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A B S T R A C T

The present work deals with the free vibration behavior of the variable stiffness composite laminates (VSCLs)
featured by spatially varying fibre orientation angles via novel quasi‐three‐dimensional solutions. The Carrera
Unified Formulation (CUF) is employed to construct such novel models, where cross‐section kinematics are
described with the improved hierarchical Legendre expansion (IHLE) of primary mechanical variables. The
proposed expansions not only maintain the hierarchical properties of the HLE model but also become less sen-
sitive to the numbering sequence of expansion terms. As a result of these enhanced kinematics, Equivalent
Single Layer (ESL) and Layer‐Wise (LW) models can be formulated more robustly. The weak form differential
quadrature finite element method (DQFEM) is employed to solve the governing equations derived by the prin-
ciple of virtual displacements. Based on CUF‐based DQFEM, even a single beam element is sufficient to tackle
many complex issues with high accuracy. Compact VSCL beams and plates with various fibre paths, boundary
conditions, lamination schemes, and thickness‐to‐width ratios have been studied in several numerical exam-
ples. The proposed method’s accuracy and effectiveness are validated by comparing results to published data.
1. Introduction

Composite materials as an alternative to their metallic counterparts
have been extensively used in aircraft structures, such as wings or
rotor blades. Classical fibre‐reinforced composites are made of straight
fibres and a polymer matrix. Structural performance can be optimized
through the adjustment of fibre orientation angles and stacking
sequences. However, in the practical lay‐up design, fibre orientation
angles vary between four different values, i.e., 00;450;�450;900 [1].
Such a limitation precludes the considerable utilization of the anisotro-
pic features of composite materials. Besides, straight‐fibre‐based lami-
nates are only endowed with a constant in‐plane stiffness within the
layer. For this reason, they are also referred to as Constant Stiffness
Composite Laminates (CSCLs). In contrast to CSCLs, the notion of Vari-
able Stiffness Composite Laminates (VSCLs) has been proposed to
achieve a better tailoring capability of laminated composites. In fact,
there are many approaches to modify the in‐plane stiffness locally,
including the adjustment of fibre volume fraction [2,3], the alteration
of thickness by terminating individual plies [4,5], the attachment of
stiffeners to the laminate [6,7] and the placement of curvilinear fibres
[8,9]. The present paper focuses on the variable fibre orientation angle
category.

Hyer and Lee [10] originally introduced the use of the curvilinear
fibre format for enhanced structural performance. They assumed that
fibre orientation angles varied in a region‐wise manner. By employing
sensitivity analyses and gradient‐search techniques, the optimal angle
in each region can be determined in terms of the maximum bucking
load. The results indicated that improved buckling capability and ten-
sile performance can be obtained by introducing the curvilinear fibre
concept. However, such an arrangement of fibres is hard to be pro-
duced since manufacturing techniques, e.g., Automatic Fibre Place-
ment (AFP), can only produce continuous fibre courses. G€urdal and
Olmedo [11] utilized a linear function to describe the variation of ori-
entation angles so that closed‐form solutions can be obtained for some
special boundary conditions. Following the linear angle variation path
described previously, Tatting and G€urdal [12,13] developed a lamina-
tion definition tool capable of reading the information hidden in curvi-
linear fibres as easily as straight fibres and integrating it with finite
alfonso.
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element models and a stacking sequence optimization program, i.e.,
Optimization of Laminates using Genetic Algorithms (OLGA) for the
buckling design of VSCLs. Besides, testing specimens manufactured
by a tow‐placement machine have shown their enhanced performance
against buckling and failure loads. Wu et al. [14] also performed an
experimental study to investigate the nonlinear response of VSCLs
when mechanical and thermal prestresses are taken into account. As
a matter of fact, fibre orientation angles can be defined by a nonlinear
function as well. Wu et al. [15] used Lagrangian polynomials to repre-
sent the variation of fibre orientation angles in a more generic fashion,
and the results showed that such a kind of polynomials could improve
the buckling load than linear ones. Alhajahmad et al. [16] employed
Lobatto‐Legendre polynomials to define the angle of steered fibres,
and the improvement in load‐carrying capacity can be likewise
achieved. It should be pointed out that the AFP process is subject to
a set of manufacturing constraints. For instance, if the fibre steering
radius is shorter than a critical threshold, i.e., the minimum turning
radius, the inner edges of tows tend to be wrinkle, causing a loss of
structural strength. Thus, whether the non‐linear definition of fibre
orientation angles meets such a strict requirement merits special con-
sideration, although no experimental investigation involving this type
of VSCLs has been published.

The preceding review of the literature mainly concentrates on the
static behavior of VSCLs. Vibration‐based issues are presented here-
inafter. Akhavan and Ribeiro [17] utilized the third‐order shear defor-
mation theory (TSDT) for the vibration analysis of the VSCL panels
with linearly varying fibre orientation angles. They found that, in com-
parison to thick VSCL ones, the natural frequencies of thin VSCL plates
are more sensitive to the fibre path. The B‐spline function was adopted
to describe the variation of fibre orientation angles by Honda and Nar-
ita [18]. This work showed that mode shapes has a tight connection
with fibre shapes. Akbarzadeh et al. [19] extended TSDT to investigate
the vibratory characteristics of the VSCLs bonded with magnetostric-
tive layers. The influence of the hygrothermal environment on the free
vibration characteristics of the VSCL plates with cut‐outs was investi-
gated by Venkatachari et al. [20] using the first‐order shear deforma-
tion theory. From their research, it can be observed that the fibre
orientation angles at the centre and edge play a more important role
in the maximum/minimum values of natural frequencies than lay‐up
configurations. The same shear deformation theory was also applied
to the VSCLs with elastically restrained edges [21], VSCL skew plates
[22], VSCL elliptical plates [23] and the stiffened VSCL plates sub-
jected to in‐plane loads [24]. Houmat [25] carried out 3D free vibra-
tion analyses of VSCLs via p‐FEM and pointed out that a 3D model is
demanded for the VSCL plates with large thickness‐to‐width ratios
and anti‐symmetric stacking sequences. The same conclusion was also
drawn in Yazdani and Ribeiro [26], where a Layer‐wise (LW) model-
ing approach, was chosen.

The FEM provides an outstanding computational framework for
analyzing complex aircraft structures. However, the 3D FE model is
not particularly recommended for computing composite structures
because the aspect ratio of the solid element is directly proportional
to the layer thickness. On the other hand, 1D and 2D elements based
on beam and plate(shell) theories are more efficient in terms of
degrees of freedom, considering simplified kinematic assumptions
made over the cross‐section or across the thickness of structures. The
Carrera Unified Formulation (CUF), proposed by Carrera et al. [27]
is a hierarchical theory that enables the automatic and straightforward
development of beam, plate, and shell theories, demonstrating its 3D‐
like accuracy while requiring less computational resources. CUF was
initially developed for plates and shells, hereafter called 2D CUF and
subsequently extended for beams, hereafter referred to as 1D CUF.
Within the framework of 1D CUF, the Equivalent Single Layer (ESL)
and LW assumptions of cross‐section kinematics can be obtained in a
straightforward and systematic manner by the correct employment
2

