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ABSTRACT: In the International Thermonuclear Experimental Reactor, plasma is magnetically confined 

with Superconductive Magnets (SMs) that must be maintained at cryogenic temperature by a Superconducting 

Magnet Cryogenic Cooling Circuit (SMCCC). To guarantee cooling, Loss-Of-Flow Accidents (LOFAs) in 

the SMCCC are to be avoided. In this work, an approach to identify LOFA precursors (i.e., those component 

failures leading to a LOFA) is presented. The approach is based on a Spectral Clustering (SC) method using 

the Fuzzy C-Means (FCM) algorithm and is applied to the SMCCC of a single module of the ITER Central 

Solenoid (CS). 

KEY WORDS: Nuclear Fusion, ITER, Superconducting Magnets, Cryogenic Cooling Circuit, Loss-Of-Flow 

Accident (LOFA), Precursors, Spectral Clustering, Fuzzy C-Means 
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 ���� Rupture pressure of the CSM  and l-th column 

 �	��,�  Inlet pressure in the CSM  !��� Normalization of ����  

 "�� Temperature in the QT  !���  Normalization of ���� 

 "�# Current sharing temperature  $�� Euclidean pointwise distance between 

 "%# Hotspot temperature   an i-th scenario and a j-th scenario 

 "#�& LHe temperature  from ' = 1 to ' = * 

 ∆, Electric potential of the CSM  $�,�� Euclidean pointwise distance between 

 ∆,��� Limit value of ∆,  a j-th scenario and a i-th scenario 

 -	. Failure magnitude of CP  from � = 1 to � = ' 
 -	/
 Failure magnitude of CV1  0 Coefficient for similarity calculation 

 -	/1 Failure magnitude of CV2  2, 3 Parameters for F calculation 

 -4/ Failure magnitude of BV  56  Similarity matrix 

 -�/
 Failure magnitude of SV1  57� Generic i-th row of 56  

 -�/1 Failure magnitude of SV2  8�� Generic element of 56  at i-th row and 
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 �4/ Failure time of BV  8�,�� Similarity between a j-th scenario and 

 ��/
 Failure time of SV1  an i-th scenario at l-th time 
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 Q� Objective function of FCM  ℱ�L Generic element of ℱ� referring to  

 S̅� Vector with eigenspace coordinates   c-th cluster and e-th component  

 of the c-th centre  U Number of components in ℱ� 

 V̿ Matrix containing S̅� at each c-th row   ,���,����,� Limit for LOFA precursors  

 X�% Generic h-th element of S̅�  identification at l-th time 

 Y�� Membership of the i-th scenario to   ,
#& First highest ,�L�,�,�� at l-th time 

 the c-th cluster  ,1 Z Second highest ,�L�,�,�� at l-th time 

 Y��� Membership limit for clustering  I
#& Cluster associated to ,
#& 

 ℳ6  Matrix containing Y�� at c-th row and   I1 Z Cluster associated to ,1 Z 

 i-th column  0'X\���� Flag for LOFA precursors  

 Y�,�� Membership of j-th scenario to c-th   identification 

 cluster at l-th time   ���#&,����,� Time of last component failure  

 Y�,�� Membership of a scenario with no   before �����,	
,�  
 failures to c-th cluster at l-th time   ����,� Average between ���#&,����,� and  

 Y�L�,�,�� Difference between Y�,�� and Y�,��  �����,	
,�  
 ,�L�,�,�� Difference quotient of Y�L�,�,��  ,���,� Second highest ,�L�,�,�� at ����,� 
 ] Index of the current phase   Y���,��^�,� Limit for component precursors  

 ℒ̿ LOFA map   identification at l-th time 

 ℒ�` Generic element of ℒ̿ referring to the  0'X\��^�,L Flag for e-th component failure 

 c-th cluster and q-th phase  O:?a���^�,L Number of Y�L�,�,�� that overcome 

 b Number of current phases  Y���,��^�,� at l-th time 

 c Component index  d Proportional constant between l-th time  

 ℱ� Map with prototypical failures  and Y���,��^�,� 
 

1. INTRODUCTION 

ITER (International Thermonuclear Experimental Reactor) (2018) will be the first reactor to produce a net 

amount of energy exploiting fusion reactions between Deuterium and Tritium. The reactor is a tokamak in 

which the plasma is magnetically confined in a torus chamber by different Superconductive Magnets (SMs) 

(Bigot, 2018): one Central Solenoid coil (CS), eighteen Toroidal Field coils (TFs), six Poloidal Field coils 

(PFs) and eighteen Correction Coils (CCs). The CS is constituted by six Central Solenoid Modules (CSMs). 

Each CSM must sustain high currents (~40kA) in order to generate high magnetic fields (several T) to confine 

the plasma and its superconductive properties must be guaranteed to nullify ohmic heating (Takahashi et al., 

2006). The CSMs are cooled with Supercritical Helium (SHe) at 4.5 K with a pressure of 0.5-0.6 MPa 

(Mitchell et al., 2008) by a Superconducting Magnet Cryogenic Cooling Circuit (SMCCC) that is in charge 

of the extraction of the heat from the CSMs and its transfer to pools of saturated Liquid Helium (LHe) (Zanino 

et al., 2010). 
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A Loss-Of-Flow Accident (LOFA) in the SMCCC is of major concern because it can impair the CS cooling 

capability, possibly leading to rapid surge of the CS pressure and temperature due to the ohmic heating. If the 

pressure and the temperature overcome 25 MPa and 150 K, respectively, the CS could be lost (IAEA, 2002; 

ITER, 2006; Wu et al., 2016; Savoldi et al., 2018; Bellaera et al., 2020).  

