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Parallel VM Deployment with Provable Guarantees

Abstract—Network Function Virtualization (NFV) carries the
potential for on-demand deployment of network algorithms in
virtual machines (VMs). In large clouds, however, VM resource
allocation incurs delays that hinder the dynamic scaling of such
NFV deployment. Parallel resource management is a promising
direction for boosting performance, but it may significantly
increase the communication overhead and the decline ratio of
deployment attempts. Our work analyzes the performance of
various placement algorithms and provides empirical evidence
that state of the art parallel resource management dramatically
increases the decline ratio of deterministic algorithms, but hardly
affects randomized algorithms. We therefore introduce APSR
– an efficient parallel random resource management algorithm
that requires information only from a small number of hosts and
dynamically adjusts the degree of parallelism to provide provable
decline ratio guarantees. We formally analyze APSR, evaluate it
on real workloads, and integrate it into the popular OpenStack
cloud management platform. Our evaluation shows that APSR
matches the throughput provided by other parallel schedulers,
while achieving up to 13x lower decline ratio and a reduction of
over 85% in communication overheads.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm en-
ables network infrastructure to be virtually deployed on
standard cloud infrastructure. Specifically, NFV allows running
firewalls, deep packet inspection, load balancing, and mon-
itoring without relying on physical middleboxes [12], [30].
NFV is composed out of (often long) service chains that each
packet needs to traverse. On of the main advantages of NFV
is the ability to scale the service chain on demand without any
physical change to the network. Unfortunately, current cloud
placement is not optimized for high-throughput placement,
making large service chains slow to deploy.

In principle, once the user issues a request to allocate a
new Virtual Machine (VM), a scheduler selects a host to
accommodate the VM. While the deployment time of optimized
VMs or containers (e.g., using Kubernetes) can be performed
within tens of milliseconds [19], selecting a host on which to
place the VM may require hundreds of milliseconds in large
clouds [2], [4], [13]. It follows that the potential performance
boost of using NFV remains largely unfulfilled in large clouds
due to bottlenecks in scheduling deployment requests.

The main reason that the host selection process takes so
long is that most current resource management algorithms [15]–
[17], [26], [29], [31] require complete information about the
availability of resources on the system’s hosts. In a large
cloud, gathering the current state from hundreds and sometimes
thousands of hosts translates to high communication overhead,
resulting in a performance bottleneck [4], [13]. In particular,
some experiments show that when the number of hosts is

above 400, more than 90% of the scheduling time is wasted
in collecting fresh system’s state information [2].

Intuitively, one could boost throughput by running multi-
ple schedulers in parallel. However, such an approach may
translate to having multiple schedulers try and place requests
simultaneously on the same host, leading to race scenarios [23],
[25], [28]. In such cases, not all the requests will be successful,
and the host may decline some of the requests. Such a decline
translates to having the scheduler retry to serve the same
request, resulting in excessive latency. This added latency may
be unacceptable in an NFV environment, which may have to
respond to bursts of requests, e.g., when the system has to
respond to a flash crowd or a cyber attack [4]. Hence, a provider
is typically required to satisfy a bound on the decline ratio, that
is, the ratio between the number of declined requests, and the
total number of requests. The maximum allowed decline ratio
is typically defined in the Service Level Agreement (SLA) [4],
[9], or in the Key Performance Indicators (KPIs) [18].

An efficient VM placement algorithm should, therefore,
strive to (i) increase parallelism, while (ii) maintaining a low
communication overhead, and (iii) ensuring a bounded decline
ratio. However, to the best of our knowledge, no previous work
has studied the interplay between these conflicting aspects.

Our contributions. Our work starts by studying the impact
of parallelism on the decline ratio of various popular placement
algorithms. We show that parallelism may drastically increase
the decline ratio, where we attribute this increase to the
determinism of most algorithms. Interestingly, we find that
randomly placing VMs in suitable hosts allows for a large
degree of parallelism without a significant impact on the decline
ratio. That is, random placement is very efficient when parallel
schedulers are used. Our study further shows that in the random
policy, the decline ratio depends on the number of parallel
schedulers, and on the number of hosts that can accommodate
each VM. In general, low-utilization environments allow for
more schedulers than high-utilization ones.

Equipped with these observations, we introduce our proposed
algorithm, APSR, that dynamically adjusts the number of
parallel schedulers according to the system’s utilization, and
incorporates randomness into its decision making. APSR
guarantees that the expected decline ratio is always within
a predefined requirement. Furthermore, APSR is inherently
optimized to query only a small number of hosts, thus reducing
the communication overheads.

We formally analyze the performance of APSR where we
provide guarantees as to its communication overhead, and its
expected decline ratio. We also evaluate the performance of
APSR for three real-life datasets and show that it enables a
high degree of parallelism (e.g., effectively running 20-100



schedulers) in a variety of realistic scenarios. We further show
that APSR reduces the communication overhead by over 85%
compared to state of the art algorithms. Finally, we integrate
and implement APSR within the OpenStack framework and
show that it matches the throughput of the fastest OpenStack
configuration, while significantly reducing the decline ratio
and the communication overhead. Due to space constraints, for
some of our technical claims we provide only a proof sketch.

II. RELATED WORK

This section provides a short survey of commonly used VM
placement paradigms. For each such approach, we discuss
the various algorithms that apply it in their design. We further
provide insight into the main differences between our suggested
solution and these algorithms, summarized in Table I.

