
07 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RL-IoT: Reinforcement Learning to Interact with IoT Devices / Milan, Giulia; Vassio, Luca; Drago, Idilio; Mellia, Marco. -
STAMPA. - (2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS)) [10.1109/COINS51742.2021.9524260].

Original

RL-IoT: Reinforcement Learning to Interact with IoT Devices

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/COINS51742.2021.9524260

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2922203 since: 2021-09-08T17:32:37Z

IEEE

RL-IoT:
Reinforcement Learning to Interact with IoT Devices

Giulia Milan
Politecnico di Torino

Turin, Italy
giulia.milan@polito.it

Luca Vassio
Politecnico di Torino

Turin, Italy
luca.vassio@polito.it

Idilio Drago
University of Turin

Turin, Italy
idilio.drago@unito.it

Marco Mellia
Politecnico di Torino

Turin, Italy
marco.mellia@polito.it

Abstract—Our life is getting filled by Internet of Things (IoT)
devices. These devices often rely on closed or poorly documented
protocols, with unknown formats and semantics. Learning how
to interact with such devices in an autonomous manner is
the key for interoperability and automatic verification of their
capabilities. In this paper, we propose RL-IoT, a system that
explores how to automatically interact with possibly unknown
IoT devices. We leverage reinforcement learning (RL) to recover
the semantics of protocol messages and to take control of the
device to reach a given goal, while minimizing the number of
interactions. We assume to know only a database of possible
IoT protocol messages, whose semantics are however unknown.
RL-IoT exchanges messages with the target IoT device, learning
those commands that are useful to reach the given goal. Our
results show that RL-IoT is able to solve both simple and
complex tasks. With properly tuned parameters, RL-IoT learns
how to perform actions with the target device, a Yeelight smart
bulb in our case study, completing non-trivial patterns with as
few as 400 interactions. RL-IoT paves the road for automatic
interactions with poorly documented IoT protocols, thus enabling
interoperable systems.

Keywords—Reinforcement learning, IoT

I. INTRODUCTION

The popularity of IoT devices keeps growing at a fast
pace, with the number of connected devices projected to be
around 31 billion units worldwide by 2025. IoT devices are
present in many IT systems, from smart homes to drones,
from industry 4.0 scenarios to medical systems.1 These devices
rely on multiple standard protocols and technologies [1], such
as MQTT, CoAP and XMPP, but often they implement pro-
prietary and not well-documented protocols whose semantics
may be obscure.

A general approach for learning how to interact with IoT
devices would represent an important step for many appli-
cations, including interoperability and cybersecurity. In the
literature, this problem lies under the umbrella of protocol
reverse engineering, i.e., the process of learning the protocol
used by an application, having no or limited access to the
protocol specification [2]–[4]. For interoperability purposes,
one often faces a simplified version of the problem, in which
some information about the protocol is indeed available. For
instance, protocol messages and syntax may be public, but
with little information about protocol semantics. Equally, even

1https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide

if some protocol information may be available, finding the
precise operations providing a particular functionality may be
a hard task due to poor documentation.

In this work, we build a system capable of learning by
experience how to interact with IoT devices. In details, given i)
a target IoT device, e.g., a smart bulb, ii) a superset of protocol
messages (not all of them supported by the target device), iii) a
communication network, and iv) a feedback channel, we want
to learn the specific sequence of messages that allows us to
change the IoT device settings according to a desired sequence
of states. At the end, the system shall unveil the semantics
of the messages and their possible mutual interactions in the
shortest possible time.

To reach our goal, we rely on reinforcement learning
(RL) [5]. A learner stimulates the device and observes how
it reacts, obtaining a positive (negative) reward when the
device does (does not) perform the desired action. We assume
to receive a feedback from the device, for instance having
a side channel to observe how its status changes (e.g., a
camera looking at the smart bulb) or a feedback channel
directly offered by the IoT protocol. More formally, RL builds
an internal state-machine representing a portion of the IoT
protocol. The learner’s goal is to discover how to navigate
the state-machine, finding the best (e.g., shortest) sequence of
actions to reach our goal.

