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Abstract—This paper proposes a black-box behavioral model-
ing framework for analog circuit blocks operating under small-
signal conditions around non-stationary operating points. Such
variations may be induced either by changes in the loading condi-
tions or by event-driven updates of the operating point for system
performance optimization, e.g., to reduce power consumption. An
extension of existing data-driven parameterized reduced-order
modeling techniques is proposed that considers the time-varying
bias components of the port signals as non-stationary parameters.
These components are extracted at runtime by a lowpass filter
and used to instantaneously update the matrices of the reduced-
order state-space model realized as a SPICE netlist. Our main
result is a formal proof of quadratic stability of such Linear
Parameter Varying (LPV) models, enabled by imposing a specific
model structure and representing the transfer function in a basis
of positive functions whose elements constitute a partition of
unity. The proposed quadratic stability conditions are easily en-
forced through a finite set of small-size Linear Matrix Inequalities
(LMI), used as constraints during model construction. Numerical
results on various circuit blocks including voltage regulators
confirm that our approach not only ensures the model stability,
but also provides speedup in runtime up to 2 orders of magnitude
with respect to full transistor-level circuits.

Index Terms—Behavioral models, Parameterized models, Lin-
earized models, Small-signal analysis, LPV models, Asymptotic
stability, Quadratic stability, Lyapunov functions, Voltage regu-
lators.

I. INTRODUCTION

In the last decades, the technological development of com-
pact and portable electronic systems has shown a constantly
increasing trend, that is expected to be maintained in the near
future. The need for miniaturized, powerful and cost-effective
electronics has been boosted by the demand for ubiquitous
and interconnected devices, which forces the designers to
meet conflicting goals in terms of performance, reliability
and power consumption [1]. From an engineering perspective,
this scenario requires the development of complex Systems-
on-Chip (SoC) or Systems-in-Package (SiP) in which digital,
radio frequency components (RF) and analog circuit blocks
(CB) operate at very low power supply levels, within the same
compact volume. Under the electrical performance standpoint,
this interaction translates into the presence of non-negligible
coupling and interference parasitic effects, that can lead to
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severe signal and power integrity issues; on the other hand,
from a functional perspective, the device may be required to
work under a variety of operational modes, which can change
dynamically according to event-based conditions triggered by
the components interaction.

The above facts imply that testing and optimization of
such electronic systems cannot be performed considering the
single components as stand-alone units, since their interactions
determine the overall device functioning. Thus, whenever a
prototype design is available, the electrical performance verifi-
cation is necessarily carried out through transient simulations,
in which a highly detailed description of the whole system
is considered. Unfortunately, the overwhelming complexity
of such simulations, combined with the need for considering
phenomena that take place on very broad ranges of time scales,
may lead to unaffordable execution time requirements, limiting
the possibility of extensively testing and optimization.

In this view, reduced order behavioral models represent
a valuable alternative to native components descriptions, as
they allow for drastic reduction of the simulation complexity.
While the derivation of reduced order models is somehow
an established practice for what concerns the linear passive
components entering the system (see e.g. [2], [3], [4]), ob-
taining the same kind of simplified descriptions for non-linear
elements is still an open research field.

Modeling frameworks that have been proposed to approx-
imate generic nonlinear circuit blocks include the classical
Hammerstein-Wiener model structure identification [5], tra-
jectory piecewise linear approaches [6], Volterra series based
methods [7], X Parameters [8], and neural networks [9],
[10]. All of these identification methods are characterized
by specific drawbacks and advantages in terms of model
complexity, accuracy and generation time requirements. This
implies that the most appropriate modeling strategy is to be
chosen with respect to the application of interest, based on the
characteristics of the reference circuit.

In this work, we focus on a class of non-linear circuit
blocks deliberately designed to operate as linearly as possible
around a prescribed operating point. These circuits will be
denoted henceforth as mildly nonlinear. Ubiquitous examples
of such circuits are Low-Noise Amplifiers (LNA), Operational
Amplifiers (OPA), or Low DropOut (LDO) voltage regulators.
We explicitly exclude circuits whose behavior relies on strong
nonlinearities, such as mixers, phase locked loops, nonlin-
ear oscillators or frequency dividers. When mildly-nonlinear
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circuits are properly designed, their behavior in correspon-
dence of a fixed bias condition can be safely approximated
by linearized dynamics. As small-signal analysis is often
sufficient to validate the proper functioning of these circuits
around a prescribed bias condition, affine linearized models of
reduced order have been proposed in the past to replace the
original circuit description for system level simulations [11].
These models guarantee a drastic reduction of the description
complexity and high accuracy whenever the small-signal con-
ditions are met. Additionally, due to their linear nature, they
ensure that fundamental physical properties, such as stability,
can be guaranteed by construction. A complete energetic
characterization of the affine linearized models has been also
provided in our recent works [12], [13].

This work proposes an extension to the standard Linear
Time-Invariant (LTI) affine linearized models from [14], by
admitting non-stationary bias conditions. Taking advantage of
a suitable formulation based on a Linear Parameter Varying
(LPV) model structure, we show that the proposed reduced-
order models are able to accurately approximate the port
signals of a transistor-level circuit block when the operating
point changes in time. Such changes may be induced by
variations in the loading conditions or system-driven events for
performance optimization, e.g. reducing power consumption.

The proposed LPV model is constructed from frequency-
domain samples of multiple small-signal responses corre-
sponding to a set of static bias levels in a given design
range. Using a standard rational fitting process based on the
Parametrized Sanathanan-Koerner (PSK) iteration [15], a mul-
tivariate rational approximation is constructed, which is then
cast in a state-space (descriptor) form or an equivalent SPICE
netlist, where all model coefficients or netlist components are
found (in closed form) as functions of the bias level. Non-
stationary bias conditions are then embedded in the model
using a feed-through term resulting from a low-pass filtering
operation on the port signals. This operation is performed at
run-time and its computational cost is negligible.

Our main technical contribution is related to asymptotic
stability of the resulting models. By making use of Lyapunov
theory, we are in fact able to prove a property which is stronger
than the quadratic stability [16], and entails the asymptotic sta-
bility under any possible time-varying bias conditions within
their design range. This proof is enabled by a specific choice of
basis functions defining model parameterization, which must
constitute a positive partition of unity. As a result, quadratic
stability is attained by enforcing a finite number of small-
size Linear Matrix Inequality (LMI) conditions on the model
coefficients during its identification.

The proposed modeling framework is then applied to two
examples of LDO voltage regulators with different parame-
terization schemes. The results confirm the excellent accuracy
with respect to transistor-level description, the major speedup,
and an experimental verification of the quadratic stability
conditions embedded in the model structure.