The global snapshot-based approach. Traditionally, in
their simplest form, placement algorithms take a snapshot of the
entire system’s state before handling each request. This precise
state information allows for a single monolithic scheduler (e.g.,
Maui [5]) to select a host to accommodate the request, while
prioritizing the hosts in some manner. The monolithic approach
guarantees a low decline ratio, as the scheduler operates alone
on an up-to-date view of the available resources. However, the
per-request overhead of this approach is substantial, due to
both the communication overhead of querying all hosts [2],
[4], [13], and the latency of computing the placement decision
itself, which may take several seconds [28]. Such a long latency
might be reasonable when scheduling large batch jobs (e.g., in
HPC environments), but is prohibitively costly when a prompt
reaction is critical, e.g., when scaling out the capacity of a
service chain due to an increase in demand.

One of the ways suggested for decreasing the overhead of
the monolithic scheduler is to periodically cache a snapshot
of the system’s state [4]. However, when the cached state
becomes stale, the scheduler may be unaware of resources
that have recently become available, resulting in an increased
number of declined requests that could have been otherwise
served successfully. Furthermore, this approach achieves low
throughput as it only employs a single scheduler.

Running multiple schedulers in parallel is a straightforward
technique to increase throughput. Indeed, OpenStack allows
for multiple parallel schedulers to increase the throughput [7].
However, our work shows that running multiple independent
schedulers translates to collisions when multiple schedulers
simultaneously select the same hosts. Such collisions result in
excessive decline ratios, degrading performance. Interestingly,
the OpenStack community acknowledges this problem and
mitigates its impact by allowing the user to add a certain
degree of randomness to the schedulers [23], [25]. Further, the
seminal work of [28] shows that when system utilization is
high, Google’s schedulers require more than two attempts to
place each request. Our work show (in Section IV) that parallel
scheduling yields high decline ratios for a variety of placement
algorithms, and that random placement is more robust than
deterministic placement. Intuitively, deterministic algorithms

select the same "best" host, which renders them inferior to
random algorithms.

To insert some degree of randomness into the scheduling
process, the OpenStack community introduced the parameter
scheduler_host_subset_size [23] (denoted `), which
works as follows: After ranking the available hosts, the
scheduler randomly assigns the request to one of the top-
` ranking hosts. In the absence of a rigorous theory studying
the effect of ` on the system’s performance, its value is
commonly determined using crude estimations and rules of
thumb. Our work is useful to configure the parameter ` properly.
Furthermore, in Section IV, we show that the common approach
of setting ` as a small constant results in poor performance.

The Omega scheduler [28] suggests a new approach that
aims at optimizing the usage of a global snapshot by multiple
schedulers. Omega decreases the communication overheads
by allowing multiple schedulers to share the state information.
However, Omega does not provide guarantees on the decline
ratio. Thus, our approach is also useful in Omega’s framework.

The partitioning-based approach. Partitioning the hosts
between different schedulers is a simple approach that removes
conflicts between schedulers and decreases the per-placement
communication overheads as each scheduler only acquires
state information about some of the hosts. Quincy [11] uses
a static partition, that occasionally results in non-compulsory
declines due to fragmentation of resources [28]. Namely, a
scheduler may fail to place a request in its partition, even
if hosts in other partitions can accommodate the request.
Mesos [10] suggests using dynamic partitioning, where a central
controller dynamically allocates hosts to schedulers on demand
to minimize fragmentation at the expense of complexity. Note
that Quincy and Mesos provide no guarantees on the impact
of fragmentation on the decline ratio.

The sampling-based approach. The sampling-based ap-
proach was extensively studied in the context of balanced
allocation problems [1], [3], [21], [25]. These problems
essentially assume an (infinite) buffer for pending requests in
each host, and the goal is to allocate requests to hosts in a way
that minimizes the maximum load on all hosts. The celebrated
power-of-two-choices [1], [21] algorithmic paradigm shows
that sampling only a few (e.g., two) hosts and selecting the
least-loaded sampled host provides strong guarantees on the
expected maximal load. Sparrow [25] and Tarcil [3] implement
variants of this concept in concrete cloud environments.

However, balanced allocation problems are inherently dif-
ferent from the ones addressed in our work as they consider
infinite capacity hosts that never decline requests, and instead
their algorithms make an effort to evenly balance the load [1],
[3], [21], [25]. In contrast, we consider finite-capacity hosts that
decline requests that exceed their capacity limitations, making
load balancing based algorithms incomparable with our work.
That said, our APSR is part of the sampling-based approach as
it queries a small number of hosts, and while load-balancing
based algorithms provide guarantees on the maximum load [1],
[3], [21], [25], APSR provides guarantees on the decline ratio.
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Approach #Schedulers Description Throughput Decline Ratio Overhead Examples

Global
Snapshot

Single
Monolithic Low Low, guaranteed High Maui [5]

Cached Snapshot Low Low Low ASC [4]

Fixed
Multiple Snapshots High High High OpenStack [7]

Shared Snapshot High High Low-Mid Omega [28]

Partitioning Fixed
Static Partition Mid Mid Low Quincy [11]

Dynamic Partition Mid Mid Low-Mid Mesos [10]

Sampling Adaptive Adaptive sample size Mid-High 1 Low, guaranteed Low, guaranteed Our APSR algorithm
TABLE I

COMPARISON OF APPROACHES FOR SCHEDULING REQUESTS IN A MULTI-HOST SYSTEM. THE DIFFERENT APPROACHES ARE COMPARED IN TERMS OF THEIR
(I) THROUGHPUT (RATE OF ASSIGNMENT ATTEMPTS), (II) DECLINE RATIO (EXPECTED RATIO OF ATTEMPTS THAT FAIL), AND (III) OVERHEAD (AMOUNT OF

COMMUNICATION/SYNCHRONIZATION REQUIRED TO GATHER THE STATE INFORMATION FOR MAKING AN ASSIGNMENT DECISION). FOR EACH OF THE
APPROACHES, WE PROVIDE SOME CONCRETE EXAMPLES OF ACTUAL ARCHITECTURES THAT IMPLEMENT THE APPROACH.