of the expansion function of 1D unknown variables, e.g., displacement
[28] or stress [29] components. So far, four kinds of expansion modes
have been developed based on Taylor series, Lagrange polynomials,
Chebyshev polynomials and hierarchical Legendre polynomials, lead-
ing to the theories of so‐called CUF‐Taylor expansion (CUF‐TE) [30],
‐Lagrange expansion (LE) [31,32], ‐Chebyshev expansion (CE) [33],
and ‐hierarchical Legendre expansion (HLE) [34,35]. Viglietti et al.
[36,37] employed the proposed 1D refined model to analyze the free
vibration of the VSCLs ranging from a simple plate‐like configuration
to a complex wing structure with a NACA profile, where ESL models
are constructed with TE and LW ones are generated by LE. The same
procedure has been used by Pagani et al. [38,39] to show how manu-
facturing flaws, e.g., fibre misalignments affect the buckling and fail-
ure behaviors of VSCLs. There is currently no literature describing
the use of HLE for the corresponding analysis. As a matter of fact,
the CUF‐HLE model combines the advantages of the hierarchy of the
higher‐order terms in the CUF‐TE model and the local description of
the cross‐section kinematics in the CUF‐LE model, thus providing an
additional option for the development of both the ESL and LW models.
However, the correspondence of the shared sides between adjacent
expansion domains cannot be satisfied naturally in the HLE‐based
LW model because the degrees of freedom on the border of the
cross‐section specified by HLE do not have a clear physical meaning.
By virtue of the guideline for the formulation of 2D and 3D elements
in the differential quadrature hierarchical finite element method
(DQHFEM) proposed by Liu et al. [40,41], the present paper tends
to develop a novel type of 1D CUF models called the improved hierar-
chical Legendre expansion (IHLE), which introduces the Lagrange
interpolation basis on the edge of expansion domains while keeping
the hierarchical Legendre interpolation basis on the inside. This novel
expansion not only allows the matrix assembly of cross‐section sub‐
domains to be implemented more conveniently, as the manner in LE,
but also retains the hierarchical properties of HLE.

Besides, in the majority of the literature concerning 1D CUF, FEM
has been emerged as a powerful tool in the handling of arbitrary
geometries and loading conditions. The achieved accuracy and conver-
gence rate scale with the type of the pre‐selected element. Carrera
et al. [42] pointed out that low‐order beam elements, such as two‐
or three‐node beam elements, exhibit various degrees of locking. For
this reason, the development of high‐order methods deserves much
attention since as rapid convergence can be envisaged in conjunction
with a locking‐free occurrence. Alternatively, the differential quadra-
ture finite element method (DQFEM) [43,44] is one of a group of
weak‐formulation‐based approaches and allows for a unified formula-
tion of the element from lower to higher order. In contrast to the stan-
dard FEM, DQFEM performs integration via the Gauss–Lobatto rule
prior to dealing with the derivative of a function. Due to the coinci-
dence of the integration point and element node, the high‐order
approximation of the derivatives at arbitrary integration points
becomes possible by using the DQ rule without the construction of
the shape function. Furthermore, such a coincidence can be regarded
as a reduced integration scheme, accounting for the mechanism of
the locking alleviation indeed.

The current work makes an endeavour to develop a novel beam
model combined with DQFEM to solve the free vibration problem of
VSCLs. The rest of this paper is organized as follows. Initially, the
mathematical description of the fibre orientation angle and material
stiffness matrix of VSCLs is outlined Section 2; then, the CUF kinematic
field is explained in Section 3, where insights about the relationship
between HLE and IHLE are provided; the introduction of DQFEM,
the derivation of the fundamental nucleus and its implementation in
ESL and LW manners are presented in Section 4; the potential of the
proposed approach is shown in Section 5 via the consideration of
VSCL beams and plates; finally, the main conclusions are drawn in
Section 6.
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2. Variable stiffness composite laminates

Consider a typical VSCL structure composed of Nl layers in the
Cartesian reference system, whose geometric size is characterized by
the length L, the width W, and the height H. Assume that each layer
is made of the same material but with different fibre orientation
angles. As distinguished from conventional straight‐fibre‐based lami-
nates, each lamina in a VSCL structure can be manufactured by steer-
ing the fibre along an arbitrary curvilinear path, as shown in Fig. 1.
The present paper employs a x‐coordinate‐dependent linear formula-
tion to define the variation of the fibre orientation angle θðxÞ in the
kth layer, which is given by

θkðxÞ ¼ Tk
0 þ 2

Tk
1 � Tk

0

� �
W

jxj ð1Þ

where T0 and T1 represent the angles at the center x ¼ 0 and the edge
x ¼ jW=2j of the structure. The superscript T denotes the transposition
operator. T0=T1h i is used to characterize the lamination angle in a sin-
gle VSCL ply. For the sake of convenience, the notation k will be omit-
ted in the majority of the formulation derivation below.

For small displacements, the relation between strain

ɛ ¼ ɛyy ɛxx ɛzz ɛxz ɛyz ɛxy
� �T and displacement u ¼ ux; uy ; uz

� �T can be
prescribed through the linear differential operator matrix as:

ɛ ¼ Du ð2Þ
where

D ¼

0 @
@y 0

@
@x 0 0
0 0 @

@z
@
@z 0 @

@x

0 @
@z

@
@y

@
@y

@
@x 0

2
6666666664

3
7777777775

ð3Þ

In addition, Hooke’s law can now be exploited to give stress compo-

nents σ ¼ σyy σxx σzz σxz σyz σxy
� �T as:
Fig. 1. Coordinate system for a to

3

σ ¼ ~Cɛɛ
~CðxÞ ¼ TðxÞCmTTðxÞ ð4Þ

where ~Cm and ~CðxÞ are the material stiffness matrices specified in mate-
rial coordinate 2; 3;1½ � and Cartesian x; y; z½ � systems, respectively; and
T is the rotation matrix. For the sake of brevity, the components of ~Cm

and T are not provided here but can be found in [45]. Moreover, since
~CðxÞ changes point by point in VSCL structures, managing this adjust-
ment is more tricky, as detailed in the Section 4.

3. Carrera Unified Formulation (CUF)

Although the variation of the fibre orientation angle in VSCL struc-
tures is dependent on the x‐coordinate, it is not an impediment to the
effectiveness of CUF, which has been proven applicable over a wide
range of structural geometries and material properties [27]. The core
idea of 1D CUF is to express the 3D displacement vector as the
cross‐section expansion of 1D generalized displacements along the y‐
direction, the explicit form of which can be written as:

uðx; y; z; tÞ ¼ Fτðx; zÞuτðy; tÞ τ ¼ 1; . . . ;M ð5Þ
where uτðy; tÞ is a generalized displacement vector function; a repeated
index τ, according to the Einstein convention, stands for summation;
and Fτðξ; ηÞ represents the expansion function. The high‐fidelity simula-
tion of cross‐section deformation counts on the type of expansion func-
tions (TE, LE, CE, HLE) and the number of expansion terms.

3.1. Hierarchical Legendre expansion

Inspired by the work done by Babuska et al. [46], who used the 2D
set of Legendre polynomials to construct the shape function of plane‐
type elements, Carrera et al. [34] proposed a new beam model, which
characterizes cross‐section deformation via such kind of polynomials.
They can be classified into three groups: vertex modes, side modes,
and internal modes. Their expressions are defined in terms of natural
coordinates (ξ; η), as illustrated bellow.

