
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Integrating Online Safety-related Memory Tests in Multicore Real-Time Systems / Donnarumma, C.; Biondi, A.; De Rosa,
F.; Di Carlo, S.. - ELETTRONICO. - 2020-:(2020), pp. 296-307. (Intervento presentato al convegno 41st IEEE Real-
Time Systems Symposium, RTSS 2020 tenutosi a Houston, TX, USA nel 2020) [10.1109/RTSS49844.2020.00035].

Original

Integrating Online Safety-related Memory Tests in Multicore Real-Time Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/RTSS49844.2020.00035

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2914794 since: 2021-07-28T14:59:46Z

Institute of Electrical and Electronics Engineers Inc.

Integrating Online Safety-related Memory Tests in
Multicore Real-Time Systems

Ciro Donnarumma†, Alessandro Biondi†, Francesco De Rosa, and Stefano Di Carlo‡
Rete Ferroviaria Italiana S.P.A., Italy

†Scuola Superiore Sant’Anna, Pisa, Italy
‡Politecnico di Torino, Torino, Italy

Email: {ciro,donnarumma, alessandro.biondi}@santannapisa.it

Abstract—Almost all functional safety standards that regulate
safety-critical domains impose to periodically test hardware plat-
forms at run-time. RAM memories are among the fundamental
components of computing platforms and are notably subject to
faults. Hence, they are also primary components to be tested.
Unfortunately, RAM tests are destructive, require to be atomically
executed, and are not cheap from a computational perspective.
As such, if not properly managed, they can jeopardize the timing
performance of a real-time system, especially when running upon
a multicore platform.

This paper proposes a software architecture to integrate
online memory tests on multicore real-time systems. Furthermore,
by jointly considering a task model and a safety model based on
the EN50129 safety standard, it presents an approach to compute
the optimal configuration of memory tests that preserves the
system schedulability and guarantees a given tolerable functional
failure rate (TFFR). Experimental results show that the proposed
approach allows achieving a marginal impact on schedulability
while preserving a TFFR that is compatible with the highest
safety integrity level specified by the EN50129.

I. INTRODUCTION

Embedded computing systems with real-time requirements
play a crucial role in a multitude of safety-critical systems [1].
They are employed in several domains such as railway, auto-
motive, and avionics, where a failure of the control software
can determine catastrophic events or produce severe damages
to the surrounding environment or the system itself. For
instance, a failure in the railway signaling system could result
in a loss of human lives, whereas the failure of a satellite
control system could destroy the satellite itself. Although in
the latter case there is no loss of human lives, there is an
unacceptable loss of a huge amount of money. To avoid
these kinds of issues, domain-specific safety standards have
been established and safety-critical embedded systems must
comply with them to be deployed. These standards typically
define a set of requirements and techniques that safety-critical
embedded systems must implement to minimize the probability
of catastrophic events.

One of the most common techniques suggested by the
safety standards is the redundancy (also called composite fail-
safe [2]). This technique consists in the replication of the whole
processing system with the following objectives:

• Fault detection, i.e., the replication is useful to detect
the failures of a replica to bring the system into a safe
state (e.g., fail-stop if it is possible to switch off the
system) when a fault is detected;

• Fault tolerance, i.e., if a failure occurs in one replica,
another one can safely continue to offer the service
(useful when it is not safe to switch-off the system).

To name a relevant case, the redundancy scheme that is
typically used in the railway domain is the 2-out-of-2 (2oo2)
composite fail-safe. This redundancy scheme is composed
of two independent replicas executing the same operations
over time. Non-restrictive activities can progress only if both
replicas agree. Although this scheme allows detecting a failure
in one replica, it could be not enough. A hazardous fault could
be dormant, i.e., not detectable through the replication, for
a long time, hence causing errors under particular conditions
only. The longer the time a fault is dormant, the higher the
probability that a co-incident fault also occurs in the other
replica. In this way, the probability that the two replicas
agree on an unsafe operation could become very high. Online
periodic testing has to be performed to reduce the time needed
to detect a fault to an acceptable level [2], hence reducing the
probability that a fault could appear in both replicas.

The EN50129 [2] and EN60730 [3] safety standards,
respectively for the railway domain and the domotics domain,
describe the failure modes of the components belonging to an
integrated circuit, along with techniques to detect such failures
using periodic online testing. Memories are designed very
tightly to the technology limits and are among the components
that are most prone to faults [4]. The EN50129 and EN60730
standards distinguish between two types of memory areas:

• Invariable memory, that is a memory area of a process-
ing system whose contents are not expected to change
during the program execution (e.g., ROM or the text
area in RAM).

• Variable memory, that is a memory area of a process-
ing system whose contents are expected to change
during the program execution (e.g., global data or
stack areas in RAM).

Periodic online testing of invariable memories aims at
detecting all faults affecting constant data in memory. This
is typically done using check-sums or the replication and
comparison of the invariable address space.

Differently, variable memory tests write a known data
pattern in memory, perform some data manipulation, and
finally check that the memory content is consistent [5]. This
means that these tests overwrite the content of the memory
(e.g., data used by a task), which must hence be restored

once the test completes. Consequently, they are said to be
destructive.

Conversely, periodic online testing of variable memory
aims at detecting more complex faults (specifically, those
that pertain to the so-called DC fault model for data and
address [4], [5]) such as stuck-at faults, in which a memory cell
is locked to certain value, stuck-open, in which a cell cannot be
accessed due to e.g. an open word line or an open bit line, open
or high impedance outputs, as well as short circuits between
signal lines.

To the best of our knowledge, almost all safety standards
require the execution of the periodic online memory tests of
this kind. To name two relevant examples, this is the case for
the EN50129 in the railway domain and the EN60730 for the
domotics domain. Furthermore, also the AUTOSAR standard
for the automotive domain provides a detailed description
of how these tests must be structured and executed by the
Electronic Control Units (ECUs) present on a car [6]. To
our records, online memory tests have been deployed in
several industrial safety-critical systems, but almost all of them
considered uniprocessor platforms and possibly cyclic task
scheduling.

Unfortunately, integrating online memory tests in a mul-
ticore real-time system based on fixed-priority scheduling
is not straightforward, both from a system-level and design
perspective, and no previous work addressed this problem.

Contribution. This work tackles this issue by making the
following contributions. First, it proposes a software archi-
tecture to integrate online memory tests on a fixed-priority,
multicore real-time system. The architecture takes into ac-
count technological constraints of modern embedded multi-
core platforms and implementation issues are also discussed.
Second, by jointly considering a real-time task model and a
safety model based on the EN50129 standard, it presents an
approach to compute the optimal configuration of a memory
test that preserves the system schedulability and matches a
safety requirement (in terms of tolerable functional failure
rate). The approach is based on schedulability analysis, where
the timing parameters of the memory test are linked to a
safety requirement. Finally, experimental results to assess the
performance of the proposed approach are presented, both in
terms of schedulability and tolerable functional failure rate.
The experiments are based on the profiling of the March-SS
memory test [7] running on a Cortex-A53 processor.