This work is organized as follows. Section II provides some
general background and introduces notation. Section III states
the main problem that is addressed, defining applicability lim-
its, and presenting the general proposed LPV model structure.

Section IV discusses stability and provides our formal proof,
deriving the stability constraints that should be enforced during
model identification. Section V describes the low-pass filtering
process for the extraction of time-varying bias conditions.
Finally, Section VI presents various numerical examples.

II. BACKGROUND AND NOTATION

We consider a mildly nonlinear analog circuit block acces-
sible from P electrical interface ports. The circuit dynamics
are described by the following differential equations

ξ̇(t) = F (ξ(t), u(t)),

η(t) = G(ξ(t), u(t)),
(1)

where u(t), η(t) ∈ RP denote system input and output signals,
ξ(t) ∈ RN is the system state vector and F,G are nonlin-
ear differentiable maps. The state space representation (1)
is general and may represent a full transistor-level circuit,
possibly including dynamic parasitic effects from a post-layout
extraction. Thus, the system dimension N can be very large,
and the closed-form representations of maps F,G can be either
unavailable (being e.g. encoded by the circuit netlist, which is
encrypted and/or provided by third parties) or impractical due
to the excessive complexity.

A. Affine Linearized Models

Whenever the circuit block operates under small-signal
conditions, affine linearized models of reduced order can be
considered as good candidates to replace the reference circuit
equations [11], [14]. More precisely, the signals involved in (1)
can be decomposed according to

u(t) = U0+ũ(t), ξ(t) = Ξ0+ξ̃(t), η(t) = Y0+η̃(t), (2)

where the quantities ũ(t), η̃(t) and ξ̃(t) are small deviations
from a stable working point, identified by the triple of constant
vectors (U0,Ξ0, Y0) that satisfy the DC steady-state conditions

0 = F (Ξ0, U0),

Y0 = G(Ξ0, U0).
(3)

In compliance with most transient circuit simulation environ-
ments, we will assume that for the reference starting time t = 0
all the small signals components in (2) are null, and that the
circuit operating point is initialized according to (3).

The objective of an affine linearized model is to provide a
compact approximate description for the circuit input-output
relationship U0 + ũ(t)→ Y0 + η̃(t), which can replace (1) in
order to speed up a transient simulation. Such model can be
derived through a sequence of steps, discussed below.

A formal derivation of the small signal transfer function
from ũ(t) to η̃(t) is obtained by linearizing (1) around the
equilibrium (3)

H̃(s) = D̃ + C̃(sIN − Ã)−1B̃, (4)

where
Ã = F ′Ξ(Ξ0, U0) B̃ = F ′U (Ξ0, U0)

C̃ = G′Ξ(Ξ0, U0) D̃ = G′U (Ξ0, U0)
(5)
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are the matrices of partial derivatives of maps F,G and IN
is the identity matrix of size N . Since we do not assume
these maps to be available, a data-driven approach is used
to estimate H̃(s). First, a set of samples H̃k = H̃(ωk) is
computed at a discrete set of frequencies ωk by means of
an AC sweep performed within the SPICE solver where the
circuit description is available. Then, a low order rational
approximation H(s) ≈ H̃(s) is obtained through a fitting
process. This approximation task can be performed by standard
algorithms in the Loewner Matrix [17] or Vector Fitting [18]
frameworks, which allow to cast H(s) into a state space form

˙̃x(t) = Ax̃(t) +Bũ(t), x̃(0) = 0

ỹ(t) = Cx̃(t) +Dũ(t),
(6)

with x̃ ∈ Rn and n� N .
The system (6) provides only a prediction for the small

signal components and cannot be used as a direct replacement
of (1). An affine linearized model [12] is defined as an
augmented version of (6), as

ẋ(t) = Ax(t) +Bu(t), x(0) = X0

y(t) = Cx(t) +Du(t) + YC ,
(7)

where the constant vector YC is defined as

YC = Y0 − (CX0 +DU0) with X0 = −A−1BU0. (8)

The application of the superposition principle shows that
feeding (7) with the total input u(t) = ũ(t) + U0, including
also the constant bias component, leads to an output including
both bias and small-signal components η(t) ≈ η̃(t)+Y0, where
Y0 is exact and η̃(t) is approximated following the data-driven
model order reduction process used to obtain H(s) ≈ H̃(s).
Coherently, the initial condition X0 of (7) is determined by
the bias component U0 according to (8), in agreement with the
typical settings of any SPICE engine. Note that the states x(t)
and the associated operating point X0 have no direct physical
meaning, since they are associated to the black-box behavioral
model resulting from the rational approximation.

B. Parameterized Affine Linearized Models

The affine linearized model (7) can be safely used to replace
the original circuit block (1), as far as all signals remain in
proximity of the reference operating point embedded in the
model equations. However, from a system level perspective,
the operating condition of the circuit is not known a priori,
but results from the interaction of all the external circuits
and terminations that are connected to its interface ports.
Changing the loading conditions may lead to a modification
of the operating point, making a given predetermined affine
linearized model inadequate.

In order to guarantee that the model is instantiated according
to the proper operating point, the affine linearized dynamics (7)
can be generalized in such a way that the explicit dependence
of the equations on the operating point is embedded in the
model structure [14], [19]. Consider the bias space defining
the set of all the possible bias configurations under which the
circuit can operate

U0 = [U1
0, U

1

0]× [U2
0, U

2

0]× · · · × [UP0 , U
P

0 ] (9)

where U i0 is the DC component of the circuit input at the i-
th electrical port. It is assumed that for each bias condition
U0 ∈ U0, there exists a unique equilibrium point Ξ0 = Ξ0(U)
fulfilling (3). Omitting for brevity Ξ0 in matrices (5), transfer
functions (4) can be parameterized by U0 ∈ U0 as follows

H̃(s, U0) = D̃(U0) + C̃(U0)(sIN − Ã(U0))−1B̃(U0). (10)

A reduced order model which incorporates in closed form
the dependence of the small signal transfer function on the
bias condition can be obtained starting from samples of (10),
computed at discrete frequency-bias configurations

H̃k,m = H(jωk, U0m), k = 1, ...K, m = 1, ...,M (11)

which are again made available by a multivariate parametric
AC sweep of the original circuit. Starting from the dataset (11),
a parameterized small-signal model can be derived through
various strategies, e.g, [20], [21] and the latest [22]. Here, we
consider the so-called Parameterized Sanathanan-Koerner [15]
(PSK) modeling framework, which provides a low order
rational approximation based on the following model structure

H(s, U0) =
N(s, U0)

D(s, U0)
=

∑n
i=0

∑¯̀

`=1Ri,` ζ`(U0)ϕi(s)∑n
i=0

∑¯̀

`=1 ri,` ζ`(U0)ϕi(s)
. (12)

The rational form of (12) is induced by the partial fraction
basis ϕ0(s) = 1, ϕi(s) = (s− qi)−1 where qi are given (real)
stable poles as in standard VF (complex-conjugate pairs can be
used with simple modifications [18]). The multivariate basis
functions ζ` : U0 → R, are responsible for representing the
variations of the poles and the zeros of the transfer function,
induced by the operating point parameterization. The unknown
coefficients Ri,` ∈ RP×P , ri,` ∈ R are obtained using the PSK
iteration, as introduced in [23]. The algorithm minimizes the
model-vs-data error by iteratively solving a series of weighted
least squares problems. This algorithm generalizes the standard
Sanathanan-Koerner iteration [24] and the VF iteration to
the parameterized case and is well-established. Details are
therefore omitted here, we refer the reader to [15].