In this work, we present an automatic data-driven approach which is representative of plant conditions that 

may lead to failure of SMCCC components that are precursors of a LOFA. The approach is based on On-line 

Supervised Spectral Clustering (OSSC) that uses the Fuzzy C-Means (FCM) algorithm to recognise those 

patterns of measured signals (Baraldi et al., 2015; Di Maio et al., 2016; Al-Dahidi et al., 2018).  

The remainder of the paper is organized as follows. In Section 2, a description of the SMCCC, the CS and the 

deterministic code 4C (Savoldi et al., 2010) used to simulate one of the six CSMs is provided. In Section 3, 

the information used for developing the approach to LOFA precursors identification is presented. In Section 

4, the LOFA precursors identification approach is presented. It is, then, tested in Section 5 on the CSM of 

Section 2. Finally, a brief summary of the work and some conclusions are reported in Section 6. 

 

2. THE SUPERCONDUCTING MAGNET CRYOGENIC COOLING CIRCUIT (SMCCC) 

The SMCCC cools down the six CSMs with Supercritical Helium (SHe) (Savoldi et al., 2014). Fig.1 sketches 

a simplified scheme of the circuit, where only one CSM is connected with the cooling system. The Centrifugal 

Pump (CP) keeps the coolant in motion in the two cryolines, guaranteeing a nominal flow �� = 0.32 H\/j 

and a downstream pressure �� = 0.42 YBX at nominal operational conditions (Savoldi et al., 2014; Bellaera 

et al., 2020) The heat exchanger HX2 removes the heat produced in the CSM, while the HX1 cools the SHe 

after the compression in the CP with Liquid Helium (LHe) at saturated conditions �"#�& = 4.5 m�. The Control 

Valves (CV1 and CV2) are Normally Open (NO) during nominal operational conditions, whereas the two 

Safety Valves (SV1 and SV2) and the By-pass Valve (BV) are Normally Closed (NC). The controllers C1 

and C2 receive signals from the flow meters and pressure detectors, respectively, and use them to actuate the 

components for flow control. 



5 

 

 

 

 

 

 

 

 

In case of occurrence of a LOFA, when the coolant flow goes below 10% of the nominal value for more than 

the validation time �CD�� = 1j� both at the CSM inlet and the CSM outlet (Savoldi et al., 2018): 

• C1 closes CV1 and CV2, opens BV to prevent CP failure and dumps the current inside the CSM in 

30s (ITER, 2014); in this way, SHe flows only through the by-pass line, so that the CSM is isolated 

and the inventory of bi-phase helium upstream of the CP is reduced.  

• C2 opens the two SVs when the pressure in the CSM goes beyond ���� = 1.8 YBX, sending SHe in 

the Quench Tank (QT) at pressure ��� = 0.35 YBX and temperature "�� = 300 m (Bellaera et al., 

2020), so as to avoid reaching pressures above ���� = 25 YBX (which is the design criterion to 

ensure pressure integrity of the CSM during quenching) (ITER, 2009). 

The cooling circuit behaviour has been simulated for a mission time ���## = 3600j with the Cryogenic 

Circuit Conductor and Coil code (4C code) that integrates (Savoldi et al., 2010): 

• a 1-D thermal-hydraulic model for each channel of the CSM; 

• a 21/2-D model based on Freefrem++ to account for heat conduction phenomena in each radial section 

of the CSM; 

• a 1-D compressible fluid model (for pipes and HXs) based on Dymola; 

• a 0-D model for the mass and the energy balances, in relevant points of the cooling loop (such as 

valves, QT, pump, ...). 

Figure 1 Simplified SMCCC (adapted from Bellaera et al., 2020) 
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For each i-th simulation, the following set of N  variables ������ [H = 1,2, … , N = 3] are assumed to be 

monitored in time (t): the pressure �	��,�  at the inlet of the CSM �H = 1�, which must not exceed ���� =
1.8 YBX (set point at which C2 opens the SVs for the integrity of the joints and headers adjacent to the CSM 

during quench); the hotspot temperature "%# in the CSM �H = 2), which must not exceed the current sharing 

temperature "�# = 7.3 m (if " > "�#, electric current starts flowing along copper strands with consequent 

ohmic heating); the ratio �/��� between the current flowing in the conductors that wrap the CSM and the 

critical current �H = 3�, which must not exceed ��/������� = 0.5. 

The following partial and complete failure of CP, CV1, CV2, BV, SV1 and SV2 are considered to possibly 

lead to passing the limits for �	��,� , "%# and �/��� (Bellaera et al., 2020): 

• CP decrease in the rotational speed, leading to a reduction in the mass flow rate at: i) 75%, ii) 50%, 

iii) 25% or iv) 0% of the nominal value. 

• Valves CV1 and CV2 failing: i) stuck open at nominal position; ii) partially closed to a flow area at 

50 % of the nominal one; iii) completely closed. 

• Valves BV, SV1 and SV2 failing: i) stuck closed at nominal position; ii) partially opened with a flow 

area of 50 % of the nominal one; iii) completely open. 

