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Abstract 

In this work, we propose an Inverse Uncertainty Quantification (IUQ) approach to assigning Probability 

Density Functions (PDFs) to uncertain input parameters of Thermal-Hydraulic (T-H) models used to assess 

the reliability of passive safety systems. The approach uses experimental data within a Bayesian framework. 

The application to a RELAP5-3D model of the PERSEO (In-Pool Energy Removal System for Emergency 

Operation) facility located at SIET laboratory (Piacenza, Italy) is demonstrated. Principal Component Analysis 

(PCA) is applied for output dimensionality reduction and Kriging meta-modeling is used to emulate the 

reduced set of RELAP5-3D code outputs. This is done to decrease the computational cost of the Markov 

Chain Monte Carlo (MCMC) posterior sampling of the uncertain input parameters, which requires a large 

number of model simulations.  

Keywords: Passive safety systems, Reliability Analysis, Inverse uncertainty quantification, Surrogate 

modeling, Kriging, Principal component analysis. 
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 Introduction 

The reliability analysis of a passive safety system requires the identification of all the possible accidental 

scenarios in which the passive system is called to operate (Marquès et al., 2005) and the system capability 

to accomplish a target mission (e.g., to keep the maximum pressure below a prescribed safety threshold or 

exchange at least a certain amount of energy in a defined time interval) is verified. To this aim, experiments 

and Thermal-Hydraulic (T-H) model simulations are performed with different Initial Conditions (ICs), 

Boundary Conditions (BCs) and different input parameter values. With respect to the simulations, 

uncertainties, both aleatory and epistemic (Oberkampf et al., 2004), affect the reliability evaluation results 

(Burgazzi, 2007, 2004; Pagani et al., 2005).  

Aleatory uncertainty refers to the inherent variability associated with random phenomena (Hoffman and 

Hammonds, 1994). Epistemic uncertainty derives from incomplete information of the phenomena, which 

reduces the predictiveness of realistic modeling (Apostolakis, 1994; Durga Rao et al., 2007; Ferson and 

Ginzburg, 1996; Winkler, 1996). The latter uncertainty can be improved by increased knowledge and 

information of the phenomena (e.g., the availability of new experimental and/or field data). The 

quantification of the uncertainty (both aleatory and epistemic) in the quantitative description by T-H models 

of the phenomena pertaining to the function of passive systems typically consists in (Burgazzi, 2004; IAEA, 

2014, 2008): (1) the identification of the uncertain input parameters that characterize the phenomena 

occurring in the system, (2) the quantification of the uncertainties by expert judgment, in terms of nominal 

values, probability density functions and upper and lower bounds. A particular difficulty in this is the 

assignment of probability distributions to uncertain parameters (IAEA, 2014). The purpose of the present 



work is to determine an innovative method to determine the quantitative description of input parameters 

affected by epistemic uncertainty. The method implements an inverse uncertainty quantification (IUQ) 

process to find a characterization of the input parameters’ uncertainty that is consistent with the 

experimental data. 

In PREMIUM (Post-BEMUSE Reflood Model Input Uncertainty Methods) (NEA/CSNI/R(2016)9, 2016), a 

benchmark activity endorsed by OECD/NEA/CSNI/WGAMA, the FFTBM (Fast Fourier Transform Based 

Method), CIRCÉ (Calcul des Incertitudes Relatives aux Corrélation Élementaires), MCDA (Model Calibration 

through Data Assimilation) and the DIPE (Determination of Input parameters Empirical properties) methods 

are compared (de Crecy, 1996; Heo et al., 2014; Kovtonyuk et al., 2012; NEA/CSNI/R(2016)9, 2016). The 

DIPE method (NEA/CSNI/R(2016)9, 2016) implements an algorithm that compares the T-H code results with 

experimental data to compute the input parameter distributions. However, this method assumes that: 1) 

the measurement error is negligible; 2) for each time-instance, there exists a combination of input 

parameters such that the code output is equal to the experimental value; 3) the T-H code responses are 

monotonous. The FFTBM method (Kovtonyuk et al., 2012) allows characterizing the ranges of variation of 

the uncertain input parameters by analyzing a dimensionless figure of merit related to the discrepancy 

between the code and experimental results. However, this method is incapable of describing dependency 

and providing a full statistical description of the input parameters (NEA/CSNI/R(2016)9, 2016). The CIRCÉ 

method (de Crecy, 1996) implements the Expectation-Maximization (EM) algorithm and the Maximum 

Likelihood Estimate (MLE) method to estimate the input model parameters mean and variance. However, 

this approach assumes: (1) a linear relationship between model responses and input parameters; (2) the 

input model parameters to be normally distributed. These two limitations are addressed in the MCDA 

method, based on Bayesian statistics, where a Markov Chain Monte Carlo (MCMC) algorithm (Gelman et 

al., 2015) is adopted to determine the input parameters distributions). However, this latter approach results 

to be cumbersome in the case of a computationally-demanding T-H system model. This issue can be 

addressed by (Faes et al., 2019) that proposed an IUQ novel multivariate interval approach (i.e., a non-

probabilistic methodology) that is very robust in the case of scarce experimental data and computationally 

affordable, but still incapable to describe dependency and to provide a full statistical description of the input 

parameters.  

In the present work, we address the issues limiting the approaches of (de Crecy, 1996; Faes et al., 2019; 

Kovtonyuk et al., 2012; Shrestha and Kozlowski, 2016) and propose an IUQ approach based on the Bayesian 

framework developed by Kennedy and O’Hagan (Kennedy and O’Hagan, 2001). To perform Bayesian 

inference of the posterior distribution (Gelman et al., 2015), a MCMC sampling technique is adopted, 

making use of Kriging emulators instead of the original computationally-demanding T-H system model. The 

proposed IUQ approach is applied to a RELAP5-3D input model (Idaho National Laboratory, 2015) that 

simulates the behavior of the PERSEO (In-Pool Energy Removal System for Emergency Operation (Ferri et 

al., 2005)) experimental transients (PERSEO is an experimental facility located at the SIET laboratory 

(Piacenza, Italy)). Specifically, Principal Component Analysis (PCA) is first carried out to reduce the 



dimensionality of the model output; then, Kriging emulators are developed to map the uncertain input 

parameters on the reduced output Principal Components (PCs). This allows dealing with the large 

computational cost of MCMC sampling with demanding model codes. The validity of the idea behind the 

proposed approach is supported by the fact that other works of literature have combined PCA with 

surrogate modeling for the Bayesian IUQ process to cope with high dimensional computer code outputs 

(Higdon et al., 2008; Nagel et al., 2020; Wilkinson, 2010; Wu et al., 2018a).  

The specific contributions of the present work include: (1) the development of a structured IUQ procedure 

capable of describing dependency between input parameters and of dealing with time-dependent 

experimental data; (2) the attainment of insights on the best Kriging options for the development of 

surrogate models; (3) the observations and reflections on the relationship between the IUQ results and 

sensitivity analysis. 

The remainder of the paper is organized as follows. Section 2 formulates the IUQ problem in mathematical 

terms. In Section 3, Kriging meta-modeling is briefly recalled. The case study regarding the PERSEO 

experimental facility and the RELAP5-3D model are introduced in Section 4. Section 5 shows the PCA-based 

Kriging as multivariate meta-model. Section 6 presents the application of the framework presented in 

Section 2 on the case study of Section 4. Section 7 concludes the work.  

 The IUQ problem formulation 

Let �� + ��,	, 
. be the output of a computer code numerically evaluating the outcome of phenomena 

described by a model, where 	 + /01, 02, … , 0456 and 
 + /71, 72, … , 7856 are the design variables of the 

system in which the phenomena develop and the model calibration parameters, respectively (Kennedy and 

O’Hagan, 2001; Wu et al., 2018b). Design variables are, for example,  Initial Conditions (ICs), Boundary 

Conditions (BCs), and, in general, all the observable inputs that describe the conditions or scenarios under 

which the phenomena develop (Wu et al., 2018b). Calibration parameters can be of physical meaning 

related to the system and phenomenon (e.g., material properties) or without physical meaning (e.g., related 

to the model nodalization). The calibration parameters 
 are the focus of the IUQ, since the design variables 	 are defined, known a priori (Wu et al., 2018b).   