Vertex modes: they are used to describe nodal deformation values
over the quadrilateral sub‐domain.
w-steered composite laminate.
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Fτ ¼ 1
4
ð1þ ξξτÞð1þ ηητÞ; τ ¼ 1;2; 3; 4; . . . ð6Þ

where ξτ and ητ are the coordinates of four vertexes in the natural coor-
dinate system. ξ and η vary within the range of [‐1, +1].

Side modes: they are used to represent the deformation of the edge
over the quadrilateral sub‐domain.

Fτ ¼ 1
2 ð1� ηÞϕj1 ðξÞ; j1 ⩾ 2; τ ¼ 5;9;13; 18; . . .

Fτ ¼ 1
2 ð1þ ξÞϕj2 ðηÞ; j2 ⩾ 2; τ ¼ 6;10;14;19; . . .

Fτ ¼ 1
2 ð1þ ηÞϕj3 ðξÞ; j3 ⩾ 2; τ ¼ 7;11;15;20; . . .

Fτ ¼ 1
2 ð1� ξÞϕj4 ðηÞ; j4 ⩾ 2; τ ¼ 8;12;16;21; . . .

ð7Þ

where ji; i ¼ 1;2; 3;4 stands for the order of the expansion function at
the ith edge; and ϕji is the integrated Legendre polynomial, the detailed
description of which can be seen in [34]. Note that the expansion order
of each side mode may vary individually. Because two orthogonal
dimensions over the cross‐section have geometrical resemblance, the
order of ϕji on each side is supposed to be equal for the beam‐like struc-
ture. In the case of the plate‐like structure, the width and thickness
dimensions are not in the same order of magnitude. In terms of model-
ing, the order of ϕji in the thickness direction should be certainly differ-
ent than that in the width direction. As a result, the enhanced capability
of side‐dependent kinematics can be used to model beam and plate‐like
structures in an automatic manner.

Internal modes: they are used to depict the deformation inside the
quadrilateral sub‐domain and disappear at nodes and edges.

Fτ ¼ ϕjm ðξÞϕkn ðηÞ; jm; kn ⩾ 2; m; n ¼ 1;2;3; 4;

τ ¼ 17;22;23;28;29;30 . . . ð8Þ
redr
O

=1 =2

=5 8

9

7

6

1j

2j

10

3j

4j

Fig. 2. Hierarchical Legendre polynom

4

Fig. 2 plots the mode shapes of HLE from order 1 to 4 for the beam
case. HLE defines cross‐section kinematics in the isoparametric refer-
ence system. As a result, the LW model can be built by locally refining
kinametic terms in each of reinforced layers, as is the way in LE. More-
over, the kinematics defined by HLE are hierarchical, meaning that the
polynomial order can be increased by adding higher‐order functions to
the existing set (as is done in the TE and CE). This characteristic makes
it possible to realize the ESL model. Therefore, HLE combines the ben-
efits of the TE, CE, and HLE and is frequently used in CUF analyses.

The figure also shows that the side modes for the third‐order expan-
sion do not have the same axisymmetric shape as those for the second‐
order expansion but they do have a centrosymmetric form. Because of
this feature, the C0 continuity of the displacements at layer interfaces
cannot be guaranteed if the nodal numbering scheme is not designed
discreetly. As an illustration, consider a two‐layer laminate with each
layer modeled by the four‐order expansion. The global nodal number-
ing scheme and deformation pattern per layer are shown in Fig. 3. As
for the individual layer, there are four kinds of nodal numbering
schemes, beginning from four separate vertices. Here we consider
two possible cases of local nodal numbering schemes, i.e., Case I and
II (Fig. 3). In Case I, both bottom and top layers have the identical
nodal numbering scheme, which starts at the bottom left corner and
travels anticlockwise around the layer’s edge until ending inward. In
Case II, we replace an existing nodal numbering scheme for the bottom
layer, this time starting from the bottom right corner. The displace-
ment discontinuous phenomena appears at intra‐layer interfaces as a
result of such a minor change. In other words, the outcomes of the
HLE model are highly dependent on each layer’s nodal numbering
scheme.
Vertex modes

Side modes

Internal modes

=3 =4

11

12

13

14

15

16 17

ials with the order from 1st to 4th.



Fig. 4. Transformed nodes of the kth layer.

Fig. 3. Global nodal numbering scheme and the deformations caused by Case
I and II.
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3.2. Improved hierarchical Legendre expansion

A straightforward approach is to convert the non‐interpolative
bases related to hierarchical side modes into Lagrange‐type nodal
bases. Such an operation leads to the improved hierarchical Legendre
expansion (IHLE), which represents one novelty of the present work.

Fig. 4 specifies the transformed nodes related to the kth layer. It
should be added that the total number of transformed nodes should
be equal to that of the expansion terms relative to vertex and side
modes. As a result of the mathematical issue, the nodal collocation
strategy is such that non‐equispaced nodes, namely, Gauss–Lobatto
nodes, are selected for each line so that the serious oscillation phe-
nomenon with a growing number of nodes, referred to as Runge’s phe-

nomenon, can be weakened to some extent. If ug
τ ðy; tÞ ¼ ugxτ; u

g
yτ; u

g
zτ

h iT
is the displacement vector of the τth Gauss–Lobatto node ðξτ; ητÞ. Its
value can be computed using the following equation:

Ug
τ ¼ VUτ ð9Þ

where Ug
τ is a vector, which is constructed from ug

τ ðy; tÞ; and V is
defined in a similar way; Uτ is the vectorization representation of
uτðy; tÞ. These new terms are expressed as follows:

Ug
τ ¼ ugx1; . . . ; u

g
z1; . . . ; u

g
xτ; . . . ; u

g
zτ; . . . ; u

g
xN ; . . . ; u

g
zN

� �T

V ¼

F1 ξ1; η1ð Þ � � � Fτ ξ1; η1ð Þ � � � FN ξ1; η1ð Þ
� � � � � � � � � � � � � � �

F1 ξτ; ητð Þ . . . Fτ ξτ; ητð Þ . . . FN ξτ; ητð Þ
� � � � � � � � � � � � � � �

F1 ξN ; ηNð Þ . . . Fτ ξN ; ηNð Þ . . . FN ξN ; ηNð Þ

2
6666664

3
7777775
� I

Uτ ¼ ux1; . . . ; uz1; . . . ; uxτ; . . . ; uzτ; . . . ; uxN ; . . . ; uzN½ �T

ð10Þ

where � stands for the Kronecker product; I is the 3� 3 identity
matrix; and N indicates the total amount of vertex and side modes.

Based on Eq. (9), the local displacement field related to four edges
ufesðx; y; z; tÞ in the kth layer can be written as follows:

ufes ¼ GV�1Ug
τ ¼ Lτðξ; ηÞug

τ ðy; tÞ; τ ¼ 1;2; . . . :;N ð11Þ
where G ¼ ½F1; F2; . . . ; FN � � I is the matrix form of the expansion func-
tion Fτðξ; ηÞ τ ¼ 1;2; . . . :;N; and Lτ means the Lagrange‐type nodal
base and its component can be computed via GV�1.