State vectors of eighteen elements are used to represent any of the 10u possible combinations of components 

states [-	. , �	. , :;9	. , -	/
, �	/
, :;9	/
, -	/1, �	/1, :;9	/1, -4/, �4/ , :;94/, -�/
, ��/
, :;9�/
, -�/1, 
��/1, :;9�/1]. For the failures, the magnitude (-), the time (�) at which they occur and the order (:;9) with 

respect the other component failures are listed (Bellaera et al., 2020). The magnitude (-) is described as 

follows in the vector: 

• The magnitude of the CP is indicated by a discrete value between 0 and 4: if the component is not 

failed in the considered state vector, -	. = 0. Instead, -	. values equal to 1, 2 ,3 or 4 correspond to 

states of reduction of the mass flow rate to 75%, 50%, 25% or 0% of the nominal value, respectively, 

due to a decrease of its rotational speed. 
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• The magnitude of valves CV1 and CV2 is indicated by a discrete value between 0 and 3. If the 

component works correctly, - = 0. Instead, if - is equal to 1, 2 or 3, the valve is stuck open, partially 

closed with a reduction of the flow section area to 50% or completely closed, respectively. 

• The magnitude of valves BV, SV1 and SV2 is indicated by a discrete value between 0 and 3, too. If 

the component is not failed, - = 0. Otherwise, if - is equal to 1, 2 or 3, the valve is stuck closed, 

partially open with flow section area of 50% or completely open, respectively. 

The time (�) is discretised in six time intervals of 300s each, labelled 1 to 6,corresponding respectively to [0s, 

300s], [301s, 600s], [601s, 900s], [901s, 1200s], [1201s, 1500s], [1501s, 1800s]. These indicate the intervals 

within which the components have occurred. If a value of 0 is indicated for �, this means that the component 

is not failed. 

The order (:;9) is indicated by a discrete value between 1 and 6: if a component failure order is equal to 1, 

:;9 = 1, this means that it is the first failure event to occur in time. At the other extreme, if :;9 = 6, then it 

is the last component failure event. If in a state configuration a component is not failed, its order is set to 

“NaN”. 

For instance, a state vector equal to [2, 1, 1, 2, 6, 5, 1, 3, 2, 0, 0, NaN, 1, 3, 3, 3, 5, 4] indicates the failure of 

the CP in the 1st time interval [0s, 300s] with the flow at 50% of the nominal value, the valves CV2 and SV1 

getting stuck at their nominal position during the 3rd time interval [601s, 900s], the complete opening of SV2 

in the interval [1201s, 1500s] and the partial closing of CV1 during the last time interval [1501s, 1800s], 

whereas the BV works correctly.  

For any state vector, a simulation by the 4C code can be run to generate the corresponding transient scenario 

and analyse its outcomes with respect to the LOFA occurrence. 

 

3. PROTOTYPICAL TRANSIENTS IN THE CSM 

Among 108 state vectors of Section 2,  K&��� = 83 have been randomly selected and simulated by the 4C 

code (Bellaera et al., 2020): this relatively small number has been selected in order to limit the overall 
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computational cost of the analysis (due to the very high computational time needed for each run: actually, the 

simulation of one transient takes on average 55 hours on an Intel(R) Xeon(R)TM CPU X5355 @2.66 GHz). 

The corresponding transient scenarios have been clustered in O = 9 "classes" of transients in the CSM 

(Baraldi et al., 2015; Mandelli et al., 2013; Galushin et al., 2015). Fig.15 , Fig.16 and Fig.17 of Appendix A 

show the behaviour of �	��,� , "%# and �/��� (dotted lines) for the K&���  transients, grouped in the clusters: 

for each cluster the prototypical transient (i.e., the most representative transient according to a given definite 

membership to the cluster (Baraldi et al., 2015)) is also plotted (continuous line). 

The transient belonging to cluster 4 show the largest values of �	��,�  and "%#, still below the threshold limits 

���� and "�#, respectively, whereas the scenarios belonging to clusters 2, 3, 8 and 9 have �	��,�  values lower 

than the threshold �� and none of the scenarios exceed ��/�������. 

Fig.2 (bottom-left) shows the values of the time �����,	
,� �E = 1, … , K&��� �, at which the control system C1 

detects a LOFA in the i-th scenario, for all the K&��� = 83 scenarios. The LOFA may occur during one of 

the b = 5 phases of a single pulse of current (Savoldi et al., 2014), represented in Fig.2 (top-left):  

1) First Magnetization phase (FM): in the first 130s, the current varies from 40 kA to -40 kA in 80s, 

leading to large AC losses and Eddy currents. 

2) Burning Phase (B): the current decreases to -45.5 kA for 386s. 

3) Rump Down phase (R): the current reaches 0 kA at 975s. 

4) Dwell phase (D): no current flows in the CSM until 1490s (to cool down the CSM after the heat load 

of the previous phases). 

5) Last Magnetization phase (M): the current returns to the initial value of 40 kA and, after a plateau of 

10s,  the pulse starts again for other 1800s. 

A matrix ℒ̿[O, b] containing the information on LOFA occurrence for each c-th cluster �I = 1, … , O� at each 

q-th time interval �] = 1, … , b� is built. The generic element ℒ�` = 1 if there is at least one �����,	
,� at the 

c-th cluster during the q-th phase; otherwise, ℒ�` = 0. Fig.2 (right) shows the map with points for which 

ℒ�` = 1. 
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It can be seen that in the scenarios of cluster 4, LOFA occurs mostly during the early phase of the pulse of 

current (FM, B, R phases), where AC losses in the CSM are significant, making �	��,�  and "%# reach the 

largest values, as pointed out before. On the other hand, no LOFAs occur in scenarios of clusters 2 and 7, 

despite that the components failures that occur in the majority of transients belonging to the two clusters differ 

between clusters 2 and 7 (only CP failure for cluster 7 vs CP, CV, BV and SV failures for cluster 2), as it can 

be seen in Fig.3. 
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Figure 2 Top, left: single pulse of current in the ITER CSM. Bottom, left: times when LOFA occurs in the 83 (clustered) training scenarios. Right: 

map of LOFA occurrences in each pulse phase, for each cluster 

Figure 3 Map of most frequent failures in the clusters 
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A matrix ℱ�[O, U = 4] is built from Fig.3, where each generic element ℱ�L is referred to the c-th cluster for the 

e-th component �c = 1, … , U�: the generic element ℱ�L = 1 if the e-th component is a prototypical failure of 

the c-th cluster; otherwise, ℱ�L = 0. 

