
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Use of Causal Models to Build Better Datasets / Garcea, Fabio; Morra, Lia; Lamberti, Fabrizio. - STAMPA. -
(2021), pp. 1514-1519. (Intervento presentato al convegno COMPSAC 2021 - AIML: The 4th IEEE International
Workshop on Advances in Artificial Intelligence & Machine Learning: Applications, Challenges & Concerns tenutosi a All-
Virtual nel July 12-16, 2021) [10.1109/COMPSAC51774.2021.00225].

Original

On the Use of Causal Models to Build Better Datasets

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/COMPSAC51774.2021.00225

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2904856 since: 2021-12-29T16:06:12Z

IEEE Computer Society



On the Use of Causal Models to Build Better
Datasets

Fabio Garcea
Dep. of Control and Computer Eng.

Politecnico di Torino
Italy, Turin

fabio.garcea@polito.it

Lia Morra
Dep. of Control and Computer Eng.

Politecnico di Torino
Italy, Turin

lia.morra@polito.it

Fabrizio Lamberti
Dep. of Control and Computer Eng.

Politecnico di Torino
Italy, Turin

fabrizio.lamberti@polito.it

Abstract—In recent years, Machine Learning and Deep Learn-
ing communities have devoted many efforts to studying ever
better models and more efficient training strategies. Nonetheless,
the fundamental role played by dataset bias in the final behaviour
of the trained models calls for strong and principled methods
to collect, structure and curate datasets prior to training. In
this paper we provide an overview on the use of causal models
to achieve a deeper understanding of the underlying structure
beneath datasets and mitigate biases, supported by several real-
life use cases from the medical and industrial domains.

Index Terms—deep learning, machine learning, causal models,
dataset bias, causal analysis

I. INTRODUCTION

Machine Learning (ML) and Deep Learning (DL) represent
nowadays the high performance solutions for a large number of
classification tasks from autonomous driving [1] to the natural
sciences [2], to disease diagnosis in the medical domain [3].
It is well known that the quality of a trained ML model is
a direct reflection of the underlying dataset, as summarized
by the popular expression Garbage In, Garbage Out. Yet,
while the bulk of ML/DL research is model-centric and
focused on enhancing neural networks by introducing novel
training strategies, or diagnosing ML models after training,
only recently the research community started to adopt a more
data-centric approach [4].

Dataset bias may affect the performance of a ML model
during its operational life, causing the model to exploit
spurious correlations and preventing generalization to unseen
data [5]–[9]. Mounting evidence gathered from the scientific
literature and the general press highlights how biased ML
models may lead to the perpetuation of social and racial biases,
exacerbating discrimination and unfair outcomes [9], [10], or
may have serious implications in domains in which robustness
and safety are critical [11], [12].

Deep neural networks (DNNs), due to their high nonlin-
earity and black-box nature, are particularly prone to dataset
biases. In fact, DNNs tend to learn – and consequently rely
on – shortcuts to solve a specific task, a behavior which
has been traced to several properties of DNNs [13]. As a
simple example, if a model that recognizes cats and dogs
is exclusively trained on images of cats with an overlayed
text, it may learn an association between the cat class and

the presence of text, and even rely solely on the latter. This
example may seem far fetched, but has actually occurred
in real medical problems, as hospital archival systems often
superimpose textual information on X-ray scans [13].

Another crucial phenomenon to consider is that of concept
drift [14], which occurs when the statistical properties of
the training data and the deployment data diverge over time.
Imagine, as an illustrative scenario, the appearance over time
of new species of cats and dogs that were not originally
included in the training data. Would the cats vs dogs classifier
still be able to generalize?

