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Summary

Natural hazards affect every year thousands of lives, damaging cities, forests,
and habitats, other than causing large economical losses. The European Commis-
sion and its Member States are involved in fighting the phenomena, cooperating
and supporting several initiatives to reduce disasters impacts. Among its initiatives,
the EU funds research projects to innovate and support emergency management
operations.

This thesis presents several works partially carried out during two of these
projects, focusing on data science approaches for the exploitation of satellite ac-
quisitions and social media data to support emergency operations during and after
wildfire and flood events.

Satellite data provide a wide and complete view of regions hit by a hazardous
event. Those data are employed to localize the affected areas and to estimate their
damage. In this regard, we adapted machine learning approaches and we assessed
their performances in both tasks. Furthermore, we studied novel approaches, able to
solve the same problems with higher performances and using less information than
those adopted in the literature. Then, we operationalized the approaches through
the development of a platform that is able to provide an end-to-end mapping service.

Social media data provide a large volume of information in near-real-time and
can contribute to increase the general knowledge about the context of an emer-
gency and to help coordinating emergency operations. To this end, we dealt with
heterogeneous information which included textual and visual data, proposing novel
challenging approaches. Firstly, we aimed to detect people potentially in danger
through the evaluation of flooded sources depth and then, we wanted to detect
flooded roads that could be still viable, useful for transporting emergency support
to victims.
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Chapter 1

Introduction

This thesis covers the research activities conducted during my PhD. Most of
them contributed to two European H2020 funded projects for the support of emer-
gency management and the protection of cultural heritage against natural hazards,
[-REACT (G.A. 700256) and SHELTER (G.A. 821282). In both projects, Politec-
nico di Torino was a member of the consortium (project partner). The research
activities were carried out in collaboration with LINKS Foundation, a private re-
search centre located in Turin.

This chapter introduces the issue of natural hazards and their impact across Eu-
rope. Then, it presents the principal steps taken to cope with an emergency and to
limit the effects of a disaster, introducing how recent computer science and artificial
intelligence methodologies can support the operations. Among them, the goals and
ambitions of my research are clarified, also determining the borders of the studied
domains. Subsequently, the main activities, contributions, and achievements per-
formed during the PhD are summarised. Finally, a dissertation plan introduces the
topics discussed in the following chapters.

1.1 Natural hazards: a threat for society

A natural hazard is a natural process or phenomenon that may cause death,
injury, or other health consequences, as well as property damage, loss of livelihoods
and services, social and economic upheaval, and environmental degradation.[109].
Due to the effects of climate change, during the last decades, the impact of nat-
ural hazards increased in terms of intensity and frequency, threatening the entire
world. The Europen Commission estimated that, between 1980 and 2017, natural
hazards cost the EU more than 90,000 lives and more than €500 billion of economic
losses [40]. According to the Intergovernmental Panel on Climate Change (IPCC),
extreme weather and climate events have become more frequent and intense as a
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result of global warming and will continue to increase under medium and high emis-
sion scenarios. Along with human activity, global warming is having a larger role in
determining wildfire regimes, with future climatic variability projected to increase
the danger and intensity of wildfires in many biomes [73, 72]. Furthermore, global
warming has a direct impact on precipitation: increased temperature causes higher
evaporation and hence surface drying, which increases the severity and duration of
droughts. Indeed, it is estimated that the water holding capacity of air increases
by about 7% over 1°C warming that leads to more water vapour being retained
in the atmosphere [158]. Therefore, storms are supplied with more moisture and
produce more extreme precipitation events and consequently increase the risk of
flood events.

The European Union and its Member States are actively involved in finding so-
lutions to such impactful issues and take actions in several directions. The EU
Civil Protection Mechanism allows the Member States and cooperating countries
to share catastrophe risk information, conduct joint drills, and pool rescue troops
and equipment. Moreover, through the Horizon 2020 programme, the European
Union allocates funds to support research and innovation on a variety of topics,
including the support to the emergency management against natural disasters [39].

1.2 Emergency Management cycle

As introduced in the previous section, natural hazards represent a real issue,
that needs to be properly handled. Protection of people, property, the environment,
and cultural heritage is essentially a national responsibility in the European Union.
However, because disasters know no boundaries, the EU supplements, supports, and
coordinates national efforts while also encouraging cross-border collaboration [41].
Contrary to popular belief, emergencies are managed both before their occurrence
and after their conclusion, through the implementation of emergency management
policies that aim to reduce vulnerability to hazards and help to cope with disasters.
Emergency management consists of five steps:

o Prevention: actions taken to prevent an emergency. Preventive measures are
designed to provide permanent protection from disasters;

o Mitigation strategy: measures aimed to reduce or eliminate the impacts and
risks of hazards through proactive actions taken before the occurrence of an
emergency;

e Preparedness: equipment and procedures aimed to increase a community’s
ability to respond when a disaster occurs. They can be used to reduce vulner-
ability to a disaster, to mitigate its impacts, and to respond more efficiently;
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» Response: actions carried out immediately before, during, and immediately
after a hazard impact, which is aimed at saving lives, reducing economic
losses, and alleviating suffering. Response actions may include activating
the emergency operations centre, evacuating threatened populations, opening
shelters and providing mass care, emergency rescue and medical care, fire
fighting, and urban search and rescue;

e Recovery: actions taken to return a community to normal or near-normal
conditions, including the restoration of basic services and the repair of phys-
ical, social and economic damages. Typical recovery actions include debris
cleanup, financial assistance to individuals and governments, rebuilding of
roads and bridges and key facilities, and sustained mass care for displaced
human and animal populations.

Satellite acquisitions and user-generated content, such as pictures and tweets,
are only a subset of the potential big geo-referenced data sources available today.
The proper integration of the different data sources can be profitably exploited
to build accurate, descriptive and predictive models. During the PhD program,
data from satellites and social media were analysed to study and research newer
approaches, aiming to support the Response and Recovery phases of the emergency
management cycle.

1.3 Research Contributions

During the PhD, I focused on techniques to support the phases of Response and
Recovery during wildfires and floods, using either satellite or social media data. In
the Response phase, my contributions concerned the monitoring of floods, intending
to support the operations to enhance their knowledge about the hazard, by:

» locating affected regions delineating flooded areas, using satellite data;

o evaluating roads conditions in order to determine their viability, using social
media data;

o detecting, among several people, the ones in danger, using social media data.

In the Recovery phase, my contributions concerned the census of areas affected
by wildfires after their extinction. This activity is usually undertaken to evaluate
the monetary impact of the hazard and to plan a proper restoration. My contribu-
tions aimed to provide models potentially appliable to any kind of ground, being
independent of its morphology, and its characterization of vegetation, buildings,
and biomes. The models are evaluated to be both fast and highly accurate, even
in contexts where the amount of information is limited. Therefore, they involved:
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the analysis of multi-spectral data in order to assess the feasibility of the
delineation activity using the information of either visible or invisible spectral
bands. On one hand, we limited the available information considering only
the visible spectral bands to delineate a wildfire, with the benefit of reducing
the cost of the sensors needed from aerial inspections (e.g. aircraft). On the
other hand, using all the spectral wavelengths may suggest higher chances to
be more accurate, but at the cost of more expensive sensors;

the evaluation of the damage severity in the affected areas, in order to identify
regions mostly ruined.

1.4 Thesis report outline

This thesis deals with the studies and the analyses performed during the PhD,
critically presenting the results. It is structured as follows:

Chapter 2 presents the state of the art of the studied domains. For the
satellite part, it introduces the current approaches and tools used to create
maps, highlighting the areas affected by the hazard and estimating its impact.
For the social media part, similar studies are presented. The limitations of
literature approaches are explained and exploited to introduce the ambitions
and the improvements brought by my techniques;

Chapter 3 presents methods leveraging satellite data, assessing the perfor-
mances of recent deep learning algorithms and proposing advancements to
post wildfires delineation and damage severity estimation approaches;

Chapter 4 presents ongoing flood events monitoring approaches, assessing the
performances of machine learning models in different test cases, which involve
preprocessing steps of satellite acquisitions and cartography maps. Moreover,
a novel expert system is proposed for the detection of long-lasting floods
considering a pre-defined time range;

Chapter 5 presents the platform developed during two European projects.
A general overview of the architecture is provided, then every module is ex-
plained under its functional aspect. Finally, performances are assessed to
prove the practical advantages brought by the platform itself;

Chapter 6 presents the approaches developed using social media data for the
assessment of road passability, and the detection of people in danger during
flood events;

Chapter 7 concludes, summarising and reporting the principal results of the
research conducted during the PhD.
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Chapter 2

State of the Art

This chapter presents the literature review about the approaches for the domains
of earth observation and social media analysis to support emergency management
operations. The first part is related to the use of satellite data, introducing the map-
ping process for the delineation of regions affected by a hazard and the estimation
of the damage severity. To this end, the European programme for Earth Obser-
vation is presented, with a focus on its service for the Emergency Management,
which is the most acknowledged source of certified mappings for natural hazards.
The chapter goes through the official mapping process, describing the methodology
currently adopted. Then, the main characteristics of satellites and the data they
are able to acquire are presented. Finally, recent advances from the literature are
discussed.

The second part is dedicated to the use of social media data in the context of flood-
ing events, presenting recent advances on the identification of road viability and of
people in danger.

2.1 European Copernicus programme

The European Union Copernicus programme was signed in 1998 in Baveno,
Italy, with the aim of monitoring and forecasting the state of the environment on
the land, in the sea and in the atmosphere, based on satellite Earth Observation and
in situ (non-space) sensors [42]. It is coordinated by the European Commission and
implemented in partnership with the Member States, the European Space Agency
(ESA), the European Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts
(ECMWF), EU Agencies and Mercator Océan. It allows free access to terabytes
of reliable and up-to-date information to anyone interested, including large compa-
nies, scientists, civil protection and disaster risk management bodies.
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With a focus on emergency management, Copernicus includes the Emergency
Management Service (EMS), which provides two types of services: (i) early warning,
and (ii) mapping service.

2.1.1 Early warning system

The early warning and monitoring component of the Copernicus Emergency
Management Service is based on continuous observation and forecasts at European
and global levels of floods, droughts and wildfires. The European Flood Awareness
System (EFAS) provides overviews on ongoing and forecasted floods in Europe up
to 10 days in advance. The European Forest Fire Information System (EFFIS)
provides near real-time and historical information on forest fires and forest fire
regimes in the European, Middle Eastern and North African regions.

2.1.2 Mapping service

The mapping service consists of either Rapid Mapping or Risk & Recovery
Mapping. The Rapid mapping service can provide geospatial information within
hours or days from a request in order to support response to emergency situations,
during a disaster. Risk & Recovery Mapping offers geospatial information that can
feed into multiple disaster risk prevention, preparedness, reduction and recovery
activities.

Results of a mapping request can be delineation or grading maps. Delineation
maps provide an assessment of the event extent, considering the area of the affected
regions. Grading maps provide information about the damage grade, its spatial dis-
tribution and extent. The grading product is a superset of the delineation product
as it contains the event type, impact extent (delineation) and the damage grading.
The damage grading defined according to five intensities: “No damage”, “Negli-
gible to slight damage”, “Moderately Damaged”, and “Highly Damaged”. Both
delineation and grading maps are derived from satellite images acquired: (i) imme-
diately after the disaster using the first source available, the emergency event, for
the rapid mapping, and (ii) after the event conclusion, for recovery and restoration
purposes. An example of the mappings is shown in Figure 2.1.

Both delineation and grading maps, providing an assessment of the geographic
extent of the events, are derived from satellite images through semi-automatic ap-
proaches, where human experts have to manually fine-tune and validate the maps
[36].

In addition to the Emergency Management Service, other services of the Coper-
nicus programme can support risk prevention and management with relevant data
on climate, land cover and its changes, land use, water cycle, the safety of infras-
tructure, and marine safety.
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Figure 2.1: Example of Copernicus EMS mappings regarding the wildfire event
occurred in August 2017 in Torre Pedro, Spain. The official maps are available in
the Copernicus Emergency Management portal, at the following link: https://
emergency.copernicus.eu/mapping/list-of-components/EMSR216. According
to the specified Area of interest, (a) the Delineation map shows the extent of the
burned area, while (b) the Grading map highlights the damage severity in the
affected areas.

2.2 Copernicus Sentinel’s missions

The Sentinel’s missions were introduced as part of the Copernicus programme
through the partnership between the European Commission and the European
Space Agency (ESA). Every Sentinel mission consists of a constellation of two satel-
lites to fulfil revisit and coverage requirements. They carry technologies specifically
projected for the operational needs of the Copernicus programme. The missions
are briefly introduced as follows:

e Sentinel-1: focused on land and ocean monitoring, Sentinel-1 is composed
of two polar-orbiting satellites, and performs Radar imaging, enabling their
acquisition regardless of the weather conditions;

o Sentinel-2: the objective of Sentinel-2 is related to land monitoring, it is
composed of two polar-orbiting satellites providing high-resolution optical
imagery. Vegetation, soil and coastal areas are among the monitoring objec-
tives;
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o Sentinel-3: the objective of Sentinel-3 is marine observation, and it studies
sea-surface topography, sea and land surface temperature, ocean and land
colour. Composed of three satellites, the mission’s primary tool is a radar al-
timeter, but the polar-orbiting satellites carry multiple instruments, including
optical imagery.

e Sentinel 4, 5, 5P: all three missions are dedicated to providing continuous
monitoring of the composition of the Earth’s atmosphere, focused to monitor
the air quality. In addition, Sentinel-5P extends its applications to climate
forcing, ozone and UV radiation monitoring.

In the context of floods and wildfires, Sentinel-1 and Sentinel-2 satellites are
adopted by Copernicus EMS and the research community. Therefore, in the next
section, a brief description of their characteristics is introduced.

2.2.1 Sentinel-1

The Sentinel-1 satellites are equipped with the Synthetic Aperture Radar (SAR),
an instrument that operates at radio waves that are not shielded by atmospheric
conditions, avoiding imagery occlusions or disturbances like clouds and fog.

SAR gathers different images from the same series of pulses by using its antenna
to receive specific polarisations at the same time. It can transmit a radar signal
in either horizontal (H) or vertical (V) polarisation, and then receive the returning
signal in both H and V polarisations, supporting operations in dual polarisation:
HH+HV or VV+VH. Targets on the ground have distinctive polarisation signa-
tures reflecting different polarisations with different intensities and converting one
polarisation into another: for instance, volume scatterers (e.g. forest canopy) have
different polarisation properties than surface scatterers (e.g. sea surface) [37].

It supports four acquisition modes: StripMap (SM), Interferometric Wide Swath
(IW), Extra Wide Swath (EW), and Wave (WV). SM, IW and EW products are
available in single (HH or VV) or dual polarisation (HH+HV or VV4+VH), while
WV is single polarisation only (HH or VV). SM mode acquires data at the reso-
lution of 5m x 5m per pixel, it is only used for small islands and on request for
extraordinary events such as emergency management. IW mode supports the res-
olution of 5m x 20m per pixel and it is largely adopted with VV+VH polarisation
for land monitoring. EW mode supports the resolution of 20m x 40m, it is primar-
ily used for wide-area coastal monitoring including ship traffic, oil spill and sea-ice
monitoring. Finally, WV supports the resolution of 5m x 5m per pixel and, with
VV polarisation, it is adopted for open ocean monitoring [138, 137, 136, 139].
Sentinel-1 satellites’ revisit time, the time elapsed between two observations of the
same point on earth is 3 days at the equator and less than 1 day at the Arctic.
Therefore, it is able to cover Europe, Canada and main routes in 1-3 days. [112].
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Table 2.1: Sentinel-2 spectral bands description

. . Central Spatial
Band Description Wavelength (um) I'eSOhIl)tiOIl (m)
1 Coastal aerosol 0.443 60
2 Blue 0.490 10
3 Green 0.560 10
4 Red 0.665 10
5 Vegetation red edge 0.705 20
6 Vegetation red edge 0.740 20
7 Vegetation red edge 0.783 20
8 Near Infrared (NIR) 0.842 10
8A  Narrow NIR 0.865 20
9 Water vapour 0.945 60
10 Short wavelength infrared (SWIR) 1.375 60
11 Short SWIR (SSWIR) 1.610 20
12 Long SWIR (LSWIR) 2.190 20

2.2.2 Sentinel-2

Sentinel-2 satellites are equipped with high-resolution, multi-spectral imaging
sensors and a revisit time (~2-3 days at European latitudes), aimed at monitoring
variability in land surface conditions. Each satellite carries an optical instrument
payload that samples 13 spectral bands, at different spatial resolutions: four bands
at 10 m, six bands at 20 m and three bands at 60 m [38, 108].

Band 1 is sensible to the concentration of aerosols in the atmosphere, which may
be used to refine the atmospheric correction procedures and it can provide a closer
inspection of the coastal and inland waters. Bands 2, 3, 4 are sensible to the visible
light, representing the image in the classical red, green, and blue configuration.
Bands 5, 6, 7 are sensible to the vegetation red edge, which is a region in the red-
NIR transition zone of vegetation reflectance spectrum and marks the boundary
between absorption by chlorophyll in the red visible region, and scattering due to
leaf internal structure in the NIR region. Band 8 is sensible to vegetation type,
density, water content, and general plants health. Band 8A is designed to avoid
contamination from water vapour and be sensitive to iron oxide content for soil.
Bands 9 and 10 are sensitive to water vapour absorbing the light that comes from
the earth surface. Band 9 presents a weak water absorption level and is used
for atmospheric correction. Band 10 presents strong water absorption and it is
commonly used to detect high clouds, such as cirrus. Finally, bands 11 and 12 are
usually adopted for applications such as snow, ice or cloud detection [26, 161, 92].
A summary of the spectral bands, their respective wavelengths and resolutions are
shown in Table 2.1.
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After the acquisition, the raw data is subjected to four preprocessing steps

before being available to the users. The first available product, named Level-1C
(L1C), is composed of 100 x 100 km? tiles (ortho-images in UTM/WGS84 projec-
tion). It results from using a Digital Elevation Model (DEM) to project the image
in cartographic geometry. Per-pixel radiometric measurements are provided in Top
Of Atmosphere (TOA) reflectances along with the parameters to transform them
into radiances. Level-1C products are resampled with a constant Ground Sampling
Distance (GSD) of 10, 20 and 60 m depending on the native resolution of the dif-
ferent spectral bands.
Another processing level, built on top of L1C products, is Level-2A (L2A). L2A
products are subjected to atmospheric correction, providing Bottom Of Atmosphere
(BOA) reflectance images, which result in clearer ground applications. In L2A prod-
ucts, Band 10 is omitted, as it does not contain surface information.

This introduction on satellites, their bands and products is needed for deeply
understanding the scientific literature on burned areas and floods delineation, which
are the topics of the next sections.

2.3 Literature review for burned areas delineation
and damage severity estimation

In general, Bands 8 and 12, corresponding to NIR and LSWIR wavelengths,
have been found to provide stronger burned area discrimination than visible wave-
lengths, and most burned area mapping algorithms are based on detecting decreased
reflectance at these wavelengths. However, other non-fire surface changes, such as
shadows or agricultural harvesting, can generate comparable spectral shifts, which,
depending on the methodology and wavelengths employed, can result in mislead-
ing burned area detection [129, 130]. Visible wavelengths are more vulnerable to
atmospherical noise and smoke aerosols than longer non-visible wavelengths. For
that reason, they are not generally suited for burned area identification [95]. In
literature, it is common to leverage spectral indices, computed from the combina-
tion of Sentinel-2 spectral bands, to highlight burned regions and distinguish among
damage severities. Ideally, if a spectral index is appropriate for detecting a physical
change in the area of interest, then both the changed region and the direction of the
changing displacement in spectral feature space should have a linear relationship
[70].
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2.3.1 Delineation of burned areas

Regarding the delineation of burned areas, the Normalized Burnt Ratio (NBR)
is one of the most popular indexes adopted in the field. As specified in Equa-
tion 2.1, it involves Bands 8, which naturally reacts positively to leaf area and
plant productivity, and Band 12, which positively responds to non-vegetated sur-
face characteristics. Band 12 presents high water absorption by green vegetation
and moist surfaces, including wet soil and snow, just the opposite of Band 8. Be-
cause NBR measures the difference between B8 and B12, it is positive when B8 is
greater than B12. This is the case over most lush vegetated areas. When it is near
zero, B8 and B12 are about equal, as occurs with clouds, and drier soils or rock.
When NBR is negative, this is suggested by severe water stress in plants and the
non-vegetative traits created due to burns [97].

NIR — LSWIR _ B08 — B12

- NIR+LSWIR  BO08+ B12

Other indexes used for the same purpose of NBR are the Mid Infrared Burn
Index (MIRBI) and the Normalized Burnt Ratio 2 (NBR2), which were designed
for shrub-savannah vegetation type, where NIR wavelengths are less effective. The
indexes, shown in Equations 2.2 and 2.3, were developed using Bands 10 and 12 and
its performance was proven to be relatively stable over time in savannah ecosystems,
with promising results in the assessment of post-fire vegetation recovery in the
shrublands of California and sclerophyll forests of Australia [133, 159, 151, 68,
128].

NBR (2.1)

MIRBI = 10 - LSWIR — 9.8 - SSWIR +2 = 10-B12— 98 -B11+2  (2.2)

SSWIR — LSWIR _ B11 — B12

SSWIR + LSWIR ~ B11+ B12

Also, in 2018, Filipponi et al. proposed the Burned Area Index for Sentinel-
2 (BAIS2), a revisited version of the Burned Area Index (BAI) largely used in
the past in with Landsat satellites. BAIS2, introduced in Equation 2.4, considers
the use of a band ratio in the red-edge spectral-domain (Bands 6 and 7), which
aim to describe vegetation properties, combined with a band ratio that involves
Bands 8A and 12, recognized to be efficient in the determination of burned areas
[51]. Compared to other satellites such as Landsat and Spot, Sentinel-2 reduced
the length of bands sensitive to NIR, identified in Band 8 and Band 8A. They are
designed to avoid contamination from water vapour yet still be able to represent the
NIR for vegetation and be sensitive to iron oxide content for soil [25]. However, as
admitted by the author of the BAIS2 index itself, the adoption of Band 8A instead
of B8 in the calculation of spectral indices for burned areas is demonstrated not to
bring significant advantages.

NBR2 = (2.3)
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B06 - BO7 - BSA B12 — BSA
BAIS2 = (1 — 1 2.4
( \/ B04 ) <\/B12 oA > (24)

Although spectral indices may produce good burned area discrimination for a
particular location and time they may not perform well elsewhere. In order to
determine the suitable index, according to the examined area of interest, the Sep-
arability Index (SI), presented in Equation 2.5 is used to estimate the effectiveness
of individual bands and spectral indices to discriminate between burned and un-
burned land. The separability index, also known as normalized distance [133], is
defined as follows:

g = o — 4l (2.5)

Op + 0y

where i, and p,, are the mean values, and o, and o, are the standard deviations of
the considered indices for burned and unburned areas. The higher the separability
index SI, the better the discrimination. Values of SI higher than one indicate
good separability, while values lower than one represent a large degree of histogram
overlap between the burned and unburned classes. Once the best index has been
assessed, the burned area is discriminated from the unburned region through the
definition of a threshold value, that may significantly vary from place to place.
Therefore, the definition of that value is usually subjected to manual supervision.

Classical Machine-Learning algorithms, such as Random Forest, Artificial Neu-
ral Networks (ANN) and Support Vector Machines are also employed, leveraging the
spectral bands and indexes computed before and after the wildfire event. Among
them, it is worth mentioning: (i) approaches for specific regions, such as forests,
or deserts [64, 27, 71], (ii) generally applicable approaches [11, 124, 125, 141]. For
instance, in their work Ramo et al. carefully assess the performances between De-
cision Trees, Random Forests, Feed-Forward Neural Networks, and Support Vector
Machines, using pre and post-wildfire MODIS acquisitions with the resolution of
~500m per pixel [124].

2.3.2 Damage Severity assessment

Inferring damage severity from a burned area is an advancement of the delin-
eation task. In their work, Key et al. proposed the composite burn index (CBI): an
in-field method to evaluate burn severity [77]. The CBI provides a semi-quantitative
index of severity, being computed by considering measurable aspects, evaluating in
the burned area: (i) material lying on the floor, (ii) short shrubs and small trees
(<1 m tall) (iii) tall shrub and sapling trees (<5 m tall), (iv) intermediate trees
(520 m tall), and (v) large trees (>20 m tall). All those properties are combined to
create the Composite Burned Index (CBI), which is the best approximation of dam-
age severity: it is far fine-grained than the grading maps provided by EMS, but its
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computation is not feasible at a large scale because too much data must be collected
manually. In the same article, the authors suggest the use of the Differenced Nor-
malized Burn Ratio (ANBR), computed as follows: ANBR = NBRpgrr — NBRposr.
The dNBR requires to compute the NBR over an image acquired before the wildfire
event, comparing it with another acquisition taken after the wildfire exhaustion.
Then, the dNBR is quantized to obtain different ranges of severity. This approach
is considered very accurate and it is still largely shared by the scientific commu-
nity: the Copernicus programme itself, through its EFFIS programme, provides
adjusted thresholds for ANBR in order to identify four different severity levels,
shown in Table 2.2 [88, 49, 33].

Table 2.2: Differenced Normalized Burn Ratio (ANBR) thresholds proposed by the
European Forest Fire Information Service (EFFIS).

Fire Severity Class | Range of ANBR

Unburned /Very Low < 0.1
Low 0.1-0.255
Moderate 0.256 - 0.41
High 0.42 - 0.66

Very High > 0.66

Techniques based on manual or automatic thresholding are widely applied be-
cause they are computationally fast and efficient [166, 152, 48, 5, 86, 102]. However,
they rely on acquisitions taken before the wildfire event, which might be trivial to
obtain, considering the average revisit time. In this respect, weather conditions can
widely affect the atmosphere and the morphology of the ground: clouds can cover
the area of interest, vegetation can be subjected to variations, especially across
seasons, etc. All these aspects can make pre- and post-wildfire acquisitions harder
to compare. Moreover, most of the works in literature are validated in few places,
possibly because of the need to manually assess hyperparameters and thresholds
according to the morphology of the area of interest. Also, Copernicus EMS requires
days to complete a mapping process, which always requires both pre-and post- wild-
fire acquisitions. Manual intervention is usually foreseen in the mapping process
since homogeneity between pre and post-event data is not commonly guaranteed

[24].
2.3.3 Research contributions

My contributions in this topic concern the assessment of the delineation ca-
pacity of neural networks, leveraging (i) only visible wavelengths, (ii) all spectral
wavelengths. The assessment on visible wavelengths concern only Sentinel-2 bands
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2, 3, and 4: it aims to discover whether a limited amount of data could be suffi-
cient to accomplish the task. In the positive case, more frequent inspections with
low-cost cameras mounted on aircraft could significantly improve the mapping ac-
tivities with fast delivery of the results. Then, the results are compared to the ones
obtained by considering all the spectrum. In this case, I evaluated the performance
achievable using just the actual acquisition, avoiding pre-fire images. Finally, I
worked on the severity estimation task, proposing a novel approach able to operate
with just post-wildfire acquisitions. Using pre-wildfire images concern very often
a manual supervision to avoid the presence of undesirable phenomena in the area
of interest, such as: (i) the presence of high atmospheric noise caused by fog, pol-
lution, or water vapour, (ii) cloud coverage over the burned area, (iii) variation of
soil and vegetation, due to seasonal changes. Therefore, using just post-wildfire
acquisitions for evaluating the affected areas and estimating the damage severity
speeds up the mapping process by halving the required information and reducing
the manual intervention.

2.4 Literature review for flooded areas delineation

During flood events, clouds represent occlusions from the satellite point of view.
In those scenarios, Synthetic Aperture Radar (SAR) sensors have been extensively
used in the last decade to monitor many flooding events by taking advantage of
their ability to operate independently of cloudy conditions or lack of illumination.
Hence, it can observe the Earth’s surface at any time of the day or night, regardless
of weather and environmental conditions, situations in which optical instruments,
such as the Sentinel-2; are often not very effective. For this reason, the majority
of the flood mapping literature concerns the use of satellites equipped with SAR
instrument, like RADARSAT, TerraSAR-X, COSMO-SkyMed and also Sentinel-1.
During the acquisition process, SAR data are inherently affected by speckle noise,
which requires proper despeckling operations, or filtering techniques, to reduce
noise preserving all the relevant scene features, such as radiometric and textural
information. Generally, filtering techniques are drawn from signal processing top-
ics, and concern Gaussian filtering [59], Frost filtering [164], Gamma-MAP filtering
[99], and more recently, Nonlocal means filtering [142, 163].
Then, the literature presents several threshold-based works for water segmentation,
based on backscatter histogram thresholding, region growing, change detection, and
fuzzy logic approaches. Backscatter is the portion of the outgoing radar signal that
the target redirects directly back towards the radar antenna. Generally, water
presents low backscatter, due to its smooth surface, while ground or urban areas
present higher values [85]. Thresholds are usually determined by analyzing the his-
togram of SAR backscatter intensity and estimating the probability distributions
of water and non-water pixels. In regions with a considerable amount of surface
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water, the histogram of SAR images presents two maxima, corresponding to water
and non-water regions, respectively. Among the published approaches, tiling and
thresholding [98, 23] or the combination of Otsu thresholding and region growing
[83, 93, 122] have been recognised among the most successful methods. The de-
lineation of flooded areas requires some knowledge about natural water sources to
avoid their misclassification with the flood. On purpose, the literature proposes
techniques based on change detection or fuzzy-logic approaches. Change detection
approaches leverage two (or more) acquisitions of the same region during the time,
to spot the areas subjected to the highest modifications [134, 58]. Instead, fuzzy
logic approaches combine SAR data with different sources of information, like Digi-
tal Elevation Maps (DEM) and Water Body data [160, 121, 98], to remove potential
water-lookalikes [160]. DEMs, maps representing the elevation of the ground with
respect to the sea level, are used to compute the Height Above Nearest Drainage
(HAND) index, a binary exclusion mask calculated to separate flood-prone from
non-flood prone areas data [111]. Water Body data are water masks depicting
permanent water bodies (related to normal water levels), and are used to identify
inundated areas [19].