C. State-Space and Descriptor Realizations

A state space representation for the model structure (12) can
be derived along the lines of [15]. We only report here the main
results, since they are required for successive derivations.

Consider the three state space realizations of numerator,
denominator, and augmented denominator of (12)

N(s, U0)↔ ΣN =

(
AN BN

CN(U0) DN(U0)

)
(13)

D(s, U0)↔ Σ1 =

(
A1 B1

C1(U0) D1(U0)

)
(14)

D(s, U0)IP ↔ ΣD =

(
AD BD

CD(U0) DD(U0)

)
, (15)

where
AD = IP ⊗A1, BD = IP ⊗B1,

CD = IP ⊗ C1, DD = IP ⊗D1

(16)

and ⊗ is the matrix Kronecker product. It can be shown that
the small signal transfer function (12) admits the following
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state space representation (we omit the parametric dependence
on U0 in the right-hand side for the sake of brevity)

H(s, U0)↔
(
AD −BDD

−1
D CD −BDD

−1
D

CN −DND
−1
D CD DND

−1
D

)
(17)

and the following equivalent descriptor realization[
In×P 0

0 0

]
︸ ︷︷ ︸

E

[
ẋ
ẇ

]
=

[
AD BD

CD(U0) DD(U0)

]
︸ ︷︷ ︸

A(U0)

[
x
w

]
+

[
0
−IP

]
︸ ︷︷ ︸
B

ũ

ỹ =
[
CN(U0) DN(U0)

]︸ ︷︷ ︸
C(U0)

[
x
w

]
(18)

provided that AN = AD and BN = BD. These conditions are
easily enforced since the basis poles qi defining ϕi(s) are in
common to numerator and denominator, so that the following
diagonal realization (qi ∈ R) can be adopted

A1 = diag([q1, q2, . . . , qn]) ∈ Rn×n (19)

B1 =
[
1, 1, . . . , 1

]> ∈ Rn×1 (20)

C1(U0) =

¯̀∑
`=1

ζ`(U0) · C1,` ∈ R1×n (21)

D1(U0) =

¯̀∑
`=1

ζ`(U0) · d1,` ∈ R1×1 (22)

with

C1,` =
[
r1,`, r2,`, . . . , rn,`

]
(23)

d1,` = r0,`, (24)

and similarly for CN(U0), DN(U0). See [15] for details on
handling complex basis poles. We remark that the equivalence
of (18) with (17) holds whenever D1(U0) 6= 0 for all U0 ∈
U0, a condition that is guaranteed by the proposed stability
conditions, see Sec. IV. As a consequence, the descriptor
system (18) is well-posed, regular, and impulse-free.

Once the small-signal model is available in form of (17)
or (18), it can be augmented with the affine output term, which
guarantees that the model provides the proper DC output for
each possible bias condition included in U0. This is done by
interpolation of data samples of the required map YC(U0) :
U0 → RP , as explained in [14], [19].

From now on we will consider (18) as a reference model
representation for our developments. The adopted model struc-
ture is therefore

E

[
ẋ
ẇ

]
= A(U0)

[
x
w

]
+ B u

y = C(U0)

[
x
w

]
+ YC(U0) (25)

where E,A(U0),B and C(U0) are defined according to (18).
Models like (25) have been exploited in the literature by

assuming that the biasing input U0 does not depend on time.
For instance, [14] considers uncertain Linear Time Invariant
(LTI) systems in which the proper parameter configuration is
set at the beginning of a transient simulation and remains un-
changed during runtime operation. In our previous work [12],

such models were studied from the energetic perspective, with
the objective of characterizing local dissipativity and energy
exchanges with the environment through bias and small signal
components. In this work, we provide another extension by
letting the bias condition to be time-dependent.

III. PROBLEM SETTING

The main objective of this work is to construct reduced
order affine linearized models that are able to mimic the input-
output behavior of system (1) under small-signal conditions,
but characterized by a possibly time-varying operating point.
This variation may be triggered by changes in the loading
conditions induced by terminations, or by control signals
specifically designed to tune the operating point based on
suitable performance goals (e.g., power consumption).

We split the input signal into its time-varying bias and small-
signal components by generalizing (2) as

u(t) = U0(t) + ũ(t), (26)

where

• U0(t) is a slowly varying signal which attains values
within the bias space

U0(t) ∈ U0 ∀t, (27)

henceforth denoted as bias component;
• ũ(t) is a small-signal input with ũ(0) = 0.

Under these conditions, a fixed model (7) is not suitable
for representing the dynamics of (1), since the variations of
the bias component U0(t) may drive the nonlinear system to
operate around different equilibrium points.

Our derivations are based on the following
Assumption 1: For each t∗ ≥ 0, the nonlinear equation

F (ξ, U0(t∗)) = 0 (28)

has a unique solution ξ = Ξ0(t∗), and a small constant δξ > 0
exists such that each solution of (1) corresponding to input
(26), obeys the inequality

||ξ(t∗)− Ξ0(t∗)||2 ≤ δξ. (29)

Assumption 1 requires that the nonlinear system is fast
enough to respond almost instantaneously to variations in the
biasing input, so that the corresponding time-varying local
equilibrium point tracks continuously the variations of the
input bias component. This assumption can be satisfied by
limiting the spectrum of U0(t) to sufficiently low frequencies.
The implications of this restriction will be documented on
a practical example presented Section VI. If Assumption 1
holds, for every time instant the system trajectory (ξ(t), u(t))
is confined to a neighborhood of the particular state-input
configuration (Ξ0(t), U0(t)) which satisfies

0 = F (Ξ0(t), U0(t)),

Y0(t) = G(Ξ0(t), U0(t)).
(30)
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Assuming that δξ is small enough and (30) holds, the small-
signal dynamics of (1) can be approximated by the time-
varying linearization