It is worth mentioning Eq. (11) has a shortcoming in terms of cal-
culating the displacement field within the layer. In fact, in view of
Fig. 2, internal modes have no effect on the displacement patterns
5

along four edges despite their critical significance in the versatile
description of full displacement fields. Such a crucial feature offers
the possibility of formulating a novel kinematic field, which states
that:

u ¼ Lτ1 ðξ; ηÞug
τ1
ðy; tÞ þ Fτ2 ðξ; ηÞuτ2 ðy; tÞ; τ1 ¼ 1;2; . . . ;N;

τ2 ¼ 1; 2; . . . ;M � N; τ1 – τ2

¼ �Fðξ; ηÞuτðy; tÞ; τ ¼ 1; 2; . . . ;M
ð12Þ

where �Fðξ; ηÞ means the IHLE function, which is a mix of Lagrange and
hierarchical Legendre polynomials.

The main advantage of the proposed kinematic formulation is that
the C0 continuity of the displacements at the intra‐layer interfaces can
be satisfied spontaneously without some special treatment on the
nodal numbering scheme, resulting in an increased efficiency in the
pre‐processing stage. In addition, the Lagrange expansion on edges
can be acquired through the transformation method given by Eq.
(11), retaining the integrity of the input data of the original HLE
model. The transformation efficiency depends on the time consump-
tion of the matrix inversion in Eq. (11).

4. DQFE formulation

Due to its simplicity and broad applicability, the conventional low‐
order FE formulation is extensively used in mechanistic studies of
structures. However, A sufficient number of elements are essential
for ensuring the analysis accuracy. As an alternative, the DQFE formu-
lation belongs to a kind of the high‐order FE formulation, showing a
good compromise between the accuracy and the number of elements.
Accordingly, the generalized displacements along the beam axis can be
interpolated via the following expression:

uτ ¼ NiðyÞuτi i ¼ 1; . . . ; n ð13Þ
where uτi refers to the unknown nodal vector; n indicates the number of
nodes within the element; and NiðyÞ denotes Lagrange interpolating
basis functions in the following manner:

NiðγÞ ¼

Ynelem
j¼1

γ � γj
� �

Ynelem
j¼1;j–i

γi � γj
� � ð14Þ

where Ni is defined using the isoparametric coordinate γ. To minimize
problematic oscillations in numerical solutions, Gauss–Lobatto colloca-
tion points are chosen as the roots of the polynomials with high‐order
degrees.

It is not easy to express the first‐order derivatives of a set of the
shape functions in Eq. (14) in an explicit form. The corresponding
expressions for the low‐order case can be determined term‐by‐term.
On the contrary, it is a tedious work for the high‐order counterpart.
Alternatively, their explicit expressions at the interpolation point can
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be smoothly achieved with the aid of the DQ rule. For example, the
first‐order derivative of uxτ at the ith Gauss–Lobatto node reads

uxτ;y jy¼yi
¼ Aijuxτj i ¼ 1; . . . ; nelem j ¼ 1; . . . ; nelem ð15Þ

where Aij represents the weighting coefficients for its first derivative
and can be written as

Aij ¼ ϕ γið Þ
ϕ γjð Þ γi�γjð Þ ; i ¼ 1; 2; . . . :; nelem; j ¼ 1;2; . . . :; nelem; i– j

Aii ¼ � ∑
n

j¼1;j–i
Aij; i ¼ 1;2; . . . :; nelem

ð16Þ
Although the formulation described here is limited to the special point,
it serves as the foundation for the implementation of DQFEM, which
performs numerical integration via the Gauss–Lobatto rule. Specific
details are discussed in the following sub‐section.

4.1. DQFEM fundamental nucleus

Based on the CUF‐IHLE, the weak‐form governing equation for the
free vibration problem can be derived via the principle of virtual dis-
placements (PVD), which states that:

δLint þ δLine ¼ 0 ð17Þ
where δLint means the virtual variation of the strain energy and δLine is
the virtual variation of the inertial work. In detail, δLint takes the follow-
ing integral form:

δLint ¼
Z
L

Z
Ω
δɛTσdΩdy ¼ δuτiKijτsusj ð18Þ

and δLine is given by

δLine ¼
Z
L

Z
Ω
ρδu€udΩdy ¼ δuτiMijτs€usj ð19Þ

where ρ is the material density; and Kijτs andMijτs are 3� 3 stiffness and
mass matrices denoted to as fundamental nuclei, which are invariant to
the cross‐section expansion order. Thus various beam theories available
can be generated in a unified manner. The mathematical expressions of
these matrices yield:

Kτsij
ð11Þ ¼ E22

τ;xs;x
þ E44

τ;z s;z

� �
Jij þ E26

τ;xs
Jij;y þ E26

τs;xJi;y j þ E66
τs Ji;y j;y

Kτsij
ð12Þ ¼ E26

τ;xs;x
þ E45

τ;z s;z

� �
Jij þ E23

τ;xs
Jij;y þ E66

τs;x
Ji;y jþ E36

τs Ji;y j;y

Kτsij
ð13Þ ¼ E12

τ;xs;z
þ E44

τ;z s;x

� �
Jij þ E45

τ;z
Jij;y þ E16

τs;z
Ji;y j

Kτsij
ð21Þ ¼ E26

τ;xs;x
þ E45

τ;z s;z

� �
Jij þ E66

τ;xs
Jij;y þ E23

τs;x
Ji;y jþ E36

τs Ji;y j;y

Kτsij
ð22Þ ¼ E66

τ;xs;x
þ E55

τ;z s;z

� �
Jij þ E36

τ;x
Jij;y þ E36

τs;x
Ji;y jþ E33

τs Ji;y j;y

Kτsij
ð23Þ ¼ E16

τ;xs;z
þ E45

τ;z s;x

� �
Jij þ E55

τ;z
Jij;y þ E13

τs;z
Ji;y j

Kτsij
ð31Þ ¼ E44

τ;xs;z
þ E12

τ;z s;x

� �
Jij þ E16

τ;z s
Jij;y þ E45

τs;z
Ji;y j

Kτsij
ð32Þ ¼ E45

τ;xs;z
þ E16

τ;z s;x

� �
Jij þ E13

τ;z s
Jij;y þ E55

τs;z
Ji;y j

Kτsij
ð33Þ ¼ E44

τ;xs;x
þ E11

τ;z s;z

� �
Jij þ E45

τ;xs
Jij;y þ E45

τs;x
Ji;y j þ E55

τs Ji;y j;y

Mτζij ¼ Eρ
τζJijI

ð20Þ

where Eαβ
τ;θs;ζ

and Ji;ς j;ς represent the cross‐section moment parameter and

integrals along the beam axis, which read:

Eαβ
τ;θ s;ζ

¼ R
Ω
~CαβðxÞFτ;θ ðx; zÞFs;ζ ðx; zÞdΩ

Ji;ς j;ς ¼
R
L Ni;ς ðyÞNj;ς ðyÞdy

ð21Þ

The integration of Eq. (21) is carried out by the Gauss–Lobatto rule. In
view of integrals along the beam axis, we take the case of Ji;y j as an
example:
6

Ji;y j ¼ R
L Ni;y ðyÞNjðyÞdy

¼
[nelem
n¼1

R
Ln
Ni;y ðyÞNjðyÞdy

¼
[nelem
n¼1

R 1
�1 Ni;γ ðγÞ 1

J1Dj jNjðγÞ J1Dj jdγ

¼
[nelem
n¼1

∑
nmglp

m¼1
AimNj γmð Þwm

ð22Þ

where nelem and nmglp are total number of beam elements and the
Gauss–Lobatto points related to γm; J1Dj j is the Jacobian determinant
in the longitudinal direction; Ln is the length of the nth element; wm

is the weight pertaining to the Gauss–Lobatto point; the symbol
Snelem

n¼1

represents the operator that assembles the element stiffness matrix into
the global stiffness matrix through the shared degrees of freedom; and
the notation ∑ sums corresponding terms according to the subscript.
Due to the property of Nj γmð Þ ¼ δjm, Eq. (22) can be further simplified
as:

[nelem
n¼1

∑
nglp

m¼1
AimNj γmð Þwm ¼

[nelem
n¼1

∑
nglp

m¼1
Aijwj ð23Þ

On the other hand, the computation of the cross‐section integration
depends on the chosen multilayered theory, i.e., ESL or LW.

