence of woods, and not intense cultivation. These 
characteristics, on the one hand, facilitate the extraction of ground information with 
modern photogrammetry software. On the other hand, the nature of the area leads 
to many outliers in DTM analysis. For example, some latrines (present in almost 
every households ‘yards) without roof or cover were recognized as depressions. 
However, the small size of the latrine-depression made them easily removable from 
the dataset.  

One of the most significant limit of the DTM analysis is related to the detection 
of the TSWB already present since they are not detected as depression by the 
software, Figure 92 shows. 

This limitation can be overcome by the parallel reading of the radiometric and 
DTM information, which permits total and complete information during the rainy 
season. The DTM analysis is fundamental in identifying the potential temporary 
water bodies in the dry season or low precipitation years.  

The results of the comparison reveal DTM-based detection quite an effective 
method. It can help identify the maximum potential extension of temporary water 
bodies, crucial information for health-risk reduction plans. It is hard to correctly 
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analyze the results' goodness because of the lack of precise and complete 
information regarding the ground truth. Similarly, the radiometric comparison is 
not exhaustive since it only describes the TSWB present at the acquisition time, 
without providing the information about the potential extension. It must be 
considered that the occurrence of surface water is related to the amount and 
distribution of rainfall and the catchment characteristics that influence runoff 
generation. Indeed, this work aims to be the first step through an in-depth study of 
temporary surface water bodies, their identification, and localization. Further 
consideration should be done regarding the type of soil and its infiltration capacity 
related to the precipitation distribution and intensity, along with the ground 
classification methodology and the orthomosaic quality.  

It is worth stressing that the ratio behind this work is the lack of high-resolution 
radiometric information of TSWB maximum extension. Indeed, within the 
ANADIA 2.0 project, it was impossible to realize the UAV survey in mid-August, 
the period in which the TSWB are in their maximum extension.  

 

 

Figure 92. TSWB detected by NDWI analysis (green features) and partially developed under 
a tree crown. It was not detected by the DTM method. 
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8.2. Satellite 

Sub-Saharan Africa is exceptionally vulnerable to Climate Change-induced 
phenomena, such as floods, erosion, droughts, which have dramatically increased 
in the past years. Therefore, frequent information regarding the Land Cover of this 
area is crucial to land management, as these maps provide users with information 
related to terrestrial ecosystems and livelihoods (Li et al., 2020). Sub-Saharan areas' 
classification is one of the most challenging due to the landscape's complexity and 
the low spectral variability within the covers. Moreover, the sand dust particulates 
in the atmosphere may alter the Earth’s surface's spectral response and further 
exacerbate the difficulty of the classification (paragraph 6.2, page 115). These are 
some of the reasons that contribute to the data scarcity of this area. Indeed, to date, 
few very high-resolution Land Cover maps of sub-Saharan areas exist. Examples 
are the Africa LC by ESA and FROM-GLC10 (Li et al., 2020). Although these LC 
maps are incredibly complex to realize, most of them do not provide great thematic 
detail and, because of their nature, they are hard to update significantly in terms of 
training dataset due to the large quantity of time and manual work this task requires.  
The case study of the ANADIA 2.0 project, being in southern Niger, faces all the 
sub-Saharan LC mapping limitations and an updated, high-detailed LC map of the 
area is not available. In this application, the Land Cover map of the southwest Niger 
has been realized using nine classes over 16 features. The entire process was 
realized in the Google Earth Engine platform, and two multi-temporal approaches 
for classification were tested and compared.  

8.2.1. Materials and methods 

Satellite Imagery filtering and pre-processing 

The images sensed by Sentinel-2 (both Sentinel-2A and Sentinel-2B satellites) 
were filtered by location and sensing date. The study area includes the segment of 
Sirba River that lies in Niger country for about 100 km length. The period covers 
all the acquisitions between 2017 and 2019. An additional filtering parameter 
regards the cloud cover percentage, which must be less than 10% over a single 
scene. Only images sensed during the rainy season (from August to October) were 
selected to maximize the classes' spectral variability, especially to better distinguish 
between the vegetation classes and the bare soils and to identify water. Sentinel-2 
level 1C dataset was used for this classification since only one image from the 
corrected dataset of Sentinel-2 level 2A satisfied the filter mentioned above 
parameters (see paragraph 5.1, page 94 for more information regarding the satellite 
correction levels). The selected images from the 1C level are 16 (Table 72). 
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The dataset was atmospherically corrected applying the Dark Object 
Subtraction (DOS) (Chavez, 1988), which is a linear atmospheric correction model 
that performs similarly to radiative transfer models on homogeneous surfaces 
(Lantzanakis et al., 2017), was applied as already illustrated for the Alps case in 
paragraph  7.2, page 162. 

Table 72. List of Sentinel-2 images used in the classification. 

Year No. Sentinel Image Identification Code 
2017 0 20170815T102021_20170815T102513_T31PCR 

1 20170924T102021_20170924T102649_T31PCR 
2 20170926T101009_20170926T102049_T31PCR 

2018 3 20180815T102019_20180815T102918_T31PCR 
4 20180820T102021_20180820T103538_T31PCR 
5 20180911T101019_20180911T101438_T31PCR 
6 20180911T101019_20180911T102702_T31PCR 
7 20180916T101021_20180916T101512_T31PCR 
8 20180921T101019_20180921T101647_T31PCR 
9 20180924T102019_20180924T102602_T31PCR 
10 20180929T102021_20180929T103112_T31PCR 

2019 11 20190812T101031_20190812T102016_T31PCR 
12 20190911T101021_20190911T102116_T31PCR 
13 20190921T101031_20190921T102426_T31PCR 
14 20190926T101029_20190926T102551_T31PCR 
15 20190929T102029_20190929T102700_T31PCR 

 
Knowing that DOS can affect the classification’s results differently depending 

on the geographical area (and land cover), the classification was performed over the 
DOS-corrected dataset and the non-corrected dataset, and then the Overall 
Accuracies of the classifications were compared to check the influence of DOS on 
the final result. 

The topographical correction of the images was initially applied to reduce the 
effects of elevation over the plateaux areas, using the code originally implemented 
in GEE by Patrick Burns and Matt Macander (paragraph 7.2, page 162). 
Nevertheless, the correction introduced noise in the dataset, most probably because 
the plateaux slopes do not interfere with the soil's spectral response, and the Digital 
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Elevation Model applied is not resolute enough. Thus, the dataset was not 
topographically corrected. 

 

 

(a) 
Figure 93. (a) RGB 

mosaic on sentinel 1C 
data, DOS applied; (b) 
RGB mosaic on sentinel 
1C data, DOS applied, and 
topographically corrected. 
The correction excessively 
alters the data over the 
plateaux, but also in the 
plane areas. 

 

 

(b) 

 

Identification of classes 

Nine classes describe the classification system, as Table 73 illustrates. They 
have been selected according to the needs of the project ANADIA 2.0. 

 
Training and test datasets 

The training dataset is constituted of 2500 points, 300 points for each class 
except for the class of the Urban areas, which is constitute only by 100 points. The 
choice of unbalancing the training is due to the low percentage of urban areas cover. 
Since the Urban areas class covers the smallest portion of the study area and the 
Random Forest classifier tends to promote the more represented classes in training, 
few samples of the Urban area were used to train the classifier. The validation 
dataset is composed of 1800 points, 200 for each class. The training and validation 
dataset were manually created using a 2017 map as a ground reference.  
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Table 73. Classes on the classification in South Niger. 

No. Class Description Picture 

1 Water Internal waters 

 

2 Plateaux 

Elevated areas ver the dry savannah. 
They influence the water catchment, 

the erosion process, and present 
peculiar plant species.  

3 Riparian 
vegetation 

The thickly vegetated area along the 
rivers. It is usually composed of trees 

and bushes. 
 

4 Urban areas Villages and main roads. 

 

5 Red bare soils 
Red soils rich in ferric oxides which 

characterized the savannah soil 
landscape. 

 

6 Sandy bare 
soils Sand natural deposits. 

 

7 Vegetation of 
the plateaux 

Vegetation on the plateaux. It grows 
along the drainage canals. It is mostly 

composed of herbaceous species. 
 

8 
Irrigated 

agricultural 
lands 

Areas interested by intense agricultural 
activity that require tillage, and 

irrigated generally through channel 
systems.  

9 

Non-irrigated 
agricultural 
lands and 
pastures 

Areas interested by moderate 
agricultural activities that require 

tillage or pastures.  
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Feature extraction and selection  

The feature extraction consisted of the computation of 6 spectral features, 4 
histogram-based features, 18 textural, 2 elevation-derived features, and 1 edge-
detector feature added to the 12 spectral bands Sentinel 2. The features were 
computed on the NearInfrared band. Specifically, the Gray Level Co-occurrence 
Matrix's texture metrics were computed over a 9x9 neighborhood while the 
histogram-based features on a 3x3 filter. (Conners et al., 1984; Haralick et al., 1973; 
GEE, 2020). Table 74 lists the extracted features. 

The feature selection phase is fundamental to reduce the computational time of 
the classification without losing accuracy. In mid-2020, the function 
SmileRandomForest was introduced in the GEE coding platform. Unlike its 
predecessor RandomForest function, it allows the computation of the layer 
importance, which is based on the GINI impurity system (see paragraph 4.3.2, page 
63). A simplified description of the GINI gain defines it as the sum of impurity 
decreases from two nodes and the parent node. The GINI is calculated for each 
variable of the classifier. The variables that have high GINI gain (so they have less 
impurity) are more important.  
The features with less than 50 of GINI gain were removed from the input dataset. 
The threshold value was selected according to the maximum accuracy achievable. 
As realized for the Alpine Arch case study, a “pseudo-normalization” was carried 

out.  

Classification and multi-temporal strategies comparison 

Two different multi-temporal approaches were compared: aggregated multi-
temporal and stacked multi-temporal methods. These methods are described in 
detail in paragraph 4.2.1, page 54. Figure 94 shows the classification workflow. 

