
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Monocular Depth Perception on Microcontrollers for Edge Applications / Peluso, Valentino; Cipolletta, Antonio; Calimera,
Andrea; Poggi, Matteo; Tosi, Fabio; Aleotti, Filippo; Mattoccia, Stefano. - In: IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY. - ISSN 1051-8215. - 32:3(2022), pp. 1524-1536.
[10.1109/TCSVT.2021.3077395]

Original

Monocular Depth Perception on Microcontrollers for Edge Applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSVT.2021.3077395

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2903754 since: 2021-06-01T18:50:06Z

Institute of Electrical and Electronics Engineers

1

Monocular Depth Perception on Microcontrollers
for Edge Applications

Valentino Peluso, Member, IEEE, Antonio Cipolletta, Student Member, IEEE, Andrea Calimera, Member, IEEE,
Matteo Poggi, Member, IEEE, Fabio Tosi, Student Member, IEEE, Filippo Aleotti, Student Member, IEEE,

Stefano Mattoccia Member, IEEE

Abstract—Depth estimation is crucial in several computer vision
applications, and a recent trend in this field aims at inferring
such a cue from a single camera. Unfortunately, despite the
compelling results achieved, state-of-the-art monocular depth
estimation methods are computationally demanding, thus pre-
cluding their practical deployment in several application contexts
characterized by low-power constraints. Therefore, in this paper,
we propose a lightweight Convolutional Neural Network based
on a shallow pyramidal architecture, referred to as µPyD-
Net, enabling monocular depth estimation on microcontrollers.
The network is trained in a peculiar self-supervised manner
leveraging proxy labels obtained through a traditional stereo
algorithm. Moreover, we propose optimization strategies aimed
at performing computations with quantized 8-bit data and map
the high-level description of the network to low-level layers
optimized for the target microcontroller architecture. Exhaustive
experimental results on standard datasets and an in-depth
evaluation with a device belonging to the popular Arm Cortex-
M family confirm that obtaining sufficiently accurate monocular
depth estimation on microcontrollers is feasible. To the best
of our knowledge, our proposal is the first one enabling such
remarkable achievement, paving the way for the deployment of
monocular depth cues onto the tiny end-nodes of distributed
sensor networks.

Index Terms—Computer vision, depth estimation, deep learning,
optimization methods, edge computing, IoT, micro-controllers.

I. INTRODUCTION

Depth perception is one of the foremost cues for tackling many
real-world applications like autonomous or assisted driving,
robotics, safety, and security. Although for this purpose there
exist effective active technologies, such as Light Detection and
Ranging (LiDAR), inferring depth from images has several
advantages as bulky mechanical parts are no longer needed.
Therefore, it represents a long-standing problem in computer
vision and different approaches, such as stereo vision and
multi-view stereo, have been extensively investigated. The
recent spread of machine learning (ML) has opened new

Manuscript received XX, 20XX; revised XX, 20XX; accepted XX, 20XX.
Date of publication XXXX XX, 20XX; date of current version XXXX
XX, 20XX. This brief was recommended by Associate Editor X. XXXX.
(Corresponding author: Andrea Calimera.)
Valentino Peluso, Antonio Cipolletta and Andrea Calimera are with the
Department of Control and Computer Engineering, Politecnico di Torino,
Italy, 10129 (e-mail: valentino.peluso@polito.it, antonio.cipolletta@polito.it,
andrea.calimera@polito.it)
Matteo Poggi, Fabio Tosi, Filippo Aleotti and Stefano Mattoccia are
with the Department of Computer Science and Engineering, Università
di Bologma, 40136, Italy (e-mail: m.poggi@unibo.it, fabio.tosi5@unibo.it,
filippo.aleotti2@unibo.it, stefano.mattoccia@unibo.it)