With the growing development of Artificial Intelligence, supervised machine learn-
ing classifiers have been used to delineate flood extent. In particular, recent works
have proposed the use of Support Vector Machines [74, 149, 4], and Random Forest
(3, 146].

2.4.1 Research contributions

Like in the burned area delineation, approaches are generally validated in few
areas, due to: (i) the limited availability of large datasets, and (ii) their applica-
bility in large areas with high resolution. In this context, my research contribution
consisted in the assessment of recent techniques in several places across Europe,
with the purpose to limit the amount of data needed to accomplish the delineation
task. Methods that demonstrate to work with high reliability in different and het-
erogeneous areas can be operationalized and adopted in production environments.
Moreover, avoiding pre-flood acquisitions limits manual supervision. Usually, those
acquisitions are carefully chosen to be used as a reference for the current flood
event: for instance, it must be verified that in the upcoming dates before the pre-
flood date the weather conditions were stable and that there were not abundant
rains or storms that could had altered the dimensions of the natural water bodies.
The work assessed the performance achieved by machine learning and deep learning
approaches, providing an ablation study on the gain of accuracy provided by means
of pre- and post-processing steps, and the use of cartography as extra data. Perfor-

mances are evaluated with official flood delineation maps, provided by Copernicus
EMS.
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2.5 Social Media data analysis during flood events

In recent years, smartphones and IoT devices have become even more impor-

tant in our daily lives. Social media in general represent a new way for us to
communicate: among private profiles, such as Twitter, Instagram, or Facebook, it
is easy to find personal information about our activities, hobbies, thoughts, but also
news about real-time events. During natural disasters, social media has become a
massive source of data from which, if properly processed, valuable information for
emergency management can be extracted, especially during the response phase [34,
143, 94].
In the context of flood events, approaches in the literature are generally focused on
the detection of contents about the emergency, in order to build systems able to
filter relevant posts [67, 53, 50, 81, 91]. Then, considering only flood-related con-
tent, it is possible to focus on information about the context of the emergency. For
this purpose, this section explores the literature about computer vision approaches
applied to social media posts on flood events.

2.5.1 MediaEval conference: a Benchmarking Initiative for
Multimedia Evaluation

Most of the research activities that I personally carried out in the context of
social media are related to the MediaEval conference. MediakEval is a benchmark-
ing initiative dedicated to evaluating novel approaches for multimedia access and
retrieval. Every year, several tasks are proposed that can be solved by combining
different types of information (e.g. images, text, audio, video, metadata, geolo-
cation, etc.) by using multimodal approaches. Among the tasks proposed in the
conference, I participated in the "Multimedia and Satellite Task for Emergency
Response during Flooding Events', during the editions of 2018 and 2019.The Mul-
timedia and Satellite task focuses on flooding events and uses social media as a
source of visual, text and metadata information to retrieve flood-related content.
Its main focus is about floods, presenting different goals every year. In 2018 the
goal was detecting roads and assessing their passability based on the severeness of
the flood (if any) using tweeter posts with images. In 2019 the goal was determining
if, in case of a flood, the tweet presented people potentially in danger, estimating
whether the water level was below or over the knee of at least one person. Even
if the objectives are different, the works present similarities in dealing with the
multimodal data. Also, given the specificity of both tasks, the works presented in
MediaEval represent the current state of the art.
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2.5.2 Literature review for computer vision approaches ap-
plied to Twitter data about flood events

Tweets contain two types of information: metadata and pictures. Metadata
is composed of textual information (e.g. the text of the post, title) and punctual
information, such as GPS-coordinates, creation date, author reference, etc. (an
exhaustive explanation of the parameters is given in Chapter 6), while the images
are generally .png or .jpg pictures. Therefore, multimodal approaches are required
to exploit properly the data and infer meaningful information.

Several approaches exploit Metadata information. In their work, Zhao et al.
[46] manually defined a set of rules that leverage tweets’ text, looking for n-grams
of lexical items expected to occur in tweets related to road passability. Other works,
like Hanif et al. [63] and Moumtzidou et al. [107] started with a pre-processing
of the tweet texts: first removing hyperlinks, punctuations and symbols and per-
forming the word tokenization, then removing the stop-words and performing word
stemming. The processed information was enriched by adding other metadata fea-
tures, like user tags. Another work by Kirchknopf et al. [79] proposed to check
the metadata language feature and it incremented the number of English tweets
by translating those written in other languages. The words are then translated
into a vectorial representation with word embeddings (i.e. leveraging fasttext [46,
10}, Word2Vec [105] or GloVe [118]) and/or by computing the Term Frequency -
Inverse Document Frequency (TF-IDF) [14]. For final classification, techniques like
Spectral Regression-based Kernel Discriminant Analysis (SRKDA) [17], Support
Vector Machines (SVM) or Convolutional Neural Networks (CNNs) for sentence
classification [78] have been used.

In order to deal with pictures, two approaches were mainly adopted: (i) us-
ing visual descriptors and (ii) extracting features from pre-trained CNNs. In the
first case, several descriptors were already available from the dataset: Color and
Edge Descriptor (CEDD) [20], Color Layout (CL) [76], Fuzzy Color and Texture
Historgram (FCTH) [21], Edge Histogram (EH) [117], Joint Composite Descrip-
tor (JCD) [169] and Scalable Color Descriptor (SCD) [96]. In the latter case,
state-of-the-art CNNs such as AlexNet [80], DenseNet201 [69], InceptionV3[156],
InceptionResNetV2 [155], ResNet [66], VGG [145] or YOLOv3 [126] were taken
pre-trained on popular and wide datasets such as ImageNet [29], Places365 [171]
or VOC [57]. Those datasets present information about single entities (ImageNet,
VOC) or common contexts about places (Places365): therefore, the last hidden
layer of the pre-trained models provides a vectorial representation for each pic-
ture. Most of the MediaEval proposed works exploited this approach, extracting
the visual features by feeding to the network(s) the pictures from the dataset of the
challenge and taking their last layers activations [46]. The features and descriptors
mentioned above can be referred to as global features, as they are extracted using
the whole picture. In addition, Bischke et al. [7] and Zhao et al. [170] combined
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also information related to single entities (i.e. cars, boats, persons), named local
features. Then, the extracted features are used for classification in several man-
ners. One option [46, 107, 30] was to feed them as input for a neural network
having few fully connected layers and using softmax for classification. Other ap-
proaches used other state-of-the-art machine learning algorithms, such as Support
Vector Machine (SVM) [63, 79, 7, 170, 132], Multinomial Naive-Bayes, Random
Forest and SRKDA [63]. Finally, early and late fusion strategies were utilized to
combine metadata and visual information. Farly fusion aggregates features before
the classifier computes them, whereas late fusion averages the predictions of the
techniques developed separately for the two domains.

2.5.3 Research contributions

The MediaEval conference proposed novel challenges, that helped to define
benchmarks and metrics that allowed the participants to compare themselves with
other approaches, ensuring the research quality of their work. Sharing the same
goals with other teams helped to network with researchers interested in similar
topics as well as getting to know other approaches to solve those problems. Be-
yond personal experience, we were acknowledged as the winners of the Multimedia
and Satellite Task in 2018 with the work on roads passability. After the confer-
ence we furtherly investigated and improved the approach making it lighter, and
suitable for operational purposes. Also, we participated in the conference in 2019,
where we provided a solution for detecting critical flood depth and inferring people
potentially in danger.
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Chapter 3

Post-wildfire assessment using
Satellite data

This chapter presents my works on the automatic mapping of burned areas from
satellite acquisitions, once the wildfire is completely extinguished.
As introduced in Section 1.3, this activity is carried out in the Recovery Phase of the
Emergency Management cycle. It consists of the realization of cartographic maps,
reporting the affected areas and estimating the severity of the damage caused by a
wildfire. The census of those areas is needed for estimating the economic damage
and for planning a complete restoration of the environment. During my PhD, I
worked on models that could improve the mapping results and limit the need for
data, to speed up the mapping process.
The chapter is structured as follows. Section 3.1 introduces and analyses the data
used in the assessments. Sections 3.2, 3.3, and 3.4 present approaches to solve
the problems of burned areas (i) delineation and (ii) damage severity estimation.
Section 3.5 describes the experiments, introducing the dataset preprocessing steps,
the testing process and discussing the results.

3.1 Data acquisition and analysis

As introduced in Chapter 2, through its Rapid Mapping and Risk & Recovery
Mapping services, Copernicus EMS provides (i) delineation maps, which define the
perimeter of the event extent, and (ii) grading maps, which add a layer of informa-
tion about the severity of the damage to delineation maps. Both refer to an Area
of Interest (Aol) and to a reference date (marked as “Situation as of” in the map’s
cartouche). The Aol is a rectangular region that includes the area/s hit by the
wildfire. It is composed of two tuples of coordinates < Longitude, Latitude>, which
indicate the top-left and bottom-right edges of the region. The reference date is
the post-wildfire date used as a reference for the analysis by the domain experts.
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Sentinel-2 L2A acquisitions were downloaded from SentinelHub [140], a web ser-
vice that makes Earth observation imagery easily accessible through Application
Programming Interfaces (APIs). Downloaded data refers to the same Aol and ref-
erence date specified in the Copernicus EMS grading maps (delineation maps can
be obtained from grading maps considering just the wildfire extent).

3.1.1 Data description and constraints

Sometimes Sentinel-2 L2A data may not be available for the specified Aol and

the reference date. Commonly, the reason can be twofold: (i) Aol was not explored
or partially explored by satellites in the reference date, or (ii) the Aol is mostly
covered with clouds. Therefore, Sentinel-2 acquisitions were subjected to three con-
straints: (i) the satellite acquisition must be equal to the reference date, (ii) data
must be available for at least the 90% of the Aol, and (iii) cloud coverage must not
exceed the 10% of the Aol. While the data availability is given by the Sentinel-Hub
service, the cloud coverage value was estimated according to the method proposed
by Braaten, Cohen and Yang [13].
Overall, 21 Copernicus EMS grading maps have been collected (and associated with
each suitable Sentinel-2 acquisition) from 5 European regions: Portugal, Spain,
France, Italy, and Sweden. Sentinel-2 data have been downloaded at the highest
resolution available. Then, all the Aols were split into 7 folds, according to two
different constraints: (i) a fold must include at least two Aols, and (ii) areas of
interest must be geographically close. A representation of the geographical distri-
bution of the wildfire-affected regions and their categorization in folds is shown in
Figure 3.1. Sentinel-2 data are images having dimensions (W x H x D). W and
H are the acquisition Width and Height, and they are up to 5000 x 5000 pixels.
D, the Depth, is the number of spectral bands, which is 12 for Sentinel-2 L2A
imagery. Copernicus EMS grading maps are images of size W x H, having the
same dimensions as the satellite acquisitions. Each pixel value of the Copernicus
annotation ranges between 0 and 255, and determines: (i) unburned locations, with
the value equal to 0, or (ii) burned locations, with the value greater than 0. Dam-
age intensities are expressed with values greater than zero, that have been rescaled
to 1 for “Negligible to slight damage”, 2 for "Moderately Damaged", 3 for "Highly
Damaged", and 4 for "Completely Destroyed".

Details about the collection, especially the Copernicus EMS annotations, the
dates in which Sentinel-2 data were acquired, and the fold they were assigned to
are reported in Appendix A.1. Moreover, in order to allow the proposed methods
to generalize among different kinds of vegetation, another aspect considered in the
dataset is the heterogeneity of land use, which includes inland areas with dense
vegetation (i.e. red fold), areas characterized by cropland and small or sparse trees
(i.e. fucsia fold), coastal areas (i.e. blue fold) and rural areas with little or no
vegetation (i.e. yellow fold). A detail of the land use distribution for every Aol
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Figure 3.1: Map of the areas affected by wildfires in this study, divided by fold.
The position of the wildfires considered in this study is determined by circles, while
the color of each circle defines a specific fold: circles of the same color identify areas
of interest assigned to the same fold.

included in the dataset is reported in the Appendix A.2.

3.1.2 Data analysis

Data analysis has been performed to assess the data informativeness for the
tasks of delineation and damage severity estimation.

Delineation of burned areas

First, the Separability Index (SI), reported in Equation 2.5, has been computed
for all the spectral bands and the spectral indices used in the literature: BAIS2,
MIRBI, NBR, NBR2. SI evaluates the difference between the statistical distribu-
tions of pixels belonging to burned areas and the ones belonging to unburned areas,
in the domain R*. Generally, values of SI higher than one indicate good separabil-
ity, while values lower than one represent a large degree of overlap between burned
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Figure 3.2: Separability Index computed on Sentinel-2 L2A spectral bands (B01-
B12) and on spectral indices used for burned areas delineation.

and unburned distributions [162, 133].

As shown in Figure 3.2, both the spectral bands and indices present low SI values.
This indicates that the dataset presents ambiguous regions: considering the bands
and indices alone, some unburned regions are very similar to the burned ones and
vice versa. The best indicators are evaluated considering both the SI in the whole
distribution and the median value (expressed by the 50th percentile). Considering
spectral bands, the best ones are B06, B07, BO8, and B09. Except for B09, the
others are used in the computation of BAIS2 (B06, B07, BSA) and NBR (B08),
which means that they carry most of the discriminative information alone. The
best spectral indices resulted to be BAIS2, NBR, and NBR2. NBR2 is among
the worst indicators if considering the distribution below the 25th percentile, and
presents the highest SI value considering its 75th percentile. This behaviour is
explained by the literature: the index was created to be sensitive to vegetation
typical of savannah areas (i.e. small shrubs), while it is less effective with other
vegetation types. A positive fact is that NBR2 is computed using B11 and B12,
that alone did not provide significant information. BAIS2 presents high SI values
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over the 25th percentile of its distribution, but suffer from the same lack of infor-
mativeness of NBR2 for the values below. In the end, NBR, which is computed
using Bands 8 and 12, presents the highest SI values considering its median value
and the whole distribution range. The other bands present lower separability with
respect to burned areas, but their informativeness has not to be underestimated,
because they are employed in literature for the delineation of other land regions,
such as coastal areas (B01), vegetation (B04), clouds (B03, B11, B12), and ground.
Therefore, they can be employed to improve the disambiguation capability between
unburned and burned regions.

Estimating damage severity

The Pearson’s correlation between the spectral bands of the gathered Aols, the

dNBR, and the Ground Truth (GT) (designated as the Copernicus EMS damage
level) was explored in order to determine the spectral bands that can provide useful
information for the detection of damage severity. The dANBR index was considered
because it is the main reference used for producing grading maps. The dNBR re-
quires pre-wildfire acquisitions to be computed: therefore, only for its computation,
the same pre-wildfire images used in the grading maps were downloaded.
The Pearson’s correlation is a measure computed between two variables and it
ranges between —1 and 1. High correlation is determined at the extremes of its
domain: a highly positive or a highly negative value means the two variables are di-
rectly or indirectly related, respectively. More in detail, no correlation is expressed
by 0, it is low for values between —0.35 and 0.35, and medium to strong for the
remaining values [84]. In order to compute the correlation coefficient, a transfor-
mation was applied to each image and annotation. Each spectral band, the dNBR,
and the GT, all having dimensions (W x H), have been flattened into a vector of
length (W x H), in order to resemble statistical variables. In the following, GT is
used to refer to the target variable of this analysis, the damage severity level.

As shown in Figure 3.3, the spectral bands presenting noticeable correlations
(medium or high) with both dNBR and the target variable GT are B06, B07, B0S,
B8A, and B09. They are the same bands that presented a high separability value in
the delineation task, and therefore, they are the most sensitive in wildfire contexts.
Moreover, it is worth considering the very high correlation between dANBR and GT,
which is coherent with the literature and confirms the dANBR to be a good estimator
of the GT. However, the spectral bands are characterized by high correlation values
concerning the target variable and are produced by evaluating only the post-fire
image, whereas the dNBR index requires two images (pre- and post-fire).
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Figure 3.3: Correlation Matrix computed on burned regions included in the dataset.
The spectral bands (B01-B12) refer to the post-fire Sentinel-2 acquisition, ANBR is
the Delta Normalized Burn Ratio, and Ground Truth (GT), is the damage severity
level used as target variable (i.e., the Copernicus EMS grading map).

3.2 Unsupervised delineation on visible light with
pre- and post-wildfire data

In preliminary work, we proposed Burned Area Estimator (BAE), a novel un-

supervised approach to delineate burned areas using information from visible light
in pre- and post-wildfire acquisitions [45].
Within BAE, we wanted to provide a location-independent technique that could be
applied without any training. We chose to limit the available information to the set
of the visible spectral bands to approximate the feasibility of the task with different
equipment, such as normal cameras mounted on airplanes, which can improve the
frequency and the coverage of the monitoring.

3.2.1 Problem statement

Consider I, I, € > two Sentinel-2 acquisitions of the same area of inter-
est, taken before the beginning of a wildfire event (/,) and after its extinction (1),
in which: (i) w represents the acquisition width, (i) h represents the acquisition
height, and (iii) n is the number of considered spectral bands. In this problem, only
the spectral bands related to the visible light B04, B03, and B02 are considered,
therefore n = 3. The goal is to predict the binary mask I, € {0,1}**" in which
pixel values set to 1 refer to burned regions, 0 otherwise. Therefore, the problem
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is configured as a binary segmentation task, also known as delineation task in the
geospatial context.

3.2.2 Methodology

The BAE algorithm, represented in Figure 3.4, works as follows. First, the two
acquisitions are preprocessed separately by the Normalization & HSV Preprocess-
ing module, which performs a Z-Score Normalization and a lossless conversion from
RGB to Hue Saturation lightness Value model (HSV). Then it applies a transfor-
mation keeping the same H and setting both S and V to a constant value. We
chose to select their maximum value (Sy,4z, Vinez) because this allows increasing
the distance between color values in the RGB domain and hence the values can
be clustered more easily in the following steps. This step is key to make the color
component comparable between the two images while removing the differences that
can result from images taken at different conditions (e.g. time of the day). The
HSV Preprocessing model outputs the isolated H component, which is sent to the
Hue Difference Segmentation Strategy module, and the (H,S4z, Vinasz), which is
the input of the Color-based segmentation strategy module. Both strategies are
detailed in the next subsections.

Hue Difference Segmentation Strategy (HDSS)

This strategy is based on the assumption that, in an area affected by a wildfire,
the greatest changes in terms of pure colors (H) between the pre- and the post-
wildfire images are due to the burned areas. However, not only wildfires produce
significant changes of hue during a short period, but at this stage, this strategy
aims to detect every area that has been subjected to a modification during the
two times in which acquisitions were taken. Hence, the Windowed “H” difference
module computes the difference between the “H” components of the two images.

To reduce errors due to objects e.g., metallic surfaces, that change color when

exposed to different kinds of sunlight, we consider a 5x5 matrix of pixels in the
pre-wildfire acquisition and compute the minimum pixel-wise difference with the
pixel corresponding to the center of the matrix in the after image.
Let HA;; be the “H” component of a pixel in position (7, j) in the pre-processed
post-wildfire acquisition. Then, consider W;; as a squared Window of odd size
(w, w) centered in position (7, j) in the pre-processed pre-wildfire acquisition. This
module generates a Hue Difference matrix HD having the same size of the input
images, in which each pixel HD; ; represents the minimum distance between H A, ;
and the pixel values p in W, ;, which is computed as follows:

HD,;,; = minpewiﬁjangdist(HAm, D), (3.1)

where angdist(z,y) is the angular distance between x and y. The angular distance is
necessary because the “H” component is expressed in degrees, from 0 to 360. In HD,
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Figure 3.4: Architecture of the BAE’s approach for segmenting burned regions.
The rectangular boxes indicate the main steps of the algorithm, while in the arrows
the input/output types are presented. Large boxes with dotted borders enclose the
two different segmentation strategies.

0 values mean that there is no difference in that location with respect to the before-
event situation, while positive values indicate the variation magnitude. Finally, the
Filtering and Binarization #1 module applies a Gaussian Filter of dimensions (5,5),
smoothing differences and facilitating the computation for automatic thresholding
to binarize the image, performed by means of the standard Otsu’s algorithm [115].

Color-based Segmentation Strategy (CSS)

After the application of the HDSS strategy, the CSS is performed. The CSS is
based on the assumption that burned areas in the same image are characterized
by similar colors. The first step of this strategy, named Image Color Compression,
works solely on the regions identified by the white color of the binary mask gener-
ated in the previous step. Accordingly to that mask, this module selects the colors
of the HSV processed after the wildfire image to reduce the color space and clus-
ter similar areas. Then, the second step, named Red-Green Channels subtraction,
isolates the burned regions performing a subtraction between the Red and Green
channels of the image. Finally, a second filtering and binarization step fine-tune
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the segmentation. The mentioned steps are detailed in the following.

After converting the HSV post-wildfire image back to RGB, which we name

Pre-processed Image (PI), the Image Color Compression module selects only the
regions affected to a significant change, by selecting the colors in the regions that
resulted as white in the binary image returned by the HDSS strategy. Then, it
reduces the number of colors to “force” similar regions to be represented by the
same RGB triple, i.e., we aim to “cluster” similar regions associating them to the
same RGB triple.
To accomplish this task, we adopt a Self-Organizing Map (SOM) [65], which is an
unsupervised Artificial Neural Network (ANN) that maps the input image while
preserving its neighbourhood relations. The SOM can be represented as a lattice
of dimensions (w, h), composed of w X h neurons. Each neuron n shares the same
dimensions of the pixels in the input image: in our case, it is defined as follows:
n € RN3. Firstly, the neurons are initialized in the multidimensional space. Then,
SOM neurons are iteratively updated in order to resemble the distribution of the
input data. At each step, neurons are updated according to two parameters: (i)
the learning rate n € R*, that determines the module of update and, (ii) the
neighbourhood function f(n), that modulates the learning rate for each neuron.
One of the most popular neighbourhood functions corresponds to the probability
density function of the normal distribution N (x, 02), in which (i) u is determined
according to the Best Matching Unit (BMU), the neuron that minimizes its average
distance with the pixels in the input image (see Figure 3.5), and (ii) o2 is arbitrarily
chosen. Therefore, the closer the neurons to the BMU are, the higher their weight
update will be.

As explained before, the HSV Preprocessing module increases the distance of
the pixels in the RGB space, facilitating the SOM training process in producing
more representative neurons (see Figure 3.6).

The Image Color Compression module normalizes the input image by using
the min-maz normalization, which maps the RGB components from the range
[0,255] € W to [0,1] € R and feed that to the SOM, which should be carefully
sized and initialized to be effective. We empirically set the network size to (3, 3),
while we uniformly initialize the network weights in normalized RGB space. The
network is adaptively trained for each image with an increasing number of epochs,
until convergence. We show in Figure 3.6 the RGB representation of the after-
wildfire image before and after the HSV Preprocessing, as well as the initialized
SOM neurons. We select the Euclidean distance to evaluate the distance between
pixel and neuron values, in order to determine the BMU during the SOM training.
We define TN as the set of Trained Neurons of the SOM and CC as the Color
Compressed image that the SOM outputs. Every CC pixel C'C;; is assigned to
the color of the neuron n € T'N that minimizes the Euclidean distance from the

27



Post-wildfire assessment using Satellite data

a.

b.

Figure 3.5: Simplified illustration of the Self-Organizing Map training phase. The
dataset is represented by the violet area. The SOM size (5, 5) is represented by
the black mesh, having a neuron at each intersection. The phases are described as
follows: (a) The BMU is identified: it is depicted as the yellow-circled neuron, whose
radius indicates the neighbourhood function that affects the weight updates of the

other neurons; (b) result of the weights update; (¢) SOM’s neurons displacement
after the end of the training. Illustration is from Wikipedia [135].
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Figure 3.6: Illustration of post-wildfire acquisition in the RGB space. (a) pixel val-

ues in the raw acquisition (red dots), (b) pixel values in the preprocessed acquisition
(red dots) and initialized SOM neurons (blue dots).

corresponding P1I; ; pixel:

OCZ',]' = argminneTNHPIi,j — 7’L||2

(3.2)
Therefore, in the white-colored regions of the HDSS output, CC is an RGB image

having a reduced number of distinct colors equal to the number of the network
neurons. While, in the remaining regions, it is colored in black.

The step performed by the Image Color Compression module made similar colors

closer to each other and, at the same time, it increased the distance concerning
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different colors.

At this point, a module that allows highlighting common characteristics of burned
regions is needed. In an unsupervised manner, this implies that no previous knowl-
edge about the data can be exploited, but just a generic intuition is allowed. The
idea behind the Red-Green Channels subtraction module is that considering the hue
of burned regions, they are prominent to red/violet colors and, at the same time,
they present a near-to-zero level of green. Therefore, that module subtracts the
green component from the red one. We do not consider the blue channel because,
even if it is highly relevant in blue or light-blue areas like rivers or lakes, it is also
relevant in violet regions, which can characterize burned areas. Finally, the Filter-
ing & Binarization #2 module is equivalent to the one adopted in the HDSS, with
the addition at the end of a median filter, which removes possible noise generated
by the binarization phase.

3.3 Delineation assessment with Convolutional Neu-
ral Networks using post-wildfire data

In a second work, published at the International Conference on Information
Systems for Crisis Response and Management, we assessed the performance of
supervised approaches, trained on historical post-wildfire training data, using in-
formation from (i) visible light and (ii) all the available spectrum in post-wildfire
acquisitions [44]. The goal was to assess their performance without the need to
acquire pre-wildfire or any other extra data. The work has been acknowledged as
a runner up for the Best Student Paper Nominee in 2020.

3.3.1 Problem statement

The problem involves a post-wildfire Sentinel-2 acquisition and it is split into
two tasks, which consider different spectral bands. The first task considers only
spectral bands related to visible light, namely B04, B03, and B02, while the other
one considers the whole spectrum. The goal is the same as the previous section:
producing a binary mask, whose pixels assume values equal to 1 to indicate burned
regions, 0 otherwise. To accomplish the task, a set of annotated data, consisting of
Sentinel-2 acquisitions and binary masks, is available for supervised approaches.

3.3.2 Methodology

From a geometrical point of view, burned areas resemble spots: circumscribed
shapes presenting irregular borders, sometimes presenting branches or protruding
parts. With some abstraction, this rough description can be applied to biological
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cells, as shown in Figure 3.7. Those similarities drove our search for promising ap-
proaches to U-Net [127] and CuMedVision [22]: two popular Convolutional Neural
Networks (CNNs) used in the medical field for cells segmentation.

" T

L =
(a) (b)

Figure 3.7: Geometrical similarities between different ground truths of (a) burned
regions, (b) biological cells, the picture is from the work of O. Ronneberger et al.
[127].
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Figure 3.8: U-Net architecture. The picture is from the work of O. Ronneberger et
al. [127].
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The U-Net architecture, depicted in Figure 3.8, is composed of two sequential

parts of convolutional and pooling layers, which gives the U-shaped form: the con-
tracting and the expanding path. Like a generic CNN architecture, the contracting
path interleaves convolutions and max-pooling layers, which gradually reduce both
the width and height of the image, while increasing its depth, enabling it to focus
on a larger receptive field. Convolutional operations, together with downsamplings
of the max-pooling layers, let this path focus on the features that best describe the
subject to be detected. However, at the end of the contracting path, the spatial
information about the subject to be detected is lost: on purpose, the goal of the
expanding path is to restore that information, transforming the original input into
a binary segmentation. The expanding path increases the dimensions of the feature
vector through up-convolutions. To enhance the precision of the spatial information
reconstruction, at every step of the expansion path, the output of the upsampling
operation is concatenated, through skip-connections, with the feature maps from
the contracting path at the same level.
In the original architecture, U-Net splits the input image in tiles of size 388x388
pixels, but it takes in input an extra area, used to give context to the network
during the inference. Therefore, its input is of size 572 x 572 pixels, while the
segmented region is the central part, of 388 x 388 pixels.

In our work, we adopted the original structure in terms of the number of con-
volutional layers and operations, but we introduced some modifications to simplify
its applicability.

Variations are related to (i) the net input and output dimensions, and (ii) the
loss function. The net input depth is adapted to the number of considered spectral
bands of the acquired data, which is 3 in the case of visible wavelengths and 12
in the case of the whole spectrum. Also, width and height from input and output
tiles are set to 480 x 480 pixels, the same dimension adopted for the other methods
compared in this study. In order to keep the same input and output dimensions.
To keep the same net input and output dimensions, the convolutional layers were
adapted as follows: (i) the input to each convolutional layer was padded by mir-
roring the layer input itself, avoiding the reduction of the layer output dimensions,
which is naturally induced by the convolution, and (ii) each max pooling operation
(of size 2 x 2) in the contracting path was performed with stride 2, with the effect of
halving both the width and the height of the next layer. In the expanding path, the
up-convolution operation doubles both the with and the height of the next layer,
restoring the initial dimensions in the net output.