 
In the aggregated multi-temporal each image was separately classified using the 
machine learning algorithm random forest with 100 rifle decision trees per class 
and 2 as the minimum size for terminal nodes. The same training dataset was used 
for each image. The results are 16 classifications that were aggregated according to 
the modal value. Only the more accurate classifications (more than 0.94 of overall 
accuracy) were used in the final aggregation. Differently, the stack multi-temporal 
approach consisted of one classification over a dataset composed of all the features 
from different epochs ensembled. In this case, the images were stacked together and 
classified with Random forest algorithm (200 rifle decision trees per class and 4 as 
the minimum size for terminal nodes). Due to GEE's limitation on the available 
memory, only 2018 and 2019 data were considered.  
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Table 74. Derivative features are calculated for each epoch. They are divided into 5 groups: 
histogram-based, radiometric, edge extractor, textural. And elevation. 

 Feature Formula/note 

Sp
ec

tr
al

 

Chlorophyll IndexRedEdge, CRE (B9/B5)−1 
Enhanced Vegetation Index, EVI 2.5*((B9−B5)/((B9+6*B5−7.5*B1)+1)) 

HUE Arctan((2*V5−B3−B1)/30.5)*(B3−B1)) 
Soil Composition Index, SCI (B11−B8)/(B11+B8) 

Wetness Index, WET 
(0.1509*B2)+(0.1973*B3)+(0.3279*B4)+

(0.03406*B8)-(0.7112*B11)-
(0.4572*B12) 

Triangular Vegetation Index, TVI 0.5*(120*(B8-B3))-(200*(B4-B3)) 
Edge  Sob Sobel edge extractor 

H
ist

og
ra

m
-

B
as

ed
 Var Variance 

Mean Mean 
Skew Skewness 
Kurt Kurtosis 

T
ex

tu
ra

l G
L

C
M

 

Entr Entropy 

Asm Angular Second Moment; measures the 
number of repeated pairs 

Corr Correlation; measures the correlation 
between pairs of pixels 

Var Variance; measures how spread out the 
distribution of gray-levels is 

Idm Inverse Difference Moment; measures the 
homogeneity 

Savg Sum Average 
Svar Sum Variance 
Sent Sum Entropy 

Ent Entropy. Measures the randomness of a 
gray-level distribution 

Dvar Difference variance 
Dent Difference entropy 

Imcorr1 Information Measure of Corr. 1 
Imcorr2 Information Measure of Corr. 2 
Maxcorr Max Corr. Coefficient. 

Diss Dissimilarity 
Inertia Inertia 
Shade Cluster Shade 
Prom Cluster prominence 

Elev
ation 

DSM Digital Surface Model 
Height model, HM DSM-DTM 
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Accuracy assessment 

The classifications' accuracy was asses based on the error matrix-derived 
measures: the overall accuracy, the producer’s accuracy, the user’s accuracy, and 

the F1 score.  
 

 

Figure 94. The workflow of the classification. Red arrows indicate the DOS processing, while 
the blue ones indicated the processing without DOS correction. 
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8.2.2. Results  

Feature extraction and selection  

Figure 95 shows the results of the GINI importance analysis. The bands per 
image (that initially were 44) were reduced to 16 according to the maximum 
achievable accuracy (Table 75) computed by considering five scenarios with 
reduced input features. Scenario 3 revealed better OA (0.85) and little out of bag 
error (0.07).   

 

Table 75. Tests run over five scenarios that differ in the number of input features in the 
classification selected according to their importance value (see Figure 95). The parameters 
considered for the best scenario evaluation are the out-of-bag error (oob) and the overall accuracy 
(OA). 
 GINI threshold oob OA 
Scenario 1 none 0.08 0.846 
Scenario 2 >40 0.07 0.846 
Scenario 3 >50 0.07 0.854 
Scenario 4 >60 0.08 0.849 
Scenario 5 >80 0.08 0.842 
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Figure 95. GINI importance of the extracted features. 
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Classification and multi-temporal strategies comparison 

The aggregated multi-temporal classification was performed separately in 16 
images with 16 features for each. Table 76 provides the OA values calculated for 
each classification. Classification with OA less than 0.94 were not used for the 
modal aggregation. The stacked multi-temporal classification was realized using as 
input dataset the features from different epochs together. The period considered was 
2018 and 2019. The input features of the stack multi-temporal classification were 
76. 

Table 76. OA achieved on single classification. The underlined classifications were excluded 
from the aggregation 

Classification no. OA 
1 0.97 
2 0.95 
3 0.96 
4 0.85 
5 0.94 
6 0.83 
7 0.85 
8 0.92 
9 0.95 
10 0.95 
11 0.92 
12 0.95 
13 0.95 
14 0.94 
15 0.95 
16 0.96 

 
To further optimize the process, the GINI importance was computed for the 76 

bands. Four scenarios for the slimming out were considered (Table 77), but the best 
results are provided by scenario number 12, which does not remove any feature 
from the classification. The atmospheric correction's influence on the classifications 
was checked by comparing the accuracy of the same classification model applied 
to corrected and non-corrected input datasets. The DOS has little influence on the 



 

232 
 

aggregated multi-temporal classification's goodness: it shifts the OA from 0.971 
(non-corrected dataset) to 0.975 (corrected dataset). Similarly, the DOS showed 
little influence on the stacked method too. Indeed it shifts the OA from 0.955 (non-
corrected) to 0.960 (corrected), Table 78. 

Table 77. Tests run over 5 scenarios that differ in the number of input features in the 
classification selected according to their importance value. The parameters considered for the best 
scenario evaluation are the out-of-bag error (OOB) and the overall accuracy (OA). 

 GINI threshold OOB OA 
Scenario 1 none 0.019 0.960 
Scenario 2 >9 0.020 0.958 
Scenario 3 >10 0.020 0.955 
Scenario 4 >20 0.023 0.951 

Table 78. DOS influences over the classifications. 

 No correction DOS 
OA of Aggregated multi-temporal 0.971 0.975 

OA of Stack multi-temporal 0.955 0.960 
 
Accuracy assessment 

The error matrices give the goodness of the classification. Both multi-temporal 
approaches resulted in high accuracy values. For what concerns the aggregated 
approach, Table 79 shows that the User’s and Producer’s accuracies are always 
above 0.95. The Plateaux class appears to be less accurate, although its F1 score 
reaches 0.95. The model correctly identifies sandy bare soils and irrigated land 
classes. Regarding the stacked classification, the accuracy values are slightly lower 
than the one on the aggregate multi-temporal classification. As Table 80 shows, the 
plateaux class reaches 0.947 of F1-score, which is the less accurate class along the 
non-irrigated lands and pastures. The overall accuracy is 0.96, only 0.05 points of 
difference from the aggregated methods. 

Although the high accuracy value, some salt-and-pepper effect is present all 
over the scene, thus, for aesthetic reasons, some post-processing operations were 
carried out. Specifically, erosion (size 4) and dilation (size 3) were realized in class 
Urban areas (Figure 96). 
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Table 79. Error matrix of the aggregated multi-temporal classification. 
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Water 200 0 0 0 0 0 0 0 0 200 
Plateaux 0 189 0 0 0 0 11 0 0 200 

Forest bushes 0 0 200 0 0 0 0 0 0 200 
Urban areas 0 0 7 193 0 0 0 0 0 200 

Redc bare soils 0 8 0 0 188 0 0 0 4 200 
Sandy bare soil 0 0 0 0 1 197 0 0 2 200 

Vegetation 
(plateaux) 0 0 0 0 0 0 200 0 0 200 

Irrigated 
agricultural lands 0 0 0 0 0 0 0 200 0 200 

Non-irrigated lands 
and pastures 0 0 6 5 1 0 0 0 188 200 

TOT 200 197 213 198 190 197 211 200 194 
OA= 
0.975 

Producer’s accuracy 1.000 0.959 0.939 0.975 0.989 1.000 0.948 1.000 0.969 
User’s accuracy 1.000 0.945 1.000 0.965 0.940 0.985 1.000 1.000 0.940 

F1-score 1.000 0.952 0.969 0.970 0.964 0.992 0.973 1.000 0.954 
 

Figure 96. Example of the aggregated multi-temporal classification (left) and the stacked multi-
temporal classification (right). 
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Table 80. Error matrix of the stacked multi-temporal classification. 
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Water 183 0 0 0 0 0 0 0 0 183 
Plateaux 0 180 0 0 0 0 10 0 0 190 

Forest bushes 1 0 191 0 0 0 1 3 0 196 
Urban areas 0 0 6 161 0 0 0 0 0 167 

Redc bare soils 0 9 0 2 174 0 0 0 8 193 
Sandy bare soil 4 0 0 0 0 178 0 0 1 183 

Vegetation 
(plateaux) 0 1 0 0 0 0 195 0 0 196 

Irrigated 
agricultural lands 3 0 6 0 0 0 0 171 0 180 

Non-irrigated lands 
and pastures 0 0 8 4 0 0 0 0 177 189 

TOT 191 190 211 167 174 178 206 174 186 
OA= 
0.960 

Producer’s accuracy 0.958 0.947 0.905 0.964 1.000 1.000 0.947 0.983 0.952 
User’s accuracy 1.000 0.947 0.974 0.964 0.902 0.973 0.995 0.950 0.937 

F1-score 0.979 0.947 0.939 0.964 0.948 0.986 0.970 0.966 0.944 
 

8.2.3. Discussion and conclusions 

The classification shows very positive results. The GINI importance analysis 
allows the lightening of the classification process and improves the classification's 
goodness. Although this was not true for the stacked classification, reducing the 
dataset reduces the OA. It is worth underlining that in this case, the importance 
analysis was applied twice. The DOS correction has little influence on the final 
accuracy results for both multi-temporal approaches. This is an unexpected result 
since most relevant literature underlines the importance of atmospheric correction 
in multi-temporal approaches, especially in stacked ones.  