˙̃
ξ(t) ≈ F ′Ξ(Ξ0(t), U0(t)) · ξ̃(t) + F ′U (Ξ0(t), U0(t)) · ũ(t),

η̃(t) ≈ G′Ξ(Ξ0(t), U0(t)) · ξ̃(t) +G′U (Ξ0(t), U0(t)) · ũ(t),
(31)

with ξ̃(0) = 0. In view of the one-to-one correspondence
between Ξ0(t) and U0(t), (31) can be rewritten as

˙̃
ξ(t) ≈ Ã(U0(t)) · ξ̃(t) + B̃(U0(t)) · ũ(t), ξ̃(0) = 0

η̃(t) ≈ C̃(U0(t)) · ξ̃(t) + D̃(U0(t)) · ũ(t).
(32)

Here Ã, B̃, C̃, D̃ are the matrices defined in (5). We notice
that under Assumption 1, for each fixed time instant, the
matrices entering (32) coincide with those entering (10),
provided that U0(t) ∈ U0, ∀t. Thus, we can easily generalize
the parameterized modeling process of Sec. II-B to build
a reduced order model representation for the desired map
U0(t) + ũ(t)→ Y0(t) + η̃(t). The process is as follows:

1) collect frequency samples (11) of the small-signal transfer
function for fixed configurations of the bias condition;

2) build a parameterized transfer function of reduced order
in the form of (12) by making use of the PSK algorithm;

3) cast the parameterized transfer function into the descrip-
tor system (25) or into an equivalent netlist [2]. Up
to this step, the procedure is the same as for standard
parameterized macromodeling flows.

4) during a transient simulation, extract the bias input com-
ponent U0(t) from the total input u(t) and use this time-
varying bias to instantiate the model parameters in (25)
by setting U0 = U0(t) at each time step.

The result of the procedure is a Linear-Parameter-Varying
(LPV) affine model

E

[
ẋ
ẇ

]
= A(U0(t))

[
x
w

]
+ B u

y = C(U0(t))

[
x
w

]
+ YC(U0(t)) (33)

which is a generalization of (25) to the time-varying case.
This model can seamlessly replace the original circuit block
in a transient analysis. Due to the adopted data-driven order
reduction process leading to a compact size of the state-space
matrices in (33), significant speedup in runtime is expected.

In order to safely exploit model (33) in system-level simu-
lations, two main problems need to be addressed and solved.
• if the dynamics of the original system (1) are known to

be stable under inputs of type (26), this property must
be inherited by the time-varying reduced order model. In
fact, even if the “frozen-time” model (25) is uniformly
stable for constant values of U0 in the bias space, it is not
guaranteed in general that the model will remain stable
when a time variation U0(t) is induced and the system
descriptor matrices become time-varying [25].

• during runtime operation, the bias component U0(t) must
be estimated starting from the evolution of the full input
u(t), in order to provide a valid instantaneous parameter-
ization of the time-varying model.

The main contributions of this work provide a solution to these
two problems, discussed in Sec. IV and Sec. V, respectively.

IV. ENFORCING MODEL STABILITY

The stability characterization of multivariate rational mod-
els has been extensively considered in the literature, see
e.g. [26], [15]. Most of the available results aim at constraining
either model generation or model structure in order to guaran-
tee the placement of the poles of H(s, U0) in the open left-half
complex plane for all the parameter configurations of interest.
When employing model structure (12), this condition is ful-
filled when the zeros of the denominator function D(s, U0)
have negative real part for each U0. This can be guaranteed
by constraining D(s, U0) to be a positive real function over
the entire frequency-parameter space, enforcing

<{D(ω, U0)} > 0, ∀ω, ∀U0 ∈ U0, (34)

in addition to technical conditions that are guaranteed by
the adopted model structure. Both sampling-based [27] and
sampling-free [28] methods have been proposed in the liter-
ature to enforce (34). We highlight that condition (34) does
not force the overall transfer function H(s, U0) to be positive
real, but is only instrumental in enforcing the uniform stability
of the model. Active circuits such as amplifiers are explicitly
included in our formulation and are compatible with (34).

A. Preliminaries and Challenges

Frequency domain conditions like (34) can be used to test
asymptotic stability of LTI systems, however, they do not
guarantee stability of LPV equations (33). Therefore, some
stronger conditions are required.

The characterization of the stability properties of LPV
systems has been subject of intensive research in the fields
of robust control and gain scheduling, see for instance
[29], [30], [31], [32]. A standard approach is to embed in the
modeling procedure the search for a Lyapunov function, which
guarantees that the resulting descriptor system is quadratically
stable (that is, exponentially stable and admits a quadratic Lya-
punov function), as defined below in Theorem 1. This strong
characterization entails the asymptotic stability of system (33)
under any possible time domain evolution of the parameters
U0(t). We refer to [33], for a complete theoretical framework.

The main key result on which we build our developments
is the following [16, Theorem 2.4.4]

Theorem 1 (quadratic stability for descriptor systems): the
descriptor LPV system

E

[
ẋ
ẇ

]
= A(U0(t))

[
x
w

]
(35)

is quadratically stable if there exists

Q(U0) =

[
Q1 0

Q2(U0) Q3(U0)

]
(36)

with Q1 ∈ R(nP×nP ), Q1 = Q>1 � 0, Q2 : U0 → RP×n and
Q3 : U0 → RP×P such that the inequality holds

A(U0)>Q(U0) +Q(U0)>A(U0) ≺ 0 ∀U0 ∈ U0. (37)
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In principle, Theorem 1 provides sufficient conditions
that (33) must fulfill in order to be quadratically stable.
However, such conditions cannot be enforced during the model
generation, for two main reasons:

1) The entries of the state matrix A(U0) are determined
by the unknown model coefficients, according to (21)
and (22). Considering these coefficients and Q(U0) as
unknown variables, (37) becomes a non-convex bilinear
matrix inequality (BMI) and thus cannot be solved effi-
ciently as the number of unknowns becomes large.

2) Condition (37) is required to hold uniformly over the
whole parameter space U0, imposing an infinite set of
constraints.

These considerations would translate in the necessity to per-
form the model estimation under an infinite number of BMI
constraints, in order to guarantee the quadratic stability of (33).
This scenario is obviously impractical.

B. Proposed framework for quadratic stability enforcement

Our main approach to guarantee the quadratic stability of
the proposed LPV model is to derive a sufficient condition by
suitably constraining the model structure and its coefficients.
We see below that adopting basis functions ζ` that are positive
and forming a partition of unity, leads to quadratic stability
conditions that can be cast as a finite set of LMIs. Such
constraints are convex and can be easily incorporated in the
model generation algorithm, leading to a formulation based
on semidefinite programs that can be efficiently handled by
standard convex optimization solvers.