Notice that failure of the CP is present in all clusters, and that failures of the CV and the BV are present in 

most of them (except clusters 3 and 7). This shows that the identification of the component failures leading to 

LOFA (i.e., the LOFA precursors) is difficult if done only from Fig.3. In what follows, we show an approach 

for an extensive and automatic LOFA precursors identification. 

 

4. ON-LINE SUPERVISED SPECTRAL CLUSTERING FOR LOFA PRECURSORS 

IDENTIFICATION 

An On-line Supervised Spectral Clustering (OSSC) algorithm is trained with the available K&��� = 83 

scenarios described in Section 3 and, then, applied to any j-th scenario ������ of the remaining �10u − 83� 

scenarios. Each j-th scenario is characterized by N = 3 monitored signals ������ (H = 1, 2 and 3 correspond 

to �	��,� , "%# and �/���, respectively), whose time evolution emerges from the simulated transient of the 

cooling circuit in the given state vector configuration. 

The OSSC proceeds as follows (further details are reported in Appendix B), for each j-th scenario (the 

flowchart is sketched in Fig.8 using the FCM approach): 

Step 1: The k-th variable trajectory ������, H = 1,2,3, is recorded every time step ∆� = 0.01j from 0s to 3600s, 

corresponding to the length of two consecutive current pulses, so * = 360001 points for each k-th variable 

are stored and ���� (' = 1,2, … , *� is the value of the k-th variable of the j-th scenario at the l-th time step. Each 

������ trajectory has the same discretization of the ������ trajectory and the ���[K&��� , *] matrix at the i-th 

row and l-th column contains the value ����  of the k-th variable of the i-th training scenario at the l-th time 

point. 
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Step 2: Each ����  �E = 1,2, … , K&��� ; ' = 1,2, … , *� and each ����  �' = 1,2, … , *� are normalized in the interval 

[0.2; 0.8] as in Eq.(1): 

!��� = 0.2 + 0.6 ∙ ���� − -Ea~����-X�~���� − -Ea~���� , H = 1, … , N   Xa9    ' = 1,2, … , *    �1� 

It is worth mentioning that if ���� overcomes the maximum (or the minimum) value in ���, !���  may not lie in 

[0.2; 0.8]. 
Step 3: The Euclidean pointwise distance $�,�� between the j-th scenario and the i-th training scenario (E =
1,2, … , K&��� � at the l-th time is calculated as in Eq.(2): 

$�,�� = � ��!��� − !��� ��
��


�
��
 ,        E = 1,2, … , K&���    Xa9      ' = 1,2, … , *     �2� 

Step 4: The similarity vector 57�,�[1, K&��� ] is built at each l-th time step, whose generic element 8�,�� is given 

in Eq.(3): 

8�,�� = c��∙��,���        8E�ℎ 0 = 1.7 ∙ 10���Bellaera et al. , 2020�            �3� 

The higher 8�,��, the higher the similarity between the j-th testing scenario and the i-th training scenario until 

the l-th time step. 

Step 5: The row vector F7�,�[1, O] is calculated projecting 57�,� in the eigenspace employing Eq.(25) (see 

Appendix C for the proof). Afterwards, it is normalized determining "M�,�[1, O], whose generic element ��,�� is 

given by Eq.(4): 

��,�� = ?�,��
�∑ ?�,��1	��


 ,       I = 1, 2, … , O                                                 �4� 

Step 6: Each Y�,�� membership of the j-th scenario to the c-th cluster at the l-th time step is calculated as in 

Eq.(5) (which is obtained from Eq.(16) of the FMC algorithm in Appendix B): 
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Y�,�� =    �� � �"M�,� − S̅���"M �,� − S̅%��
1��
	

%�
 �
�


, I = 1,2,3, . . . , O                       �5� 

where S̅�[1, O] �I = 1,2, … , O� contains the eigenspace coordinates of the prototypical transient of the c-th 

cluster and P = 2 is the fuzzy partition exponent (Bezdec, 1981). The membership Y�,�� measures the 

“degree” with which the j-th scenario at the l-th time step “belongs” to the c-th cluster. Fig.4 and Fig.5 show 

the memberships evolution for a scenario with no failures (hereafter referred to as G = 0) and for a scenario 

with complete closure of CV1 at 623s, respectively: these two scenarios belong to cluster 7 and cluster 5, 

respectively, because Y�,�� in Fig.4 and Y�,�� in Fig.5 rapidly rise and reach values close to 1, whereas the 

other memberships drop gradually to 0. 

  
Figure 4 Memberships evolution for a scenario at nominal condition 

with no failures 
Figure 5 Memberships evolution for a scenario “complete closure of 

CV1 at 623s” (and tLOFA,C1,j =627.14s) 

 

 

Step 7: Calculate the pointwise difference between Y�,�� and Y�,�� resulting in Y�L�,�,�� (shown by way of 

example in Fig.6 for the scenario “complete closure of CV1 at 623s”) as in Eq.(6): 

Y�L�,�,��  = Y�,�� − Y�,��             I = 1,2, … , O                                        �6� 

The difference (6) serves the purpose of “removing” from the membership evolution of the j-th transient to 

cluster c the “background” contribution of a “standard” scenario at nominal condition with no failures. 