III. SYSTEM MODEL FOR PARALLEL SCHEDULING

We consider a collection H of n hosts where each host has
some multi-dimensional capacity corresponding to several types
of resources, e.g., memory, CPU, or disk space. Formally, we
model each ~h ∈ H as a vector whose coordinates correspond
to the currently available resources of each type. We refer
to this vector as the state of the host. We further consider a
collection R of requests, each modeled as a vector of demand
for each resource. We assume each request ~r ∈ R has its
vector drawn from some finite set of possible request vectors,
or flavors, C = {~c1, . . . ,~cm}. A host ~h is considered available
for request ~r if it has enough resources of each type, i.e., if
~r ≤ ~h, coordinate-wise.

We assume time is slotted, such that in every time slot,
some requests arrive at the system, and are queued, pending
assignment to hosts. We denote by s the number of parallel
schedulers that may perform scheduling decisions simultane-
ously in any single time slot. In each time slot t, given a queue
consisting of some q requests pending at t, each scheduler
dequeues a request. Schedulers may query (sample) the state
of some subset of hosts, and assign the request to an available
host (if they queried such a host). We note that when s > 1,
multiple schedulers may concurrently assign their pending
requests to the same host.

Any host ~h ∈ H resolves concurrent requests being assigned
to ~h at the same time slot in some arbitrary order. The resolution
of request ~r being assigned by some scheduler to host ~h fails
if the host is no longer available when it resolves ~r, and is
successful otherwise. The host updates its available capacity
upon a successful resolution by setting ~h = ~h− ~r. Requests
live for some time, and the host regains the resources used by
completed requests. If request ~r placed on host ~h is completed
we update the resource state of the host by setting ~h = ~h+ ~r.
The above model implies that a request fails if either (i) the
scheduler does not find an available host, or (ii) the chosen
host is no longer available once it resolves the request.

In every time slot t, and for every request flavor ~c ∈ C, we
let k(t)

~c denote the number of hosts in H that are available
for a request of flavor ~c at time t. We further let k(t) denote

1Throughput is inversely proportional to system utilization, and adapts to
the amount of resources available in the system.

an estimate of the number of hosts that may accommodate
any request that may arrive at time t. We note that k(t) may
be a pessimistic estimate (e.g., by setting k(t) = min~c k

(t)
~c ),

or it may incorporate some information about the workload
distribution, or otherwise the system state. We will usually be
omitting the superscript of (t), and refer to k~c, and k, when
the time slot in question is clear from the context.

The decline ratio is the ratio between the number of failed
assignment attempts and the total number of assignment
attempts performed by the system. We use δ to denote the
system’s expected decline ratio (for some set of requests
R). Since we are handling requests independently, δ is the
aposteriori probability of having a declined assignment attempt.

We assume the system is subject to a Service Level Agree-
ment (SLA) which requires that the decline ratio is at most ε,
for some ε ∈ [0, 1].2 To control the overheads, we limit the
maximal number of hosts queried (by all schedulers) in each
time slot to B. In every time slot t, we denote by d the number
of hosts queried by any scheduler with a pending request at t. A
valid configuration of schedulers determines s and d, such that
s · d ≤ B, and the probability of a failed assignment attempt
is at most ε. We seek the valid configuration maximizing the
number of parallel schedulers (s). Table II summarizes the
notation used in our model, as well as further notation defined
in later sections.

IV. PARALLELISM AND PLACEMENT ALGORITHMS

We begin by evaluating the effect of parallel schedulers on
the decline ratio of existing placement algorithms.

Evaluated Algorithms We briefly introduce some common
placement algorithms. For further details see, e.g., [20].

OpenStack’s default placement algorithm is the WorstFit
(WF) algorithm [7]. WF places requests on one of the least
loaded hosts to maximize the hosts’ remaining resources. For
the multi-dimensional settings, we implement a pessimistic
variant of WF, where we consider a host load to be the
maximum load over all the possible resources.

The FirstFit (FF) [6] algorithm assigns a request to the first
available host, assuming some arbitrarily fixed ordering of the

2Current algorithms are oblivious to such constraints, and might violate
this requirement. Our APSR take such constraints into account, and produce
solutions that are proven to satisfy them.
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Symbol Meaning
H Set of hosts
n Number of hosts (bins)
~h Host in H (resources availability vector)
R Set of requests
~r Request in R (resources demand vector)
C Set of requests flavors
~c Flavor in C of a request
s Number of schedulers (agents)
δ Actual decline ratio
ε Maximum allowed decline ratio by the SLA
B Budget for overall number of queries
d Number of hosts queried by each scheduler
n~c Number of hosts queried for requests of flavor ~c
k~c Number of available hosts for flavor ~c
k Number of available hosts for any request
Fs Number of potentially-happy agents
Hs Number of happy agents
σ See Eq. 2

Bin(a, b, c) See Eq. 4
λa Poisson arrival rate
λd Poisson departure rate

TABLE II
LIST OF SYMBOLS. THE TOP SECTION CORRESPONDS TO OUR SYSTEM
MODEL (SECTION III), THE MIDDLE SECTION CORRESPONDS TO OUR

PERFORMANCE GUARANTEES (SECTION VI), AND THE BOTTOM SECTION
CORRESPONDS TO OUR EVALUATION (SECTION VIII)

hosts. This approach aims at minimizing the number of utilized
hosts, thus reducing energy consumption.

The Adaptive algorithm [26] combines WF and FF as follows:
It begins like WF; once the load passes a threshold, the
algorithm switches to an FF regime. Throughout our evaluation,
we used 0.6 as the threshold for the Adaptive algorithm.

The algorithm DistFromDiag [26] attempts to balance the
host’s resource consumption according to its proportions. For
example, if a host has 100GB disk and 10GB RAM, it aspires
for a 10:1 ratio between available disk and RAM.

