
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating Convolutional Neural Networks Reliability depending on their Data Representation / Ruospo, Annachiara;
Bosio, Alberto; Ianne, Alessandro; Ernesto, Sanchez. - ELETTRONICO. - (2020), pp. 672-679. (Intervento presentato al
convegno Euromicro Conference on Digital System Design (DSD) 2020 tenutosi a Kranj, Slovenia (virtual event) nel
August 26 – 28, 2020) [10.1109/DSD51259.2020.00109].

Original

Evaluating Convolutional Neural Networks Reliability depending on their Data Representation

Publisher:

Published
DOI:10.1109/DSD51259.2020.00109

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2845755 since: 2021-07-29T15:37:28Z

IEEE



1

Evaluating Convolutional Neural Networks
Reliability depending on their Data

Representation
Annachiara Ruospo∗, Alberto Bosio†, Alessandro Ianne∗, Ernesto Sanchez∗

∗Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
†INL, Ecole Centrale de Lyon, Lyon, France

{annachiara.ruospo, alessandro.ianne, ernesto.sanchez}@polito.it
alberto.bosio@ec-lyon.fr

F

Abstract—Safety-critical applications are frequently based on deep
learning algorithms. In particular, Convolutional Neural Networks
(CNNs) are commonly deployed in autonomous driving applications to
fulfil complex tasks such as object recognition and image classification.
Ensuring the reliability of CNNs is thus becoming an urgent requirement
since they constantly behave in human environments. A common and
recent trend is to replace the full-precision CNNs to make way for more
optimized models exploiting approximation paradigms such as reduced
bit-width data type. If from one hand this is poised to become a sound
solution for reducing the memory footprint as well as the computing
requirements, it may negatively affect the CNNs resilience. The intent
of this work is to assess the reliability of a CNN-based system when
reduced bit-widths are used for the network parameters (i.e., synap-
tic weights). The approach evaluates the impact of permanent faults
in CNNs by adopting several bit-width schemes and data types, i.e.,
floating-point and fixed-point. This determines the trade-off between the
CNN accuracy and the bits required to represent network weights. The
characterization is performed through a fault injection environment built
on the darknet open source framework. Experimental results show the
effects of permanent fault injections on the weights of LeNet-5 CNN.

Index Terms—Deep Learning, Test, Reliability, Fault Injection, Safety,
Automotive

1 INTRODUCTION

Deep Learning [1] is currently one of the most intensively
and widely used predictive model in the field of machine
learning. In this light, Convolutional Neural Networks
(CNNs) are gaining popularity due to their excellent per-
formance in solving complex learning problems [2]. Indeed,
they provide very good results for many tasks such as
object recognition in images/videos, drug discovery, natural
language processing up to playing games [3]–[5]. CNNs are
a subset of Deep Neural Networks (DNNs) and include
multiple layers: convolutional, non-linearity, pooling and
fully-connected. Their name origins from the mathematical
linear operation between matrixes called convolution.
Neural networks may be considered robust, from a theoret-
ical perspective, due to their iterative nature and learning

process [6]. However, especially when deployed in safety-
critical applications such as autonomous driving [7], their
resilience must be evaluated. More in detail, the probability
that a hardware or software fault may cause a system failure.

As a rule, the reliability analysis for electronic devices
is regulated by standards which depend on the application
domain (e.g., IEC 61508 for industrial systems, DO-254 for
avionics, ISO 26262 for automotive) [8]. Since CNNs are
increasingly deployed in automotive application, it is nec-
essary to figure out how to map the automotive standards
requirements, i.e., ISO 26262, to the deep learning systems.
A first attempt is the reliability assessment through fault
injection campaigns. Usually, to improve the reliability of
electronic devices in the autonomous domain, in-field test
solutions are embedded and activated in mission-mode to
detect possible permanent faults before these may produce
any failure. Examples of such test solutions are Design for
Testability techniques (e.g., BIST), self-test functional ap-
proaches (e.g, Software-based Self-test [9]), or a combination
of both. Independently on the adopted test solution, the
key point is the achieved fault coverage with respect to
the adopted fault model(s). A higher fault coverage leads
to ensure a higher level of safety.