frontiers and, in particular, enabled to infer depth from a single
camera simplifying the setup remarkably and allowing to
exploit such a cue even in applications contexts characterized
by severe constraints of cost and size.
A potential downside of ML-based methods is their complex-
ity. The Convolutional Neural Networks (CNNs) used as back-
bone are well known to be highly resource-demanding, both in
terms of computing power and memory space, and may call for
parallel accelerators like GPU cards. Nonetheless, as proposed
in [1], the PyD-Net architecture leveraging an appropriate
pyramidal network design enables depth perception with an
accuracy comparable to state-of-the-art but with much fewer
hardware requirements making it feasible on high-end CPUs
commonly available in desktops, but also portable devices with
a few Watts of power budget, such as flagship smartphones and
tablets or wired smart cameras. As described in a more recent
work [2], additional hardware-aware optimization strategies
applied to the PyD-Net model, mostly aimed at reducing the
data type deployed for inference, enabled to save 33% of
energy with an almost equivalent degree of accuracy.
Moving along this scaling trend, it is natural to ask whether
depth perception can go even further approaching smaller
and cheaper off-the-shelf components able to work below the
Watt mark, like tiny end-nodes powered with Micro-Controller
Units (MCUs). This may offer interesting opportunities in the
context of new edge applications and services in the Internet-
of-Things (IoT) segment, where distributed visual sensors can
evolve from simple image collectors to intelligent hubs able to
infer depth locally, namely with no access to the cloud, thereby
ensuring portability even in geographical areas with limited
data coverage, and higher quality-of-service (QoS) thanks to
more certain latency and higher users privacy [3].
Unfortunately, MCUs are orders of magnitudes less perform-
ing than embedded CPUs/GPUs, and state-of-the-art models
for monocular depth estimation are too large for this purpose.
Even the smallest nets, e.g. [1], [4], are designed for systems
with high-speed multi-core architectures and large SRAM
banks, thus consuming up to 3.5–10 W of power. Instead,
typical MCUs run at a much lower frequency (hundreds of
MHz vs. 1–2 GHz) and impose tight memory constraints
(hundreds of kB vs. 2–8 GB). This represents a new challenge
in the field of computer vision and depth perception in
particular, which calls for a paradigm shift: quality is no longer
the only objective, and other extra-functional metrics need
to be considered at the software-level and during the whole
compilation flow. Therefore, to find and implement proper

Copyright ©2021 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org. Personal use is permitted, but republication/redistribution requires IEEE permission.

2

resource-driven optimization strategies becomes paramount.
Pointing to this direction, the first and foremost assumption
made in this work is that the processing of high-resolution
images is no longer feasible, nor useful for the kind of
applications addressed. It suffices to think that a single HD
image may take more memory than that available on-chip.
Hence, differently from the traditional high-quality vision
systems, coarse depth estimates from low-resolution images
is the way to meet the stringent hardware constraints of low-
power MCUs, and at the same time, a strength in many edge
applications concerned with privacy issues [5].
Starting from these considerations and leveraging the findings
of our previous work [2], we propose:
• a novel lightweight architecture referred to as µPyD-

Net specifically designed for processing low-resolution
images (i.e. 48 × 48 or 32 × 32) on a sub-W power
envelope with MCUs. The µPyD-Net maximizes the
savings brought by inputs resolution scaling thanks to
an internal topology optimized with hardware-conscious
techniques;

• a semi-supervised training flow from low-resolution im-
ages and full-resolution disparity maps based on SGM —
hence different compared to previous works [1], [2] —
able to deliver enough supervision with low requirements
and with equivalent performances of more costly systems.

The overall outcome of this work yields two main achieve-
ments: (i) to enable, for the first time, monocular depth
estimation on low-power MCUs, such as the Arm Cortex-M7
CPU; (ii) to obtain a meaningful coarse depth representation
from a tiny image, i.e. down to 32 × 32 pixels, sufficient to
tackle high-level applications. We will show with extensive
experimental results how despite the meager resolution of the
images processed, µPyD-Net achieves, on the standard KITTI
dataset [6], a depth accuracy comparable to seminal works [7],
[8], although not on par with the current state-of-the-art [9]–
[11]. However, this is not surprising given the much higher
resolution and the thousand times more complex models of
the latter methods, out of reach for MCUs used in applications
at the edge.