We now formulate and prove our main result.
Theorem 2 (Sufficient conditions for quadratic stability): Let

the basis functions ζ`(U0) satisfy the conditions
¯̀∑

`=1

ζ`(U0) = 1 ∀U0 ∈ U0 (38)

ζ`(U0) ≥ 0 ∀U0 ∈ U0, ` = 1, . . . , ¯̀. (39)

Then, the LPV system (33) is quadratically stable if there
exists Q∗1 ∈ Rn×n such that Q∗1 = Q∗1

> � 0 and[
A>1 Q

∗
1 +Q∗1A1 Q∗1B1 − C>1,`

B>1 Q
∗
1 − C1,` −2d1,`

]
≺ 0 ` = 1, . . . , ¯̀. (40)

Proof: Consider first the descriptor state matrix associated
to (33) for the single-input-single-output case, P = 1

A(U0) =

[
A1 B1

C1(U0) D1(U0)

]
. (41)

Applying Theorem 1 to the matrix A from (41) and

Q =

[
Q∗1 0
0 −1

]
one proves that (41) is quadratically stable if Q∗1 = Q∗1

> � 0
obeys the inequalities[

A>1 Q
∗
1 +Q∗1A1 Q∗1B1 − C1(U0)>

B>1 Q
∗
1 − C1(U0) −2D1(U0)

]
≺ 0 ∀U0 ∈ U0.

(42)

Substituting (21) and (22) into (42) leads to the equivalent
condition

A>1 Q
∗
1 +Q∗1A1 Q∗1B1 −

¯̀∑
`=1

ζ`(U0) · C>1,`

B>1 Q
∗
1 −

¯̀∑
`=1

ζ`(U0) · C1,` −
¯̀∑

`=1

ζ`(U0) · d1,`

 ≺ 0

(43)
that must hold ∀U0 ∈ U0. In view of (38), one has

A1 = A1

¯̀∑
`=1

ζ`(U0), B1 = B1

¯̀∑
`=1

ζ`(U0) (44)

so that (43) shapes into
¯̀∑

`=1

ζ`(U0)

[
A>1 Q

∗
1 +Q∗1A1 Q∗1B1 − C>1,`

B>1 Q
∗
1 − C1,` −2d1,`

]
≺ 0, ∀U0 ∈ U0

(45)
Due to (39), condition (45) is entailed by the discrete set of
LMIs (40). This proves the result for the case P = 1.

The general case P > 1 is proved by applying Theorem 1
to the matrix A(U0) whose blocks are defined in (16)

A(U0) =

[
IP ⊗A1 IP ⊗B1

IP ⊗ C1(U0) IP ⊗D1(U0)

]
, (46)

and the matrix

Q =

[
IP ⊗Q∗1 0

0 −IP

]
,

where Q∗1 = Q∗>1 � 0 is a matrix that satisfies (42).
Condition (37) shapes into

S ≺ 0 ∀U0 ∈ U0, (47)

with

S =

[
IP ⊗ (A>1 Q

∗
1 +Q∗1A1) IP ⊗ (Q∗1B1 − C1(U0)>)

IP ⊗ (B>1 Q
∗
1 − C1(U0)) −IP ⊗ (2D1(U0))

]
A similarity transformation S̄ = T>ST , where T is an
appropriate permutation matrix, leads to

S̄ = IP ⊗
[
A>1 Q

∗
1 +Q∗1A1 Q∗1B1 − C1(U0)>

B>1 Q
∗
1 − C1(U0) −2D1(U0)

]
(48)

which is a block-diagonal repetition of (42), being thus neg-
ative definite, along with S, whenever Q∗1 satisfies (40). This
completes the proof. �

C. Discussion

Theorem 2 provides sufficient conditions for the quadratic
stability of the proposed affine LPV system (33), which can
be enforced during the model generation very easily. In fact,
conditions (40) constitute a finite set of small-size LMIs,
where the free variables are Q∗1 ∈ Rn×n, C1,` ∈ R1×n, and
d` ∈ R for ` = 1, ..., ¯̀. Note that the latter include only the
unknown coefficients defining the (scalar) denominator in (12),
since the PSK iteration is usually cast as an iterative least
squares problem that eliminates the numerator unknowns in a
preprocessing step, see [34]. Overall these quadratic stability
conditions amount to ¯̀ independent LMI constraints, each of



7

size (n+1)×(n+1) on a total of n(n+1)/2+(n+1)¯̀degrees
of freedom. These constraints are to be combined with the least
squares problem on the (n+ 1)¯̀ denominator coefficients.

Some remarks are in order.
Remark 1: In order to remove the bilinear dependence

of (37) on the unknowns and derive the proposed linearized
quadratic stability constraints, we have simplified the structure
of the Lyapunov function Q(U0) that enters in the general
Theorem 1. In particular, for constant values of the involved
matrices, setting Q3(U0) ≡ −1 has no real influence on the re-
sults, except for an indirect renormalization of all coefficients
of the model. Instead, imposing Q2(U0) ≡ 0 may introduce
some degree of conservatism, and could lead to potential losses
of model accuracy by over-constraining the model coefficients,
which in turn constrain the set of the allowed parameterized
poles trajectories. We however have observed no significant
loss of accuracy by imposing the proposed constraints in place
of state of the art uniform stability constraints valid for frozen
parameter macromodels (e.g. by means of the strategy advised
in [27]). See Sec. VI.

Remark 2: The proposed framework imposes a restriction
on the choice of parameter-dependent basis functions ζ`(U0),
which must be non-negative and represent a partition of unity
over the entire bias space. In this work, we adopt the multi-
variate Bernstein polynomials [35], which are compliant with
these constraints. In the univariate case, Bernstein polynomials
bν,ν̄(θ) of the degree ν̄ in the normalized domain θ ∈ [0, 1]
are

bν,ν̄(θ) =

(
ν̄

ν

)
θν(1− θ)ν̄−ν , ν = 0, . . . , ν̄. (49)

For higher dimension P > 1, the multivariate basis functions
ζ` are constructed as Cartesian products of univariate Bernstein
polynomials as follows

ζ`(U0) =

P∏
i=1

ζ`i(U
i
0), ζ`i(U

i
0) = b`i,¯̀i(θ

i), θi =
U i0 − U

i
0

U
i

0 − U
i
0

.