Concerning the loss function, the original U-Net used a Cross-Entropy loss com-
bined with a pixel-wise weight map, which depends on the nearest cell and penalizes
more errors made in contour pixels. In the biological context, cells used to be very
close to each other. Instead, in our context, there is either one burned region per
acquisition, or few ones presenting considerable distance. Computing weight maps
in our context would lead most of the values near zero, thus making neural networks
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training more error-prone.
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Figure 3.9: CuMedVision architecture. The picture is from the work of H. Chen et
al. [22].

CuMedVision architecture, depicted in Figure 3.9, achieved the best scores in
the ISBI dataset, proposed for neural cells segmentation challenge, overcoming the
results obtained by the original U-Net. It is made of two main components: a
contracting path and three parallel expanding paths. Like U-Net, the contracting
path aims to extract features useful to identify the subjects for the segmentation,
reducing the resolution of the input images. Then, three expanding paths aim
to reconstruct the spatial information, leveraging on different convolutional layers
of the contracting path. Finally, the three paths outputs are summed up and
modulated by means of the Softmax activation function.

In our work, the net input depth is adapted to the dimension of the acquired
data (as explained for the U-Net model) to (i) 3, when considering only visible light
information, and (ii) 12, when considering the whole spectral data.
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3.4 Damage severity estimation using post-wildfire
data

The third and final work on burned areas from satellite imagery concern the
damage severity estimation task. As seen in Chapter 2, this task is usually per-
formed through in-situ inspections. However, approximations computed from pre-
and post-wildfire satellite acquisitions are officially accepted. In our work, pub-
lished in MDPI Applied Sciences journal, we present a novel supervised approach
that aims to provide accurate estimates of damage severity, only leveraging on post-
wildfire acquisitions [43]. Moreover, the approach aims to be land-type-independent
and, therefore, to be appliable to any European region.

3.4.1 Problem Statement

Considering all the spectral bands of a post-wildfire Sentinel L2A acquisition,
the goal is to predict a matrix, whose elements can assume continuous values in the
range [0,4] € R. The matrix is an approximation of the Copernicus EMS grading
map values, whose severity levels are natural numbers within the same range. More
precisely, severity levels are the following: 0 means "Unburned area - no damage",
1 is associated with "Negligible to slight damage", 2 corresponds to "Moderately
damaged", 3 is "Highly damaged", and 4 stands for "Completely Destroyed". The
problem is configured as a bidimensional regression task because the target variable
is a numerical feature used to represent ordered severity values. To accomplish the
task, a set of annotated data, consisting of Sentinel-2 acquisitions and grayscale
masks, is available for supervised approaches.

3.4.2 Methodology

The main contribution of this study is the modification of the original U-Net,
empowering its ability to distinguish between ordered classes, as in the case of
damage severity. The U-Net adopted in Section 3.3 was proposed for solving a
segmentation task, being able to identify a specified entity in an image. Therefore,
it is able to recognize relations and features (i.e. borders and gradients) among
the pixel values belonging to the searched entity. Intuitively, in the context of
this work, the problem can be configured to be solved at once as a regression task.
Conversely, we considered the problem as composed of two sub-tasks: (i) to identify
areas affected by fire, and (ii) to determine damage severity in the burned areas.
In the first sub-task, the goal is to distinguish burned areas from unburned regions,
like in a classical segmentation task (bidimensional classification task). The second
sub-task takes into account the areas affected by the fire and discriminates between
four consequent levels the severity of the damage (bidimensional regression task).
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As we will see later on in this section, splitting the problem into subsequent subtasks
demonstrated to be more effective.

Models’ architecture

The two sub-tasks are solved with two different building blocks: the “Binary

Classification U-Net” (BCU) and the “Regression U-Net” (RU). Both BCU and
RU consider the adjustments made in Section 3.3 for the original U-Net, with
small variations: (i) BCU uses the Dice loss instead of the Binary cross-entropy
loss, and (ii) RU, being a regression task, uses the Mean Squared Error as loss
function and avoids the softmax activation function in the last layer.
The output map in both building blocks is a 480 x 480 matrix, with each element
referring to the pixel in the same position of the input tile. In the proposed solution,
BCU and RU are combined together to outperform the prediction quality of the
approach based solely on a single Regression U-Net block.

Firstly, the Binary Classification U-Net is trained for segmentation purposes:
given a tile having dimensions 480 x 480 x 12 of a post-wildfire Sentinel-2 L2A ac-
quisition, the network assigns to each pixel the probability of belonging to a burned
area, thanks to the application of the softmax activation function. Thus, the gen-
erated output is a binary mask of size 480 x 480 with values {0, 1} (i.e., unburned
or burned), where each pixel is assigned to the class with the highest probability.

Second, the Regression U-Net is used to provide the severity level estimation.
Given the input tile, the model generates a map of the same size with values in the
range [0, 4].

By combining BCU and RU differently, we have considered three different ap-
proaches:

o Single U-Net, a regression-only approach in which just the Regression U-Net
is used;

o Parallel U-Net, a parallel approach, in which the two building blocks are
employed separately in parallel. As shown in Figure 3.10, the final output is
obtained by multiplying the two outputs pixel-wise;

e Double-Step U-Net, a two-step approach in which the building blocks are
concatenated. The burned regions in the input tile are first predicted using
the Binary Classification U-Net. Its output, the binary mask, is used to limit
the information passed to the Regression U-Net, filtering out the pixel values
predicted as belonging to unburned regions. Then, the Regression U-Net
provides the damage severity estimation. Figure 3.11 shows the simplified
architecture of the proposed solution with sample images, showing only RGB
channels for simplicity.
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Figure 3.10: Simplified Parallel U-Net diagram. The burned/unburned binary
mask, the output of the Binary Classification U-Net, is multiplied pixel-wise with
the Regression U-Net output. This operation filters out the unburned regions from
the grading mask produced by the Regression U-Net. The final output is the
estimate of the damage severity in the area of interest.
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Figure 3.11: Simplified Double-Step U-Net diagram. The damage severity esti-
mation is computed in two steps: (i) burned area delineation through the Binary
Classification U-Net, and (ii) damage severity estimation by means of Regression
U-Net. The Regression U-Net receives as input the Sentinel-2 L2A tile filtered with
the binary segmentation mask.

The idea behind those architectures is hidden in the problem of Damage Severity
estimation. Even if similar, we think that the two subtasks diverge when considering
the unburned area. When trained, the BCU is able to segment the burned regions,
therefore its convolutional layers will be able to recognise characteristics, such as
geometries and values, of those regions. Consequently, it is able to do the same for
the unburned ones. Differently, in the second subtask, the network must focus on
identifying dissimilarities in the same class: the burned region. Therefore:

o with the Single U-Net approach, we want to set a baseline to the whole
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problem;

o with the Parallel U-Net we want to prove that the whole problem is too diffi-
cult to be solved at once. In particular, we want to compare the performance
obtained on the severity level 0 (unburned region), which is considered as a
normal severity level by the Single U-Net approach, while it is considered as
a different class by the BCU in the Parallel U-Net;

o with the Double-Step U-Net we want to prove that the RU benefits from both:
(i) the knowledge on burned areas acquired by the BCU, and (ii) the masking
operation on the unburned areas, which isolates the predicted damage severity
levels and allows the RU to focus on the second subtask.

A detailed version of the Double-step U-Net architecture is shown in Appendix A.3.

3.5 Experiments

This section presents the experiments for the three problems previously intro-
duced. First, the raw satellite data illustrated in Section 3.1 are preprocessed to
prepare the dataset. Then, the testing process and the evaluation metrics are
presented. For what concerns supervised approaches, the initialization and regu-
larization techniques, as well as the hyperparameters used during the experiments,
are detailed. Finally, the results are discussed.

3.5.1 Dataset preparation

As introduced in Section 3.1, the satellite acquisitions were split into seven folds.
The grouping criteria were determined based on the geographical distance between
the acquisitions’ locations, in order to include geographically adjacent regions with
similar morphology and land cover characteristics, such as vegetation types, infras-
tructure, and agricultural areas, in the same fold.

Generally, the high-resolution images retrieved from Sentinel-2 (and conse-
quently, the grading maps) have dimensions up to 5000 x 5000 pixels. Currently,
due to GPU memory limitations, this size is too big to be processed by any Deep
learning model at once and it needs to be re-adapted. A first solution would be to
shrink the data to fit the maximum input size supported, with a consequent loss
of information. This option could be useful for fast detection approaches, but it is
not suitable for our purposes.

In our work, we opted for preserving all the information by tiling the original
post-fire acquisitions in smaller crops of size 480 x 480 pixels, maintaining the
original spectral information. Furthermore, the dataset only includes crops with at
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least one pixel classified as burned (a damage severity level between 1 and 4). In
the end, the dataset contains a total of 135 crops, distributed in folds as follows;
blue fold: 8, brown fold: 9, fucsia fold: 30, green fold: 16, orange fold: 18, red
fold: 12, yellow fold: 42. The dataset’s folds, as illustrated in Figure 3.12, have
imbalanced damage severity levels, as easily predictable.

Severity levels relative occurrences

BN No damage
= Negligible to slight damage
60 | ™M Moderately Damaged
Em Highly Damaged
mm Completely Destroyed
50
40 4
S
30 -

20 A
10 4 1 1 i 1
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fold

Figure 3.12: Severity level distribution for each fold. The percentages shown in the
histograms are computed considering the whole dataset. Therefore, the percentage

associated to each severity level has to be considered with respect to all the other
folds.

3.5.2 Experiments and evaluation processes

The goal of the experiments is to evaluate the approaches in different areas,
proving their ability to operate independently from morphological and geological
aspects. Therefore, their performances will be measured for each fold. In supervised
approaches, the models’ performances are evaluated through a cross-validation ap-
proach: for each iteration, five folds are used as the training set, one as the valida-
tion set, and the remaining fold as the test set. As explained later in this section,
the early stopping criteria was used as a regularization approach, leveraging on
the validation set to compute the model’s performance. A common prerequisite in
supervised learning algorithms is that the training, validation and test data arise
from the same distribution and are independent and identically distributed [110].
Therefore, a validation set should closely reflect the data distribution of the test
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set. However, as illustrated in Figure 3.1, each fold presents a unique distribution
of severity levels. In a real-world situation, there is no chance to know the distri-
bution of burned areas and severity levels a priori. Therefore, the choice fell on a
fold that contains all severity levels and which could generalise the most, presenting
a distribution of severity levels that tends to a uniform distribution. Considering
all those aspects, we chose the “fucsia” fold as the validation set for each test set,
except for itself: in that case, we chose the “green” fold.

Performances Evaluation

The problem of burned areas delineation, configured as a binary segmentation
task, is evaluated with the Precision, Recall, and F1-Score metrics [52]. Precision
considers the purity of the predictions: among the pixels predicted as belonging to
a certain class, e.g., belonging to a burned region, it indicates the percentage of
matches with the GT. Recall verifies the ability of the estimator to recognize all
the pixels belonging to a certain class, specified in the GT. Therefore, given the
whole set of pixels belonging to a certain class (referring to the GT), the recall is
the percentage of correctly predicted pixels among the whole set.

The F1-Score is the harmonic mean between Precision and Recall. It is as a measure
of accuracy with the property to take into account the class imbalance.

The problem of damage severity estimation, concerning the distinction between
5 severity levels and configured as a regression task, is evaluated with the Root Mean
Squared Error (RMSE) metric. Given the ordinal relationship between damage
severity levels, the RMSE gives a measure of distance between the prediction and
the ground truth.

3.5.3 CNNs hyperparameters tuning, regularization tech-
niques, and training process

To increase CNNs models generalization, data augmentation was used on each
fold of the training set. For each epoch of the training phase, the tiles were subjected
to the following four transformations, used to create newer augmented tiles having
the same dimensions as the original ones: random rotation, random horizontal
flip, random vertical flip and random shear. Each transformation had the 50%
of probability to be applied for each tile. When applied, random rotation and
random shear randomly selected the transformation angles within specific ranges,
as reported in Table 3.1.
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Table 3.1: Data augmentation parameters.

Transformation Probability Parameters
Random rotation 50% Angle: —50°, +50°
Random horizontal flip 50% -
Random vertical flip 50% -
Random shear 50% Angle: —20°, +20°

Hyperparameters tuning

To ensure test reproducibility, for each training of the cross-validation process

we initialized the CNNs with the same weights, generated with the same seed num-
ber, using a normal distribution and the Glorot initialization [60]. All the training
were performed using Adam optimizer with a learning rate of 1 x 107#, 50 epochs
and a batch size of 8.
Loss functions have been chosen according to the problem to be solved. For the
delineation of burned area, U-Net (or BCU) and CuMedVision used the Dice Loss
[148], which is equivalent to the F1-Score and therefore it benefits from the advan-
tage of being robust in unbalanced datasets. For the damage severity estimation
problem, the Regression U-Net used the Mean Squared Error (MSE) loss.

Regularization techniques

During the training process, three techniques for regularization were adopted:
early stopping, dropout, and batch normalization.
Early stopping was implemented to avoid overfitting and to stop the training process
in case no further improvements were seen in the validation loss. A patience of 5
epochs was used with minimum improvements of 1 x 1072 on the validation loss.
At the end of each training process, the model’s best weights determined by the
early stopping mechanism were restored.
Dropout layers were enabled during the training process before each transposed
convolution with a probability of 25%. Moreover, after each convolutional layer,
batch normalization was performed.

Training process

For a single CNN, the training process starts with the Glorot initialization and
continues with the weights update epoch by epoch, until either the maximum epoch
is reached or the early stopping criteria is matched.

For the Double-step U-Net, the process is composed of three phases. First, the
Double-Step U-Net weights are set according to the Glorot initialization. Then,
the network is trained on the binary segmentation problem: during the epochs, the
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weights of the Binary Classification U-Net are updated, while the weights of the
Regression U-Net are kept frozen. Once the BCU is trained, the Double-Step U-Net
starts again the training process, this time to solve the damage severity estimation
problem: therefore, the BCU weights are kept frozen, while the Regression U-Net
weights are updated.

3.5.4 Results on delineation problems

In this section we discuss the results of the experiments performed for burned
areas delineation problems introduced in Sections 3.2 and 3.3.

Performance evaluation. Tests using visible light compare BAE, the unsu-
pervised approach data which leverages on pre- and post-wildfire acquisitions, with
U-Net and CuMedVision, the supervised approaches used for the assessment that
consider only post-wildfire acquisitions.

According to the results shown in Table 3.2, BAE tends to be conservative, pre-
senting reliable precision (> 0.72) in the majority of the folds (4/7), but lower
recall. Therefore, it is quite accurate in finding burned regions, but it is not able
to identify a good portion of the affected surfaces. Best F1-Scores were achieved in
blue, brown, and green folds, in regions presenting green vegetation, such as forests
or grasslands. Considering the whole dataset, its average F-Score is about 0.59.
Compared to BAE, CuMedVision and U-Net achieved, on average, higher perfor-
mances in all the metrics. Even if they are more accurate, they tend to overestimate
the burned region, being more prone to segment the whole affected area, presenting
the highest recall performances, but lower precision. Both the approaches tend to
misclassify regions presenting water sources or bare soil, like bare rocks or arable
lands. Overall, U-Net demonstrated to be the best approach, presenting an average
F1-Score of about 0.70.

Table 3.2: Burned areas delineation results using wvisible light data. BAE is an
unsupervised approach and leverages on in pre- and post-wildfire acquisitions, while
CuMedVision and U-Net are supervised approaches and only leverage on post-
wildfire data. (1) marks best Precision values, (x) marks best Recall values, and
bold text marks best F1-Score values.

Fold | BAE CuMedVision U-Net
‘ Precision Recall F1-Score ‘ Precision Recall F1-Score ‘ Precision Recall F1-Score

blue 0.88' 0.64 0.74 0.33 0.99 0.49 0.34 0.99* 0.51
brown 0.61 0.63* 0.62 0.98f 0.15 0.22 0.44 0.39 0.41
fucsia 0.49 0.41 0.45 0.89 0.67* 0.77 0.95f 0.54 0.69
green 0.75 0.61 0.67 0.86 0.93* 0.95 0.98f 0.89 0.93
orange 0.48 0.42 0.45 0.86" 0.45 0.59 0.74 0.61* 0.66
red 0.73 0.48 0.58 0.23 0.99* 0.37 0.80f 0.91 0.85
yellow 0.83f 0.44 0.57 0.82 0.84 0.83 0.80 0.97* 0.87
Avg. \ 0.68 0.52 0.58 0.71 0.72 0.60 0.72f 0.76* 0.70
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Tests using all spectral data on post-wildfire events are shown in Table 3.3.

According to the analyses performed in Section 3.1.2, we concluded that the NBR
index was the most suitable for delineating burned areas. Therefore, we used that
index as a baseline to compare the results with the other approaches. Normally,
the NBR is manually thresholded by domain experts, or default thresholds are set,
according to the environmental characteristics of the examined areas. In our case,
we selected the thresholding value that performed best in each fold. In this way, we
ensured that NBR performances obtained by traditional thresholding approaches
would be always less or equal to the ones we obtained. Overall, NBR achieved
accurate results with an average F1-Score of 0.79, while the lowest and highest
F1-Scores were 0.63 and 0.87, respectively.
CuMedVision and U-Net significantly improved their performances in every fold,
showing more stable results if compared to the tests on visible light. However,
U-Net is confirmed to be the best model under both precision (4/7 folds) and recall
(4/7 folds) metrics, and achieving the highest average F1-Score, equal to 0.86.
Moreover, F1-Score below 0.82 is achieved only once, in the brown fold.

Table 3.3: Burned areas delineation results using all spectral bands data in post-
wildfire acquisitions. (T) marks best Precision values, (x) marks best Recall values,
and bold text marks best F1-Score values.

Fold | NBR (Best Threshold) CuMedVision U-Net
‘ Precision Recall F1-Score ‘ Precision Recall F1-Score ‘ Precision Recall F1-Score

blue 0.55 0.98* 0.63 0.42 0.96 0.58 0.91° 0.95 0.93
brown 0.807 0.94 0.85 0.79 0.83 0.81 0.45 0.98* 0.61
fucsia 0.90 0.75 0.82 0.85 0.97 0.90 0.93f 0.98* 0.95
green 0.92 0.83 0.87 0.98 0.95* 0.96 0.99° 0.91 0.95
orange 0.80f 0.77 0.74 0.64 0.99 0.78 0.71 0.99* 0.82
red 0.78 0.83 0.81 0.73 0.98 0.84 0.84f 0.99* 0.91
yellow 0.75 0.92 0.80 0.94f 0.87 0.91 0.78 0.99* 0.87
Avg. | 079 0.86 079 | 0.76 0.94 0.83 | 080t 0.97* 0.86

Computation time evaluation. Performances were also evaluated according
to the complexity and the inference time of the assessed approaches, as shown in
Table 3.4. Times were measured from the beginning of the inference process, to the
time the delineation map of an acquisition tile of 480 x 480 px was returned (all the
dataset was considered for this study). Performances were evaluated running the
approaches both on CPU (Intel Core 19 7940x with 128 GB RAM) and on GPU
(NVIDIA 1080 Ti). Tests on visible light data highlight that:

o BAE is the lightest model in terms of the number of parameters, but it is the
slowest one (~2 seconds per tile). Being unsupervised, BAE needs to retrain
the neurons’ weights for each tile;
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o CuMedVision is lighter than U-Net, but both present a high number of pa-
rameters (> 20 MIn). Computation times are linearly proportional to the
number of parameters. Execution times are lower than 0.72 seconds per tile
on CPU, are about 15 times faster on GPU.

Considering all spectral bands, both CuMedVision and U-Net increase their
number of parameters by ~10 %, which results in computation times lower than 0.8
seconds per tile on CPU and lower than 62 ms on GPU. NBR computation times
are added for comparison, considering the computation of the spectral index and
its binarization using a pre-defined threshold: in real contexts, that threshold is
manually assessed for each tile.

Table 3.4: Inference times of the assessed methods for the delineation task, consid-
ering input tiles of dimension 480 x 480 px.

Inference time (ms)
Bands | Method | # params | /o (cpU) std (CPU) | Avg (GPU) Std (GPU)
BAE < 100 1980 455 - -
RGB CuMed. 21 Min 516 20 41 0.2
U-Net 28 Mln 719 27 45 0.3
NBR - 2 3 - -
ALL CuMed. 24 Mln 624 22 47 0.3
U-Net 31 Mln 796 30 61 0.4

Overall considerations

BAE, which was designed to work without any training set and only with visible

light data, proved to be precise in most of the test sets, resulting to be suitable for
a preliminary delineation of burned areas.
CuMedVision and U-Net demonstrated to be valid approaches not only in the
biomedical field but also in geospatial contexts. They proved to work on visible
light data, and they demonstrated to be highly accurate when considering the whole
spectrum. In both cases, the greatest advantage is that the information carried out
by spectral bands is sufficient to determine reliable mappings, without the need
for pre-wildfire acquisitions. Furthermore, CuMedVision and U-Net are suitable
to provide near-real-time mappings, especially on GPU hardware. However, U-Net
demonstrated to be the best model in both the tests cases, achieving accurate and
reliable results in the whole dataset.

Qualitative considerations

Considering all the tests, there are qualitative aspects that can be noticed about
the presented approaches, especially when considering particular regions, like (i)
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coastal areas, (ii) forests areas, and (iii) arid regions.

Figure 3.13 shows an example of mappings in a coastal area. (al) and (a2) are
the satellite acquisition, visualised using visible light bands (B04, B03, B02), and
the ground truth, the official delineation map, respectively. In the GT, white pixels
describe burned regions, while black pixels describe unburned regions. (a3) Shows
the BAE’s prediction: it is able to find the burned regions, but it underestimates
them. False positives errors are made in arable land and sandy soils. (a4, ab)
show CuMedVision’s and U-Net’s predictions using visible-light data. Both the
approaches correctly identify the position of the burned areas. Segmentations are
appropriate, even if they tend to overestimate the burned regions and contours are
smooth, lacking details present in the GT. Both the approaches misclassified the
water source. However, U-Net’s prediction is more appropriate than CuMedVi-
sion’s one. (a6, a7) show CuMedVision’s and U-Net’s predictions, using the whole
spectral bands. Compared to the past predictions, both approaches improved the
segmentation accuracy. However, CuMedVision still misclassifies water sources,
while U-Net correctly identifies the burned regions and improves contour details.

Figure 3.14 shows an example of mappings in a forest region, with the presence
of settlements. (b1l) and (b2) show the satellite acquisition and the ground truth,
respectively. (b3) Shows the BAE’s prediction: in this area, it is able to delineate
the burned region with higher precision, even if it still tends to underestimate it. In
this case, the presence of false positives is negligible. (b4, b5) show CuMedVision’s
and U-Net’s predictions using visible-light data. Both approaches correctly identify
the position of the burned areas. Also, in this case, segmentations are appropri-
ate and they tend to overestimate the burned regions, presenting smooth contours
which lack details in the GT. Both the approaches misclassified small portions of
settlements, that are confused with burned regions. (b6, b7) show CuMedVision’s
and U-Net’s predictions, using the whole spectral bands. Compared to the past pre-
dictions, both the approaches improved the segmentation accuracy and corrected
the settlements misclassification, improving contour details. However, U-Net’s pre-
diction tends to be more appropriate than CuMedVision’s one.

Figure 3.15 shows an example of mappings in an arid area, made of mountains
presenting bare rocks, arable lands and shrubs. (cl) and (c¢2) show the satellite
acquisition and the ground truth, respectively. (c3) Shows the BAE’s prediction:
in this area, it is able to find the burned region, but it underestimates it. However,
the presence of false positives is negligible. (c4, ¢5) show CuMedVision’s and U-
Net’s predictions using visible-light data. Both approaches roughly delineate the
area, overestimating the affected regions. Also, in this case, they present smooth
contours which lack most of the details present in the GT. In this case, unburned
regions appear to be very similar to the burned ones, and the prediction is approx-
imated. (c6, c7) show CuMedVision’s and U-Net’s predictions, using the whole
spectral bands. Compared to the past predictions, both approaches improved the
segmentation recall. However, U-Net tends to be more precise than CuMedVision,
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being also in this case the best model.
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(a5) (a6) (a7)

Figure 3.13: Burned area segmentation in a coastal area. (al) Satellite acquisition
of the burned region, realised using visible light spectrum; bands 4, 3 and 2 cor-
respond to R, G, B channels, respectively. (a2) Ground Truth, derivated from the
Copernicus EMS delineation map. White pixels represent burned regions, while
black pixels represent unburned regions. (a3) BAE’s prediction, using visible light
data. (a4, ab) CuMedVision’s and U-Net’s predictions, using visible light data.
(a6, a7) CuMedVision’s and U-Net’s predictions, using all spectral bands.
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(b5) (b6) (b7)

Figure 3.14: Burned area segmentation in a forest region, with the presence of set-
tlements. (bl) Satellite acquisition of the burned region, realised using visible light
spectrum; bands 4, 3 and 2 correspond to R, G, B channels, respectively. White
pixels represent burned regions, while black pixels represent unburned regions. (b2)
Ground Truth, derivated from the Copernicus EMS delineation map. (b3) BAE’s
prediction, using visible light data. (b4, b5) CuMedVision’s and U-Net’s predic-
tions, using visible light data. (b6, b7) CuMedVision’s and U-Net’s predictions,
using all spectral bands.
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(c5) (c6) (c7)

Figure 3.15: Burned area segmentation in an arid area, made of mountains pre-
senting bare rocks, arable lands and shrubs. (c1) Satellite acquisition of the burned
region, realised using visible light spectrum; bands 4, 3 and 2 correspond to R, G, B
channels, respectively. (c2) Ground Truth, derivated from the Copernicus EMS de-
lineation map. White pixels represent burned regions, while black pixels represent
unburned regions. (c¢3) BAE’s prediction, using visible light data. (c4, ¢5) CuMed-
Vision’s and U-Net’s predictions, using visible light data. (c6, ¢7) CuMedVision’s
and U-Net’s predictions, using all spectral bands.
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3.5.5 Results on Damage Severity estimation problem

As introduced in Section 3.4, Single U-Net, the Parallel U-Net, and Double-Step
U-Net leveraged on all spectral data available from post-wildfire satellite acquisi-
tions for making their predictions. A detailed performance report of the results
achieved in every fold for the estimation of damage severity is shown in Table 3.5.
The table presents the RMSE evaluated on every fold, for every severity level, re-
ported as an ordinal number for the sake of space. Severity levels are mapped as
follows; 0 stands for No damage, 1 stands for Negligible to slight damage, 2 stands
for Moderately Damaged, 3 stands for Highly damaged, and 4 stands for Completely
destroyed. To avoid ambiguities, we named Singe U-Net the approach based on the
Regression U-Net only.

Furthermore, the results were subjected to statistical tests, in order to deter-
mine whether the models performances were significantly different. The tests were
performed using the RMSE scores of each acquisition in the dataset.

Firstly, the Friedman test [52] was performed to determine whether, in at least one
approach, the distribution of the scores was different from the other approaches.
Within the Friedman test, we formulated the following hypotheses:

 Null hypothesis (Hp): the RMSE achieved by the assessed approaches are not
statistically different;

 Alternative hypothesis (H;): at least one approach achieved statistically dif-
ferent scores compared to the others.

If the Null hypothesis is rejected, the Nemenyi test [52] is performed to compare
the approaches in pairs and to determine statistically different scores. Given A and
B two different approaches, we formulated the following hypotheses:

o Null hypothesis (Hy): approaches A and B are equal;

 Alternative hypothesis (H;): either A or B is better than the other.

Results comparison between U-Net-based approaches

Performance evaluation. In a first analysis, we do not consider the ANBR
column, but we focus only on the three networks performances. The best score for
each row, considering only the U-Net-based approaches, is marked with the star
symbol (). Compared to the Single U-Net, the approaches in which the outputs of
the Binary U-Net and Regression U-Net are combined showed better overall perfor-
mances. This is due to the improvement of the segmentation performances for the
unburned regions (severity level 0), brought by the output of the Binary U-Net in
the Parallel U-Net. However, misclassified unburned regions by the Binary U-Net
slightly worsened the RMSE in the remaining severity levels (e.g. in the yellow
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fold, severity levels 1 and 4). The Double-Step U-Net is the most accurate in the
discrimination between severity levels (1 to 4), achieving best results in 5 folds out
of 7 (blue, fucsia, green, orange, and yellow). The only exception is for the brown
fold, which, as seen in the previous section, is the one where the Binary U-Net
achieved a lower F1-Score.

In Double-Step U-Net, Regression U-Net is strongly dependent on the Binary U-
Net’s performance: false positives not recognized in the delineation task are con-
sidered as belonging to a damage level by the Regression U-Net, with the result
to increase the overall error. However, the RMSE values of the brown fold for
the Double-Step U-Net result to be comparable to the RMSE values of other folds
(i.e., orange and yellow). Also, Double-Step U-Net results to be robust in regions
presenting strong differences from the ones that are used to train the model.

Statistical evaluation. The presented results were subjected to statistical
tests to assess the real significance of the achieved performance, as shown in Table
3.6. The Nemenyi test, with o = 0.05, was performed comparing: (i) Single and
Parallel U-Net, (ii) Single and Double-Step U-Net, and (iii) Parallel U-Net and
Double-Step U-Net. The test was conducted considering each fold and each severity
level in the dataset. Single and Parallel U-Net showed statistical significance on the
majority of the folds (5/7) only for the severity level 0. This behaviour confirms
the improvement brought by the Binary U-Net for the identification of unburned
regions in the Parallel U-Net approach.