The little influence might be caused by the short period and the very similar 
meteorological condition of the analyzed dataset. Also, the classifier Random 
Forest, which is little sensitive to non-normalized datasets, might contribute to such 
results. Although the little influence of DOS in the results, it was maintained in the 
classification workflow mainly because of its lightweight on the processing time. 
More complex atmospheric correction models can require more computational 
power and processing time. Thus, further and more detailed analysis needs to be 
realized in this direction. Little distance also emerges from the comparison of the 



 

235 
 

two multi-temporal approaches. The aggregated multi-temporal classification 
overcomes the stacked one for only 0.015 points of OA (regardless of the 
atmospheric correction). The F1 score of some classes of the aggregated multi-
temporal approach is 1 (water and irrigated lands). In the stacked multi-temporal 
approaches, the F1 score shows some differences: irrigated land class is not one of 
the most accurate class, but bare soil is. This method seems to penalize the irrigated 
class, which is often confused with forest or water. Despite some little differences, 
in this case, the two methods are perfectly exchangeable for this specific 
application. In terms of time to apply one or the other, again, there is a little 
difference. If classifications of around-hundred a feature realized using local 
machine require high computational power, using GEE this is not required 
anymore. Nevertheless, there is a strong possibility of running out of memory in 
additional features or a vast area. Indeed data from 2017 were taken out. In this 
specific application, the classification of the aggregated multi-temporal method was 
used because of the slightly higher accuracy and the less scarcity of salt-and-pepper 
effect all over the scene.  

8.3. Land Cover using UAV imagery 

Extreme floods are a severe natural threat for many sub-Saharan areas (Tiepolo 
et al., 2019a) that can cause conspicuous losses. In the last twenty years, countries 
have suffered from the effects of heavy rains and devastating floods in many parts 
of the Niger basin (Descroix et al., 2013; Fiorillo et al., 2018; Tamagnone et al., 
2019). In these areas, a complete flood risk assessment is particularly important for 
risk management (Siejka et al., 2018), and it is one of the goal of the ANADIA 
project (Paragraph 1, page 112). In this framework, the Land-cover maps provide 
essential data to describe the flood risk and develop flood risk management plans 
(Kalantar et al., 2017).  

On the one hand, the Land Cover influences the flood itself. Covers, such as 
urban areas, bare soil, arable lands, and shrubs, have different permeability. 
Consequentially, the dominance of one over the other, or generally an unbalance in 
their distribution, strongly affects floods. The land cover also defines the surface 
roughness, which plays a crucial role in the runoff. For example, (Booth et al., 2002) 
demonstrate that grass‐dominated landscapes exhibit larger peak flows than forest‐

dominated landscapes with impervious areas. The increase of the runoff in a water 
basin is a direct consequence of reducing the discharge time and, therefore, of the 
possibility of foods (Tamagnone et al., 2019). 

On the other hand, mapping the land cover provides information regarding the 
items exposed to flood risks, such as infrastructures, agricultural lands, and human 
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settlements. Although, as (Siejka et al., 2018) underline, the Land cover in the 
vicinity of rivers is rarely taken into account in assessing the flood risk. When 
considered, it is often detected from the photointerpretation of low spatial-
resolution data or semi-automatic classification algorithms. Nevertheless, high-
detailed information can add a further level of information by detecting the 
particularly endangered items by the floods. For example, the houses are built with 
non-water resistant material, like in south-west Niger where traditional houses are 
built of earth and wood poles. 

For images with very high resolution, such as those captured using Unmanned 
Aerial Vehicles (UAV) systems, object-oriented classification methods are more 
efficient in classifying the land cover (see paragraph 4.2, page 51). Although UAV 
data usually have low spectral resolution and, consequentially, the features to be 
classified have a relatively similar spectral response, they can be separated using 
spatial, texture, and contextual information (Kalantar et al., 2017). A typical case is 
represented by the concrete roofs and parking lots, which usually have a similar 
spectral signature, but they differ in texture and shape. Low spectral detail 
limitation is often reduced by incorporating texture features, elevation features, 
and/or robust classifiers.  

Several studies have been conducted using different approaches and models for 
Land Cover classification. These studies have primarily varied according to the 
technique used, the training sample size, and the input dataset. (Zhang et al., 2017) 
developed a classification framework based on deep-learning, and OBIA proposed 
to classify UAV RGB imagery with 5 cm resolution into five categories. They use 
spatial, spectral, and texture features for 280 training objects. The classification 
achieved an overall accuracy of 97%. 

Similarly, Sameen et al. (Sameen et al., 2018) classified an RGB orthomosaic 
with a 10 cm resolution of urban areas using Convolutional Neural Network (CNN). 
They achieved promising results, although the training dataset was pretty large 
compare to one of the other researches, and they identified seven classes with 
relatively low thematic detail. (Liu and Abd-Elrahman, 2018) propose seven high-
thematic detail categories classification of wetlands from six-centimeter resolution 
UAV imagery using multi-view information. They used 2800 training objects and 
reached an overall accuracy of 80.4%. A novel method was developed by (Kalantar 
et al., 2017) that uses a fuzzy unordered rule. Their method reached a 91% overall 
accuracy. Other authors investigated the optimization of UAV imagery 
classification, such as (Ma et al., 2017a). The latter researched the optimum number 
of input features in the Random Forest (RF) and Support Vector Machine (SVM) 
classification of UAV RGB imagery (with 0.2 m resolution). They identified for 
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RF 8 features for 300 training objects. (De Luca et al., 2019) identified five classes 
from RGB and NIR information achieving 97% of overall accuracy using the 
Random Forest algorithm and 150 objects for each class. Most of these studies 
analyzed RGB imagery. Even though they generally obtain good results, they 
consider few classes with relatively low thematic detail. Moreover, none of them 
analyzed the goodness of the segmentation from a geometric point of view.  

This classification aims to identify nine high-thematic classes from an RGB-
NIR dataset using supervised OBIA-RF classification. Particular attention is given 
to the definition of classes to satisfy the flood risk management requirements and 
correctly identify, from a geometrical point of view too, the flood exposed 
buildings. A geometric validation for the segmentation is carried out for the 
buildings. The data collection, the pre-processing phase, and the generation of the 
orthomosaics are the same applied for identifying Temporary Surface Water Bodies 
(TSWB) as illustrated in paragraphs 8 and 8.1.2, pages 195-211. 

 
8.3.1. Classes identification 

The classification system consists of four macro-classes (Water, vegetation, 
Bare soil, and Buildings); 9 classes; and two sub-classes (Figure 97).  

The macro-class “buildings” is divided into two classes according to the 

material of the roofs: Brick roof (or sandy roofs) and metal roofs. The separation of 
the roof types is due to two reasons. First, these classes are differently affected by 
floods; indeed, houses with metal roofs are generally built with concrete bricks (as 
per the author’s experience) and thus less prone to be damaged by floods. On the 

contrary, sandy brick roofs are typical of traditional building techniques that consist 
of sun-dried bricks sustained by wooden poles and kept together by mud. Floods 
significantly damage these buildings. Even though they are very similar from a 
categorical point of view, the two classes strongly differ in the spectral response. 
Similar reasons exist behind the choice of the bare soil classes. Indeed, each type 
of soil has specific permeability and roughness that differently impact floods. Each 
soil type within the study areas has a specific spectral response that differs from 
other soils’ spectral responses. This is particularly true for the red soils and the 

sandy ones in the study area. The class of Agricultural land and the buildings are a 
significant class for the risk management plan. Agriculture is the main source of 
income for the local population of Tourè, and the damage of agricultural fields 
would be a consistent economic loss that can treat the food security of many 
households. Finally, the Wet Lands class is another class of interest for flood risk 
management because it represents an extremely variable class; it allows the analyst 
to define the limit of watered areas. 
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Figure 97. Classification legend structure composed of 4 macro-classes (Buildings, Bares soils, 

Vegetation, and Water); 10 classes and two sub-classes (Grass and agricultural lands).  

8.3.2. Methods 
Features extraction 

Additional features can improve the quality of the classification (paragraph 2.3, 
page 56). The input dataset was enriched with derivative features, namely, spectral, 
textural, and elevation-based features. The extraction of features was based on the 
literature classification research (paragraph 2.3, page 56) and the author’s personal 
experience. Ten features were extracted from the RGB and RGN datasets and used 
for the segmentation process: two spectral features, one edge-extractor feature, five 
GLCM textural features, and one Digital Surface Model. 

Since the OBIA approach allows the analyst to introduce into the classification 
model features regarding the segmented objects' geometric characteristics and their 
relationship with the neighborhood’s objects, 39 features were computed for each 
object. Table 81 reports the used measures for segmentation and classification. 

Segmentation  

The segmentation was carried out in three steps, each of which focused on 
identifying specific objects. First, the image was segmented with a multiresolution 
algorithm and threshold to separate the buildings. Then, the vegetated areas were 
divided into trees and herbaceous vegetation. The classes defined during the 
segmentation were then deleted to perform the Random Forest classification. Table 
82 shows the eCognition ruleset used for the segmentation. 

