POLITECNICO DI TORINO
Repository ISTITUZIONALE

ACME: An energy-efficient approximate bus encoding for 12C

Original

ACME: An energy-efficient approximate bus encoding for 12C / Xie, Chen; JAHIER PAGLIARI, Daniele; Calimera,
Andrea; Macii, Enrico; Poncino, Massimo. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 2021
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) tenutosi a Boston, MA, USA nel
26-28 July 2021) [10.1109/ISLPED52811.2021.9502495].

Availability:
This version is available at: 11583/2921252 since: 2021-09-18T22:44:47Z

Publisher:
IEEE

Published
DOI:10.1109/ISLPED52811.2021.9502495

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

09 April 2024

ACME: An Energy-Efficient Approximate Bus
Encoding for I°C

Chen Xie, Daniele Jahier Pagliari, Andrea Calimera, Enrico Macii, Massimo Poncino
Politecnico di Torino, Turin, Italy
name.surname @polito.it

Abstract—In ultra low power systems with many peripherals,
off-chip serial interconnects contribute significantly to the total
energy budget. Leveraging the error-resilience characteristics
of many embedded applications, the approximate computing
paradigm has been applied to serial bus encodings to reduce
interconnect consumption. However, the power model considered
in previous works was purely capacitive. Accordingly, the objec-
tive of these approximate encodings was simply to reduce the
transition count. While this works well for most bus standards,
one notable exception is represented by I’C, whose open-drain
physical connection makes the static energy consumed by logic-0
values on the bus extremely relevant.

In this work, we propose ACME, the first approximate serial
bus encoding targeting specifically I°C connections. With a simple
encoding/decoding scheme, ACME concurrently reduces both the
static and dynamic energy on the bus by maximizing the number
of logic-1 values in codewords, while simultaneously reducing
transitions. Using an accurate bus model and realistic capacitance
and resistance values selected according to the I°C standard, we
show that our encoding outperforms state-of-the-art solutions
and reduces the total energy consumption on the bus by 57% on
average, with an error smaller than 0.1%.

Index Terms—Bus Encoding, Approximate Computing, Energy
Efficiency

I. INTRODUCTION

Energy efficiency is a major challenge in the design of
modern, battery-operated computing platforms, such as smart-
phones, wearables and Internet of Things (IoT) nodes. Most
of these systems are equipped with tens of off-chip sensors,
connected to processing elements (e.g., microcontrollers) via
serial buses based on standard protocols such as Serial Periph-
eral Interface (SPI), Controller Area Network (CAN), Inter-
Integrated Circuit (I2C), etc. In these sensor-rich systems, data
transfers become significant contributors to the total energy
budget; previous research has shown that, in an ultra low-
power IoT node, off-chip bus transmission energy can be
comparable or superior to processing energy [1].

In the last decade, Approximate Computing (AxC) has
emerged as a promising paradigm for the design of energy-
efficient digital systems [2], which relies on the ability of
many emerging applications (multimedia processing, machine
learning, etc.) to tolerate errors at different levels during their
execution, with insensible quality losses on final results [2].
In several previous works, AxC has been applied to the serial
bus interfaces of sensor-rich devices [3], [4]: by encoding data
in a lossy manner, these works achieved savings by reducing
the number of electrical level transitions on the bus [3], [4].

The main motivation for focusing only on the number
of transitions, in these previous works, was the usage of a
purely capacitive bus power consumption model, where the
total energy consumption was considered approximately equal
to the dynamic energy. While this is a good approximation
for most serial interconnections such as SPI and CAN, the
case of the I°C protocol is a notable exception. In fact, I2C
peripherals use an open-drain physical connection for both
the Serial Clock Line (SCL) and the Serial Data Line (SDA),
which can only drive the bus line to a low level. A pull-up
resistor is then used to bring the line to a high voltage when
the bus is idle [22]. Thus, besides the dynamic consumption
due to level changes, a significant amount of static energy
will be dissipated by the pull-up resistor at all times when the
line voltage is low, i.e., in correspondence of logic-0 values.
In our results, we will show that this static component is
actually the dominant one, proving that existing approximate
bus encodings are sub-optimal when applied to I2C.

