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A mesh-free adaptive parametric macromodeling
strategy with guaranteed stability

Alessandro Zanco, Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE

Abstract—This paper proposes a fully automated procedure
for the generation of behavioral time-domain macromodels of
complex multiport electric, electronic or electromagnetic systems,
whose response depends on several design parameters. The
latter are embedded in closed form in the macromodel structure
through a mesh-free radial basis function representation, which
allows scalability to a possibly large number of parameters. A
greedy process is proposed to iteratively select a reduced number
of training frequency responses, so that the macromodel accuracy
is enforced uniformly in the parameter space. Examples with up
to ten independent parameters demonstrate the effectiveness of
proposed algorithm.

I. INTRODUCTION

Behavioral macromodels are extensively used in numeri-
cal modeling and simulation for Signal-Power Integrity and
Electromagnetic Compatibility. Due to availability of reliable
and efficient rational curve fitting algorithms [1], generation
of reduced-order behavioral models has become a routine task
for designers, who are able to represent with compact time-
domain equivalents the dynamic behavior of possibly complex
electromagnetic multiport systems known through samples of
their frequency responses.

This paper builds on recent developments on multivariate
macromodeling [2]–[4], and proposes a practical and fully
automated algorithm that generates parameterized behavioral
models embedding in a closed form a dependence on several
design parameters. The latter can be related to geometry,
materials, parasitic elements, or even ambient quantities such
as temperature. Availability of parameterized macromodels is
a key enabling factor for running system-level optimization,
design centering, what-if and sensitivity analysis since early
stages of product development, while taking into account the
full dynamic behavior of the structure under investigation,
including parasitics.

Various methods have been presented for parameterized
modeling [2]–[13]. Most of these approaches are however lim-
ited to a reduced number of independent parameters, due to the
inherent structure of the model. For instance, all approaches
that embed parameters through expansion into a set of basis
functions for each individual parameter [3], [4] inevitably
lead to a curse of dimensionality when multiple parameters
are to be embedded. Such methods have been demonstrated
to have an excellent performance in case of 2-3 parameters,
for which both model generation through multivariate fitting
and stability/passivity enforcement are feasible in a relatively
reduced runtime. A larger number of parameters is impractical
in this framework.

An attempt to remove the above limitation was performed
in [14], [15], where mesh-free parameter representations were

introduced through an expansion of model coefficients into
Radial Basis Functions (RBF). The preliminary results in [14]
demonstrated feasibility of this approach to improve scalability
to a larger parameter space dimension, while preserving or
enforcing uniform stability. However, no explicit guideline was
provided to place the centers of the RBFs for optimal perfor-
mance and/or accuracy. This paper solves this problem and
provides a fully automated greedy process that, starting from
a well-defined distribution of few RBF centers placed through
a space-filling Sobol sequence [16], iteratively increases their
number until model accuracy is under control throughout the
parameter space. Compared to the adaptive sampling scheme
based on passivity metrics presented in [17], the proposed
approach removes the limitation of structured parameter bases,
thus improving scalability.

The proposed algorithm is as simple as effective. In ad-
dition, enforcing positiveness of a reduced set of model
coefficients, as in [3], [15], provably constrains all parameter-
dependent macromodel poles to be stable throughout the
parameter space, thus enabling time-domain usage of the
models. Algorithm performance is here demonstrated on a
significant number of test cases characterized by up to ten
independent parameters.

II. BACKGROUND AND NOTATION

We summarize here some background concepts and the
general macromodeling framework from which proposed algo-
rithm is derived. We consider a P -port electrical, electronic or
electromagnetic structure, represented by a linear or linearized
(small-signal) system, whose response depends on a set of ρ
independent parameters collected in vector ϑ = [ϑ1, . . . , ϑρ] ∈
Θ. Without loss of generality we assume Θ to be a unitary
(normalized) ρ dimensional hyper-cube.