These considerations strongly suggest that a more system-
atic and robust approach should be adopted when collecting,
structuring and characterizing the development datasets used
to train a DL model. At the state of the art, many techniques
try to diagnose ML models after they have been trained [9].
However, assessing the quality of the dataset prior to training
could bring multiple advantages. It would allow all stakehold-
ers to be aware of the characteristics and potential pitfalls of
a dataset, as well as document the underlying assumptions
in the data collection and generation process in a clear and
transparent fashion that can be easily validated or integrated by
domain experts. It would also help practitioners to select more
effective training, collection, annotation and data augmentation
strategies. Most importantly, it would enable them to detect
biases and other limitations in the current dataset, and possibly
resolve or at least anticipate any issues in the resulting ML
models. This approach would ultimately lead to models that
are less prone to biases and enhance their robustness and
generalization capabilities.

Several techniques have been proposed to assist practitioners
in this task [7], [15]. One of most interesting techniques is
represented by DAGs (directed acyclic graphs) that offer a
formal and visual representation of the causal relationships
between the variables related to a problem or domain [16]–
[19]. A causal diagram does not imply assumptions about the
mathematical properties of these relationships. It provides an
explicit and principled way to specify assumptions, enabling
transparent scrutiny of their plausibility and validity. By ac-
counting for factors that affect the underlying data generation
and collection process, causal models can help preventing
biases in the dataset, and anticipating the nature of concept



shift. Causal models have been proposed to analyze both
structured [20] and unstructured data [19]. A recent paper by
Castro and colleagues provides a comprehensive analysis of
the role of causal models in medical imaging [19].

Moving from this inspiring body of literature, our goal
is to investigate the application of causal models in dataset
design, extending the work beyond the medical domain with a
specific focus on DL and Computer Vision (CV) applications.
We thus analyze causal diagrams for different use cases, both
taken from the literature and from real-life industrial R&D
projects. Furthermore, we connect causal diagrams with other
techniques that have been proposed to characterize datasets.

The rest of the paper is organized as follows. In Sections
II III we briefly summarize the principles of causal analysis
that are recalled throughout the paper. In Section IV we
illustrate two scenarios in which causal models have been
used to characterize the dataset and the task. In Section V
we connect the proposed strategy to other works focusing on
dataset characterization in the ML/DL field.

II. BACKGROUND

In this section, the main principles of causality theory
are briefly introduced. We closely follow the terminology
introduced by previous seminal works, to which the reader
is referred for further details [17]–[19], [21].

Formally, a causal model is a DAG consisting of nodes
(representing variables or factors) and arrows, also known as
edges (representing causal relationships between variables).
A direct causal relationship between A and B (A → B)
represents the notion that a direct experimental manipulation
of A would change the likelihood of B, holding everything
else constant. An important principle in causal inference is
that the distribution of the cause P (A) does not influence
the conditional distribution P (B | A), a principle known as
independence of cause and mechanism [21]. An intervention
is defined as any forced change to the value or distribution
of a node, regardless of its direct cause, and results in a
modified graph wherein this node is disconnected from its
parents (or, in other words, the corresponding path is blocked),
though crucially all other mechanisms are unaffected. Typical
interventions used in experimental sciences and ML/DL are
randomization, stratification and controlling by a given vari-
able when building a statistical model.

Causality theory introduces three main canonical relation-
ships between three (or more) variables: confounders, medi-
ators and colliders. For large graphs, one should reason in
terms of paths [19]. In particular, a mediator B is a variable
which connects an indirect cause A to the final effect C
(A→ B → C). Here, controlling for B (e.g., by conditioning
a statistical model on the value of B) removes the link between
A and B, and thus completely screens off the effect of A. A
confounder C is a common cause of two variables A and B
(formalized as A ← C → B). Consider a variable A that is
at the same time the effect of multiple independent causes B
and C: A is said to be a collider of B and C (formalized
B → A← C).

A X Y

B C S

(a)

X W1 Y

W2 S

(b)

Fig. 1: Example causal models for a causal (a) an anticausal
(b) task. X and Y represent the input and output variables, re-
spectively. The selection variable is represented with a double
line circle. Empty circles indicate hidden (latent) variables.

III. CAUSAL MODELS FOR DATASETS

In this section, recent literature on i) how to represent a task
in causal terms and ii) how to model the data generation and
selection processes will be reviewed. We will refer primarily
to DNNs, but many considerations apply also to other classes
of ML algorithms.