Instead, the Double-Step U-Net shows statistical significance for every severity level
and fold in the comparisons with Single and Parallel U-Nets.

Computation time evaluation. Performances were also evaluated according
to the complexity and the inference time of the assessed approaches, as shown in
Table 3.7. Times were measured from the beginning of the inference process, to the
time the delineation map of an acquisition tile of 480 x 480 px was returned (all the
dataset was considered for this study). Performances were evaluated running the
approaches both on CPU (Intel Core 19 7940x with 128 GB RAM) and on GPU
(NVIDIA 1080 Ti).

The Single U-Net, which is based on a Regression U-Net, show a computation time
similar to the one achieved by the Binary U-Net, already assessed in Section 3.5.4
(U-Net, all bands). Being based on both the aforementioned U-Nets, the Parallel
U-Net doubles the number of employed parameters and execution times. Similarly,
the Double-Step U-Net show comparable parameters and computation times of the
Parallel U-Net. All the severity estimation approaches are able to provide their
estimate in either about 1.5 seconds on CPU or about 100 ms on GPU hardware.
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Table 3.5: Cross-validation performance per fold. (*) indicates the best RMSE per
severity category among the three U-Net versions. (7) indicates the best RMSE per
severity category, dNBR included.

Performance (RMSE)
dNBR Single U-Net Parallel U-Net Double-Step U-Net

Fold Severity

0 0.78 1.06 0.23 *f 0.27
1 1.07 0.89 0.89 0.73 *t
Blue 2 1.23 0.71 0.80 0.62 *f
3 0.82 0.63 0.65 0.52 *t
4 0.62 1 0.93 * 0.96 1.44
0 0.65 0.22 0.20 *f 0.47
1 0.97 0.94 0.94 0.92 *t
Brown 2 1.01 0.65 *1 0.65 *f 0.86
3 0.70 0.35 *f 0.35 *f 0.39
4 048 f 1.26 * 1.28 1.49
0 0.82 0.39 0.16 *f 0.24
1 1.37 1.40 1.41 1.02 *t
Fucsia 2 1.12 1.35 1.35 1.00 *t
3 1.10 0.97 0.97 0.75 *t
4 1.67 1.26 *t 1.28 1.49
0 0.20 0.28 0.04 *t 0.18
1 064 F 1.03 1.03 0.80 *
Green 2 1.18 f 1.78 1.78 1.40 *
3 1.46 1.87 1.90 1.38
4 1.09 1.57 1.58 1.00 *t
0 0.42 f 0.40 0.39 * 0.43
1 1.10 1 1.68 1.68 1.47 *
Orange 2 1.04 1.14 1.14 1.02 *t
3 - - - -
4 _ _ _ _
0 0.20 0.21 0.15 *f 0.33
1 0.66 0.71* 0.71 * 1.21
Red 2 0.80 0.56 *f 0.56 *f 0.97
3 - - - -
4 0.58 1.96 1.96 1.21*
0 1.31 0.37 0.25 *f 0.54
1 0.83 1 0.83* 0.84 1.04
Yellow 2 1.24 0.89 0.89 0.71 *f
3 _ _ _ _
4 0.99 1.70 1.71 1.18 *
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Table 3.6: Statistical significance between grading maps produced by the ap-
proaches shown in Table 3.5, considering different folds (shortened to the second
letter) and severity levels. The Nemenyi test was performed with a = 0.05. Check
marks (v') highlight statistical relevance (null hypothesis is rejected). Dashes (-)
mark unavailable severity for the corresponding fold.

Test Severity Fold
Bl Br Fu Gr Or Rr Ye
0 v v o v v oV
Single U-Net 1
- 2

Parallel U-Net 3 - _ -

4 - -

0 v v v v v v v

Single U-Net 1 v v v v v v v

- 2 v v v v v v Y
Double-Step U-Net 3 v v v Vv - - -
4 v v v v v - -

0 v v v v v v v

Parallel U-Net 1 v v v v v v Y

- 2 v v v v v v v
Double-Step U-Net 3 v v v - - -
4 v v v v v - -

0 v v v v oV

dNBR 1 v v v v v v v

- 2 v v v v v oV
Double-Step U-Net 3 v v Vv - - -
4 v v v v - i

Table 3.7: Inference times of the assessed methods for the damage severity estima-
tion task, considering input tiles of dimension 480 x 480 px and 12 bands.

Inference time (ms)

Method 7 params | \ . (CPU) Std (CPU) | Avg (GPU) Std (GPU)
dNBR - 3 2 - -
Single UN 31 Min 788 31 62 0.3

Parallel UN 62 Mln 1582 43 104 0.5
Double-Step UN 62 Mln 1511 53 103 2
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Overall results discussion

Considering the dNBR in the evaluation, the best performances per row in Ta-
ble 3.5 are marked with the dagger symbol (7). In order to compare the dNBR with
the GT, its values were thresholded according to the default values [77]. In this
case, best results vary from fold to fold, but generally, the are matched by U-Net
based approaches. It must be considered that the dNBR is computed using both
pre- and post-fire acquisitions, whereas U-Net’s approaches consider only post-fire
acquisitions. In order to summarize the performance, the average RMSE value
for each severity level is shown in Table 3.8. Compared to the Single U-Net, the
Double-Step U-Net results to be a better approach, achieving the best RMSE on
each severity level. Moreover, with reference to the dNBR, Double-Step U-Net
achieves comparable performance, with a noticeable improvement for the detection
of the unburned area (severity 0), using only half of the information. Note that,
on average, the Double-Step U-Net is the only approach to achieve better results
(lower RMSE) than the dNBR.

In Table 3.6, the statistical test between dNBR and Double-Step U-Net highlight
that, even if they provide comparable performances in terms of RMSE, their results
are significantly different for every severity level.

The reason behind the success of Double-Step U-Net is hidden in the problem

split. First, the neurons of the Binary U-Net are employed to identify burned
regions. Its prediction will mask the spectral values of unburned regions, leaving
only the information related to burned areas to the Regression U-Net. Therefore,
the latter network will employ its neurons in finding differences between correlated
values (severity levels 1 to 4).
It is worth mentioning that the masking operation performed by the Binary U-Net
prediction introduces a new and uncommon value in the spectral information fed
as input to the Regression U-Net: the 0 value. Areas identified as unburned will be
“cancelled” by replacing their original value with 0, which is not present in nature.
Therefore, a bad classification from the Binary U-Net can lead the Regression U-Net
to make more mistakes because it will consider O-valued-regions as unburned and
every other unburned region not detected by the Binary U-Net will be considered
as burned.

In Figure 3.16, a comparison between predictions of ANBR, Single U-Net, and
Double-Step U-Net is shown in two areas of the green fold. At a first glance,
delineating the wildfire contours just looking at the RGB acquisition (pictures al
and bl) seems feasible, but assigning different severity levels appears to be more
challenging. In both the acquisitions, the Binary U-Net predictions resulted to be
highly accurate (pictures a3 and b3), compared to the Copernicus EMS annotation
(GT, pictures a2 and b2). The dNBR (pictures a4 and b4) show a good match
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Table 3.8: Average performance for severity level. (*) indicates the best RMSE per
severity category among the three U-Net versions. (7) indicates the best RMSE per
severity category, dNBR included.

Overall Per-Class Performance (RMSE)

Severity
dNBR Single U-Net Parallel U-Net Double-Step U-Net

0 0.62 0.42 0.20 *f 0.35
1 0.95 1.07 1.08 1.03 *
2 1.09 1.01 1.02 0.94 *f
3 1.02 0.95 0.97 0.76 *f
4 0.91f 1.45 1.46 1.30 *

Avg. 0.92 0.98 0.94 0.88*

with the GT, except for some noise in the vast unburned regions. The Single U-
Net (pictures a5 and b5) correctly identifies the burned region and the contours
of different burned areas, but it tends to underestimate the severity. In the end,
the Double-Step U-Net (pictures a6 and b6) improves the prediction of the Single
U-Net, resulting to be more similar to the GT.

Considering the computation time evaluation, all the approaches are suitable to
provide near-real-time mappings, especially on GPU hardware.
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=4

(b5)

Figure 3.16: Grading maps for the the estimation of the damage severity level.
Severity levels are presented though five shades of grey, ranging from black (sever-
ity = 0) to white (severity = 4). (al, bl) Sentinel-2 L2A acquisition; (a2, b2)
Copernicus EMS grading map (GT); (a3, b3) Binary mask generated by the Binary
U-Net: black and white colors indicate unburned and burned regions, respectively;
(a4, b4) Thresholded dNBR, obtained from pre and post-fire acquisitions; (a5,
b5) Single U-Net prediction; (a6, b6) D5(Zluble—Step U-Net prediction.
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3.6 Summary

This chapter presented the problem of burned area mapping from Sentinel-2
acquisitions, for which we addressed both delineation and grading tasks. Compared
to the approaches presented in the literature, which require pre- and post-wildfire
imagery to deliver accurate mappings, the goal of this chapter was to present reliable
solutions to the problem, that could only leverage post-wildfire imagery. Using only
one acquisition avoids human intervention, usually needed either to validate proper
pre-fire data or to tune spectral indexes on post-fire data, other than halving the
needed information to accomplish the same task.

Firstly, we assessed the delineation task considering either a small portion of the
spectrum related to the visible light or the whole spectral data. For that task, we
proposed BAE, an unsupervised approach, which was compared with CuMedVision
and U-Net, two supervised approaches. On average, BAE shows similar precision
(~0.68) with respect to other approaches, but it achieves lower recall. The best
model, in terms of both Precision (~0.72), Recall (~0.76) and F1-score (~0.70) was
U-Net. When considering the whole spectrum, we selected the NBR as the spectral
index having the maximum separability, and we used it as the baseline. To simulate
the human manual intervention, we chose the best threshold values for the NBR
in the dataset samples to maximize the results. Then, the baseline was compared
with CuMedVision and U-Net, in which the latter was confirmed to be the best
approach in all the three metrics, achieving, on average, Precision of 0.80, Recall
of 0.97 and F1-Score of 0.86.

Given the reliability of the U-Net approach for the delineation task, we assessed
that model also for the grading mapping task. In this scenario, we proposed a
new model named Double-step U-Net, based on the intuition that the problem to
be solved could be split into two sub-problems: to distinguish between burned and
unburned areas and to discriminate the right severity in the burned regions. Within
Double-step U-Net, we proved that the knowledge acquired for solving the first
subtask positively influence the solution of the second subtask. We compared U-
Net and Double-step U-Net, trained on post-wildfire data, with ANBR, the spectral
index computed using both pre- and post-wildfire data, that is the official approach
used by Copernicus. As a result, Double-step U-Net achieved the best RMSE on
all the severity levels, if compared with U-Net, and it gives comparable results with
respect to the ANBR but using only half of the information.
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Chapter 4

Flood delineation assessment
using Satellite data

This chapter presents two works that bring relevant information in the context
of the emergency management of flood events. The first work uses Sentinel-1 ac-
quisitions to provide automatic mappings of flooded areas. The main objective is
to identify a reliable approach, able to produce flood delineation maps leveraging
only on a single SAR acquisition of the area of interest and, optionally, on carto-
graphic information about natural water sources. The second work proposes an
expert system able to evaluate persisting flooded areas in cities. Given an area
of interest, the approach exploits a time series of Sentinel-2 acquisitions and de-
termines the presence of non-natural water bodies that persist all along with the
considered time range. Those works aim to increase the understanding of the af-
fected regions, supporting activities of prompt intervention (response phase) and
providing information useful to update risk maps and to plan a proper restoration
of the environment (recovery phase).

The chapter is structured in two sections, presenting the two works. Section 4.1
is about the automatic delineation of flooded areas, while Section 4.2 presents the
expert system for the identification of persisting flooded areas. Both sections share
a similar structure: after introducing the main objective and the context of the
application, a subsection about Data sources describes the data employed in the
work. Then, the problem to be solved is formalized in the Problem Statement sub-
section. After, the Methodology is explained, presenting the proposed approaches.
Furthermore, Experiments describe the training/testing process and the metrics
used to evaluate the approaches. Finally, results are presented and discussed.
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4.1 Flood delineation using Sentinel-1 data

In this section, we present an assessment for the delineation of floods from
Sentinel-1 acquisitions and cartographic information, exploiting supervised approaches:
(i) supervised machine learning algorithms used in literature, and (ii) U-Net, which
has been largely explored in the previous chapter. We evaluate their performances
on several Copernicus EMS flood delineation maps distributed in different geo-
graphical regions [116]. The objective of the assessment is to identify the best
model, able to create fast mappings of the flood extension automatically. The
model will contribute to saving time and workforce for creating delineation maps,
which will be particularly important during the Response and Recovery phases.
The capacity to map the extent of flooded areas in a timely and accurate man-
ner is critical for two reasons: (i) for the creation and update of flood hazard and
flood risk maps, required to plan prevention actions aimed to reduce the impacts
of upcoming emergencies, and (ii) for the creation of a fast mapping service, that
can be used to provide extra information to first responders during the emergency
response phase.

4.1.1 Data sources

In this work, we considered Copernicus EMS delineation maps of flood produced
between 2014, the year in which Sentinel-1 satellites were launched, and 2018, when
we performed this study.

To use a supervised approach, we require ground truth masks, which we created
from the vector data provided in the EMS delineation maps. For each map, we
created a binary mask identifying flooded areas, whereas pixels belonging to flooded
regions are set to 1, 0 otherwise. Also, we considered cartographic information
to create hydrography maps of natural water sources. In this case, hydrography
was obtained by OpenStreetMap [114], a service that creates and distributes free
geographic data for the world. Cartographies were obtained using the same Aol
specified in the Copernicus delineation maps and were transformed into binary
masks, where pixels equal to 1 indicate a water source, 0 otherwise.

Concerning satellite data, Sentinel-1 has the advantage of operating at wave-
lengths not impeded by cloud cover or a lack of illumination and can acquire data
over a site during day or night time under all weather conditions. However, because
Sentinel-1 satellites gather data in stripes while following an orbit, it is possible that
certain acquisitions that meet the aforementioned conditions are incomplete, cov-
ering only a fraction of the targeted region; in such circumstances, the data were
discarded. Sentinel-1 data is downloaded from the Sentinel-Hub Service as images
with a spatial resolution of 10x10m using IW mode and the RGB_ RATIO configu-
ration, which maps the input bands given by the different polarizations of the SAR
instrument into a false RGB image. It uses the VV channel for red, 2 times the
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Table 4.1: Copernicus EMS delineation maps considered in the study.

Country Activation Code Location Name Activation Date

AU EMSR184 JEMALONGCONDOBOLIN  2016-09-26
GR EMSR122 01ISTRYMONAS 2015-03-31
EMSR122 04MAVROTHALASSA 2015-03-31
IR EMSR149 05ENNIS 2015-12-04
EMSR149 08GORT 2015-12-04
EMSR149 13PORTUMNA 2015-12-04
EMSR149 02ATHLONE 2015-12-04
EMSR149 06COROFIN 2015-12-04
EMSR149 04CASTLECONNEL 2015-12-04
EMSR156 02LOUGHFUNSHINAGH 2016-03-04
IT EMSR192 04ASTI 2016-11-24
EMSR192 10CASALEMONFERRATO  2016-11-24
EMSR192 14ALESSANDRIA 2016-11-24
EMSR192 13SALE 2016-11-24
UK EMSR147 01CARLISLE 2015-12-05
EMSR147 04KENDAL 2015-12-05
EMSR150 01YORK 2015-12-27
EMSR150 02SELBY 2015-12-27
EMSR150 0SLEEDS 2015-12-27

value of the VH channel for green, and the ratio [VV|/|VH|/100 for blue (R=VV,
G=2VH, B=|VV|/|VH|/100). We use the RGB GeoTiff image format that is geo-
referenced and orthorectified. Depending on the requested AOIs, the downloaded
GeoTIFF has a size ranging between 1000-2000 x 2000-3000 pixels.

Our dataset is composed of images related to flood activations in 5 countries, namely
Australia (AU), Greece (GR), Ireland (IR), Italy (IT) and the United Kingdom
(UK). We report in Table 4.1 the composition of the dataset, displaying the coun-
try to which the maps belong, the map code, and the activation date.
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4.1.2 Problem Statement

The problem involves a Sentinel-1 acquisition, taken during a flood event. Con-
sidering the available data obtained using the SAR IW mode, namely VV and VH,
and a binary mask of the natural water sources, the goal is to predict a binary mask
of the flooded regions, where pixels equal to 1 mean flood, and pixels equal to 0
mean non-flood. Note that only the flooded area must be identified, not the natural
water sources, i.e. rivers, lakes. Therefore, the problem is configured as a binary
segmentation task, also known as delineation task in the geospatial context. To
accomplish the task, a set of annotated data, consisting of Sentinel-1 acquisitions
and binary masks, is available for supervised approaches.

4.1.3 Methodology

The steps involved in flood delineation process are depicted in Figure 4.1.
Firstly, the raw Sentinel-1 satellite acquisition is taken from the Sentinel-Hub ser-
vice. Raw SAR acquisitions are affected by speckle noise that is generated during
the acquisition process, due to back-scattered waves from multiple distributed tar-
gets. To reduce the noise, the second step foresees a despeckling operation. In this
study, we used an approach largely adopted in literature, the Non-Local Means
(NL-means) filter [16]. For each pixel p, it recomputes its value as a weighted aver-
age of the square neighbourhood of fixed size k = 5 centered at p, where the weights
depend on the distance between the pixel p and its neighbourhood. Then, cartogra-
phy about natural water sources is employed: pixel values are initially inverted (1),
setting non-flooded areas to 1 and flooded ones to 0; then it is multiplied pixel-wise
with the despeckled image. Therefore, all the natural water regions are set to 0 and
diversified from other water regions. Finally, the input data is processed by one of
the examined approaches: Support Vector Machines (SVM), Random-Forest, and
U-Net, which provides the delineation map. According to the model that is applied,
the input data is properly pre-processed, as will be explained later in this section.

Baseline: Support Vector Machine

In 2019, a solution proposed by Benoudjit and Guida [4], performs the mapping
of the flood extent on SAR images using the Stochastic Gradient Descent (SGD) al-
gorithm to optimize the loss function of a supervised classification algorithm. SGD
is an iterative method for optimizing an objective function, employed in several
machine learning algorithms, like Support Vector Machines (SVM), K-Means, and
Feed-Forward Neural Networks (FFNN) [12]. Also, it is recently known as one of
the weights optimization algorithms for Deep Neural Networks [61].

The authors used that approach to optimize the cost function of a SVM classifier,
applied pixel-wise on input data.
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Figure 4.1: Flow-diagram of the flood delineation process. Input data is subjected
to despeckling operation, which removes noise. Cartograhy mask is inverted (I)
and multiplied pixel-wise (-) with the despeckled data, highlighting natural water
sources. Finally, the model segments the flooded regions.

Before training the model, both the input data and the ground truth, having dimen-
sions (width, height, 3), are reshaped into two vectors of lengths width x height x 3.
Then, the SVM is trained using the SGD to optimize the cost function, defined as
follows:

L(x;,y;) = H(zj,y;) + L2 = max(0,1 — y; - (wz; + b)) + of|w||2 (4.1)

H is the Hinge loss function, where w and b are the optimized model parameters,
while z; and y; are the j-th element of the input and the ground truth vectors,
respectively. L2 is a regularization terms, also known as Ridge regularization term,
used to help the model to generalize to unlabeled data, preventing the overfitting
[52]. The incidence of the regularization term, is tuned by the parameter a > 0.
In our work, we followed the same procedure, but we extended the set of features
to be evaluated by the SVM, adding some spatial contextualization, in the chance
that flooded pixels characterized by a local pattern (for instance proximity to water
mirrors, or sharp color gaps passing from land to water, or any other scheme not
detectable by the human eye), would be better recognized. Instead of considering
one pixel at a time, SVM will also consider a region around the pixel to be evaluated.
Therefore, SVM will consider a squared region having dimensions (w x w) pixels,
where w is an odd number. The pixel at the center of each squared region, p,. is
the one subjected to classification. For p. in the border of the original input data,
the missing part of surrounding pixels is replaced by mirroring the portion of the
considered data.
The ground truth remains a vector that specifies the class of each pixel: flooded or
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non-flooded.

Random Forest

The first model tested is a Random Forest Classifier (RF), well known to be
one of the most versatile Machine Learning algorithms suitable for classification.
Random Forest is an ensemble model, based on the training of a pre-defined number
of Decision Trees on different subsets of features over the same dataset, where each
Decision Tree learns to classify new samples using a subset of the feature set. Also,
in this case, the input data is not processed at once, due to large dimensions.
Instead, we adopted the same windowing approach applied with SVM.

U-Net

The third and last approach compared in this work is U-Net, the deep convolu-
tional neural network largely discussed in the previous chapter. Indeed, the same
architecture described in Chapter 3 for binary classification is used in this work.
Similarly to delineation maps of burned areas, flooded areas present common as-
pects: they appear as shapes of different sizes having irregular borders, which
sometimes present protrusions. Flood delineation maps may identify either one or
many regions in the inspected area of interest, which determines the unusability
of the loss function presented in the original paper. Given the promising results
obtained in the previous chapter, we decided to maintain the same loss function:
the Dice loss.

As in the cases of SVM and RF, input data is too large to be computed at once,
also by U-Net. Therefore, both input data and ground truth are tiled, generating
images of dimensions (480 x 480 x 3) and (480 x 480 x 1), respectively.

4.1.4 Experiments

This section presents the experiments for the three approaches previously in-
troduced. First, the raw satellite data illustrated in Section 4.1.1 is preprocessed,
preparing the dataset. Then, the testing process and the evaluation metrics are
presented. Finally, the results are discussed.

Dataset preparation

As introduced in Section 4.1.1, the satellite acquisitions are related to five differ-
ent countries where flood events occurred: Australia, Greece, Ireland, Italy, United
Kingdom. However, for computational limitations, none of the approaches previ-
ously presented is able to process a whole acquisition at once. Therefore, we opted
to tile each acquisition in smaller crops of size 480 x 480 pixels, maintaining the
original information. In order to avoid the presence of many tiles without flood,
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we considered in the dataset only tiles containing at least one pixel classified as
flooded. In the end, the dataset contains a total of 64 tiles, distributed in folds as
follows; AU fold: 8, GR fold: 8, IR fold: 21, IT fold: 11, UK fold: 16.

Each tile in the dataset has the same dimension of the U-Net’s input, while it has
to be adjusted for SVM and RF. In particular, for the two approaches we consid-
ered scrolling windows of dimensions (7 x 7) pixels, composed of: a central pixel
(pe), and 48 neighbour pixels. Therefore, each tile having dimensions (480 x 480)
is transformed into a matrix of 480 x 480 rows, by 7 x 7 x 3 columns (consider that
each pixel is composed of 3 values).

Testing process

The goal of the experiments is to evaluate the approaches in different areas,
proving their ability to operate independently from morphological and geological
aspects. Therefore, the dataset is split into five folds, grouping each acquisition to
the respective country. In order to evaluate the capability of each model to obtain
good results on different geographical areas, we compute the model performances
using the Cross-Validation approach [150]. A total of 5 tests is foreseen: every
test is performed on a different fold, while the remaining four are used to train the
models. In the case of U-Net, one of the four remaining sets is used for validation
purposes.

Moreover, we want to assess the contribution brought by both despeckling op-
eration and cartography. Therefore, we performed an ablation study, identifying
three test cases: (i) using raw data, (ii) using despeckled data, and (iii) using both
despeckled data and cartography about natural water sources. To provide a fair
comparison, we run cross-validation for each of the three test cases.

Evaluation metrics

After analyzing the dataset, it emerged that the number of non-flooded pixels

is considerably higher than the number of flooded ones: precisely, the ratio of the
non-flooded pixels with respect to the total pixel count is 80.7%. This means, in the
Machine Learning domain, that the classes are imbalanced. This situation can lead
models to underfit the training data, with the consequence to be more error-prone
during the test phase.
For the same reason using accuracy to assess the performances is not reliable at
all: in this situation of class imbalance, any approach could achieve about the 80%
of accuracy by just classifying all the pixels as non-flooded, mistaking the entirety
of classifications over the actual task: the detection of ‘looded’ pixels. Training
the model based on this metric led to a high accuracy score, but resulted in mainly
‘not flooded’ classifications, definitely far from the ground truth.
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For this reason, we chose an evaluation metric that is reliable with imbalanced
classes, the F1-Score. Also, we report Precision and Recall metrics to better eval-
uate the three approaches.

Hyperparameters settings

SVM is trained according to the parameters provided in the original paper: the
model is trained for 1000 iterations, while the regularization coefficient « is set
equal to 0.0001.

RF is trained using 19 decision tree models. That number is empirically chosen
as follows. Considering the third test case, which involves both despeckling and
cartography, we performed the cross-validation using: 3 sets as training, 1 as test
and 1 is excluded. In this phase, the test set is used to assess the best number of
trees: in the actual experiments, the real test set will be the set we excluded in this
phase. We tested a number of trees which ranged from 2 to 50 and we determined
that the best performances were obtained with 19 trees.

Each decision tree uses the Gini index as a measure of the split quality. Finally,
RF uses the majority vote to determine the prediction for each pixel [52].

U-Net is trained according to the specifications provided in Section 3.5.3 for the

binary classification problem, with the only exception of not using augmentation,

in order to avoid that U-Net was trained on more data than the one available for
SVM and RF.

4.1.5 Results

In this section, the models’ performances are evaluated using the same dataset
and performing the same cross-validation process, then the results are compared.
Furthermore, the models are trained and evaluated on the dataset in three distinct
configurations to investigate the influence of pre-processing activities on the results:
(i) using only raw data, as acquired from the Sentinel-1, (ii) using raw data, af-
ter being processed with a despeckling operation to reduce the noise caused by the
acquisition process, and (iii) using despeckled data with the addition of the hydrog-
raphy mask. Then, statistical tests assess similarities among the delineation maps
generated by the studied approaches. Finally, computation times are compared
and discussed.

Performance evaluation

Table 4.2 reports the experimental results obtained for the first test case, which
considers raw data only. The SVM achieves high Recall (0.79), but just sufficient
Precision (0.61). The speckle noise, inherently contained in the raw data, induce
the linear model to detect more false positives, and therefore to overestimate the
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predicted flooded area, lowering the Precision score. Instead, RF shows an opposite
behaviour compared to SVM. It is more accurate in avoiding false positives, achiev-
ing the best Precision score (0.78), but it tends to underestimate the flooded area.
However, it shows a higher F1-Score, of about 0.75. The best model in this test
case is undoubtedly the U-Net, which presents both high and balanced Precision
and Recall, which result in the highest F1-Score, on average, of about 0.80.

Table 4.2: Cross-validation results on Test case #1 (Raw data only). () marks best
Precision values, (x) marks best Recall values, and bold text marks best F1-Score
values.

‘ SVM RF U-Net
Fold
‘ Precision Recall F1-Score ‘ Precision Recall F1-Score ‘ Precision Recall F1-Score

AU 0.62 0.76 0.68 0.77 0.62 0.69 0.83f 0.94* 0.88
GR 0.54 0.90 0.68 0.87 0.89 0.88 0.88f 0.90* 0.89
IR 0.58 0.71 0.64 0.70t 0.77 0.74 0.69 0.80* 0.74
1T 0.65 0.68* 0.66 0.73t 0.51 0.60 0.68 0.61 0.65
UK 0.69 0.88* 0.77 0.80f 0.76 0.78 0.79 0.86 0.82
Avg. | 0.61 0.79 069 | 0.78f 0.71 074 | 077 0.82* 0.80

Table 4.3 reports the experimental results obtained for the second test case,

which considers raw data preprocessed with the despeckling operation. The re-
duced noise largely improves the performances of SVM, especially for the Precision
score, which raises by +18% from the previous test case. However, the artefacts in-
troduced by the preprocessing operation made the Recall score lower of -6%. Note
that the average scores for the SVM in this test case are comparable to the ones
achieved by RF in Test case #1.
The despeckling operation barely affected RF and U-Net performances, which
slightly improved their scores by decimals. However, U-Net was confirmed to be
the best model, achieving best Precision and Recall scores in the majority of the
folds (3/5), and best F1-Scores in almost every fold (4/5).

Table 4.3: Cross-validation results on Test case #2 (Despeckled data). (f) marks
best Precision values, (x) marks best Recall values, and bold text marks best
F1-Score values.

\ SVM RF U-Net
Fold
‘ Precision Recall F1-Score ‘ Precision Recall F1-Score ‘ Precision Recall F1-Score

AU 0.66 0.96* 0.78 0.80 0.71 0.75 0.92f 0.86 0.89
GR 0.79 0.74 0.76 0.87 0.84 0.85 0.891 0.88* 0.89
IR 0.74 0.70 0.72 0.69 0.76* 0.73 0.791 0.72 0.75
1T 0.831 0.55 0.66 0.73 0.54 0.62 0.64 0.66* 0.65
UK 0.941 0.71 0.81 0.79 0.77 0.78 0.84 0.82* 0.83
Avg. | 0.79 0.73 075 | 078 0.72 075 | o0.82f 0.79* 0.80
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Finally, Table 4.4 reports the experimental results obtained for the third test
case, which considers despeckled data, with the addition of hydrography layer. In
this case, the SVM presented slight improvements compared to the previous test
case. Instead, both RF and U-Net widely improved their performances. The great-
est improvements are achieved by RF, presenting an average of +11% on both
Precision and Recall. The large increment in Precision is directly justified by the
presence of pixels into the hydrography regions that allows the model to reduce false
positives. Also, flooded regions close to natural water sources are better detected,
resulting in an improvement in the Recall score.