We present RL-IoT, a RL-based framework to automatically
interact with IoT devices. We focus on a case study of
a Yeelight smart bulb, which offers a proprietary protocol,
generically documented for all Yeelight devices. We present
the design of RL-IoT and offer a thorough set of experi-
ments, comparing different RL methods, tuning parameters,
and showing that RL-IoT is effective to control the smart
bulb, successfully completing both simple and complicated
sequences of actions.

Results show that not only RL-IoT is able to find the optimal
sequence of commands to control the device, but also discover
multiple solutions, combining commands that at a first sight
are not useful to reach the goal. For example, it finds out that
a command for changing the brightness of a smart bulb can
also be used to switch the light off. Among the different RL
algorithms tested, Q-learning presents the best performance.
With tuned parameters, it learns the optimal sequence of

commands after few hundreds interactions, exploring the state
space of the smart bulb, which in turn has millions of states.

RL-IoT demonstrates how RL solutions can be successfully
exploited to support semantic interoperability, opening to pos-
sible automated solutions to discover the semantics of poorly
documented IoT systems. RL-IoT is open source and freely
available to the community.2

II. RELATED WORK

The work most similar to ours is [6] where the authors
propose the use of the Q-learning algorithm to facilitate the
interoperability of IoT systems. However, the authors only
discuss the applicability of the RL-approach to a REST-based
protocol, without introducing a general system or validating
the approach. Here we demonstrate the potentiality of the idea
without assuming a specific protocol. We also demonstrate the
feasibility of RL-IoT in practice and contribute the software
to the community.

Considering the use of RL for learning protocols, most
previous work targets security applications, such as honey-
pots. Authors of [7] develop a honeypot capable of learn-
ing commands from direct interaction with attackers. Their
self-adaptive honeypot emulates a SSH server and uses the
SARSA RL algorithm to interact with attackers. Later, the
same authors propose an improved version based on Deep
Q-learning [8]. The authors of [9] design another adaptive
honeypot, modelling the attacker as a Semi-Markov Decision
Process (SMDP) and applying RL to learn the optimal policy.

The authors of [10] present adaptive honeypots for study-
ing the security of IoT devices. They propose to use RL
to automatically obtain knowledge about the behaviour of
attackers, building an “intelligent-interaction” honeypot that
could engage attackers. Authors of [11] study IoT attacks too.
The authors argue that the diversity of protocols, software and
hardware of IoT devices, together with dynamic changes in
attacking strategies calls for automatic ways to recognize the
attacks. They use RL techniques to search for the best way to
answer attackers’ commands.

All these efforts share the RL-based approach with our
RL-IoT framework. We however target the interoperability
scenario, where we want to learn how to interact with IoT
devices that may be poorly documented.

III. METHODOLOGY

A. Reinforcement learning algorithms

In reinforcement learning, learning is achieved by inter-
acting with the environment and it is based on rewards and
punishments [5]. Formally, an agent is in a state s ∈ S defined
in function of the environment. The agent may change state
following an action a ∈ A taken at discrete time steps. At
time t, the agent decides which action at to take given its
current state st and, as a consequence, it moves to st+1. The
action then causes a change to the system state and the agent
possibly receives a reward rt+1.

2https://github.com/SmartData-Polito/RL-IoT

commands

feedback
API

DiscovererDictionary

Learning

RL-IoT

Parameters
Algorithm
Episodes
Epsilon

...

Goal
Path

Reward
...

State Machine

Fig. 1: RL-IoT framework overview.

Considering the above setup, a policy π determines the
action a to be taken by the agent when in a particular state s.
The task of an RL algorithm is thus to determine a policy that
maximises a function of the received reward. Here we consider
well-established algorithms that operate based on a value
function V (s), which represents the expected accumulated
reward when starting from a particular state s and following a
policy π. We include algorithms belonging to two categories:

• Temporal-Difference (TD) learning: The agent updates
V (s) after every time step as:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (1)

The parameter α is the learning rate and γ is a discount
factor that weights the importance of the destination state
V (st+1).

• TD(λ) learning: The agent takes n time steps before
updating V (st). As such, TD(λ) algorithms must memo-
rize visited states to update them later. The parameter λ
controls how the n future states influence V (st).

SARSA and Q-learning are popular TD algorithms [5],
while SARSA(λ) and Q(λ) are the most common TD(λ)
algorithms. Both TD and TD(λ) algorithms need a strategy to
select the current policy. The most used strategy is called ε-
greedy, with a trade-off between exploitation and exploration.
Exploration is obtained by randomly selecting actions, with a
probability ε.