We also consider two algorithms that incorporate randomiza-
tion into WF and FF. These variants, referred to as WorstFit-
Rand (WFR) and FirstFit-Rand (FFR), respectively, weigh the
hosts based on the WF and FF strategies but randomly select
a host from the ` top-ranking available hosts (in the spirit of
the option available in OpenStack, as described in Section II).
In our evaluation of WFR and FFR, we set ` = 5.

Finally, we evaluate the Random algorithm, which selects a
host uniformly at random among the available hosts.

Datasets We use three datasets that capture requests made in
real systems. We evaluate each workload in a cloud environment
that has sufficiently many hosts to accommodate all the requests
(see Section IV for details on choosing the number of hosts).

The NFV Dataset was collected from a proprietary large
NFV management and orchestration (MANO) system [4]. In
this scenario, hosts are identical, and the placement requests are
for VMs of preset sizes (flavors). Hosts and placement requests
are two-dimensional tuples of the form 〈memory, storage〉.
The sizes are normalized such that hosts’ capacity is 〈1, 1〉, and
each VM requires a certain fraction of this capacity. Table III
shows the distribution of flavors for this dataset.

The Google Dataset, recorded in a Google’s cluster [27],
holds data from 12,477 virtual machines characterized by tuples

storage

0.01 0.04 0.1 0.3 0.54 Total

m
em

o
r
y

0.001 14 22 14 3 13 66
0.016 7 93 0 2 0 102
0.032 83 165 0 14 0 262
0.064 1 1 1 0 0 3
0.19 0 2 0 0 2 4
Total 105 283 15 19 15 437

TABLE III
NORMALIZED BREAKDOWN OF REQUESTS FOR VM IMAGES BY MEMORY

AND STORAGE, OBTAINED FROM THE NFV DATASET.

of 〈CPU,memory〉. The normalized CPU values vary between
0.25, 0.5, and 1, while the memory values can be grouped
around five levels: 0.125, 0.25, 0.5, 0.75, and 1 [14]. The hosts
capacities are either 〈1, 2〉 or 〈2, 1〉 in equal proportions [26].
Table IV provides the breakdown of flavors for this dataset.

CPU

0.25 0.5 1.0 Total

m
em

o
r
y

0.125 0 60 0 60
0.25 123 3,835 0 3,958
0.5 0 6,672 3 6,675
0.75 0 992 0 992
1.0 0 4 788 792

Total 123 11,563 791 12,477

TABLE IV
BREAKDOWN OF THE NUMBER OF PLACEMENT REQUEST SIZES BY CPU

AND MEMORY, OBTAINED FROM THE GOOGLE DATASET.

The Amazon Dataset is based on data from Amazon EC2
hosts and VM flavors [20], [26]. Table V depicts the flavors of
the normalized 〈CPU,memory〉 in this dataset, where each
column represents one possible flavor of requests. We partition
requests’ flavors into two types: small flavors, which have a
CPU requirement below 0.4, and large flavors, which consist
of all remaining flavors. We generate a sequence of 1000 small
requests and 100 large ones (i.e., a total of 1100 requests) and
select a flavor for each request uniformly at random from the
corresponding flavor types. In this scenario we consider hosts
with capacities of either 〈1, 2〉, or 〈2, 1〉 in equal proportions
(similarly to the host setup used in the Google dataset).

Experiments Our goal in this section is to understand the
effect of running multiple parallel schedulers with existing algo-
rithms. The number of hosts is selected so that it is possible to
place all requests at once (by some algorithm). Since evaluating
the required number of hosts to accommodate all the requests in
a given trace is equivalent to the multi-dimensional bin packing
problem, which is NP-hard [8], we use the approximation
suggested in [26]. Briefly, this approximation runs the trace
for each algorithm multiple times, each time with a randomly-
generated order of requests. Whenever the placement algorithm
does not succeed in accommodating a request with the currently
available resources, the approximation opens a new host. The
approximated value is the minimal number of open hosts in
all runs.

To simulate large clouds, we replicated the NFV dataset to

4



Small Large

CPU 0.035 0.07 0.083 0.1 0.142 0.167 0.2 0.333 0.354 0.4 0.5 0.5 0.8 0.833 1
memory 0.008 0.016 0.031 0.008 0.031 0.063 0.016 0.125 0.062 0.031 0.125 0.5 0.063 0.25 0.25

TABLE V
BREAKDOWN OF PLACEMENT REQUEST FLAVORS OF 〈CPU,memory〉 OBTAINED FROM THE AMAZON EC2 DATASET. FLAVORS ARE SORTED BY CPU .

Fig. 1. Decline ratios for different placement algorithms and varying number
of parallel schedulers on the NFV, Google and Amazon datasets. Note that the
decline ratio (y-axis) ranges corresponding to the various datasets are distinct.

have 4730 requests with 279 hosts. The Amazon dataset is
evaluated with 126 hosts, and the Google dataset with 5989
hosts. Throughout our experiments, we make just one attempt
to place any request (i.e., we do not retry placing declined
requests).

Our results are illustrated in Fig. 1. When using a single
scheduler, there are very few failures in all the policies. Yet,
the decline ratio in Random remains low also for higher levels
of parallelism. This result is intuitive as randomly allocating
requests to hosts minimizes the probability of having many
schedulers select the same host, concurrently. In contrast, the
FirstFit algorithm is the worst, as all the schedulers select the
same host even if it is close to being full. In other algorithms
like WorstFit, once a host is nearly full, it is less attractive,
and thus the schedulers distribute their placement decisions
upon a larger number of hosts.