In general, we deal with different sources of uncertainty (Kennedy and O’Hagan, 2001): parameter 

uncertainty due to the calibration inputs 
, model discrepancy (also called model inadequacy) due to 

correlations’ inaccuracy or numerical approximations in ��,	, 
., measurement error (also called 

observation error) and code uncertainty (or meta-model uncertainty, when a Meta-Model (MM) substitutes 

a computationally intensive Best Estimate (BE) computational model).  

An IUQ approach is presented here to infer the uncertainty about 
 using observed experimental data. This 

requires the definition of the statistical model representing the underlying process that generates the 



experimental data. Such a statistical model is defined through the formulation of a model updating 

equation.  

In mathematical terms, we define the measured experimental data �,	.: 

�,	. + ��,	. 9 � (1) 

where ��,	. is the real (unknown) value of the measured quantity and �~�,#, �;<=>2 . is an additive 

measurement error, here assumed to be Gaussian-distributed. 

On the other hand,  ��,	, 
. is affected by the model discrepancy �,	., so we write:  

��,	. + ��,	, 
∗. 9 �,	. (2) 

Thus, � and �� depend only on 	, whereas �� depends on both 	 and 
∗, where 
 + 
∗ is the vector of 

the unknown “best” parameter values (i.e., the values that, when plugged into ��,	, 
., give the most 

accurate prediction of ��,	. in eq. (2)  (Wu et al., 2018b)). Summing equations (1) and (2), we get the 

model updating equation for the experimental output �,	., that accounts for parameter uncertainty, 

model discrepancy and measurement error (Arendt et al., 2012): 

�,	. + ��,	, 
∗. 9 �,	. 9 � (3) 

Neglecting �,	. in the model updating equation (3) is in principle wrong and causes “over-fitting” (Wu et 

al., 2018b). It means that the vector of “best” input parameters values 
∗ found for the design variables 

values 	? can be different from that for 	@, with A B C. In many practical cases, such as the one investigated 

in this work, even though the experimental campaign is exhaustive, enough cases of 	 to train a statistical 

model for �,	. are not available: therefore, a simplified model updating equation is adopted as follows: 

�,	. + ��,	, 
∗. 9 � (4) 

 Bayesian formulation of the IUQ problem  

The purpose of IUQ is to quantify DE
∗F�G, which can be obtained by Bayes rule: 

D,
∗|�. + D,�|
∗.D,
∗.I D,�|
∗.D,
∗.J
∗ 
(5) 

where D,
∗. is the prior Probability Density Function (PDF) and DE
∗F�G is the posterior PDF of the vector 

of calibration parameters 
∗ (i.e., the PDFs before and after the experimental data are observed, 

respectively). The likelihood function D,�|
∗. is the probability of observing the experimental data � 

given a particular value of 
∗. Notice that in the Bayes rule (5), an equal “weighting” is implicitly assigned to 

the likelihood function and the prior distributions to obtain the posterior probability density function of the 

uncertain parameters. 



In general terms, if we assume �,	. + /K1L,	., … , K>L,	.5 and ��,	, 
. + /K1M,	, 
., … , K>M,	, 
.5 to be D-dimensional vectors, and the measurement error to be zero-mean Gaussian-distributed (i.e., �~�,N, �<=>.), from equation (4), we get: 

D,�L|
∗. + O 1
E√2SG>TF�<=>F exp XY 12 /�,	�. Y ��,	�, 
∗.56  E�;<=>2 G[1 /�,	�. Y ��,	�, 
∗.5\]^_`

?a1
 

 

(6) 

where bc0D is the number of independent experimental measurements and �;<=>2  is the D × D covariance 

matrix for the measurement error. It should be noted that each experimental measurement corresponds 

to a particular vector of values of the design variable of  	�, A + 1, … , b<=>.  

 The denominator of the right-hand side of expression (5) is usually analytically intractable (Gelman et al., 

2015). A Markov Chain Monte Carlo (MCMC) algorithm can be adopted (Gelman et al., 2015) to address this 

problem, as it allows sampling from distributions known only up to a normalization constant (i.e., I DE�F
∗GD,
∗.J
∗ in our case). The MCMC samples can, then, be used to reconstruct the posterior PDF. 

The main drawback of MCMC is that it requires a considerable number (sometimes hundreds of thousands) 

of code executions (i.e., ��,	, 
.) to evaluate DE
∗F�G, each of which can be computationally intensive. 

To address this issue, Kriging meta-modeling is a solution very popular by adopted IUQ process, since it 

provides also an estimation of the meta-model uncertainty. If a Kriging meta-model ���,	, 
. is used to 

emulate ��,	, 
. (i.e., ��,	, 
. ≅ ���,	, 
.), then ���,	, 
. turns out to be Gaussian distributed. 

Assuming that ���,	, 
. has mean value �e,	, 
. and covariance matrix �MM (i.e., the matrix that provides 

the estimation of the meta-model uncertainty), the posterior PDF becomes:  

D,
∗|�. ∝ D,
∗. ∙ O 1E√2SG>h|�| exp XY 12 /�,	�. Y �e,	�, 
∗.56  �[1 /�,	�. Y �e,	�, 
∗.5\]^_`

?a1
 

 

(7) 

where � + �;<=>2 9 �MM is the likelihood covariance matrix that is given by the sum of the covariance 

matrix for the measurement error �;<=>2  and the covariance matrix for the meta-model uncertainty.  

 

 Meta-Modeling 

A Meta-Model (MM) is a functional approximation of the input/output relations of the original model that 

is faster to be evaluated. It is constructed starting from a set of input parameters and their corresponding 

model responses, obtained by running the original time-demanding model. In this work, we adopt Kriging 

MM because it provides a direct estimation of the meta-model uncertainty. Kriging is a stochastic algorithm 

which assumes that the model output i,
. is a realization of a Gaussian process indexed by 
 ∈ k
 ⊂ ℝ8. 

The mathematical form of a Kriging is given by: 



i,
. + n o@p@,
. 9 q,
. + rst,
. 9 q,
.u
@a1  

 

(8) 

where rst,
., is the mean value of the Gaussian process, also called the “trend”; it is given by v arbitrary 

functions [p1,
., … , pu,
.] and the related coefficients [o1, … , ou]. The second term, q,
., is a Gaussian 

process with zero mean and covariance: 

wxyzqE
,�.G, qE
,{.G| + ;2}E
,�., 
,{.G (9) 

where ;2is the process variance and },∙,∙. is the correlation function (also called correlation kernel), defined 

for any two points in the input domain k
, that is a function of the distance ℎ,∙,∙.: 

}E
,�., 
,{.G + }Eℎ,
,�., 
,{..G (10) 

with : 

ℎE
,�., 
,{.G + �n �7�,?. Y 7�,@.
�� �2  8

�a1 �
�.�

 

 

(11) 

where the parameters � + /�1, … , �85 are called length scale parameters. Estimation methods such as 

Maximum likelihood estimation (ML) or Cross-Validation estimation (CV) are usually applied to estimate r, ;2 and � (Bachoc, 2013). In this work, we use the software package UQLab (Lataniotis et al., 2019b) to 

implement the Kriging meta-modeling. Further details on Kriging meta-modeling are given in Appendix A. 

 Case Study 

The proposed IUQ approach is applied to a TH input model for the RELAP5-3D code (Idaho National 

Laboratory, 2015) developed by Politecnico di Torino (Bersano et al., 2020) for the PERSEO (In-Pool Energy 

Removal System for Emergency Operation) facility. The PERSEO equipment is not designed to simulate a 

specific passive system of a reactor, but rather to assess the performance and the efficiency of a new in-

pool heat exchanger for decay heat removal by natural circulation (Mascari et al., 2019). Experimental data 

from PERSEO test 7 have been used for IUQ. PERSEO test 7 experimental data have been originally 

distributed to Politecnico di Torino by ENEA for the participation at the PERSEO benchmark, conducted in 

the framework of OECD/NEA/CSNI/WGAMA “Status report on thermal-hydraulic passive systems design and 

safety assessment” (NEA/CSNI/R(2021)2, 2021). The PERSEO test facility, located at SIET laboratories, is 



sketched in Figure 1. The system is made of a primary side and a pool side. The primary side consists of 

(Bersano et al., 2020; Ferri et al., 2005; Mascari et al., 2019): 

• The pressure vessel (PV) (43 �� volume and 13 � height); 

• The steam line from the PV to the heat exchanger (HX) upper header; 

• The condensate line from the HX lower header to the PV; 

• The HX (composed of two cylindrical headers and 120 vertical straight pipes). 