In this work, we propose the AxC Maximum-one Encoding
(ACME), the first approximate serial bus encoding targeting
specifically I?C connections. ACME concurrently tackles both
static and dynamic energy, by reducing both the number of
level transitions and the number of logic-Os transmitted on the
bus. With an accurate bus model, realistic pull-up resistance
values selected according to the I2C standard, and datasets
relative to six different types of sensors, we show that our
new encoding outperforms state-of-art solutions by reducing
the total energy consumption on the bus by 57% on average,
with less than 0.1% error on the decoded words.

II. BACKGROUND AND RELATED WORKS
A. I2C Power Model

Differently from other off-chip serial bus standards, for
which dynamic energy dominates, and which can be simply
modeled as a capacitive channels [5]-[7], I2C imposes the
open-drain architecture for both SDA and SCL, including an
NMOS transistor and a pull-up resistor Rp. This is shown in
Figure 1, where, additionally, C, represents the cumulative bus
capacitance, including the contribution of the PCB and of the
drivers of all devices connected to the bus [22].

The NMOS transistor acts as a switch driven by the data
to be transmitted. In order to transmit a logic-1, the NMOS is
turned off, and V/,,; is pulled up to the supply voltage by R,,.
On the other hand, when transmitting a logic-0, the switch is
turned on, so that V,,; is connected to ground.

Supply Voltage Supply Voltage

Pull-up Resistor Rp Pull-up Resistor Rp

P
‘ Vout \ Vout
NMOS Cb NMOS Cb

Data J Data

(a) High Logic Level (b) Low Logic Level

Fig. 1. 12C open-drain architecture and current flow at High/Low logic levels.

Therefore, whenever V,,; is logic low, there is a consid-
erable static energy consumption due to the current flowing
through the pull-up resistor Rp [8]. In addition to this static
consumption, during a 0-to-1 transition, a dynamic dissipation
occurs due to the charging of the bus capacitance C. Symmet-
rically, the discharge of C consumes dynamic energy during
1-to-0 transitions. The static and dynamic current flows are
shown in blue and red respectively in Figure la (1b) for a
high (low) logic level.

Previous work [8] has shown that static energy is dominant
in the total energy consumption of an I2C channel. Nonethe-
less, in this work we consider a complete model including
both static and dynamic energy to evaluate our approximate
encoding, applied to the SDA line. Specifically, we use (1) and
(2) to compute the static and dynamic energy respectively:

Vad®
Ey = 1
‘TR (1
Egy = Vai® - Cy)

where Vg is the supply voltage, Iz, the pull-up resistance, Cy
the bus capacitance and f the transmission frequency. (1) holds
only when the line is logic-low, while (2) holds for each level
transition. The total energy is then simply computed summing
the static and dynamic components. In order to accurately
estimate all quantities in (1) and (2), our experiments are based
on a Spice model of the channel and drivers.

B. Related Works

A large number of low-power data encodings for serial buses
have been proposed in recent years. The earliest approaches
proposed are lossless (or accurate), meaning that the trans-
mitted data can be decoded exactly at receiver end without
any information loss [5], [6], [9], [10]. Following the purely
capacitive model mentioned above, these encodings focus on
reducing the number of logic-level changes on the bus, often
called Transition Count (TC). Many do it with variations of so-
called Differential Encoding (DE) [11], a scheme that achieves
TC reductions by transmitting the bitwise difference between
subsequent words, instead of original data. Popular encodings
such as SILENT [6] and Differential Bar Encoding (DBE) [9]
are based on DE. Others try to overcome its limitation, i.e.,
the negative energy savings obtained when consecutive data
transmitted are uncorrelated with each other [12], [10], [5].

However, these advanced lossless encodings lead to costly
hardware implementations for the encoder and decoder (in
terms of silicon area), which also reduce the potential savings
due to their power overheads. At the same time, the TC
reductions that they obtain are limited by the constraint of
strict output correctness.