Tourè village 
Land Cover

Water
Wet areas

Regular water

Vegetation
Herbaceous

Grass

Agriculture
Trees

Bare soil

Red soils

Sandy soils
Dark/clustered rocky 

soils

Buildings
Metal roofs

Sandy roofs
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Table 81. Features selected for the segmentation and the classification 

Feature 
Group 

Feature Name Note Software Segmen-
tation Classification 

Spectral 
 
 
 

 
 

Normalized Difference 
Water Index (NDWI) 

(McFeeters, 
1996) Orfeo toolbox X X 

Mean value  
Enhanced Vegetation Index 
(EVI)  Orfeo toolbox X X 

Mean value 

HUE Calculated 
on RGB eCognition  X 

HUE Calculate 
on NIR eCognition  X 

Normalized Difference 
Water Index (NDWI)  eCognition  

X 
Standard 

deviation to 
neighborhood  

Enhanced Vegetation Index 
(EVI)  eCognition  

X 
Standard 

deviation to 
neighborhood  

Brightness  eCognition  X  

Edge-
extractor 

 

Sobel   eCognition  X 
Mean value 

Sobel   eCognition  

X 
Standard 

deviation to 
neighborhood  

Textural 
(Haralick 

et al., 
1973) 

 
 
 
 

 

Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Variance 

Calculated 
on NIR 
channel 

Orfeo toolbox X X 
Mean value 

Grey Level Co-occurrence 
Matrix (GLCM) 
Dissimilarity 

Calculated 
on Green 
Channel 

Orfeo toolbox X 
 

X 
Mean value 

Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Average 

Calculated 
on Green 
Channel 

Orfeo toolbox X 
 

X 
Mean value 

Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Variance 

Calculated 
on Green 
Channel 

Orfeo toolbox X 
 

X 
Mean value 

Grey Level Co-occurrence 
Matrix (GLCM) 
Dissimilarity 

Calculated 
on NIR 
channel 

Orfeo toolbox X 
 

X 
Mean value 

Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Variance 

 eCognition  

X 
Standard 

deviation to 
neighborhood  

Grey Level Co-occurrence 
Matrix (GLCM) 
Dissimilarity 

 eCognition  

X 
Standard 

deviation to 
neighborhood  

Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Average 

 eCognition  

X 
Standard 

deviation to 
neighborhood  

Continues in the following page  
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Grey Level Co-occurrence 
Matrix (GLCM) Sum 
Variance 

 eCognition  

X 
Standard 

deviation to 
neighborhood  

Grey Level Co-occurrence 
Matrix (GLCM) 
Dissimilarity 

 eCognition  

X 
Standard 

deviation to 
neighborhood  

Elevation 
 

Digital Surface Model Calculated 
on RGB  / X 

 
X 

Mean value 

Digital Surface Model Calculated 
on RGB  eCognition  

X 
Standard 

deviation to 
neighborhood 

Slope     

RGB 
dataset 

 
 

 

Red / / X 
 

X 
Mean value 

Green / / X 
 

X 
Mean value 

Blue / / X 
 

X 
Mean value 

Red / eCognition  

X 
Standard 

deviation to 
neighborhood  

Green / eCognition  

X 
Standard 

deviation to 
neighborhood  

Blue / eCognition  

X 
Standard 

deviation to 
neighborhood  

NIR 
dataset 

 
 

 

Red_2 / / X 
 

X 
Mean value 

Green_2 / / X 
 

X 
Mean value 

NIR / / X 
 

X 
Mean value 

Red_2 / eCognition  

X 
Standard 

deviation to 
neighborhood  

Green_2 / eCognition  

X 
Standard 

deviation to 
neighborhood  

NIR / eCognition  

X 
Standard 

deviation to 
neighborhood  

Relation to 
neighbours 

Mean difference to 
neighbors 

Caalculated 
on DSM eCognition  X 

Geometric 

Length/Width  eCognition  X 
Rectangular fit  eCognition  X 
Radius of the smaller 
enclosing ellipse  eCognition  X 

Compactness  eCognition  X 
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Table 82. Segmentation ruleset applied for the Land Cover OBIA classification of Tourè 
village 

Algorithm Parameters Values 
Computing 

time  
Layers (weight) and conditions 

Houses 

Multiresolution 
segmentation 

Scale 
parameter 

60 

1:19 

DSM (1) 
GLCM_NIR_3 (1) 
Glcm_rgb_3  (2) 
Glcm_rgb_5 (1) 
Green_rgb (1) 

Nir (1) 

Shape 0.2 

Compactness 0.8 

Assign class 

Use class 
unclassi

fied 

0:27 

Mean GLCM_adv_3_rgb >= 3.5 and 
Mean NDWI < 0.05  and  
Mean DSM >= 200  And 

Mean diff. to neighbors DSM (0) >= 0.2 
Mean GLCM_adv_3_rgb >= 3.5 And 

 Mean NDWI < 0.05  And 
Mean DSM >= 200 And 

  Mean diff. to neighbors DSM (0) >= 0.2 

Assign class Houses 

Assign class 
Use class 

unclassi
fied 0:0.06 Rel. border to houses > 0.6 

Assign class Houses 
Merge Region Use class Houses 0:0.04  

 
Multiresolution 
segmentation 

Scale 
parameter 

100 
1:40 

Only Houses 
GLCM_NIR_3 (1) 
Glcm_rgb_3  (2) 
Glcm_rgb_5 (1) 

Shape 0.8 
Compactness 0.2 

Trees 
Merge Region Use class unclì 0:03  

 
 

Multiresolution 
segmentation 

Scale 
parameter 

80 
2:17 

Only Unclassified 
DSM (1) 

GLCM_NIR_3 (1) 
Glcm_rgb_3  (1) 
Glcm_rgb_5 (1) 
Green_rgb (1) 

NDWI (1) 
Nir (1) 

Shape 0.1 

Compactness 0.5 

 
Assign class 

Use class 
unclassi

fied 
0:21 

Mean diff. to neighbors DSM (0) > 1  and  
Mean NDWI < 0.03 

Assign class Trees 
Merge Region Use class Trees 0:01  

Continues in the following page  
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Grass 

Merge Region Use class 
unclassi

fied 
2:55  

 
Multiresolution 
segmentation 

 

Scale 
parameter 

200 

2:37 

Only Unclassified 
DSM (1) 

Glcm_rgb_5 (1) 
Green_rgb (1) 

NDWI (1) 
Nir (1) 

Red (NIR dataset) (1) 
Red (RGB dataset) (1) 

Shape 0.25 

Compactness 0.2 

Training selection and classification model 

The training and test dataset comprises 3046 objects: 200 sample objects for 
each class, except for classes 9 (Gullies) and 10 (Metal roofs) that have respectively 
108 and 78. The difference in the number of objects reflects classes' covering within 
the study scene and objects' size. The selection of the training and test objects was 
randomized as much as possible by spreading random points within the scene and 
labeling them. The number of points within the classes was balanced by manually 
adding the missing points. The geometries on which the points lay were used to 
train and the model in proportion 50-50 (i.e. 1523 training objects and 1523 
validation objects).  

The model was trained in eCognition environment, with 100 Depth, 4 minimum 
sample count, and maximum tree number 50.  

Accuracy assessment  

Regarding the assessment of the segmentation (see paragraphs 4.5.1 and 4.5.2, 
pages 87-90), only the buildings were taken into account. Indeed the correct 
segmentation and location of these objects were considered more relevant than 
others for flood risk management. Namely, a visual evaluation and quantitative 
metrics were realized, in indices and RMSE forms both. The validation used for the 
segmentation is a two levels-accuracy assessment. The first level is based on (Ke 
and Quackenbush, 2011), and it consists of a simple visual evaluation. While the 
second level assessment is a quantitative method that compares several variables, 
and it assesses the under-segmentation and over-segmentation. Both accuracy 
assessment levels use as reference 133 objects randomly selected, but manually 
delineated (Figure 98).  
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Figure 98. Position of the reference objects within the study area.  

The accuracy was evaluated in terms of correspondence between the reference 
houses and the segmented ones. The goodness of the segmentation was assessed in 
two steps, as realized for the Alpine case study, see paragraph 7.1.3, page 146. 

The situation shown in Figure 99a was considered as matching objects (M), 
while the relations of reference and segmented objects in Figure 99b and Figure 99c 
were considered as non-matching houses. The segmented houses were counted 
based on their overlap with the reference houses. For example, the segmented 
houses in Figure 99c are one, and in Figure 99d are three. Even if significant, these 
measures provide a partial view of the goodness of the segmentation. The Omission 
and Commission errors can describe more precisely the goodness of the 
segmentation. As illustrated by (Ke and Quackenbush, 2011), three possible cases 
of the relation between the reference dataset and the segmented one were taken into 
consideration: i) Match, ii) Omission through under-segmentation, and iii) 
Commission through over-segmentation, (Figure 99). 

As qualitative measures to assess the goodness of the segmentation, the areal 
difference, the perimeter, the centroid's distance, the Under-segmentation index, the 
Over-segmentation index, and the completeness index were evaluated. The Root 
Mean Square Error (RMSE) was calculated for the area and the perimeter. 
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The classification goodness was evaluated using the overall accuracy, 
producer’s accuracy, User’s accuracy, and F1 score metrics, as described in 
paragraph 4.5.1, page 87. 

 
(a) Match (b) Omission through under-

segmentation 
(c) Commission through over-

segmentation 

   
Figure 99. Possible relations between reference crowns (yellow outline) and segmented crowns 

(blue outline) 

8.3.3. Results 

The complete segmentation was realized in 11 hours6, and it is composed of 
34439 objects, while the classification was carried out in approximately 4 hours, 
Figure 100. 

 
(a) (b) 

  
Figure 100. a) example of segmentation in a sample area, and b) its classification. 

                                                 
6 These data should be considered carefully, since the analysis is machine-dependant. It was 

realised using a laptop with 16 GB RAM and 2.7 GHz processor. 



 

245 
 

Accuracy assessment  

The visual assessment reveals a tendency to over-segmenting (14 over- 
segmented objects against 7 under-segmented objects), Table 83. 84% of the houses 
were detected (112 matches over 133 references). The F1 score, which related 
user’s and producer’s accuracies, is 70%.  

Table 83. Visual assessment metrics of the segmentation of the buildings in Niger case study 

Visual validation No. objects 
No. References  133 
No. Segmented 185 
Matches 112 
Omission Through Under-Segmentation 7 
Commission Through Over-Segmentation 14 
Producer's Accuracy 0.842 
User's Accuracy 0.605 
F1 Score 0.704 

 
The area-based measures do not confirm the tendency of the segmentation 

method to over-segmenting. The median value on the over-segmentation average is 
only 0.32, while the under-segmentation index is 0.63. Although the difference 
between the indices is small, it is unneglectable. The completeness index (D) 
provides extremely positive information (0.069) along with the Jaccard index, 
which is 0.88 and reflects the F1 score of visual assessment (Table 84). 