Paper structure. The rest of this paper is organized as
follows. Section II details the problem addressed in this work.
Section III presents the model adopted in this work, which
includes both a task and platform model, and a safety model
based on the EN50129 standard. Section IV presents the pro-
posed software architecture to integrate online memory tests in
a multicore real-time system. Section V proposes an analysis-
driven approach to configure the memory test. Section VI
presents the experimental results. Section VII discusses the
related work, and Section VIII concludes the paper.

II. PROBLEM DEFINITION

This section describes a set of key properties of typical
online memory tests proposed in previous work. Such prop-
erties are later used to delineate the challenges that have to

be faced to integrate memory tests in a multicore real-time
system. RAMs, i.e., variable memories, are considered.

A. How tests for RAMs work

March tests are the most popular algorithms used to per-
form the testing of RAMs. A march test consists of a well-
ordered finite sequence of march-elements {M0;M1; . . . }.
Each march element Mi denotes a finite ordered sequence of
read and/or write operations to be performed on each memory
location. A march element Mi+1 can be executed only once all
the operations of the previous march element Mi have been
applied to each memory location. A march element can be
executed in an increasing (⇑), decreasing (⇓), or irrelevant (m)
order of memory addresses [8], [9].

A real example of march test for RAMs is MATS+ [10],
which is typically described by the following sequence of three
march-elements:

MATS+ = {m (w0);⇑ (r0, w1);⇓ (r1, w0)},

where w0 and w1 denote write operations of values 0 and 1,
respectively, and r0 and r1 denote read and verify operations
of the expected expect values 0 and 1, respectively. The
above notation indicates that MATS+ first writes 0 into all the
memory cells with an irrelevant order (m (w0)). Subsequently,
it reads every memory cell starting from the last one verifying
that it contains 0, and then writes 1 (⇑ (r0, w1)). Finally, it
reads each memory cell starting from the first one, verifying
that it contains 1, and then writes 0 (⇓ (r1, w0)). From the
above description, it is easy to understand that march tests
always have a linear time complexity O(n), with n being the
number of cells in the memory. The linear time complexity is
notably the most attractive feature of these algorithms [8].

B. Properties of RAM tests

RAM tests are characterized by three main properties.
Atomicity is the most relevant one. As it is described in
the previous section, a RAM march test applies a pattern of
operations onto a sub-set or all memory locations. To ensure
the validity of the result, a test for variable memories must be
atomic in the sense that it needs to access the memory under
test in an exclusive way. From a scheduling perspective, this
implies that the test executes:

• in a non-preemptive fashion with respect to the other
tasks running on the same core;

• in a non-preemptive fashion with respect to the in-
terrupt service routines (ISRs) that are potentially
executed on the same core; and

• without the interference of the other cores, as they can
issue accesses to the memory that can jeopardize the
test.

Furthermore, as these tests generally interest the whole
RAM (or at least a consistent portion of it), they tend to require
a large amount of time to execute, especially if considering
modern embedded platforms that could likely dispose of a con-
siderable amount of RAM memory (in the order of some GBs,
as it happens in the railway domain). Hence, computational
heaviness is the second property of RAM tests.

Finally, variable memory tests are destructive. Indeed, they
write a known data pattern in memory, perform some data
manipulation, and finally check that the memory content is
consistent. This means that RAM tests overwrite the content
of the memory (e.g., data used by a task), which must hence
be restored once the test completes. Consequently, such tests
are said to be characterized by a destructiveness property.

C. Issues arising from the integration of RAM tests

Due to the atomicity property, a lot of computational power
is wasted during the test execution. Indeed, in a multicore
platform, while one core is testing the RAM, all the other cores
shall be halted. Furthermore, interrupts cannot be served, so
their latency increase up to the test duration. These problems
are further exacerbated because the tests are time-consuming
(computational heaviness). Clearly, a plain implementation of
such tests in which, once the test starts, the whole memory
is tested is not acceptable for a real-time system, as a huge
non-preemptive blocking would be generated to all tasks and
ISRs in the system. The only way to overcome this issue is to
partition the memory into several segments of equal size SSIZE
and testing them in an independent fashion. In doing so, the
duration of atomic, non-preemptive executions is reduced to
the time needed to test one memory segment only.

It is worth observing that variable memory tests typically
detect also inter-word faults (i.e., write or read operations on a
memory word causing a change of the content of other words)
due to coupling issues among words [4]. Unfortunately, the
partitioning of the memory into disjoint memory segments
limits the detection of inter-word faults, as only those that
affects words belonging to the same segment can be detected.
Nevertheless, it is very likely that inter-word faults affect
words that are mapped onto close addresses [4], [5]. Therefore,
a memory partitioning scheme that splits the memory into
several overlapped segments (still of size SSIZE) significantly
improves the inter-word faults coverage. The last of such
overlapping segments covers both a portion at the end and
the beginning of the memory (wrap around). This scheme is
the one considered in this work and is illustrated in Figure 1.

RAM

Segment S1

Segment S3

SSIZE

SSIZE

Segment S5

Segment S2 SSIZE

Segment S4 SSIZE

H
ig

h
ad

dr
es

se
s

SSIZE
Segment S5

(1st half)
SSIZE/2

Segment S5
(2nd half)

SSIZE/2

W
rap around

Fig. 1. Illustration of the memory partitioning with overlapped memory
segments to be tested.

To address the destructiveness property, the content of a
segment has to be saved before the test is executed on it, and
eventually restored after the test completes its execution. In this

way, the test becomes transparent to the application. Anyway,
there is still another subtle problem related to destructiveness.
Indeed, there will always be a critical set of memory segments
that store the instructions and/or the data of the test routine
itself. Clearly, the instruction and data fetched by the CPU
to perform the test must not be corrupted by the test itself.
This problem can be solved by replicating the test routine
(instructions and data) into different memory segments. The
memory is usually tested by the primary copy of the test, while
the memory storing the primary is tested by the secondary
copy. The two copies must be placed in non-adjacent segments
in order to also test the memory segment that half overlaps
a segment used by primary and half a segment used by
secondary. An iteration of the test algorithm could otherwise
destroy part of the content of both the copies.

D. Behavior of RAM tests

Given the partitioning of the memory into segments of size
SSIZE as discussed above, it holds that the larger the size of
the segments:

• the higher the duration of the atomic (non-
preemptable) test of a single segment;

• the higher the interrupt latency;

• the higher the inter-word fault coverage;

• the lower the overhead and the time needed to test the
whole memory.

Hence, the memory segment size SSIZE is a crucial parameter
that influences several performance aspects of the system.

As we have seen in the last section, to address the de-
structiveness property, the test of each memory segment SUT
(segment under test) has to be arranged into three phases:

1) the content of SUT is copied into a free memory segment
SBK (backup segment).

2) the test algorithm destroys the content of SUT , verifying
that it is fault free.

3) the content of SUT is restored, copying it back from SBK .