In the case of ESL, Eαβ
τ;θ s;ζ

may then be recast into the alternative

expression:

Eαβ
τ;θ s;ζ

¼ R
Ω
~CαβðxÞFτ;θ ðx; zÞFs;ζ ðx; zÞdΩ

¼ R 1
�1

R 1
�1

~CαβðξÞFτ;θ ðξ; ηÞFs;ζ ðξ; ηÞ J2Dj jdξdη

¼ ∑
nsub�domain

k¼1

R ξku

ξkl

R ηku

ηkl
~CαβðξkÞFτ;θ ðξk; ηkÞFs;ζ ðξk; ηkÞ J2Dj jdξkdηk

¼ ∑
nsub�domain

k¼1
∑
niglp

i¼1
∑
njglp

j¼1

~Cαβðξki ÞFτ;θ ðξki ; ηkj ÞFs;ζ ðξki ; ηkj Þ J2Dj jwk
i w

k
j

ð24Þ

On the contrary, LW deals with Eαβ
τ;θs;ζ

in another possible way:

Eαβ
τ;θ s;ζ

¼ R
Ω
~CαβðxÞFτ;θ ðx; zÞFs;ζ ðx; zÞdΩ

¼
[nsub�domain

k¼1

R 1
�1

R 1
�1

~CαβðξkÞFτ;θ ðξk; ηkÞFs;ζ ðξk; ηkÞ Jk2D
�� ��dξkdηk

¼
[nsub�domain

k¼1

∑
niglp

i¼1
∑
njglp

j¼1

~Cαβðξki ÞFτ;θ ðξki ; ηkj ÞFs;ζ ðξki ; ηkj Þ Jk2D
�� ��wk

i w
k
j

ð25Þ

∑nsub�domain
k¼1 represents the direct summation of kinematic terms in ESL,

whereas
Snsub�domain

k¼1 denotes the assembly of cross‐section expansion
terms in LW. Additionally, the interval of the Gauss–Lobatto integration
in ESL is scaled with respect to the geometrical size of the sub‐domain,
from [‐1,+1] to ½ξkl ; ξku � or ½ηkl ; ηku �. This operation marginally compli-
cates the pre‐processing process in ESL compared to that in LW. How-
ever, the increasing computation cost associated with the preceding
transformation in ESL can be neglected in comparison with the layer‐
dependent feature in LW. Besides, more Gauss–Lobatto points should
be allotted to correctly compute the 2D integral since the material coef-
ficients in ~C are functions of the isoparametric coordinate ξ. To be
specific, for Fτ with the jth order, jþ 4 Gauss–Lobatto points are
employed in the computation of Eq. (24) or (25). However, jþ 2
Gauss–Lobatto points are needed for computing the cross‐section inte-
gral in CSCL structures. As a result, computational costs are expected
to increase marginally in the analysis of VSCLs.

As far as the harmonic motion is concerned, the solution can be
assumed to the following manner

usj ¼ Usjeiωt ð26Þ
where Usj is the amplitude of displacement unknowns; ω is the angular
frequency; and i2 is equal to −1. By substituting Eq. (26), Eq. (20), and
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Eq. (19) into Eq. (17), a linear system of the algebraic equations of
motion is given by:

Kτsij � ω2Mτsij� �
Usj ¼ 0 ð27Þ

The implementation of the matrix assembly can be ensured by expand-
ing the fundamental nucleus over the indexes τ; s; i, and j. Generally
speaking, the matrix assembly over the cross‐section domain can be
done in the preliminary stage. Following that, the matrix assembly of
DQFEM‐defined beam elements can be completed. Note that the assem-
bly rule of the stiffness and mass matrices of VSCLs is identical to that of
CSCLs. For this reason, readers can refer to the literature [30] for a
more detailed implementation of global matrices. Once global matrices
are obtained, the eigenvalue problem can be finally solved via the
imposition of boundary conditions.

5. Numerical results

The solutions to the free vibration problem of VSCL beams and
plates have been presented in this section obtained by the DQFEM‐
based CUF‐IHLE model. Numerical calculations are performed in ESL
and LW descriptions generated by IHLE kinematics to show the advan-
tage of each model. The validation procedure is divided into two parts:
the first part focuses on the VSCL beams with a group of fibre paths
subjected to clamped–clamped (C–C) and clamped‐free (C‐F) boundary
conditions; the second part addresses VSCL plates, paying special
attention to the effect of lamination schemes and thickness‐to‐width
ratios on frequencies. Unless stated otherwise, the polynomial order
of internal modes in ESL models is p, whereas it is p� 1 in LW models
when the polynomial order of side modes is given as p.

5.1. VSCL beam

The preliminary validation addresses the free vibration problem of
the symmetric three‐layer VSCL beam with lamination schemes
þ T0=T1h i;� T0=T1h i;þ T0=T1h i½ �. The geometrical size of the beam is
given as follows: the width b ¼ 0:2 m, the height h ¼ 0:2 m, and the
length L ¼ 1 m. Orthotropic material properties correspond to the fol-
lowing values: Young moduli E11 ¼ 288 GPa and E22 ¼ E33 ¼ 7:2 GPa;
Shear moduli G12 ¼ G13 ¼ 4:32 GPa and G23 ¼ 3:6 GPa; Poisson ratio
ν12 ¼ ν13 ¼ ν23 ¼ 0:25; Material density ρ ¼ 1540 kg=m3. Two types of
boundary conditions are considered: the clamped and free.

Subsequently, the convergence study of the first non‐dimensional
angular frequency ω� ¼ ωL2=h

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ=E22

p
in terms of C–C and C‐F bound-

ary conditions is demonstrated in Table 1 and 2. The results obtained
Table 2
Convergence of the first non-dimensional angular frequency for the VSCL beam obta

Method T0: 0�

T1: 0� 20� 40� 60�

FEM-40B2 [47] 4.456 3.791 3.384 3.136
DQFEM-1B5 4.454 3.748 3.353 3.110
DQFEM-1B7 4.454 3.748 3.352 3.108
DQFEM-1B9 4.454 3.748 3.352 3.108

Table 1
Convergence of the first non-dimensional angular frequency for the VSCL beam obta

Method T0: 0�

T1: 0� 20� 40� 60�

FEM-40B2 [47] 11.678 11.324 10.935 10.610
DQFEM-1B5 11.666 11.300 10.912 10.585
DQFEM-1B7 11.672 11.304 10.916 10.588
DQFEM-1B9 11.672 11.304 10.916 10.588

7

with DQFEM are compared with the FEM solutions in the literature
[47] when T0 and T1 range over the interval [0�, 45�]. The beam ele-
ment is defined as #Bβ, where # and β represent the number of ele-
ments and the nodes in a single element. The number of degrees of
freedoms (DOFs) for each method is also reported in the last column
of two tables. As illustrated in the tables, DQFEM converges rather
rapidly, computing smaller values with far fewer DOFs than FEM.
Besides, the clamped boundary condition increases the value of the
first angular frequency featured by the bending mode. In this regard,
angle‐ply lamination schemes T0 – 0�;T1 – 0�ð Þ soften the bending
stiffness, leading to the reduction of the first angular frequency. On
the other hand, the discrepancy between DQFEM and FEM results is
more pronounced when T0 is equal to 45� and T1 falls inside a certain
range [20�, 60�]. According to convergence analyses, the 1B9 element
is selected to evaluate the influence of different expansion orders in
the following discussion.