Leveraging the error tolerance properties of many sensor-
based applications [2], researchers have thus started proposing
lossy serial encodings for data buses. These solutions are based
on AxC principles, and trade-off output data quality for addi-
tional energy reductions. In [7], the authors proposed one of
the first lossy encodings, targeting image data. Their solution
is based on saturating the Least Significant Bits (LSBs) of
codewords under error limits to reduce the TC. More recently,
an encoding called Rake [3] has been proposed, which reduces
the TC by selectively inverting codewords bits. Serial TO [4]
uses a 0-TC constant code in place of words that differ
negligibly from their direct predecessors (in terms of absolute
value), while transmitting exactly only when the difference is
large. This approach exploits the fact that errors are typically
more tolerable for long sequences of similar data (called
“idle” phases), which correspond to low-information-content
transmissions. AXSERBUS [1] adopts similar principles but
supports three modes of operation depending on the magnitude
difference between consecutive words. By doing so, it achieves
a better trade-off between energy saving and data quality.
Finally, Approximate Differential Encoding (ADE) [11] uses
DE as a baseline, but combines it with bounded approxima-
tions on LSBs to overcome its limitations on uncorrelated
data. The latter is the closest prior work to our encoding,
which is also based on bitwise operations combined with LSB-
approximations. However, differently from this work, ADE,
as well as all other previous lossy encodings, focus only on
TC reduction. To the best of our knowledge, ours is the first
approximate bus encoding to consider a non-purely-capacitve
channel, therefore explicitly targeting devices based on I?C.

ITII. PROPOSED METHOD
A. Approximate Computing Maximum-one Encoding

We propose a new lossy serial encoding that explicitly
targets error tolerant peripherals (e.g., sensors) using I2C
connections. Our approach is called Approximate Computing
Maximum-one Encoding (ACME), and is inspired by differ-
ential encoding (DE) and its approximate variant ADE [11].
The goal of ACME is to reduce TC on the bus, hence the
dynamic energy, while simultaneously increasing the number
of transmitted logic-1s, to reduce static energy, following the
I2C power model of (1) and (2). The encoding algorithm of
ACME is only applied to data words, excluding parts of the
I2C protocol which cannot be approximated (e.g. addresses
bits), and can be summarized by the following two equations:

bazi[t]: Olfl<l . V’LE[O,TL—l] (3)
' b;[t] otherwise
Bz[t] = baw,i[t] ® baac,i[t — 1], Vi € [O, n — 1] 4)

where b is the input word, b,, an intermediate, approximate
version of b, B the final codeword, and n the word length.
Moreover, @ indicates the binary XNOR operator, ¢ indicates
the i-th bit of a word and ¢ the t-th word in the temporal
sequence transmitted on the bus. Lastly, [represents the
number of approximated LSBs, and is the main parameter used
in ACME to trade-off the approximation error and the energy
reduction on the bus.

In the DE algorithm [6], codewords are computed as the
bitwise difference of consecutive words. This is motivated by
the fact that, when two consecutive inputs have similar binary
values, their bitwise difference produces a sequence of Os in
the MSBs, which does not incur intra-word transitions once
serialized. DE is particularly effective for error tolerant data
traces, such as those produced by sensors, which are often
constituted by long sections of highly correlated data (e.g.,
slowly increasing/decreasing or nearly constant) [4], [6], [11].

ACME takes inspiration from this simple yet effective idea,
but replaces the bitwise difference (XOR) with an equality
(XNOR), as shown in (4). The obvious result is that identical
MSBs in consecutive words now yield codewords with long
sequences of 1s (instead of 0Os), reducing the static energy
on an I?C connection. Furthermore, as shown in (3), before
generating codewords, ACME approximates each word by
flooring to 0 its [-L.SBs (this is the lossy part of the encoding).
As opposed to rounding LSBs, as done in ADE [11], flooring
introduces a bias in the approximation, but has the positive
effect of making the LSBs of all words identical. After XNOR-
ing and serialization, this will generate another sequence of
constant 1s, further reducing both static and dynamic energy.

At the decoding end, ACME implements the following
equation to reconstruct the (approximated) input:

bam,i[t] = Bl[t] ® bar,i[t — 1], Vi € [O, n — 1] (5)

This encoding/decoding scheme has O(n) complexity, and
lends itself to a low-overhead implementation in either SW or
HW. Furthermore, the number of approximated LSBs [is con-
figurable, allowing a runtime tuning of the trade-off between
approximation and energy saving. With [approximated bits,
the maximum encoding error of ACME is E,,q., = 2l — 1,
and under the common assumption of a uniform distribution
of LSBs [13], the expected error is Fyqq /2.