III. SYSTEM MODEL

A. Platform and real-time task model

This work considers a hardware platform consisting of a set
P = {P1, . . . , Pm} of m homogeneous cores (or processors)
sharing a memory of size M . The memory can be tested
with a minimum granularity SSTEP, i.e., each memory segment
used by the test must have size SSIZE = k · SSTEP, with
k ∈ N≥1. Each core Pk executes a set Γk = {τ1, . . . , τnk

} of
nk periodic (or sporadic) tasks. Each task τi,k is characterized
by a worst-case execution time (WCET) Ci,k, a release period
Ti,k (or minimum inter-arrival time), and a constrained relative
deadline Di,k ≤ Ti,k. The utilization of task set Γk is denoted
by UΓk

=
∑
τi,k∈Γk

(Ci,k/Ti,k). Tasks are scheduled according
to partitioned fixed-priority scheduling, i.e., each task is always
executed by the same core (it cannot migrate) and on each core
the tasks are scheduled according to a fixed-priority algorithm.

Each task τi,k is assigned a priority pi,k and can be blocked
by lower-priority tasks for at most Bi,k time units (e.g., due

to a locking protocol, non-preemptable sections, etc.). For the
sake of simplicity, we consider that for each Pk the tasks
belonging to Γk are ordered with a decreasing priority order
(i.e., pi,k ≥ pi+1,k). Finally, we denote by Ri,k an upper bound
on the worst-case response time of τi,k and by hp(τi,k) the set
of higher-priority tasks with respect to τi,k running on Pk.

B. Safety model

Failure of
the safety-

related
function
(TFFR)

Failure of A
(FRA)

Failure of B
(FRB)

Fig. 2. Fault Tree of 2oo2 composite fail-safe architecture. A and B are
two replicas executing the same safety-related function. The system fails in a
hazardous way if both replicas experience a fault at the same time.

A safety-related function is a system function perform-
ing elaborations related to the safety of the environment
in which the system operates. Any safety-related function
has an associated Tolerable Functional Failure Rate (TFFR),
which is the maximum rate at which the function itself can
experience failures. The TFFR is evaluated by the risk analysis
of the function. For instance, according to the EN50126 and
EN50129 standards [2], [11] (adopted in the railway domain),
a safety-related function with an integrity level SIL 4 must
satisfy 10−9 ≤ TFFR < 10−8.

In the railway domain, safety-related functions are typically
performed by a 2oo2 composite fail-safe system. Such a kind
of system is composed of two replicas: A, with a failure
rate FRA, and B, with a failure rate FRB . Each of them
is a sub-system compliant to the model described above and
independently performing the same safety-related function
(independence is necessary to avoid common-cause failure).
The results of the safety-related function evaluated by replica A
are compared against the results of the safety-related function
evaluated by replica B. Only if there is an agreement on these
results, the system can rely on them continuing its elaboration.
If the results provided by the two replicas are different, an
error has been detected, so the system goes into a fail-safe
state. This safety mechanism allows the detection of errors,
i.e., incorrect results produced by the safety-related function.
Fig. 2 shows the fault-tree of this kind of system architecture
in lack of common-cause failure.

A 2oo2 architecture can detect only the faults affecting the
results produced by one of the two replicas. Anyway, a fault
could be dormant, i.e., not affecting the result of the safety-
related function. For instance, if the safety-related function
relies on a flag stored in a memory cell affected by the stuck-
at-0 fault (the cell is locked to 0) and the value of such a
flag is actually 0, the fault will not affect the results evaluated
from the function. This is the case of a dormant fault that is not
detectable by the comparison made by the 2oo2 architecture. If
a fault stays dormant for a long time, there exists the possibility
that the same fault (e.g, stuck-at-0 on the same memory cell

Failure Fault
Detection

Fault
Negation

Fault repaired,
iterm restored

ΔDT

ΔSDT

δD δN

δR

time

Fig. 3. Life-cycle of a fault according to the EN50129 standard.

storing a flag of interest) occurs in the other replica. In this
situation, the 2oo2 architecture could rely on a wrong result of
the safety-related function leading to unsafe operations. This
means that any dormant fault shall be detected, and a safe-
state enforced, in a time that is sufficiently short to ensure that
the risk of a second fault occurring during the detection time
is smaller than the specified probabilistic target given by the
TFFR.

Fig. 3 shows the typical life-cycle of a fault according to
the EN50129 standard [2]. As soon as a failure comes out, it is
detected in a detection-time δD. Then, some countermeasures
are taken to negate the fault, bringing the system into a safe
state.

The time δN required to negate a fault is called negation
time, while the time δR between the detection of the fault and
its repair is called repair time. Once the fault is negated, the
system enters into a state of safe operation. Instead, once the
fault is repaired, the system will enter again into its state of
normal operation. The total time ∆SDT = δD + δN between
the occurrence of a failure and its fault negation is called safe
down-time.

In this work, we consider the same safety model specified
by the EN50129 [2] standard. Specifically, it is assumed that
the system has constant failure rates (i.e., the number of
failures per unit of time) FR over time, and that all faults
are detected and have to be negated (with the exception of
hazardous common cause failures, which must not be present
by construction [2]). Still following the EN50129, we assume
that the failure rate is much smaller than the safe down rate
(1/∆SDT), i.e., FR × ∆SDT << 1, and that the detection
time is larger than the negation time, i.e., δD >> δN , which
implies that the safe down-time can be approximated with the
detection time, i.e., ∆SDT ≈ δD.

A fault can be detected at the earliest when the test starts
and at the latest when the test completes. As considered by the
EN50129, given the time ∆T that a test needs to check the
whole memory, a fault is detected on average in ∆T /2 time
units, i.e., δD = ∆T /2. Under the previous assumptions, the
EN50129 standard defines an upper bound for the time ∆T

within which the whole memory has to be tested, that is

∆T < ∆max
T =

TFFR
(FRA × FRB)

(1)

Test-Preparer

Real-Time Operating System

Tasks-Set

Test-Executor
(Primary copy)

Hardware Platform

Core P1
(Master)

Core P2
(Slave)

Core P2
(Slave)

Core P3
(Slave)

RAM

Test-Executor
(Secondary copy)

Test-Dispatcher

Fig. 4. Illustration of the proposed software architecture for memory testing
on a 4-core platform.

RAM

Global data

Stack

Instruction

Te
st

-E
xe

cu
to

r
(C

o
p

y
1

)

Global data

Stack

Instruction

Te
st

-E
xe

cu
to

r
(C

o
p

y
2

)

DMA Buffer 2

DMA Buffer 1

D
M

A
 B

u
ff

er
 R

eg
io

n

DMA Buffer n

≥ SSIZE

Fig. 5. Memory layout of the proposed software architecture.

IV. PROPOSED SOFTWARE ARCHITECTURE

This section presents a software architecture to integrate
RAM tests in multicore real-time systems scheduled by fixed-
priority partitioned scheduling. The architecture is illustrated
in Fig. 4. To ensure the atomicity property of memory tests,
the architecture splits the processor cores into two types:

• the master core (P1, without loss of generality), which
is in charge of executing the memory test algorithm;
and

• the slave cores (i.e., all the other cores of the platform)
that, when the test is activated, busy-wait for the
completion of the test algorithm on the master core
to avoid interfering with the execution of the test.