As for cross‐section discretization schemes, 1 sub‐domain is devel-
oped for the ESL model and 6 sub‐domains for the LW model. It should
be noted that the LW model normally employs a single domain per
layer for CSCL beams. This operation presents a risk of numerical
instability in VSCL beams since the function used to describe the fibre
path includes an absolute value. This mathematical issue can be solved
by adding a mathematical boundary at the discontinuous point,
namely, two domains per layer. The notation ψIHLξ� ζ refers to the
number of sub‐domains (ψ) and the polynomial order (ξ� ζ) in the
x and z directions.

Tables 3 and 4 include the first four modal values in two different
kinds of boundary conditions with various expansion orders. To make
a direct comparison of ESL and LW approaches, Three kinds of fibre
orientation angles are considered:
½þ 45�=45�h i;� 45�=45�h i;þ 45�=45�h i�; ½þ
0�=60�h i;� 0�=60�h i;þ 0�=60�h i�;
½þ 45�=40�h i;� 45�=40�h i;þ 45�=40�h i�. Some comments arise from the
preceding two tables:

(1) In general, the first‐order expansion (IHL1� 1) in the ESL
model is only appropriate for the quick computation of the first
bending mode on plane yz. For the special case of
T0 ¼ 0�;T1 ¼ 60�, the mode exchange between the mode 1
and 2 even occurs in IHL1� 1. In other words, IHL1� 1 fails
in the analysis of VSCL beams.

(2) In the vast majority of cases, the first four modal values given by
the ESL model achieve satisfactory convergence for the third‐
order model (IHL3� 3) except for the case of
ined with the ESL models of the first-order expansion (C-F).

45� DOFs

0� 20� 40� 60�

3.320 2.458 1.867 1.551 369
3.292 2.367 1.650 1.408 60
3.291 2.363 1.640 1.398 84
3.291 2.363 1.639 1.397 108

ined with the ESL models of the first-order expansion (C–C).

45� DOFs

0� 20� 40� 60�

10.854 9.766 8.531 7.631 369
10.832 9.703 8.320 7.464 60
10.835 9.681 8.180 7.314 84
10.835 9.680 8.176 7.310 108



Table 4
First four non-dimensional angular frequencies of CSCL and VSCL beams for the C-F boundary condition.

Expansion order mode 1a mode 2b mode 3c mode 4d DOFs

ESL model T0 ¼ 45�;T1 ¼ 45�ð Þ
1IHL1� 1 1.530 3.308 8:590 7:818 108
1IHL2� 2 1.440 1.554 7:969 7:460 243
1IHL3� 3 1.379 1.503 7:274 7:017 432
1IHL4� 4 1.374 1.467 7:236 6:984 675

LW model T0 ¼ 45�;T1 ¼ 45�ð Þ
6IHL1� 1 1.388 2.179 7:800 7:104 324
6IHL2� 2 1.348 1.456 7:242 6:899 783
6IHL3� 3 1.334 1.423 7:173 6:827 1404

ESL model T0 ¼ 0�;T1 ¼ 60�ð Þ
1IHL1� 1 3.108 3.463 8.380 12.387 108
1IHL2� 2 3:089 2:360 7.991 12.321 243
1IHL3� 3 2:773 2:319 7.225 11.369 432
1IHL4� 4 2:760 1:900 7.190 11.316 675

LW model T0 ¼ 0�;T1 ¼ 60�ð Þ
6IHL1� 1 2:970 2:133 7.674 11.919 324
6IHL2� 2 2:724 1:895 7.091 11.278 783
6IHL3� 3 2:679 1:783 6.812 11.133 1404

ESL model T0 ¼ 45�;T1 ¼ 40�ð Þ
1IHL1� 1 1.639 3.684 8:802 8:185 108
1IHL2� 2 1.542 1.756 8:075 7:826 243
1IHL3� 3 1.459 1.685 7:464 7:231 432
1IHL4� 4 1.452 1.622 7:437 7:177 675

LW model T0 ¼ 45�;T1 ¼ 40�ð Þ
6IHL1� 1 1.479 2.540 8:023 7:382 324
6IHL2� 2 1.420 1.616 7:402 7:116 783
6IHL3� 3 1.401 1.556 7:338 7:020 1404

a First flexural mode on plane yz
b First flexural mode on plane xy
c First torsional mode
d Second flexural mode on plane yz

Table 3
First four non-dimensional angular frequencies of CSCL and VSCL beams for the C–C boundary condition.

Expansion order mode 1a mode 2b mode 3c mode 4d DOFs

ESL model T0 ¼ 45�;T1 ¼ 45�ð Þ
1IHL1� 1 7.862 18:835 19:734 16:974 108
1IHL2� 2 7.568 10.537 17:072 16:373 243
1IHL3� 3 7.062 9.883 15:403 15:378 432
1IHL4� 4 7.043 9.570 15.262 15.341 675

LW model T0 ¼ 45�;T1 ¼ 45�ð Þ
6IHL1� 1 7.212 13.757 17:149 15:693 324
6IHL2� 2 6.983 9.583 15.246 15.314 783
6IHL3� 3 6.926 9.322 15.056 15.193 1404

ESL model T0 ¼ 0�;T1 ¼ 60�ð Þ
1IHL1� 1 10.588 19:252 18:370 21.692 108
1IHL2� 2 10.514 14.163 16.860 21.506 243
1IHL3� 3 9.760 13.050 14.838 20.341 432
1IHL4� 4 9.708 11.494 14.734 20.222 675

LW model T0 ¼ 0�;T1 ¼ 60�ð Þ
6IHL1� 1 10.095 13.170 16.055 20.967 324
6IHL2� 2 9.722 11.234 14.376 20.251 783
6IHL3� 3 9.615 10.247 13.757 19.898 1404

ESL model T0 ¼ 45�;T1 ¼ 40�ð Þ
1IHL1� 1 8.176 20:584 20:371 17:385 108
1IHL2� 2 7.873 11.953 17:390 16:759 243
1IHL3� 3 7.315 11.068 15.709 15.775 432
1IHL4� 4 7.291 10.594 15.570 15.715 675

LW model T0 ¼ 45�;T1 ¼ 40�ð Þ
6IHL1� 1 7.483 15.722 17:701 16:041 324
6IHL2� 2 7.227 10.664 15.562 15.677 783
6IHL3� 3 7.158 10.233 15.341 15.538 1404

a First flexural mode on plane yz
b First flexural mode on plane xy
c First torsional mode
d Second flexural mode on plane yz
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Fig. 5. First four mode shapes in the 3D space for the C–C condition.
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T0 ¼ 45�;T1 ¼ 45� in the C–C boundary condition, where
IHL4� 4 is needed to identify the correct order of appearance
of the mode 3 and 4.