Recent trends in Convolutional Neural Network research
area show a growing adoption of more optimized models
that use a reduced bit-width data type in either training
or inference phase. Indeed, one important limitation about
the adoption of the newer version of CNNs is the memory
required for storing the network parameters. For instance,
VGG-Net [10], one of the most deeper implementation,
requires 500 MB of memory, a value that goes outside the
possibility of many constrained hardware platforms. In the
last few years, Approximate Computing (AxC) has become
a major field of research to improve both speed and energy
consumption in embedded and high-performance systems
[11]. By relaxing the need for fully precise or completely
deterministic operations, approximate computing substan-
tially improves energy efficiency and reduces the memory
requirement. Various techniques for approximate comput-
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ing augment the design space by providing another set of
design knobs for performance-accuracy trade-offs. As an
example, the gain in energy between a low-precision 8-bit
operation suitable for vision and a 64-bit double-precision
floating-point operation necessary for high-precision sci-
entific computation can reach up to 50× by considering
storage, transport and computation. The gain in energy
efficiency (the number of computations per Joule) is even
larger since the delay of basic operations is greatly reduced.
Having simpler operators also reduces implementation cost,
which allows the network to use more resources in parallel.

Borrowing these ideas from the Approximate Comput-
ing field, the major challenge is to find an adequate data
representation for CNNs that fits well with the application
and hardware constraints. CNNs lend themselves well to
Approximate Computing techniques, especially with fixed-
point arithmetic or low-precision floating-point implemen-
tations, which exposes large fine-grain parallelism. For in-
stance, in [12] the authors describe a binary network which
exploits only two values {−1, 1} for the weights representa-
tion. Another proposed solution is the ternary network [13]; it
quantizes weights into 3 different values {−1, 0, 1}. Finally,
XNOR-Net [14] uses a slightly different methodology: all
the computations are performed thought XNOR and bit
counting operations, at the same time reducing the precision
of all the operands involved during the computation.

At this point the question might sound trivial: are those
optimized models reliable enough to tolerate failures that
propagate throughout the system? It starts to be necessary to
evaluate CNNs behaviour in a faulty scenario to determine
if they can still be safely deployed in a safety-critical system.
These doubts are justified if considering the growing tech-
nology scaling in chip manufacturing. Due to the transistors
shrinking, newer hardware platforms are more complex and
at the same time more susceptible to faults, albeit faster.

The end-goal of this paper is to characterize the impact
of permanent faults affecting a Convolutional Neural Net-
work by means of fault injection campaigns, when a more
compact representation is used for describing the network
parameters. We analysed different implementations of the
same CNN architecture, when different data types are ex-
ploited. Moreover, this work aims at study the criticality
level of the network layers as well as identifying all the Safe
Faults Application Dependent (SFAD), those faults that do not
produce any failure in the operational mode (ISO 26262).

The rest of the paper is organized as follows. The
state-of-the-art research work and the main contributions
are highlighted in Section 1.1. Section 2 presents the case
study, focusing on the experiment set-up and the weight
conversion technique. Section 3 describes the fault injection
framework, whereas Section 4 provides the experimental
results. Finally, Section 5 concludes the article by outlining
some of the possible future research directions.

1.1 Related Work

In literature, more and more attention is paid to the Neural
Network Reliability. Depending on multiple factors, such as
fault injection typology, level of abstraction, fault models, it
is possible to identify different sets of interesting research
activities.