We assume that the structure is initially characterized
through M parametric frequency responses, obtained through
physics-based simulations (i.e. SPICE through a small-signal
AC sweep in case of electronic circuits, or a frequency-domain
field solver in case of an electromagnetic system). The m-
th response includes K frequency samples sk = jωk and
is denoted as H̆(sk,ϑm) = H̆k,m, k = 1, . . . ,K, m =
1, . . . ,M . The construction of a parameterized reduced-order
macromodel H(s,ϑ) is achieved by enforcing the following
fitting condition∥∥∥H(sk,ϑm)− H̆k,m

∥∥∥ ≈ 0, ∀k, m. (1)

The adopted model structure is standard [18], [19]

H(s;ϑ) =
N(s;ϑ)

D(s;ϑ)
=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
. (2)
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where the free model coefficients, to be determined by solv-
ing (1), are Rn,` ∈ RP×P and rn,` ∈ R. Each basis function
ϕn(s) = 1/(s− qn) corresponds to the single partial fraction
associated with a “basis” pole qn, except ϕ0(s) = 1. The basis
poles are obtained through standard vector fitting [20] in a
preprocessing phase. The terms ξ`(ϑ) are multivariate basis
functions that catch and embed the parameter variability in
the model. As pointed out in [14], [15], mesh-free approaches
based on RBF expansions seem to be very promising for high-
dimensional parameterized macromodeling. Therefore, we will
adopt Gaussian RBFs as basis functions

ξ`(ϑ) = e−ε‖ϑ−ϑ̂`‖
2

(3)

to represent parameter-induced variations, where the shape
parameter ε determines the geometry of the RBF. Each
ξ`(ϑ) is basically a bell-shaped hyper-surface centered at ϑ̂`,
having a width inversely proportional to

√
ε. In the proposed

framework, the shape parameter ε is common to all the basis
functions (for details see Section III) and the RBF centers ϑ̂`
are common to both numerator and denominator in (2).

The optimization problem in (1) is non-convex in the
decision variables Rn,`, rn,`. A standard relaxation strategy to
solve (1) is the so-called Parameterized Sanathanan-Koerner
(PSK) iteration [18], [19], [21]

min

∥∥∥∥∥Nµ(jωk;ϑm)−Dµ(jωk;ϑm)H̆k,m

Dµ−1(jωk;ϑm)

∥∥∥∥∥
2

F

(4)

where µ = 1, 2, . . . is the iteration index and F denotes the
Frobenius norm. We recognize in (4) a linear re-weighted least
square problem that can be solved with basic pseudo-inverse
techniques. The iterations stop when the unknown coefficients
Rn,` and rn,` stabilize.

The Gaussian RBFs (3) are positive definite, i.e., ξ`(ϑ) > 0,
∀` and ∀ϑ ∈ Θ. As shown in [3], [14], [15], adopting
such basis functions greatly simplifies the process of stability
enforcement, since uniform macromodel stability can be guar-
anteed by subjecting denominator coefficients to simple linear
inequality constraints, which are easily embedded within the
PSK iteration (4).

The selection of the RBFs free parameters (shape factor
and center) as well as the number of RBFs must be carefully
tuned in order to accurately capture the parametric variability.
The choice of an optimal shape parameter is still an open
problem [22]. In this work, the optimal ε will be determined by
a brute-force search while minimizing model data fitting error.
The selection of RBF number and location of RBF centers is
instead the main focus of this paper. Section III discusses a
quasi-optimal strategy for their automated determination.