(3) In terms of the LW model, the first four modes can be accurately
captured by the low‐order model (IHL2� 2) in view of values
and order of appearance, while its DOFs are almost twice higher
than those of IHL3� 3 generated by the ESL model.

(4) In the case of the C‐F boundary condition, the sequence of
modal appearance is quite sensitive to the values of T0 and
T1. Specifically, the first flexural mode on plane xy tends to
appear before the first flexural mode on plane xy when T0 is
close to 0� and T1 to 90�. On the other hand, the second flexural
mode on plane yz is apt to manifest earlier than the first tor-
sional mode when T0 and T1 are both in close proximity to 45�.

Figs. 5 and 6 give the 3D plots of the first four modes under differ-
ent boundary conditions. From the figures, we can clearly see the first
mode tends to be the first bending mode on plane xy instead of on
plane yz. Furthermore, the second bending mode on plane yz is more
or less mixed in with the component of the torsional mode in the
angle‐ply lamination scheme. This phenomenon is more prominent
Fig. 6. First four mode shapes in the

9

in the C‐F boundary condition, where it is difficult to distinguish the
first torsional mode and second bending mode on plane yz when both
T0 and T1 are close to 45�.

5.2. VSCL plate

A three‐layer VSCL plate is considered to further verify the correct-
ness of the proposed model. Different from the cross‐section of a beam,
whose dimension in the width direction is of high proximity to that in
the thick direction, the width and length of a plate are predominant
with respect to the thickness. Accordingly, expansion orders in the
two orthogonal dimensions should be distinct in the IHLE model, thus
saving computational efforts.

The first investigation of this section is related to the VSCL plates
with different thickness‐to‐width ratios (0.01 and 0.1). This kind of
analysis has been performed by Viglietti et al. [36], who used the h‐
version finite element method based on 1D CUF‐LE models. The length
and width of the plate are equal to 1 m and the orthotropic material is
employed for each layer and has the following properties:
E11 ¼ 173:0 GPa; E22 ¼ E33 ¼ 7:2 GPa; v12 ¼ v13 ¼ v23 ¼ 0:29,
G12 ¼ G13 ¼ G23 ¼ 3:76 GPa; ρ ¼ 1540 kg=m3. The stacking sequence
3D space for the C-F condition.



Table 5
First seven natural frequencies (Hz) for the VSCL plate with different heights.

Height Model mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 DOFs

0.1 p-FEM-TSDT [36] 614.11 909.55 1233.02 1338.63 1485.64 1798.60 1932.28 -a

h-FEM-LE [36] 609.79 903.63 1216.00 1328.41 1469.33 1774.84 1930.15 9261
h-FEM-3D [36] 607.24 897.04 1208.40 1314.14 1458.18 1753.52 1916.57 95000

ESL model
1B7 + 1IHL6 � 2 636.83 949.13 1283.71 1405.31 1558.49 1917.77 2064.10 441
1B9 + 1IHL8 � 2 634.88 943.47 1275.36 1414.05 1551.60 1906.44 2036.82 729
1B11 + 1IHL10 � 2 633.77 941.62 1271.85 1394.22 1539.66 1885.31 2017.45 1089
1B11 + 1IHL10 � 3 610.19 905.38 1214.71 1331.24 1469.82 1781.82 1926.40 1452
1B11 + 1IHL10 � 4 610.05 905.13 1214.30 1330.58 1469.13 1780.44 1924.89 1815

LW model
1B8 + 6IHL4 � 2 621.23 911.63 1248.40 1346.84 1503.39 1810.49 1938.15 1080
1B11 + 6IHL5 � 2 619.02 908.86 1239.98 1330.19 1490.34 1789.06 1928.57 1749
1B11 + 6IHL5 � 3 608.89 899.54 1214.51 1318.33 1465.24 1764.96 1910.28 2640
1B11 + 6IHL5 � 4 608.07 898.25 1211.82 1315.50 1461.58 1756.51 1908.49 3531

0.01 p-FEM-TSDT [36] 92.26 130.82 195.19 237.86 274.99 282.67 340.09 –a
h-FEM-LE [36] 94.44 135.36 206.4 247.05 287.67 307.89 361.64 9261
h-FEM-3D [36] 92.65 131.50 196.86 239.23 276.76 286.34 342.84 95000

ESL model
1B7 + 1IHL6 � 2 94.43 135.56 202.78 244.40 289.99 358.82 474.94 441
1B9 + 1IHL8 � 2 92.53 131.36 196.30 239.25 277.84 299.44 353.22 729
1B11 + 1IHL10 � 2 92.42 131.11 195.73 238.55 275.96 284.25 341.74 1089
1B11 + 1IHL10 � 3 92.30 130.95 195.47 237.92 275.24 283.78 340.86 1452
1B11 + 1IHL10 � 4 92.30 130.94 195.46 237.92 275.24 283.77 340.86 1815

LW model
1B8 + 6IHL4 � 2 94.34 134.57 204.92 247.71 296.43 300.82 371.92 1080
1B11 + 6IHL5 � 2 92.62 131.37 195.99 239.79 279.29 284.91 346.27 1749
1B11 + 6IHL5 � 3 92.56 131.29 195.87 239.41 278.79 284.66 345.62 2640
1B11 + 6IHL6 � 4 92.33 130.96 195.41 238.08 275.56 283.64 341.27 4191

a Not provided by the theory

Table 6
Geometrical sizes and material properties for the VSCL plate

a (m) b (m) h (m) E11ðGPaÞ E22ðGPaÞ E33ðGPaÞ v12 v13 v23 G12ðGPaÞ G13ðGPaÞ G23ðGPaÞ ρðkg=m3Þ

1 1 0.2 138 8.96 8.96 0.3 0.3 0.3 7.1 7.1 7.1 1
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is assumed to be ½ 0�=45�h i; �45�=� 60�h i; 0�=45�h i� and the boundary
condition is four edges clamped.

Table 5 shows the first seven natural frequencies of the clamped
plates featured by diverse thickness‐to‐length ratios. The results
obtained by the CUF‐IHLE models in terms of ESL and LW approaches
are compared with those available in the literature [36]. In detail, p‐
FEM‐TSDT corresponds to the numerical implementation by the p‐
FEM based on the third‐order shear deformation theory, and the h‐
FEM‐3D represents the 3D FEM model created by the Nastran soft-
ware. Some useful conclusions can be drawn from the table:

(1) The present method can yield almost identical values as those in
the reference while keeping the computational cost much lower
than h‐FEM‐LE and h‐FEM‐3D models.

(2) For the thick plate, ESL models accounting for the quadratic‐
polynomial expansion in the thickness direction are unable to
yield accurate modal values, especially in the high‐frequency
range. The expansion order in the thickness direction should
be higher than 3 to get convergent results both for ESL and
LW models.