A significant set focuses on analysing a specific fault
model: the soft error (i.e., bit flip). In [15], the authors
evaluate the reliability of one CNN executed on three
different GPU architectures (Kepler, Maxwell, and Pascal).
The soft errors injection has been done by exposing the
GPUs running the CNN under controlled neutron beams.
A similar but wider approach is detailed in [16], where the
authors assess the reliability of a 54-layers DNN (NVIDIA
DriveWorks) through fault injection experiments for per-
manent faults and accelerated neutron beam testing for
transient errors. Faults are injected on the network weights
and on the input images. All the inferences are executed
on Volta GPU only targeting floating point values. Moving
forward, the authors present in [17] a different analysis.
They characterize the propagation of soft errors from the
hardware to the application software of different CNNs. The
injections are performed by using a Deep Neural Network
simulator based on open-source simulator framework, Tiny-
CNN [18]. Thanks to the flexibility of the simulator, it is
possible to characterize each layer for a more precise analy-
sis. A different framework is shown in [19]: Ares, a light-
weight Deep Neural Network fault injection framework.
The authors present an empirical study on the resilience
of three prominent types of DNNs (fully connected, CNNs
and Gated Recurrent Unit). In particular, they focus on
two fixed-point data types for each network: Q3,13 i.e, 3
integer and 13 fractional bits, and Q2,6. Their experiments
demonstrate that the optimized Q2,6 data type is 10x more
fault tolerant. The reason lies in the fact that the unnecessary
larger range of integer values increases the chance of failures
happening. It is worth noting that this result is in line
with our gathered results, presented in Section 4.2. It is
a common trend to explore fixed-point computations for
ultra-low power embedded systems with a limited power
budget [20]. Finally, in [21], the authors analyse the relia-
bility of a Deep Neural Network accelerator by following a
High Level Synthesis (HLS) approach. They characterize the
effects of both permanent and transient faults by exploiting
a fault injector framework embedded into the RTL design
of the accelerator. Faults are injected during the inference
cycles only on a sub-set of registers: those that are in
charge to store weights, input values and intermediate ones
used throughout the inference job, without considering the
effects of faults in the other data-path units. Regarding the
data representation, they perform the experiments by only
adopting a 16-bits fixed-point low precision model, claiming
a negligible accuracy loss with respect to a full-precision
data model.

The main contribution of this paper is a comprehensive
analysis on the behavior of the CNNs depending on their
data representation. In a previous work [22], we evaluated
the impact of permanent faults affecting CNNs through
software fault injection campaigns. However, only a floating
point representation has been considered. Compared to
the state-of-the-art analyses [19] [21], a wider spectrum of
fixed-point representations is given (five typologies ranging
from 32-bits up to 6-bits). Toward this goal, permanent
faults are injected in relation with the corrupted layer and
the data type.
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2 CASE STUDY

This section is intended to present the case study. As pre-
viously stated, we exploit the darknet open source DNN
framework [23]. Implemented in C and CUDA language, it
is suited perform end-to-end deployment of neural network
architectures in a very simple way. It further supplies a very
simple environment where several configurations of Deep
Neural Networks can be executed either to perform training
or inference jobs. As stated before, the work focuses on a
category of DNNs, named Convolutional Neural Networks
(CNNs). These artificial networks are widely exploited in
fields such as image classification and object detection.

Among all the possible existing CNNs, our interest falls
on LeNet-5 [24], a well-known classifier for handwritten
digit recognition task introduced by Y. Lecun et al in 1998.
The network architecture is composed of 1 input layer, 5 hid-
den layers and 1 output layer, whose typology ranges from
Convolutional, Fully-Connected and Max-Pool layers. For
the network reliability assessment, the behaviour of Max-
Pool layer category is out of the scope of our analysis due
to the fact that no arithmetic operations are implemented.

For running the experiments, the MNIST database [25],
a well-known dataset used to evaluate the accuracy of new
emerging models, has been selected. It is composed of 60,000
images for training and 10,000 for test/validation of the
model, encoded in 28 × 28 pixels in grayscale. However,
to lower the computational costs and time, a workload
of 2023 images was randomly selected from the MNIST
test/validation set for all the experiments. Moreover, since
we are focusing on the inference phase and on the response
of the network in a faulty scenario, a set of pre-trained
weights has been adopted. It is available from the darknet
website and includes all the weights in 32-bit floating-point.
Figure 1 highlights the values distribution of these pre-
trained weights. As evidenced, all the values are in the range
-0.6 to 0.6 with the most of them around zero.

Fig. 1: Distribution of Pre-Trained Weights Values.

The reliability of the above-mentioned CNN has been
evaluated by running many faults injection experiments
with two different data types. The former set of experiments
considers the target CNN with 32-bit floating-point weights,
while the latter exploits a fixed-point representation with a
bit-width ranging from 32 up to 6 bits. The next subsection
(2.1) will deepen the methodology followed to switch from
floating-point to fixed-point numbers, i.e., the conversion.
Then, the Section 3 will lay out the two fault injection
environments.