Here 0 ≤ `i ≤ ¯̀
i is the index corresponding to the i-th

coordinate in the bias space, and all possible P -tuples of
indices (`1, . . . , `P ) are indexed by ` = 1, . . . , ¯̀=

∏
i(1+ ¯̀

i).
Remark 3: Our derivations are based on the assumption

that for any set of biasing inputs U0 ∈ U0, the nonlinear
system (1) operates around a stable working point defined by
equations (3). This property is inherited by the parameterized
macromodel whenever constraints (40) are used for its gen-
eration. However, it is well known that when active circuit
blocks are interconnected with (even passive) termination
networks, the overall behavior of the whole system is not
guaranteed to be stable. It is thus of interest to ask whether a
given reference nonlinear circuit and the corresponding affine
linearized equivalent (7) are both stable (or unstable) under
the same loading conditions.

This is not true in general, due to the unavoidable differ-
ences between the local behavior of the reference circuit and
that of the macromodel: these differences are introduced both
by the linearization process and by the rational approximation
used to build the reduced order model. Nevertheless, provided

R2

R1 RC

RE

Cout

vout

Cin

vin

Vcc

Passive Network

−
+ vs

Fig. 1. A common emitter amplifier (Cin = Cout = 10 µF, R1 = 4 kΩ ,
R2 = 1 kΩ, RC = 110 Ω, RE = 20 Ω and Vcc = 10 V) interconnected
with a passive two-port network (see text).

that the linearization error is negligible, and that the small-
signal approximation H(s, U0) ≈ H̃(s, U0) holds with high
accuracy, then it may be argued that a given termination that
destabilizes the macromodel will also destabilize the original
circuit, and vice versa. Note that, in this situation, the unstable
behavior of both circuits would drive the signals outside the
small-signal regime, making the proposed macromodel invalid.

As an illustrative example, consider the simple common
emitter amplifier circuit depicted in Fig.1, for which a lin-
earized macromodel was derived around its stable operating
point. The small-signal transfer function has a maximum gain
about 5.2. We then applied the procedure of [36, Sec. 4.1]
to find a passive two-port network that, when interconnected
to the macromodel, leads to an unstable system, in this case
with a pair of complex conjugate poles with positive real
part p1,2 = +166 ± j628 rad/s. Using this termination,
we performed a transient analysis of both macromodel and
reference nonlinear circuit using a sinusoidal excitation vs(t)
with amplitude 1 µV and frequency 100 Hz. The resulting
output voltages are depicted in Fig. 2. Both reference and
macromodel circuits are indeed unstable, with agreement only
up to a finite time horizon (about 80 ms). For later times, the
reference circuit undergoes saturation, making the small-signal
linearization invalid.

D. Uniform and quadratic stability of parameterized macro-
models

The proposed set of linearized quadratic stability con-
straints (40) can be seen as more general (yet restrictive)
conditions for ensuring the uniform stability of standard LTI
parameterized macromodels, where the parameters are con-
stant. These are obviously a particular case of LPV systems,
where time variation of the parameters is suppressed. There-
fore, conditions (40) provide a novel and efficient framework
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Fig. 2. Transient analysis of the unstable electrical network depicted in Fig. 1.
Reference nonlinear circuit and linearized model are in agreement up to a
given time horizon, after which the small-signal assumption does not hold.

Fig. 3. The proposed model structure augmented with a low-pass filter aimed
at extracting the low frequency content of the bias component and provide
the instantaneous parameterization to the linearized dynamics.

for constraining uniform stability of multivariate macromodels,
as an alternative to the consolidated condition (34).

It is interesting to note that both (34) and proposed con-
ditions (40) provide a certification of model stability based
on energetic properties of the model denominator function
D(s, U0). In short, if D(s, U0) represents a passive system,
then its inverse is also passive and both zeros and poles have
a negative real part [27]. Condition (34) implies passivity
based on a frequency-domain positive realness condition.
Conversely, the proposed LMI conditions (40) provide a char-
acterization of denominator passivity through the well known
Kalman-Popov-Yakubovich (KYP) lemma [37], here restated
for the parameterized case as

∀U0 ∈ U0, ∃ Q(U0) = Q(U0)> � 0 such that[
A>1 Q(U0) +Q(U0)A1 Q(U0)B1 − C1(U0)>

B>1 Q(U0)− C1(U0) −2D1(U0)

]
≺ 0 (50)

with the additional assumption that Q(U0) = Q1. In other
words, the adopted formulation is equivalent to a stronger
version of the KYP condition (50) with a constant storage
function.

V. EXTRACTION OF TIME-VARYING BIAS COMPONENTS

The practical exploitation of model structure (33) for time
domain simulations requires the availability of the instan-
taneous input bias component U0(t), to be provided as a
parameter for the descriptor matrices (33). However, during
a transient analysis, the signal decomposition (26) is not
defined uniquely, as the only available numerical quantity is
the full input signal u(t) at the circuit interface. Therefore,
the exploitation of (26) is practically applicable only in view

of an automated procedure aimed at isolating the bias and the
small signal components.

Considering Assumption 1 (that requires U0 to vary suf-
ficiently slowly), we suppose that the spectrum of U0(t) is
confined to a sufficiently narrow low-frequency band, to guar-
antee the validity of the proposed time-varying linearization.
It is thus intuitive that the required parameterization can be
obtained from the input signal by means of a low-pass filtering
operation. Hence, we propose the augmented model structure
shown in Fig. 3, which embeds a low-pass filter aimed at
extracting the value of the instantaneous bias component from
the whole model input.

The design of such a filter must be compliant with the
requirements of our main assumption; in particular, it must
provide a parameterization such that (29) holds with suffi-
ciently small δξ. However, since the non-linear equations (1)
are not available in closed form, no analytical methods based
on the native circuit description can be exploited to derive
an exact characterization of the frequency domain properties
that U0(t) must fulfill, in order to maintain the validity of the
proposed approximation. Due to this limitation, only heuristic
criteria based on experimental (simulated) data regarding the
circuit under modeling can be employed to design the filter.
We propose the following procedure:

1) Build the low-order small-signal transfer function (12).
2) Sample the poles of the transfer function over the bias

space U0. This operation is not computationally expensive
since the order n of the model is low.

3) Determine the angular frequency ωp of the slowest pole
of the parameterized transfer function.

4) Set the cut-off frequency of the filter ωc = ρωp, with
ρ ≤ 0.1

5) Build a second order Butterworth filter of unit gain and
cut-off frequency ωc.

The above procedure is aimed at guaranteeing a suffi-
ciently slow variation of the bias parameter, in compliance
with previous results concerning LPV models derived from
frozen-parameter configurations of the underlying system, see
e.g. [38], [39], [40]. Whenever an a-priori knowledge of the
frequency content of the bias input U0(t) is available, it can
be used to tune the value of the ratio ρ.