Even if their average F1-Score is similar, 0.85 for RF and 0.86 for U-Net, we ac-
knowledge U-Net as the best model, because it presents the highest Recalls and
F1-Scores in the majority of the folds.

Table 4.4: Cross-validation results on Test case #3 (Despeckled data + Hydrogra-
phy). (1) marks best Precision values, (x) marks best Recall values, and bold text
marks best F1-Score values.

‘ SVM RF U-Net
Fold
‘ Precision Recall F1-Score | Precision Recall F1-Score | Precision Recall F1-Score
AU 0.56 0.97* 0.71 0.83 0.96 0.89 0.91f 0.84 0.87
GR 0.78 0.73 0.76 0.92 0.92* 0.92 0.941 0.91 0.93
IR 0.78 0.74 0.76 0.88f 0.83 0.85 0.85 0.86* 0.86
1T 0.93 0.62 0.74 0.94% 0.59 0.72 0.69 0.82* 0.75
UK 0.961 0.72 0.82 0.90 0.87 0.88 0.88 0.90* 0.89
Avg. | 0.80 0.76 076 | 0.89f 0.83 08 | 085 0.87* 0.86

Statistical evaluation

The delineation maps generated in the three test cases were subjected to a sta-
tistical test, the McNemar’s test, in order to check whether the outputs in assessed
approaches could be interpreted as equal. The McNemar’s test is used to determine
if there are differences on a dichotomous dependent variable between two related
groups [82]. In this context, the dichotomous dependent variable is represented
by the value of each pixel in the delineation map, while the two related groups
are the models’ predictions. For each fold, we considered the predictions of all the
delineation maps generated, comparing the approaches in pairs. Given A and B
two different approaches, we formulated the following hypotheses:

o Null hypothesis (Hy): delineation maps generated by A and B are equal;

o Alternative hypothesis (H;): delineation maps generated by A and B are
significantly different.
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Therefore, we considered the following groups: (i) SVM - RF, (ii) SVM - U-Net, (iii)
RF - U-Net. The McNemar’s tests were performed for each fold in the dataset and
repeated for each Test case analyzed above (Raw data, Despeckled data, Despeckled
data + Hydrography maps).

As a result, with a significance level a = 0.05, all the tests rejected the null
hypothesis: all the algorithms provide significantly different delineation maps.

Computation time evaluation. Performances were also evaluated according
to the complexity and the inference time of the assessed approaches, as shown in
Table 4.5. In this evaluation, we do not provide any distinction between test cases,
as the approaches performed similarly on each test case. Times were measured
from the beginning of the inference process, to the time the delineation map of
an acquisition tile of 480 x 480 px was returned (all the dataset was considered
for this study). Performances were evaluated running the approaches both on
CPU (Intel Core 19 7940x with 128 GB RAM) and on GPU (NVIDIA 1080 Ti).
SVM is the lightest model in terms of the number of parameters and also the
fastest one, considering the test on CPU (~217 ms per tile). Random Forest shows
a high number of parameters (> 20 MIn), considering all the Decision Trees in
the ensemble. However, it is slightly faster than U-Net on CPU, generating a
delineation map in less than 600 ms, on average. U-Net computation time is in line
with the results achieved using visible light bands for burned area delineation, as
explained in Section 3.5.4.

Table 4.5: Inference times of the assessed methods for the delineation task, consid-
ering input tiles of dimension 480 x 480 px and 3 channels.

Inference time (ms)

Method | # params | , o (CPU) Std (CPU) | Avg (GPU) Std (GPU)

SVM < 100 217 15 - -
RF 21 Mln 993 33 : -
U-Net 28 MIn 716 24 47 0.4

Overall considerations

Overall, U-Net demonstrated to be, also in this context, the most reliable ap-
proach, achieving the highest results in all test cases. The despeckling operation
resulted to be useful when using linear approaches, like the SVM. In the end, the
hydrography map demonstrated that none of the examined approaches is able to
distinguish natural water sources from the flooded areas properly. Therefore, it
represents essential information to enable the model to provide highly accurate de-
lineation maps. Figure 4.2 shows an example of the performance gains that have
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Figure 4.2: Example of how the addition of a hydrography layer improved the
U-Net’s performance (EMSR149 - 13PORTUMNA): (a) Despeckled data (no hy-
drography), (b) Despeckled data with hydrography (colored in light blue), (c) De-
lineation obtained from despeckled data without hydrography (F1-Score = 0.89),
(d) Delineation obtained from despeckled data with hydrography (F1-Score = 0.97),
(e) Ground truth.

resulted from the usage of hydrography. In Figures 4.3 and 4.4 we report the pre-
dictions of the examined models in two areas of the Test case #3 where U-Net
performed best and worst, respectively. In both areas, all three techniques are
able to provide qualitative results. However, the main differences are noticeable
between SVM and RF / U-Net predictions. SVM tends to be more prone to errors,
presenting false positives in Figure 4.3 and with false negatives in Figure 4.4. RF
and U-Net present very similar and qualitative results, errors are generally related
to false negatives.
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Figure 4.3: Performances comparison on U-Net model best result (EMSR122 -
STRYMONAS): (a) SVM (F1-Score = 0.91), (b) RF (F1-Score = 0.98), (c) U-Net
(F1-Score = 0.99), (d) Ground truth

Figure 4.4: Performances comparison on U-Net model worst result (EMSR192 -
13SALE): (a) SVM (F1-Score = 0.40), (b) RF (F1-Score = 0.56), (c¢) U-Net (F1-
Score = 0.55), (d) Ground truth

4.2 Long-lasting flood event detection in cities

In this section, we present the work submitted to the MediaEval 2019 challenge.
It competed for the subtask "City-centered satellite sequences", which was part of
a broader task, named "Multimedia Satellite: Emergency Response for Flooding
Events" [168]. The task involved a set of sequences of Sentinel-2 images that de-
picted a certain city over a certain length of time. The goal was to determine
whether there were flooding events ongoing in that city, whereas at least one region
was flooded during all the flooding events in the considered time range.

4.2.1 Dataset

The dataset used in this work contains 335 image sequences, where each image
corresponds to a Sentinel-2 L2A acquisition, which includes all the 12 spectral
bands. Each sequence contains the acquisitions captured 45 days before and 45 days
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after a flooding event officially stated by the Copernicus Emergency Management
Service. Also, for each image there is extra metadata information that provides:
(i) DATE: the satellite acquisition date, (ii) FULL-DATA-COVERAGE: whether
the acquisition presented satellite measurements on all the areas of interest, and
(iii) FLOODING: if in that date, there was a flooded area somewhere in the area of
interest. The Ground Truth (GT) is given as a label in binary form. It is created
considering the intersection of the mapped flood extend (that was not part of the
available data). Therefore, if there was a flooded region that lasted during all the
examined period, the GT was equal to 1. Otherwise, the GT was set to 0. The
dataset was balanced: an image sequence had 50% of probabilities to present a
flood.

4.2.2 Problem Statement

This problem concerns a dataset of time sequences about daily Sentinel-2 L2A
acquisitions and metadata associated with each acquisition, as described in the
previous section. The main objective is to determine, for each sequence, whether
there is at least one flooded area that lasted during all the flooding events in the
examined time range. In the positive case, the time sequence is labelled as 1, 0
otherwise. Therefore, the problem is configured as a binary classification task.

4.2.3 Methodology

We built an expert system which leverages on both spectral and metadata in-
formation. Water regions are segmented in both sets using the a spectral index
specifically designed to be sensitive to water segmented by means of in the ac with
no water regions belonging to flood events, but it and the first one contains acquisi-
tions related to flooded areas, while the other contains the remaining acquisitions.
Note that in the latter set, containing no flooded areas, and the other leverage on
the notation In Figure 4.5, a diagram show the principal steps of the algorithm.
Firstly, the algorithm computes a binary mask for each image in the sequence, in
which white pixels represent areas with the presence of water, while black pixels
represent the other regions. The binary masks are obtained: (i) by computing,
for each pixel, the Modified Normalized Difference Water Index (MNDWI) [32]
adapted for Sentinel-2 bands (S2), according to Equation (4.2); (ii) by setting to
white the pixels having M NDW [s, > 0, while others are set to black.

reen — Mswir BO3 — B11
MNDWT = Pareen — Pswint -y rnpyypg, — 20— 222

4.2
Pgreen + Pswirl B03 + B11 ( )

Assuming that the dataset does not have missing values lasting for the whole time
series, we set the pixels related to uncovered areas to white. Then, we performed the
pixel-wise intersection among two sets of images: (i) the binary masks computed
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Figure 4.5: Flow-diagram of the expert system presented to the challenge.

for images marked as presenting a flooded area in the metadata file (FLOODING
= True), and (ii) the ones which do not present any flooded area (FLOODING =
False) in the metadata file.

The two intersections depict the water persistence in case of flood and non-flood:
water bodies in the first set include both flooded areas and natural water sources,
while the second set includes only natural water sources. Finally, to discriminate
flooded regions from normal water sources (like rivers or lakes) a pixel-wise dif-
ference among the two sets is computed. Even if a binary mask representing the
residual flood extent is available, to be compliant with the subtask, the approach
returns 1 if there is still any white region in the resulting binary mask, 0 otherwise.

4.2.4 Experiments

The task organizers made the image sequences in the dataset available to the

participants. The dataset was split into two sets: 80% of the image sequence
belonged to the development set, while the remaining 20% belonged to the test set.
The GT was made available only for the development set.
Official runs for the challenge considered the performance obtained on the test set.
To know the performances achieved by its approach, a participant had to send
the predictions on the test set to one of the task organizers, for a maximum of 5
attempts. Being an expert system, our approach does not need to be trained on
any dataset. Therefore, we assessed the performances using all the development
set, before sending the official run on the test set.

Evaluation metric

In order to evaluate the approaches, task organizers used the F1-Score metric
for this subtask. The metric computes the harmonic mean between Precision and
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Recall for the corresponding class.

4.2.5 Results

In Table 4.6, the results for both the development and the test set are shown.
Generally, our approach presented high results in the development set, but even
higher (+3% F1-Score) in the official run. This score proves that our model, being
an expert system, does not present typical problems encountered with the super-
vised approach, such as overfitting. Given the high score, the tests confirm both
MNDWTI as an accurate index and B03 and B11 as highly informative bands for
water segmentation on optical satellite sensors. Also, our approach is able to pro-
vide a reliable delineation map of the persisting flood, localizing the permanently
inundated regions for prompt intervention.

Table 4.6: Results for the subtask of "City-centered satellite sequences" of MediakE-
val 2019. Results refer to F1-Score metric. * Subset of the Development set, which
ranges from 10% to 30% of its size.

Approach ‘ Development set ‘ Test set (official run)
Y. Feng et al. [47] 0.978* 0.971
P. Jain et al. [75] 1.00* 0.970
B. Bischke et al. [6] 0.926* 0.963
Our (Expert System) 0.885 0.912
S. Andreadis et al. [2] 0.835 0.866
H. Ganapathy et al. [56] - 0.720
K. Ahmad et al. [1] - 0.588

In the challenge, our approach achieved the highest scores among the solutions

that did not require any training on data. Limitations on our algorithm concern
the adopted threshold in the NDWTI index, which may slightly vary from region to
region. Wrong thresholds may both underestimate and overestimate water sources,
and therefore bring to either false positives or false negatives.
Better scores are achieved by supervised methods, that leverage convolutional neu-
ral networks and recurrent neural networks for their predictions. For instance, the
winner approach uses a DenseNet121 pre-trained on ImageNet without its last layer
to extract deep features from each image in the time sequence. Then, deep features
for each image are fed into an LSTM, that predicts the final outcome.
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4.3 Summary

This chapter presented two works that leverage satellite data during flood
events. In the first work, we assessed the performances of three machine learn-
ing models on SAR data, acquired from Sentinel-1. As for the previous chapter,
the goal was to predict reliable delineation maps based only on a single acquisition,
in order to speed up the whole mapping process. In order to distinguish natural
water sources from flooded areas, we integrated our data with hydrography maps:
in literature, other approaches make use of pre-event acquisitions, that must be
manually assessed. Then, we compared the performances of Support Vector Ma-
chines (used as a baseline), Random Forest, and U-Net in three test cases: (i) using
raw SAR data, (ii) using raw SAR data, preprocessed with a despeckling opera-
tion, and (iii) using despeckled data, with the addition of hydrography. SVM is the
method mostly affected by the despeckling operation, which added about 9% to
the average F1-Score, while hydrography slightly improved the performances. The
best-averaged F1-Score achieved is 0.76. RF demonstrated to work better than
the baseline using Raw data (+6% of F1-Score), but it is not subjected to signif-
icant improvements when using despeckling operation. Instead, the information
added by the hydrography map is crucial for improving RF performances by 11%,
achieving an F1-Score of 0.85, on average. U-Net is able to provide highly reliable
predictions using just raw data from Sentinel-1, achieving an F1-Score of 0.8. That
result is not particularly improved by despeckling operation, but hydrography map
gives it a boost of +6% of F1-Score, on average. Moreover, it achieved the best
scores in the majority of the folds (4/5). Finally, whereas CNNs often require a
large number of training samples to function effectively, the U-Net model achieves
good results with a relatively small number of samples.

The second work proposed an expert system able to evaluate persisting flooded
areas in cities, leveraging on a time series of Sentinel-2 acquisitions. During floods,
it is common to have the area of interest covered by clouds occluding the region to
be assessed, therefore the time series is needed both to have more chances to spot
unoccluded areas, and to monitor the evolution of flooded regions. Our proposed
system, which is able to work without training, demonstrated reliable performances,
achieving an F1-Score of 0.88 and 0.91 in the development and in the test sets,
respectively. Compared to other solutions to this problem, our work resulted to be
the best among the approaches that do not need any training process.

4.4 Relevant publications
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Chapter 5

Rapid Mapping and Damage
Assessment platform

This chapter introduces the Rapid Mapping and Damage Assessment (RMDA)
platform, designed and developed to bring the research of chapters 3 and 4 to an
operational level. In practice, the best models previously discussed were prepared
to deliver accurate delineation and grading maps to any granted third party, such as
civil protection, public bodies, or private companies. The platform was developed
through a collaboration with LINKS Foundation - a private research centre located
in Turin - within the context of two European H2020 projects: I-REACT (G.A.
700256) and SHELTER (G.A. 821282). The two projects address relevant topics of
the European Commission, related to the protection of the society and its historical
values against the effects of natural disasters.

The chapter is structured as follows: Section 5.1 shows the whole architecture,
describing its functionalities and presenting the main modules; Section 5.2 provides
proper details about the logic of each module and its inputs and outputs. Section
5.3 presents the technological stack used to develop the solution. Finally, Section
5.4 presents a preliminary analysis of the platform performances, assessing the
computational time taken to accomplish the mapping activity.

5.1 The architecture: a big picture

The architecture was designed to enable any authorized client to perform a
mapping request: given few details, such as the region of interest and a short time
range, the platform must provide automatically high-quality delineation/grading
map in a brief period of time. After the request, the platform must be able to: (i)
detect the request, (ii) handle the mapping flow, (iii) look for the best available
satellite data (from external services) that matches the provided constraints, (iv)
provide an accurate delineation/grading map, operationalizing the models discussed
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Figure 5.1: Architecture of the Rapid Mapping and Damage Assessment Platform
architecture.

in the previous chapters, and (v) return the mapping output to the client.

In order to accomplish those tasks, six modules were identified: the Queue
messaging system, the Dispatcher, the Controller, the Geospatial Downloader, the
Deep Learning Platform and the Cross-Data Interface, as shown in Figure 5.1.
Their responsibilities can be summarized as follows:

Queue messaging system: handles the communications between external
clients and RMDA;

Dispatcher: selects from the message queue the requests to be processed and
regulates their concurrence, according to the available hardware resources;

Controller: handles the whole mapping task from the request to the final
output. It regulates the flow of data through the RMDA modules;

Geospatial Downloader: is responsible for the acquisition of satellite raw
data that matches minimum quality requirements;

Deep Learning Platform: is responsible for the operationalization of cus-
tom deep learning models;

Cross Data Interface (xDI): is responsible for the management (load,
store, and update) of the RMDA’s geospatial data, which includes raw satel-
lite acquisitions, maps, and metadata.

Every module was thought to take a specific responsibility and (except for the
Controller) is designed to be independent of the other modules. Therefore, the
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whole architecture can be easily modified or integrated with other platforms, re-
sulting to be versatile for more specific applications.

In the next section, the RMDA modules will be examined deeper, focusing on their
inputs/outputs and main logic.

5.2 Modules

The Rapid Damage Assessment platform allows authorized clients to submit a
new mapping request to the Queue messaging system module. Supported requests
concern either the delineation and grading of regions affected by wildfire, or the
delineation of flooded areas. Then, the platform will process the request asyn-
chronously and will inform the client through the same queue once the mapping
task is finished. In the end, the client can explore the result through the Cross
Data Interface that will be presented later on in this section.

5.2.1 Queue messaging system

The Queue messaging system is the main access for the mapping request. It
collects multiple requests in real-time, allowing to process of them asynchronously,
according to the system’s computational capacity. It implements the Publish-
Subscribe pattern [35], a common messaging architectural pattern used for de-
livering the same message to multiple recipients.

The advantage of using the publish-subscribe pattern is that the message sender
only needs to know where to send (or publish) the message, without worrying
about the recipients. The message destination is called topic: it is pre-defined in
the Queue messaging system and it represents a sink that collects messages related
to the same subject. All the actors interested in receiving messages from a specific
topic must be registered to it. Once a message is sent to a specific topic, the Queue
messaging system forwards the message to a dedicated queue for every registered
recipient.

In the Queue messaging system of the RMDA platform, the following topics are
set:

o map-request: topic for submitting a new mapping request. Any authorized
client can send a new request that will be received and handled by the RMDA
Dispatcher;

o <stakeholdername>: topic for receiving the notification of a completed map-
ping task. <stakeholdername> is a placeholder for a generic group or com-
pany authorized in sending map requests. For instance, researchers of Po-
litecnico di Torino can subscribe to the topic "polito" to be notified of the
completion of a mapping task.
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Input

Messages sent to the "map-request" topic must contain the following informa-
tion:

o Event delineation area: details the region to be analyzed. This is composite
information, which includes the following geographical properties:

— Area of Interest (Aol): rectangular-shaped region to be mapped. It is
specified as a tuple of coordinates <latitude, longitude> of the upper-left
and lower-right corner of the region;

— Resolution: spatial resolution of the satellite acquisition;

— Coordinate reference system: reference system used to map the geospa-
tial coordinates.

o Event delineation date range: date range in which focus the analysis. Gen-
erally, a mapping request refers to a single date, for which satellite data may
be unavailable for some reason, like the presence of many clouds over the re-
quested area. Therefore, a date range is suggested to let the RMDA platform
assess the best available acquisition to make the evaluation of the hazard.

o Hazard: type of hazard to be evaluated (Wildfire/Flood).

o Map type: type of map to be generated (delineation or grading for wildfires,
delineation for floods).

Furthermore, other metadata concerning the sender information are forwarded with
the message. This information will be used afterwards to prepare and deliver the
reply to the right topic.

Output

After that the mapping task is completed, the Controller module, will prepare
and send the reply to the topic retrieved from the metadata information of the
request. The reply is structured as follows:

o Result: a brief report of the result of the mapping task, it describes whether
it is succeeded or failed. In the latter case, it reports the error;

e Resource: link to the map and the satellite acquisition used for the mapping
process.
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5.2.2 Dispatcher

The Dispatcher is the module that enables the execution of multiple mapping
tasks concurrently. A maximum number of allowed parallel tasks is determined by
the hardware capabilities. If the number of tasks is below the limit, the Dispatcher
fetches a new request from the dedicated queue of the ‘map request topic and
starts a new instance of the Controller module that will process the request. The
Dispatcher regulates the number of active tasks by monitoring the activity of the
Controllers instantiated until their completion.

5.2.3 Controller

The Controller is the module that handles the execution of the mapping task.
It is the only specific module in the whole RMDA platform architecture, being the
one that coordinates the data processing and data flow through the other modules.
Its main steps can be summarized as follows:

1. request raw satellite data from the Geospatial Downloader according to the
parameters specified in the client’s request;

2. preprocess the satellite data, splitting the original acquisition into tiles;

3. iteratively send the tiles to the Deep Learning Platform and retrieve the
mapping result;

4. rearrange the mapped tiles and build the mapping result;

5. register and store the retrieved raw satellite data and the mapping result,
sending them to the Cross-Data Interface;

6. sends a message to the Queue messaging system, acknowledging the mapping
result.

The Controller is started by the Dispatcher, which forwards the parameters
of the client’s request. Using this information, the Controller requests the best
available satellite acquisition in the specified time range to the Geospatial Down-
loader module (1). According to the Mapping type, the Controller requests either
Sentinel-2 acquisitions for post-wildfire mappings, or Sentinel-1 acquisitions for
flood mappings. In the latter case, the Controller also requests cartographic in-
formation about natural water sources in the same Aol. The water sources data
represents a new layer of information that is added to the Sentinel-1 acquisition.
Then, the acquisition must be preprocessed to fit the input criteria of the models
operationalised by the Deep Learning platform, which in both cases have fixed res-
olution width = height = 480px. In case the acquisition had a lower resolution,
it will be rescaled proportionally in order to fit the smallest edge to 480px. Then,
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the acquisition is tiled, leaving a minimum overlap between tiles in the edges. The
overlap is needed to give a smoother transition between the tiles returned as a re-
sult of the mapping task (2).

The Deep Learning Platform allows to process a set of tiles concurrently: therefore,
the Controller iteratively sends a subset of the tiles to be mapped and collects the
results, until the whole satellite acquisition is fully mapped (3).

Then, the mapped tiles are rearranged and merged to build the mapping result.
During the merging phase, the value of each overlapping pixel is determined by
weighting its original value in the corresponding tiles, according to the relative po-
sition of the pixel to the edge of the two tiles. The closer the pixel is to the edge
of the tile, the lower its weight will be (4).

At this point, the Controller sends the satellite acquisition and the merged map to
the Cross-Data Interface, which will store the data and will return an URL that
allows access to the resources (5).

Finally, the Controller prepares the message containing the result of the mapping
process and the link to the resources, then it sends the reply to the client through
the Queue messaging system (6).

5.2.4 Geospatial Downloader

The Geospatial Downloader is responsible for downloading satellite data that
match minimum quality criteria. It provides acquisitions from Sentinel-1 or Sentinel-
2 (both L1C and L2A), Digital Elevation Maps and Water Source maps. According
to the spatial constraints defined in the client’s request, raw satellite data and DEM
maps are acquired from the Sentinel-Hub portal [154], while water source maps are
acquired from OpenStreetMap [114].

Data downloaded from Sentinel-Hub is subjected to a quality check, according
to two parameters: cloud coverage and data coverage. Cloud coverage is the per-
centage of the acquisition that is covered by clouds (this applies only for Sentinel-2
data), while data coverage is the percentage of data captured by the satellite sen-
sors in the acquisition.

Regions of the acquisition covered by clouds are estimated by means of the cloud
test, proposed by J. Braaten et al. [13] and shown in Equation 5.1 (spectral bands
reported in the equation refers to Sentinel-2 data).

B03 — B04

Test = ((B 1 —_—
Cloud Test = |(B03>0 75)/\<B03+BO4>

O)] Vv (B03 > 0.39) (5.1)
Pixels meeting the cloud test criteria are classified as clouds: their percentage pixels
with respect to the total number of pixels considered in the test represents the cloud
coverage.

The data coverage is dependent on the satellite orbits: it may happen that for a
given place and date, the satellites did not get any data, resulting in a portion of
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the acquisition without any information. Therefore, the data coverage is computed
as the percentage of informative pixels in the acquisition.
Setting very strict thresholds on the two parameters may introduce the risk of not
finding any suitable acquisition, especially if the time range specified in the client’s
request is short. On contrary, soft thresholds may accept scarce quality acquisitions,
which can compromise a proper mapping. Empirically, the Geospatial Downloader
sets the maximum cloud coverage to 10% and the minimum data coverage to 90%.
Data downloaded from OpenStreetMap - maps about natural water sources - is
converted into a binary image (in which white pixels represent natural water) and
returned as a GeoTIFF file.

Input
Parameters available in the request are the following ones:

o Area of Interest (Aol): rectangular-shaped region to be mapped. It is specified
as a tuple of coordinates <latitude, longitude> of the upper-left and lower-
right corner of the region;

» Resolution: spatial resolution of the satellite acquisition;

o Coordinate reference system: reference system used to map the geospatial
coordinates;

o Date Range: date range used to evaluate the best acquisition;

o Data Source: data source used to download data, it can me Sentinel-2,
Sentinel-1 or Digital Elevation Map;

« Product type (only for Sentinel-1 and Sentinel-2 data): related to SAR data,
it determines the polarization level (IW or EW); related to the optical data,
it determines the preprocessing level (L1C or L2A);

o Minimum Data Coverage (default 90%): quality parameter, used to assess
the data availability in the acquisition;

o Maximum Cloud Coverage (default: 10%, only for Sentinel-2 data): quality
parameter used to assess the percentage of acquisition covered by clouds;

Output

The module returns a GeoTIFF file, containing;:

e Metadata: information about the area of interest, the resolution, and the
time of acquisition;
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e Product: a W x H x D tensor of the acquisition, where W is the width, H
is the height, and D is the depth. The Depth is related to the number of
channels returned from the data source and the product. It is equal to: 13
for Sentinel-2 L1C data, 12 for Sentinel-2 L2A data, 2 for Sentinel-1 data, 1
for DEM products.

5.2.5 Deep Learning Platform

The Deep Learning Platform handles deep learning models and enables them
to be triggered as a service, process the data and return the result. Moreover, the
platform acts as a model repository, providing the functionality to upload any model
exported in the Onnx format [113]. Its main responsibilities can be summarized as
follows:

1. handle the upload of a new deep learning model;

2. operationalize a model, loading it in memory and enabling it to receive inputs
and return inference predictions;

3. handle a model inference request;
4. store and return the inference results.

Those responsibilities are matched by means of internal modules, namely the
Web service, the Worker module and an internal Queue messaging system, rep-
resented in Figure 5.2. The Web service handles requests from external modules,
like the Controller, fulfilling responsibilities 1, 2, and 3, mentioned above. The
Worker module operationalizes the deep learning models (one for each operational
deep learning model), enabling them to match responsibilities 3 and 4. Finally,
the internal Queue messaging system enables asynchronous delivery of the requests
about mappings and it makes available the results from the Controller.

As introduced before, the upload of a new deep learning model (1) is handled
by the Web service, which stores the model in file storage in the cloud and registers
its existence in a structured database.

When it receives the request of making a model operational (2), the Web service
creates a new queue in the Queue messaging system and triggers a new instance
of the Worker. The Worker will load in memory the deep learning model and will
wait for a mapping request in the queue just created.

When the Web service receives a new mapping request from the Controller (3), it
stores the tiles of the geospatial data in the file storage. Then, if it is the first
time that receives data from the Controller, the Web service creates a new queue,
where the final result will be delivered and communicates the queue name to the
Controller. Then, according to the type of mapping requested, the Web service for-
wards the request to the right Worker through its dedicated queue. Asynchronously,
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Figure 5.2: Overview of the Deep Learning Platform architecture

the Worker will fetch the request, start the model’s inference, and store the final
mapping in the file storage. Finally, it prepares the message with the link to the
file storage and sends the reply to the queue created for the Controller (4).

5.2.6 Cross Data Interface (xDI)

The Cross-Data Interface handles heterogeneous data in order to make them
available and easily accessible to the client by means of a web portal.
In the Rapid Damage Assessment platform, the xDI receives from the Controller
all the information retrieved during the mapping process, such as the best available
satellite acquisition, the mapping result and all the metadata related to the request.
All the data are stored both in file storage and in a structured database. Then, the
xDI makes available all the information through its portal. An authorized client
can access the portal, read the information, and possibly add further information.
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5.3 Technological stack

In this section, we briefly introduce the technologies used to implement the
RMDA platform. We do not enter into configuration or implementation details,
because it is not the purpose of this thesis, but we want to give a brief context on
the frameworks and services used for the realization of the platform.

As shown in Figure 5.3, the global architecture has been enriched with the logos
of the adopted technologies. All the components, except for the Data module,
run into Docker containers (marked with the surrounding dashed blue box) [31].
Containers are isolated environments that allow to package and run applications
independently from the host operative system.
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Figure 5.3: Architecture of the Rapid Mapping and Damage Assessment Platform
architecture, enriched with the technologies used for the implementation. Blue
dashed boxes identify modules running on Docker containers.

The Data module consists in a DBMS for storing structured data, and a File
Storage for saving files, such as satellite acquisitions. In the first case we used
PostgreSQL (®) [62], in the latter we used Azure Blob Storage (@) [103].

The Queue Messaging System(s) and the Cross-Data Interface are based on ex-
isting services, that accomplish their functionality. In the first case, we used Rab-
bitMQ (%) [120], a message-oriented middleware that supports several messaging
protocols, such as AMQP, STOMP, and MQTT. In the latter, we used Compre-
hensive Knowledge Archive Network (CKAN) () [54], an open-source open data
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portal for the storage and distribution of open data.