When modelling a ML task, defined as a mapping function
f : X 7→ Y between an input space X and an output space Y ,
a key question that has to be answered is whether the task is
causal or anticausal [18]. A task is defined as causal when the
goal is to estimate P (Y | X) when X → Y , in other words,
if we try to estimate the conditional distribution of an output
Y which is an effect of the input X . Conversely, a task is
defined as anticausal if the goal is to estimate P (Y | X) when
Y → X . Anticausal problems, as differently as it may seem,
are ubiquitous in ML/DL [18]. A special case of anticausal
task occurs when there is not a direct relationship between X
and Y , but both have a common unobserved common cause
(confounded). The distinction between causal and anticausal
tasks may not be trivial, depending also on the level of
information available about the data collection process. Toy
examples of causal and anticausal tasks are reported in Fig. 1a
and 1b, respectively. Some practical examples will be provided
in Section IV.

Causal diagrams allow practitioners to link the charac-
teristics of their problem to properties established by ML
and statistical theory [17]–[19], [22], and to select the most
appropriate training and statistical methods accordingly. For
instance, SSL (semi-supervised learning) techniques should
give little benefits for causal tasks [18], meaning that other
training strategies should be prioritized. This fact stems from
the observation that, in SSL, we have access only to unlabelled
data, hence to the distribution P (X), which for the principle
of independence of cause and mechanism should be uninfor-
mative with respect to P (Y |X) if X → Y . On the other side,
SSL could work for anticausal tasks.

A causal model should not be limited to the input and target
variables, but should also include all factors (either observed or
hidden) that may influence their distribution. Causal diagrams



allow us to define and assess the role of confounders/colliders
in a robust way. The confounding influence can introduce what
is often called a spurious correlation, i.e., when the considered
variables are statistically correlated through another variable
but have no causal relationship between each other. Controlling
for a confounder blocks the corresponding path, effectively
removing the spurious correlation. This may be achieved
in several ways, e.g., by introducing the confounder as an
additional variable to the ML model, or by stratified sampling.
On other hand, controlling for a collider (or its descendants)
introduces an association between the two otherwise inde-
pendent causes, and hence should be avoided. A vast body
of literature in the epidemiological sciences exploits causal
models for determining which variables should be controlled
for [23].

Colliders play a fundamental role in the appearance of
dataset bias [22], [24]. Let us consider again our toy example
in the introduction, in which one latent variable represents
the class A (cat vs. dog) and a second latent variable B
represents the confounder (e.g., whether the image contains
text or not). The image X is a collider of both A and B and,
depending on how the dataset is selected, when computing
P (Y | X) a strong confounding signal is introduced. Since
the confounding signal may be easier to learn than the true
signal, as postulated by several authors, collider bias may
deeply impact the learning process and result in unfair or non-
generalizing models [22], [24], [25]. This scenario can be well
represented by the causal model depicted in Fig. 1b.

Causal diagrams are also useful in understanding how
dataset shift could manifest and clarify the role played by
confounders. Statistical ML is based on the implicit as-
sumption that data samples are independent and identically
distributed. Machines, however, often perform poorly when
faced with problems that violate these assumptions. In ML/DL,
we define domain as a combination of a feature space X
and the related marginal distribution D = {X , P (X)}. A
dataset or domain shift occurs when the training set distri-
bution Dt = {X t, P (X)t} is different from the testing set
Ds = {X s, P (X)s}.

Finally, a central aspect to consider is the selection scheme,
indicated by one or more selection variables S, as selection
may block or unblock paths and thus dampen or amplify the
effect of colliders. Generally speaking, the selection may be
directed by one or more variables composing the causal model,
including the input X and the output Y , or may be performed
randomly. The selection could be either explicit, e.g., made by
the ML practitioner, or implicit, e.g., driven by the availability
of data. Likewise, selection variables can be used to model
how data is divided in the training, validation, and testing sets,
when for practical reasons the training set is not representative
of the entire training set.