The decline ratio of the deterministic algorithms becomes
very high, even when running only 10 schedulers. This problem
is somewhat mitigated by OpenStack’s solution of introducing
small randomization into traditional algorithms (as captured
by FFR and WFR). However, statically setting ` = 5 is
insufficient when having ten schedulers. These results show that
the OpenStack community correctly identified the problems
with parallelism and introduced a valid workaround. However,
the interplay between parallelism and decline ratio has not
been studied. Our work builds upon the insights drawn from
the above results and claims that one should use randomness to
maximize the parallelism in resource management. In particular,
our goal is to study the scaling laws of parallelism when

Algorithm 1 APSR Controller (n, ε,B, T )
1: s← 1, k ← n
2: GenerateSchedulers(1, B)
3: for every time slot t = T, 2T, 3T, . . . do
4: k ← EstimateK(. . .)
5: (s, d) ← MaximizeParallelism(n, ε,B, k)
6: GenerateSchedulers(s, d)
7: end for

combined with random VM placement.

V. ADAPTIVE PARTIAL STATE RANDOM (APSR)

This section presents our algorithm Adaptive Partial State
Random (APSR). Motivated by our observations from Sec-
tion IV, APSR implements an efficient random policy that
dynamically adjusts the number of schedulers (s) according
to the system’s perceived utilization. Whenever APSR uses
parallel schedulers (s > 1), it is guaranteed to satisfy the SLA
and budget constraints.

Upon receiving a placement request, each APSR scheduler
does the following: (i) queries d hosts (for some value d),
(ii) filters out hosts that cannot accommodate the request,
(iii) randomly selects an available host out of the remaining
set of hosts, and (iv) sends the request to the chosen host.

APSR relies on a centralized controller called the APSR
controller to periodically do the following: (i) estimate the
system’s utilization, captured by the estimate k of the number
of available hosts, (ii) determine the number s of parallel
schedulers, and (iii) determine the number d of hosts each
scheduler queries per request. The controller determines the
above parameters to ensure the validity of the configuration.
Algorithm 1 illustrates the APSR controller algorithm. The
procedure GenerateSchedulers(s, d) adjusts the number of
schedulers to s and the number of hosts queried by each
scheduler to d. The method EstimateK provides an estimate
of the number of hosts k that can accommodate a request. We
do not specify the arguments for this method since it can be
implemented in a variety of ways (see details in Section VII).
The procedure MaximizeParallelism considers the system state
and the SLA constraints and outputs the number of schedulers
s and the number of hosts each scheduler queries (d).

VI. ANALYSIS

We now establish the correctness of our approach. We start
with a simplified balls-and-bins model where hosts are unit-size
bins, and requests are unit-size balls, implying that each bin
can store at most one ball. Each scheduler is an agent assigning
balls to bins. We show sufficient conditions for satisfying the
SLA requirement in this simplified model. Our conditions
provide a lower bound on the number of parallel agents for
a given failure probability. We further show that the decline
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ratio serves as an upper bound on the original model’s decline
ratio. These results imply that when APSR utilizes parallelism,
the decline ratio is at most ε, and the total number of queries
performed by all agents is at most B.

Balls-and-bins Model Assume s identical agents acting
in parallel, which try to place balls in available bins. Each
agent queries d random bins and possibly finds some of them
available. If the agent does not find any available bins, the ball
assignment fails. Otherwise, the agent selects an available bin
uniformly at random and tries to place its ball in that bin.

Agents are unaware of the decisions made by other agents,
which may cause multiple agents to select the same available
bin. In such a case, one of the agents succeeds, and the rest of
them fail. We use the term potentially-happy agent to refer to
an agent that finds an available bin. Similarly, the term happy
agent refers to an agent that successfully places a ball in an
available bin. Finally, we use the term unhappy agent to refer
to an agent that fails to place its ball (either due to collision
or due to not finding an available bin).

We let the random variables, Fs and Hs, denote the number
of potentially-happy agents and happy agents. We denote by k
a lower bound on the number of available bins in some time
slot where agents contend for assigning balls into bins.

We view the SLA requirement of having a decline ratio of
at most ε as a lower bound on the probability that an arbitrary
agent attempting to assign a ball to some bin is happy. Formally,
this requirement translates to ensuring that: E[Hs]

s ≥ 1− ε.
We also require that the total number of bins queried by

our agents is no more than a prescribed budget (B), which
translates to requiring that: s · d ≤ B.

Given n, k, ε and B, our goal is to find the largest number
of agents s, and number of bin queries per agent d, that satisfy
the above conditions.

We calculate the expected number of happy agents E[Hs]
in order to estimate the failure probability. Observe that E[Hs]
can be expressed by conditioning the number of happy agents
Hs on the number of potentially-happy agents Fs. I.e.,

E[Hs] =
s∑

f=1

[
Pr(Fs = f) · E[Hs|Fs = f ]

]
. (1)

We now turn to evaluate the probability distribution of Fs,
and then calculate the conditional expectation E[Hs|Fs = f ].

To evaluate the distribution of the number of potentially-
happy agents Fs, observe that an agent fails to find an available
bin with probability

(
n−k
n

)d
. Therefore the probability that an

agent is potentially-happy is:

σ = 1−
(
n− k
n

)d
. (2)

One can interpret Fs as the result of s independent Bernoulli
trials with success probability σ. Therefore:

Pr(Fs = f) = Bin(f, s, σ), (3)

where

Bin(f, s, σ) ≡
(
s

f

)
σf (1− σ)s−f . (4)

For calculating E[Hs|Fs = f ], we examine the process of
the potentially-happy agents placing their balls from the point
of view of the k free bins. For ease of presentation, we associate
each potentially-happy agent with a sequence number 1, . . . , f ,
and each available bin with a sequence number 1, . . . , k.

The following proposition shows that the probability that an
arbitrary potentially-happy agent selects an arbitrary available
bin is uniform over all available bins.