The proposed software architecture also splits the logic
behind the memory tests into two components:

• The Test-Preparer, which selects the next memory
segment to test, evaluating its base address and its
size. This functionality is replicated over all the cores
of the platform.

• The Test-Executor, which executes the test algorithm
on the memory segment selected by the Test-Preparer.
It is executed only on the master core.

The Tests-Preparer component knows the memory layout
of the system. In some platforms, multiple RAM banks or
different portions of the same memory bank are mapped
onto the addressing space seen by the processor in a non-
contiguous fashion. Therefore, the Tests-Preparer must dispose
of an internal description of the memory layout, which is
called RAM-descriptor. The RAM-descriptor is a list of all
the memory blocks that compose the whole RAM addressing
space, as seen by the processor. A memory block is a portion
of the RAM that is contiguously mapped onto the processor

addressing space. Hence, the RAM-descriptor contains the start
address and the size of all the memory blocks.

For each core, the real-time operating system (ROTS) is
in charge of periodically activating a test task every TS time
units, which runs at the highest priority in the system with
disabled interrupts. Each job of a test task serves the purpose of
testing one memory segment. The test tasks are synchronously
released on all cores.

Each test task first executes the Test-Preparer, which selects
a memory segment with size SSIZE from a memory block to be
tested, hence issuing a test request defined by the base address
and the size of the selected segment. When all the segments
composing a block have been tested, the Test-Preparer selects
the next block in the RAM-descriptor. When all the segments
of all the blocks are tested, the Test-Preparer restarts the
selection from the first block.

After completing the execution of the Test-Preparer, the
test task running on the master core executes the the Test-
Executor, which is a component that performs these actions in
the following order:

1) Inter-core synchronization: it busy-waits until all the test
tasks running on the slave cores completed the execution
of the Test-Preparer (to ensure atomicity).

2) Backup of the segment under test to avoid data loss
(remember that the test is destructive).

3) Execution of the test algorithm on the segment under test
selected by the Test-Prepararer.

4) Restoration of the content tested segment.
5) Wake-up of the slave cores: it sends a notification to the

slave cores to signal the completion of the memory test.

Conversely, still after completing the execution of the Test-
Preparer, the test tasks on the slave cores (i) first send a
notification to the master core (for the purpose of the inter-
core synchronization mentioned above); and then (ii) busy-wait

until the completion of the one on the master core, i.e., after
the completion of the Test-Executor. An example schedule of
the test tasks on a dual-core system is illustrated in Figure 6.

time

time

S,1

1,1

2,1

S,2

1,2

2,2

P1

P2

Normal execution Test-Preparer

SpinningBlocking sectionTest-Executor

Test-Dispatcher
Blocking

Fig. 6. Example schedule on dual-core system with the test tasks.

The busy-waiting employed by the Test-Executor can be
implemented via classical shared-memory spin locks, as it
occurs before starting the memory test. Differently, to avoid
issuing memory accesses that interfere with the test, the busy-
waiting performed by the slave cores has to be implemented
by spinning on a processor register and waiting for an inter-
core interrupt to exit the spinning. In this case, the fetching of
the spinning instruction is the only thing that may interfere
with the test (note that the ISR of the inter-core interrupt
is executed when the test is completed): its interference can
be mitigated by waiting the maximum time to cache the
instruction before starting the Test-Executor or via a cache
lock-down mechanism.

As mentioned in the previous sections, the whole RAM is
treated as variable memory. This is true also for the portion
of memory storing the code and the instruction of the Test-
Executor itself. In order to also test these segments, the Test-
Executor has to be duplicated in memory (both for the master
core and the slave cores). Each copy (replica) of the Test-
Executor disposes of its own private instruction area, global
data area, and stack, so that all the memory accesses are
restricted to its private memory only. The resulting memory
layout is illustrated in Figure 5.

A dispatching component to select the copy of the Test-
Executor to be used is hence needed. The Test-Dispatcher lives
between the Test-Preparer and the two copies of the Test-
Executor. When the Test-Preparer issues a test request, the
Test-Dispatcher performs the following operations: if the test
request does not interest one of the memory segments used
by the primary copy of the Test-Executor, then it forwards the
request to the primary copy; otherwise, it forwards the request
to the secondary copy.

Note that the proposed software architecture is also appli-
cable to systems that dispose of peripheral devices with direct
memory access (DMA). These devices are programmed by
the cores to autonomously access a buffer stored in RAM.
For example, this is the case for Ethernet devices that, due

to their high communication throughput, have a DMA engine
that stores the frames received by the network interface into a
memory buffer, without any intervention of the cores. To avoid
data loss (e.g., incoming Ethernet frame), such devices cannot
be halted, and hence memory tests cannot be performed on the
memory regions used by such devices. Nevertheless, safety-
related communications must always be protected by error-
checking mechanisms and error-correcting codes, therefore
memory faults that affect such regions would be anyway de-
tected by other software components. In this case, the proposed
architecture can be used by confining the memory buffers
accessed by DMA engines of peripheral devices in a memory
region and removing that region from the RAM-descriptor
of the Test-Preparer. Clearly, this will make impossible to
detect the inter-word coupling faults between the memory cells
belonging to the DMA buffers and the other ones. However,
this is unavoidable without stopping the DMA engines, i.e.,
without accepting to lose communication data.

V. CONFIGURING MEMORY TESTS

This section presents a methodology to configure the
memory test such that (i) all tasks in the system, i.e., all task
sets Γk, are schedulable; and (ii) the safety bound given by
Equation (1) is respected.

Following the architecture presented in the previous
section, the memory test is implemented with a set of
synchronously-released, periodic tasks, one for each core,
running at the highest priority to ensure the atomicity property.
The test task on core Pk is denoted by τS,k and its WCET is
denoted by CS,k. All test tasks are released with period TS .

According to partitioned fixed-priority scheduling, a sys-
tem can be deemed schedulable if all task sets of all cores
are schedulable. Hence, by applying standard response-time
analysis [12] to the application tasks on each core, a system
can be deemed schedulable if

∀Pk ∈ P,∀τi,k ∈ Γk, Ri,k ≤ Di,k, (2)

where Ri,k is least positive fixed point of the recurrence

Ri,k = Bi,k +Ci,k +
∑

τj,k∈hp(τi,k)

⌈
Ri,k
Tj,k

⌉
Cj,k +

⌈
Ri,k
TS

⌉
CS,k.

(3)

Schedulability of the test tasks should also be checked (i.e.,
they must complete before their next activation): this aspect is
addressed in a following subsection.

The challenge faced in this work consists in configuring
the parameters TS and CS,k, for k = 1, . . . ,m, such that both
Equation (2) and the safety bound of Equation (1) are satisfied.
We proceed by studying the dependency of parameters TS and
CS,k on the safety bound of Equation (1).

A. Impact of the safety bound

According to the safety model presented in Section III-B
(that follows from the EN50129 standard), the test of the whole
RAM must be completed every ∆T time units, bounded by
Equation (1). The memory partitioning scheme presented in

TS

Test termination

μ1 Waiting for slavesτS,1 σ x SSIZE
Bs,1

μ2 Waiting for masterτS,2
Bs,2

μ3 Waiting for masterτS,3
Bs,3

μ4 Waiting for masterτS,4
Bs,4

time

Fig. 7. Example schedule of the test tasks on a 4-core platform.