Step 8: Calculate ,�L�,�,�� with Eq.(7), i.e., a discrete estimator of the derivative of the membership Y�,�� with 

respect to the l-th time (shown in Fig.7 for the scenario “complete closure of CV1 at 623s”): 
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,�L�,�,�� = �   0                                         E� ' = 1 Y�L�,�,�� − Y�L�,���
�,��∆�   E� ' ≠ 1  ,          I = 1,2, … , O             �7� 

It is evident from Fig.6 and Fig.7 that Y�L�,�,�� and ,�L�,�,�� start deviating from “0” at 623s after the closure of 

CV1: in particular, the failure of CV1 generates a scenario with an initial affinity to cluster 1 and 5, as testified 

by the simultaneous increase in the values of Y�L�,�,
�, Y�L�,�,��, ,�L�,�,
� and ,�L�,�,��; however, the increase in 

Y�L�,�,�� and ,�L�,�,�� becomes dominant at about 1450s, correctly and clearly showing that the scenario belongs 

to cluster 5. 

  
Figure 6 Y�L�,�,�� evolution for scenario “complete closure of CV1 at 

623s” 
Figure 7 ,�L�,�,��  evolution for scenario “ complete closure of CV1 at 

623s” 
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Step 9: Identify LOFA precursors as follows. 

Step 9a: Compare ,�L�,�,�� [I = 1, … , O] with ,���,����,�, following the pseudo-code in Fig.9. In extreme 

synthesis, if at least two values of ,�L�,�,�� pass the threshold ,���,����,� (see Fig.10 below) at time l, and if a 

LOFA can occur in the corresponding clusters (according to the map of Fig.2), the algorithm registers the 

LOFA precursors. 

 

 

 

 

Step 3: Calculate the Euclidean pointwise distance $�,��  between the j-th 

scenario and each i-th training scenario �E = 1, … , K&��� � at l-th time step 

Step 4: Build the similarity row 57�,�[1, K&��� ]  

Data of �� ¡¢£ training scenarios 

Step 9: Identification of LOFA 

precursors 

Figure 8 Flow chart of the OSSC procedure 

������ �H = 1,2,3� and ������ �H = 1,2,3; E = 1, … , K&��� � are defined 

Step 2: Calculate !���  and !��� by normalizing ���� and ����, respectively 

Step 1: Record ����  from ������ and ����  from ������ �' = 1, … , *� 

Step 7: Calculate Y�L�,�,�� 

Step 8: Calculate ,�L�,�,�� 

Step 6: Calculate Y�,�� �I = 1, … , O� 

Step 5: Calculate "M�,�[1, O] by normalizing F7�,�[1, O], which is found projecting  57�,� in eigenspace with Eq.(25) 
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The evolution of ,���,����,� is assumed to be that of a monotonic increasing piecewise function that is 

calculated relying on the information stored in the K&���  scenarios, following the pseudo-code of Fig.10. The 

trend of ,���,����,� is initially defined using a discrete set of points obtained from the K&���  scenarios and 

joined together to build a stepwise function monotonically increasing. 

At l-th time 

Calculate ,
#& = max� ~,�L�,�,��� ; 
Calculate I
#& = arg §max� ~,�L�,�,���¨; 

Calculate ,1 Z = max�©�ª«¬~,�L�,�,���; 

Calculate I1 Z = arg ­ max�©�ª«¬~,�L�,�,���®; 0'X\���� = 0;   

If �,
#& > ,���,����,� & ,1 Z > ,���,����,��  

 Find q-th current phase that corresponds to l-th time 

 0'X\���� = ℒ�ª«¬` ∗ ℒ��°±`;       % ℒ�` = ²0,1³  (see Section 3 – Fig.2) 

End 

If 0'X\���� = 1 

 LOFA precursor is identified; 

Else 

 LOFA precursor does not exist;  

End 

Figure 9 Pseudo-code for ,�L�,�,��  and ,���,����,� 
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where ���#&,����,� is the time when the last failure before �����,	
,� occurs. Fig.11 reports the results of each 

step of the procedure in Fig.10.  

 

Figure 10 ,���,����,� calculation procedure 

For each i-th scenario �E = 1, … , K&��� � 

 If LOFA occurs ����,� = round §~���#&,����,� + �����,	
,��/2¨; 

Else 

 ����,� = KXK; 

End 

End ¶·¢¸,¹º»¼,· DEFINITION: 

Define ,���,����,
 = 0;  

For ' = 2: 1: * 

 Find E such that l-th time = ����,� �E = 1, … , K&��� � 

 If  E exists 

 Calculate I
#& = arg §max� ~,�L�,�,���¨; 

 Calculate ,���,� = max�©�ª«¬~,�L�,�,���; 

 ,���,����,� = ,���,�; 
Else ,���,����,� = ,���,����,���
�; 
End 

End ¶·¢¸,¹º»¼,· REVISION: 

For � = *: −1: 1    

 For ' = 1: 1: �� − 1�    

  If ,���,����,� > ,���,����,�  

   ,���,����,� = ,���,����,�; 

End 

 End 

End 
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Step 9b: Compare Y�L�,�,�� �I = 1, … , O� to the threshold Y���,��^�,�(8), following the pseudo-code in Fig.12. 