All the other modules in the RMDA platform were implemented using Python
language. The Dispatcher and the Controller modules are fully implemented in
Python () and do not leverage on any particular framework.

The Geospatial Downloader and the DLP Web Service leverage on two web frame-
works to handle web requests and replies. They use Flask (L) [55] and FastAPI
(@) [157], respectively. Moreover, they leverage on Swagger (®) [147] to easily show
and document, through a web page, the APIs that trigger their functionalities.
The DLP Worker uses Dramatiq (@) [131] to schedule and monitor background
jobs used during the computation of delineation and grading maps, and Onnx run-
time () [104] to manage Deep Learning models instances and inference processes
on GPU. Note that Dramatiq is also used in the DLP Web Service, to properly
address, through the Queue messaging system, the type of background operation
to be performed by the DLP Worker.

5.4 Performance Evaluation

In this section we assess the mapping performances of the core module of the
RMDA platform, the Deep Learning Platform, using the most complex of the mod-
els illustrated in the previous chapter, the Double-Step U-Net. The DLP is tested
on a server with the following capabilities:

o CPU: Intel Core 19 7940x;
« RAM: 128 GB, DDR4;
« GPU: 1 x NVIDIA 1080 Ti;
The Operating System is Ubuntu 18.04, with Cuda version 10.2.

The test is performed using all the post-wildfire acquisitions in the dataset
illustrated in Section 3.1.
Each acquisition was tiled in images of dimensions 480 x 480 pixels, simulating the
behaviour of the Controller. Then, through a Python script, we provided the tiles
to the DLP, through the internal Web service. In this experiment, we evaluated
the execution times using batches of either 1, 2, or 4 tiles for each request sent
to the DLP. Moreover, timings are recorded after three steps: (i) the request, the
time needed by the DLP to receive the batch of tiles, (ii) the inference, the time
spent by the model to produce the prediction for the received batch, and (iii) the
response, the time spent to send back the model’s predictions. In Table 5.1, the
average and the standard deviations of the timings needed for each step are given.

The first aspect to be noticed is that the measured times show linear dependence
with the batch size: sending a set of tiles, instead of one at a time, has the only
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Time (ms)

Step Batch size: 1 | Batch size: 2 | Batch size: 4

avg std avg std avg std

Request | 139 10 268 16 505 23

Inference | 110 7 215 14 443 31

Response | 66 3 140 3 305 10
Total 313 20 624 33 1253 64

Table 5.1: Computation times of the main steps of the Deep Learning Platform,
during the operationalization of the Double-Step U-Net. Also, times are compared
by varying the batch size of the analyzed satellite acquisition tiles.

effect of reducing the number of requests to be performed. For a single tile, the
execution times are about 139 ms for the request, 110 ms for the inference, and
65 ms for delivering the response. In general, the mapping time for a single tile
is about 313 ms, with a standard deviation of 20 ms. Considering that Sentinel-2
products have a maximum resolution of 10m per pixel (measured in the diagonal),
a single tile covers a region of about 1629 km?. That surface is sufficient to cover
the city of Rome (1285 km?) or more than 12 times the city of Turin (130 km?).

5.5 Summary

In this chapter, we presented the Rapid Mapping and Damage Assessment plat-
form, a tool designed and developed during the -lREACT and SHELTER European
projects, able to handle the whole mapping process automatically.

It is composed of six modules that handle different aspects of the mapping
process: (i) the Queue messaging system regulates the communications between
clients and the platform, (ii) the Dispatcher regulates the workload to be carried
by the platform, (iii) the Controller manages the mapping process by requesting
satellite data, tiling the acquisition and regulating the data flow for the inference of
the mapping models, (iv) the Geospatial Downloader downloads the best available
satellite data for the mapping process, (v) the Deep Learning platform operational-
izes pre-trained models, producing the actual delineation or grading maps, and
(vi) the Cross-Data Interface, which manages the geospatial data and metadata
associated to the mapping request. Furthermore, we presented the frameworks and
services used to implement the modules.

Currently, the RMDA platform is able to provide delineation and grading maps
for wildfire events and delineation maps for flood events. It operationalizes the
best models presented in Chapters 3 and 4, namely the U-Net and the Double-Step
U-Net for delineation and grading tasks, respectively.

Finally, we assessed the performances of the Deep Learning Platform on the
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wildfire damage severity estimation task for a portion of a Sentinel-2 acquisition,
having dimensions 480 x 480 pixels (~1629 km?). The test achieved an average
computation time of 313 ms.
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Chapter 6

Knowledge extraction from Social
Media during flood events

During natural disasters, situational awareness is crucial to understand the en-
vironmental characteristics, comprehend their meaning, and respond accordingly.
To this end, the large volume of data provided by social media can contribute to
increasing the general knowledge about the context to operate. Compared to satel-
lite imagery, which allows having a wide and detailed perception of the extension
and the severity of a hazard, social media contents, especially if geo-referenced,
can provide a punctual and on-site view of the situation, from which it is possible
to infer further details. Certainly, social media is not widely recognized or used
as an emergency reporting tool, but there is evidence [167] of a great number of
posts providing direct proof of natural hazards, which, if properly handled, might
be a major assistance in dealing with the emergencies. The research community’s
sensitivity to natural disasters and the variety of data to deal with makes the com-
munity itself an active player on such themes, facilitating the organization of several
conferences. On purpose, in this chapter, we present approaches that, leveraging
on crowdsourced data from Twitter, focus on flood-related posts to assess viable
roads for transporting emergency support to victims. A second work focuses on the
detection of people in potential danger, through the evaluation of flood depth. Due
to the data availability, this problem is tested on news articles presenting similar
information content like social media posts. However, the provided solutions are
compatible to be adopted with social media information.

The chapter is organized into two sections. Section 6.1 focuses on the prob-
lem of detection of passable roads during flood events. The problem, originally
proposed in the "Multimedia task on Emergency Response for Flooding Events',
is presented detailing the main objectives, the dataset, and the approaches pro-
posed in the competition. Moreover, an extension of this work introduces newer
approaches that aim to simplify the solution, keeping similar performances, dis-
cussed at the end of the section. Finally, Section 6.2 presents the problem of flood
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depth estimation, proposed in the flood-related track of MediaEval2019, discussing
the proposed solutions.

6.1 Detection of roads and estimation of their vi-
ability in flooded areas

In this section, we present several approaches for the problem proposed by
the flood-related track in MediaEval2018 [89]. The objective is, given a collection
of social media posts that include images related to floods, determine whether: (i)
there is Fvidence of Roads (ER) and, in positive case, (ii) there is Evidence of Roads
Passability (ERP). In the first task, we are concerned with determining whether a
road is present (or mentioned) in the post content: this means that the road can be
directly visible or that enough elements justify its presence, such as the presence
of traffic lights or vertical signs, or that it might be mentioned in the message. In
the second task, we determine whether the identified road is in good enough shape
to be traveled. In the context of flooding, the evidence of road passability means
that the road can be completely clear or partially or entirely covered by water, but
cars or persons must be able to cross it.

At the competition, we provided the best approach according to the evaluation
metric chosen by the organizers. However, as it will be explained, ours presents
a high computational cost to be implemented in operational contexts. Therefore,
after the competition we worked to simplify the approach and to develop lighter
methods able to achieve similar performances [90].

6.1.1 Problem Statement

The problem is related to the analysis of social media posts related to flood
events. For each post, it is required to estimate: (i) the evidence of road, and, in
positive case, (ii) the evidence of road passability. Therefore, the problem presents
two binary classification tasks, which can be considered either independently or
somehow related. Social media posts contain heterogeneous information, such as
text, discrete values, and images, which can be properly exploited for the clas-
sifications. In both tasks, posts presenting actual evidence are marked as 1, 0
otherwise. Moreover, posts not presenting evidence of roads are not considered for
the evaluation of the road passability task.

6.1.2 Dataset

The dataset was distributed by the organizers of the Multimedia Satellite task [8].
It consisted of a list of 11070 tweet ids, split into two sets: a development set, con-
taining 7387 tweet ids, and a test set, containing 3683 tweet ids. The tweets were
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collected during three big Hurricane events of 2017: Harvey, Maria and Irma. They
were collected on Twitter by filtering the texts of the tweets with the keywords
“flooding” and “flood” during the time-frames of the three events. Moreover, the
dataset was already prefiltered from duplicates, as reported in [100].

Using the tweet ids, participants were able to download the data directly from
Twitter. A considerable number of tweets were no longer available by the time
they were collected, resulting in a development set of 5818 tweets and a test set of
3017 tweets.

The ground truth (GT) provided for the tweets was generated manually through
a crowdsourcing task. For the evidence of road subtask, the GT was set to 1 if the
road presence can be deduced from the tweet information, 0 otherwise. Only for
tweets presenting evidence of road, a second binary class label was attributed for the
actual road passability. A road is passable when, according to the water level and
the surrounding context, it is practicable by conventional means (no boats, off-road
vehicles, or agricultural equipment). Therefore, in the evidence of road passability
subtask, the GT is set to 1 when it is considered as passable, 0 otherwise.

In general, the dataset is significantly imbalanced towards the non-evidence of
road, having only ~36% of the tweet content containing roads. Among the tweets
labelled as containing roads, ~45% have evidence of positive road passability. In
Table 6.1, we provide the number of tweets per class for both the development set
and the test set. Moreover, for the development set, we provide the cardinality of
each class: this information is not available for the test set, because its GT was not
made public. Note that the development set is biased to no evidence of road (63%)
and no road passability (55%).

# Evid. of Roads | # Passable Roads
Dataset Total YES NO YES NO
development set | 5818 | 2130 3688 951 1179
test set 3017 - - - -

Table 6.1: Dataset composition: for each set and class, the number of tweets is
shown according to the class label. Note that only tweets presenting evidence of
road are labelled for the road passability task.

Tweet’s information

Tweets in the dataset contain two types of information: metadata and image.
Metadata contains a set of 29 punctual data, which can be strings, dates, and
discrete numbers related to the tweet, such as the text, the username of the tweet
sender, and the date on which it was posted. Table 6.2 briefly lists the most relevant
fields contained in tweets. Since many of them are empty or semi-empty (~90%),
we only report the fields (16 out of 29) without missing values in the MediaEval
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Field Description Type
Created at UTC time when this tweet was created datetime

Entities Dictionary of the entities which have been parsed out object

of the text, such as the hashtags
Extended entities Dictionary of entities extracted from the media, object
such as the image size

Favorite count Indicates how many times the tweet has been liked int64

Favorited Indicates whether the tweet has been liked bool

Id Unique identifier of the tweet int64

Id str String version of the unique identifier string

Is quote status Indicates whether this is a quoted tweet bool

Lang Indicates the language of the text (machine generated) | string

Possibly sensitive When the tweet contains a link it indicates if the bool

content of the URL is identified as containing
sensitive content

Retweet count Indicates how many times has the tweet been
retweeted int64
Retweeted Indicates whether the tweet has been retweeted bool
Source Utility used to post the tweet object
text Text written by the user string

Truncated Whether the value of the text parameter was
truncated bool

User Dictionary of information about the user who
posted the tweet object

Table 6.2: Description of the metadata information contained in Tweets.

2018 tweets.

Most of the images contained in the dataset are related to floods since the tweets

have been retrieved using flood-related tags. Among the images that have been
classified as without evidence of road, some of them contain charts or weather
maps, some others contain information about floods that is not related to roads,
whereas some other images do not contain any flood information.
Images presenting evidence of passable roads usually depict cars crossing the road
or present enough surrounding contextual information that allows inferring that
the water level is not very high. Instead, images classified as presenting evidence
of roads, but not passable sometimes show cars stuck in roads and people crossing
the street with boats. Some examples of the images contained in the dataset are
given in Figure 6.1. Sometimes the differences between positive and negative road
passability are very subtle and not very objective (e.g., see Figure 6.1i and Fig-
ure 6.1j), while we believe others could be wrongly classified (e.g., see Figure 6.1k
and Figure 6.11).
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ER: yes; ERP: yes(g

(i) ER: yes; ERP: yes(j) ER: yes; ERP: no (k) ER: no (1) ER: no

Figure 6.1: Examples of images from the dataset. The first row (a—d) contains
images classified as not containing Evidence of Roads (ER), while the second row
(e-h) contains images classified as presenting evidence of roads and their corre-
sponding Evidence of Road Passability (ERP). The third row (i-1) corresponds to
images that were difficult to classify or wrongly classified.

6.1.3 Methodology

In this section, we describe the approaches that we proposed to accomplish to
solve the problem. First, we considered visual information and metadata separately,
then we combined both the features.

Approaches based on visual information only

Considering only the visual information, therefore the tweet images, the two
tasks have been reformulated as follows: (i) detecting if the image presents evidence
of roads and, in positive case (ii) determining whether the road is passable or not.
Another aspect to be considered is whether the two tasks are related enough to be
solved jointly by the same network, or they must be treated separately. In fact,
there is evidence in the literature about networks trained to solve two related tasks
simultaneously, that achieve better performance on both tasks than if they were
trained separately [87].

In the following, we describe the approaches that we proposed as solutions to
the problem. The first one, named “Networks Ensemble" (NE), was the solution

93



Knowledge extraction from Social Media during flood events

presented to MediaEval2018 and considered the two tasks as different binary clas-
sification problems. Then, we present the “Double-ended Network”, a solution that
we developed after the challenge, that considers the two tasks as related and as
one-class classification problems.

Networks Ensemble. This solution aims to solve the two tasks separately,
involving the following 9 state-of-the-art CNNs: DenseNet121, DenseNet201, In-
ceptionResNetV2, InceptionV3, MobileNet, NaSNetLarge, VGG16, VGG19 and
Xception. Those models were employed to build two ensemble models to solve the
two tasks separately. Each network used the binary cross-entropy as a loss function,
considering each task as a binary classification problem.

In order to prevent overfitting while exploiting the whole dataset, we performed
cross-validation on the development set using 5 different train-validation folds. Each
fold was generated using a random split of the development set into 75% train and
25% wvalidation. Each CNN was trained in each fold and for each task separately,
resulting in a total of 90 networks, 45 networks for each task (or 5 networks per
network architecture and task).

To enhance their generalization capability, each network was pre-trained on Ima-
geNet [80]: during the training, we kept the first half of each network frozen and
we fine-tuned the parameters from the second half, as depicted in Figure 6.2.

Frozen Fine-tuned
layers  layers
I_J_l

F're—tr;-ained Evidence
CHN classification
Picture
Frozen Fine-tuned
layers  layers
Pre-tfained Passability
CRN classification

Picture

Figure 6.2: Simplified schema of a CNN trained for the ER and for the ERP tasks.
In both tasks, the network is trained by keeping the first half of its layers frozen
and fine-tuning the second half.

Moreover, the networks trained to solve the evidence of road passability task
were trained using only the images with evidence of road, according to the ground
truth. Finally, early stopping criteria were adopted to chose and store the best
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model for each fold.

The output of each network is a real number between 0 and 1, which represents the
probability of the picture containing: (i) evidence of road, for the first ensemble and
(ii) evidence of road passability, for the second ensemble. In order to make the final
prediction for each ensemble, the output of the networks is combined according to
an aggregation strategy. Within this work, we proposed an aggregation strategy,
which is a combination of an average aggregation on predictions with a majority
vote aggregation, defined as:

1 if (}‘9 > 0.5 — x and voting(pi, ..., pn) > %) or

pred(pi, ..., Pn, T, y) = (]_9 > 0.5 and voting(py, ..., pn) > § — y> ,
0 otherwise.
(6.1)
where:

e 1 and 0 are the possible outcomes for the task to be solved, that is either
ER or ERP. 1 corresponds to a positive outcome (actual evidence), while 0
corresponds to the negative outcome (no evidence);

e n is the number of networks;

« p,; is the probability of the i*-picture of belonging to Class 1, which corre-
sponds to positive ER or positive ERP respectively for each task;

 pisthe average of p; for all 1 < i < n and voting is given by voting(py, ..., pn) =
{i|p; > 0.5,1 <7 < n}|, where |.| is the set cardinality;

e x,y € R are tunable parameters, added to weaken the constraints.

Thresholding over the average of the predictions p or making the majority vot-
ing are two largely adopted approaches to deal with ensemble models predictions.
However, their combination through a logical “and” tends to benefit the prediction
of negative outcomes (no ER, nor ERP) with the result of lowering the number of
matches with the ground truth. Therefore, we added two parameters x and y to
weaken the constraints, that must be assessed during the training phase.

Despite being a simple and effective model, in fact, the winning solution of the
challenge, this solution requires a long training process as well as high computa-
tion cost and time during testing. Moreover, the solution is fairly heavy in terms
of storing space, since we are saving the parameters trained on 90 different networks.

Double-ended network. The Networks Ensemble relies on networks trained
and tested separately to solve each task individually. However, since we are using
a pre-trained network and freezing half of the model, both tasks share the first
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parameters of the model. Thus, we reorganized the solution as a single model,
where the first part shares the parameters for both tasks and then diverges into two
branches, each one with the specific parameters learned for each task, as represented
in Figure 6.3.

Frozen Fine-tuned
layers layers
l_l_l

Pre—trlhined
CrilN

N

Ficture
(299x200:3)

FC—FC > I |—» &ND |—»:=RF

Figure 6.3: Double-ended network architecture. The first part, a pre-trained CNN,
is shared between the two tasks. The first half parameters are kept frozen, while
the second half is fine-tuned during training. Its last layer is replaced with a Fully
Connected (FC) layer, which extracts the image features. From that, two branches
start one for each task. The first one solves the Evidence of Roads task, while the
other one solves the Evidence of Road Passability task. At the end of each branch,
a square function thresholds the prediction. To avoid the inconsistent prediction
of not having evidence of any road, but having at the same time evidence of roads
passability (FER =0 and ERP = 1).

The shared CNN was implemented with InceptionV3, pre-trained on ImageNet.
According to the network definition, the input picture is resized to have dimensions
of 299x299 pixels, each one consisting of 3 scalars (representing the R, G, and
B components) which have been normalized, ranging from 0 to 1. Its last layer is
replaced with a fully connected layer of 1024 neurons, to extract the image features.
From that layer, two branches start one for each task. Each branch is composed
of two fully connected layers, which output two real values in the range (0,1).
They represent the percentage of belief to be in the condition of evidence of roads
and evidence of passable roads, respectively. The two outputs are then rounded
according to a threshold of 0.5. Therefore, the first output is the classifier for the
ER class. On the other hand, to avoid inconsistent classifications (i.e. ER = 0
and ERP = 1), the second output is multiplied by the first one, determining the
classifier for the ERP class. The binary cross-entropy is chosen as a loss function.
Compared to the architecture presented in Figure 6.2, this solution is lighter, end-
to-end and computationally less expensive since we do not run the image twice
through the same layers.

96



6.1 — Detection of roads and estimation of their viability in flooded areas

Furthermore, we tried to improve the network by rethinking the problem we
were solving and modifying the loss function. If the two tasks are considered as
binary classification problems, the architecture proposed in Figure 6.3 can simply
use the binary cross-entropy as a loss function. However, both tasks task could
be interpreted as one-class classification problems, where the target class is either
the “evidence of road” for the ER task (FR = 1) or the “evidence of passable
road” for the ERP task (FRP = 1). The advantage of considering the tasks
as a one-class classification problems rather than binary classification problems
consists in the following: one-class classification algorithms only consider the target
class (in our case either ER=1 or ERP=1, depending on the task to be solved),
without considering the other samples in the dataset. Therefore, those algorithms
aim to learn the features distribution of samples in the target class. Any sample
not matching the distribution of the target class is considered as "anything else".
Instead, in binary classification problems algorithms are trained to identify the
features distribution of both the considered classes. With this intuition we aimed to
bring the advantages of one-class classifications solutions to our binary classification
problems. Therefore, taking inspiration from [119], in each branch of the Double-
ended architecture we combined two different loss functions, named Descriptiveness
loss and Compactness loss, described as follows:

g =maxD(g(t)) + AC(g(t)) (6.2)

where:

e g is the deep feature representation for the training data t;
e )\ is a positive constant;

e Dis the Descriptive loss function, that aims to maximize the feature distance
between different classes;

o C is the Compactness loss function, it aims to maximize the “compactness
among features of the target class”, providing a similar feature representation
for different images of the target class (either ER = 1 or ERP = 1, depending
on the task).

Both loss functions were implemented according to the ones proposed in [119]:
(i) the binary cross-entropy as a Descriptive loss, and (ii) the variance of the feature
representation of the samples in the target class as the Compactness loss. Given the
chosen loss functions, maximizing the distance between the feature representation
of different classes equals to minimizing the binary cross entropy. Similarly, maxi-
mizing “the compactness among features of the target class” equals to minimizing
their variance. Therefore, the objective function § implemented in this approach
is:

9 =minD(g(t)) + AC(g(1)) (6.3)

g
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The mathematical formulation of the Compactness loss described as follows:
1 & g
— Y 77z (6.4)
ki

where z; = x;—my;, being x; € R* the samples of the batch of size n forall 1 < i <n

and m; = ﬁ Z x;j, the mean of the remaining samples. As it is proved in [119],
j=1
J#i

this compactness loss is in fact a scaled version of the sample variance given by

1 & _ntoy

z:l

(6.5)

where ¢? is the sample variance for all 1 < i < n.

In order to implement the backpropagation, we need to compute the gradient
of lc with respect to the input x;;. In [119], the derivation of the backpropagation
formula obtained from the gradient of I with respect to z;; contained a mistake.
We fixed the derivation, which is reported in the Appendix in Section A.4, while
the final gradient is shown in the following equation:

Olc 2 n
dry;  (n—Dnk | (@i = mig) ; @1 = mg)| - (6.6)

Approach based on metadata information only

As explained in Section 6.1.2, each tweet contains 29 different fields, but only 16
of them had non-empty values in at least 90% of the tweets. Therefore, the other 13
features were discarded since they do not contain enough information to give any
statistical significant information. Moreover, we discarded the following features:
(i) “Created at”, which contained the date in which the tweet was posted. Since the
tweets were collected during specific hurricane events (namely, Harvey, Irma and
Maria), we considered this field to have a very limited time coverage with the risk
of being biased and therefore not useful. Specifically, the development set contains
tweets from 38 different days. (ii) “Extended entities”, which contains structural
information about the tweet, such as the icon and images sizes, their URLs and ids
and therefore it does not provide any relevant information; (iii) “/d” and “Id str”
fields are automatically generated to guarantee uniqueness to the tweet thus, not
containing any meaningful information; (iv) “Truncated” contains a constant value,
which is equal for each tweet in the development set; (v) “Source” and “User”
contained features pertinent to Twitter and the user profile, such as “id", “profile
image URL'", “friends count"', which is information not relevant to our purposes.
Additionally, we verified that the development set rarely contained multiple posts
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from the same user: this lack of information prevented the extraction of data for
determining a possible positive (or negative) influence on our goals.

As for the “Lang” feature, since most of the tweets were in English and all the
other languages were very minority, we transformed it into a binary value “orig-
inally en” to state whether the language of the tweet in English. To make sure
that all features would contribute equally to the loss, we normalized the features
“Favorite count” and “Retweet count” between 0 and 1, which we named “favor-
ited_norm” and “retweeted__norm” respectively. Finally, we also discarded the
features corresponding to “Favorited” and “Retweeted” since they are subsumed by
the former ones.

To determine a correlation between the normalized fields: “favorited__norm?”, “is_quote_status”,
“originally__en”, “possibly__sensitive” and “retweeted_norm” and the task at hand,
we built a point-biserial correlation matrix between each feature and the “ER”
and “ERP” ground truth using the Pearson correlation coefficient. As seen on the
point-biserial correlation matrix from Figure 6.4, none of the features has a very
strong correlation with the ground truth, however we decided to keep the fields “fa-

»” 114

vorited__norm”, “originally__en” and “retweeted_norm” since they are the highest
correlated features.
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Figure 6.4: Correlations of selected metadata features with respect to class labels.

We expect the text written by the user (“Tezt”) and the hashtags of the tweet (
“Entities”) to be the most informative features, which we concatenated, obtaining
a single sentence. To help the training, we translated all the texts into English, tok-
enized the words, filtered stopwords (i.e. emojis, URLs, special characters, articles,
conjunctions) and lemmatized the sentence. Finally, the sentences were transformed
into a matrix using a word embedding initialized with GloVe [118] weights, trans-
forming each word into a vector of 200 dimensions. To be processed by a neural
network, the matrices generated from Text and Entities were standardized to have
the same number of word vectors: sentences shorter than 30 words (the maximum
length of a processed sentence in the dataset) were filled with zero paddings.
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A representation of the architecture is shown in Figure 6.5. As other state-
of-the-art works [165], the 30x200 matrices have been fed in a Bidirectional Long
Short-Term Memory (BiLSTM) network. Then, the output has been concatenated
with the extra fields and fed into two parallel fully-connected (FC) layers with a
softmax classifier, one per task. In each FC layer, we used the binary cross-entropy
H(y,7y) as a loss function, where y is the class annotation and 7 is the model pre-
diction. Denoting by Hggr(y,7) the loss function for the ER task and Hgrp(y,7)
the loss function for the ERP task, the overall loss Hror(y,7) is set to be the
sum of the preceding two. Finally, the outputs from the two FC networks have
been thresholded (with the threshold set to 0.5). The first FC layer output is the
prediction for the EFR task, while the second FC layer output, which represents the
prediction for the FRP task, is combined with the first output through a logical
AND operation. This operation avoids the network to predict inconsistent situ-
ations, such as having evidence of roads passability while there is no evidence of
roads.

—» BILSTM
» » ER
Input matrix
(30x200)
L 4
favorited_norm » » AND —»CERP
originally_en
retweed_norm

Figure 6.5: Diagram of the metadata-only approach.

6.1.4 Combining metadata and visual information

Any of the previously described solutions for the image-only architecture can be
merged with the metadata-only architecture by concatenating the features collected
from the bi-directional LSTM with the features extracted from the convolutional
network, as shown in Figure 6.6. This approach was assessed using both loss
functions proposed in the visual information the only section.
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Figure 6.6: Double-ended architecture, modified to process both visual and meta-
data information.

6.1.5 Evaluation and Results

In this section, we compare the results of the proposed approaches with the
results of the other participants of the workshop.

However, since we did not have access to the ground truth for the test set, we
used the development set to assess the performance achieved by the work done after
the challenge. Therefore, we split the development set (5818 images) into training
(4074 images), validation (872 images) and test (872 images) sets. The images
from the new test set are solely utilized to present the final results in order to keep
the setup as similar to the original challenge as possible. We defined a validation
set from our training set to validate the models and tune the hyperparameters,
in order to make the comparison as fair as feasible. In addition, we invited four
people to solve the tasks on a subset of 50 photographs so that we could compare
the outcomes. These persons were not involved in the research but were familiar
with artificial intelligence and computer vision topics. They were given a verbal
description of the tasks that were similar to the challenge organizers’ explanation,
but no examples were provided before they started annotating.

The official evaluation metric used in the challenge is the F1-Score, the harmonic
mean of precision and recall. For the human annotators, we will give the results
as the average of their F1-Score. It is worth noting that the second objective,
classifying whether or not a road is passable, is dependent on the first. If an image
is classified as not presenting evidence of road passability, it will not be evaluated
for the second task. Therefore, a false negative detection in the first task (an image
wrongly classified as not containing evidence of road passability) will also count as
a false negative in the second task, regardless of its ground truth. At the same time,
a false positive in the first task (an image wrongly classified as containing evidence
of road passability) will also count as a false positive for the second task. Due to
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this error propagation, the performance of the second task can not be higher than
the performance of the first task.

The results of the proposed models are presented in the same order as they were
in the previous section.

Results using visual information only

Firstly, we introduced the Networks Ensemble, which was presented in the Me-

diaEval 2018. The algorithm is primarily focused on performing iterative cross-
validations to train and ensemble the models, which output is used by the proposed
aggregation strategy. Due to the unavailability of the test set used in the challenge,
we determined a new training and test split. To ensure a fair comparison, we re-
trained the Networks ensemble on the new training set, and we tested it on the
new test set. In Figure 6.7 we show how the F1-Score evolves for both tasks as we
ensemble more models and the difference between the different ensembling tech-
niques. As the charts show, both tasks benefit from the ensembles, especially for
lower cardinalities, while for higher cardinalities the performances stabilize. How-
ever, the Networks ensemble is more effective in the ER task than the ERP task,
which presents less stable performances for higher cardinalities of the ensemble. We
think this is due to different difficulties between the two tasks.
When the cardinality of the ensembles is greater than about 30 networks, the per-
formances of both tasks start worsening slowly. That is because (i) we are adding
different architectures and some of them yield better results on average than others,
(ii) we have stacked the networks in order of the architectures’ average performance
and thus it gets a point in which adding more architectures starts degrading the
results. Given the information from both graphs, the ensemble of more than 30
models (up to 90, in our test case) does not significantly improve the performance.
The Networks Ensemble of 90 networks (45 per task) resulted to be the winning ar-
chitecture presented in the MediaEval competition, and its performances are shown
in Table 6.3.

This is the only architecture for which we have results on both the challenge
and our own test sets. The results on the MediaEval test set are very close to the
results obtained on our own test set, which indicates that the difficulty of both sets
should be quite similar. Also, some differences might be because we had to retrain
all the networks to fit them to the new training, validation and test set.