Proposition 1. If agent i is potentially happy, then it places
its ball on available bin j with a probability of 1

k .

Proof sketch. The proof follows from carefully calculating the
conditional probability of an agent finding a specific available
bin j, conditioned on having found x available bins in its
set of sampled bins. This probability can be shown to be x

k .
Due to the uniformity of the agent’s choice, for any specific
available bin j, the probability of choosing this bin out of the
bins available for the agent can be then shown to be 1

k , as
required.

By Proposition 1, the probability that agent i does not place
its ball in bin j is 1− 1

k = k−1
k . As the agents are mutually

independent, the probability that none of the f potentially-
happy agents places its ball in bin j is

(
k−1
k

)f
. The probability

that at least one of the f potentially-happy agents tries to place
its ball in bin j is 1−

(
k−1
k

)f
. From the point of view of bin j,

this process is equivalent to a Bernoulli trial, which succeeds
iff at least one agent places its ball in bin j. If the Bernoulli
trial succeeds, bin j is exclusively associated with a single
happy agent.

Applying the analysis above for each of the k free bins, we
obtain that E[Hs|Fs = f ] is equivalent to the expected number
of successes in k independent Bernoulli trials, with probability
of success 1−

(
k−1
k

)f
each. Hence,

E[Hs|Fs = f ] = k

[
1−

(
k − 1

k

)f]
. (5)

Combining Eq. 1 with Eqs. 3 and 5, we obtain the following
expression for E[Hs]

E[Hs] = k

s∑
f=1

[
1−

(
k − 1

k

)f]
·Bin(f, s, σ). (6)

The following corollary is a direct consequence of Eq. 6

Corollary 2. If k
∑s
f=1

[
1−

(
k−1
k

)f]·Bin(f, s, σ) ≥ s(1−ε)
then the expected decline ratio with s agents, where each agent
queries d bins, is at most ε.

Based on Corollary 2, we now describe the details of the
MaximizeParallelism method, which maximizes the parallelism
while satisfying the SLA and budget constraints. The method
is detailed in Algorithm 2. After initializing the number of
schedulers to s = 1, the algorithm repeatedly increases the
value of s. Specifically, the procedure SatisfySLA validates
that the condition of Corollary 2 is satisfied for the given
configuration.
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Algorithm 2 MaximizeParallelism (n, ε,B, k)
1: s← 1 . initialization
2: while SatisfySLA

(
n, ε, k, s+ 1,

⌊
B

s+1

⌋)
do

3: s← s+ 1
4: end while
5: return s,

⌊
B
s

⌋
SLA Guarantees with Availability Lower Bounds: We

now show that the value k is a lower bound on the number of
available hosts for any request. We begin by showing that if k
is the precise number of available hosts for any request, then
MaximizeParallelism indeed generates a valid configuration.

Theorem 3. Assume k is the number of available
hosts that may accommodate any request flavor. If
MaximizeParallelism(n, ε,B, k) = (s, d) and s > 1 then
employing s schedulers, each querying d hosts, guarantees an
expected decline ratio of at most ε.

Proof. Let H~c denote the set of hosts with enough resources
for accommodating a request of flavor ~c. Using our notation,
it follows that |H~c| = k~c. Let ~c∗ = argmin~c {k~c}.

Consider the following compacting process:
1) Consider all the hosts in H~c∗ as available for all flavors.
2) Consider the other hosts as unavailable for any request.
3) Determine that once a scheduler allocates a request in a

host it becomes unavailable.
We claim that compacting the system can only increase

its decline ratio, for the following reasons: First, as for each
~c ∈ C we have k~c∗ ≤ k~c, steps 1 and 2 can only decrease
the number of hosts available for each flavor. This reduces the
expected number of available hosts found by each scheduler.
Second, steps 1 and 2 define the available hosts of any flavor
to be exactly H~c∗ . This compacting may only increase the
probability that multiple schedulers will end up assigning their
requests to the same host. Finally, a host may accommodate
multiple parallel requests providing it has enough resources
while step 3 disallows it, which implies a potential increase in
the decline ratio. That is, an algorithm satisfying the SLA in
the compacted system also satisfies it in the original system.

We now note that the compacted system is equivalent to
our balls-and-bins model. To see this, observe that once the
sets of available hosts for every request become identical (due
to steps 1 and 2), the requests themselves are also virtually
identical, and thus become equivalent to the identical balls
in our balls-and-bins model. Furthermore, as every host can
accommodate only a single request (due to step 3), the hosts
can be modeled as identical bins, where each available bin can
accommodate merely a single ball.

By Corollary 2, MaximizeParallelism satisfies the SLA
requirement in the balls-and-bins model, which is equivalent
to guaranteeing SLA also in the compacted system. As the
decline ratio in the compacted system serves as an upper bound
on the decline ratio (ε) the result follows.

The proof of Theorem 3 implicitly suggests that all the
requests are handled in a time slot belonging to the flavor
with the minimum number of available hosts. Furthermore, it

Algorithm 3 EstimateK(k)
1: for all ~c ∈ C do . for each flavor
2: n

(tot)
~c

←
∑s

i=1 n
(i)
~c

,k(tot)
~c

←
∑s

i=1 k
(i)
~c

3: end for
4: k̃ ← n ·min~c∈C

[
k
(tot)
~c

n
(tot)
~c

]
5: return α · k̃ + (1− α) · k

suggests that no two requests can be placed in parallel on the
same host. Thus, we expect better decline ratios in practice.

The following corollary shows that for providing perfor-
mance guarantees, it is sufficient to know only a lower bound
on the number of hosts available for every request flavor.

Corollary 4. Theorem 3 holds whenever k is a lower bound
on the number of available hosts for every request flavor.