B. IoT reinforcement learning framework

Figure 1 summarizes the core RL-IoT framework. It receives
as input a Goal that the RL Module should learn how to
achieve. The Goal represents a sequence of settings the device
should follow, i.e., paths on the device state-machine. This
goal is device-specific, and we will detail it when discussing
our case study with the Yeelight smart bulb.

RL-IoT leverages an internal Message Dictionary contain-
ing a list of IoT protocol messages that can be used to interact
with devices. This dictionary can be built from protocol
specifications, via automatic reverse engineering solutions or
by traffic sniffing. It can contain a mix of messages from
different IoT protocols, vendors, versions, etc.

RL-IoT employs state-of-the-art RL algorithms, where the
Learning module builds and updates the internal State Ma-
chine. The Learning module supports the previously cited
RL algorithms – Q-Learning, Q-Learning(λ) SARSA and
SARSA(λ) [5], each with its parameters. It explores which
of the several messages in the Dictionary can be used to
change the state of the IoT device towards the given Goal. RL
algorithms exploit a reward function (custom to each path) to
evaluate the benefits of each action taken by the learner in a
given state.

The Learning module interacts with two other modules.
Firstly, the Discoverer module is responsible for scanning
the local network in the search for IoT devices. It employs
classic scanning approaches (e.g., nmap3) for searching on-
line devices and performing an initial fingerprint to determine
open ports. At last, the Socket API module abstracts all
the mechanisms to communicate with the target IoT device.
Beside sending commands, it may also support the reception
of feedback obtained directly from the IoT device, if available.
For instance, it can support parsing messages that return the
device state.

C. Environment definition

In general, the state of a device can be represented as the
powerset of all the current properties of the device, which
describes its behaviour and settings – e.g., whether it is
on/off and the combination of all the values of its configurable
parameters. We define the state-machine of a protocol as a
graph containing nodes for states and edges for commands
that let the device move from one state to another. A collection
of ordered states linked by commands is a path. Commands
stored in the Message Dictionary could change the IoT device
settings, i.e., the current state. With states and commands we
can define a state-action value function for the RL algorithms,
described by the value-function matrix Q.

The reward associated with the state-machine and the de-
sired path can be provided to RL-IoT as input, and it is used
by the RL agent at each time step. RL-IoT runs this procedure
many times, i.e., for many episodes. An episode ends when
the RL agent reaches the terminal state(s), or after a maximum
number of iterations. During each step in an episode, RL-IoT
accumulates reward. With such reward, the RL agent updates
the state-action matrix Q according to Equation 1, and uses
it to select which next command to send, trying to maximize
the total reward.

D. Case study: The Yeelight bulb

We use a Yeelight smart bulb as a case study to demonstrate
the feasibility of our approach.4 We select this device because
Yeelight provides a generic protocol documentation valid for
all their IoT devices.5 Knowing the protocol allows us to
understand and validate what RL-IoT can learn. The protocol

3https://nmap.org/
4For all experiments, we use Yeelight LED Smart Bulb 1S Color (8.5W-

E27-YLDP13YL) devices.
5https://www.yeelight.com/download/Yeelight Inter-Operation Spec.pdf

offers 37 commands, and only about half of them work with
the selected smart bulb, with multiple commands that could
generate the same action. For instance, one could set a color
via a set rgb, set scene, or adjust prop message.

Yeelight devices connect to the network using Wi-Fi. After
the initial setup, the device periodically broadcasts its presence
using advertisement UDP messages. It is thus easy for the
Discoverer module to find bulbs in the LAN. Once RL-IoT
identifies the device IP address, it starts interacting with it
sending messages from the Dictionary. Yeelight offers control
protocols running on top of both HTTP and raw TCP sockets.
The latter relies on JSON messages that carry commands.

The commands can have some parameters to set. While
these parameters usually belong to finite sets, for some com-
mands the number of admissible values can be huge (like
for integer or string parameters). Indeed the combinations of
commands and their parameters result into more than 109

distinct combinations that the RL agent could send to a
Yeelight device. For our case study we simplify the definition
of our environment according to our goal. To reduce the action
space, we consider the action as only one command, with its
parameters that we randomly choose in valid ranges.