Table 84. Area-based quantitative assessment of the segmentation of the buildings in Niger 
case study. * lower values means better segmentation. 

  Over Segmentation Index* Under Segmentation Index* D* Jaccard Index 
Average 0.063 0.122 0.113 0.830 
Min 0.000 0.002 0.009 0.181 
Max 0.473 0.786 0.560 1.000 
Median 0.032 0.063 0.069 0.882 

 
 Table 85 reports the RMSE measures, which indicates the precision of the 

extension of the segmented houses over the reference ones. The error over the Area 
is, on average, 2.29 m2, which represents the 6% on the average house extension. 
On the contrary, the RMSE of the perimeter is slightly higher, and it reaches 18% 
of error over the average perimeter extension. 
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Table 85. Root Mean Square Error of the Area and the Perimeters of the house objects in Niger 
study area 

Metric RMSE Average value % u.m. 
Area 2.289 40.594 6% m2 
Perimeter 4.368 24.778 18% m 

 
The classification assessment results picture good classification. The overall 

accuracy is over 94% (Table 86). The ten classes have user’s accuracy of over 90% 
except for Grassland and Dark clustered rocky soils classes. Indeed the two classes 
are less accurate.  

Table 86. Error matrix of Object-bases classification of Tourè along Sirba River (Niger). 
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Wet land 100 0 0 0 0 0 0 0 0 0 100 

Water 1 98 0 0 1 0 0 0 0 0 100 

Grassland 6 0 85 6 1 0 1 1 0 0 100 

Agricultural 0 0 0 97 1 1 0 1 0 0 100 

Trees 0 0 0 1 99 1 0 0 0 0 101 

Sandy soil 0 0 0 0 0 93 1 1 0 5 100 

Clusted rocky 
dark soil 1 0 3 0 0 4 86 5 0 0 99 

Gullies 0 0 0 0 0 1 1 74 0 3 79 

Metal roofs 
houses 0 0 0 0 0 0 0 0 44 0 44 

Bricks roofs 
houses 0 0 0 0 0 2 1 0 1 96 100 

TOT 108 98 88 104 102 102 90 82 45 104 

OA=  
 

0.945 

Producer's acc. 0.926 1.000 0.966 0.933 0.971 0.912 0.956 0.902 0.978 0.923 

user'acc 1.000 0.980 0.850 0.970 0.980 0.930 0.869 0.937 1.000 0.960 

F1-score  0.962 0.990 0.904 0.951 0.975 0.921 0.910 0.919 0.989 0.941 
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8.3.4. Discussion and conclusions 

The assessment of the houses' segmentation provides outstanding results. 
Indeed over 84% of the houses were correctly detected, and a low number of objects 
were under-segmented. Over segmentation is a frequent error, although apparently, 
the most common condition is the correct segmentation of the houses in terms of 
extension (testify by the low RMSE aver the area, 6%), described by more than one 
object. This may be caused by the roofs' spectral variation due mainly to shadows 
or damaged roofs, or objects on the roofs. Figure 99c is an example of over-
segmentation caused by shaded roofs. Also, it appears from visual interpretation of 
aerial images that some households stock woods/straw covered by black plastic 
tissues on the roofs, interfering with the segmentation process. This frequent 
condition may also explain the higher RMSE over the perimeter in respect of the 
area. Even if the over-segmentation demonstrates the segmentation to be low-
accurate, it is worth mentioning that it is partially overcome in the classification 
phase since the different segments are classified as “buildings” and later merged. 

In regards to the classification, the Random Forest algorithm provided accurate 
results. The class Grassland has been classified as agricultural land and wet areas 
mainly. The confusion between Grassland and Agricultural land can be explained 
by the spectral similarity between them and the lack of textural distinction. It is 
worth underlining that some agricultural land does not have the typical cultivation 
pattern of plants on lines, thus not always detected by the textural information. At 
the same time, the confusion between grassland and wet areas depends on the 
presence of transition cover between the two, as Figure 101 shows. 

 

 

Figure 101. Detail of the segmentation process. The yellow square indicates two objects of 
mixed class: grassland and wet areas. 
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The clustered rocky soil is confused with gullies. The main feature that 
distinguishes them is the DSM and its difference between the neighboring objects. 
As the wet areas and the grassland, some mixed classes between sandy and clustered 
soils exist.  The main challenges faced during the classification are related to two 
main aspects: the high variability of the land cover within the village and the class 
definitions. The first is related to various objects in households ‘yards that are part 

of everyday life, such as Figure 102 (pot, dishes, plastic tissues, bottles, etc.). These 
objects have a significantly different spectral response since they are made of 
various materials, and thus, they create noise in the classification, altering the 
spectral values and the texture of these areas. Basically, this class is not fully 
represented in the classification system, and it was classified as bare soil.  The other 
challenging aspect regards the confusion between agricultural areas and grasslands. 
The two classes are separated mainly by textural features based on the regular 
distribution of plants in rows. Nevertheless, this is not always true, some plots are 
rich in weeds, and the regular row pattern is imprecise since the agricultural works 
are not mechanized.  

It is worth underlying that, according to the literature, the training dataset is 
relatively small, only 100 samples describe each class, but it is revealed to be 
sufficient for acceptable results. Similarly, some classes are underrepresented (less 
training objects), although this unbalance mirrors the area's real cover conditions. 
Such unbalances in the training datasets must be considered regular for 
classifications of relatively small areas and very specific classes such as the gullies 
and rocky-clustered areas. The same unbalance is present on the test dataset. 
Besides the inaccuracy related to the particularity of the area, the classification 
provides good results for DRR plans.  

 

 

Figure 102. Example of land cover spectral variability within households ‘yards. 
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8.4. Comparison to existing LC classifications 

As mentioned in paragraph 2.1 (page 9), many Land Cover maps deriving from 
the interpretation of Satellite data exist. The most used LC information for the 
European region is the Corine Land Cover, produced by the Copernicus 
programme. The latest version of Corine Land Cover (CLC) is referred to 2018 and 
it is based on Sentinel-2 data. It has 100 m spatial resolution and, at level 3 of detail, 
40 classes. CLC classes includes land covers and use classes (i.e. recreation urban 
areas) (Falťan et al., 2020). Having many classes of land cover and use makes the 
CLC adaptable to different applications.  

For any LC production in Europe at high level of detail, a comparison with 
CLC is due. Such comparison requires the translation of the CLC classes into the 
target LC classification and the comparison of the LC maps according validation 
points or region.  

The Alpine region LC classification from Sentinel 2 data tile Q (from now on 
named Alpine LC) was compared to CLC 2018. The class translation was realized 
according the CLC classes of Table 44, and each pixel of the map compared. An 
error matrix using CLC as reference was produced (Table 87). Four Land use 
classes of the CLC were not considered in the analysis because hardly translatable 
in the LC Alpine classification: 141 - Green urban areas; 142 - Sport and leisure 
facilities; 244 - Agro-forestry areas, 411 - Inland marshes. Globally, they cover 28 
km2, less than the 0.5% of the analysed area (0.24%), which is a negligible cover 
for the comparison purposes.  

Generally, there is good accordance between the two classifications. Indeed, 
the overall accuracy reaches 56%. Conifers, Broadleaves and Agricultural land are 
the classes that show better agreement between the LC classification (F1 score of 
0.68, 0.70 and 0.68 respectively). As expected, the main incongruities are registered 
on the Grasslands, Clustered-bare soils and sparse vegetation areas and Rocks 
classes. Indeed, these three classes differ significantly in the thematic definition of 
CLC and Alpine LC. Clustered-bare soils are defined in Alpine LC as areas 
characterized by being prone to erosion. Indeed the class was trained using the 
USLE data (paragraph 7.2.2, page 180). This definition includes many alpine 
sparsely vegetated grasslands. Consequentially many pixels labeled Grasslands in 
Corine are in Clustered-bare soils class in Alpine LC. Similarly, the Rocks class of 
Corine includes the clustered rocky areas, which are typical of alpine environments, 
but, being interested by erosive activity, are part of the Clustered-bare soils class 
in LC alpine classification. Additional attention should be given to the differences 
of the spatial resolution and the detail of the classifications. Alpine LC has spatial 
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resolution ten times more detail than the CLC, which has pixel size of 100 m and a 
MMU of 25 hectares. The Alpine LC has spatial resolution of 10 m and the MMU 
is 100 m2. Large MMU, such the CLC MMU, may penalize the LC classes 
characterised by small and discontinuous cover distribution. As example, 25 ha 
MMU of CLC does not detect the isolated farms of Italian lowlands (Pianura 
Padana), which are well described by Alpine CLC. Surely the Urban areas and 
Water are the classes most penalized by lower spatial resolution of CLC. Small 
ponds, streams, farms, roads and railways are not represented (Figure 103).  