The pool side includes (Bandini et al., 2011; Ferri et al., 2005; Mascari et al., 2019): 

• The Heat Exchanger Pool (HXP) (29 �� volume and 5.7 � height); 

• The Overall Pool (OP) (173 �� volume and 5.8 � height); 

• The line connecting the OP and the HXP with the triggering valve (TV); 

• The steam duct connecting the two pools. 

The PV is maintained in saturation conditions with steam from a nearby power plant. The system is activated 

by opening the TV, which causes the flooding of the HXP and the steam condensation inside the HX tubes. 

In this way, the power is transferred from the primary side to the pool side. The OP represents the water 

reservoir of the system. When the HXP water starts boiling, the steam produced in the HXP is driven to the 

OP through an injector that, conveying the steam below the water level, promotes the direct condensation. 

The condensation of steam inside the OP increases the OP water temperature up to the boiling point. The 

steam produced in the OP flows outside through the boil-off pipe.  

 

  

 

 
Figure 1. Scheme of the PERSEO facility (Bersano et al., 2020). 



The PERSEO experimental campaign consists of nine tests (Ferri et al., 2005; Mascari et al., 2019). Test 7 

consists of a first part aimed at verifying the behavior of the system with two different water levels and a 

second part aimed at characterizing the long-term cooling capability of the system (Mascari et al., 2019). 

For our analysis, the measured experimental data of Test 7 part 2 (Mascari et al., 2019) have been used. 

With reference to the classification of input parameters made in Section 2, the vector of the design variables 	 contains ICs, BCs and the set of scenario-description inputs (e.g., TV opening/closure) (Bandini et al., 2011; 

Mascari et al., 2019). Concerning the calibration variables 
, the RELAP5-3D code contains various model 

parameters. In the present analysis, only some are considered for the IUQ, as the objective of the present 

study is not to carry out a complete uncertainty analysis but rather only to show how the IUQ is performed 

in the proposed framework.  

Uniform priors with wide ranges are used so as to not inject any preference to some input values over 

others. Table 1 reports the upper and lower bound of the eight calibration parameters selected for the IUQ 

(normalized with respect to their prior nominal values), being these expected to play a crucial role in natural 

circulation (IAEA, 2012; Marque`s et al., 2002; Pierro et al., 2009). 

 


� Parameter (multiplication factor) Parameter Name Lower bound Upper bound 
� Inner fouling factor Inner_FF 0.5 1.5 
� Outer fouling factor Outer_FF 1.0 1.5 
� Injector K factor K_injector 0.5 1.5 
� Sum of the steam line’s K factors  K_sum_steam 0.5 1.5 
� Sum of condensate line’s K factors K_sum_condensate 0.5 1.5 
� Diaphragm K factor K_ diaphragm 0.5 1.5 
� Rockwool thermal conductivity k_rockwool 1.0 1.5 
� HXP first pipe flow area A_effective 0.5 1.5 

 

K_injector is the localized pressure drop coefficient assumed in the model at the injector. K_sum_steam is 

the weighted sum of the localized pressure drop coefficients assumed in the model on the steam line. The 

weighted sum is such that the sum of localized pressure drops of the steam line is conserved: 

∆D���,��� + n �? 12 �y?2 + �22� n �? ?2 + �2
2� 4<¡2 �n �? 4<¡2

 ?2?
�

??
 

(12) 

where  4<¡ is the area of the junction adopted as reference for K_sum_steam,  ?  is the A�¢ junction area of 

the steam line, � is the average steam density in the steam line, � is the mass flow rate, �? is the nominal 

value of the A�¢ junction’s £ factor. It follows that the sum of the steam line’s £ factors is: 

£¤�<¥¦ �?u< + n �? 4<¡2
 ?2?

 
(13) 

Table 1. Uncertain input parameters selected for the RELAP5-3D model 



K_sum_condensate has been obtained with the same procedure. K_diaphragm is the localized pressure 

drop coefficient assumed in the model for the diaphragm located in the HX pool (Bassenghi, 2013). 

Concerning the Inner_FF and Outer_FF, they are not fouling factors as usually defined to account for the 

fouling thermal resistances of the tubes; indeed, in RELAP5-3D they are (dimensionless) multiplicative 

factors applied to the heat transfer coefficient of the inner (Inner_FF) and the outer (Outer_FF) side of the 

HX tubes, respectively. Both the Inner_FF and Outer_FF are selected as calibration parameters to avoid 

underestimation of the heat transfer from the HX to the surrounding pool (Bersano et al., 2020). Pressure 

drops are taken into account by including K_injector, K_sum_steam, K_sum_condensate and K_diaphragm 

into the calibration parameters. Heat losses have been considered by including k_rockwool (i.e., rockwool 

thermal conductivity adopted as an insulator for some of the steam line’s pipes), and geometrical 

nodalization by including A_effective (i.e., the flow area of pipe 130 (thermally connected to the HX) that is 

not a fixed geometrical quantity, unlike the sum of pipe 130 and pipe 140 flow areas (that is equal to the 

HXP cross-section)). For more details about the facility’s nodalization, refer to Figure 2, that shows the 

RELAP5-3D nodalization of the PERSEO facility adopted in the present work, and (Bersano et al., 2020, 2019).  

 

 

 

 

For each parameter, the prior PDF is set as uniform: D,7. + 1§[¨ for 7 ∈ /©, ª5 and D,7. + 0 otherwise, 

where ª and © are the upper and lower bounds, respectively (listed in Table1).  

 

Figure 2. RELAP5-3D nodalization of the PERSEO facility (Bersano et al., 2020). 



The range of variation of each parameter, except for the Outer_FF and k_rockwool, varies from Y50% to 950% of the parameter nominal value. This is done to consider a relatively large range. The Outer_FF lower 

bound is set equal to the nominal value to avoid underestimation of the heat transfer from the HX to the 

pool (Bersano et al., 2020). This is not the case for the Inner_FF, since the nominal value that reproduces at 

best the experimental data of Test 7 is already set higher than 1 ,3.54. following the results of (Bersano et 

al., 2020). Concerning k_rockwool, the upper and lower bounds are set considering the thermal conductivity 

values for the range of temperature experienced by rockwool during this Test. 

Figure 3 shows a comparison between the RELAP5-3D HX exchanged power (Test 7 part 2) computed 

obtained using: (1) the nominal value of Inner_FF (i.e., that one found in (Bersano et al., 2020)) and (2) the 

RELAP5-3D default value for the Inner_FF (i.e., 1.0); in both cases, the other parameters are set to their 

nominal values. One can notice that in the case of Inner_FF+ 1.0, the code underestimates the HX 

exchanged power. As pointed out in (Bersano et al., 2020, 2019), a possible explanation can be that some 

correlations adopted in RELAP5-3D for condensation are applied in conditions outside their validity ranges. 

The introduction of ¬,0. in equation (3) could partially account for such model discrepancy, whereas, 

neglecting ¬,0., the model discrepancy is “dumped” in the uncertainty of 
∗. In general, a direct application 

of the results obtained in the IUQ process to a full-scale prototype must be carefully evaluated. Since 

PERSEO is a full-scale Separate Effect Test Facility (SETF) (Bestion et al., 2017; Mascari et al., 2015), thus, 

the PDFs obtained in the IUQ process using the experimental data can give some realistic insights of a full-

scale prototype that includes such a passive heat removal system.  