Using these protocol specifications, we extract commands
and parameters and use them to build our Dictionary, which
can be found in our repository.

E. Case study: Definition of goals

For testing RL-IoT, we build and study two scenarios with
different state-machines of increasing complexity.

In the first scenario, given a switched-on bulb, our Goal 1 is
to learn how to change the color and the brightness of the bulb,
in whatever order. In Figure 2 we report the state-machine
for this first scenario. Each state considers different attribute
values: power p, color c and brightness b. Hence the state is
defined by the values of the tuple {p, c, b}. We disregard the
other attributes of the light configuration. Here, we have two
final states, where an episode will successfully end: either we
reach our goal ({p0 = on, c1 6= c0, b1 6= b0}) or we fail, i.e.,
we turn off the bulb too early without setting the color and/or
the brightness ({p1 = off, c∗, b∗}).

We perform a transition from one state to another inside the
state-machine when a command modifies one or more of these
attributes. With this strategy, we are able to condense multiple
settings into a single state. In Figure 2 we draw possible
transitions (arrows) only if a command exists in the protocol
to change such property. The actions (commands and their
parameters) are not specified in the picture since there might
be multiple commands that could produce the same transition.
Similarly, there exist a lot of commands that do not change
the state, represented as self-transition states (with a looped
arrow). Note that it is even possible to get back to a previous
state (e.g., setting back the original color c0).

There are two optimal paths highlighted with green arrows,
i.e., the shortest sequences of state changes we want to learn.
The optimal policy for Goal 1 visits 3 states with 2 actions,
i.e., requiring 2 time steps. Here, we assign the rewards as

{p0 = on, c0, b0}

{p0, c0, b1 ≠ b0}{p0, c1 ≠ c0, b0}

{p0, c1 ≠ c0, b1 ≠ b0}

{p1 = off, c*, b*}

Fig. 2: Goal 1. Simple state-machine where we want to learn
how to change the color and the brightness of the bulb, in
whatever order. The “*” refers to whatever value.

follows: (i) each new issued command has a small additional
negative reward (−1), since we want to reach the goal in as few
steps as possible; (ii) we give higher negative reward (−10)
when the command produces an error and the state does not
change; (iii) we assign no reward when we reach the final
state without completing the path {p1 = off, c∗, b∗}; (iv) we
give large positive reward (+205) when we reach the desired
final state {p0, c1 6= c0, b1 6= b0}. Hence, with these assigned
rewards, the optimal paths will reach a total reward of 203
(i.e., 205 minus 2 steps).

With similar considerations, we draw and implement also
another state-machine that we call Goal 2, not shown for
brevity, but available in our technical report [12]. The specific
goal we want to learn is, in this specific order: (i) turn the bulb
on, (ii) change the device name, (iii) change brightness, and
(iv) turn the bulb off. Here our goal is more complex since
we want to learn how to move through a specific sequence
of states. Since we add the name attribute among those we
want to change, the state definition becomes {power, color,
brightness, name}. We also require the bulb color to remain
constant, and thus the color is still considered as part of the
state definition. We assign a large positive reward (+222) at
the final state if we pass through the desired states in the right
order. If we arrive to the same final state, but in a different
sequence of the same intermediate states, we assign a positive,
but smaller reward (+200). Negative rewards are similar to
Goal 1. Here the optimal path is unique, with an optimal length
of 4 time steps, generating the maximum total reward of 218
(i.e., 222 minus 4 steps).

F. Performance metrics

We consider three metrics for evaluating results and com-
paring the performance of the algorithms.

We assume that the sets of states S and actions A are finite
sets. If not, there exist methods which combine standard RL
algorithms with function approximation techniques, such as
neural networks [13], [14]. Having finite sets the Q value

function Q(s, a) can be represented as a matrix. In our
scenarios, a terminal state always exists. We call this T (E),
i.e., the number of time steps used in a single episode E to
reach the terminal state. We force T (E) < Tmax, Tmax = 100.
We compute the total reward R(E) obtained during episode E:

R(E) =

T (E)∑
t=1

rt(E) for E ∈ {1, ..., NE},

being NE the total number of episodes we let RL-IoT run.
These metrics can be averaged over multiple executions -

which we call runs - of the learning process. Similarly, we
compute the moving average for a specified window size w.
Average and moving average help to appreciate the learning
curve which is affected by the randomness present in each run
due to exploration.