Table 87. Error matrix of the CLC 2018 (reference) and Alpine Classification. To facilitate the 
reading, the values are reported in square kilometres. 
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Conifers 1138 187 171 1 131 31 1 0 1661 
Broadleaves 159 1469 203 1 14 3 10 7 1866 
Grasslands 91 109 942 1 219 16 10 26 1415 

Water 1 1 0 7 0 0 2 1 13 
Clustered-
bare soils 215 210 1011 4 846 123 21 4 2434 

Rocks 7 1 50 5 702 332 1 0 1098 
Urban areas 11 26 73 4 14 6 388 16 538 
Agricultural 50 320 701 4 27 3 300 1575 2981 

Total 1673 2323 3152 27 1954 515 734 1629 
OA 

0.558 
PA 0.680 0.632 0.299 0.247 0.433 0.645 0.529 0.967 
UA 0.685 0.787 0.666 0.537 0.348 0.303 0.720 0.528 
F1 0.683 0.701 0.413 0.339 0.386 0.412 0.610 0.683 

 
Concerning the Niger LC map, today there is no official product of Land Cover 

and use that can be considered a shared and trusted reference. Despite the large 
availability of satellite source data no harmonised LC product at high resolution 
exist. In 2017 ESA created a land cover classification map of Africa at 20m 
resolution using 180000 Copernicus Sentinel-2 images captured between December 
2015 and December 2016 (ESA, 2016). The map is still a prototype and only eleven 
classes are described (i.e. Trees, Shrubs, Grasslands, Croplands, Aquatic 
Vegetation, Sparse Vegetation, Bare Areas, Built-Up Snow An Open Waters). The 
lack of thematic detail is compensate by the 20m spatial resolution, which make it 
unique in LC data of Niger. Although still a prototype only partiality validated, it 
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was used as reference LC map for the comparison of LC map of Sirba River 
generated with the stacked approach. The classes of the two LC systems are hardly 
harmonized, thus the translation required the creation of a target common 
classification for LC Africa ESA and LC of Sirba area, as Table 88 shows. 

 

 

Figure 103. Examples of Alpine LC and Corine LC in plane area and mountainous zone; a1. 
Bing satellite view with Google labels of Padana plain; a2. Alpine LC classification and Google 
labels; a3. CLC2018 classification and Google labels. b1. Bing satellite view with Google labels of 
montaneous area (Valle Stura di Demonte, Italy); b2. Alpine LC classification and Google labels; 
b3. CLC2018 classification and Google labels.  

 

Table 88. Conversion classes between ESA Africa LC and Sirba LC. 

Common classes ESA Africa LC Sirba LC 

1- Vegetation 1- Trees, 2 - Shrubs, 6 - 
Sparse vegetation 

3 - Forest and bushes, 8- 
Plateaux vegetation 

2- Grassland 3 - Grasslands 10 – non-irrigated agricultural 
lands and pastures 

3- Cropland 4 - Cropland 9 – Irrigated agricultural 
lands 

4 - Bare areas 7- Bare areas 5 – Red bare soils, 6 - Sandy 
soils, 2 - Plateaux 

5 - Built-up 8- Built-up 4 – Urban areas 

6 - Waters 5 Aquatic vegetation, 10 - 
Open waters 1 – Water bodies 
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 Then a pixel by pixel comparison reveals low overall accuracy (0.203) despite 
the two classification have similar spatial resolution (10m and 20m). The major 
issue regards the confusion between Grassland, Cropland and Bare areas. The 
majority of pixels classified as Grassland in Sirba LC are labelled as Bare areas in 
the ESA Africa LC (Table 89). Similarly, most of the croplands of the Sirba LC are 
classified Grassland in the ESA LC. Indeed the F1 score of Cropland is only 0.056. 
Such results are ascribable to the nature of the definitions of pastures, grasslands 
and bare soils. In fact, pastures are considered Agricultural land in ESA LC, and 
Grassland in Sirba LC. This is clearly detectable from the visual comparison 
between the classifications (Figure 104). Sirba River and most of seasonal ponds 
and lakes are detected in Sirba LC and not in ESA LC, because of the dataset of the 
classifications. Sirba LC is a rainy season LC (only summer months on 2017-2019), 
while ESA LC is bases on one year observations. This influences also the vegetation 
class, which is captured in its maximum during the rainy season. A good overlap is 
present between the other classes. It is worth underling that the ESA Africa LC is a 
prototype and it is was validated using Crowdsourcing only for Kenya, Gabon, 
Ivory Coast and South Africa.  

 

Figure 104. Sirba River area classified according Sirba LC (top) and ESA LC (bottom). 
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Table 89. Error matrix of the ESA LC Africa (reference) and Sirba Classification. To facilitate 
the reading, the values are reported in square kilometres. 
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Vegetation 1068 1497 101 1568 56 97 4387 
Grassland 2451 8908 105 34992 1103 787 48348 
Cropland 7819 29140 1503 10711 1792 722 51686 
Bare areas 36 1407 2 11037 19 113 12614 
Built-up 58 4 66 59 584 12 783 
Waters 10 0 101 4 0 1109 1224 
Total 11442 40956 1879 58369 3554 2841 

OA 
0.203 

PA 0.093 0.218 0.800 0.189 0.164 0.390 
UA 0.244 0.184 0.029 0.875 0.745 0.906 
F1 0.135 0.200 0.056 0.311 0.269 0.546 

 

8.5. Atlas applications in Disaster Risk Reduction 
planning 

 
The five classifications described in the previous chapters constitute the final 

Atlas, which provide information at different spatial and thematic resolution, and it 
is specifically though for Disaster Risk Reduction plans related to rockfall (Alps) 
and floods (Niger).  

The Satellite classification of the Niger case study was used in flood risk 
analysis to map the Sirba riverbed and to detect the villages and settlements that lay 
along its banks. Moreover, the GNSS survey processed with PPP technique was 
used as base for the generation of a High Resolution DTM, which calibrated the 
hydraulic model. In major detail, hydraulic flood risk model derived from the 
hydraulic model allowed the definition of four risk levels. This information was 
disseminated via Atlas of flood risk (Massazza et al., 2020) and a web GIS 
(http://www.slapis-niger.org/fr) created  by ANADIA 2.0 project. Moreover, the 
ANADIA project include also Plans for flood risk reduction at village level for 
Tourè and Larba Birno. In the definition of these plans the TSWB, the flood risk 
and the classified buildings were cross-exanimated to identify the elements exposed 
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to different levels of risk and quantify the potential losses. The planners integrated 
the TSWB information into the analysis for evaluating the post-flood health risk 
related to infectious diseases.  

 

 

Figure 105. Extract from Tourè village (Niger) flood risk analysis considering the buildings 
exposed to four level of flood risk (Green, Yellow, Orange and Red) and water stagnation. 

The Alpine case study offers a starting point for future application in rockfall 
risk analysis. The satellite Alpine LC classification allows the characterization of 
protection forests by cross-analysing the information regarding land morphology, 
the forest cover, its proximity to rocks and erosion-prone areas, and the urban areas. 
It is worth underling that this represent an approximate analysis since roads and 
railways are generally not detected in the classification since smaller than the MMU 
(100 m2). The individual tree crown map provides planners with forest parameters 
for rockfall modelling, and the main dendrometric parameters can be derived from 
ITD. Also, it can provide a basemap for the identification of past avalanches and 
rockfalls events. 
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Chapter 9 

Conclusion and future vision 

This research aims to investigate the existing methodology for the generation 
of Land Cover maps at Very High Resolution (VHR). The aspects examined 
concern the entire generation process: from the data acquisition and final result 
accuracy analysis. 

 
The most innovative tool for the acquisition of VHR optical imagery is the 

Unmanned Aerial Vehicles (UAV), which are incredibly versatile for the data 
collection of environmental critic areas. They overcome the satellite data in terms 
of spatial and temporal resolution, and the recent introduction of UAV-embeddable 
hyperspectral and multispectral cameras makes UAV technology superior in terms 
of spectral resolution. Nevertheless, the satellite still dominates the optical data 
collection on extensive areas, and there is no comparison between the satellite 
historical dataset (which starts from 1972 with the Landsat mission) and the UAV’s 

one. The UAV can be integrated with many different sensors according to the need 
of the survey. Simple devices for data acquisition can be created, such as the 
Raspberry InfraRed camera that, although extremely simple and cheap, allowed the 
photogrammetric reconstruction of flood-endangered areas. On the other hand, the 
UAV systems require quite long pre-classification processing and background 
knowledge about photogrammetry and positioning.  

Precise georeferencing of the UAV-derived orthomosaics require additional 
time for the pre-classification phase, and, unlike satellite optical imagery, GNSS 
dual-frequency receivers are compulsory to have centimeter-level accuracy. The 
GNSS survey can have several limitations in geodetic depressed areas, but 
techniques such as PPP are now very accessible, thanks to high-performant 
platforms, for example, the CSRS-PPP.  

Both UAV and satellite data require high-computational power for the analysis. 
Although new on-cloud processing platforms exist, such as Google Earth Engine 
(GEE), they provide only satellite optical datasets. GEE performs exceptionally 
well; nevertheless, it is still immature for detailed Land Cover analyses. The 
principal limit is the limited memory available for a single user and poor 
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documentation regarding the algorithms. Even if existing algorithms are regularly 
implemented (as an example, the GINI importance analysis has been recently 
introduced for the Random Forest algorithm), many functionalities and parameters 
are still missing.  

Concerning the classification process, the machine learning overcomes the 
parametric classifiers since they can deal with non-Gaussian distributions and data 
of different kinds and nature can be easily integrated into the input dataset. For 
example, data from different optical sensors mounted on the UAV, as it was realized 
in Alpine arch and Sub-Saharan UAV case studies. The Random Forest algorithm 
is extremely performant for small training datasets, as the over 90% Overall 
accuracy of the five classifications of the Atlas testifies. Its limited sensitivity to the 
data distribution and its ensemble nature can be two of the causes related to the little 
influence of atmospheric correction (both the radiative and linear models, as tested 
over the Alpine case study) over the satellite images. Another factor influencing the 
low impact of atmospheric correction over the classification accuracy can be the 
little time span considered for the classifications.  

The increase of the spatial and thematic resolution is directly proportional to 
the need for additional input features. The textural information was revealed to be 
fundamental in the classification and segmentation phases. Indeed, Grey Level Co-
occurrence Matrix (GLCM)-derived measures, such as the ones proposed by 
Haralick, improve the classification of 10% in the Alpine satellite case study, and 
more specifically, it helps in the distinguish of high thematic detail classes, such as 
clustered bare soils in Alps classification and Urban areas in Sub-saharan. Textural 
information was revealed to have also a strong influence over the segmentation 
process.  