The usage of the ensemble models is acceptable for a competition, however, it
might not be suitable for a real-life application, since it tends to be computationally
expensive and time-consuming. Therefore, we focused our analysis to compare the
best available model, obtained without taking into account computational limita-
tions, with a lightweight version, proposed in this work. We started reducing the
ensemble to the minimum set, therefore using a single CNN per task, that we named
“Single CNN”, and then we compared it with the Double-ended network, presented
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Figure 6.7: F1-Scores achieved through the variation of the number of ensemble
models in the (a) evidence of road, and (b) evidence of passable road tasks. Three
ensembling approaches are compared: (i) the majority voting strategy, (ii) the
average voting strategy, and (iii) the aggregation strategy proposed at the beginning
of Section 6.1.3.

in the previous section. The performances of the Double-ended network are firstly
assessed using only the binary cross-entropy as a loss function, therefore config-
uring the tasks as binary classifications problems, like the Single CNN. Then, the
Double-ended network is tested using compactness loss to assess the configuration
of the two tasks as one-class classification problems.
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EVIDENCE OF ROAD [%] EV. OF ROAD PASSABILITY [%]
Approach Validation set Test set  Test set Validation set Test set Test set

(MediaEval) (Own) (MediaEval) (Own)

Human annotation 87.32% - - 47.71% - -
Networks Ensemble (90) 90.14 87.79 90.17 64.33 68.38 65.91
Networks Ensemble (30) 88.91 - 89.45 70.18 - 65.28
Single CNN 86.48 - 84.88 62.84 - 59.99
Double-ended network 88.73 - 85.00 67.51 - 67.91
Double-ended with comp. loss 87.78 - 86.42 67.49 - 68.53

Y. Feng et al. [46] - - - - 64.35 -

M. Hanif et al. [63] - 74.58 - - 45.04 -

Z. Zhao et al. [170] - 87.58 - - 63.13 -

A. Moumtzidou et al. [107] - - - - 66.65 -

A. Kirchknopf et al. [79] - - - - 24 -

N. Said et al. [132] - - - - 65.03 -

D. Dias [30] - - - - 64.81 -

B. Bischke [7] - 87.70 - - 66.48 -

Table 6.3: F1-Scores achieved using only tweet images. Results are compared both
on the official test set used in the Mediakval challenge, and on our own set. In
the latter, the result of the Network ensemble of 90 models is used as reference.
*Results on a subset of 50 images.

To reduce the randomness associated with the training process, the three archi-
tectures have been initialized with the same weights and used the same hyperpa-
rameters and stopping criterion. The improvement brought by the Double-ended
network is significant especially in the passability task, as shown in Table 6.3. We
think that, when the passability and evidence tasks are trained separately, the
passability task has significantly fewer images to train, making it more difficult
for the model to generalize to new data, whereas when they are trained together,
the passability task can benefit from what the evidence task has learned. The
Double-ended network has fewer parameters than two Single CNNs (required to
accomplish both tasks), making it lighter and less computationally expensive, still
being an end-to-end architecture.

Although there is no direct evidence that the compact loss improves the results,
the outcomes of the Double-ended network with compactness loss appear to gener-
alize to the test set, since the results from validation and test sets are more similar
than the ones without compactness loss.

Overall, the Double-ended network achieves about the same performance as the
ensemble of 30 models, implying that the technique is nearly 30 times faster and
lighter while maintaining similar performance.

Results using metadata only

In Table 6.4 we collect the results of the model using metadata information only.
As the table shows, even in the case of human annotators, performance is generally
poor. We think that not much metadata contain relevant information about the
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two tasks.
A | EVIDENCE OF ROAD [%] | EV. OF ROAD PASSABILITY [%]
pproach Validation set Test set Validation set Test set
Human annotation 51.48* - 18.18* -
Metadata only 59.93 62.56** 56.82 57.05%*
Y. Feng et al. [46] - - - 32.8
M. Hanif et al. [63] - 58.30 - 31.15
Z. Zhao et al. [170] - 32.60 - 12.86
A. Moumtzidou et al. [107] - - - 30.17
A. Kirchknopf et al. [79] - - - 20

Table 6.4: F1-Scores achieved using only metadata. *Results on a subset of 50
images. **Results given on our own test set.

Remarkably, the results using images are considerably better than the ones using
metadata not only in our case but also for humans or other participants. In the
ER task, the Double-ended network with compactness loss on visual information
gains about 24% of F1-Score if compared to the metadata only approach and more
than 35% of F1-Score if compared to the human test. It must be considered that
the dataset was created and annotated only based on visual data: therefore, we are
confident that images provide sufficient information to solve the problem, but we
are not certain that metadata could provide such distinctive information.

Results using both visual information and metadata

As a final step, we combined the best Double-ended model on visual information
with the metadata approach. Since from previous results was not clear the perfor-
mance improvement brought by the compactness loss, we firstly tested the hybrid
model performance using only the binary cross-entropy as loss function. Then, in
a second test we used the compactness loss, as shown in Table 6.5.

EVIDENCE OF ROAD [%] | EV. OF ROAD PASSAB. [%]

Approach Validation set Test set Validation set Test set
Double-ended architecture 78.96 86.99* 61.06 62.96*
Double-ended with comp. loss 77.85 84.56* 73.61 75.93%
Y. Feng et al. [46] - - - 59.49

M. Hanif et al. [63] - 76.61 - 45.56

Z. Zhao et al. [170] - 87.58 - 63.88

A. Moumtzidou et al. [107] - - - 66.43

A. Kirchknopf et al. [79] - - - 35

Table 6.5: F1-Scores achieved using both image and metadata. *Results given on
our own test set.

By using both visual and metadata information we can notice a considerable
improvement in the model with compactness loss relative to the one without it. In

105



Knowledge extraction from Social Media during flood events

fact, even if the model achieves 3% below the best score in the evidence of road
task, it obtains almost a 10% improvement in the evidence of road passability task
compared to the second-best participant. Finally, it seems like adding the metadata
information improves the road passability task. For the sake of readability, in Table
6.6 we report the results of the Double-ended classifiers and the Metadata approach
in the three case studies: visual information (V), metadata information (M), visual
and metadata information (VM).

EVIDENCE OF ROAD [%] EV. OF ROAD PASSAB. [%]

Approach Validation set Test set Validation set Test set
- Double-ended network 88.73 85.00 67.51 67.91
Double-ended (comp. loss) 87.78 86.42 67.49 68.53
= Metadata approach 59.93 65.56 56.82 57.05
= Double-ended network 78.96 86.99 61.06 62.96
~ Double-ended (comp. loss) 77.85 84.56 73.61 75.93

Table 6.6: Summary of the results achieved by the proposed Double-ended network
approach for the three test cases: visual information only (V), metadata information
only (M), visual and metadata information (VM). The result is reported with the
F1-Score metric.

To understand how the metadata information can help to improve the results,
in Figure 6.8 are gathered some tweet examples which were incorrectly classified by
the image only model but correctly classified by the model which combined visual
and metadata information. These tweets contain some very informative keywords
such as: "flooded street", "stalled cars" and "drive-through".
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User2 @user2

am Houston Tollway SB blocked beyond I-10.
User1 @user1 ' Stalled cars, flooded frontage roads.
Irma with street flooding in Parkland #houstonflood #Harvey #KHOU 11

User3 @user3 v

RT @saranealeigh: In Cortez, more damageto ~ Userd @userd

storefront and flooding on 121 St. Ct. West Homestead: Cars drive through flooded streets
#Hurricainelrma in the aftermath...

Figure 6.8: Tweets containing informative text that helped the classifier to dis-
ambiguate the visual content for the correct prediction of the evidence of road
passability task.

6.2 Flood depth estimation

In this section we present the work submitted to the MediaEval 2019 challenge,
competing for the track "Multimodal Flood Level Estimation from News" [168]. The
track involved news articles about flood events, which included pictures depicting
at least one person. The goal is to predict whether in the article there is evidence
of people standing in water above knee level. The difficulty of this task concern the
evaluation of a measurable quantity, i.e. the flood depth, with relative references,
the knee height. That reference is highly variable because it depends on many
factors, like age and gender. However, the challenge did not provide any detail
about those aspects, even it is supposed that for a rigorous evaluation, the typical
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knee height might be referred to an adult of an average height. In the scope of the
challenge, critical water levels occur when the flood depth is greater than the knee
height: the detection of those situations is essential to support emergency response
in identifying people at risk and intensive floods, that could harm buildings and
streets.

6.2.1 Problem Statement

The problem is related to the analysis of news articles related to flood events.
Each news article contains both text and image, the latter depicting at least one
person. The goal is to estimate whether the water level reached dangerous depth,
stated as the knee height of a standing person. Therefore, the problem is configured
as a binary classification task: news articles presenting dangerous water level are
labelled with 1, 0 otherwise.

6.2.2 Dataset

The dataset consists of 6166 articles from local newspapers from African coun-
tries, composed of a textual part and an image. All the articles present words like
"flood", "floods" or "flooding" in the text, and contain an image depicting at least
one person. Tho subsets have been identified for the challenge: the development
and the test sets, containing 4932 and 1234 articles, respectively.

The ground truth was manually annotated that considered only the image con-
tent. They considered people in general, without any distinction between adults or
children. Each image is labelled as 1 if there is at least one person in the image
standing in water, and the water level is above the knee height, 0 otherwise.

Knees dataset generation

Given the specificity of the problem, we decided to extend the actual dataset
with extra information generated from the images. In particular, for each image,
we wanted to extract a sub-image, or crop, of each visible knee, in order to establish
if it was either above or under the water level. We automated the crop-generation
process (i) by using a multi-person pose estimation algorithm [18] to detect knees,
and (i) by extracting a tile of dimensions 48 x 48 pixels around each identified
knee, as depicted in Figure 6.9.

The ground truth was manually annotated by humans for the knee-crops gener-
ated by full-sized images labelled as 1 (water level above the knee height). In fact,
in this case, there might be humans standing in water above their knees. There-
fore, crops depicting a knee under the water were labelled as 1, 0 otherwise. In
the other case, when the full-sized images were labelled as 0 (water level under the
knee height), all the knee-crops generated were automatically labelled as 0.
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Pose estimator

Input image

Cropped knees

Figure 6.9: Diagram on the generation process of image crops depicting knees.

It is important to note that even if a person’s knee is not visible in the image
because it is below the water, most times the pose estimator will estimate where
the legs of the person should be based on the estimation of the body located above
the water, see Figure 6.10. However, if there is an upper body detected with no
lower body pose estimation, that is also relevant information for the algorithm since
chances are, the lower part of the body is not being detected because it is below
the water.

6.2.3 Methodology

In the challenge, we developed three models, based on: visual-only, textual-only,
both textual and visual information.

Approach based on visual information only

Our major contribution is related to the first model, represented in Figure 6.11,
which combines semantic information of both local and global aspects of the im-
age. Local aspects are evaluated by the upper branch, which takes image crops of
people’s knees as input. Global aspects are evaluated by the lower branch, which
takes as input the full image of the scene, and predicts if the image presents water
level above the knee. Before being processed, knee crops and the full-size image are
resized to 224 x 224 pixels, and each channel is linerly rescaled in the range [—1,1].
Both inputs are fed into a VGG19 [144] pre-trained on ImageNet [28], that extracts
deep features of the images, followed by a fully-connected layer (FC). Then, the
output of the two branches is concatenated to combine the semantic features of the
knee with the context information provided by the full resolution image. Then, the
model ends with two branches, each one composed of an FC layer, to deliver the
output.

109



Knowledge extraction from Social Media during flood events

Figure 6.10: Example of the output of the pose estimator algorithm. In this image,
even though the legs of the person are not visible because they are below the water,
the pose estimator algorithm makes an estimation of where they should be.

local features

VGG19 Knee
{no tap) i i class
Input knee
(224%224%3)
Image
class
VGG19
{no top)
Input image ‘," ]
(224x224%3) iy
global fealures

Figure 6.11: Double branched model to estimate the depth of the water by deter-
mining if the water is above or below the knee. The upper branch of the model
gets as input knee crops while the lower part gets the full image.

The upper branch learns to improve its prediction thanks to the focus on the
knee, while the lower branch learns how to make a better prediction on the knee
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thanks to the context. Training the CNN without any distinction between global
and local data would lead the network to predict flooded images as a positive class
because it lacks specific data about the knees in the scene and so associates the
features of a flooded area as a positive class because it solely composed by these
examples. The final classification for an image in the dataset concern the evaluation
of that image with each crop of knee present in the scene. If the classifications
of both branches are positive in at least one couple <crop of knee, image>, the
prediction for that image is that the flood depth is greater than the knee height, 0
otherwise.

Single and mixed approaches on textual information

Textual data were processed similarly to the metadata approach presented in
Section 6.1.3. Compared to tweet messages, newspapers articles present more ar-
ticulated contents, with a well-defined structure, organized in paragraphs. Usually,
titles and subtitles summarize the content of the articles, focusing on the main con-
cepts in short sentences. In our approach, we considered articles title and subtitles
as a source of information for textual data. In case the subtitle was absent, we con-
sidered the first paragraph of the article. Both texts are merged in a unique string,
then they are processed as follows: (i) the punctuation was removed and each word
was tokenized, (ii) stopwords were filtered, i.e. conjunctions, articles, and (iii) the
remaining words were lemmatized, i.e. bringing nouns to the normal form, verbs in
their infinitive form. The preprocessed text was transformed into a matrix, using
a word embedding initialized with GloVe. Then, each word in the sentence was
transformed into a vector of 200 dimensions, while the length of each sentence was
standardized to 100 words, filling with zero paddings shorter sentences. The matrix
represents the input data for a bidirectional Long Short Term Memory (BiLSTM)
network. In the textual-only approach, the BiLSTM output is processed by an FC
layer, which uses the Softmax activation function to return the prediction. In the
mixed approach, the BiLSTM output is concatenated to the last FC layer of the
image classifier.

6.2.4 Evaluation and Results

In the challenge, official performances were evaluated using the F1-Score on the
test set predictions. We divided the development set into training and validation
sets with an 80-20 split. The training set was used to actually train the models,
while the validation set was used to assess the performances of the model on un-
seen data. During the training process, we used early stopping as a regularization
approach to avoid model overfitting on training data. Also, dropout regularization
with a probability of 50% was applied on every FC layer in the proposed architec-
tures. Binary cross-entropy was used as a loss function in all the approaches.
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The results on both validation set and test set are shown in Table 6.7. Con-
sidering the approach on visual information, we performed an ablation study to
assess the improvements brought by using both local and global information to-
gether, instead of using just one of them. In the validation set, combining both
information makes the approach achieving 79% of F1-Score, while the performances
degrade to 3% when using only local information, and by 8% when using only global
information.

Table 6.7: Results of the challenge, evaluated on validation and test sets. For the
visual approach, performances are also evaluated for the upper and lower branches,
separately. Results refer to F1-Score metric.

Approach | Validation set | Test set (official run)
Visual (upper branch) 0.76 -
Visual (lower branch) 0.71 -
Visual 0.79 0.54
Textual 0.52 0.50
Visual 4+ Textual 0.54 0.53

Generally, the visual approach resulted to perform better than the textual-only
and the mixed approaches in both validation and test sets. However, performances
of the visual approach in the test set were quite low, if compared to ones on the
validation set. A reason might be related to the frequent presence in the test set of
images depicting people near water sources: their reflection on the water source is
identified by the pose estimator as a separate person, which makes it generate false
knee crops. Depending on the angle of reflection, the mirrored image could omit
body parts, leading the visual approach to make prediction errors.

The winner approach in the challenge was presented by C.Q. Kahan-An et al.
[123] and was related to visual information only. The approach shares the same
idea of using both global and local information, but it is more complex. Besides the
information about knees, it analyzes a variety of conditions related to the human
body, such as the hip position related to the water, the ratio between thighs and
the upper body. Moreover, it detects other aspects, like the presence of "swimming'"
people in the scene and it segments water bodies. Leveraging on the combination
of Faster R-CNN, a custom CNN called "WaterClassifier", ResNet-50, OpenPose,
and Mask R-CNN; the approach achieved an F1-Score of 0.88 in the test set.
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6.3 Summary

This chapter presented approaches able to extract valuable information for the
emergency response phase during flood events. In particular, we assessed solutions
for the problems of (i) evidence of roads detection and evidence of roads passability
detection from social media posts, and (ii) the detection of people in potential
danger, through the estimation of flood depth from news articles.

The first problem was initially solved for the MediaEval2018 Flood classifica-
tion challenge, which considered only images and dealt with the ER and ERP task
separately, through a network ensemble of 90 CNNs (45 per task). This approach
was the best solution proposed to the challenge, achieving F1-Scores of 87.79 % and
68.38 % for the ER and ERP tasks, respectively. The solution achieved the best
score, but it is computationally expensive to be used in real applications. There-
fore, we extended that work in order to simplify the solution and make it usable
during emergency operations. Due to the unavailability of the test set used in the
challenge, we created a new one, to be used as a reference for further experiments.
In this dataset, the Networks Ensemble of 90 CNNs achieved similar F1-Scores:
90.17 % and 65.91 % for the EP and ERP tasks, respectively.

The first simplification consisted of the assessment of the adequate number of net-
works in the ensemble able to achieve comparable results to the winning approach.
As a result, 30 CNNs (15 per task) were sufficient to achieve F1-Scores of 89.45 %
and 65.28 % in the two tasks.

Then, we developed a new architecture, the Double-ended network, based on a sin-
gle CNN with two endings, one per task. The peculiarity of this approach consists
in considering the two subtasks as related. Within this assumption, we believed
that training part of the network on both the problems simultaneously will benefit
both the predictions, other than reducing the size of the network. This architecture
was adapted and tested on three contexts: (i) using visual information only, (ii)
using metadata only, and (iii) using both visual and metadata information. Con-
sidering the network complexity and the results, the best model was obtained by
using visual information only, which achieved F1-Scores of 85.00 % and 67.91 % for
the ER and ERP tasks, respectively.

Finally, we tested the double-ended architecture by using a different loss function,
the compactness loss, which allows to solve each task as a one-class classification
task, instead of as a binary classification task. When using this loss, we spot an
error of its derivation in the paper in which this loss was introduced [119] and we
corrected it. We tested the new loss in the contexts in which the double-ended
architecture worked best: using visual information only and using both visual and
metadata information. While for the ER task there was not a significant improve-
ment, for the ERP task the combination of both visual information and metadata
brought to a significant improvement of F1-Score, where the approach achieved
75.93 %: far better than the winner approach of the MediaEval2018 challenge: the
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ensemble of 90 CNNs.

Finally, leveraging on double-ended architecture with the compactness loss we have
a single network that achieves slightly lower results in the evidence of road task, but
higher results for the evidence road passability task than the Networks ensemble.
Moreover, it is almost 90 times faster, lighter and end-to-end, making it a viable
solution for real-world applications.

The second problem was proposed for the MediaEval2019 Flood classification
challenge, which considered text and image data from news articles about flood
events. The aim was to detect articles presenting evidence of people standing in
water above knee level. We proposed three approaches, which leveraged on (i) vi-
sual information only, (ii) textual information only, and (iii) both visual and textual
information. The approach that achieved the highest results were based on visual
information only. It consisted of the combination of both local information about
knees present in the image and global information about the whole picture. We
demonstrated that using both local and global information together improves the
results instead of using them separately: in the validation set the combined ap-
proach achieved an F1-Score of 0.79, compared to 0.76 and 0.71 for the approaches
exploiting local information only and global information only, respectively. In the
test set, the visual approach lowered the performance, obtained in the validation
set, achieving an F1-Score of 0.54.
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Chapter 7

Conclusions

The fight against natural hazards still represents a big challenge that involves
every country in the world. In Europe, the European Commission and its Member
States are actively supporting and coordinating national actions and promoting
cross-border cooperation. Through funding programs like H2020, the European
Commission promotes research and innovation activities among universities, re-
search centres and industries, promoting the development of projects that can im-
prove and support emergency management operations.

Part of the works presented in this thesis represent my contributions to I-
REACT and SHELTER projects, developed in collaboration with LINKS Foun-
dation, a private research centre based in Turin. Research activities were focused
on supporting the response and the recovery phases of the emergency management
cycle for wildfire and flood events, leveraging satellite data and social media data.

Within satellite data, research activities were addressed to propose methods that
could leverage limited data, in order to boost the mapping process and limit the
human intervention. In this regard, we adapted machine learning approaches and
we assessed their performances in the delineation and damage severity estimation
tasks. We provided novel approaches, able to solve the same tasks with higher
performances and using less information than the ones currently adopted in the
literature.

In Chapter 3, we focused on burned areas caused by wildfire events, assessing
the feasibility of delineation tasks using (i) visible wavelengths, and (ii) the whole
spectrum. In the first case, we assessed supervised approaches and we proposed
BAE, a novel unsupervised approach. Then, we considered the whole spectral data,
assessing the best approach to accomplish the task. The U-Net, which provided the
highest results in the delineation task, was used as a baseline to estimate the damage
severity on affected areas. Major improvements were brought by the novel approach
Double-step U-Net, which resulted in more accuracy than our baseline and provided
better results than the standard approach, but just half of the information.

In Chapter 4 we dealt with flood events. Firstly, we leveraged SAR data, assessing
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the best approach among machine learning models for the delineation task. We
studied their performances variation in three test cases which concerned raw data,
preprocessing, and hydrography maps used as extra data. In a second work, we
leveraged on time series of Sentinel-2 acquisitions, in order to spot persisting flooded
areas. We provided a novel approach, able to determine the existence of those areas
and to segment them, through delineation maps.

In Chapter 5, we developed a platform able to operationalize the approaches for
both delineation and damage severity estimation tasks, providing an end-to-end
mapping service that can be actively used by external stakeholders.

Within social media data, research activities aimed to provide solutions that
could extract valuable information for the coordination of emergency operations
during ongoing flood events. In Chapter 6, we dealt with heterogeneous informa-
tion which included textual and visual data, providing novel approaches for (i) the
detection of people potentially in danger, through the evaluation of flooded sources
depth, and (ii) the detection of flooded roads that could be still viable, useful for
transporting emergency support to victims. In particular, in the latter problem,
we took part to a challenge providing the best solution. Then, we worked to sim-
plify the winning architecture, providing a lighter approach that achieved similar
performances and could be operationalized with a limited amount of resources.

General reproducibility

The source code of the algorithms and the datasets mentioned in this thesis are
not publicly available, as subjected to the regulation of the I REACT and Shelter
EU H2020 research projects.

Future works

Future works will certainly expand the applications of the proposed approaches
to other natural hazards, such as earthquakes, where satellite data can help to
delineate and evaluating the severity of damaged areas, while social media or in-situ
sensors can provide crucial information in detecting damaged buildings or structures
like hospitals, schools, bridges and roads in time.

Through the combination of Sentinel-1 and Sentinel-2 data, newer approaches
will be studied to reconstruct missing optical information due to occlusions like
clouds, with the aim to increase the amount of affordable data for mappings.

Finally, through the analysis of time series of satellite acquisitions combined
with extra data, such as meteorological measurements and Digital Elevation maps,
newer approaches will be studied for predicting the evolution of wildfires and floods
in order to produce risk maps and organize a prompt intervention.

116



Appendix A

A.1 Dataset

Legend

o 1SO stands for ISO-3166 Country Code (https://www.iso.org/obp/ui/
#search&3166);

o EMSR stands for Copernicus Emergency Management Service (EMS) - Rapid
Mapping (R) Activation Code (https://emergency.copernicus.eu/mapping);

e BB TL_LON and BB_TL_LAT is the couple of coordinates (LONgitude,
LATitude) of the Bounding Box (BB) for the Top Left (TL) corner;

e BB _BR_LON and BB_BR__LAT is the couple of coordinates (LONgitude,
LATitude) of the Bounding Box (BB) for the Bottom Right (BR) corner;

e PRE Date and POST Date stand for Pre Fire acquisition Date, and Post fire
acquisition Date, respectively. They describe the date on which the Sentinel-2
satellite registered data for the specified bounding box, which complies with
the availability and cloud coverage criteria outlined in Section 3.1.

e FOLD indicates in which fold the product belongs, according to the colors
represented in Figure 3.1.
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Areas of Interest (Aols) considered in this work. Each Aol reports

formation about the Country (ISO code), the grading map identifier for Copernicus

Table A.1

EMS (EMSR), the coordinates of the Aol’s top-left and bottom-right corners, the

Pre-fire (PRE Date) and Post-fire (POST Date) Sentinel-2 acquisition dates, and

the related fold.
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A.2 Dataset Land Use

Dataset Land use - Legend: Land use details for the areas of interest consid-
ered in the dataset Tables A.2 and A.3. They are specified in the grading maps
cartouche, using the hectare (ha) as the unit of measurement. The land use types
are specified as follows (Land use types used in this work refer to the official Coper-
nicus EMS notation, available at https://emergency.copernicus.eu/mapping/
ems/domains):

+ Residential/Industrial: urban areas involving residential or industrial build-
ings;

o Arable land: also specified as cropland, non-irrigated arable land areas, per-
manently irrigated land, and rice fields;

o Grassland: natural grassland;
o Forests: broad-leaved forest, coniferous forest, mixed forest;

o Heterogeneous agricultural areas: annual crops associated with permanent
crops, complex cultivation, land principally occupied by agriculture, agro-
forestry areas;

o Open spaces with little or no vegetation: beaches, dunes, sand plains, bare
rock, sparsely vegetated areas, and glaciers;

o Pastures: ground covered with grass or herbage, used or suitable for the
grazing of livestock;

e Permanent Crops: vineyards, fruit trees and berry plantations, olive groves;

o Shrub and/or herbaceous vegetation association: natural grassland, moors,
and heathland, Sclerophyllous vegetation, transitional woodland shrub;

o Inland wetlands: inland marshes, peat bogs;

o Woodland shrub: transitional woodland shrub.
For sake of space the table is split into two parts: the first reports land-use at-

tributes from “Arable land” to “Open spaces with little or no vegetation”, the other
from “Pastures” to “Woodland”.
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Table A.2: Details on land use for the areas of interest considered in this study.

This table is partial and continues in Table A.3. It reports, in hectares: Residen-

tial /Industrial areas, Arable lands, Grasslands, Forests, Heterogeneous agricultural

areas, and Open spaces with little or no vegetation. For each land use type, burnt

regions are reported (Burnt).
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A.2 — Dataset Land Use
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Table A.3: Land use details for the Aols considered in this work. For the sake of

space, this table is partial, and continues from Table A.2. It reports, in hectares:

Pastures areas, Permanent croplands, Shrubs or herbaceous vegetation areas, In-

land wetlands areas, and Woodlands. For each land use type, the areas affected by
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wildfire are reported (Burned).



A.3 Double-Step U-Net architecture
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Double-Step U-Net architecture.

Figure A.1
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A.4 — Compactness loss gradient derivation

A.4 Compactness loss gradient derivation

In [119], the derivation of the backpropagation formula obtained from the gra-
dient of 1C with respect to xij contains a mistake. Indeed, in Appendix A in [119],
it is stated that the gradient is given by the following equation

Olc 2

= n X (z; —my) Ty —my)| . (A.1)
Oz;; (n—1)nk J J ; ! !

The first mistake is within the summation since the samples x; have & components,
not n. However, as we will prove, this is not the unique mistake.

Let us compute the gradient of I with respect to x;;. Using the definition of
k

the inner product, we have that z;7z; = Z 2. Thus, I¢ can be written as
t=1

n k
ZZ Ty — mlt
Tk

Now, taking partial derivatives of lo with respect to z;; for all 1 < ¢ < n and
1 < 5 <k, we obtain

8[0 . 2 2 8<xlj —mlj)
8@-]- n nk Z A ml] ( 8@-]- )

This first step is already wrong in [119]. The rest of the proof follows similarly. Let
us check it. Note that

O(x; — my;) :{ 1 1 it f =4,

0z otherwise.

n —

Thus, we obtain that

dlc 2 J
oy ok |9 T T T l;(xly my;)
I 14
n 1 &
=k =1 () —mij) = —— l; (@ — m,j)l

retrieving finally

Ol 2 "
dz;  (n— l)nk [n (255 —mig) = (215 = mlj)] :

123






Bibliography

[1] Kashif Ahmad et al. “Multi-Modal Machine Learning for Flood Detection in
News, Social Media and Satellite Sequences”. In: arXiv preprint arXiv:1910.02932
(2019).

2] Stelios Andreadis et al. “Multimedia Analysis Techniques for Flood Detec-
tion Using Images, Articles and Satellite Imagery”. In: Working Notes Pro-
ceedings of the MediaEval 2019 Workshop, Sophia Antipolis, France. 2019,
pp- 27-30.

[3] C Bayik et al. “Exploiting multi-temporal Sentinel-1 SAR data for flood
extend mapping”. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci
42.3 (2018), WA.

[4]  Abdelhakim Benoudjit and Raffaella Guida. “A Novel Fully Automated
Mapping of the Flood Extent on SAR Images Using a Supervised Classi-
fier”. In: Remote Sensing 11.7 (2019), p. 779.

[5] Wu Bin et al. “A Method of Automatically Extracting Forest Fire Burned
Areas Using Gf-1 Remote Sensing Images”. In: IGARSS 2019-2019 IEEFE In-
ternational Geoscience and Remote Sensing Symposium. IEEE. 2019, pp. 9953—
9955.

[6] Benjamin Bischke, Simon Brugman, and Patrick Helber. “Flood Severity
Estimation from Online News Images and Multi-Temporal Satellite Images
using Deep Neural Networks”. In: (2019).