In principle, time-domain data could also be exploited in
the design of the desired filter, based for example on the
maximization of the accuracy of the model against reference
time domain training samples. In our framework, retrieving
time domain data from the original circuit description is
extremely expensive in terms of time requirements, as will
be shown in the experimental section. Additionally, due to the
non-linear nature of equations (1), time-domain approaches
would not provide additional warranties of accuracy when the
model is subject to input profiles that are different from those
used to guide filter design. Time-domain approaches are thus
impractical and beyond the scope of this work.

A. Alternative time-varying parameterizations

Up to now, our discussion has been focused on the gen-
eration of linearized models in which the variation of the
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operating point is induced by slowly varying components of
the electrical quantities imposed at the circuit block interfaces.

Model structure (33) can be exploited also to simulate
variations of the circuit working condition as induced by
external environmental parameters on which (1) may depend,
such as temperature. The simplest scenario is the application
of a known instantaneous profile, such e.g. representing a
temperature profile induced by heating. A more complex
scenario is a coupled electro-thermal or even multiphysics
simulation, where the parameters are obtained as a result of a
co-simulation of an associated thermal or multiphysics model.

In both the above-mentioned scenarios, it is assumed that the
actual parameter value is available in some form as a variable
that is independent on the electrical port signals. Therefore
there is no need to make use of any filtering operation to derive
the instantaneous working condition. In next section, we show
an example of the first scenario, where a given temperature
profile is applied at runtime. Coupled multiphysics simulations
are left as a future investigation.

VI. NUMERICAL EXPERIMENTS

A. A Low Dropout Regulator Schematic

The first example provides a proof-of-concept validation
of the proposed modeling framework. As reference circuit,
we consider the CMOS Low Dropout (LDO) regulator design
first proposed in [41]. The circuit schematic was instantiated
in the LTSpice environment, without taking into account any
additional layout description or packaging parasitics. This
regulator provides a nominal output voltage VL = 2.8 V
for load currents values IL ∈ [0, 50] mA, with a minimum
recommended DC input voltage VDD = 2.9 V.

We modeled the circuit through its 2-port Hybrid represen-
tation, considering as port variables the input voltage (port 1)
and the load current (port 2). For this test case, we fixed a
reference load current U2

0 ≡ IL = 10 mA, while allowing
the input voltage to vary within the set U1

0 (t) ≡ VDD(t) ∈
[2.85, 3] V, in order to stress the non-linear degradation of the
power supply rejection at low input voltages. The considered
bias space is therefore the set U0 = [2.85, 3] V × 10 mA.

We sampled the bias space by collecting M = 20 distinct
small-signal frequency responses at different DC levels of the
input voltage, and we built a reduced order model of order
n = 8 by applying the quadratic stability constraints (40). The
poles and the zeros of the model were both parameterized by
means of third order Bernstein polynomials. The frequency-
domain fitting required 6.2 s. Figure 4 reports the results for
two elements of the matrix transfer function, confirming the
excellent accuracy of the model against the reference data.
A low-pass filter with ρ = 0.05 and a cut-off frequency
ωc = 2π800 rad/s completes the model structure according
to Fig. 3. The model was finally synthesized as a behavioral
netlist, implemented in the LTSpice environment.

A set of transient analyses was performed in order to test
the time domain performance of the proposed LPV behavioral

model against the reference transistor-level schematic. To this
aim, we defined the following testing input signals

u1(t) = a1 sin(2πf1t) +
b

1 + e−k(t−0.09)
+ 2.85 V

u2(t) = a2 sin(2π
√

2f1t) + IL

(51)

where coefficients a1 = 5 mV, a2 = 1 mA and f1 = 10 kHz
define the small signal quantities. A variation of the operating
point is induced by the second term in u1(t), with a slew rate
parameterized by b = 0.15 V and by the shape factor k. A
transient analysis was repeated for k = 100, 200, . . . , 1000, in
order to assess the ability of the model to track increasingly
faster operating point variations. The considered bias profiles
are depicted in Fig. 5.

The regulated voltage returned by the model prediction
was compared with the transistor-level reference for the ten
considered test cases, by computing the RMS value of the
corresponding deviation. The results are reported in the top
panel of Fig 6, while the bottom panel reports the transient
regulated voltage of model and true circuit for one case
k = 500 (similar results were obtained for all values of
k). We observe that the error remains quite small for all
the considered bias profiles, although it increases slightly for
faster bias variations. This behavior is expected, since faster
variations are likely to be more difficult to track by the low-
pass filter.

The necessity of a LPV model structure that embeds time-
varying small-signal parameters is confirmed by Fig. 7. Here,
the transient results obtained by a fixed model with LTI struc-
ture and constant state-space matrices defined by a prescribed
operating point U1

0 = 2.85 V are reported, by letting the input
bias component switch according to (51) with k = 500. In
this experiment, the evolution of the bias component is not
tracked by the model. The results show that the LTI model is
not able to reproduce the correct voltage regulation behavior
of the original circuit as the input voltage drifts to a higher
value. On the other hand, the proposed LPV model structure
adaptively tracks the operating point variation and recovers
both the trend and the small signal variations of the output
voltage (bottom panel of Fig. 6).

B. A Post-Layout LDO Regulator Design

We now consider a more realistic application scenario for
the proposed modeling framework, by taking into account a
complete LDO voltage regulator circuit design, including its
parasitics obtained from a post-layout extraction.

We instantiated in the Cadence environment the Only-MOS
regulator design proposed in [42]. This design is characterized
by low quiescent current and is designed for low-power appli-
cations, with a maximum nominal load current IL = 10 mA
and a minimum rated input voltage VDD = 0.9 V. The circuit
was designed according to the reference specifications, making
use of a 40 nm CMOS process. The resulting layout takes a
0.0045 mm2 area.

Similarly to the schematic of Sec. VI-A, the device was
modeled as a 2-Port system in hybrid representation. For this
test case, we fixed the bias level of the input voltage to
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Fig. 4. Two elements of the transfer function for the LDO schematic test
case. The parameterization is induced by the DC value of the input voltage.
Both training and validation samples are shown.

Fig. 5. Time variation of the the bias component U1
0 (t) for the LDO schematic

test case, for different values of k = 100, 200, . . . , 1000.

U1
0 ≡ VDD = 0.9 V, while allowing load current to span

the entire operating range, so that U2
0 ≡ IL ∈ [0, 10] mA.

We derived a model with n = 9 parameterized poles starting
from M = 50 frequency responses obtained at different load
current configurations, using a polynomial order ¯̀ = 5 for
numerator and denominator. The model generation time was
8.6 s. The accuracy of the fitting is confirmed in Fig. 8, where
no visible difference between the model and the reference
small-signal responses can be noted, throughout the entire
bias space. Finally, a low-pass filter with cut-off frequency
ωc = 2π500 rad/s was added to complete the LPV model
structure (Fig. 3).