Due to the high-spectral heterogeneity of VHR imagery, the single pixel of a 
specific feature of the scene can have enormous spectral variation. This is the main 
reason behind the spread of object-oriented (OBIA) techniques in their 
classification. The segmentation is still strongly-dependant on the analyst's 
experience, and many different approaches exist. The texture has been revealed to 
have a crucial role in the segmentation process too. Textural information resulting 
from multifractality analysis has proven to simplify the segmentation of 
homogeneous spectral areas, such as forests. In VHR OBIA classification, the 
assessment for the classes in a pixel-based approach is not enough. The need for 
assessing the segmentation is unneglectable. Additional research needs to be 
realized to find a shared and efficient geometric validation approach from this point 
of view.  

 The final Land Cover Maps of the Atlas satisfy most of Anderson's criteria 
listed in Table 3: the satellite classifications and the UAV LC map of Tourè have 
over 85% accuracy; the accuracy is almost equal for each class; the methodology 
has been proven to be repeatable and applicable over extensive areas (at least over 
the Alpine areas), and the classes structure is well defined and can be aggregated if 
needed. The satellite classifications do not satisfy criterion 6, which states that the 
classification system should be applicable over different time of the year, was not 
tested since the selection of specific time of the year is one of the factors that made 
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possible the separation of certain classes (agricultural land and bare soils along the 
Sirba river). The Individual Tree crown Detection and the Temporary Surface 
Water Bodies detection are hard to evaluate in terms of Anderson’s criteria because 

they are focused on the segmentation of the image and the identification of a single 
specific class.  

 
Besides being geographically and environmentally far from each other, the two 

case studies are bounded by being hard-to-map and endangered by natural hazards. 
The analysis and the methodology applied for the classification demonstrate that 
similar processing and treatments lead to good precisions and accuracy. For 
example, the textural information in both cases facilitates segmentation and 
classification. Similarly, the aggregated multi-temporal approach proposed to 
reduce the variability of the images led to high-accuracy classification. In both 
cases, selecting a limited period for the satellite classification allowed the 
maximization of the seasonal characterization. It increased the separability of some 
hard-to-map classes (clustered bare soils from solid rock, Nigerienne urban areas 
from bare soils and pastures). 

The Atlas maps were created through supervised classification systems that 
require massive human work to create the training and test datasets. Additional 
research should be done to reduce this time. A possible solution to test and improve 
can be using stratified samples of already existing LC maps, as realized over the 
Alpine arch satellite case study. Today technologies, tools, and algorithms cannot 
only allow the atomization of the process, but they can also lead to more detailed 
classification using less expensive tools in economic terms. Future research should 
focus on the optimization of the classification process to reduce the costs related to 
the sensors for data acquisition, the pre-processing, and the classification itself. 
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Appendix A 

List of parameters for ITD validation 

Ruleset Algorithm Parameters Values Computing 
time  

RGN 
spectral 

information 
 

Contrast split 
segmentation 

Minimum treshold  40000 

7’ 54’’ 

Maximum threshold 100000 
Step size 500 

Stepping type Add 
Layer NIR 

Class for bright objects Trees 

Class for dark objects Other 

Multiresolution 
segmentation 

Scale parameter 1200 

4’ 56’’ 
Layer NIR, RED, 

GREEN 
Shape 0.05 

Compactness 0.5 

Remove object Condition  Area < 80Px 1’ 43’’ 

NDVI 

Contrast split 
segmentation 

Minimum threshold  0.18 

11’ 29’’ 

Maximum threshold 0.25 
Step size 5 

Stepping type Add 
Layer NDVI 

Class for bright objects Trees 
Class for dark objects Other 

Remove object Condition  Area < 80Px 6’’ 

Contrast split 
segmentation 

Minimum threshold  0.25 

7’ 89’’ 

Maximum threshold 1.00 
Step size 5 

Stepping type Add 
Layer NDVI 

Class for bright objects Other 
Class for dark objects Trees 

Remove object Condition  Area < 80Px 6’’ 

Multiresolution 
segmentation 

Scale parameter 11 

4’ 28’’ 
Layer NDVI 
Shape 0.05 

Compactness 0.5 

CHM 
Contrast split 
segmentation 

Tile size 1500 

5’ 42’’ 

Minimum threshold  0.4 
Maximum threshold 1 

Step size 5 
Stepping type Add 

Layer CHM 
Class for bright objects Other 
Class for dark objects Trees 
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Multiresolution 
segmentation 

Scale parameter 11 

5’ 31’’ 
Layer CHM 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80Px <0,001’’ 

Sum 
Variance 
GLCM 

Contrast split 
segmentation 

 
 

Tile size 1500 

5’ 42’’ 

Minimum threshold  1 
Maximum threshold 10 

Step size 5 
Stepping type Add 

Layer Sum Variance 
Class for bright objects Trees 
Class for dark objects Other 

Multiresolution 
segmentation 

Scale parameter 12 

5’ 31’’ 
Layer Sum variance 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80Px <0,001’’ 

Hybrid 
approach 
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Appendix B 

Google Earth engine code 
 
Image filtring, DOS, topographic correction and training samples import 
 
var sentinel21c = ee.ImageCollection("COPERNICUS/S2") //import SENTINEL 2 dataset, 1C level 
      .filterBounds(study_area) // filter on my astusdy area bundaries 
      .filterDate('2017-01-01', '2019-12-31'); //time interval (aaaa-mm-gg format) 
 
print('Filtered (by date) Image Count: ', sentinel21c.size()); //number of images within the time range 
//print('available data description', sentinel2); // feature-->list of the images of the collection: from older (0) to 
most recent (N).  
 
 
var cloudBitMask1c = ee.Number(2).pow(10).int(); 
var cirrusBitMask1c = ee.Number(2).pow(11).int(); 
// Simple cloudMask function for Sentinel-2 based on QA band  
function cloudmask(sentinel21c) { 
  var qa1c = sentinel21c.select('QA60'); 
  // Both flags should be set to zero, indicating clear conditions. 
  var mask1c = qa1c.bitwiseAnd(cloudBitMask1c).eq(0).and( 
             qa1c.bitwiseAnd(cirrusBitMask1c).eq(0)); 
  return sentinel21c.updateMask(mask1c); 
} 
 
var masked1c = sentinel21c.map(cloudmask); 
//print(masked.sort('CLOUDY_PIXEL_PERCENTAGE'), 'available data, ordered by cloud cover 
percentage:'); 
 
var filteredmasked1c = masked1c.filterMetadata('CLOUDY_PIXEL_PERCENTAGE','less_than',10); 
print('list of images with less than 10% of cloud cover from 1C level:', filteredmasked1c); 
 
//select only the images taken during summer months 
var collection0 = filteredmasked1c 
                            .filter(ee.Filter.calendarRange(6,8,'month')) 
                            .select(['B1', 'B2', 'B3','B4', 'B5', 'B6','B7', 'B8', 'B8A','B9', 'B11','B12']); 
print('list of SUMMER images with less than 10% of cloud cover from 1C level:', collection0); 
 
//var median1c = collection0.reduce(ee.Reducer.median()); 
//Map.addLayer(median1c, {bands:['B4_median','B3_median','B2_median'], min: 0, max: 3500}, 'true color 
scene of median 1c'); 
 
 
////////////////////////ATOMSPHERIC CORRECTION, Dark Object Subtraction, DOS (Chavez, 1996)/////////////// 
 
var collection = collection0.map(DOScorrection); //apply DOS correction function to the collection with 
masked clouds 
 
//DOS function start 
function DOScorrection(img){ 
 
//clipping out edge of the scenes   
  var image = ee.Image(img.clip(img.geometry().buffer(-10000))); 
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//extract the minimum values for each band of each scene 
  var atm0 = img.reduceRegion({ 
  reducer: ee.Reducer.min(), 
  geometry: img.geometry(), 
  scale: 20, 
  maxPixels: 1e9 
  }); 
   
//subtract minimum value to each band (CORRECTION) 
 
  var B1 = img.select('B1').subtract(ee.Number(atm0.get('B1'))).max(0).int16(); 
  var B2 = img.select('B2').subtract(ee.Number(atm0.get('B2'))).max(0).int16(); 
  var B3 = img.select('B3').subtract(ee.Number(atm0.get('B3'))).max(0).int16(); 
  var B4 = img.select('B4').subtract(ee.Number(atm0.get('B4'))).max(0).int16(); 
  var B5 = img.select('B5').subtract(ee.Number(atm0.get('B5'))).max(0).int16(); 
  var B6 = img.select('B6').subtract(ee.Number(atm0.get('B6'))).max(0).int16(); 
  var B7 = img.select('B7').subtract(ee.Number(atm0.get('B7'))).max(0).int16(); 
  var B8 = img.select('B8').subtract(ee.Number(atm0.get('B8'))).max(0).int16(); 
  var B8A = img.select('B8A').subtract(ee.Number(atm0.get('B8A'))).max(0).int16(); 
  var B9 = img.select('B9').subtract(ee.Number(atm0.get('B9'))).max(0).int16(); 
  var B11 = img.select('B11').subtract(ee.Number(atm0.get('B11'))).max(0).int16(); 
  var B12 = img.select('B12').subtract(ee.Number(atm0.get('B12'))).max(0).int16(); 
 
//create the atmosphere corrected image 
var imageDOS = 
ee.Image(B1.addBands(B2).addBands(B3).addBands(B4).addBands(B5).addBands(B6).addBands(B7).addB
ands(B8).addBands(B8A).addBands(B9).addBands(B11).addBands(B12)); 
 
return imageDOS.copyProperties(img); 
} 
 
//var medianDOS = collection.reduce(ee.Reducer.median()); 
//Map.addLayer(medianDOS, {bands:['B4_median','B3_median','B2_median'], min: 0, max: 3500, gamma: 
1.35}, 'true color scene of median DOS'); 
 