 



  

The HX exchanged power is selected as experimental data to perform the IUQ, since it is one of the most 

representative outputs of the transient. Indeed, the HX exchanged power level is affected by many thermal-

hydraulic phenomena taking place during the Test, such as (1) the heat exchange between the HX tubes 

and the HXP, and (2) the HXP water boiling (with consequent HXP water level decrease). Thus, the HX 

exchanged power conveys a considerable amount of information about the transient. It is worth mentioning 

that the proposed methodology is quite general so that if a different parameter were selected as FOM, only 

some fine-tuning would be needed of the input parameters (such as those reported in Table 1), whereas no 

major modification would be needed to the overall approach. Since we consider only a single experiment 

(i.e., Test 7 part 2), we absorb the dependence on 	 of the forward model ��,	, 
. into the definition of ��� + ���,
., that represents the RELAP5-3D model. Simulation performed using a dual-core processor 

with a clock speed of 2.7 GHz and 3.5 GHz in normal and TurboBoost modes, respectively, takes around 2 

hours.  
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 Dimensionality reduction 

The HX exchanged power is a vectorial quantity (i.e., a time-series), which introduces somewhat challenging 

additional complexity in the use of Kriging to approximate the RELAP5-3D results. Indeed, the vectorial 

output entries are usually highly correlated; thus, building a separate independent Kriging for each entry 

would be computationally unfeasible and, in principle, wrong. Two approaches can be adopted to tackle 

this problem (McFarland et al., 2008): 

1. performing a dimensionality reduction (e.g., Principal Component Analysis, PCA) to extract from 

the vectorial output relevant features that are used to represent the entire output. In this case, 

a possible solution would be to build a Kriging independent model for each feature; 

2. considering the variables that index the output spectrum (e.g., the time in our case) as additional 

labeling inputs. In this case, the output can be treated as a scalar quantity. This approach may 

introduce relevant difficulties in the case of very long time-series. For instance, if the RELAP5-

3D code outputs the response quantity at 1000 time instances, considering a DOE based on 100 

samples and treating time as an additional input, the total number of training points for the 

Kriging would be 1000 ∙ 100 + 100000, which is too cumbersome.  

In the present work, the first option is adopted by implementing PCA for the dimensionality reduction of 

the output. PCA is a space transformation from a high dimensional space to a lower-dimensional space such 

that transformed variables are uncorrelated and retain as much as possible of the variation present in the 

data set (Jolliffe, 2002). To carry out the PCA, Singular Value Decomposition (SVD) is adopted (Wall et al., 

2003). Further details on PCA are given in Appendix B. 

 Results 

The entire procedure for the IUQ can be subdivided into two main steps: 

1. Surrogate modeling; 

2. Bayesian inference (MCMC sampling). 

 Surrogate Modeling 

Let  + /
,1., … , 
,¦.5 be the Design Of Experiments (DOE) and !" + /��,1., … , ��,¦.5  the D × � matrix that 

contains the � corresponding D-dimensional BE model responses. PCA is applied to !"  that is transformed 

into a D∗-dimensional (D∗ ≪ D)obtaining the D∗ × � features matrix )" + z&',1., … , &',¦.|, whose rows are 

called PC scores and columns represent, in this case, the RELAP5-3D results projected into the features 

space. An independent MM (i.e., one for each feature) is trained to emulate each feature using the � input-



output training patterns (i.e.,  + /
,1., … , 
,¦.5 and the respective � transformed model responses 

®i@,1., … , i@,¦.¯, with C + 1,2, … , D∗). The Kriging prediction for a specific input 
,?. will be the  D∗ × 1 vector &(. To antitransform a generic vector & from the features space to the original space: 

�* + #$!" 9  °6  & (14) 

where #$!" is the simulations means vector  and ° is the PCA transformation matrix (see expression (B.2) and 

(B.6) of Appendix B). 

This solution usually performs as good as using a fully multivariate meta-model (Wilkinson, 2010), even 

though the PC scores are not independent. Figure 4 shows a schematic diagram of the meta-modeling 

approach adopted.  

 

 

 

Kriging, unlike other meta-modeling techniques, provides the uncertainty associated with each prediction, 

making such type of MMs particularly suitable for the Bayesian IUQ, since this uncertainty directly enters 

into the likelihood formulation (see Eq. (17) and (18) in Section 6.2).  

The very first step we have to deal with is the selection of the DOE points  + /
,1., … , 
,¦.5. LHS is 

adopted to build   according to the prior distributions reported in Table 1. To analyze the effect of � on 

the Kriging performances, we decide to work with two different DOEs, the first one (i.e.,  1) characterized 

by �1 + 90 points, the second one (i.e.,  2) characterized by �2 + 180 points1. Both  1 and  2 are 

simulated through the RELAP5-3D code. Let  1 + /
,1., … , 
,¦±.5 and  2 + /
,1., … , 
,¦².5 be the 

ensembles of design points and !"1 + /��,1., … , ��,¦±.5 and !"2 + /��,1., … , ��,¦².5 their respective RELAP5-

 
1 Actually, the �2 design points are obtained adding 90 LHS-sampled points to the first experimental design  1. 

Figure 4. A schematic diagram of the Meta-Model approach adopted. 



3D simulated output. Both !"1 and !"2 are pre-processed by applying a moving median filter (by the 

“movmedian” MATLAB function) to reduce the noise by which they are affected. Once !"1 and !"2 are pre-

processed,  PCA is applied. The percentage of variance explained (i.e., 
∑ ´µ`∗µ¶±∑ ´µµ̀¶± ∙ 100) is set equal to 95 %. 

According to (Wilkinson, 2010), even though PCA is a linear technique for dimensionality reduction, it can 

be used for nonlinear models. Indeed, what makes PCA a linear approach is the linear projection into the 

reduced space, whereas the mapping from the input space Θ ⊂ ℝ8 to the features space ¸ ⊂ ℝ>∗
 is 

performed through the Kriging MMs and, thus, can be nonlinear. Figure 5 displays the cumulative 

percentage of variation explained by the first 50 PCs. We find that D∗ + 4 guarantees a percentage of 

variation explained at least equal to 95% for both !"1 and !"2 . Choosing  D∗ > 4 would decrease the Kriging’s 

accuracy for a higher order for PCs, as shown later. 

 

 

 

In the current research, for each principal component, we study which set of Kriging options (i.e., which 

combination of trend type, correlation family, and estimation method) provides the best predictive 

performances. We explore: 

• Three different trend types: Constant, Linear, Quadratic; 

• Four different correlation families types: Exponential, Gaussian, Matérn-3/2, Matérn-5/2; 

• Two different estimation methods types: CV and ML; 

for a total of twenty-four different combinations (i.e., 3 × 4 × 2). In Table 2, each combination of Kriging 

options is labeled with a number (i.e., 1,2, … ,24). For each combination }>4<8?��?�u2  and   ºw� are computed 

0 5 10 15 20 25 30 35 40 45 50

Principal component index

84

86

88

90

92

94

96

98

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e
 o

f 
v
a
ri

a
ti
o
n
 e

x
p
la

in
e
d

90 LHS samples

90+90 LHS samples

Figure 5. Cumulative percentage of variation explained by the first fifty PC dimensions. 



to assess Kriging performance. For further details on Kriging options, }>4<8?��?�u2  and  ºw�, refer to 

Appendix A. Figure 6 and Figure 7 show, for each PCs, the plots of }>4<8?��?�u2  vs  ºw� in the case of � + 90 

and � + 180, respectively. The Kriging options leading to the best-performances are those that occupy the 

top-left region of these plots; indeed, we want to maximize }>4<8?��?�u2  and to minimize  ºw�. Thus, the 

search for the best Kriging option reduces to a multi-objective optimization problem. For � + 90, 

combination 13 (see Table 2) seems to be non-dominated by other solutions (i.e., it is a Pareto optimal 

solution) for all PCs. With � + 180, combination 9 results to be non-dominated for the first three PCs; 

instead, for the fourth principal component, one of the best options is given by combination 11. In Figure 

8, the performances of the 24 Kriging combinations are compared for � + 90 and � + 180, using only 

the }>4<8?��?�u2  factor. On the y-axis the }>4<8?��?�u2  factor is plotted, whereas the x-axis reports the 

identification number of each combination.   

It is worth noticing that: 

• the accuracy decreases for PCs of higher-order; thus, we decide to take into account only the first D∗ + 4 PCs (i.e., the number that guarantees a cumulative 95% of variation explained) since for 

PCs of higher-order }>4<8?��?�u2  would be too low; 

• as expected, the accuracy for � + 180 is generally higher than that for � + 90.  

Given the observations above, the following Kriging MMs are adopted for each principal component to 

carry out the MCMC sampling: 

• PC1, PC2, PC3: Kriging combination 9, trained with � + 180; 
• PC4: Kriging combination 11 trained with � + 180. 
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Figure 6. Plots of ������������ vs ���� factors of the 24 Kriging option sets (see Table 2) for the four PCs (� + ¼N). 