B. Examples of Operations

A visual representation of the operations of the conventional
DE and ACME alogrithms is illustrated in Figure 2. Here,
we use 8-bit data as an example, we set the number of
approximated LSBs to [= 2, and we assume a MSB-first
serialization. The bits that cause a transition are highlighted
in red (note that the idle value of the SDA line is logic-high).
Note that, to obtain the first encoded word, the XOR (XNOR)
operation is performed with an initialized all-Os code.

An extended example of DE and ACME encoding is shown
in Table I for 8-bit unsigned data. The table reports the TC
generated by raw data and by the two encodings, considering

DE ACME
Word1 Word2 Word1 Word?2
00001011 00001111 00001011 00001111
i, Floor to 0 l«
00001000 00001100

i
(XOR with!linitialized 0s)

v
00001011 00000100 o
(XNOR withyinitialized 0s)
Encoded Encoded Y
Word1 Word?2 11110111 11111011
Encoded Encoded
Word1 Word?2

Fig. 2. Graphical explanation of ACME encoding (and DE for comparison).
both inter-word and intra-word transitions, and MSB-first
serialization; moreover, the number of logic-1 bits in each
word is also counted (column TC/1s). For ACME, we also
report the absolute error (||E|| column) introduced on each
word by flooring [= 2 LSBs to 0.

TABLE I
EXAMPLE OF DE AND ACME ENCODING FOR 8-BIT UNSIGNED DATA
Input DE ACME (1=2)
Word TC/1s Word TC/1s ‘Word TC/1s
01001011 6/4 01001011 6/4 10110111 4/6

01001101 6/4
01001100 5/3
01001101 5/4
01010110 7/4
01100001 3/3
01000100 512
01001110 4/4
01001101 5/4
01001011 6/4

00000110 32
00000001 1/1
00000001 2/1
00011011 4/4
00110111 4/5
00100101 6/3
00001010 512
00000011 12
00000110 3/2

11111011 2/7
11111111 0/8
11111111 0/8
11100111 2/6
11001011 4/5
11011011 4/6
11110111 2/7
11111111 0/8
11111011 2/7

EW—‘NO—‘N»—O'—WE

Totals 52/36 35/26 20/68

The table shows that, while DE is effective in reducing
the TC, it also reduces the number of logic-1s transmitted,
negatively affecting static energy. The same is true for the
approximate DE variant ADE [11], not reported for sake
of space. In contrast, ACME simultaneously achieves larger
TC reductions than DE, thanks to LSB approximation, while
also significantly increasing the number of logic-1s. In this
example, the TC is reduced by 62%, while the 1s count
is increased by 89%. This comes at the cost of a small
approximation error for each transmitted word. On average,
the error is 14/10 = 1.4, i.e., 0.5% of the full-scale value (255).

C. Hardware Implementation

ACME encoding and decoding can be easily implemented
with simple and low-cost digital hardware circuits. The
schematics of a N-bit implementation are shown in Figure 3.

The encoder (Figure 3a), implements the floor operation
through an array of multiplexers. The selection signal for the
multipliexers is [, i.e., the number of approximated LSBs,
encoded on logs(n) wires, where n is the word length. For
each approximated bit, the multiplexers forward a constant “0”
to the next encoder stage, in place of the corresponding input
word’s bit b;. For example, when I; = 0, Vi €[0, loga(n) —
1], 1o = 1, which corresponds to [= 1 approximated LSBs,

1011..l(log2(ll)*1)

be Bo
""" 0 >
: baxo ‘ B

b1 — b ‘r "‘g\)&Bl — u) >
————— axl Bz—‘

be| [{ >
— p_\ > ‘ :

bax2 L

o [i [44*\;, -

bax(n-1)
(a) Encoder (b) Decoder

Fig. 3. Hardware Implementation of N-bit ACME.

by is replaced by 0, while b;, Vi €[0, n—1], are selected. After
saturation, an array of n XNOR gates is used to implement
the bitwise equality operation among the current word and the
previous one, memorized in a corresponding set of flip-flops.

The decoder (Figure 3b) just includes one flip-flop and
one XNOR gate for each bit. The latter perform a bit-wise
equality between corresponding bits of the current codeword
and previous decoded word, to implement (5). For example,
if B;[t] = 0, the negated value of b, ;[t — 1] is produced in
output as by ;[t], otherwise the affirmed b, ;[t — 1] is copied.