 
//////////////////////////////////TOPOGRAPHIC ILLUMINATION CORRECTION///////////////////////////////////////// 
 
var scale = 300; 
  
// get terrain layers 
var dem = ee.Image("USGS/SRTMGL1_003"); 
var degree2radian = 0.01745; 
  
var terrainCorrection = function(collection) { 
  
  collection = collection.map(illuminationCondition); 
  collection = collection.map(illuminationCorrection); 
  
  return(collection); 
  
//////////////////////////////////////////////////////////////////////////////// 
// Function to calculate illumination condition (IC). Function by Patrick Burns and Matt Macander 
  function illuminationCondition(img){ 
  
 // Extract image metadata about solar position 
  var SZ_rad = 
ee.Image.constant(ee.Number(img.get('MEAN_SOLAR_ZENITH_ANGLE'))).multiply(3.14159265359).div
ide(180).clip(img.geometry().buffer(10000)); 
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  var SA_rad = 
ee.Image.constant(ee.Number(img.get('MEAN_SOLAR_AZIMUTH_ANGLE')).multiply(3.14159265359).di
vide(180)).clip(img.geometry().buffer(10000)); 
// Creat terrain layers 
  var slp = ee.Terrain.slope(dem).clip(img.geometry().buffer(10000)); 
  var slp_rad = 
ee.Terrain.slope(dem).multiply(3.14159265359).divide(180).clip(img.geometry().buffer(10000)); 
  var asp_rad = 
ee.Terrain.aspect(dem).multiply(3.14159265359).divide(180).clip(img.geometry().buffer(10000)); 
  
// Calculate the Illumination Condition (IC) 
// slope part of the illumination condition 
  var cosZ = SZ_rad.cos(); 
  var cosS = slp_rad.cos(); 
  var slope_illumination = cosS.expression("cosZ * cosS", 
                                          {'cosZ': cosZ, 
                                           'cosS': cosS.select('slope')}); 
// aspect part of the illumination condition 
  var sinZ = SZ_rad.sin(); 
  var sinS = slp_rad.sin(); 
  var cosAziDiff = (SA_rad.subtract(asp_rad)).cos(); 
  var aspect_illumination = sinZ.expression("sinZ * sinS * cosAziDiff", 
                                           {'sinZ': sinZ, 
                                            'sinS': sinS, 
                                            'cosAziDiff': cosAziDiff}); 
 // full illumination condition (IC) 
  var ic = slope_illumination.add(aspect_illumination); 
  
// Add IC to original image 
  var img_plus_ic = 
ee.Image(img.addBands(ic.rename('IC')).addBands(cosZ.rename('cosZ')).addBands(cosS.rename('cosS')).add
Bands(slp.rename('slope'))); 
  return img_plus_ic; 
  } 
  
// Function to apply the Sun-Canopy-Sensor + C (SCSc) correction method to each image.  
// Function by Patrick Burns and Matt Macander 
  
function illuminationCorrection(img){ 
    var props = img.toDictionary(); 
    var st = img.get('system:time_start'); 
  
    var img_plus_ic = img; 
    var mask1 = img_plus_ic.select('B8').gt(-0.1); 
    var mask2 = img_plus_ic.select('slope').gte(5) 
                            .and(img_plus_ic.select('IC').gte(0)) 
                            .and(img_plus_ic.select('B8').gt(-0.1)); 
    var img_plus_ic_mask2 = ee.Image(img_plus_ic.updateMask(mask2)); 
  
// Specify Bands to topographically correct 
    var bandList = ['B1', 'B2', 'B3','B4', 'B5', 'B6','B7', 'B8', 'B8A','B9', 'B11','B12']; 
    var compositeBands = img.bandNames(); 
    var nonCorrectBands = img.select(compositeBands.removeAll(bandList)); 
  
    var geom = ee.Geometry(img.get('system:footprint')).bounds().buffer(10000); 
  
    function apply_SCSccorr(band){ 
      var method = 'SCSc'; 
      var out = img_plus_ic_mask2.select('IC', band).reduceRegion({ 
      reducer: ee.Reducer.linearFit(), // Compute coefficients: a(slope), b(offset), c(b/a) 
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      geometry: ee.Geometry(img.geometry().buffer(-5000)), // trim off the outer edges of the image for linear 
relationship 
      scale: 300, 
      maxPixels: 1000000000 
      });   
  
   if (out === null || out === undefined ){ 
       return img_plus_ic_mask2.select(band); 
       } 
  
  else{ 
      var out_a = ee.Number(out.get('scale')); 
      var out_b = ee.Number(out.get('offset')); 
      var out_c = out_b.divide(out_a); 
// Apply the SCSc correction 
      var SCSc_output = img_plus_ic_mask2.expression( 
        "((image * (cosB * cosZ + cvalue)) / (ic + cvalue))", { 
        'image': img_plus_ic_mask2.select(band), 
        'ic': img_plus_ic_mask2.select('IC'), 
        'cosB': img_plus_ic_mask2.select('cosS'), 
        'cosZ': img_plus_ic_mask2.select('cosZ'), 
        'cvalue': out_c 
      }); 
  
      return SCSc_output; 
    } 
  
    } 
  
    var img_SCSccorr = ee.Image(bandList.map(apply_SCSccorr)).addBands(img_plus_ic.select('IC')); 
    var bandList_IC = ee.List([bandList, 'IC']).flatten(); 
    img_SCSccorr = img_SCSccorr.unmask(img_plus_ic.select(bandList_IC)).select(bandList); 
  
    return img_SCSccorr.addBands(nonCorrectBands) 
      .setMulti(props) 
      .set('system:time_start',st); 
  } 
  
};   
  
var collection = terrainCorrection(collection); 
print('list of SUMMER images with less than 10% of cloud cover and topographically corrected from 1C level:', 
collection); 
 
var median1cTC = collection.reduce(ee.Reducer.median()); 
Map.addLayer(median1cTC, {bands:['B4_median','B3_median','B2_median'], min: 0, max: 3500, gamma: 
1.35}, 'true color scene corrected'); 
print(median1cTC, 'median1cTC'); 
 
 
///////////////////////////////////////TRAINING DATASET///////////////////////////////////////////// 
 
Map.centerObject(study_area); 
 
//import training dataset 
 
Map.addLayer(trainingdef,{min:0,max:11,palette: ['grey','white']}, 'training' ); 
 
print(trainingdef, 'training'); 
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//Create the training points by randomly inserting 250 points for each class of the training dataset (then 
downloaded and MANUALLY modified on GIS sftw) 
//REMOVE THE ONES FROM CLASSES 0 AND 11 (non classifcable and not defined) 
 
var training_points = trainingdef.addBands(ee.Image.pixelLonLat()) 
   .stratifiedSample({ 
    numPoints: 250, 
    classBand: 'b1', 
    projection: 'EPSG:32631', 
    scale: 10, 
    region: training 
         }) 
          .map(function(f) { 
  return f.setGeometry(ee.Geometry.Point([f.get('longitude'), f.get('latitude')])); 
   }).filterMetadata('b1', "not_equals", 0).filterMetadata('b1', "not_equals", 11); 
 
print (training_points.reduceColumns(ee.Reducer.frequencyHistogram(),['class'])); 
Map.addLayer(training_points, {color: 'blue'}, 'training_points, blue'); 
 
print(training_points,'training_points'); 
 
Export.table.toDrive({ 
  collection: training_points, 
  description:'training_points', 
  fileFormat: 'CSV' 
}); 
 
 
var test_points = trainingdef.addBands(ee.Image.pixelLonLat()) 
  .stratifiedSample({ 
    numPoints: 250, 
     classBand: 'b1', 
    projection: 'EPSG:32631', 
     seed: 1, 
     scale: 10, 
    region: training 
          }) 
         .map(function(f) { 
      return f.setGeometry(ee.Geometry.Point([f.get('longitude'), f.get('latitude')])); 
    }).filterMetadata('b1', "not_equals", 0).filterMetadata('b1', "not_equals", 11); 
 
print (test_points.reduceColumns(ee.Reducer.frequencyHistogram(),['class'])); 
Map.addLayer(test_points, {color: 'red'},'test_points, red'); 
 
print(test_points,  'test_points'); 
print(training_points_def,  'training_points_def'); 
Map.addLayer(training_points_def, {color: 'blue'},'training_points_def'); 
 
//////classification/////////// 
var classifier_q = ee.Classifier.randomForest({numberOfTrees: 40, minLeafPopulation: 4}).train({ 
            features: 'training_points_def',  
            classProperty: 'class', 
             }); 
    return image.classify(classifier_q).copyProperties(image); 
}; 
 
var classification_q = collection_indices.select(class_bands).map(classified_q); 
 
//////VALIDATION ///// 
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var test_points_q = test_points_def.filterMetadata('class', "not_equals", 10); 
var validation_q = function(image){ 
var accuracy_points = image.sampleRegions({ 
  collection: test_points, 
  properties : ['b1'], 
  scale:10, 
  tileScale: 4, 
 }); 
 return accuracy_points; 
}; 
 
var accuracy_points_q = classification_q.map(validation_q); 
 
var errormatrixloop_q = function (fc){ 
  var EM2 = ee.FeatureCollection(fc).errorMatrix('b1', 'classification'); 
  var EM3 = EM2.accuracy(); 
    return ee.Feature(null).set('AEM', EM3).set('EM', EM2); 
}; 
 
var lists = ee.FeatureCollection(accuracy_points_q.map(errormatrixloop_q)); 
print(lists); 
 
 
///////////////CREATE STACK IMAGE OF THE CLASSIFICATIONS////////////////////////////// 
 
var stack_classes = classification_q.toBands().clip(q_geometry).int8(); 
print(stack_classes); 
 
Export.image.toDrive({ 
image: stack_classes,  
description: 'classification_q_cor', 
maxPixels: 1E13, 
fileNamePrefix: 'class_q-cor',  
fileFormat: 'geoTIFF'}); 
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