2.1 Weights Conversion
In neural networks field, a common approach for reducing
the bit-width of weights and activation’s values is to
adopt quantization schemes [26] [27]. However, the
darknet framework does not support operations with
fixed-point, forcing the user to run inferences only with
floating-point numbers. For this reason, it turned out to
be more convenient to perform an on-line conversion of the
network weights. This led us to slightly modify the source
code to support the inferences with a lower-precision
representation. All the conversions between floating-point
and fixed-point have been carried out by integrating
an open source library into the darknet framework: the
libfixmath library [28].
Since the end-goal is to characterize faults propagation
through the network (speeding up computations and
compacting the model size are out of the scope of this
work), we performed these on-line conversions while
maintaining all the internal operations in floating point
(Figure 2). The benefits coming from this approach are
two-fold: first, it is not necessary to change the framework
structure every time new experiments with a different data
type have to be performed; second, it allows to change the
representation without re-training the CNN model for each
data type, exploiting the same set of trained parameters. In
this way, the assessment of the CNN reliability is quicker;
it is possible to switch between experiments with different
numerical format in a reasonable amount of time.

Fig. 2: On-line Weights Conversions.

For the sake of completeness, we describe how the
on-line conversion of a floating-point weight is applied
before reaching a single neuron (Figure 2). The applied
scheme works in the following way:

1) The weight is converted from floating-point to a previ-
ously selected fixed-point representation.

2) The fixed-point weight is corrupted according to a
chosen fault list and a fault location, i.e., the fault is
injected.

3) The fixed-point weight is converted back to the floating-
point representation in order to preserve the native
implementation of the framework. In such a way, the
gained value reflects the same fixed-point corrupted
value, while still remaining a floating-point data.

4) The weight is multiplied by the input value.
5) The neuron performs the arithmetic computations.

Although all the network operations are executed be-
tween floating-point variables, it should be outlined that the
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Scenario Data type Bit-width Fractional bits [%] Accuracy Loss
A fixed-point 32 16 0
B fixed-point 18 16 0
C fixed-point 16 8 0.18
D fixed-point 10 8 0
E fixed-point 6 4 2.96

TABLE 1: [%] Fixed-Point LeNet-5 Accuracy Loss.

loss of precision caused by the first conversion is preserved.
Indeed, when moving from a high-precision representation
(i.e., floating point) to a low-precision one (i.e., fixed-point),
we are witnessing a truncation error effect. Then, converting
back from a narrow range of value (fixed-point) to a wider
one (floating-point), the truncation error still remains. This
is important to justify the conversion methodology choice.
Moreover, we computed the accuracy loss of the network
resulting from the adoption of fixed-point weights. As
highlighted in Table 1, five different scenarios have been
analyzed. The second column of the Table underlines the
total weight bit-width, always including 1 bit for the sign.
The third column shows the amount of bits allocated to
the fractional part after the radix point. The remaining bits
are used for representing the integer part. To compute the
accuracy of the network when weights are represented in
different bit-width formats, the inference of all the images
belonging to validation set of the MNIST database (10,000)
have been run on LeNet-5, clearly without injecting any
faults, i.e., in a golden scenario. It turned out that the
accuracy loss is zero in the 60% of the cases, and lower that
the 3% in the remaining 40%.

3 FAULT INJECTION

The intent of the section is to first describe the Fault Injection
environment built on the darknet framework. Then, more
details are provided for the two case studies: the floating-
point and the fixed-point weights representations.

Hardware
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Fig. 3: System Layers and Fault Propagation.