 

 

 

 

Combination Trend type Correlation 

kernel 

Estimation 

method 

Combination Trend type Correlation 

kernel 

Estimation 

method 

1 Constant Matérn-5/2 CV 13 Linear Gaussian  CV 

2 Constant Matérn-5/2 ML 14 Linear Gaussian  ML 

3 Constant Matérn-3/2 CV 15 Linear Exponential  CV 

4 Constant Matérn-3/2 ML 16 Linear Exponential ML 

5 Constant Gaussian  CV 17 Quadratic Matérn-5/2 CV 

6 Constant Gaussian  ML 18 Quadratic Matérn-5/2 ML 

7 Constant Exponential  CV 19 Quadratic Matérn-3/2 CV 

8 Constant Exponential ML 20 Quadratic Matérn-3/2 ML 

9 Linear Matérn-5/2 CV 21 Quadratic Gaussian  CV 

10 Linear Matérn-5/2 ML 22 Quadratic Gaussian  ML 

11 Linear Matérn-3/2 CV 23 Quadratic Exponential  CV 

12 Linear Matérn-3/2 ML 24 Quadratic Exponential ML 
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R
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Figure 7. Plots of ������������ vs ���� factors of the 24 Kriging option sets (see Table 2) for the four PCs (� + ��N). 

Table 2. Correspondence between combination numbers and the respective Kriging options 



 

 

 Bayesian inference (MCMC sampling) 

Before using the experimental time-series � for the IUQ process, data smoothing is performed since 

experimental data are noisy. Thus, we fit the measured HX exchanged power using the MATLAB function 

“Smoothing Splines,” and we project � onto the feature space through: 

&L + °E� Y #$!"G + zi1L , … i>∗L |6
 (15) 

where i1L , … i>∗L  are the PC scores of the experimental response, #$!" is the simulations means vector (see 

expression (B.2))  and ° is the PCA transformation matrix. In Figure 9, except for the initial and the last part 

of the transient, a relatively good agreement between � and the reconstructed experimental time-series 

�*L can be appreciated: 

�*L + #$!" 9 °6  & (16) 
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Figure 8. ������������  values of different combinations (see Table 2) for each principal component. 



 

The discrepancy between � and �*L (at both the beginning and the last part of the transient, where �*L  

approaches zero) is due to the fact that the PCA transformation matrix ° is obtained using only RELAP5-3D 

time-series. These time-series, unlike �, approach zero at both the beginning and the last part of the 

transient. According to (Wu et al., 2018a), performing the IUQ in the original space (i.e., ½ ⊂ ℝ>), applying 

a back-transformation of each Kiging’s prediction &(,
∗., may cause convergence issues in the MCMC 

sampling. Indeed, if for any combination of 
, �*�(i.e., the reconstructed Kriging prediction) does not agree 

with �, MCMC sampling does not reach the equilibrium distribution. For this reason, in the present work � is transformed into the PC subspace (obtaining &L) and the IUQ is carried out in the PC subspace. 

The prior D,
∗. is a multivariate distribution of independent uniformly distributed variables. The posterior DE
∗F&G is proportional to D,
∗. multiplied by the likelihood DE&F
∗G. Since in our case b<=> + 1, the 

posterior expression reduces to: 

DE
∗F&G ∝ D,
∗. ∙ 1E√2SG>h|�| exp XY 12 /&L Y &(,
∗.56 �[1 /&L Y &(,
∗.5\ 
(17) 

where &(,
∗. is the mean value of the Kriging prediction and � is the likelihood covariance matrix: 

� + °�;<=>2 °6 9 �������� (18) 

where °�;<=>2 °6 represents the transformation of the measurement error covariance matrix from the 

original D Ydimensional space onto the features D∗ Ydimensional space. In the present work, ;<=> is set 
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Figure 9. HX exchanged power: a comparison between experimental raw data, experimental smoothed data (i.e., �) 

and reconstructed experimental data �*. 



equal to 500 �� (Ferri et al., 2005).  �������� is the covariance matrix associated with the Kriging 

prediction uncertainty and it is a D∗ × D∗ matrix having the mean square errors of each PC score prediction 

as diagonal entries: 

�������� + �;i1,7∗.2 0 00 ⋱ 00 0 ;iD∗,7∗.2 � 

 

(19) 

An adaptive Metropolis algorithm (Haario et al., 2001) is applied to generate eight parallel chains with 5 ∙10� iterations. We adopt the UQLab MATLAB package (Wagner et al., 2019) to implement the MCMC 

algorithm. It took almost 2.5 hours to compute the posterior using a dual-core processor having a clock 

speed of 2.7 GHz and 3.5 GHz in normal and TurboBoost modes, respectively. On the same processor, we 

can run at most four parallel RELAP5-3D simulations together, lasting two hours; thus, the MCMC sampling 

would take about 228 years. For parameter samples that go outside the bounds of a priori distribution 

during the MCMC simulation (that have a zero prior probability), the likelihood function is not evaluated. 

This is done for efficiency because the resulting realizations would be rejected in any case. We post-process 

the samples discarding from each chain the first half of the samples for burn-in. To assess the MCMC 

simulation convergence, we examine the trace plots, the Gelman-Rubin potential scale reduction factor 

(Gelman et al., 2015) (i.e., a quantitative approach used to assess MCMC convergence) reported in Table 3 

and the autocorrelation functions in Figure 11.  For clarity sake, in Figure 10, only the first 10¿ iterations of 

the trace plots (out of 500 × 10�) are plotted: in all cases, chains have good mixing and stationary 

properties (i.e., cover a common distribution).  

The Gelman-Rubin potential scale reduction factors are close to 1 for each 7, indicating that the chains have 

achieved convergence(Gelman et al., 2015). From the autocorrelation functions, it is evident that samples 

within each chain are correlated and, therefore, not independent. A common practice adopted to reduce 

the autocorrelation is thinning. It consists of keeping every ��¢ sample from each sequence. We do not 

perform thinning to compute the posterior distribution. Indeed, according to Gelman et al. (Gelman et al., 

2015), even though we do not perform thinning, we can use samples for inference about 7∗if the chains 

have achieved convergence.  
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Table 3. Gelman-Rubin potential scale reduction factors. 



  

 

 

Figure 12 reports the posterior marginal PDFs of the uncertain calibration parameters 
∗ that are obtained 

through a kernel density estimation using a reflection boundary correction (Cox et al., 1986).  
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Figure 10. Trace plots for the first eight calibration parameters. To make the Figures more readable, only the first �N� 
iterations (out of �NN × �N�) are shown. For the remaining MCMC iterations, trace plots result to be essentially 

unchanged.  



 

 

 

 

The marginal posteriors of 71∗, 72∗, 7�∗, 7Á∗ display a significant change with respect to their priors; in contrast, 

the other marginal posteriors are only slightly different and maintain the same support of the 

priors.  For 71∗ and 72∗, the posterior PDFs appear to be bounded by the prior supports, which is not the case 

for the other parameters. In particular, for 7�∗ and 7Á∗ the distributions are peaked at their upper 

bounds, meaning that the IUQ approach is very effective in shaping posterior distributions largely different 

from the prior distributions. Future works will further investigate the effect of different prior ranges of input 

on the posterior distribution results, eventually embedding some pieces of experimental evidence. Also, it 

is worth noticing that different prior PDFs of 7�∗ and 7Á∗  would impact on the results of the Sobol indices 

Sensitivity Analysis (discussed in Section 6.2.1). 

Some summary statistics of the posterior distribution (i.e., mean values, modes, 5�¢ and 95�¢ percentiles) 

are reported in Table 4.  

 

 

 

 

Figure 12. Prior distributions and posteriors’ kernel density estimations. 
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�∗ Parameter Mean values Modes 5th percentiles 95th percentiles 
�∗  Inner_FF 0.90 0.90 0.86 0.94 
�∗  Outer_FF 1.36 1.40 1.28 1.43 
�∗  K_injector 1.41 1.49 1.25 1.49 
�∗  K_sum_steam 0.96 0.88 0.56 1.40 
�∗  K_sum_condensate 0.99 1.06 0.55 1.45 
�∗  K_ diaphragm 0.96 1.30 0.54 1.44 
�∗  k_rockwool 1.21 1.04 1.02 1.45 
�∗  A_effective 1.43 1.48 1.33 1.50 

 

The marginal posterior distributions in Figure 12 cannot be used to draw samples because the calibration 

parameters are not independent. Indeed, Table 5 shows that some of the calibration parameters are 

strongly correlated. 