It is easy to understand how a certain amount of domain
knowledge is necessary to include as many variables as
possible in the causal model for a target task and to correctly
postulate the causal correlation between them. As such, the
causal model building phase should be conducted or, at least,

supervised by a domain expert.
In conclusion, to draw a complete causal model to represent

the data generation, collection and annotation process, the
following methodology (adapted from [19]), can be followed:

• gather information about the data collection, annotation,
and selection processes to reconstruct a complete model,
including relevant mediators, confounders and colliders;

• determine whether the task is causal or anticausal;
• identify possible mismatches between the training and

testing set: consider applying data augmentation, domain
adaptation, or resampling strategies to tackle them, de-
pending on the nature of the domain shift;

• determine whether the data collection was biased with
respect to the input X , the target Y or any other variable;

• draw the causal model: include all factors and draw the
causal relationships between the them; particular attention
should be paid to the emergence of collider biases;

• decide if/how further selection (randomization or stratifi-
cation) should be conducted to control for confounders.

IV. USE CASES

In this Section, we present two scenarios, one taken from
the medical domain and originally proposed by [19], one
developed for an industrial CV application.

A. Medical Imaging Field

The seminal work by Castro et al. presents a comprehensive
view of the application of causal diagrams to the characteri-
zation of medical imaging tasks [19]. In fact, many medical
imaging analysis tasks share a common workflow, and are
characterized by a relatively constrained pool of factors, and
their role in the construction, sampling and annotation of
datasets has been extensively studied in literature [11], [24].

Building on this body of literature, Castro and colleagues
propose a general causal model structure (reported in Fig.2)
that likely suits the vast majority of medical imaging ML
tasks. By including selection and domain variables, it is
possible to model different types of dataset biases and domain
shifts. Particularly interesting is the introduction of a selection
variable D which models factor(s) that possibly differ between
the training and testing population. Different types of domain
shifts thus arise depending on the resulting casual model and
the type of task (anticausal vs. causal), for which appropriate
countermeasures were suggested [19].

Let us see how this general model can be adapted to a
sample medical application, such as the diagnosis of cancer
(e.g., prostate cancer), from an image (e.g., a magnetic reso-
nance image). The task is thus to predict the probability of the
presence or absence of cancer (Y ) from the input image X .
Typically, the training set for such a model would be based on
datasets collected from one or, ideally, multiple institutions.

The image X is the effect of several causes, namely
presence of the disease, patient anatomy, and acquisition
conditions. Patient anatomy is an internal hidden variable



Fig. 2: Causal model template for dataset analysis in the
medical imaging domain. Filled circles represent measured
values, empty circles hidden variables, and double-line empty
circle selection variables. Reproduced from [19].

which accounts for inter-patient variability, whereas acquisi-
tion conditions represent all factors (type of scanner, acquisi-
tion protocol, etc.) that may influence image appearance.

To determine whether the task is causal or anticausal, it is
crucial to understand how the reference standard is established.
Whenever possible, presence or absence of the disease should
be defined by means of biopsy and/or follow-up for a suitable
period of time [11]. Hence, the presence or absence of the
disease is known, and manipulating or changing the image
would not alter the label: in this case, the task would be
anti-causal. In fact, many computer-aided diagnosis tasks are
anticausal in nature.

On the other hand, if the labels are established based solely
on the radiologist report, then the task would be considered
causal, as depicted in Fig. 3. In this case, the true disease
status W2 is considered a hidden variable, and the image X is
a mediator between the disease W2 and the output label Y . In
this case, manipulating the image could alter the radiologist
perception, and hence the resulting labels. Practical situations
could, however, be more nuanced. For instance, biopsy is
typically performed only for cases which the radiologist deems
suspicious. This factor can be represented by adding a selec-
tion variable biopsy which is an effect of the label Y .

Finally, the input image X depends on the acquisition condi-
tions: different acquisition systems may, for example, produce
a diverse set of inputs in terms of resolution, contrast and other
visual features. Several opportunities for collider bias emerge
when the acquisition conditions are not randomly distributed
across the patient population, e.g., if different acquisition
protocols are used for high-risk or low-risk populations.