The hardware system can be affected by faults caused
by physical manufacturing defects. As Figure 3 highlights,

1 run CNN (CNN, golden predic t ion ) ;
2 f o r ( i =0 , i < FLo . s i z e ( ) , i ++) {
3 i n j e c t f a u l t ( Flo [ i ] , CNN) ;
4 run CNN (CNN, f a u l t y p r e d i c t i o n ) ;
5 compare ( f a u l t y p r e d i c t i o n , golden predic t ion ) ;
6 r e l e a s e f a u l t ( Flo [ i ] , CNN) ;
7 }

Listing 1: Fault Injection Pseudo-Code

faults could propagate through the different hardware struc-
tures composing the full system. However, it could happen
that they are masked during the propagation either at the
technological or at architectural level [29]. When a fault
reaches the software layer of the system, it can corrupt data,
instructions or the control flow. These errors may impact
the correct software execution by producing erroneous re-
sults or prevent the execution of the application leading
to abnormal termination or application hang. The software
stack can play an important role in masking errors; at the
same time, this phenomena is implicitly important for the
system reliability but a hard challenge for test engineers
that have to ensure safeness of their systems. As stated in
the introduction, the goal of this paper is to investigate the
effect of permanent faults at software layer in order to be
independent from the hardware architecture running the
CNN (i.e., CPU, GPU or HW accelerator). As permanent
fault, we consider the Stuck-at Fault (SaF ) model at 0/1
(SaF0 and SaF1). The Fault Location (FLo) is defined by
(1).

FLo =< Layer, Connection,Bit, Polarity > (1)

where Layer corresponds to the CNN layer, Connection
is the edge connecting one node of the Layer and Bit is one
the bits of the weight associated to the Connection. Finally,
the Polarity can be ’0’ or ’1’ depending on the SaF. The Fault
Injector actually works at software layer, and its pseudo-
code is provided in the Pseudo−Code (1). It corresponds to
a simple serial fault injector that modifies the CNN topology
as described by (1).

The fault injection process consists in the following:
once the CNN is fully trained, a golden run is performed
collecting the golden results (aka golden prediction), line 1
in 1. Then, the actual fault injection process is performed.
The initial step requires to generate the list of faults to be
injected. This fault list should be seen as a list of places
where to inject the faults as described previously. Then,
for any fault in the fault list (line 2 in 1), a prediction
run is performed and the results collected and named as
faulty prediction. It is necessary to underline that faults are
injected regardless of their polarity (stuck-at-0 or stuck-at-
1). Once the fault location is fixed, the target bit is inverted
(if 0 it becomes a 1 and vice-versa). In this way, we do not
distinguish between the singular effect of the two fault mod-
els while obtaining a great flexibility for the huge amount
of performed simulations. At this point (line 5 in 1), the
obtained results are compared with the expected ones, and
the results logged for a later analysis.

In details, the function compare of the Pseudo-code (1)
classifies the prediction/classification of the faulty CNN
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w.r.t. the golden one. The classification is done as follows:
• Masked: no difference is observed from the faulty CNN

and the golden one.
• Observed: a difference is observed from the faulty

CNN and the golden one. Depending on how much
the results diverge, we further classify these as:
– Safe: the confidence score of the top ranked element

varies by less than +/-5% w.r.t. the golden one;
– Unsafe: the confidence score of the top ranked el-

ement varies by more than +/-5% w.r.t. the golden
one, or the top ranked element predicted by the faulty
CNN is different from that predicted by the golden
one. As already discussed in [17] this is the most
critical observed fault;

As reported in the Introduction Section, one of the goals
of this paper is to identify the “Safe Faults Application
Dependent” (SFAD) accordingly to the ISO 26262 standard.
In this scenario, SFAD faults can be computed by the union
between Masked and Safe-Observed fault as depicted in (2).

SFAD = Masked ∪ Safe Observed Fault (2)

3.1 Floating-Point Injection

In the first set of experiments, LeNet-5 connection weights
are represented as single-precision binary floating-point
format according to the IEEE 754 standard (Figure 4).

Fig. 4: IEEE 754 Single-Precision Floating-Point Standard.

The injections have been accomplished only on the four
LeNet-5 layers performing arithmetic computations, i.e., the
two Convolutionals and the two Fully Connected. Table
2 provides details about the configuration as well as the
fault list of each layer. The first two columns of the table
present the target layers; the third one specifies the amount
of their connection weights. The number of possible faults
is computed as the multiplication between the connections
number (column 3) and the weight size (column 4) times 2
(i.e., stuck-at-0 and stuck-at-1).