 

 
�∗  
�∗  
�∗  
�∗  
�∗  
�∗  
� ∗  
�∗  
�∗  1.0000 - - - - - - - 
�∗  -0.3984 1.0000 - - - - - - 
�∗  -0.2768 0.4478 1.0000 - - - - - 
�∗  0.2807 0.0370 0.0493 1.0000 - - - - 
�∗  0.0500 0.0209 0.0421 -0.0738 1.0000 - - - 
�∗  0.0446 0.0916 0.0375 -0.0489 0.0115 1.0000 - - 
�∗  0.0404 -0.2789 0.0477 -0.0301 0.0634 -0.0386 1.0000 - 
�∗  0.0267 0.0144 -0.2345 -0.1393 0.0868 0.0473 -0.0628 1.0000 

 

6.2.1 Sensitivity Analysis  

In Figure 12, we notice that the posterior distributions of 7¿∗, 7�∗, 7Â∗, 7Ã∗ are slightly different and maintain 

the same support of the priors. In this regard, employing a global Sensitivity Analysis (SA), we want to 

determine to what extent the uncertainty of these parameters contributes to the output uncertainty. Global 

SA is the study of how the output uncertainty of a mathematical model is apportioned in the uncertainty of 

its inputs considering their entire range of interest (Iooss and Lemaître, 2015). In this work, we adopt Sobol’ 

indices (Saltelli et al., 2010), i.e.,  a global SA method that decomposes the variance of the model output 

into fractions assigned to inputs or sets of inputs. If the model output is approximated through a Polynomial 

Chaos Expansions (PCE) (Sudret, 2015), Sobol’ indices can be directly computed by postprocessing the PCE 

expansion coefficients (Sudret, 2008). Conventional approaches to global SA assume that the model output 

is scalar (Garcia-Cabrejo and Valocchi, 2014). In the case of vectorial output, (Campbell et al., 2006) 

proposes expanding such output into a basis (e.g., using PCA) and, then, determining the Sobol’ indices for 

the expansion coefficients with respect to the inputs. In this regard, we firstly approximate each PC through 

a PCE using a Least Angle Regression algorithm (Lataniotis et al., 2019a); then, following (Sudret, 2008), we 

Table 4. Posterior summaries. 

Table 5. Correlation Matrix computed using the MCMC samples 



post-process the PCE expansion coefficients to compute the first-order Sobol’ indices. Further details about 

Sobol’ indices sensitivity analysis are given in (Marelli et al., 2019). Figure 13 reports the first-order Sobol’ 

indices of the four principal components with respect to the eight calibration parameters. While the 

parameters 71∗, 72∗, 7�∗, 7Á∗ are revealed to be the most important, 7¿∗, 7�∗, 7Â∗, 7Ã∗ result to be less influential. 

Interestingly, the proposed IUQ approach provides posterior PDFs that hardly differ from the prior for input 

parameters characterized by a low first-order Sobol’index. 

 

 

 Forward Uncertainty Propagation  

It is not possible to assess the quality of the IUQ results only through the posterior PDFs obtained. Thus, we 

perform forward uncertainty propagation (by simulating the posterior samples obtained from the MCMC 

after an appropriate thinning2) to check that the updated PDFs are consistent with the Test 7 part 2 

experimental data. The forward uncertainty propagation is carried out using both the meta-model 

(reconstructing the reduced-space predictions through expression (16)) and the RELAP5-3D BE model. 

Concerning the forward uncertainty propagation performed through the meta-model, Figure 14 compares 

the reconstructed Kriging predictions for the prior (Figure 14a) with the reconstructed Kriging predictions 

for the posterior (Figure 14b). In particular, Figure 14a shows the reconstructed Kriging prediction �* for 100 

input values randomly sampled from the prior compared to the reconstructed experimental data �*L, 

 
2 For the thinning we keep every 2000th sample draws from each chain and, then, we randomly chose 100 samples 

from the thinned chains. 
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Figure 13. First-order Sobol’ indices of the four principal components with respect to the eight calibration 
parameters. 



whereas Figure 14b compares �*L   with respect to the reconstructed Kriging predictions �*  of: (1) 100 

posterior samples, (2) the posterior mode, (3) the posterior mean value and (4) the prior nominal value. As 

expected, the simulated posterior samples give a smaller spreading of the results with respect to the prior 

samples; moreover, the posterior samples predictions envelop the experimental data. Comparing the 

reconstructed Kriging prediction for the posterior mode and the posterior mean value with respect to that 

for the prior nominal value, we can notice that the posterior mode and the posterior mean value allow 

reproducing better �*L.  

 

  

(a) 

 

(b) 

The good agreement that we observe for the forward uncertainty propagation performed through the 

meta-model must be further investigated when the RELAP5-3D BE model is adopted. In this regard, Figure 

15 compares the results of b + 59 prior and posterior samples simulated through RELAP5-3D. In particular, 

Figure 15a shows the RELAP5-3D simulations for b + 59  input values randomly sampled from the prior 

compared to �L, whereas Figure 15b compares �L  with respect to the RELAP5-3D simulations of: (1) b +59 posterior samples, (2) the posterior mode ��,
��Ä���������� ., (3) the posterior mean value ��,
��Ä��������Å� . 

and (4) the prior nominal value ��,
����������ÅÆ.. The ensemble of the posterior simulations in Figure 15b is 

coherent with experimental data (i.e., it roughly envelopes �L) and it displays less  spreading of the results 

compared to the prior; however, one can notice that all the RELAP5-3D simulated posterior samples, in 

general, show much wider oscillations than ��,
����������ÅÆ.. A possible reason for such significant oscillations 

can be the data filtering performed on the RELAP5-3D simulated HX exchanged power before the 

Figure 14. Reconstructed Kriging predictions of 100 prior samples compared with respect to the reconstructed 
experimental data and the reconstructed Kriging prediction of the prior nominal value (Figure 14a). Reconstructed 

Kriging  predictions for: 100 posterior samples, the prior nominal value, the posterior mode and posterior mean 
value with respect to the reconstructed experimental data (Figure 14b). 



dimensionality reduction (i.e., before meta-modeling). Indeed, because of data filtering, the  meta-model is 

no longer able to distinguish input parameters 
 that generate noisy time-series, and, eventually, this can 

affect the IUQ results.  

  

(a) 

 

(b) 

 

6.3.1 Safety margin calculation 

Best Estimate Plus Uncertainty (BEPU) methodologies (D’Auria et al., 2006; IAEA, 2008) typically provide the 

results in terms of uncertainty ranges for the calculated Figure of Merit (FOM); this allows us to compute 

the safety margin with respect to a threshold value. Following the GRS method (Glaeser, 2008), order 

statistic, and in particular Wilk’s formula (Wilks, 1941), can be employed to determine the number of 

simulations b that guarantee the confidence level o and the probability content Ç for D FOMs (Guba et al., 

2003). In the case of one-sided confidence level with one (i.e., D + 1) FOM, the Wilk’s formula reduces to: 

1 Y Ç] È o (20) 

The integral of the HX exchanged power É,Ê. over the mission time, Ë¦?¤¤?�u + 5736 Í  (i.e., the duration 

of Test 7 part 2), is selected as FOM, since it is one of the most relevant parameters of the experiment:  

Î + Ï É,Ê.JÊ6ÐÑÒÒÑÓÔ
�  

        (21) 

Figure 15. RELAP5-3D predictions of � + �¼ prior samples compared with respect to experimental data and the 
RELAP5-3D prediction of the prior nominal value (Figure 15a). RELAP5-3D predictions for: � + �¼ posterior samples, 
the prior nominal value, the posterior mode and posterior mean value with respect to experimental data (Figure 15b). 



In case of a safety review process, other parameters may be selected as FOM, such as the minimum and/or 

maximum HX power or the energy exchanged over certain intervals. The acceptance criterion for the 

selected FOM is, for demonstration purposes, set to be 0.9Îu�¦?u¥�; that is, the system is considered to be 

failed if Î Õ 0.9 I Éu�¦?u¥�,Ê.JÊ6ÐÑÒÒÑÓÔ� , where Éu�¦?u¥� is the RELAP5-3D simulated HX exchanged power 

using as input the prior nominal values.  b + 59 RELAP5-3D simulations are carried out for calculating the 

one-sided 95% confidence interval with 95% probability content. According to Wilks’s formula, the lowest 

simulated value of Î (i.e., Î��Ö<¤� + 6.716 × 10Ã �×) is within the lower 5% range with at least 95% 

confidence; thus, the margin obtained in this demonstrative application, with respect to the assumed 

threshold value (i.e., 0.9Îu�¦?u¥� + 6.004 × 10Ã�×), is Ø + 7.120 × 10Â�×. Note that the uncertainty 

analysis carried out in this Section to compute the safety margin is performed only for demonstrative 

purposes; indeed, it involves the propagation of only some epistemic input uncertainty (i.e., that found 

through the IUQ process). Additional epistemic input uncertain parameters could be taken into account 

considering (e.g., model input parameters within the code). A realistic calculation of the safety margin must 

include both epistemic and aleatory uncertainty. At least, in Figure 16, it can be noticed that the safety 

margin is higher than the results spreading: this is encouraging considering that the propagation of aleatory 

uncertainty can introduce further uncertainty in the output, reducing in this way the safety margin. 