B. Industrial Field

In this subsection, we illustrate the causal diagram for the
task of estimating road conditions, in particular to identify the
presence of wet road conditions form video frames captured by

Patient
Characteristics

Patient
Anatomy
(W1)

Acquisition
Conditions

Prostate
Cancer
(W2)

Image
(X)

Selection
(S)

Label
(Y)

Fig. 3: Causal model representation for prostate cancer clas-
sification. Hidden factors of interest are depicted with empty
circles.

surveillance Full-HD cameras. The frames have been collected
from areas characterized by different features in terms of
illumination, road morphology, and point of view, to name
a few. The causal diagram reported in Fig. 4 clarifies the role
played by different factors in the data collection, sampling,
and annotation process.

The main observed variables are the image (X) and the
manually determined label (Y ), a binary value indicating
whether the road appears to be dry or wet. The phenomenon
of interest is the presence of water W , which in turn is caused
by the weather (rain/snow) or, possibly, by other causes (e.g.,
floods): these are the crucial hidden variables that we need to
indirectly estimate. We consider these variables to be hidden
because they are not directly measured in our experimental
setup (i.e., on-the-road sensors were not available). In causality
terminology, the input image X is a mediator between the
phenomenon of interest W and the label Y .

The camera site, time of day and month (or season) are
confounders, as they are indirect causes of both W and X
(highlighted in light blue in Fig. 4). For simplicity, the site
variable embeds multiple information such as geographical
location, road morphology, the type of asphalt, the frequency
of car passing, and many other characteristics. These factors
influence, directly or indirectly, the type (population shift)
and frequency (prevalence shift) of the wet road events [19].
At the same time, images taken at different sites have dis-
tinctive visual features due to the different road morphology,
illumination, and so forth: hence the site also contributes to
the domain or acquisition shift. These considerations entail
possible ways to improve generalization during training and
testing: for instance, data resampling is a possible strategy to
mitigate prevalence and population biases [19].

The classification task in principle modeled as a causal task
since, in the absence of an independent reference standard,
the images were manually labelled. The assumption that Y
is caused by X , and not vice versa, stems from the fact
that labels are generated through manual annotation without
explicit knowledge of the hidden variable W and, thus, any
substantial modification of the image may change the value of
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Fig. 4: Causal model for the prediction of wet road condi-
tions. Hidden variables are depicted with empty circles. The
selection scheme is random sampling.

the assigned label. To further illustrate the difference, consider
the case where the presence of water is not visible due to
occlusions or poor visibility: in such a case, any rater would
give a negative label, regardless of the actual road condition.

However, as in the medical use case, the distinction between
causal or anticausal tasks is not entirely clear-cut. What if
the image-derived labels determined by an expert are nearly
identical to the hidden variable? Could then the labels serve as
proxies for the ground truth, possibly configuring an anticausal
relationship? It is also worth noting that the annotators were
aware of the site, date and time of acquisition; the weather,
even if not explicitly recorded in the dataset, could be inferred
from the input image. Hence, from this viewpoint, the task can
be seen as confounded, and hence anti-causal. This perspective
is supported by our empirical observation that SSL was effec-
tive to improve performance. More investigations are needed
to clarify the role of SSL in ML tasks for which the causal or
anticausal nature is not easily determined.

The domain D is determined by the following variables:
site, season, camera orientation and camera model. Camera
orientation and camera model have a direct influence on the
image and hence are contributors to the so-called domain or
acquisition shift. From a causal perspective, the image X
is a collider of many variables, including W and camera
parameters previously mentioned, thus care must be taken
to prevent collider biases affecting the training process. The
distribution of all known factors was studied and corrected,
if needed, by sampling and data augmentation. For instance,
when data is acquired continuously during the day and for the
whole year, the distribution may be balanced with respect to
time of day and season, but it is unlikely to account for all
possible sites, which we identified as the most critical factor
for generalization. Camera orientation has a profound impact

on the presence of reflections, myrages, as well as under-
and over-exposure. Data augmentation strategies that simulate
different camera orientations and illumination conditions, thus
artificially balancing the dataset, are useful in this case to
prevent the appearance of spurious correlations as a result of
imperfect data selection or small dataset sizes.