Layer Detail Connections Bit-Width #Faults #Injections
0 Convolutional 2,400 32 153,600 9,039
2 Convolutional 51,200 32 3,276,800 9,576
4 Fully Connected 3,211,264 32 205,520,896 9,604
6 Fully Connected 10,240 32 655,360 9,465

TABLE 2: LeNet-5 Fault List for the Floating-Point Injection.

As column 5 points out, the overall number is very
high reflected in a non-manageable fault injection campaign
execution time. Thus, in order to reduce the fault injection
execution time, we randomly select a subset of faults. To
obtain statistically significant results with an error margin
of 1% and a confidence level of 95%, an average of 9K

fault injections have to be considered. The precise numbers
are given in the last column of Table 2 and they have
been computed by using the approach presented in [30].
Moreover, it is necessary to underline that the injections
have been performed on randomly selected bits of all the
32-bit floating-point connection weights.

3.2 Fixed-Point Injection

Fig. 5: Fixed-Point Data Representation.

In the second set of experiments, LeNet-5 connection
weights are represented in a fixed-point format. In order to
gather a wider spectrum of results, we tuned the weights
bit-widths. As mentioned in Section 2.1, five different
fixed-point formats of decreasing size have been chosen:
from 32 up to 6 bits (Figure 5). These employ all one bit for
the sign, a fixed number of bits for either the decimal part
and the fractional one, i.e, those bits after the fixed-point.
All the weights conversions are performed as described
in Section 2.1, during the inference phase by mapping at
run-time the floating-point values to fixed-point. If from
one side, this technique allows to perform the experiments
without resorting to external computational-intensive
fixed-point libraries for the arithmetic operations; it is
worth mentioning that it requires more effort during the
fault injection phase. Indeed, the correct data representation
should be taken into account every time a fault is placed.

The fault injections, as for the floating-point scenario,
are executed only for the arithmetic layers of the network:
the convolutionals and the fully connected. Table 3 details
the fault list for each layer and the amount of faults that
have been injected. As in the case of floating-point data
format, the amount of faults is computed by multiplying
the amount of the weights connections of the target layer
with the bit-width of the data representation, times 2 (both
the stuck-1 and stuck-0 have to be considered). These
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Layer L0 L2 L4 L6
Detail Convolutional Convolutional Fully Connected Fully Connected

Connections 2,400 51,200 3,211,264 10,240

A
Bit-width 32 32 32 32
#Faults 153,600 3,276,800 205,520,896 655,360
#Injection 7,680 163,840 102,760 32,768

B
Bit-width 18 18 18 18
#Faults 86,400 1,843,200 115,605,504 368,640
#Injection 4,080 87,040 54,591 17,408

C
Bit-width 16 16 16 16
#Faults 76,800 1,638,400 102,771,968 327,680
#Injection 3,840 81,920 51,380 16,384

D
Bit-width 10 10 10 10
#Faults 48,000 1,024,000 64,225,280 204,800
#Injection 2,160 46,080 28,901 9,216

E
Bit-width 6 6 6 6
#Faults 28,800 614,400 38,535,168 122,880
#Injection 1,200 25,600 16,056 5,120

TABLE 3: LeNet-5 Fault List for the Fixed-Point Injection.

details are provided for all the five experiments (A-B-C-
D-E) performed by decreasing the bit-width. For sake of
clarity, the injections have been performed by randomly
selecting the faulty bit inside the bit-width of the weight.
To lower the computational costs, only a sub-set of faults
has been chosen, in accordance with the work presented
in [30]. Specifically, the 5% of stuck-at faults was injected
in Layer 0 - Layer 2 - Layer 6, with respect to the total
amount of permanent faults. Considering the huge amount
of connections of the Layer 4, it would be almost impossible
to fault-simulate the 5% of faults, thus, a smaller sub-set
with a reasonable amount of permanent faults was picked
up.

4 EXPERIMENTAL RESULTS

The main intent of this section is to report the gathered
experimental results for both fixed-point and floating-point
data types.