Section II-C splits the memory into NS overlapped memory
segments of size SSIZE, where

NS =
2 ·M
SSIZE

,

which allows decomposing the test of the whole memory into
NS shorter tests executed upon different memory segments.
Each periodic instance of the test (specifically, each job of the
test task running on the master core) performs one of such
NS tests. Given that the whole memory has to be tested in
∆T time units, the period TS of the test tasks must be

TS =
∆T

NS
=

∆T · SSIZE

2 ·M
. (4)

Note that the above equation allows bounding the period of the
test tasks with the safety bound of Equation (1), as it follows
that

2 ·M · TS
SSIZE

< ∆max
T =

TFFR
(FRA × FRB)

,

which implies

TS <
∆max
T · SSIZE

2 ·M
. (5)

B. Modeling the test tasks

Likewise the application tasks in the sets Γk, also the test
tasks may suffer blocking, e.g., in the case in which one of the
application tasks needs to execute a non-preemptive section.
Hence, to adopt a more general model for the test tasks, we
consider that each test task τS,k can be blocked by low-priority
tasks by at most Bi,k time units. An example schedule of the
test tasks on a four-core platform is illustrated in Figure 7.

We proceed by studying the WCET of the test tasks. The
test task τS,1 running on the master core executes the compo-
nents of the software architecture proposed in Section IV, i.e.,
it starts executing the Test-Prepararer, then the Test-Dispatcher,
and finally the Test-Executor. Note that the execution of such
a task can be split into three phases:

• Test preparation: the task executes the Test-Preparar
and the Test-Dispatcher, hence executing a set of
instructions in preparation of the actual test that are
independent of the amount of memory SSIZE to be
tested;

• Waiting for slave cores: the task synchronizes with the

other test tasks running on the slave cores by busy-
waiting as discussed in Section IV;

• Actual test: the task performs the actual test of a
memory region, hence executing for a time that is
proportional to SSIZE.

Conversely, the execution of the slave tasks can be split into
two phases, i.e., the test preparation and the waiting for the
master core.

Let µk denote the maximum duration of the test preparation
phase for each task τS,k. Also, let σ · SSIZE be the maximum
time required to test a memory region of size SSIZE, where σ
is a proportional factor that determines the “speed” of the test.
The following lemma allows computing the WCET of each
test task.

Lemma 1: The WCET of test task τS,k is given by

CS,k = max

{
µk, max

Px∈P\{Pk}
{BS,x + µx}

}
+ σ · SSIZE. (6)

Proof: Let us first consider the test task τS,1 of the master
core. Two execution scenarios for this task are possible: (i) the
task does not wait for the completion of any another test task
running on a slave core, and (ii) otherwise. In the first case, the
execution of the task just comprises the test preparation and
the actual test. Hence, its WCET is given by µk +σ ·SSIZE. In
the second case, being the test tasks synchronously released,
τS,1 cannot wait more than the time that spans from its release
to the latest completion of the test preparation phases of the
other test tasks. Each slave task τS,k, with k > 1, completes
its preparation phase at the latest after having been blocked
by the maximum time BS,k and having executed by at most
µk time units. This means that, independently of the time it
is blocked and the time it takes to execute its test preparation,
task τS,1 is ready to perform the actual test after at most c1 =

max
Px∈P\{P1}

{BS,x + µx} time units following its release at time

r. For the whole time interval [r, r+c1], τS,1 can either execute
the test preparation or busy-wait (note that it is always possible
that the task is not blocked). Hence Equation (6) holds.

Now, consider the test slave tasks τS,k of the slave cores
(k > 1). After executing the test preparation, such tasks have to
wait for the completion of the test task on the master core. The
actual test performed by the master core can start when all the
test tasks complete their test preparation phases. All other test
tasks τS,x with k 6= x, complete their test preparation phases
no later than ck = max

Px∈P\{Pk}
{BS,x + µx} time units after

the release of τS,k at time r. If τS,k is blocked by b ≤ BS,k
time units and executes for ν ≤ µk time units, two scenarios
are possible: (i) ck ≥ b+ ν, and (ii) otherwise. In case (i), as
discussed for the test task on the master core, we have that for
the whole time interval [r, r+ ck] task τS,k can either execute
or busy-wait. After time r + ck, the actual test can start on
the master core, hence determining that τS,k waits for other
σ·SSIZE time units. Note that the sum of these two contributions
is matched by Equation (6). In case (ii), the actual test starts
when τS,k itself completes its test preparation phase at time
r + b + ν. By definition, in time interval [r, r + b + ν] task
τS,k executes for ν ≤ µk time units. Hence, the total execution

time of τS,k is bounded by µk plus the time to perform the
actual test (σ · SSIZE). Hence the lemma follows.

Similarly, the schedulability of the test tasks can be checked
as follows.

Lemma 2: The test tasks are schedulable if

max
Px∈P

{BS,x + µx}+ σ · SSIZE ≤ TS . (7)

Proof: Each test task τS,x can be blocked by at most
BS,x time units and then can execute by at most µx time
units before completing its test preparation phase. Hence, after
maxPx∈P{BS,x + µx} time units from their release, all test
tasks complete their test preparation phases. Subsequently, the
actual test can take at most σ ·SSIZE, after which all test tasks
finish executing. Hence the lemma follows.

Thanks to Lemma 1 and Equation (4), it is possible to
compute the maximum utilization of each test task τS,k as:

US,k =
CS,k
TS

=
2 ·M
∆T

·

(
LS,k
SSIZE

+ σ

)
, (8)

where

LS,k = max

{
µk, max

Px∈P\{Pk}
{BS,x + µx}

}
. (9)

C. Finding lower and upper bounds for SSIZE

The above results can be used to constrain the design space
that has to be explored to configure the memory test.

Lemma 3: The considered system can be schedulable only
if the memory test is configured with SSIZE ≥ Smin, where

Smin =

maxPk∈P

{
2 ·M · LS,k

∆T · (1− UΓk
)− 2 ·M · σ

}
SSTEP

 · SSTEP.

(10)

Proof: A necessary condition for the system schedulabil-
ity is that each core is not overloaded (i.e., utilization ≤ 1).
Hence, the system can be schedulable only if, for each core
Pk, it holds UΓk

+US,k ≤ 1. By injecting Equation (8) in the
latter inequality we get

UΓk
+

2 ·M · Ls,k
∆T · SSIZE

+
2 ·M · σ

∆T
≤ 1,

which can be re-arranged as

2 ·M · Ls,k
∆T · SSIZE

+ ≤ 1− UΓk
− 2 ·M · σ

∆T

⇒ 2 ·M · Ls,k
∆T · SSIZE

+ ≤ ∆T · (1− UΓk
)− 2 ·M · σ

∆T

⇒ 1

SSIZE
≤ ∆T · (1− UΓk

)− 2 ·M · σ
2 ·M · Ls,k

.