In extreme synthesis, if the e-th component is present in all clusters, according to the map of Fig.3, among 

those where Y�L�,�,�� exceeds Y���,��^�,� at the l-th time step,  the algorithm identifies the failure of the e-th 

component as a LOFA precursor. 
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Figure 11 ,���,����,�  calculation results 

At l-th time considering an e-th component 0'X\��^�,L = 1;   

 O:?a���^�,L = 0;   

 For I = 1: 1: O 

  If Y�L�,�,�� > Y���,��^�,� 
  0'X\��^�,L = 0'X\��^�,L ∗ ℱ�L;   % ℱ�L = ²0,1³  (see Section 3 – Fig.3) O:?a���^�,L = O:?a���^�,L + 1; 

End 

End 

If 0'X\��^�,L = 1 & O:?a���^�,L ≠ 0; 
 e-th component is failed 

Else 

 e-th component is not failed; 

End 

Figure 12 Pseudo-code for Y�L�,�,��  and Y���,��^�,� 
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Y���,��^�,� is calculated as in Eq.(8): 

Y���,��^�.� = d ∙ �'&% �E-c�      8E�ℎ d = 5.56 × 10�u j�
                                         �8� 

It is worth mentioning that Y���,��^�,� is assumed to be linearly dependent on time, because $�� (Eq.10) linearly 

increases from � = 0 to � = ���## = 3600 and it is used to calculate Y�L�,�,��. The value of d is that which 

maximises the number of training scenarios whose component failures are correctly identified as LOFA 

precursors, while minimising the time delay between components failures and precursors identification. 

 

5. RESULTS 

The proposed procedure has been applied for LOFA precursors identification in K&L#& = 38 scenarios, 

different from the K&��� = 83 scenarios used to build the OSSC method of Section 4. As an example, we 

show the results with respect to the scenario “complete closure of CV1 at 623s”, whose memberships are 

plotted in Fig.5 above. In Fig.13 a zoom of the values of each Y�L�,�,�� and ,�L�,�,�� �I = 1, … , O� in the interval 

[600s,650s] (i.e., when CV1 incidentally fails at 623s) is shown. 

 

 

  

 

 

 

 

It can be seen that ,�L�,�,¿� and ,�L�,�,�� overcome ,���,����,� at 625s (which is, then, taken as LOFA detection 

time and plotted with a cross in Fig.14) in the R phase. During this phase of the current pulse, as suggested in 

Fig.5, the component failures of the prototypical scenarios of clusters 3 and 9 might be responsible for the 

Figure 13 Zoom of Y�L�,�,�� (left) and ,�L�,�,��  (right) evolution in the interval [600s-650s] for scenario “complete closure of CV1 at 623s” 
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LOFA detection during this phase. However, no component is identified as “failed” by the algorithm at that 

time, because no values of Y�L�,�,�� have passed the threshold Y���,��^�,�. The threshold value Y���,��^�,� is 

reached by Y�L�,�,À� at 637s, suggesting that component failures of the prototypical transient of cluster 4 (i.e., 

CP,  CV and BV) are responsible (shadowed lines in Fig.14). This is also confirmed when Y�L�,�,�� and 

Y�L�,�,
� overcome Y���,��^�,� (at 640s and 643s, respectively), since prototypical component failures of 

clusters 5 and 1 are still CP, CV and BV. In synthesis, the responsible component failures, i.e., the LOFA 

precursor CV, has been timely and correctly identified. 

 

 

 

 

 

 

In summary, in the present case the LOFA is detected 2s earlier than the actual �����,	
,Á whereas the LOFA 

precursor is identified 10s later than the real malfunctioning of the component, because only a CV is actually 

failed, whereas CP and BV work correctly. In other words, the number of failed components is slightly 

overestimated. 

In Tab.1, the results of the extensive analysis on the K&L#& = 38 scenarios are summarized. 

Table 1 Results on K&L#& = 38 scenarios 

 

 

 

 

Scenarios with LOFA  32 

LOFA predicted in advance 26 

LOFA not predicted in advance 6 

Scenarios with NO LOFA  6 

Correct identification NO LOFA 2 

False positive LOFA 4 

Figure 14 LOFA precursors identification for scenario “complete closure of CV1 at 623s” 
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Among the K&L#& = 38 scenarios, in 32 scenarios a LOFA occurs, whereas in 6 it does not. For the former 

ones, a LOFA is detected in advance, i.e. before �����,	
,Á, in 26 scenarios. In the 6 scenarios, in which it is 

not anticipated, the LOFA occurs mainly during the phase D, when no heat is produced by the CSM, and the 

CSM is not endangered. Also, in 2 of the 6 scenarios in which no LOFA occurs, precursors are identified 

anyway, whereas in the other 4, LOFA is erroneously detected even though it does not occur (namely, “false 

positives”).  

In Tab.2 the results for the precursor identification of the 32 scenarios with LOFA are presented with respect 

to: 

- Correct precursor identification: the component is failed and correctly identified as precursor. 

- False negative: the component is failed, but not identified as precursor. 

- Correct identification of normal operation: the component is not failed in the scenario. 

- False positive: the component is not failed, but incorrectly identified as precursor. 

Table 2 Results of the precursor identification approach for K&L#& = 38 scenarios  
 

Correct precursor 

identification 

False negative Correct identification 

of normal operation 

False positive 

CP 22 1 0 9 

CV 18 0 1 13 

BV 12 4 1 15 

SV 4 1 17 10 

It can be seen that most of the precursors are identified correctly by the OSSC algorithm, despite the large 

number of false positives, that, however, do not endanger the SMCCC, because conservatively overidentifying 

the failed components. 