It is easy to see that these hardware implementations of
the encoder and decoder achieve a throughput of 1 en-
coded/decoded word per cycle, and have a single clock cycle
latency. At the same time, their simple circuital structures also
lead to low area and power overheads, as shown in Section I'V.

IV. RESULTS
A. Setup

To evaluate the performance of ACME, we use a number
of datasets to represent the data transmitted from/to various
error resilient devices involving I2C connections. Specifically:

o Images [15]: 100 24-bit RGB (8-bit per channel) images
from the Linnaeus 5 dataset, to assess the transmission
of pixel data from a camera or to a display.

o« ECG-ID [16]: A dataset including 310 filtered Elec-
trocardiogram (ECG) recordings from 90 patients, to
represent biomedical sensors. Data are digitized with 12-
bit precision as specified in the dataset.

o Activity Recognition [17]: Accelerometer, gyroscope
and magnetometer samples collected for six physical
activities, and with sensors in four positions (arm, belt,
pocket and wrist). Accelerometer data are represented in
12-bit two’s complement, while gyroscope and magne-
tometer data are in 16-bit two’s complement, based on
the precision of commercial sensor products [18]-[20].

o Audio [21]: Voice recordings from the Open Speech
Repository, represented in 16-bit two’s complement.

To prove the effectiveness of ACME, we compare it
against three state-of-the-art approximate serial bus encodings:

ADE [13], STO [14] and Axserbus [1]. Note that, in particular,
even if Serial TO and Axserbus are designed for dynamic
power reduction only, they also tend to increase the number of
logic-1s on the bus, by approximating small differences with
the all-1s special pattern (see the original papers for details).

We use a SPICE model of the I2C bus to compute the
energy consumption of the different encodings. We initially
select one of the I?C operating modes for each input, based
on the required throughput: for Accelerometer, Magnetome-
ter, Gyroscope and ECG data, we use I2C Standard-Mode,
whereas for Image and Audio, we select Fast-Mode. We then
set the bus frequency f to the maximum allowed by each
operating mode, i.e., I00kHz and 400kHz respectively. Note
that, while a lower bus frequency could suffice for some of
the considered inputs, using the maximum f clearly increases
the dynamic/static energy consumption ratio. Since the main
advantage of ACME with respect to its comparison baselines is
a greater static energy reduction, this is a worst-case scenario
for our algorithm, and savings could only increase at lower
frequencies. We set the bus voltage to Voo = 3.3V and
the bus capacitance to C, = 150pF according to [23]; we
then derive R, from C} using the plots available in the I°C
specification [22]; for Standard- and Fast-Mode, we obtain
R, = 7.8kQ2 and R, = 2.3k€) respectively. All encodings
are initially implemented and simulated in Python. Then, to
evaluate the area and power of an hardware implementation,
we synthesize the ACME encoder and decoder from an RTL
description in VHDL, targeting a 45Snm CMOS library from
STMicroelectronics. Synthesis is performed with Synopsys
Design Compiler and verified with Mentor Questa Simulator.

B. Bus Energy Reduction

Figure 4 shows the Pareto curves generated by ACME
and the three comparison baselines in the error vs energy
space for one Standard-mode (f = 100kHz, R, = 7.8kQ)
and one Fast-mode (f = 400kHz, R, = 2.3k}) dataset,
i.e., Accelerometer and Audio data respectively. The x axes
report the average absolute error obtained by each method
after encoding and decoding, normalized to a % of the full-
scale value of each dataset!. Different points are obtained
varying the approximation parameters of the encodings. For
ACME, we vary [, i.e., the number of floored LSBs. All
other encodings also have a single approximation parameter,
described in the respective papers, except for Axserbus [1],
which has 2 (dy and d,,). For the latter, we perform a grid
search over dy and d,,, values with a step of powers of 2 (and
keeping d,, always larger than dg) to extract the Pareto fronts.

The y axes report the dynamic, static and total energy saving
with respect to the transmission of raw (unencoded) data
over the same I12C bus, for each encoding and approximation
parameters setting. Although ACME is competitive also in
terms of dynamic energy reduction, the results show that it
is slightly outperformed by ADE on both datasets. This is due

INote that the normalized error for audio data is lower due to the larger
bit-width (16bit vs 12bit of the accelerometer samples).