Finally, we compute the cumulative reward C(na) from the
beginning of the learning process over the number of actions
performed na:

C(na) =

Ena∑
E=1

Tna (E)∑
t=1

rt(E) for na ∈ {1, ..., Na}

This metric takes into account not only the reward reached
within an episode E, but also how much reward cumulatively
was obtained until that episode. To compare different algo-
rithms, we compute the average among different runs, as for
T (E) and R(E). Here, the difference is that we “consume”
the same number of actions na after a different number of
episodes Ena

in different runs.

IV. RESULTS

In this section we summarize the results. For all exper-
iments, RL-IoT runs on a x86-64 PC with 4GB of RAM
and two cores, connected to the same Wi-Fi network as the
Yeelight bulb. In operation settings of the system, RL-IoT can
also run on edge devices with similar or limited computing
capabilities.

A. Learning capability

We start focusing on whether RL-IoT can learn how to reach
the desired goals. We apply the Q-learning algorithm while ob-
serving the reward evolution over episodes, and the number of
time steps needed to arrive to the target state at each episode.
In order to provide an intuition of how RL-IoT interacts with
the smart bulb while exploring possible commands, we share
a video of one run at https://tinyurl.com/yws6m7ec.

Figure 3 reports the total reward R(E) (left plot) and the
number of time steps T (E) (right plot) of each learning
episode for Goal 1. Dotted gray line details a single Q-learning
run; solid black line reports the average of 10 runs; red line
shows the moving average over the 10-run, taking into account
a window w of 10 episodes.

Q-learning initially cannot reach the desired state. Missing
the large positive rewards, it accumulates a negative reward
on average. After few episodes, R(E) grows to the maximum

0 25 50 75 100
Episode E

0

100

200
To

ta
l r

ew
ar

d
R

(E
)

1 run
10 runs avg
10 runs moving avg

0 25 50 75 100
Episode E

0

5

10

15

N
um

be
r o

f t
im

e
st

ep
s T

(E
)

1 run
10 runs avg
10 runs moving avg

Fig. 3: Q-learning for Goal 1. ε = 0.2, α = 0.1, γ = 0.55.

bg
_s

et
_c

t_
ab

x
bg

_a
dj

us
t_

br
ig

ht
bg

_s
to

p_
cf

se
t_

ct
_a

bx
bg

_s
et

_r
gb

ge
t_

pr
op

se
t_

sc
en

e
de

v_
to

gg
le

se
t_

rg
b

ad
ju

st
_c

t
se

t_
po

w
er

_o
n

ad
ju

st
_b

rig
ht

se
t_

na
m

e
se

t_
br

ig
ht

se
t_

po
w

er
_o

ff

Action a

+off
+on

+on+name
+on+name+bright

St
at

e
s

0

200

Q
(s

,a
)

Fig. 4: Part of the final action-value Q matrix for Goal 2.
Darker colors show commands (columns) that result in higher
expected rewards for the states (rows). ε = 0.2, α = 0.1,
γ = 0.55.

value that could be observed (203 here). However, comparing
the line for a single run to the average over 10 runs we
observe a lot of variability. This can be explained by the
random exploration component (controlled by ε) in the Q-
learning algorithm. This exploration phase may penalise the
single episode with low final reward, even if the system has
already discovered the target goal before. The right plot in
Figure 3 shows that Q-learning finds how to reach the desired
state with very few actions. After around 15 training episodes,
on average, it finds policies composed by 2 or 3 steps, thus
the average reward gets closer to the maximum. Recalling that
for the trivial Goal 1 scenario the optimal path is composed
by 2 steps, we conclude that Q-learning has already found the
best path to the goal after 15–20 training episodes.

The results are qualitatively similar for Goal 2, but with
slower learning, given the higher complexity of the goal [12].
However, also in this case the learning phase is still able to
discover paths with positive reward after around 20 episodes.
Given the large state space to explore, the algorithm is still
improving its performance even after 100 episodes.