Finally, a predictive model may be controlled by con-
founders (e.g., the season) by adding them as additional inputs,
thus statistically conditioning the prediction on their value;
however, this is possible only if the confounder is observed
(measured) at training and inference time, and if the training
set covers the entire support of the confounder distribution.

V. RELATED WORKS AND DISCUSSION

Several recent works have focused on the data collection
and annotation phases, in an effort to increase its reliability
and reproducibility, as well as promote awareness of the risks
and perils of dataset biases.

Dataset Datasheets [7] and Data Nutrition Labels [15] are
two high-profile initiatives to standardize the way datasets are
collected and reported. A Dataset Datasheet includes discur-
sive descriptions like the motivation behind the creation of the
dataset, its composition and other methodological information
such as any applied preprocessing and the recommended
usage. The Data Nutrition Labels provide similar information
but in a more concise format inspired by food nutritional
labelling. Both initiatives enhance the transparency of the
data collection process, and have had a mitigating effect on
undesired or undetected dataset biases. Causal diagrams, on
the other hand, represent a formal tool that can be used
during, and after, the creation of a dataset to reason about
the relationships between different variables.

A few authors worked on quantifying biases in ML datasets
by employing statistical techniques [6], [20], [26]. For in-
stance, Beretta et al. studied the intrinsic discriminatory risk
by assessing the degree of dependency between a protected
attribute (e.g., race or gender) and the target variable [26]. To
the best of our knowledge, the majority of these techniques
work on structured datasets, and are not directly applicable to
typical DL models for unstructured data, e.g., images or text.

Causal and counterfactual reasoning are also increasingly
used to quantify and/or mitigate biases in trained ML models
[9], [27], [28]. However, most existing causality-based algo-
rithms require knowledge of the underlying causal graph. The
examples presented in this paper show how causal diagrams
can connect these two lines of research by linking unstructured
data (e.g., images) to latent factors, whose distribution can
be modelled and analyzed by either statistical methods or
counterfactual reasoning.

An open question is how to evaluate the validity of the
causal model when used in this fashion: first, the correctness
and completeness of the causal model cannot be checked
against the ground truth, as the latter is unknown. Recent
work has tackled the problem of verifying causal models
learned from observational data, but the method is not readily
applicable to unstructured data [29]. Second, the benefit of



integrating causal models into dataset construction, while
strongly supported by intuition, has not been experimentally
linked to an increase in performance and generalization of the
trained ML models.

The nature, type and presence of biases in CV datasets has
also been extensively studied, starting from the seminal work
by Torralba and colleagues, most commonly by studying the
cross-dataset generalization performance of trained DNNs [5],
[8], [13], [30]. Torralba et al. suggested general strategies to
avoid common biases such as selection bias, capture bias, and
negative set bias [5]. Biases due to gender and ethnicity have
been addressed by collecting larger, more diverse datasets [28].
These strategies are complementary to causal diagrams, which
however are more easily applied to specialized datasets in
which the domain is well defined (e.g., industry), and the data
generation process can be precisely and accurately modelled.

VI. CONCLUSIONS

Incorporating causality is a fundamental challenge in ML
research. In this work, we investigated causal analysis as a
highly effective technique to characterize the properties of
ML datasets. Previous works have proven its effectiveness
in the medical domain [19], [24], we here extended the
methodology to a real-life example from an industrial research
project to prove its feasibility and potential benefits. In future
works, we plan to perform a more in-depth evaluation of the
impact of modelling the dataset based on causal diagrams
on the performance and generalization ability of the trained
models. Nonetheless, we hope with this work to encourage
practitioners adopting this systematic approach to the analysis
of data collections in other domains, as this approach may
help to manage dataset biases and concept drift in the training
and deployment of neural networks.
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