—— ACME —— ADE Serial T0. —— AXSERBUS
40 5017 T T 50 {7 T T T
2 9 9
5 30 5 40 = 40
£ £ £ 30
>
o 20 > 30 >
- . 20 g 20
3101 - &
g 3 10 @ 10
c 7 c i '3 %
w04 w]
0 ¢}
00 01 02 03 04 00 01 0.2 03 04 00 01 02 03 04
Average Error[%] Average Error[%] Average Error[%]
(a) Accel. Dynamic. (b) Accel. Static. (c) Accel. Total.
< 60 £ 601 /.——/‘ £ 60 ///‘
‘S 50 [= o
3 £ a0 £ 40/
S 40 a o
g n 204 v 204
5 5 5
2 20 ¥ 9 5 0
g =4 =4
5 10 W —20 W0 |
o —40+>= et
0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03

Average Error[%]

(d) Audio. Dynamic.

Average Error[%]
(e) Audio. Static.

Average Error[%]

(f) Audio. Total.

Fig. 4. Average error vs. energy saving Pareto curves obtained by ACME and 3 comparison baselines on accelerometer and audio samples.

TABLE 11
ENERGY SAVINGS OF ACME AND OTHER APPROXIMATE BUS ENCODINGS UNDER TWO ERROR CONSTRAINTS.

Energy Saving [%]

Constraint | Encoding ECG Accel [Magnet Gyro [Audio Image
Dyn. | Stat. | Tot. [Dyn. [Stat. [Tot. | Dyn. | Stat. [Tot. [Dyn. [Stat. [Tot. | Dyn. [Stat. | Tot. [Dyn. | Stat. [Tot.
Serial TO | 79.6 | 77.0 | 77.1 5.7 7.4 7.2 18.7 184 | 185 26.6 | 33.7 | 332 | 52.1 582 | 57.7 | 40.8 | 454 | 44.8
cl Axserbus | 83.6 | 81.4 | 81.6 | 7.2 4.8 50 | 327 6.2 7.5 335 [277] 276 | 689 | 485 | 487 | 51.8 | 38.8 | 40.4
ADE 76.6 0.0 0.0 10.6 3.1 3.8 46.7 0.0 0.0 53.9 0.0 34 69.5 0.0 0.0 40.5 0.0 0.0
ACME 76.1 | 819 | 815 | 44 | 275 | 255 | 396 | 337 | 342 | 437 | 39.2 [395 | 672 | 71.2 | 70.9 | 383 | 45.0 | 442
Serial TO | 87.3 84.6 | 84.8 7.5 9.9 9.7 262 | 252 | 253 | 339 | 39.7 | 393 | 60.8 | 65.6 | 652 | 519 | 564 | 559
o Axserbus | 89.9 | 86.1 | 86.4 | 14.1 6.8 6.8 | 402 | 62 7.6 | 414 [338 [339 | 772 | 51.8 | 535 | 62.7 | 49.4 | 50.3
ADE 86.4 0.0 0.0 19.9 3.1 4.6 55.6 0.0 0.0 61.8 0.0 3.7 76.7 0.0 0.0 52.5 0.0 0.0
ACME 86.2 | 88.6 | 884 | 137 | 352 | 333 | 482 | 40.8 | 414 | 51.7 | 453 | 45.7 | 744 | 762 | 76.0 | 50.3 | 56.5 | 55.8

to the lower average error and number of infer-word transitions
achieved by ADE, thanks to LSB rounding instead of flooring.

In contrast, ACME dominates all other encodings (and ADE
in particular) in terms of static energy reduction, achieving up
to 30% (accel.) and 10% (audio) higher saving for the same
error level. This is because it explicitly tries to increase the
number of transmitted logic-1 when more error is allowed. In
contrast, Serial-TO and Axserbus achieve a similar increase,
but only due to a “secondary effect” of their more frequent
usage of the all-1 special pattern [1], [4]. Lastly, ADE actually
transmits less logic-1s for larger errors; thus, increasing the
amount of approximation generates Pareto-dominated points
(hence not shown in the plots) with higher static energy. The
total energy saving graphs are almost identical to the static
ones, showing that the static component is indeed the dominant
one in I2C buses, and that, consequently, ACME is superior
to its comparison baselines for these connections.