The resulting LPV model was used to simulate a transition
from a low-power (IL = 0.5 mA) to a higher consumption
state IL = 2 mA, with a transition time ∆t = 6 ms. A time-
varying noise signal with flat power spectrum limited to the
band 1 − 10 kHz and amplitude 0.2 mA was added to the
output current, to represent a small-signal variation around

Fig. 6. LDO schematic test case. Top panel: RMS deviation of model
wrt transistor-level response, as a function of the slew rate of input bias
variation (see Fig. 5). Bottom panel: transient regulated voltages of model
and transistor-level circuit for the case k = 500.

Fig. 7. LDO schematic test case: as in Fig. 6 (bottom panel), but using a
fixed LTI model, with constant state-space matrices. This model cannot track
the variation of the operating point as the input bias component switches to
another DC level.

IL. Similarly, a 20 mV small-signal variation with the same
bandwidth was added to the input voltage.

The model was istantiated as an equivalent SPICE netlist
in the LTSpice environment. The results of the simulation
related to the regulated voltage are provided in Fig. 9, where
we compare the model response against the reference device
data. The results show that the model is accurate for the
whole simulation length, and that the accuracy is preserved
during the transition. The reference transistor-level simulation
was performed using Cadence 6.1.7-64b + Spectre 18.1.0-
64b enviroment into a HP Proliant DL580 Server featuring
72-parallel-CPU Intel Xeon Gold 6140M and 128GB RAM.
The total run-time was approximately 13 minutes. The same
transient analysis using the proposed model was performed in
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Fig. 8. Two frequency responses of the post-layout LDO test case. The
parameterization is induced by the DC value of the load current in the range
[0, 10] mA. Only validation samples are shown.

LTSpice on a different machine, equipped with Intel Core i9
7900X CPU and 64 GB of RAM. The resulting runtime was
16 s, corresponding to a 50× speed up.

To further validate the model, we simulated an additional
operating point variation scenario, switching from a load
current IL = 5 mA to IL = 8 mA in ∆t = 6 ms, and using a
small-signal component with amplitude 0.5 mA. The results
are reported in Fig. 10. Also in this case the LPV model is in
full agreement with the reference data, confirming the validity
of the proposed approach.

C. Transient with given temperature profile

In this final experiment, we illustrate how the proposed LPV
model structure can be adapted and exploited to track varia-
tions of environmental quantities during a transient analysis.
We consider the LDO regulator already studied in Sec. VI-B,
and we perform a transient analysis including a time variation
of the device temperature. The LPV model was constructed by
fixing the DC levels of the port variables to VDD = 1 V and
IL = 50 µA, and by collecting a set of M = 26 parameterized
small-signal transfer functions for a broad range of operating
temperature conditions T ∈ [−25, 100] ◦C. This data was used
to generate a model with dynamic order n = 8 and third-order
parameterization. The modeling procedure required 6.8 s. The
resulting model accuracy is illustrated in Fig. 12. In addition,
we have generated a model of the same order by enforcing
the uniform stability constraints proposed in [27] for param-
eterized LTI macromodels, in place of (40); in Fig. 13 we
compare the output impedance of the two models for different
temperature values, showing that no visible degradation of
the accuracy is induced when the constraints from [27] are
replaced by our constraints (40).

Fig. 9. Post-layout LDO test case. Top panel: regulated output voltage during
an operating point transition from IL = 0.5 mA to IL = 2 mA; bottom panel:
zoom on the transition time window.

Fig. 10. Post-layout LDO test case. As in Fig. 9, but for an operating point
transition from IL = 5 mA to IL = 8 mA.



12

Fig. 11. The temperature profile used to perform the transient analysis of the
LDO under time-varying environmental conditions.

Fig. 12. Validation of the post-layout LDO model, parameterized by device
temperature. The figure compares the model with the reference small-signal
voltage regulation transfer function, for the temperature operating range T ∈
[−25, 100] ◦C

For this illustrative example, the real-time temperature pa-
rameterization is injected directly into the model coefficients
by making use of the temperature profile shown in Fig. 11,
which simulates the variation induced by a CPU heating [43].
A band-limited small-signal component was added to the
input voltage, with amplitude 30 mV and power spectrum
limited to 100 Hz, with a peak around the line frequency at
50 Hz. A reference transient response was computed in the
Cadence environment. Due to the extremely long duration of
the transient, this simulation required approximately 24 hours
to be performed.

The proposed model was instantiated and simulated with
LTSpice in about 20 minutes, with a speed-up of about 100×.
Figure 14 compares the transient evolution of the regulated
voltage for both proposed model and transistor-level reference
over three different time windows associated to different local
temperature values. The figure reports also the results of a
transient simulation performed with an ad hoc solver written
in MATLAB and based on a simple backward Euler integration
of the LPV model. Although this code is prototypal and
non-optimized, the entire simulation required only 44 s, with
further speedup with respect to a conventional SPICE imple-
mentation. Both reference and the two LPV model simulations
provided compatible results, with no visible loss of accuracy.

VII. CONCLUSIONS

This work proposed a novel strategy for the generation of
reduced-order Linear Parameter Varying (LPV) macromodels,

Fig. 13. Comparison between the output impedance of two models of the
LDO circuit, obtained by enforcing the uniform stability constraints as in [27]
and the proposed quadratic stability constraints (40) respectively.

Fig. 14. Transient analysis of the post-layout LDO with time-varying temper-
ature over three time windows extracted from the whole simulation, represen-
tative of different instantaneous temperature values. Top panel: T ≈ 32◦C.
Middle panel: T ≈ 55◦C. Bottom panel: T ≈ 68◦C
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for fast prediction of the time domain input/output behavior of
mildly non-linear analog circuit blocks. This model structure
is able to reproduce the circuit response under non-stationary
small-signal conditions, where the operating point changes
dynamically during run-time. The model is cast as a reduced-
order SPICE-compatible netlist, which guarantees significant
speed-up in transient analyses with respect to transistor-level
circuit descriptions. The efficiency of the model comes with
no significant loss of accuracy, as demonstrated by several
numerical experiments on voltage regulator circuit blocks.

The strong theoretical foundations of the proposed frame-
work guarantee that the model preserves the stability properties
of the reference circuit. Our main result proves in fact the
quadratic stability of the LPV model, which in turn provides
a guarantee of asymptotic stability for all non-stationary
operating conditions belonging to the range used to construct
and constrain the model.

Since the proposed framework is general, it may be ex-
tended to boost efficiency in any transient simulation scenario
involving time-varying operating conditions, such as coupled
electro-thermal or multiphysics simulations. These two direc-
tions will be considered in our future investigations.
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