 

6. CONCLUSIONS 

In this work, an approach is proposed to promptly identify the precursors of a Loss-Of-Flow Accident (LOFA) 

in the simplified cryogenic cooling circuit (SMCCC) of ITER Central Solenoid (CS) module. In case of a 

LOFA, cooling is compromised, and pressure and temperature inside the CS may surge rapidly. An On-line 

Supervised Spectral Clustering (OSSC) method is developed, making use of the Fuzzy C-Means (FCM) 
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algorithm to identify LOFA precursors. A simulated case study has been considered, using the deterministic 

4C code to mimic the SMCCC behaviour for K&��� = 83 components failures scenarios of training and 

additional K&L#& = 38 scenarios to verify the effectiveness of the method. The results obtained show that the 

method proposed timely recognises LOFA precursors and identifies most of the components failed. On the 

other hand, it erroneously detects LOFA precursors in some scenarios with no LOFA and identifies as 

precursors some components that are not actually failed. These errors are on the conservative side but may 

reduce availability, due, e.g., to unnecessary inspections following the precursors identification. 

The over-identification may be reduced by improving the quality of the maps used for LOFA precursors 

identification with more simulations. To reduce the computational cost of the simulations one way is to resort 

to a metamodel to emulate the 4C code. 
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APPENDIX A – Nine clusters of the �� ¡¢£ scenarios 
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Figure 15 Nine clusters of pCSM,in  transient scenarios 
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Figure 16 Nine clusters of Ths  transient scenarios 
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Figure 17 Nine clusters of I/Icr  transient scenarios 
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APPENDIX B – Spectral Clustering embedding the Fuzzy C-Means 

Spectral Clustering (SC) lets K objects to be classified in O clusters through a similarity measure 8 between 

them (Bellaera et al., 2020; Von Luxburg, 2007). In this case, each similarity value is calculated using N = 3 

trajectories, representing �	��,� �H = 1�, "%#�H = 2� and �/����H = 3�, of * time steps and collected in the 

similarity matrix 56 [K, K] from which the Normalized Laplacian matrix *�#=� is calculated. Features needed 

to classify the K objects are extracted from *�#=� and fed to the Fuzzy C-Means (FCM) code, which proceeds 

according to the following steps (Baraldi et al., 2013): 

Step 1: The matrix ���[K, *] is built for each k-th variable considered, containing in the rows the K transients 

of * time steps of that variable and its generic element is �����E = 1,2, … , K; ' = 1,2, … , *� referring to the i-th 

scenario at the l-th time. 

Step 2: Each ����  �E = 1,2, … , K; ' = 1,2, … , *� is normalized in the interval [0.2,0.6], determining !��� as in 

Eq.(9): 

!��� = 0.2 + 0.6 ∙ ���� − -Ea~����-X�~���� − -Ea~���� , H = 1, … , N                          �9� 

Step 3: The Euclidean pointwise distance $�� between an i-th object and a j-th one (G = 1,2, … , K� is 

determined as in Eq.(10): 

$�� = � ��!��� − !�����
��


�
��
                                                                        �10� 

Step 4: The generic element 8�� of the similarity matrix 56 [K, K] is obtained from $�� as follows in Eq.(11) 

(Joentgen et al., 1999; Dubois et al., 1988): 

8�� = c�­�ÂÃ�Ä�Å ���� ® = c��∙����                                                                  �11� 

The Higher the value of − ln�2�/3 is, the closer are the K objects and more enhanced the similarity between 

them (Baraldi et al., 2013) [0 = − ln�2�/3 is set to 1.7 ∙ 10��]. 8�� can assume a value between 0 and 1: if 

it is close to 1, the i-th and the j-th objects considered are very similar; instead, if it is near to 0, the two objects 
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are very different. Consequently, each element of the matrix 56  in the diagonal is equal to 1, because $�� = 0. 

This matrix is also symmetrical, because $�� = $��. 

Step 5: Each element 9��E = 1, … , K� of the Degree matrix <6[K, K], which is a diagonal matrix, is determined 

with Eq.(12): 

9� = � 8��
Æ

���                                                                               �12� 

Now, it is possible to calculate the Laplacian matrix *�[K, K] by subtracting the Similarity matrix to the Degree 

matrix:  *� = <6 − 56 . 

Step 6: The Normalized Laplacian matrix *�#=�[K, K]  is computed normalizing *� as in Eq.(13): 

*�#=� = <6�
/1*�<6�
/1 = �̿ − <6�
/156 <6�
/1                                                �13� 

Step 7: The C smallest eigenvalues >
, >1, . . . , >	  and their associated eigenvectors ?@⃗ 
, ?@⃗ 1, . . . , ?@⃗ 	 of the matrix 

*�#=� are extracted. All the eigenvalues are between 0 and 1, with 0 included, and those stored are very small 

compared to >	Ç
. 

Step 8: The matrix F6[K, O] is made associating to each c-th column the ?@⃗ �[K, 1] eigenvector obtained by the 

previous phase. Afterward, this matrix is normalized calculating the matrix "�[K, O], whose generic element 

��� is determined as follows in Eq.(14): 

��� = ?��
�∑ ?��1	��


 ,      E = 1,2, … , K  , I = 1, 2, … , O           �14� 

The eigenspace coordinates of the object i-th are contained in each row i-th of the matrix "�, so "M� =
[��
, ��1, … , ��	] is the vector that contains these coordinates. 