These results are extended to all 5 datasets in Table II. Since
we could not show the complete Pareto fronts for all datasets
for space reasons, we report the savings of all encodings under
two different average error constraints (C1 and C2). For 12bit

and 16bit datasets, we set C1=0.05% and C2=0.1%, whereas
for 8bit images, we set C1=0.5% and C2=1%, since none of
the encodings could reach <0.1% average error for such a
small bit-width, except using a fully-accurate setting (e.g.,
[= 0 in ACME). The results show that ACME achieves
the largest total savings under both constraints for all datasets
except images, where it is slightly outpeformed by Serial TO,
and ECG (under constraint C1), where it achieves 0.1% less
saving than Axserbus. At the same time, ACME dynamic
energy savings are comparable to other encodings, meaning
that, although specifically designed for I2C, ACME could also
be effective on other buses. On average, when considering
all 12/16bit datasets, ACME achieves a 57% total energy
reduction at the cost of a 0.1% average error on the transmitted
data. Note that several previous works have shown that such
a small error is negligible if serially-transmitted data are then
used as inputs for error tolerant applications (e.g., machine
learning classification) [1], [24].

C. Dependence on I12C Bus Parameters

Figure 5 shows the variation in the total energy savings
obtained by the different encodings for different values of Iz,

and f supported by the I2C standard. For sake of space, only
accelerometer data are reported; in both graphs, the savings
are obtained with an error constraint equal to C2 (i.e., 0.1%).
In Figure 5a, f is fixed to 100kHz, whereas in Figure 5b, R,
is fixed to 7.8k€).

—— ACME —— ADE Serial T0. —— AXSERBUS

Bf—] BT

=30 ~ 30

X S

©25 25

820 220

815 815

[0} [

10 & 10

5 S S S S S
S S S S S S S
12 3 4 5 6 7 8 0 20 40 60 80 100

Rp[kQ] flkHz]

(a) Rp vs. Total Energy Saving (b) Frequency vs. Total Energy Saving

Fig. 5. Total Energy Saving versus R, and f

As expected, since both a larger pull-up resistance and
a higher clock frequency increase the dynamic/static energy
ratio, decreasing any of the two values has a positive effect
on the total savings of ACME. Axserbus and Serial-TO also
show similar trends (although with a smaller slope), and the
only encoding that benefits from larger f and R, is ADE,
which is not effective in reducing static energy. Overall,
ACME remains vastly superior to its competitors across a
wide range of frequencies and resistances. Furthermore, note
that 2, and f cannot be increased simultaneously, since (for
a given Cj), a smaller pull-up resistor is needed to support
higher frequencies. Therefore, these graphs show that ACME
is effective in all realistic electrical-level I2C bus settings.

D. Hardware Implementation

Table III reports the synthesis results of the ACME encoder
and decoder of Figure 3 on 45Snm CMOS. The two circuits are
synthesized targeting the same clock frequency of the ADE
encoder/decoder of [11] for direct comparison, even if this
is not an operating frequency for I?C, and the bit-width is
set to 12-bit. Power results include both leakage and dynamic
consumption, and are reported both at f, to compare with
ADE, and at 100kHz (i.e., the maximum frequency of 12C
Standard-mode).

TABLE III
COMPARISON OF SYNTHESIS RESULTS FOR 12-BIT ACME AND ADE
ENCODER AND DECODER

Circuit f Enc. Area Pow.@f | Pow.@100kHz
[GHz] [um?] | [mW] [mW)
Encoder | 167 |_ACME | 130.18 0.27 0.001045
coce : ADE | 17040 | 033 -
ACME | 105.84 0.61 0.00084
Decoder | 250 —3H5E—T 10161 | 060 -

The results show that, besides being much more effective on
reducing static energy on the bus, ACME yields a similar-cost
hardware implementation in terms of area and power. Fur-
thermore, for realistic I2C frequencies, the power overheads

of the encoding/decoding circuitry are completely negligible
with respect to the consumption of the bus, as shown in [14].