[7] Benjamin Bischke, Patrick Helber, and Andreas Dengel. “Global-Local Fea-
ture Fusion for Image Classification of Flood Affected Roads from Social

Multimedia”. In: Proc. of the MediaFEval 2018 Workshop (Oct. 29-31, 2018).
Sophia-Antipolis, France, 2018.

[8] Benjamin Bischke et al. “The Multimedia Satellite Task at MediaEval 2018:
Emergency Response for Flooding Events”. In: Proc. of the MediaFval 2018
Workshop (Oct. 29-31, 2018). Sophia-Antipolis, France, 2018.

9] Dan Bimna et al. “Flood Severity Estimation in News Articles Using Deep
Learning Approaches”. In: CEUR-WS: Aachen, Germany (2019), p. 2670.

125



BIBLIOGRAPHY

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[22]

Piotr Bojanowski et al. “Enriching word vectors with subword information”.
In: Transactions of the Association for Computational Linguistics 5 (2017),
pp- 135-146.

Luigi Boschetti et al. “MODIS-Landsat fusion for large area 30 m burned
area mapping”. In: Remote Sensing of Environment 161 (2015), pp. 27-42.

Léon Bottou. “Stochastic gradient descent tricks”. In: Neural networks: Tricks
of the trade. Springer, 2012, pp. 421-436.

Justin D Braaten, Warren B Cohen, and Zhigiang Yang. “Automated cloud
and cloud shadow identification in Landsat MSS imagery for temperate
ecosystems”. In: Remote Sensing of Environment 169 (2015), pp. 128-138.

Max Bramer. Principles of data mining. Vol. 180. Springer, 2007.

Pierrick Bruneau and Thomas Tamisier. “Transfer learning and mixed input
deep neural networks for estimating flood severity in news content”. In:
MediaEval Multimedia Fvaluation Workshop. 2019.

Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for
image denoising”. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 2. IEEE. 2005, pp. 60—65.

Deng Cai, Xiaofei He, and Jiawei Han. “Speed up kernel discriminant anal-
ysis”. In: The International Journal on Very Large Data Bases 20.1 (2011),
pp- 21-33.

Zhe Cao et al. “Realtime Multi-Person 2D Pose Estimation Using Part Affin-
ity Fields”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). July 2017.

Mark L Carroll et al. “A new global raster water mask at 250 m resolution”.
In: International Journal of Digital Earth 2.4 (2009), pp. 291-308.

Savvas A Chatzichristofis and Yiannis S Boutalis. “CEDD: color and edge di-
rectivity descriptor: a compact descriptor for image indexing and retrieval”.
In: International Conference on Computer Vision Systems. Springer. 2008,
pp. 312-322.

Savvas A Chatzichristofis and Yiannis S Boutalis. “FCTH: Fuzzy color and
texture histogram-a low level feature for accurate image retrieval”. In: 2008

Ninth International Workshop on Image Analysis for Multimedia Interactive
Services. IEEE. 2008, pp. 191-196.

Hao Chen et al. “Deep contextual networks for neuronal structure segmen-
tation”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 30. 1. 2016.

126



BIBLIOGRAPHY

[35]

Marco Chini et al. “A hierarchical split-based approach for parametric thresh-
olding of SAR images: Flood inundation as a test case”. In: IEEF Transac-
tions on Geoscience and Remote Sensing 55.12 (2017), pp. 6975-6988.

European Commission. Copernicus EMS Rapid Mapping Manual. Accessed:
2021-05-009.

Comparison of Spatial Resolution and Wavelength Characteristics of Sentinel-
2, LANDSAT-8, and SPOT Instruments. https://sentinels.copernicus.
eu/web/sentinel/missions/sentinel-2/heritage. 2020.

Copernicus Sentinel-2 Radiometric Resolutions. https://sentinels.copernicus.
eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric.
Accessed: 2019-12-19. 2021.

Fernando Moreira De Araujo and Laerte G Ferreira. “Satellite-based au-
tomated burned area detection: A performance assessment of the MODIS
MCD45A1 in the Brazilian savanna”. In: International Journal of Applied
FEarth Observation and Geoinformation 36 (2015), pp. 94-102.

J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09. 2009.

Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. IEEE.
2009, pp. 248-255.

Danielle Dias and Ulisses Dias. “Flood detection from social multimedia
and satellite images using ensemble and transfer learning with CNN archi-
tectures”. In: Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018).
Sophia-Antipolis, France, 2018.

Inc. Docker. Docker. https://www.docker.com/. 2020.

G. Donchyts et al. “A 30 m resolution surface water mask including es-
timation of positional and thematic differences using landsat 8, srtm and
openstreetmap: a case study in the Murray-Darling Basin, Australia”. In:
Remote Sensing 8.5 (2016), p. 386.

EFFIS: Sentinel-2 satellite Spatial Resolution. https://effis. jrc.ec.
europa.eu/about-effis/technical-background/rapid-damage-assessment.
Accessed: 2021-03-23. 2021.

Amany Elbanna et al. “Emergency management in the changing world of
social media: Framing the research agenda with the stakeholders through
engaged scholarship”. In: International Journal of Information Management

47 (2019), pp. 112-120.

EMS Rapid Mapping Product Portfolio. https://en.wikipedia.org/wiki/Publish-
subscribepattern. Accessed: 2021-03-02. 2019.

127



BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[45]

[46]

[47]

EMS Rapid Mappings Portfolio. https : //emergency . copernicus . eu/

mapping/sites/default/files/files/CopernicusEMS-Service Portfolio-

Rapid_Mapping.pdf. Accessed: 2021-03-18. 2019.

ESA Sentinel Product Overview: Polarimetry. https://sentinel . esa.
int/web/sentinel /user-guides/sentinel-1-sar/product-overview/
polarimetry. 2019.

ESA Sentinel-2 Satellite - Spatial Resolution. https://sentinel.esa.int/
web/sentinel /user-guides/sentinel-2-msi/resolutions/spatial.
Accessed: 2019-12-14. 2019.

EU - What is Horizon 2020% https://ec . europa . eu/ programmes /
horizon2020/en/what-horizon-2020. Accessed: 2021-03-11. 2020.

Furopean Civil Protection and Humanitarian Aid Operations - FEuropean
Disaster Risk Management. https://ec.europa.eu/echo/what/civil-
protection/european-disaster-risk-management_en. Accessed: 2021-
03-10. 2017.

FEuropean Commission - Quverview of natural and man-made disaster risks
the European Union may face. https://ec.europa.eu/echo/sites/echo-
site/files/overview_of natural and man-made disaster risks_
the_european_union_may_face.pdf. Accessed: 2021-03-12. 2020.

FEuropean Copernicus Programme. https : / /www . copernicus . eu/en/
about-copernicus. Accessed: 2021-03-18. 2021.

Alessandro Farasin, Luca Colomba, and Paolo Garza. “Double-Step U-Net:
A Deep Learning-Based Approach for the Estimation of Wildfire Dam-
age Severity through Sentinel-2 Satellite Data”. In: Applied Sciences 10.12
(2020), p. 4332.

Alessandro Farasin et al. “Supervised Burned Areas delineation by means
of Sentinel-2 imagery and Convolutional Neural Networks”. In: Proceedings
of the 17th International Conference on Information Systems for Crisis Re-
sponse and Management (ISCRAM 2020), Virginia Tech, Blacksburg, VA,
USA. 2020, pp. 1060-1071.

Alessandro Farasin et al. Unsupervised Burned Area FEstimation through
Satellite Tiles: A multimodal approach by means of image segmentation over
remote sensing imagery. 2019.

Yu Feng et al. “Ensembled Convolutional Neural Network Models for Re-
trieving Flood Relevant Tweets”. In: Proc. of the MediaEval 2018 Workshop
(Oct. 29-31, 2018). Sophia-Antipolis, France, 2018.

Yu Feng et al. “Flood level estimation from news articles and flood detection
from satellite image sequences”. In: Development 52.75.56 (1973), pp. 73-23.

128



BIBLIOGRAPHY

[50]

[51]
[52]

[53]

[61]

Alfonso Fernandez-Manso, Oscar Fernandez-Manso, and Carmen Quintano.
“SENTINEL-2A red-edge spectral indices suitability for discriminating burn
severity”. In: International journal of applied earth observation and geoin-
formation 50 (2016), pp. 170-175.

Alfonso Fernandez-Manso, Carmen Quintano, and Dar A Roberts. “Can
Landsat-Derived Variables Related to Energy Balance Improve Understand-
ing of Burn Severity From Current Operational Techniques?” In: Remote
Sensing 12.5 (2020), p. 890.

Cornelia Ferner et al. “Automated Seeded Latent Dirichlet Allocation for
Social Media Based Event Detection and Mapping”. In: Information 11.8
(2020), p. 376.

Federico Filipponi. “BAIS2: Burned Area Index for Sentinel-2”. In: Multi-
disciplinary Digital Publishing Institute Proceedings. Vol. 2. 7. 2018, p. 364.

Peter Flach. Machine learning: the art and science of algorithms that make
sense of data. Cambridge University Press, 2012.

J Fohringer et al. “Social media as an information source for rapid flood
inundation mapping”. In: Natural Hazards and Earth System Sciences 15.12
(2015), pp. 2725-2738.

Open Knowledge Foundation. Comprehensive Knowledge Archive Network
(CKAN). https://ckan.org/. 2020.

Open Knowledge Foundation. Flask. https://flask.palletsprojects.
com/en/2.0.x/. 2020.

Hariny Ganapathy et al. “Deep learning models for estimation of flood sever-
ity using Satellite and News Article Tmages”. In: (2019).

Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2014, pp. 580-587.

Laura Giustarini et al. “A change detection approach to flood mapping in
urban areas using TerraSAR-X”. In: IEEFE transactions on Geoscience and
Remote Sensing 51.4 (2012), pp. 2417-2430.

Laura Giustarini et al. “Probabilistic flood mapping using synthetic aper-
ture radar data”. In: IEEFE Transactions on Geoscience and Remote Sensing
54.12 (2016), pp. 6958—6969.

Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics. 2010, pp. 249—
250.

Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.
129



BIBLIOGRAPHY

[65]

[66]

[67]

PostgreSQL Global Development Group. PostgreSQL. https://www.postgresql.

org/. 2020.

Muhammad Hanif, Muhammad Atif Tahir, and Muhammad Rafi. “Detection
of passable roads using Ensemble of Global and Local Features”. In: Proc. of
the MediaFval 2018 Workshop (Oct. 29-31, 2018). Sophia-Antipolis, France,
2018.

Leonardo A Hardtke et al. “Semi-automated mapping of burned areas in
semi-arid ecosystems using MODIS time-series imagery”. In: International
Journal of Applied Earth Observation and Geoinformation 38 (2015), pp. 25—
35.

Simon S Haykin et al. Neural networks and learning machines. Vol. 3. Pear-
son education Upper Saddle River, 2009.

Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 7T70-778.

Benjamin Herfort et al. “Exploring the geographical relations between social
media and flood phenomena to improve situational awareness”. In: Connect-
ing a digital Europe through location and place. Springer, 2014, pp. 55-71.

Samuel Hislop et al. “Using landsat spectral indices in time-series to assess
wildfire disturbance and recovery”. In: Remote sensing 10.3 (2018), p. 460.

Gao Huang et al. “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700-4708.

Haiyan Huang et al. “Separability analysis of Sentinel-2A multi-spectral in-
strument (MSI) data for burned area discrimination”. In: Remote Sensing
8.10 (2016), p. 873.

M Hughes, S Kaylor, and Daniel Hayes. “Patch-based forest change detection
from Landsat time series”. In: Forests 8.5 (2017), p. 166.

IPCC - Climate Change 2013: The Physical Science Basics - Technical Sum-
mary. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/07/
03_Technical-Summary-TS_V2.pdf. Accessed: 2021-03-11. 2013.

IPCC - Global Warming of 1.5 °C. https://www.ipcc.ch/sr15/. Accessed:
2021-03-11. 2018.

Gareth Ireland, Michele Volpi, and George Petropoulos. “Examining the
capability of supervised machine learning classifiers in extracting flooded
areas from Landsat TM imagery: A case study from a Mediterranean flood”.
In: Remote sensing 7.3 (2015), pp. 3372-3399.

130



BIBLIOGRAPHY

[78]

[85]

[36]

Pallavi Jain, Bianca Schoen-Phelan, and Robert Ross. “MediaEval2019:
Flood Detection in Time Sequence Satellite Images”. In: (2019).

Hamid A Jalab. “Image retrieval system based on color layout descriptor
and Gabor filters”. In: 2011 IEEFE Conference on Open Systems. IEEE. 2011,
pp- 32-36.

Carl H Key and Nate C Benson. “Landscape Assessment (LA). FIREMON:
Fire effects monitoring and inventory system”. In: Gen. Tech. Rep. RMRS-
GTR-164-CD, Fort Collins, CO: US Department of Agriculture, Forest Ser-
vice, Rocky Mountain Research Station (2006).

Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1746-1751. por: 10.3115/v1/D14-1181. URL:
https://www.aclweb.org/anthology/D14-1181.

Armin Kirchknopf et al. “Detection of Road Passability from Social Media
and Satellite Images”. In: Proc. of the MediaFval 2018 Workshop (Oct. 29-
31, 2018). Sophia-Antipolis, France, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097-1105.

Anna Kruspe, Jens Kersten, and Friederike Klan. “Detection of informa-
tive tweets in crisis events”. In: Natural Hazards and Farth System Sciences
Discussions (2020), pp. 1-18.

Peter A Lachenbruch. “McNemar test”. In: Wiley StatsRef: Statistics Ref-
erence Online (2014).

Ning Li et al. “Robust river boundaries extraction of dammed lakes in moun-
tain areas after Wenchuan Earthquake from high resolution SAR images
combining local connectivity and ACM”. In: ISPRS journal of photogram-
metry and remote sensing 94 (2014), pp. 91-101.

Nicola Linty et al. “Detection of GNSS Ionospheric Scintillations Based on
Machine Learning Decision Tree”. In: IEEE Transactions on Aerospace and
FElectronic Systems 55.1 (2018), pp. 303-317.

CHANG Liu. “Analysis of Sentinel-1 SAR data for mapping standing water
in the Twente region”. MA thesis. University of Twente, 2016.

Meng Liu, Sorin Popescu, and Lonesome Malambo. “Feasibility of burned
area mapping based on ICESAT- 2 photon counting data”. In: Remote Sens-
ing 12.1 (2020), p. 24.

131



BIBLIOGRAPHY

[89]

[90]

[91]
[92]

[93]

[95]

[96]

Xuebo Liu et al. “Fots: Fast oriented text spotting with a unified network”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2018, pp. 5676-5685.

Rafael Llorens et al. “A methodology to estimate forest fires burned areas
and burn severity degrees using Sentinel-2 data. Application to the October
2017 fires in the Iberian Peninsula”. In: International Journal of Applied
FEarth Observation and Geoinformation 95 (2021), p. 102243.

Laura Lopez-Fuentes et al. “Deep Learning Models for Passability Detection
of Flooded Roads.” In: MediaFval. 2018.

Laura Lopez-Fuentes et al. “Deep Learning Models for Road Passability De-
tection during Flood Events Using Social Media Data”. In: Applied Sciences
10.24 (2020), p. 8783.

Laura Lopez-Fuentes et al. “Multi-modal Deep Learning Approach for Flood
Detection.” In: MediaEval 17 (2017), pp. 13-15.

Jérome Louis et al. “Sen2Cor Atmospheric Correction with Meteorological
Aerosol Optical Thickness”. In: (2018).

Jun Lu et al. “Automated flood detection with improved robustness and
efficiency using multi-temporal SAR data”. In: Remote sensing letters 5.3
(2014), pp. 240-248.

Sergio Luna and Michael J Pennock. “Social media applications and emer-
gency management: A literature review and research agenda”. In: Interna-
tional journal of disaster risk reduction 28 (2018), pp. 565-577.

A Lyapustin et al. “Multiangle implementation of atmospheric correction
(MATAC): 2. Aerosol algorithm”. In: Journal of Geophysical Research: At-
mospheres 116.D3 (2011).

Bangalore S Manjunath et al. “Color and texture descriptors”. In: IFEFE
Transactions on circuits and systems for video technology 11.6 (2001), pp. 703~
715.

Agnese Marcelli et al. “Large-scale two-phase estimation of wood production
by poplar plantations exploiting Sentinel-2 data as auxiliary information”.
In: (2020).

Sandro Martinis, Jens Kersten, and André Twele. “A fully automated TerraSAR-
X based flood service”. In: ISPRS Journal of Photogrammetry and Remote
Sensing 104 (2015), pp. 203-212.

Sandro Martinis, André Twele, and Stefan Voigt. “Towards operational near
real-time flood detection using a split-based automatic thresholding proce-
dure on high resolution TerraSAR-X data”. In: Natural Hazards and Earth
System Sciences 9.2 (2009), pp. 303-314.

132



BIBLIOGRAPHY

[100]

[101]
[102]
[103]

[104]
[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

MediaEval 2018 Multimedia Satellite Task. http://www.multimediaeval.
org/mediaeval2018/multimediasatellite/. Data released: 31 May 2018.
2018.

MediaFEval2019: Multimedia Satellite task. http://www.multimediaeval.
org/mediaeval2019/multimediasatellite/. Accessed: 2021-04-25. 2021.

Andrea Melchiorre and Luigi Boschetti. “Global analysis of burned area
persistence time with MODIS data”. In: Remote Sensing 10.5 (2018), p. 750.

Microsoft. Azure Blob Storage. https://azure .microsoft.com/en-us/
services/storage/blobs/. 2020.

Microsoft. Onnz Runtime. https://www.onnxruntime.ai/. 2020.

Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR 2013). Workshop poster. Available at https://arxiv.
org/pdf/1301.3781.pdf. 2013.

Muhammad Hanif Mir Murtaza, Muhammad Atif Tahir, and Muhammad
Rafi. “Ensemble and Inference based Methods for Flood Severity Estimation
Using Visual Data”. In: (2019).

Anastasia Moumtzidou et al. “A multimodal approach in estimating road
passability through a flooded area using social media and satellite images”.
In: Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018). Sophia-
Antipolis, France, 2018.

MultiSpectral Instrument (MSI) overview. https://earth.esa.int/web/
sentinel /technical-guides/sentinel-2-msi/msi-instrument. Ac-
cessed: 2019-12-03. 2019.

Natural Hazards and Climate Change in European Regions, United Nations
International Strategy for Disaster Reduction (UNISDR). https://www .
espon.eu/sites/default/files/attachments/20130704_ ESPON_TERRITORAL _
07_CS6_CM_Final.pdf. Accessed: 2021-03-10. 2013.

AY Ng. “Proceedings of the twenty-first international conference on Machine
learning”. In: (2004).

Antonio Donato Nobre et al. “Height Above the Nearest Drainage—a hy-
drologically relevant new terrain model”. In: Journal of Hydrology 404.1-2
(2011), pp. 13-29.

Sentinel-1 ObservationScenario. Sentinel-1 Observation Scenario. 2019. URL:
https://sentinel . esa. int/web/sentinel /missions/sentinel-1/
observation-scenario.

Onnz. https://onnx.ai/. 2020.

133



BIBLIOGRAPHY

[114]

[115]

[116]

[117]

[118]

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

OpenStreetMap. https://www.openstreetmap.org/. Accessed: 2021-04-21.
2021.

Nobuyuki Otsu. “A threshold selection method from gray-level histograms”.
In: IEEFE transactions on systems, man, and cybernetics 9.1 (1979), pp. 62—
66.

Giulio Palomba, Alessandro Farasin, and Claudio Rossi. “Sentinel-1 Flood
Delineation with Supervised Machine Learning”. In: Proceedings of the 17th
International Conference on Information Systems for Crisis Response and
Management (ISCRAM 2020), Virginia Tech, Blacksburg, VA, USA. 2020,
pp- 1072-1083.

Dong Kwon Park, Yoon Seok Jeon, and Chee Sun Won. “Efficient use of local
edge histogram descriptor”. In: Proceedings of the 2000 ACM workshops on
Multimedia. ACM. 2000, pp. 51-54.

Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference
on Empirical Methods in Natural Language Processing (EMNLP). 2014,
pp- 1532-1543.

Pramuditha Perera and Vishal M Patel. “Learning deep features for one-class
classification”. In: IEEE Transactions on Image Processing 28.11 (2019),
pp. 5450-5463.

Pivotal. RabbitM(@). https://www.rabbitmqg.com/. 2020.

L Pulvirenti et al. “An algorithm for operational flood mapping from syn-
thetic aperture radar (SAR) data based on the fuzzy logic”. In: Natural
Hazard and Earth System Sciences (2011).

Luca Pulvirenti et al. “Discrimination of water surfaces, heavy rainfall, and
wet snow using COSMO-SkyMed observations of severe weather events”. In:
IEEE transactions on geoscience and remote sensing 52.2 (2013), pp. 858—
869.

Khanh-An C Quan et al. Flood event analysis base on pose estimation and
water-related scene recognition. 2019.

Ruben Ramo and Emilio Chuvieco. “Developing a random forest algorithm
for MODIS global burned area classification”. In: Remote Sensing 9.11 (2017),
p. 1193.

Ruben Ramo et al. “A data mining approach for global burned area map-
ping”. In: International journal of applied earth observation and geoinfor-
mation 73 (2018), pp. 39-51.

Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV].

134



BIBLIOGRAPHY

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

136

[137]

[138]

[139]

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference

on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234-241.

E Roteta et al. “Development of a Sentinel-2 burned area algorithm: Gen-
eration of a small fire database for sub-Saharan Africa”. In: Remote sensing
of environment 222 (2019), pp. 1-17.

David P Roy et al. “Prototyping a global algorithm for systematic fire-
affected area mapping using MODIS time series data”. In: Remote sensing
of environment 97.2 (2005), pp. 137-162.

David P Roy et al. “The collection 5 MODIS burned area product—Global
evaluation by comparison with the MODIS active fire product”. In: Remote
sensing of Environment 112.9 (2008), pp. 3690-3707.

ClearType S.r.l. Dramatiq. https://dramatiq.io/. 2020.

Naina Said et al. “Deep learning approaches for flood classification and flood
aftermath detection”. In: Proc. of the MediaFval 2018 Workshop (Oct. 29-
31, 2018). Sophia-Antipolis, France, 2018.

Lennert Schepers et al. “Burned area detection and burn severity assess-
ment of a heathland fire in Belgium using airborne imaging spectroscopy
(APEX)”. In: Remote Sensing 6.3 (2014), pp. 1803-1826.

Stefan Schlaffer et al. “Flood detection from multi-temporal SAR data us-
ing harmonic analysis and change detection”. In: International Journal of
Applied Earth Observation and Geoinformation 38 (2015), pp. 15-24.

Self Organizing Maps, illustration reference. https://en.wikipedia.org/
wiki/Self-organizing map. Accessed: 2021-03-15. 2019.

Sentinel-1 Extra Wide Swath. https://sentinels.copernicus.eu/web/
sentinel /user-guides/sentinel-1-sar/acquisition-modes/extra-
wide-swath. Accessed: 2021-03-19. 2021.

Sentinel-1 Interferometric Wide Swath. https://sentinels.copernicus.
eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/
interferometric-wide-swath. Accessed: 2021-03-19. 2021.

Sentinel-1 StripMap. https://sentinels.copernicus.eu/web/sentinel/
user-guides/sentinel-1-sar/acquisition-modes/stripmap. Accessed:
2021-03-19. 2021.

Sentinel-1 Wave. https://sentinels . copernicus.eu/web/sentinel/
user - guides /sentinel - 1-sar/acquisition-modes/wave. Accessed:

2021-03-19. 2021.

135



BIBLIOGRAPHY

[140]
[141]
[142]

[143]

[144]

[145)

[146)

[147]
148

149

[150]

[151]

[152]

[153]

Sentinel-Hub. https://www.sentinel-hub. com/. Accessed: 2021-04-01.
2019.

Tianchan Shan et al. “A Burned Area Mapping Algorithm for Chinese
FengYun-3 MERSI Satellite Data”. In: Remote Sensing 9.7 (2017), p. 736.

Francescopaolo Sica et al. “The offset-compensated nonlocal filtering of in-
terferometric phase”. In: Remote Sensing 10.9 (2018), p. 1359.

Tomer Simon, Avishay Goldberg, and Bruria Adini. “Socializing in emer-
gencies—A review of the use of social media in emergency situations”. In:
International Journal of Information Management 35.5 (2015), pp. 609-619.

K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: ICLR (2015).

Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

Mrinal Singha et al. “Identifying floods and flood-affected paddy rice fields
in Bangladesh based on Sentinel-1 imagery and Google Earth Engine”. In:
ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020), pp. 278—
293.

SmartBEAR. Swagger. https://swagger.io/. 2020.

Toufique A Soomro et al. “Strided U-Net model: Retinal vessels segmen-
tation using dice loss”. In: 2018 Digital Image Computing: Techniques and
Applications (DICTA). IEEE. 2018, pp. 1-8.

S Sreechanth and Kiran Yarrakula. “Multi-Temporal Analysis of Sentinel-
1 SAR data for Urban Flood Inundation Mapping-Case study of Chennai
Metropolitan City”. In: jiP 2 (2017), p. 1.

Mervyn Stone. “Cross-validatory choice and assessment of statistical predic-
tions”. In: Journal of the Royal Statistical Society: Series B (Methodological)
36.2 (1974), pp. 111-133.

Emanuel A Storey, Douglas A Stow, and John F O’Leary. “Assessing post-
fire recovery of chamise chaparral using multi-temporal spectral vegetation
index trajectories derived from Landsat imagery”. In: Remote Sensing of
Environment 183 (2016), pp. 53—-64.

Emanuel Arnal Storey, Krista R Lee West, and Douglas A Stow. “Utility
and optimization of LANDSAT-derived burned area maps for southern Cal-

ifornia”. In: International Journal of Remote Sensing 42.2 (2021), pp. 486—
505.

Julia Strebl et al. “Flood Level Estimation from Social Media Images”. In:
(2019).

136



BIBLIOGRAPHY

[154]

[155]

[156]

[157]
[158]

[159]

[160]

[161]

[162]

[163)]

[164]

[165]

[166]

[167]

Synergise Sentinel Hub Overview. 2019. URL: https ://www . sentinel -
hub.com/about.

Christian Szegedy et al. “Inception-V4, Inception-ResNet and the impact
of residual connections on learning”. In: Thirty-First AAAI Conference on
Artificial Intelligence. 2017.

Christian Szegedy et al. “Rethinking the inception architecture for com-
puter vision”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 2818—-2826.

Tiangolo. FastAPI https://fastapi.tiangolo.com/. 2020.

Kevin E Trenberth. “Changes in precipitation with climate change”. In:
Climate Research 47.1-2 (2011), pp. 123-138.

S Trigg and S Flasse. “An evaluation of different bi-spectral spaces for dis-
criminating burned shrub-savannah”. In: International Journal of Remote
Sensing 22.13 (2001), pp. 2641-2647.

André Twele et al. “Sentinel-1-based flood mapping: a fully automated pro-
cessing chain”. In: International Journal of Remote Sensing 37.13 (2016),
pp. 2990-3004.

FD Van der Meer, HMA Van der Werff, and FJA Van Ruitenbeek. “Poten-
tial of ESA’s Sentinel-2 for geological applications”. In: Remote sensing of
environment 148 (2014), pp. 124-133.

S Veraverbeke, Sarah Harris, and Simon Hook. “Evaluating spectral in-
dices for burned area discrimination using MODIS/ASTER (MASTER) air-
borne simulator data”. In: Remote Sensing of Environment 115.10 (2011),
pp- 2702-2709.

Sergio Vitale et al. “Guided patchwise nonlocal SAR despeckling”. In: IEFFE
Transactions on Geoscience and Remote Sensing 57.9 (2019), pp. 6484—6498.

Kaupo Voormansik et al. “Flood mapping with TerraSAR-X in forested
regions in Estonia”. In: IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 7.2 (2013), pp. 562—-577.

Peilu Wang et al. “Learning distributed word representations for Bidirec-
tional LSTM recurrent neural network”. In: Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2016, pp. 527-533.

Mira Weirather, Gunter Zeug, and Thomas Schneider. “Automated Delin-
eation Of Wildfire Areas Using Sentinel-2 Satellite Imagery”. In: GI_Forum
2018, 6 (), pp. 251-262.

Clayton Wukich et al. “Social media use in emergency management”. In:
Journal of Emergency Management 13.4 (2015), pp. 281-294.

137



BIBLIOGRAPHY

168

[169)]

[170]

[171]

Mirko Zaffaroni et al. “Al-based flood event understanding and quantifica-
tion using online media and satellite data”. In: CEUR-WS: Aachen, Ger-
many (2019), p. 2670.

Konstantinos Zagoris et al. “Automatic image annotation and retrieval using
the joint composite descriptor”. In: 2010 14th Panhellenic Conference on
Informatics. IEEE. 2010, pp. 143-147.

Zhengyu Zhao, Martha Larson, and Nelleke Oostdijk. “Exploiting Local
Semantic Concepts for Flooding-related Social Image Classification”. In:
Proc. of the MediaFval 2018 Workshop (Oct. 29-31, 2018). Sophia-Antipolis,
France, 2018.

Bolei Zhou et al. “Places: A 10 million image database for scene recognition”.

In: IEEE transactions on pattern analysis and machine intelligence 40.6
(2018), pp. 1452-1464.

138



This Ph.D. thesis has been typeset
by means of the TgX-system facil-
ities. The typesetting engine was
pdf K TEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.