(3) Due to the minor role played by shear deformations in thin
plates, increasing the expansion order in the thickness direction
has little effect on the accuracy of the assessment. On the con-
trary, a significant improvement in accuracy can be observed
as the polynomial degrees both in the length and width direc-
tion increase. The mechanism behind this phenomenon appears
to be associated with the inhibition of the locking, which is
10
more pronounced when the stress calculations of thin shell
structures are performed using standard lower‐order FEM mod-
els. By increasing the number of elements and the order of inter-
polation functions, two viable solutions to the locking problem
become apparent (see the results of h‐FEM‐3D and
1B11 + 1IHL10 � 2).

The next assessment is devoted to the analysis of the VSCL plates with
symmetric and unsymmetric lamination schemes. For comparison pur-
pose, the same geometrical sizes and material properties as those in
the literature [26] are considered, as listed in Table 6. The fibre orien-
tation angle for the symmetric condition can be expressed as
½ 15�=� 15�h i; 15�=� 30�h i; 15�=� 15�h i� and that for the unsymmet-
ric case as ½ 15�=� 15�h i; 15�=� 30�h i; 15�=� 45�h i�. The first six
modal values are shown in Table 7, which are produced using pro-
posed ESL and LW approaches as well as the LW method in Yazdani
and Ribeiro [26], where in‐plane displacements vary linearly through
the thickness, and out‐of‐plane counterparts are constant in the thick-
ness direction. A combination of different numbers of nodes and vari-
ous cross‐section expansion orders is also included. Fig. 7 gives the 3D
plot of the mode shapes corresponding to the values in Table 5 and 7.
Out of these results, the following remarks can be made:

(1) Small variations in the fibre orientation angles result in the
alteration of modal values to different degrees. In other words,
increasing the fibre orientation angle at the edge does not lead
to an increase in all modal values.



Table 7
First six natural frequencies (Hz) for the VSCL plate with different lamination schemes.

Fibre Path Model mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 DOFs

½ 15�=� 15�h i, LW [26] 40239.08 57104.54 65239.73 76380.43 83762.36 88507.89 –

a

15�=� 30�h i, ESL model
15�=� 15�h i� 1B7 + 1IHL6 � 2 41350.50 58827.96 65617.44 78192.70 86161.00 90872.87 441

1B9 + 1IHL8 � 2 41291.67 58441.70 65543.68 78000.07 85316.35 90392.25 729
1B11 + 1IHL10 � 2 41277.27 58418.45 65522.87 77969.88 85308.01 90336.93 1089
1B11 + 1IHL10 � 3 39684.58 56720.05 65503.62 74863.28 83067.08 87248.73 1452
1B11 + 1IHL10 � 4 39654.67 56658.38 65401.86 74787.22 82932.15 87133.57 1815

LW model
1B8 + 6IHL4 � 2 40496.52 57313.24 65452.77 76471.70 84380.25 88906.64 1080
1B11 + 6IHL5 � 2 40466.31 57238.08 65418.05 76431.10 83389.68 88802.49 1749
1B11 + 6IHL5 � 3 39659.69 56655.64 65370.38 74792.21 82920.31 87146.68 2640
1B11 + 6IHL5 � 4 39593.98 56607.05 65369.06 74568.31 82879.02 86942.42 3531

½ 15�=� 15�h i, LW [26] 39252.31 57247.66 65834.81 75702.50 84590.95 88507.89 –a
15�=� 30�h i, ESL model
15�=� 45�h i� 1B7 + 1IHL6 � 2 40502.92 59061.05 66333.76 77739.18 86986.54 91185.84 441

1B9 + 1IHL8 � 2 40328.27 58624.88 66190.05 77413.26 86203.57 90443.03 729
1B11 + 1IHL10 � 2 40286.93 58583.16 66155.54 77346.46 86183.95 90334.34 1089
1B11 + 1IHL10 � 3 38789.63 56909.35 65848.34 74368.23 83921.22 87249.58 1452
1B11 + 1IHL10 � 4 38733.53 56822.12 65823.07 74266.55 83757.41 87082.20 1815

LW model
1B8 + 6IHL4 � 2 39505.98 57440.30 66014.20 75946.54 85175.20 89057.60 1080
1B11 + 6IHL5 � 2 39453.46 57349.27 65952.79 75766.21 84181.34 88827.62 1749
1B11 + 6IHL5 � 3 38749.45 56820.19 65801.11 74325.65 83736.68 87127.07 2640
1B11 + 6IHL5 � 4 38689.07 56775.33 65782.10 74130.82 83700.43 86930.47 3531

a Not provided by the theory

Fig. 7. Mode shapes of: ðaÞ a VSCL plate ðh ¼ 0:01Þ with ½ 0�=45�h i; �45�=� 60�h i; 0�=45�h i�; ðbÞ a VSCL plate ðh ¼ 0:1Þ with
½ 0�=45�h i; �45�=� 60�h i; 0�=45�h i�; ðcÞ a symmetric VSCL plate with ½ 15�=� 15�h i; 15�=� 30�h i; 15�=� 15�h i� ðdÞ an unsymmetric VSCL plate with
½ 15�=� 15�h i; 15�=� 30�h i; 15�=� 45�h i�.
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(2) The modal values provided by Yazdani and Ribeiro [26] fall
between those computed by 1B8+6IHL4 � 2 and 1B11
+6IHL5 � 4, which means the LW model in Yazdani and
Ribeiro [26] is actually a special case of our developed LW
model.
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(3) Mode switching between the third and fourth modes occurs as
the thickness‐to‐width ratio decreases. On the other hand, when
the thickness‐to‐width ratio is greater than 0.2, mode 3 is dom-
inated by the shear deformation on plane xy. Another interest-
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ing fact can be observed in symmetric and unsymmetric VSCL
plates, in which a slight alteration of fibre orientation angles
has little effect on the profiles of 3D mode shapes.

6. Conclusions

A novel unified quasi‐3D solution is developed for free vibration
analyses of tow‐steered composite laminates in this work. The study
is carried out using a mix of the Carrera Unified Formulation (CUF)
model based on improved hierarchical Legendre expansion (IHLE)
and the differential quadrature finite element method (DQFEM).
Numerous examples have been performed to illustrate the high numer-
ical accuracy and efficiency of the present model, including beams and
plates with a variety of geometric sizes and lamination schemes. Sev-
eral significant conclusions can be drawn from numerical results:

1. The DQFEM‐based beam element requires significantly fewer
degrees of freedom than the FEM‐based one. Moreover, the further
away fibre orientation is from 0�, the better the trade‐off between
precision and computational cost that DQFEM can deliver.

2. A possible mode switching phenomenon may arise in VSCL beams
when a lower‐order expansion is adopted in the CUF‐IHLE model.
Thus, it is not recommended to use Euler–Bernoulli or Timoshenko
beam theory in this type of analysis.

3. In view of VSCL plates, the higher‐order Equivalent Single Layer
(ESL) model may attain nearly the same degree of accuracy as
the higher‐order Layer‐Wise (LW) model at a lower computational
cost. Additionally, as thickness‐to‐width ratios grow, non‐classical
modes, such as shear mode, may appear early.

4. For the computation of thick VSCL plates, it is necessary to refine
the cross‐section kinematics in the thickness direction, whereas
such refinement in the width direction results in significantly faster
convergence for the case of thin VSCL plates.

The idea of placing fibres along curved routes offers the designer
great flexibility to improve the mechanical performance of laminated
structures. The developed CUF‐IHLE‐based DQFEM approach can be
further applied to the optimization study of the dynamic characteris-
tics of VSCL structures with guaranteed accuracy and efficiency.
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