V. CONCLUSIONS

We have proposed ACME, the first approximate serial
bus encoding targeting 12C buses. ACME offers a runtime-
controllable energy saving vs error trade-off, and simultane-
ously reduces both dynamic and static energy by eliminating
value-transitions and increasing the number of transmitted
logic-1s. Despite its simplicity, this mechanism achieves su-
perior total energy savings compared to those of state-of-
the-art approximate encodings, with a negligible hardware
implementation overhead.

REFERENCES

[11 Y. Kim et al, “AXSERBUS: A quality-configurable approximate serial
bus for energy-efficient sensing,” in ACM/IEEE ISLPED, 2017, pp. 1-6.

[2] J. Han et al, “Approximate computing: An emerging paradigm for
energy-efficient design,” in /EEE ETS, 2013, pp. 1-6.

[3] P. Stanley-Marbell et al, “Reducing Serial I/O Power in Error-tolerant
Applications by Efficient Lossy Encoding,” in ACM/EDAC/IEEE DAC,
2016, pp. 62:1—-62:6.

[4] D. Jahier Pagliari et al, “Serial TO: Approximate Bus Encoding for
Energy-efficient Transmission of Sensor Signals,” in ACM/EDAC/IEEE
DAC, 2016, pp. 14:1—-14:6.

[5] S. Ghosh et al, “Data Correlation Aware Serial Encoding for Low
Switching Power On-Chip Communication,” in /IEEE ISVLSI, 2014, pp.
124-129.

[6] K. Lee et al, “SILENT: serialized low energy transmission coding for
on-chip interconnection networks,” in [EEE ICCAD, 2004, pp. 448-451.

[71 M. Poncino et al, “Low-energy RGB color approximation for digital
LCD interfaces,” IEEE TCE, vol. 52, no. 3, pp. 1004-1012, 2006.

[8] D. Friesel et al, “I2C considered wasteful: saving energy with host-
controlled pull-up resistors,” in ACM IPSN, 2019, pp. 315-316.

[9] S. Salerno et al, “Limited Intra-Word Transition Codes: An Energy-
Efficient Bus Encoding for LCD Display Interfaces,” in ACM/IEEE
ISLPED, 2004, pp. 206-211.

[10] J. Zeng et al, “Transition inversion coding with parity check for off-chip
serial transmission,” in /[EEE ICECS, 2014, pp. 634-637.

[11] D. Jahier Pagliari et al, “Approximate Differential Encoding for Energy-
Efficient Serial Communication,” in ACM/IEEE GLSVLSI, 2016, pp.
421-426.

[12] X. Ren et al, “Adaptive Low-Power Transmission Coding for Serial
Links in Network-on-Chip,” Proc. Engin., vol. 29, pp. 1618-1624, 2012.

[13] D. Jahier Pagliari et al, “Approximate Energy-Efficient Encoding for
Serial Interfaces,” ACM TODAES, vol. 22, no. 4, pp. 1-25, 2017.

[14] D. Jahier Pagliari et al, “Zero-Transition Serial Encoding for Image
Sensors,” IEEE Sensors Journal, vol. 17, no. 8, pp. 2563-2571, 2017.

[15] G. Chaladze et al, “Linnaeus 5 dataset for machine learning,” 2017.

[16] A. L. Goldberger et al, “Physiobank, physiotoolkit, and physionet:
components of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. €215-e220, 2000.

[17] M. Shoaib et al, “Towards physical activity recognition using smartphone
sensors,” in [EEE UIC/ATC, 2013, pp. 80-87.

[18] NXP, “MMAS8451Q 3-axis, 14-bit/8-bit digital accelerometer,” Data
sheet, 2014.

[19] Freescale, “Xtrinsic MAG3110 three-axis, digital magnetometer,” Data
sheet, 2013.

[20] STMicroelectronics, “L3G4200D. MEMS motion sensor: three-axis dig-
ital output gyroscope,” Data Sheet, 2010.

[21] OSR, http://www.voiptroubleshooter.com/open_speech/index.html

[22] NXP, “I2C-bus specification and user manual,” 2014.

[23] Patrascoiu, Nicolae. ”A low cost solution to monitor environmental
parameters in industrial area perimeters.” MATEC Web of Conferences.
Vol. 305. EDP Sciences, 2020.

[24] D. Jahier Pagliari et al, “On the impact of smart sensor approximations
on the accuracy of machine learning tasks,” Heliyon, vol. 6, no. 12, p.
€05750, 2020.