4.1 Floating-Point Representation
A first set of experiments was carried out by exploiting the
darknet default settings, where weights are represented in
a 32-bit floating-point format. All the injections have been
performed considering a workload of 2023 images. Table 4
depicts the average of Unsafe Observed Fault (UOF) (the
most critical ones) for each targeted layer of Lenet-5.
The experimental results demonstrate that convolutional
layers are less reliable to the presence of permanent faults
(Table 4). Indeed, their error percentage is about 2x times
of the two fully connected layers (L4-L6). This means that
permanent errors affecting the first layers of the Convolu-
tional Neural Network negatively impact all the process
of features extraction. As claimed in [17], the errors that
cause large deviation into the activation values are more
likely to produce a failure in output. Indeed, if faults are
placed inside an initial layer, it generates a large numerical
deviation, that the network is not able to correct anymore.
The error is surely amplified each time the value flows
through the successive layers.

A more accurate representation of the UOF percentage
trend for all layers (L0-L2-L4-L6) is highlighted in Figure 6.
For sake of simplicity, we plotted only charts depicting the
percentage of Unsafe Observed Fault (UOF) since it seems
to represent the most meaningful classification metric.
Moreover, a deeper analysis of the results underlines that all

Floating-Point
32 bit [%] UOF

L0 Convolutional 0.0137
L2 Convolutional 0.0139
L4 Fully Connected 0.0071
L6 Fully Connected 0.0063

TABLE 4: [%] Average of Unsafe Observed Fault (UOF) for
Floating-Point Experiments.

the Unsafe Observed Faults (UOF) have been due to faults
affecting the 8 bits used for storing the exponent (i.e., from
bit 30 down to bit 23 of the floating-point data). The sign
and the mantissa bits do not have significant impacts, i.e.,
they led either to Masked or Safe Observed Faults.

Fig. 6: [%] Percentage of Unsafe Observed Faults (UOF) for
a Floating-Point CNN.

The gathered results for floating-point data are quite
interesting since they are showing a different trend with
respect to the effect of soft errors. Indeed, results from
soft error experiments show that convolutional layers are
supposed to be the more resilient to the presence of a fault,
according to results shown in [17]. This is due to the fact that
their role is to extract the features from the source image,
while the full connected layers are supposed to be the less
resilient because they classify the features extracted by the
first two levels. On the other hand, these results seem to
confirm the conclusion of [15] in which the authors claim
this trend.

4.2 Fixed-Point Representation

Concerning the fixed-point set of experiments, all the fault
injections have been performed separately on each of the
above-mentioned scenarios: case A-B-C-D-E of our case
study. Experimental results are provided for each of these
and, most notably, led us to the following considerations:

1) Fully Connected Layers (L4 and L6) are, in principle,
less critical and more resilient to permanent errors
(Table 5). By comparing the Convolutional layers (L0
- L2) with the two Fully Connected (L4 - L6), it emerges
that, at a first glance, for Fully Connected layers there
is a reduction of more than 50% of the average error, in
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Fixed-point
[%] UOF A (32-bit) B (18-bit) C (16-bit) D (10-bit) E (6-bit)

L0
Convolutional 0.1617 0.0011 0.1126 0.0023 0.0070

L2
Convolutional 0.1513 0.0006 0.0894 0.0011 0.0034

L4
Fully Connected 0.0545 0.00004 0.0152 0.00007 0.0044

L6
Fully Connected 0.0742 0.0011 0.0530 0.0022 0.0036

TABLE 5: [%] Average of Unsafe Observed Fault (UOF) for
Fixed-Point Experiments.

all the five different fixed-point representations (except
for B and D, due to their peculiar structure that will
be deepened in the following sections). This seems to
be in line to what claimed for the floating-point results
(Section 4.1).

2) The first Convolutional Layer L0 is the most critical
one. Among all the four layers, it features the highest
percentage of Unsafe Observed Fault (UOF). A fault
affecting the first convolutional layer of a CNN, more
likely produces a wrong output. In principle, it emerges
that the network reliability is less impacted as the faults
affect the last Fully Connected layers. In particular,
Figure 7 presents a overall view of the behavior of the
network when permanent faults affect L0. Indeed, for
sake of conciseness, only data belonging to the first
convolutional layer (L0) are depicted, for each of the
considered fixed-point format (Figures 7a-7b-7c-7d-7e).
What immediately comes out by observing the five
graphs is the dissimilar behavior of the network when
facing different bit-widths. It is immediately apparent
that the worst scenarios are A and C, respectively 32-bit
and 16-bit fixed-point formats, where the amount of bits
reserved for the integer part is equal to those reserved
for the fractional part of the weight. The average error
of UOF is equal to 0.1617 and 0.1126 respectively for A
and C, about 100x higher than scenarios B, C and E (see
Table 5, second row).