III. GREEDY RBF CENTER SELECTION

The proposed greedy algorithm works iteratively. At each
iteration ν = 0, 1, . . . , we denote the currently available model
as Hν(s,ϑ), with the corresponding model-data error at the

m-th parameter location ϑm as the worst-case RMS deviation
among all transfer matrix elements

Eν(ϑm) = max
i,j

√√√√ 1

K

K∑
k=1

∣∣∣Hν
i,j(jωk,ϑm)− (H̆k,m)i,j

∣∣∣2.
(5)

As a general rule valid for all iterations, the set M =
{ϑ1, . . . ,ϑM} of all parameter values for which the frequency
response is available as raw data is split into two mutually
disjoint subsets Mt

ν and Mv
ν with mt

ν and mv
ν responses,

respectively. We have M =Mt
ν ∪Mv

ν and mt
ν +mv

ν = M .
The responses in setMt

ν are used as training data to construct
and solve the PSK fitting system (4), whereas the responses
in set Mv

ν are used for model self-validation. A third set
Mc

ν ⊂ Mt
ν collects the mc

ν RBF centers that contribute to
the model structure. Therefore, each Gaussian RBF is centered
at some parameter value for which the frequency response
is available. To ensure a proper regression such that (4)
is sufficiently overdetermined and thus prevent overfitting
phenomena, we enforce that mt

ν ≥ 2 mc
ν at all iterations.

Once the RBF centers are fixed (see below), the RBF shape
parameter ε is obtained at each iteration by a one-dimensional
search that minimizes the worst-case model-data error (5)
among all validation samples ϑm ∈ Mv

ν .

A. Initialization
In this work, we assume that the full setM is fixed a priori

and is not augmented through iterations. It is thus necessary to
choose the raw samples ϑm so that they cover as uniformly as
possible the high-dimensional parameter space. In this work,
we generate these samples using a basic Latin Hypercube
Sampling sequence [23], although other choices are possible
(see examples in Section IV).

In the initialization phase ν = 0, it is necessary to split M
into training and validation samples. Also the training samples
should span the entire parameter space, in order to control the
model-data error as uniformly as possible. For this reason, we
consider a truncated ρ-dimensional Sobol sequence [16] with
mt

0 points
St = {si : i = 1, . . . ,mt

0}. (6)

The initial training samples are selected as the mt
0 elements

of M that form the set of nearest neighbors to St.
The same process is used to select the mc

0 centers from the
training samples Mt

0. It turns out that, if the same random
seed is used to generate the two Sobol sequences pertaining
to training samples and RBF centers, it is sufficient to select
as RBF centers the first mc

0 elements of Mt
0.

B. Adaptive refinement

Let us assume that iteration ν is completed, model Hν(s,ϑ)
is available as well as the sets collecting RBF centers Mc

ν ,
training samples Mt

ν , and validation samples Mv
ν . We first

evaluate the error function Eν(ϑm) at all current validation
samples in Mv

ν . A new candidate RBF center ϑ̃
ν

is then
selected through

ϑ̃
ν

= arg max
ϑm∈Mv

ν

Eν(ϑm) (7)
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as the particular validation sample where the model-data error
is largest. Finally, the sets Mt

ν , Mv
ν , Mc

ν are updated as

Mt
ν+1 =Mt

ν ∪ ϑ̃
ν

Mc
ν+1 =Mc

ν ∪ ϑ̃
ν

Mv
ν+1 =Mv

ν \ ϑ̃
ν

(8)

Once these sets are updated, the model is constructed by
solving (4) while optimizing the Gaussian shape parameter
ε.

The adaptive algorithm stops at a certain iteration ν̄ when,
given an error threshold Emax, it holds that

max
ϑm∈Mv

ν̄−1

E ν̄(ϑm) < Emax (9)

Additionally, to prevent the algorithm from adding too many
RBFs, we require that the number of added samples (itera-
tions) never exceeds a prescribed maximum νmax. The greedy
RBF selection algorithm is summarized below in form of
pseudo-code.

Algorithm 1 Adaptive RBFs center selection
Require: Parametric dataset M
Require: Control parameters Emax, νmax, mt

0, mc
0

1: Populate Mt
0, Mc

0 as described in Sec. III-A
2: Set Mv

0 = M\Mt
0

3: Set ν = 0
4: repeat
5: Generate model Hν(s,ϑ) on training samples Mt

ν

6: Evaluate error function Eν(ϑm), ∀ϑm ∈Mv
ν

7: Define new RBF center ϑ̃
ν

as in (7)
8: Update sets Mt

ν , Mv
ν , Mc

ν as in (8)
9: Update iteration index ν = ν + 1

10: until Eν(ϑm) < Emax, ∀ϑm ∈Mv
ν or ν = νmax

11: return Final model Hν̄(s,ϑ)

IV. EXAMPLES

The proposed algorithm is now tested on a significant
set of test cases, characterized by a number of independent
parameters ranging from ρ = 2 up to ρ = 10.