Step 9: The matrix "�, which contains the features extracted of the K objects, is fed to the FCM code to cluster 

them in O groups. 

At the end of this phase, two matrices are generated (Bezdec, 1981): 
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• A matrix V̿[O, O], containing in each c-th row the eigenspace coordinates of the centre of the c-th 

cluster, so S̅� = [X�
, X�1, … , X�	] is the vector that contains these coordinates. 

• A matrix ℳ6 [O, K] whose generic element is the Y�� membership degree of the i-th object for the 

c-th cluster; then, the i-th object is assigned to belong to the cluster with the highest membership 

and/or with the membership above a certain limit (e.g. Y��� = 0.7�. 

The FCM code follows different steps (Alata et al., 2008): 

I. Each Y�� is initialized with a random value between 0 and 1 and each column of Y6  is normalized: the 

rule ∑ Y��	��
 = 1 must be satisfied. 

II. The matrix Y6  is used to determine the centres of the O clusters as in Eq.(15): 

S̅� = ∑ Y��� "M�Æ��
∑ Y���Æ��
 , I = 1,2, … , O                                       �15� 

The parameter P is the fuzzy partition exponent (Bezdec, 1981) and it is higher than 1: normally it is 

set to 2. In this way, memberships with higher values play a stronger weight in the averaging formula 

of Eq.(15). 

III. All the memberships are recalculated as in Eq.(16): 

Y�� = 1
∑ ­‖"M� − S̅�‖‖"M� − S̅%‖® 1��
	%�


                                                               �16� 

IV. The objective function Q� is determined and reduced at each iteration, as in Eq.(17): 

Q� = � � Y��� ‖"M� − S̅�‖1	
��


Æ
��
                                                               �17� 

The minimum improvement between each step is usually set equal to 10-5; if this value is not reached, 

the algorithm is repeated from ii to iv until Q� is improved. 

Step from ii to iv are iterated more times in order to minimize the objective function Q�. Normally, 100 

iterations are set for the optimization, in the case study presented in this paper.   
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APPENDIX C – Supervised Spectral Clustering: Projection in eigenspace 

In OSSC, it is essential to reprocess the j-th scenario in the "M�,�[1, O] eigenspace coordinates at the l-th time, 

because each S̅�[1, O] center of the c-th cluster, employed to determine each membership -�,���' =
1, … , *; I = 1, … , O� of the j-th scenario to the c-th cluster at l-th time as in Eq.(5), is found minimizing the 

objective function Q� of Eq.(17) using the eigenspace coordinates "M�[1, O]�E = 1, … , K&��� � of the K&��� =
83 training scenarios. Therefore, a relation between the 57�,�[1, K&��� ] similarity vector, containing the 

similarity between the j-th scenario and each i-th training scenario, and F7�,�[1, O], from which "M�,�[1, O] is 

obtained with Eq.(4), must be found, because we cannot proceed like in Appendix B building a Laplacian 

matrix from 57�,� in order to discover its eigenvectors and proceed with the analysis. 

Anyway, it could be complex finding the relation between 57�,� and F7�,�, so it is better to find for a single row: 

this relation between 57� and F7�, i.e., the i-th rows of 56  and F6 respectively, can, then be used for a new 

scenario. 

We start from the relation between a >��I = 1, … , O� eigenvalue and its associated ?@⃗ �[K&��� , 1] eigenvector 

of the normalized Laplacian matrix *�#=�, which is a squared matrix, expressed in Eq.(18): 

*�#=�?@⃗ � = >�?@⃗ �                                                                          �18� 

This last matrix could be rewritten using Eq.(13). 

~� ̿ − <6�
/156  <6�
/1�?@⃗ � = >�?@⃗ �                                                     �19� 

<6[K&��� , K&��� ] is a diagonal matrix and each term of the diagonal is calculated from 56  using Eq.(12), 

whereas �[̿K&��� , K&��� ] is an identity matrix. 

With some calculation from Eq.(19), we find: 

?@⃗ � − <6�
/156  <6�
/1?@⃗ � = >�?@⃗ �                                                        �20� 

�1 − >��?@⃗ � =  <6�
/156  <6�
/1?@⃗ �                                                        �21� 

Finally, a relation between 56  matrix and a ?@⃗ �  eigenvector, which is a column of F6, is expressed in Eq.(22): 



29 

 

?@⃗ � = 11 − >� <6�
/156  B@⃗�      I = 1,2, … , O                                        �22� 

8E�ℎ       B@⃗� = <6�
/1?@⃗ �                                                         �23� 

Therefore, it is possible to obtain all the  F6’s columns from Eq.(22) knowing 56 , <6,  B@⃗� and >��I = 1, … , O�.  

Eq.(22) could be generalized to find a single element ?�� of the matrix F6, using a single row 57� of the 

similarity matrix 56 , as in Eq.(24): 

?�� = 9��
/1
1 − >� 57 � B@⃗�             I = 1,2, … , O                                    �24� 

In this way, the row F7� can be found iterating Eq.(24) for all the >� eigenvalues and its B@⃗� vectors, from 

Eq.(23). 

Adapting Eq.(24) for the 57�,� similarity vector of the new j-th scenario at the l-th time, Eq.(25) is obtained: 

?�,�� = 9�,��
/1
1 − >� 57�,�   B@⃗�         I = 1,2, … , O                                  �25� 

8E�ℎ       9�,� = � 8�,��
Æ¬ÉÊ�°

��
                                              �26� 

F7�,� is calculated repeating Eq.(25) for each >� and B@⃗� from I = 1 to c= O. 
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