3) Experimental results prove that there is a point where
it is no longer convenient to reduce the bit-width of
the weights. The last scenario E is the demonstration of
the previous assertion. Indeed, in that particular case,
weights are represented through only 6 bits (1 for the
sign, 1 for the integer part and 4 for the fractional one).
The average of UOF is from 1.6x times up to 110x
times higher than B and D. This demonstrates that by
lowering the bit-width, the accuracy and the reliability
of the network could reduces too.

Based on these considerations, it could be claimed that the
best fixed-point bit-width choice lies in B (1 bit for the sign,
1 bit for integer, 16 bits for the fractional part) and D (1
bit for the sign, 1 bit for integer, 8 bits for the fractional
part). These two formats have in common only one bit for
the integer part before the radix point. Indeed, the average
percentage of UOF is the lowest between the five scenarios
(see column B and D of Table 5). Particularly, the lowest
percentage of UOF is obtained when adopting 18 bits for
the weight representation (B). When reducing even more
the bit-width up to 10 bits, the error slightly increases.

(a) Scenario A (b) Scenario B

(c) Scenario C (d) Scenario D

(e) Scenario E

Fig. 7: [%] Percentage of Unsafe Observed Faults (UOF) for
the First Convolutional Layer (L0) with a Decreasing Bit-
Width Representation.

4.3 Floating-Point and Fixed-Point Comparison

The intent of this work is to provide an overview of the
reliability of a well-known CNN when a reduced bit-width
is adopted for the weights. To meet the new requirements of
CNNs optimization, the reliability of the target network is
analyzed when two different data types are used: floating-
point and fixed-point. Many conclusions can be drawn by
comparing Table 4 and Table 5. According to the experi-
mental results, a 32-bit floating point representation seems
to be more reliable than a 32-bit fixed-point one (A, Table
5). The latter presents an average error that is 10 times
higher that the floating-point format. All of this could be
justified by the inborn structure of the two data types: the
most sensible part of the floating-point turns out to be the
exponential part (8 bit). On the other hand, the 32-bit fixed-
point holds 15 bits for the integer part. If considering that
the weights distribution groups around the zero (Section
2), 15 bits for the integer part makes the network really
unreliable and error-prone. Moreover, the 32-bit floating-
point representation still perform better than a 16-bit fixed-
point representation (C, Table 5), where 7 bits are used to
represent the integer part. Therefore, if the designer aims at
reducing the bit-width of the network weight, a good idea
is to adopt a fixed-point representation where only 1 bit is
devoted for the integers. This outcome, as described in the
Section 1.1, is consistent with the research published in [19].
Indeed, if observing the average error of B and D (Table
5), it is about 10 times lower than the 32-bit floating-point
representation.
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5 CONCLUSIONS

This paper presents a characterization framework for ana-
lyzing the impact of permanent faults affecting a Convo-
lutional Neural Network intended to be deployed in auto-
motive domain. The characterization is done by means of
fault injection campaigns on the darknet open source frame-
work [23]. All the experiments are performed at software
level with the aim of being independent on the hardware
architectures and, on the whole, to derive a common char-
acterization of the behavior of CNNs affected by permanent
faults. This could be considered an interesting outcome
since the designer, starting from these results, could be able
to select the most convenient data type for his application.
Concerning the floating-point representation, the analyses
demonstrate that it is important to take care mostly of the
8 exponent bits (i.e., from bit 30 down to bit 23) that cause
critical behaviors. A redundancy technique can work well
to cover only the critical parts of the system. However, the
description of the test solutions as well as the redundancy
techniques used for hardening the CNN is out of the scope
of this work. To conclude, the proposed analysis has the ad-
vantage to be hardware independent: the designer will have
the opportunity to carefully select the hardware architecture
by taking into account the most critical bits on the given
representation. Consequently, the test engineer will be able
to focus the test efforts only on that critical parts in order to
reduce the cost of the test solution.
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