To give the intuition of the learning process achieved by
RL-IoT, we depict in Figure 4 a portion of the Q matrix
for Goal 2 obtained after 100 episodes. Rows represent only
the states belonging to the desired optimal path in the second
Goal. Columns represent the top 15 commands (actions) that
achieve the highest values for the Q matrix. The darker is
the color, the higher is the chance to select that command
in that state. Observing the cells with darker colors, we see
that Q-learning has indeed learned the expected sequence of

20 40 60 80 100
Episode E

100

0

100

To
ta

l r
ew

ar
d

R
(E

)

= .5
= .2
= .1
= .05

= .02
= .01
= .005

Fig. 5: Tuning α in Q-learning for Goal 2. ε = 0.2, γ = 0.95.

commands to follow the given goal: when off - turn on the
lamp, then set the name, the brightness, and at last turn the
lamp off. Interestingly, RL-IoT has also identified alternative
valid commands to move to the desired state. For example,
the algorithm is able to identify several ways to turn the
lamp off when in the +on+name+bright state – besides the
set power off command. For instance adjust bright to 0,
or set rgb to 0. In other words, RL-IoT discovers multiple
ways to perform the same task from its interactions with the
environment.

This shows the potential of RL-IoT in supporting the dis-
covery of the semantics of IoT messages. With our use case
we can easily verify the actual command semantics. Yet in the
general case this could not be easy, e.g., when the protocol
uses binary format.

B. Algorithms comparison and training costs

To compare different RL algorithms and parameter impact,
we tune parameters to find the best configuration for each
algorithm. We only report results on Goal 2, since it is more
complex.

Even with reduced commands and states, performing an
exhaustive search for all the combinations of algorithm param-
eters is unfeasible. That is because RL-IoT needs around 40
minutes to execute 100 episodes, due to rate-limits caused by
the Yeelight protocol. We thus perform greedy experiments, in
which we vary only one parameter at a time to understand its
impact on results, starting from values suggested by [5], [15].

We report in Figure 5 the tuning of the learning rate α
with Q-learning for Goal 2. The learning rate affects the
performance of the RL algorithm, preventing it to reach the
maximum reward. In a nutshell, better to learn fast but not too
fast. The tuning of the other parameters give similar results,
with slightly higher (ε) and lower (γ, λ) impact on the total
reward. See [12] for details.

After parameter tuning we obtain ε = 0.2 and α = 0.1. For
SARSA and SARSA(λ) we obtain γ = 0.75, while for Q-
learning and Q(λ) we get γ = 0.55. Finally, λ = 0.9 results
the best for Q(λ), and λ = 0.5 for SARSA(λ). Notice that
in Section IV-A, we already used the tuned parameters here
described.

0 50 100 150 200
Episode E

100

0

100

200
To

ta
l r

ew
ar

d
R

(E
)

SARSA
SARSA()
Q-learning
Q()

0 500 1000
Number of sent commands na

0

5000

10000

15000

20000

C
um

ul
at

iv
e

re
w

ar
d

C
(n

a) SARSA
SARSA()
Q-learning
Q()

Fig. 6: Algorithm comparison for Goal 2 in terms of reward
over episodes (left) and cumulative reward as a function of
the number of commands (right) over 200 episodes.

With these values, in Figure 6 we compare the best configu-
rations for the four algorithms, in Goal 2. The left plot shows
the moving average (w = 10) of the total reward R(E), while
the right plot shows the cumulative reward C(na) over the
number of commands sent to the IoT devices.

Looking at the left plot, we conclude that Q(λ) obtains the
highest rewards during the initial 50 episodes. In other words,
the algorithm learns faster than others. Yet, from episode 50
onward Q-learning wins, reaching the maximum values at
around 200 episodes.

We evaluate the costs of training the RL algorithms in terms
of number of commands sent to the IoT devices. Since the
Yeelight protocol has a rate limit on requests, we need to pace
RL-IoT to avoid passing these limits and triggering the device
protections. Therefore, RL-IoT needs to minimize the number
of commands to achieve satisfactory learning in real scenarios.
The right plot in Figure 6 depicts the cumulative reward C(na)
obtained by each algorithm as a function of the number of
commands na sent to the device.6 We see that all algorithms
start with a negative accumulated reward. Some algorithms
(e.g., Q-learning) need to send around 400 commands before
starting accumulating a positive reward. In line with results
shown in the left plot, Q(λ) is the fastest to reach positive
reward, needing around 250 commands. Whereas Q-learning
is the last one to see positive numbers, its accumulated reward
grows faster than others after sending around 600 commands,
again confirming results seen in the left plot.