Hence, for each core Pk, we have

SSIZE ≥
2 ·M · LS,k

∆T · (1− UΓk
)− 2 ·M · σ

.

As the latter inequality must hold for each core, we have

SSIZE ≥ max
Pk∈P

{
2 ·M · LS,k

∆T · (1− UΓk
)− 2 ·M · σ

}
.

The lemma follows by noting that SSIZE cannot be arbitrarily
chosen, as it has to be a multiple of the granularity SSTEP.

Let R′i,k be an upper-bound on the worst-case response
time of τi,k when considering task set Γk only, i.e., without
the test task τS,k (it can be obtained from Equation (3) by
simply omitting the last term in the sum).

Lemma 4: The considered system can be schedulable only
if the memory test is configured with SSIZE ≤ Smax, where

Smax =

minPk∈P

min

τi,k∈Γk

{
Di,k −R′i,k

}
− LS,k

σ

SSTEP

·SSTEP.

(11)

Proof: Being the test tasks running at the highest priority
on each core, in the worst case the application tasks of the sets
Γk can be preempted at least once from a test task. Hence, it
follows that the WCET of each test task τS,k must not be larger
than the slack time of each task in Γk when the test task is not
present. Otherwise, the introduction of the test task on core Pk
will certainly cause a deadline miss.

Hence, for each core Pk, we have that a schedulable system
must satisfy

∀τi,k ∈ Γk, CS,k ≤ Di,k −R′i,k.

This is equivalent to

CS,k ≤ min
τi,k∈Γk

{Di,k −R′i,k}.

By Lemma 1 and Equation (9), the latter inequality becomes

LS,k + σ · SSIZE ≤ min
τi,k∈Γk

{Di,k −R′i,k},

which can be rewritten as

SSIZE ≤
minτi,k∈Γk

{Di,k −R′i,k} − LS,k
σ

.

Therefore, SSIZE cannot be larger than

Smax = min
Pk∈P

{ min
τi,k∈Γk

{Di,k −R′i,k} − LS,k

σ

}
. (12)

The lemma follows by noting that SSIZE cannot be arbitrarily
chosen, as it has to be a multiple of the granularity SSTEP.

D. Computing the optimal configuration

Thanks to the above results, it is finally possible to compute
the optimal configuration of the memory test via a design
space exploration of the domain of parameter SSIZE. Note
that, as mentioned in Section II-D, the larger SSIZE the better
as more inter-word faults can be covered. Furthermore, the
larger SSIZE the lower the test is fragmented, hence reducing
the overall overhead it introduces. Hence, the optimal SSIZE
is the maximum one that makes the system schedulable while
preserving the safety bound of Equation (1).

Note that the lower bound provided by Lemma 3 is mono-
tone decreasing with ∆T . Hence, setting ∆T = ∆max

T −ε, with
ε > 0 arbitrarily small, in the lemma equation ensures both the
safety bound of Equation (1) and a valid lower bound Smin for
SSIZE independently of the time taken to test the whole mem-
ory. Furthermore, being the period of the test tasks monotone
increasing with ∆T (see Equation (4)), setting ∆T = ∆max

T −ε
also yields the best schedulability performance for a given
SSIZE without violating the safety bound. Indeed, the safety
bound is respected as long as ∆T < ∆max

T and choosing a
lower ∆T can only worsen the system schedulability due to
sustainability of fixed-priority scheduling with respect to the
tasks’ periods.

Therefore, to compute the optimal configuration of the
memory test, it suffices to explore all values of SSIZE from Smax
to Smin with step SSTEP and check whether the corresponding
configuration is schedulable. This strategy is provided in
Algorithm 1. Note that each value of SSTEP determines the
WCET (by Lemma 1) and the period (by Equation (4)) of
the test tasks, hence enabling the schedulability analysis of
each core. The algorithm terminates as soon as a schedulable
configuration is found. The sub-function IS SCHED returns
True if a task set is schedulable given the test of Equations (2)-
(3), False otherwise.

VI. EXPERIMENTAL RESULTS

The performance of the proposed approach has been
evaluated through an experimental study based on synthetic
workload. The goal of this study was to both assess the
degradation of the schedulability performance of a system
when integrating the memory test, and to quantify the Tolerable
Functional Failure Rate (TFFR) that can be achieved while not
jeopardizing the schedulability.

To this end, four experiments have been performed to mea-
sure the performance of the proposed approach with respect
to (i) the system utilization, (ii) the number of cores, (iii) the
parameter σ (that controls the “speed” of the test), and (iv) the
TFFR.

Unless otherwise noted in the next sections, we considered
the following system configuration. We considered a two-
replica system where each replica disposed of a RAM with
size M = 2GB. The failure rate of the RAM for both the
replicated systems is FR = FRA = FRB ≈ 1.389·10−14Hz,
which implies ∆max

T ≈ 10 hours for TFFR = 10−9. The
periods of the tasks have been randomly generated in the range
[50 ms, 1000 ms] with log-uniform distribution, with a period
granularity of 1ms. Tasks have implicit deadlines. Further-
more, the number of tasks running on each core was randomly

Algorithm 1 Algorithm to compute the optimal configuration
of the memory test while preserving schedulability and the
safety bound.

1: procedure CONFIGMEMTEST(∪Pk∈P{Γk},M, SSTEP, ε)
2: ∆T = ∆max

T − ε
3: Compute Smax and Smin by Lemmas 3 and 4
4: for SSIZE from Smax to Smin with step −SSTEP do
5: Found ← True
6: TS ← (∆T · SSIZE)/(2 ·M)
7: for k from 1 to m do
8: LS,k ← max {µk, max

Pj∈P
(Bj + µj)}

9: CS,k ← LS,k + σ · S
10: τS,k ← new Task(CS , TS , TS)
11: Found ← Found AND IS SCHED(Γk, τS,k)
12: end for
13: if maxPx∈P{BS,x + µx}+ σ · SSIZE > TS then
14: Found ← False
15: end if
16: if Found then
17: return {SSIZE,∪Pk∈P{τS,k}}
18: end if
19: end for
20: return no solution found
21: end procedure

chosen from the range [5, 10] with uniform distribution. Each
task was assigned a maximum duration of a non-preemptive
section randomly selected in the range [0 µs, 10 µs] with
uniform distribution (such sections determine the blocking
times considered in the analysis). To guarantee the generation
of plausible non-preemptive sections, if the generated duration
was higher or equal than the task’s WCET, it was considered
0µs. We assigned to σ the fixed value 1.5µs/bytes: this value
was obtained by experimentally measuring the time taken by
the March-SS test [7] executed on a Cortex-A53 core of the
Zynq Ultrascale+ platform by Xilinx. Also, for each core Pk,
we randomly selected µk ∈ [10 µs, 200 µs] with uniform
distribution. Finally, we set SSTEP = 512 bytes and ε = 0.1.
Further details on the workload generation are reported below
for each experiment.