A. A linearized buffer model

The first example we consider is a linearized model of a
buffer, parameterized by its bias voltage Vdd ∈ [0.5, 1.5] V
and the operation temperature T = [20, 50] ◦C. The initial
dataset includes M = 341 parametric frequency responses ob-
tained by small-signal AC sweeps in a circuit solver, arranged
in a 11×31 Cartesian lattice. Each response includes K = 274
frequency samples in the band fmin = 0 Hz, fmax = 10 THz
(to show high-frequency asymptotic behavior).

The adaptive algorithm is set-up with mt
0 = 20, mc

0 = 10,
a maximum allowed number of RBFs to be added νmax = 30,
and error threshold Emax = 10−2. With these settings and a
number of poles n̄ = 5, the presented method is able to extract
an accurate and uniformly stable model, with a worst-case
absolute error on validation samples is 9.31× 10−3, selecting

S(1,1) data

S(1,1) model

Fig. 1. Validation of the buffer model (red-dotted line) compared to raw data
(blue solid line).

only 6 additional RBFs. A comparison between model and
data responses is provided in Fig 1.

The panels in Fig. 2 depict the distribution of the error
function on the parameter space for 4 adaptive refinement it-
erations. As expected, the adaptive algorithm places additional
RBFs (red dots) in correspondence of large model-data error
occurrences, until a uniformly accurate model is obtained.

The total CPU time required by the algorithm to adaptively
select new RBFs centers is 6 minutes. Approximately, more
than half of the computational time is required to choose the
optimal value of the shape-parameter ε.

B. A Low-Noise Amplifier

In this second example we consider a Low-Noise Amplifier
(see [24] for a schematic), whose constitutive parameters
(originally reported in [15]) are listed in Table I. Parameters
C∗ and L∗ are transistor parasitics, the remaining parameters
are transmission line substrate and conductor thickness, and
conductor width. The value of the i-th parameter is contained
within a 20% band, centered on the nominal value ϑ̄i

TABLE I
LNA PARAMETERS (SEE TEXT)

# Parameter ϑi ϑ̄i
1 Lb 1.1 nH
2 Lc 1.1 nH
3 Le 0.25 nH
4 Ccb 0.0020 pF
5 Cbe 0.08 pF
6 Cce 0.08 pF
7 h 0.5 mm
8 tk 2.0 µm
9 w1,2,3 0.25 mm
10 w4 0.8 mm

In order to assess scalability of our framework, we tested the
presented algorithm on three different parameterizations (ϑi
identifies that parameters as in Table I): ρ = 5 parameters (ϑ1

to ϑ5), ρ = 8 parameters (ϑ1 to ϑ8), and ρ = 10 parameters
(ϑ1 to ϑ10). The training and validation datasets have been
generated according to a Latin Hypercube Sampling scheme,
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Fig. 2. Buffer model vs data error for some relevant algorithm iterations.
Black dots depict the location of current RBF centers; red dots denote
candidate new RBF centers.

S(1,1) data

S(1,1) model

Fig. 3. LNA model with ρ = 5 parameters. Top panel: model-data comparison
for a set of randomly selected validation data. Bottom panel: distribution of
validation error at 4 adaptive iterations. The red-dotted lines represent the
target error threshold Emax.

ensuring that the total number of samples M = mt
0 + mv

0 =
200ρ scales only linearly with the parameter space dimension.
Each dataset includes K = 701 frequency samples in the band
[1 Hz, 10 GHz].