 

 

Figure 16. Safety margin with respect to the assumed threshold value (i.e., N. ¼�����ÅÆ). 



 Conclusions 

In the present paper, we have proposed an approach for the uncertainty quantification of T-H model codes 

used for passive safety systems reliability assessment. In particular, a Bayesian IUQ approach has been 

applied to a RELAP5-3D model of the PERSEO facility, adopting a single time-series measurement data of 

the HX exchanged power. Principal Component Analysis has been implemented for output dimensionality 

reduction, and Kriging meta-modeling has been adopted for the emulation of the original T-H model code. 

In this way, the computational burden related to the MCMC posterior sampling for Bayesian posterior 

evaluation has been lowered by several orders of magnitudes. Since Kriging accuracy decreases with the 

principal components order, only four PCs have been retained for a cumulative percentage of variance 

explained equal to 95 %. The posterior marginal distributions have been obtained from the MCMC samples 

through a kernel density estimation. The experimental data have been projected onto the PC subspace, 

thus performing the entire IUQ on such reduced space.  

Uniform priors with relatively wide ranges have been adopted to represent the hypothetical case of scarce 

knowledge about the BE model input parameters. After IUQ, some of the marginal posterior PDFs obtained 

show supports significantly narrower than the priors. From this perspective, credibly, the proposed IUQ 

process might reduce the epistemic uncertainty in problems affected by a scarce knowledge of the input 

parameter PDFs.  

A forward uncertainty propagation based on the posterior samples shows agreement between the Test 7 

part 2 experimental data of PERSEO and the RELAP5-3D simulations. However, significant oscillations 

characterize such simulations; thus, further solutions that allow avoiding such oscillations should be 

considered.  

We computed the first-order Sobol’ index of the uncertain input parameters, and we found that the 

proposed IUQ approach, for input parameters characterized by low first-order Sobol indexes, finds posterior 

PDFs that hardly differ from the prior. Thus, the IUQ method applied in this paper does not calibrate 

parameters that are not significant to the output uncertainty.  

 There are some limitations and drawback in the proposed approach that should be further investigated: 

1. Experimental data of a single test (Test 7 part 2) have been considered, which is typically 

insufficient to train a Kriging for the discrepancy term �,	.. Neglecting this term, the 

discrepancies in the code results are partially taken into account by the uncertainty of 
∗ (that 

does not depend on the experimental conditions). This means that the calibrated TH model may 

perform poorly when applied to other experiments. In spite of this, the current work serves as 

a demonstration of the methodology and, in future works, additional experimental parameters 

and tests will be considered to improve the model calibration for developing the a posteriori 

parameter distribution. 



2. PC scores are uncorrelated by definition, but linear uncorrelation of two random variables does 

not, in general, imply their independence. In this paper, assuming that PC scores are mutually 

independent allows us to build D∗ independent Kriging meta-models for each principal 

component. As a result, �������� is a diagonal matrix. On the other hand, without the 

assumption of mutually independent PC scores, we cannot state that they are distributed 

according to a multivariate gaussian distribution: in that case, one should thoroughly review the 

formulation of the likelihood function.  

3. We implemented PCA, which is a linear dimensionality reduction technique. In general, real data 

is likely to form a highly nonlinear manifold, and nonlinear dimensionality reduction techniques 

may offer an advantage (Van Der Maaten et al., 2009). Future works will investigate new 

approaches for constructing Kriging emulators of time-dependent quantities using nonlinear 

dimensionality reduction (e.g., autoencoders). 

4. The higher the input dimensionality, the higher the size of the training dataset needed to obtain 

the same meta-model accuracy (Loeppky et al., 2009). In this work, the selection of some input 

calibration parameters was expert-based. A more rigorous approach should 1) identify and 

include all the possible model parameters affecting the code output and, eventually, 2) propose 

a method (e.g., variance-based sensitivity analysis) for selecting the most relevant ones. This last 

point would reduce the input dimensionality and, consequently, increase Kriging performance 

(Loeppky et al., 2009). 

5. For some of the input parameters (i.e., 7�∗ and 7Á∗), the posterior distributions are peaked at the 

upper boundary, meaning that if the model is not constrained by the ranges reported in Table 

1, the posterior might be different. Future works will further investigate the effect of the range 

of the prior distribution on the posterior distributions. 

6. Filtering of data (both the experimental data and the T-H model predictions) may affect the IUQ 

results. Although filtering noisy data affected by numerical oscillation may appear reasonable, 

justifying a particular filtering method rather than another is a non-trivial task. Future works 

should explore new approaches that allow dealing with noisy raw data without resorting to 

filtering techniques. 

Appendix A 

A.1 Kriging Theory  

Let us consider a general mathematical model i + i,
., where i is a scalar and 
 + /71, … , 785 is a J-

dimensional vector. Assume that   + z
,1., … , 
,¦.|6
is the Design Of Experiment (DOE) and & +/i1, … , i¦56 is the vector of the corresponding � model responses. Kriging is a method of interpolation, 



which assumes that the model output i,
. is a realization of a Gaussian process indexed by 
 ∈ k
 ⊂ ℝ8. 

The mathematical form of a Kriging is given by: 

i,
. + n o@p@,
. 9 q,
. + rst,
. 9 q,
.u
@a1  

 

(A.1) 

The first term in Eq. (8), rst,
., is the mean value of the Gaussian process, also called the “trend”; it is 

given by v arbitrary functions [p1,
., … , pu,
.] and the related coefficients [o1, … , ou]. The second term, q,
., is a Gaussian process with zero mean and covariance: 

wxyzqE
,�.G, qE
,{.G| + ;2}E
,�., 
,{.G (A.2) 

where ;2is the process variance and },∙,∙. is the correlation function (also called correlation kernel), defined 

for any two points in the input domain k
.  

},∙,∙.  is a function of the distance ℎ,∙,∙.: 

}E
,�., 
,{.G + }Eℎ,
,�., 
,{..G (A.3) 

According to (Lataniotis et al., 2019b), ℎ,
,�., 
,{.. has the following expression: 

ℎE
,�., 
,{.G + �n �7�,?. Y 7�,@.
�� �2  8

�a1 �
�.�

 

 

(A.4) 

where the parameters � + /�1, … , �85 are called length scale parameters. Table 6 and Table 7 show, 

respectively, some common correlation kernels and trend types that are implemented and compared in this 

work to find the best Kriging options. 

 

Correlation Kernel Expression 

Exponential �E
,�., 
,{.G + ÙÚÛzYÜE
,�., 
,{.G| 

Gaussian �E
,�., 
,{.G + ÙÚÛ ÝY �� Ü�E
,�., 
,{.GÞ 

Matérn-3/2 �E
,�., 
,{.G + ß� 9 √� ∙ ÜE
,�., 
,{.Gà ÙÚÛzY√� ∙ ÜE
,�., 
,{.G| 

 

Matérn-5/2 �E
,�., 
,{.G + �� 9 √� ∙ ÜE
,�., 
,{.G 9 �� ∙ Ü�E
,�., 
,{.G� ÙÚÛzY√� ∙ ÜE
,�., 
,{.G| 

 

Table 6. Common correlation kernels  



 

Trend type Expression 

Constant (ordinary Kriging) rst,
. + rN 

 

Linear rst,
. + rN 9 n r�
�
�

�a�  

 

Quadratic rst,
. + rN 9 n r�
�
�

�a� 9 n n r�{
�
{
�

{a�
�

�a�  

 

In line with the Kriging definition, & and a generic model prediction i,
. at the input location 
 are jointly 

distributed according to a multivariate Gaussian distribution: 

ái,
.& â ~b ãärst,
.år æ , ;2 ç 1 �s,
.�,
. � èé 
(A.5) 

where å is the matrix of regression functions t,
. evaluated in correspondence of the � DOE points (i.e.,  ê?@ + p@,
�. ,    A + 1, … , �;    C + 1, … , v); �,
. is the vector of correlations between 
 and the DOE points 

(i.e., ë? + }E
, 
,�.G   A + 1, … , �); � is the correlation matrix (i.e., }?@ + }E
,{., 
,�.G   A, C + 1, … , �). 