A. Experiment 1 (varying the utilization)

1) Workload generation: We tested systems
with m ∈ {1, 4} cores. For each utilization value
U ∈ {0.05, 0.1, 0.15, . . . , 0.95} and TFFR ∈
{10−9, 5 · 10−9, 10−8}, we randomly generated m task
sets, one per core as follows. One random processor was
assigned utilization U , while the other m − 1 ones (if
any) were assigned a utilization randomly selected in the
range [0.8 · U,U]. For each processor Pk, the individual
task utilizations Ui,k were generated with the Emberson et
al.’s generator [13] and the WCETs Ci,k were computed as
Ci,k = Ti,k · Ui,k (given the periods generated as reported
above). For each pair (U,TFFR), we generated 1000 systems
and we tested each of them with Algorithm 1, keeping track
of the ratio of the ones that resulted schedulable, i.e., those
for which the algorithm manages the configure the memory
test.

0.2 0.4 0.6 0.8
Utilization

0

25

50

75

100

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

se
ts

Single-core

Without test
With test - TFFR=1e-9
With test - TFFR=5e-9
With test - TFFR=1e-8

0.2 0.4 0.6 0.8
Utilization

0

25

50

75

100

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

se
ts

Quad-core

Without test
With test - TFFR=1e-9
With test - TFFR=5e-9
With test - TFFR=1e-8

Fig. 8. Experiment 1: schedulability performance as a function of the system
utilization U .

2) Results: The results are reported in Fig. 8 along with the
schedulability performance of the generated systems without
integrating the memory test, which represents an upper bound
of the achievable performance. For the figure it is possible
to observe that the schedulability performance is much more
sensitive to the TFFR rather than the number of cores m.
Indeed, with TFFR = 10−9 (corresponding to most stringent
TFFR for SIL 4 systems), no systems can be schedulable
when the utilization U exceeds 80%. Instead, with relaxed
tolerable functional failure rates (TFFR = 10−8, i.e., the least
stringent TFFR for SIL 4 systems, and TFFR = 5 · 10−9), the
schedulability performance becomes closer to the case without
memory tests, hence suggesting that the impact of the tests
becomes marginal. Note also that there is a little performance
degradation passing from a single to a quad-core system, e.g.,
see the schedulability performance with utilization 80% for
TFFR = 10−9.

B. Experiment 2 (varying the number of cores)

1) Workload generation: For each utilization value U ∈
{0.65, 0.70, 0.75, 0.80} and for each number of cores m ∈
[1, 16], we generated the task sets as for Experiment 1 but
keeping the per-core utilization in the range [0.9 · U,U] (to
avoid perturbed results due to the variability of utilizations
when the number of cores is large). For each pair (m,U) we
tested 1000 systems as for Experiment 1 with TFFR = 10−9.

2) Results: The results of this experiment are reported in
Fig. 9 for four representative utilization values. From the figure
it is clear that the number of cores that compose the system
becomes a crucial parameter only for task sets with utilization
falling in the critical range [70%, 75%]. Indeed for task sets
with utilization lower than 70% and greater than 75%, the
impact of the number of cores onto the schedulability ratio is
negligible.

C. Experiment 3 (varying the test speed)

1) Workload generation: We tested with m ∈ {1, 2, 4}
cores. For each σ ∈ {0.8, 1.0, 1.2, . . . , 2.6}, we generated

2 4 6 8 10 12 14 16
Number of cores

0

20

40

60

80

100

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

se
ts

Utilization 0.65
Utilization 0.70
Utilization 0.75
Utilization 0.80

Fig. 9. Experiment 2: schedulability performance as a function of the number
of cores.

the task sets as for Experiment 1. For each triplet (m,σ, U),
we tested 1000 systems as described in Experiment 1 with
TFFR = 10−9.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
[seconds/bytes]

0

20

40

60

80

100

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

se
ts

single-core
dual-core
quad-core

Fig. 10. Experiment 3: schedulability performance as a function of the test
speed for U = 0.75.

2) Results: The parameter σ is related to the computational
power of the system, i.e., it represents the maximum number
of microseconds that a core takes to test one byte of memory.
Fig. 10 reports the result for a representative utilization value
(U = 0.75) and shows that the number of schedulable task sets
quickly decreases for σ > 1.75. Furthermore, the figure shows
the trend of the schedulability performance is quite similar for
single-, dual-, and quad-core systems.

D. Experiment 4 (varying the TFFR)

1) Workload generation: We tested systems with m ∈
{1, 4} cores, TFFR ∈ [1·10−9, 6·10−9] with step 0.1·10−9, and
U ∈ {0.05, 0.1, 0.15, . . . , 0.95}. Task sets have been generated
as for Experiment 1 and, for each triplet (m, TFFR, U), we
tested 500 systems with Algorithm 1.

1 2 3 4 5 6
TFFR [1/s] 1e 9

0

20

40

60

80

100

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

se
ts

single-core
quad-core

Fig. 11. Experiment 4: schedulability performance as a function of the
Tolerable Functional Failure Rate (TFFR) for U = 0.8.

2) Results: The results of this experiment are reported in
Fig. 11 for a representative utilization value (U = 0.8) and
show that the schedulability ratio exponentially increases with
the TFFR. This means that weaker safety constraints cause a
big improvement in schedulable performance according to the
solution proposed in this paper. Anyway, note that the proposed
approach allows guaranteeing the schedulability of a system
at the highest integrity level of the EN50129 safety standard,
i.e., SIL 4, which requires 10−9 ≤ TFFR < 10−8. Indeed, as
it can be noted from the figure, a TFFR = 4 · 10−9 is already
sufficient to achieve a very high schedulability performance
for both single- and quad-core systems.

VII. RELATED WORK

Despite both academic and industrial researchers studied
software-based self-tests (SBST) for memories during the
last decades (e.g., see [14], [15], [16], [17]), such problems
received limited attention from the real-time community, es-
pecially when considering multicore systems.

Moraes et al. [18] proposed a method to select a set
of test routines from different test approaches to compose
a test program for a single-core embedded platform. How-
ever, no schedulability analysis has been taken into account.
Gizopoulos [19] presented a test selection algorithm that
minimizes power consumption and the test execution time
for a single-processor platform. The work aimed at obtaining
the maximum fault coverage with a minimum impact on the
systems’ resources. The same author also investigated the
integration of self-test routines in hard real-time uniprocessor
systems, scheduling self-tests without affecting the deadline
requirements of real-time tasks [20]. The approach was based
on Rate-monotonic scheduling and a simple utilization-based
test was used to ensure schedulability in the presence of the
test task.

Paschalis and Gizopoulos [21] investigated the trade-off
between fault detection latency and degradation of the system
performance. They proposed a software-based self-test strategy
that grouped the self-tests in a dedicated system process.

This process might then be scheduled during idle periods by
the operating system or at regular time intervals by using
programmable timers.

Floridia et al. [22] tackled the integration of self-test rou-
tines with user application in a multi-core architecture for boot-
time, self-test procedures. No real-time constraints have been
considered. Reimann et al. [23] explored the integration of
SBST at the system level considering the automotive domain.
Overall, to the best of our records, none of the works in the
literature fully address the challenge of integrating memory
tests in a multicore real-time system while also considering
response-time constraints as done in this work.