In high-dimensional spaces it is not possible to represent the
error function as in Fig. 2. Thus, in the following examples
we will visualize progress of the algorithm through iterations
by means of histograms representing the error function dis-
tribution when evaluated on validation samples. For all the
examples, the algorithm has been set with νmax = 30 and
Emax = 10−2.

1) ρ = 5 parameters: This structure is parameterized only
by lumped parameters, making the induced variability fairly
sample to catch. We expect the initial number of required RBF
centers mc

0 to be small, thus we set mc
0 = 7 and mt

0 = 14.
The number of model poles is n̄ = 14.

The presented greedy algorithm added 7 adaptively centered
RBFs (for an overall CPU time of 7 minutes) to obtain
a uniformly stable model, whose worst-case absolute error
evaluated on the remaining mv

0 = 979 validation samples is
7.71× 10−3. Model responses compared to data are reported
in the top panel of Fig. 3. The histograms in the bottom
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S(1,1) data

S(1,1) model

Fig. 4. As in Fig. 3, but for the LNA case with ρ = 8 parameters.

panel depict the distribution of the error throughout validation
samples for four different iterations. We see that, as additional
RBFs are adaptively positioned, the error distribution moves
to the left, until it is uniformly below the given error threshold.
Assuming to know a-priori the optimal shape parameter value
and skipping the corresponding optimization step, the required
CPU time reduces to only 2 minutes.

2) ρ = 8 parameters: Differently from previous example,
this scenario includes two distributed parameters, namely the
substrate and conductor thickness of feeding transmission
lines, requiring a larger number of initial RBFs to better track
the induced variability. We start with mc

0 = 35 and mt
0 = 70.

With a number of poles n̄ = 16, the adaptive algorithm took
only 3 iterations to extract an accurate and uniformly stable
model, for a CPU time of 14 minutes. In case the optimal
shape parameter is known and no iterative search is performed,
the computational cost is reduced to 5 minutes.

The model worst-case absolute error evaluated at the re-
maining 1527 validation samples is 8.93 × 10−3. Figure 4
compares the model responses to data for a randomly chosen
set of validation samples and provides the error distribution
throughout validation samples.

3) ρ = 10 parameters: In this last example, we account
for all LNA parameters in Table I, including transmission-line

S(1,1) data

S(1,1) model

Fig. 5. As in Fig. 3, but for the LNA case with ρ = 10 parameters.

conductor widths w∗. The additional complexity introduced
by these two latter parameters requires a larger initial number
of RBFs, that we set to mc

0 = 67 with mt
0 = 134 training

samples, with a number of model poles n̄ = 16. The proposed
algorithm required 41 minutes to place 5 additional RBFs
and obtain a final uniformly stable model, whose worst-case
absolute error on the remaining 1862 validation samples is
9.90× 10−3.

Figure 5 compares the model responses with raw data for
a randomly selected subset of validation samples and depicts
the evolution of the error distribution through iterations. Also
in this case, the overall computational time reduces to approx-
imately 30 minutes if the search on the shape parameter ε is
skipped.

These results show that, even in high-dimensional parameter
spaces, the adopted mesh-free representation based on RBFs
allows to reach the target accuracy Emax with the addition
of few automatically positioned RBFs. Furthermore, in all the
reported examples we observed that most of the computational
effort is devoted to choosing a suitable value for the RBF shape
parameter ε. Thus, developing a suitable heuristic to estimate ε
without the need of any iterative search would greatly improve
the performance of the presented algorithm. This is the subject
of our current investigations.
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V. CONCLUSIONS

This paper introduced a greedy process for the automated
generation of parameterized macromodels. The main novel
contribution is a simple yet effective iterative process for the
determination of few radial basis functions and associated
training samples from which a sparse model representation is
computed. Thanks to suitable inequality constraints embedded
in the model identification process, all parameterized model
poles are guaranteed to be stable. The mesh-free nature of
the model parameterization allows for scalability to several
independent parameters. Excellent results in terms of accuracy
and reduced model complexity are here demonstrated for up
to ten parameters.
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