The Kriging prediction (i.e., the mean value) î,
. and the variance ;í,
.2  of the Gaussian random variable i,
. are given by (Dubourg, 2011):  

î,
. + t,
.6rÀ 9 �,
.6�[1,& Y årÀ. (A.6) 

;í,
.2 + ;2 ã1 Y �6,
.�[1�,
. 9 ßås�[��,
. Y t,
.às,ås�[�å.[1ßås�[��,
. Y t,
.àé  (A.7) 

where rÀ + Eås�[�åG[1ås�[�& is the least square estimate of the regression coefficients.  

A crucial consequence of the Gaussian assumption is that: 

i,
.~bEî,
., ;í,
.2 G. (A.8) 

A property of the Kriging predictor is that it always interpolates the design sites. The mean square error of 

the prediction (i.e., ;í,
∗.2 ) collapses to zero as the new point 
 gets close to the design sites and increases 

when 
 moves away from the design sites. Intuitively, a richer DOE will give a Kriging with a better 

prediction capability. However, increasing the DOE size is generally computationally intensive; therefore, 

the selection of design sites through an efficient DOE approach is a crucial issue to be addressed. Latin 

Hypercube Sampling (LHS) is one of the most popular DOE techniques (Helton and Davis, 2003), and it is 

adopted in this work.  

To formulate the general theory of Kriging, we introduced ,v 9 J 9 1. hyperparameters (i.e., v regression 

coefficients r, J length scale parameters �, one process variance ;2) that are unknown and must be 

estimated. Estimation methods such as Maximum likelihood estimation (ML) or Cross-Validation estimation 

Table 7. Common Trend Types 



(CV) are usually applied to estimate them. In this work, we use the software package UQLab (Lataniotis et 

al., 2019b) to implement the Kriging meta-modeling. Further details regarding the comparison between ML 

and CV can be found in (Bachoc, 2013).  

A.2 Kriging performance indicators 

The quality assessment for a Kriging model is usually performed considering the accuracy in reproducing 

the original model output at unobserved locations 
 (Martin and Simpson, 2005). This is typically done by 

measuring the error in Kriging’s prediction using a validation dataset (i.e., a set of model simulations 

different from  ). Such errors are collected in the }¥��î¥�2  indicator, which is defined as: 

}¥��î¥�2 + 1 Y ∑ ßiE
,?.G Y îE
,?.Gà2]ïðñ?a1∑ ,i,
,?.. Y i.2]ïðñ?a1  

 

(A.9) 

where bò¥� is the size of the validation dataset, i ß
,A.à and îE
,?.G are the model and the Kriging predictions 

for 
,?. (i.e., the A�¢ DOE input point of the validation dataset), respectively, i + 1]ïðñ ∑ iE
,?.G]ïðñ?a1 . 

However, this approach requires a considerable number of additional simulations (bò¥� ≫ �) that likely 

are computationally intensive. 

Computationally cheaper alternatives, namely the cross-validation (CV) and Akaike’s information criterion 

(AIC), can be used to estimate the meta-model quality without any additional simulation beyond those used 

to train the Kriging (Martin and Simpson, 2005).  

Concerning the indicator base on CV, the meta-model is trained leaving out a fixed number of simulations 

(typically one) from the training dataset. This new model is used to predict the remaining simulation 

outcomes and the respective errors. Such errors are collected in the }>4<8?��?�u2  indicator, which is defined 

as: 

}>4<8?��?�u2 + 1 Y ∑ ßiE
,?.G Y î,[?.E
,?.Gà2¦?a1∑ EiE
,?.G Y iG2¦?a1
 

 

(A.10) 

where � is the training dataset size,  î,[?.E
,?.G is the prediction of the Kriging that is trained using all the 

points of  , except 
,?., i + 1¦ ∑ iE
,?.G¦?a1  .  

Concerning the indicator based on the AIC, which is a function of the number of hyperparameters ô (i.e., v 9 J 9 1) and the likelihood function ©,r, ;2, �|&.: 

 ºw + Y2 lnE©,r, ;2, �|&.G 9 2ô (A.11) 

where: 



©,r, ;2, �|&. + ,det ,�..[1/2,2S;2.¦/2 exp ÝY 12;2 ,& Y år.6�[1,& Y år.Þ 
(A.12) 

If � is small (i.e., 
¦ú Õ 40) the  ºw should be corrected through: 

 ºw� +  ºw 9 2ô,ô 9 1./,� Y ô Y 1.. (A.13) 

}>4<8?��?�u2  and  ºw� will be used in this work as indicators of the quality of the Kriging models. In agreement 

with their definitions, we want  }>4<8?��?�u2  to be as close to one as possible and  ºw�  as small as possible. 

Moreover, we expect that Kriging, having hyperparameters estimated through CV, will result in a better }>4<8?��?�u2  than that obtained by ML estimation, since the CV estimation method computes ûr, �, ;2ü  such 

that }>4<8?��?�u2 is maximized. As concluded in (Martin and Simpson, 2005): 

1.  ºw� provides the best criterion to select between competing Kriging model forms, but it cannot 

be used to estimate the actual model quality (i.e., }¥��î¥�2 ); 

2. The CV-based factor }>4<8?��?�u2  seems to be a reasonable indicator of the actual model quality. 

Appendix B 

Let us suppose that that  + z
,1., … , 
,¦.| is the DOE and !" + z��,1., … , ��,¦.| is the D × � data matrix 

containing the � corresponding D-dimensional time-series (also called observations) (where ��,?. +
zK'1,?., … , K'>,?.|6

). Before applying SVD, !" is centered with respect to the simulations mean vector: 

!"�<u�<4<8 + z,��,1. Y #$!"., … , ,��,¦. Y #$!".| (B.1) 

where  

#$!" + 1� n ��,?.¦
?a1

 
(B.2) 

 

The SVD decomposition of !"�<u�<4<8 is (Wall et al., 2003): 

!"�<u�<4<8 + ªýþ6 (B.3) 

where ª is a D × D unitary matrix whose columns �@ are called left singular vectors, ý is a D × � diagonal 

matrix whose entries h�@ are called singular values, þ6 is the conjugate transpose of þ that is a � × � 

unitary matrix. The columns of þ6 are called right singular vectors. There is a direct relation between PCA 

and SVD (Wall et al., 2003): 

• the entries of ý (i.e., h�@) are the square roots of the eigenvalues (arranged in descending order) 

of !"�<u�<4<8!"�<u�<4<8s , thus they are proportional to the covariance matrix eigenvalues; 



• �@ are the principal components vectors (PCs).  

To establish the dimension of the principal subspace D∗ a heuristic method is often used: one finds the 

smallest D∗such that the cumulative percentage of variation explained  ãA. c. , ∑ ´µ`∗µ¶±∑ ´µµ̀¶± ∙ 100é is at least equal 

to a threshold value (usually chosen between 95% and 99%) (Wilkinson, 2010). The first D∗ PCs �@ form the D∗ × D transformation matrix ° (with D∗ ≪ D): 

° + ��1s⋮�>∗s � 

 

(B.4) 

 

The transformation of the data matrix into the feature space is given by: 

)" + °E!" Y #$!"G + z&',1., … , &',¦.| + �ĩ1,1. ⋯ ĩ1,¦.⋮ ⋱ ⋮ĩ>∗,1. ⋯ ĩ>∗,¦.� 
 

(B.5) 

where )" is a D∗ × � matrix whose rows are called PC scores and columns represent, in this case, the 

RELAP5-3D results projected into the features space. As training examples for the surrogate model, the DOE 

points z
,1., … , 
,¦.| and the respective D∗ Ydimensional (D∗ ≪ D) projected model responses )" +
®&�,1., … , &�,�.¯ are used. The Kriging prediction for a specific input 
,?. will be the  D∗ × 1 vector &(. To 

antitransform a generic vector & from the features space to the original space: 

�* + #$!" 9 °6  & (B.6) 

However, no antitransformation is performed in this work for the IUQ since both the likelihood and the 

experimental are transformed into the reduced subspace.  
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