From the perspective of safety, researchers consolidated
sever fault models and efficient functional tests for semi-
conductor memories. Functional safety standards of every
safety-critical domain, as well as academic works such as
[24], [25], [26], [27], provide extensive descriptions of the
possible fault models and methodology for evaluating the
fault coverage. Other research efforts have been devoted to
intermittent faults [28].

VIII. CONCLUSION

This work proposed an approach to integrate software-
based RAM tests in a real-time multicore system scheduled
by fixed priorities. A software architecture has been presented
to schedule and synchronize a test task on each core. The archi-
tecture also considers the replication of the test data and code
to cope with the case in which the memory used by the test
task itself has to be tested. Furthermore, by jointly considering
a real-time task model and a safety model, this work proposed
an algorithm to optimally configure a memory test while not
violating the system schedulability and a safety requirement in
the form of a TFFR bound. Experimental results showed that
the impact of memory tests is not negligible when requiring
stringent safety requirements (TFFR = 10−9), but also that
the schedulability performance tends to exhibit an exponential
dependency on the TFFR. Indeed, in the tested cases, when
selecting TFFR > 4 · 10−9 (that still allows guaranteeing the
highest integrity level of the EN50129 standard) the proposed
approach shows a minimal impact on the system schedulability.

Future work should investigate on methods to achieve a
wider coverage of inter-word memory faults and techniques to
support the online testing of other hardware resources.

REFERENCES

[1] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst, H. Härtig, L. Hedrich, A. Herkers-
dorf, R. Kapitza, D. Lohmann, P. Marwedel, M. Platzner, W. Rosenstiel,
U. Schlichtmann, O. Spinczyk, M. Tahoori, J. Teich, N. When, and H.-J.
Wunderlich, “Design and architectures for dependable embedded sys-
tems,” in 2011 Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011, pp. 69–78.

[2] “Cei en 50129,” Railway applications - Communication, signalling and
processing systems - Safety related electronic systems for signalling,
2019.

[3] “Cei en 60730-1,” Automatic electrical controls - Part1: General
requirements, 2019.

[4] S. Di Carlo and P. Prinetto, “Models in memory testing,” in Models in
Hardware Testing. Springer, 2010, pp. 157–185.

[5] A. J. Van De Goor, “Using march tests to test srams,” IEEE Design &
Test of Computers, vol. 10, no. 1, pp. 8–14, 1993.

[6] AUTOSAR, “Specification of ram test, autosar,” 2017.

[7] S. Hamdioui, A. J. van de Goor, and M. Rodgers, “March ss: A test
for all static simple ram faults,” in Proceedings of the 2002 IEEE
International Workshop on Memory Technology, Design and Testing
(MTDT2002). IEEE, 2002, pp. 95–100.

[8] P. Mazumder and K. Chakraborty, Testing and testable design of high-
density random-access memories. Kluwer Academic Publishers, 1996.

[9] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[10] M. S. Abadir and H. K. Reghbati, “Functional testing of semiconductor
random access memories,” ACM Computing Surveys (CSUR), vol. 15,
no. 3, pp. 175–198, 1983.

[11] E. CEI, “Cei en 50126-1,” Railway Applications - The Specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS). Part 1: Generic RAMS Process, 2019.

[12] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[13] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pp. 6–11.

[14] P. Bernardi, L. Bolzani, A. Manzone, M. Osella, M. Violante, and M. S.
Reorda, “Software-based on-line test of communication peripherals in
processor-based systems for automotive applications,” in Seventh Inter-
national Workshop on Microprocessor Test and Verification (MTV’06).
IEEE, 2006, pp. 3–8.

[15] N. Bartzoudis, V. Tantsios, and K. McDonald-Maier, “Dynamic schedul-
ing of test routines for efficient online self-testing of embedded
microprocessors,” in 2008 14th IEEE International On-Line Testing
Symposium. IEEE, 2008, pp. 185–187.

[16] A. Benso, S. Di Carlo, and A. Savino, “Software-based self-test for
reliable applications in railway systems,” in Railway Safety, Reliability,
and Security: Technologies and Systems Engineering. IGI Global,
2012, pp. 198–220.

[17] T.-W. Kuo, P.-C. Huang, Y.-H. Chang, C.-L. Ko, and C.-W. Hsueh, “An
efficient fault detection algorithm for nand flash memory,” SIGAPP
Appl. Comput. Rev., vol. 11, no. 2, p. 8–16, Mar. 2011. [Online].
Available: https://doi.org/10.1145/1964144.1964146

[18] M. Moraes, É. Cota, L. Carro, F. Wagner, and M. Lubaszewski, “A
constraint-based solution for on-line testing of processors embedded in

real-time applications,” in Proceedings of the 18th annual symposium
on Integrated circuits and system design, 2005, pp. 68–73.

[19] D. Gizopoulos, “Low-cost, on-line self-testing of processor cores based
on embedded software routines,” Microelectronics journal, vol. 35,
no. 5, pp. 443–449, 2004.

[20] ——, “Online periodic self-test scheduling for real-time processor-
based systems dependability enhancement,” IEEE Transactions on
Dependable and Secure Computing, vol. 6, no. 2, pp. 152–158, 2009.

[21] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-aided design of integrated circuits and
systems, vol. 24, no. 1, pp. 88–99, 2004.

[22] A. Floridia, D. Piumatti, A. Ruospo, E. Sanchez, S. De Luca, and
R. Martorana, “A decentralized scheduler for on-line self-test routines
in multi-core automotive system-on-chips,” in 2019 IEEE International
Test Conference (ITC). IEEE, 2019, pp. 1–10.

[23] F. Reimann, M. Glaß, J. Teich, A. Cook, L. R. Gómez, D. Ull, H.-J.
Wunderlich, P. Engelke, and U. Abelein, “Advanced diagnosis: Sbst and
bist integration in automotive e/e architectures,” in Proceedings of the
51st Annual Design Automation Conference, 2014, pp. 1–9.

[24] M. Riedel and J. Rajski, “Fault coverage analysis of ram test algo-
rithms,” in Proceedings 13th IEEE VLSI Test Symposium. IEEE, 1995,
pp. 227–234.

[25] A. J. Van de Goor, I. Tlili, and S. Hamdioui, “Converting march tests
for bit-oriented memories into tests for word-oriented memories,” in
Proceedings. International Workshop on Memory Technology, Design
and Testing (Cat. No. 98TB100236). IEEE, 1998, pp. 46–52.

[26] J.-F. Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “March-based ram
diagnosis algorithms for stuck-at and coupling faults,” in Proceedings
International Test Conference 2001 (Cat. No. 01CH37260). IEEE,
2001, pp. 758–767.

[27] A. J. van de Goor and J. De Neef, “Industrial evaluation of dram tests,”
in Proceedings of the conference on Design, automation and test in
Europe, 1999, pp. 123–es.

[28] A. Lifa, P. Eles, Z. Peng, and V. Izosimov, “Hardware/software op-
timization of error detection implementation for real-time embedded
systems,” in 2010 IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2010,
pp. 41–50.