Proof sketch. The proof is based on showing that increasing
the number of hosts available for every request flavor, while
keeping the number schedulers s and the sample size d
unchanged, does not increase the decline ratio. We introduce
a k superscript to our various notations to indicate the values
for a specific value of k. We then rearrange Eq. 1, capturing
the expected number of happy agents, and show that it can be
cast as E

[
Hk
s

]
=
∑s−1
f=0

[
Pr(F ks > f) ·D(k, f)

]
, where we

let D(k, f) = E
[
Hk
s |F ks = f + 1

]
− E

[
Hk
s |F ks = f

]
. It can

be shown that both Pr(F ks > f) and D(k, f) are monotone
non decreasing in k, thus completing the proof.

VII. PRACTICAL IMPLEMENTATION OF APSR

We now discuss practical aspects of implementing APSR.
The main caveat in implementing APSR is to estimate the
number of available hosts for any request flavor (k).

A straightforward option is to compute k explicitly, by
running a centralized periodic task that gathers the state from
all hosts. We note that such a task may be executed by the
APSR controller (in line 4). When the task is performed in
every time step (i.e., by setting T = 1 in APSR), then the
guarantees of Theorem 3 hold. However, this approach incurs
the communication overhead of querying all the hosts.

Alternatively, we propose to estimate k by relying on the
statistics which the schedulers gather during their regular
operation. Algorithm 3 describes our proposed algorithm
EstimateK(k) for estimating k.

Our algorithm assumes that each scheduler i maintains
counters n(i)

~c and k(i)
~c , which keep track of the overall number

of hosts queried, and the total number of available hosts of
flavor ~c, respectively. These counters are reset before each call
to algorithm EstimateK. The algorithm uses these counters to
estimate the overall number of hosts queried, and the overall
number of available hosts for each flavor. These values are then
used to obtain an estimate of the percentage of hosts that were
available for each request flavor. The normalized minimum of
all flavors is chosen as the pessimistic estimate of k. We then
use exponential averaging to produce an updated estimate of
k.

We emphasize that our approach does not require any
additional querying of hosts. We note that Algorithm 3 does
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not ensure that our estimate is a lower bound on the amount of
available resources in the system, as is required by Corollary 4.
However, due to the conservative approach in making the
estimate (mainly, line 4 in Algorithm 3) our estimation method
is effective when incorporated within our APSR Algorithm.

VIII. APSR EVALUATION

This section positions APSR with respect to known place-
ment algorithms, and evaluates the interplay between paral-
lelism, utilization, decline ratio, and throughput.

Trace-based Simulation: We model the arrival of requests
using a Poisson process with parameter λa. Unless stated
otherwise, we set λa to 20, and ε (APSR’s target decline ratio)
to 5%. We set APSR’s query budget to be B = n. That is,
the overall number of samples made by all of our parallel
schedulers is the same as the number of samples done by a
single OpenStack scheduler. We set APSR’s time interval for
estimating the state of the cloud to be T = 10, and set α = 0.1
for the EstimateK method.

We consider requests of unbounded duration as it is a com-
mon (though somewhat unrealistic) benchmark for placement
algorithms [4]. These settings provide a clean demonstration
of the relationship between utilization and parallelism. Due
to space constraints we omit our simulation results for finite
duration requests, but it should be noted that our results are of
similar qualitative characteristics for such settings as well.

We use the workloads described in Section IV, and simulate
large clouds with 30 replicas of the NFV dataset, 7 replicas
of the Amazon dataset, and 1 replica of the Google dataset
attaining a total of 13110, 7700 and 12477 requests, respectively.
We determine the number of hosts as the number of hosts
needed for successfully placing all the requests at once (by
some offline algorithm), as described in Section IV; we use
837 hosts for NFV, 876 hosts for Amazon and 5989 hosts for
Google. As discussed in Section IV, for every algorithm we
make a single attempt to place each request, and compute the
decline ratio accordingly.

We study the interplay between parallelism and the decline
ratio of APSR and other common placement algorithms. We let
APSR adapt the number of schedulers according to its estimate
of the system utilization, and report the throughput of APSR,
captured by the average number of active schedulers that handle
requests. For the competing algorithms, we consider various
values for the (fixed) number of schedulers.

Table VI summarizes the results. The algorithms DistFrom-
Diag and Adaptive are abbreviated to Diag and Adapt. The
average number of active schedulers used by APSR is indicated
below its decline ratio. First, notice that APSR’s decline ratios
are always within the SLA requirement (ε = 5%), and that
APSR uses between 14 and 20 active schedulers on average.
We recall that the average number of arriving requests per
cycle is λa = 20. It follows that it might be beneficial to
occasionally have more than 20 schedulers to handle bursts
of arrivals. However, we do not expect to have more than
20 active schedulers on average. Random and APSR yield
the lowest decline ratio, both of which are within the SLA

Dataset s APSR Rand FF FFR WF WFR Diag Adapt

N
FV

1 0.3 0.0 0.0 0.3 0.3 0.7 0.3
5 0.4 0.4 11.1 2.5 4.0 1.0 5.3 2.2
10 s̄ = 14 0.5 23.3 5.2 8.2 2.1 7.8 3.1
20 0.7 35.7 10.0 12.1 3.3 11.7 11.6
50 0.8 39.0 10.8 16.7 3.9 16.4 16.0

G
oo

gl
e

1 2.3 0.4 1.3 8.7 8.7 2.2 8.7
5 3.1 2.4 56.2 15.5 42.0 16.4 42.7 42.0
10 s̄ = 20 2.4 77.8 29.9 64.1 26.1 62.7 64.5
20 2.4 87.8 48.1 79.8 36.4 73.8 79.3
50 2.4 88.9 51.4 81.2 40.2 76.7 81.2