All in all, we conclude that Q(λ) is able to learn solutions
leading to positive rewards faster for Goal 2. Standard Q-
learning, while requiring more commands than others, is
the algorithm able to accumulate more reward. SARSA and
SARSA(λ) show figures in between the alternatives.

V. CONCLUSIONS

We proposed RL-IoT, a system based on reinforcement
learning that learns how to automatically interact with IoT
devices. Given a dictionary of possible messages, the system
learns which ones to send to the device to achieve a given
goal. We showed the effectiveness of RL-IoT in a case study
with a Yeelight smart bulb. We were able to learn non-trivial

6Different algorithms have a variable maximum number of commands na

because they might use a different number of commands to reach the end of
the episodes.

patterns with as few as 400 interactions while also discovering
alternative solutions. RL-IoT opens the opportunity to use
RL to automatically explore the state machine of unknown
protocols, thus assisting on the interoperability of IoT devices.

As future work, we will extend our experiments to make
RL-IoT interact with devices of multiple vendors. In this way,
we will verify that RL-IoT can learn the different commands
to achieve a single goal on multiple devices, hopefully demon-
strating interoperability in practical cases.

ACKNOWLEDGMENTS

The research leading to these results has been funded by
the Huawei R&D Center (France) and the SmartData@PoliTO
center for Big Data technologies.

REFERENCES

[1] P. Sethi and S. Sarangi, “Internet of Things: Architectures, Protocols,
and Applications,” Journal of Electrical and Computer Engineering,
vol. 2017, pp. 1–25, 2017.

[2] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M. Mu-
nafò, “Towards Automatic Protocol Field Inference,” Comput. Commun.,
vol. 84, no. C, p. 40–51, 2016.

[3] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,” in
Proceedings of the ACM Conference on Computer and Communications
Security, pp. 317–329, 2007.

[4] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic Protocol Format
Reverse Engineering through Context-Aware Monitored Execution,” in
15th Symposium on Network and Distributed System Security (NDSS),
2008.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
A Bradford Book, 2018.

[6] S. Kotstein and C. Decker, “Reinforcement learning for IoT interoper-
ability,” in 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pp. 11–18, IEEE, 2019.

[7] A. Pauna and I. Bica, “RASSH - Reinforced Adaptive SSH Honeypot,”
in 10th International Conference on Communications (COMM 2014),
pp. 1–6, 2014.

[8] A. Pauna, I. Andrei C., and I. Bica, “QRASSH - A self-adaptive SSH
Honeypot driven by Q-Learning,” in 12th International Conference on
Communications (COMM 2018), pp. 441–446, 2018.

[9] L. Huang and Q. Zhu, “Adaptive Honeypot Engagement Through Rein-
forcement Learning of Semi-Markov Decision Processes,” Decision and
Game Theory for Security, pp. 196–216, 2019.

[10] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “IoTCandyJar: Towards an
Intelligent-Interaction Honeypot for IoT Device,” Black Hat, pp. 1–11,
2017.

[11] T. Gu, A. Abhishek, H. Fu, H. Zhang, D. Basu, and P. Mohapatra,
“Towards Learning-automation IoT Attack Detection through Reinforce-
ment Learning,” in 2020 IEEE 21st International Symposium on ”A
World of Wireless, Mobile and Multimedia Networks” (WoWMoM),
pp. 88–97, 2020.

[12] G. Milan, L. Vassio, I. Drago, and M. Mellia, “RL-IoT: Reinforcement
Learning to Interact with IoT Devices.” https://arxiv.org/abs/2105.00884.
arXiv:2105.0088, 2021.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, pp. 529–33, 2015.

[14] H. van Hasselt, “Reinforcement Learning in Continuous State and Action
Spaces,” in Reinforcement Learning: State-of-the-Art (M. Wiering and
M. van Otterlo, eds.), pp. 207–251, Springer Berlin Heidelberg, 2012.

[15] V. Kumar, “Reinforcement learning: Temporal-Difference,
SARSA, Q-Learning & Expected SARSA in python.”
https://towardsdatascience.com/reinforcement-learning-temporal-
difference-sarsa-q-learning-expected-sarsa-on-python-9fecfda7467e,
2019.