A
m

az
on

1 0.5 0.0 0.0 0.4 0.4 1.3 0.2
5 0.8 0.6 18.2 4.2 6.5 1.5 7.2 6.3
10 s̄ = 19 1.0 33.6 9.6 20.7 3.4 15.8 20.3
20 1.2 49.1 16.0 61.4 6.2 31.9 60.5
50 1.4 52.8 17.7 64.9 7.7 37.8 65.0

TABLE VI
DECLINE RATIOS (IN %, LOWER IS BETTER) OF APSR AND OTHER

PLACEMENT ALGORITHMS WHEN VARYING THE (FIXED) NUMBER OF
SCHEDULERS (s, HIGHER IS BETTER). APSR’S THROUGHPUT, CAPTURED

BY THE AVERAGE NUMBER OF ACTIVE SCHEDULERS (s̄), IS LISTED BELOW
ITS DECLINE RATIO.

APSR Random
Target Decline Ratio (ε) Number of Schedulers
3% 5% 10% 1 10 20

NFV

Number of Queries 1553K 811K 578K 11000K

Throughput [req./slot] 7.2 14 19.6 1 10 19.8

Decline Ratio (δ) 0.4% 0.4% 0.6% 0.3% 0.5% 0.8%

Google

Number of Queries 3920K 3860K 3823K 74724K

Throughput [req./slot] 19.8 19.9 19.9 1 10 19.9

Decline Ratio (δ) 3.0% 3.1% 2.9% 2.3% 2.4% 2.4%

Amazon

Number of Queries 469K 370K 354K 6745K

Throughput [req./slot] 15.3 19.3 19.9 1 10 19.9

Decline Ratio (δ) 0.7% 0.8% 1.0% 0.5% 1.0% 1.4%

TABLE VII
TOTAL NUMBER OF QUERIES, THROUGHPUT AND ACTUAL DECLINE RATIOS

OF APSR VERSUS RANDOM.

constraint. However, the communication overhead of APSR is
much lower than that of Random: the total number of queries
made by all the schedulers which APSR use is the same as
that of a single scheduler of Random. We note that this less
accurate view of the system state causes APSR’s decline ratio
sometimes to be slightly higher than that of Random (although
always within the SLA).

Table VII compares the throughput, the decline ratios, and the
total number of queries of APSR and Random. Note that APSR
reduces the total number of queries by at least 85%. Increasing
APSR’s target decline ratio increases its parallelism, which
in turn increases the throughput. This highlights the tension
between decline ratio and parallelism. The best achievable
throughput is 20, as it is the average arrival rate. Indeed, APSR
and Random with fixed 20 schedulers are very close to the
maximal throughput. Also, recall that unlike Random, APSR
may fail due to not finding an available host in the queried
hosts; thus its decline ratio is sometimes higher.

OpenStack Evaluation: We now evaluate APSR in an
OpenStack environment (Mitaka release) [24] on an HP
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APSR Filter Scheduler
Target decline ratio (ε) Number of schedulers
2% 3% 5% 1 8 16

Number of queries 110K 102K 108K 2240K

Avg # of schedulers allowed 13.5 16 16 1 8 16

Throughput [req./sec.] 2.6 2.8 2.6 1 2.6 2.7

Actual decline ratio (δ) 1.0% 0.7% 0.7% 0% 3.8% 13.6%

TABLE VIII
OPENSTACK: NUMBER OF QUERIES, AVERAGE NUMBER OF SCHEDULERS,

THROUGHPUT, AND ACTUAL DECLINE RATIOS OF APSR AND FILTER
SCHEDULER FOR THE NFV DATASET.

ProLiant BL460c Gen9 server with two Intel(R) Xeon(R) E5-
2680v4 processors with 28 cores (56 cores total) running at
2.4 GHz, and a total RAM of 256GB. We run a functional
scheduler implementation, and use OpenStack’s Benchmarking
to emulate the remote hosts [22]. We periodically send 200
request batches from the NFV dataset and wait for the scheduler
to place all of them. In total, we send 2800 requests to place on
400 hosts, attaining a resource utilization of ≈90% at a steady
state. We set APSR’s parameters to T = 10sec, B = 100 and
ε ∈ {2%, 3%, 5%}.

Table VIII compares the throughput, decline ratio, and total
number of queries of APSR and the default Filter scheduler.
The table shows that APSR’s decline ratio is always within the
target bound. Furthermore, APSR attains a similar throughput
to running 8 Filter schedulers in parallel, while keeping a much
lower decline ratio than that presented by 8 Filter schedulers.
Finally, APSR reduces the number of host queries by ≈ 90%.

IX. DISCUSSION, CONCLUSIONS AND FUTURE WORK

Our work seeks high-throughput placement of virtual ma-
chines to better cope with long service chains. Parallelism
improves throughput but many placement algorithms behave
poorly in parallel settings. Our APSR implements random
placement while minimizing the communication overhead, and
dynamically adjusts the degree of parallelism to ensure that
decline ratios maintain their SLA requirements. We formally
prove the correctness of APSR and provide insights into the
possibilities and limitations of parallel resource management.

We evaluate APSR on three real workloads and demonstrate
its capability to provide high degrees of parallelism with
small decline ratios, and low communication overheads. We
then integrate APSR into the OpenStack cloud management
platform. We show that APSR matches the best throughput of
OpenStack’s default Filter Scheduler while reducing the decline
ratio from up to 13.6% to ≈ 1%, and the communication
overheads by ≈ 20x. That is, APSR also implies less clutter
and drain on the system.

Looking into the future, we observe that OpenStack only
gains up to 3x speedup from parallelism, whereas APSR easily
supports many parallel schedulers. Thus, we plan to carefully
benchmark OpenStack, identify its current bottlenecks, and
unleash its full potential for parallel resource management.
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