II. MOTIVATIONS AND PRACTICAL USE-CASES

Despite the significant achievements in terms of accuracy,
modern state-of-the-art techniques for monocular depth esti-
mation [10], [12], [13] are overkill for many edge applications.
Specifically, while high-resolution dense depth maps are de-
sirable when dealing with tasks such as 3D reconstruction and
SLAM, a rough depth estimate suffices in many applications
such as object/people counting [14], [15], pose estimation
[16], action recognition [5], vehicle detection [17]. Indeed,
millimetric depth measurements are not strictly required in
these cases to tackle the problem successfully. As an an-
ticipation of the obtained results, a qualitative assessment
is given through the use-case reported in Figure 1, which
shows that the coarse maps inferred by µPyD-Net can be
used for vehicle detection seamlessly, by simply looking for
differences in the coarse 3D structure of the scene with respect
to the structure of environment itself in absence of vehicles.

Intuitively, with lighter input images the hardware require-
ments reduce substantially enabling to bring the task within
the computing capability of MCUs. Obviously, the limited
operating frequency and low parallelism of MCUs prevent
real-time performance (i.e. >30 FPS). However, the focus here
is on those applications with relaxed timing constraints, like
traffic congestion monitoring, and not fast decision making
needed, for instance, on autonomous driving. However, in
the case of decision-making systems, our solution can be
easily ported to mobile CPUs in order to gain about 100×
performance at the cost of only 10× power consumption.
Moreover, in many circumstances, processing low-resolution
images is even desirable. For instance, depth predictions can
be used as privacy-preserving features for further processing
in cloud systems. Commonly referred to as collaborative
intelligence [19], this strategy enables to preserve user privacy,
masking sensitive data that are present in raw RGB images. An
example is depicted in Figure 2, which applies to an image ex-
tracted from the VAP dataset [18]. Distinctive features in data
managed by the staff in charge of monitoring the environment
may violate users’ privacy. Although low-resolution images
partially help to alleviate this issue, sufficiently distinctive
clues can still be inferred as we can notice from Figure
2 c). However, by moving to a pure depth domain as in
Figure 2 d), one can hide details yet keeping the relevant
information required for the high-level task. Bringing these
sensing capabilities on tiny devices is paramount to reduce
design costs and power consumption of systems based on
RGB-D cameras (e.g. Kinect in (b)) or standard network for
monocular depth estimation (d). The map inferred by µPyD-
Net (e) and post-processed by a super-resolution network
running on the cloud (f) achieves results comparable to the
two baselines.
To play with low-resolution inputs is beneficial in terms of
the number of operations to be processed but also memory
footprint to store hidden features maps. However, an in-depth
analysis conducted in Sec. VII-D demonstrates that resolution
scaling alone is not enough to fit current models on MCUs
and that to achieve the goal requires much more design
and optimization efforts. This motivates the need of novel
inference models, like the proposed µPyD-Net which, thanks
to its compact topology, a novel training procedure, and the
optimization pipeline, ensures prediction quality not far from
that of standard techniques processing high-resolution images.

III. RELATED WORK

In this section, we review the literature concerning monocular
depth estimation and deep networks compression since both
topics are pertinent to our work.

A. Depth Estimation

Inferring depth from images, i.e. obtaining the distance of real-
world points framed by a camera, is a long-standing problem
in computer vision, and it can be exploited to tackle a plethora
of problems as environment monitoring, object detection,
collision avoidance, and many more. Although active sensor,
such as Time-of-Flight or LiDAR, can be used for this purpose,

3

Fig. 1. Example of application concerning traffic monitoring with minimum memory requirements and power consumption enabled by µPyD-Net. For each
example, we show the high-resolution frame, followed by the 32 × 32 image processed by the network (top-right corner) and its output (mid-right corner).
In the bottom-right corner, for each example, we show the differences in the coarse 3D structure of the scene with respect to the structure of the environment
itself, which has been acquired in absence of vehicles (top-left example). The highlighted regions depict the changes in the depth maps inferred by µPyD-Net
when a vehicle enters the scene.

a) b) c)

d) e) f)
Fig. 2. Results on a testing image of the VAP dataset [18]. a) RGB original
frame, b) ground-truth depth acquired using Kinect, c) RGB input image
resized to 32×32, d) maps predicted by PyD-Net, e) maps predicted by µPyD-
Net, and f) outcome of the super-resolution network fed with the µPyD-Net
map.

passive ones generally have some notable advantages. Specif-
ically, they do not perturb the sensed environment, rely on
fast and inexpensive imaging devices with an ever-increasing
resolution, require neither any additional hardware equipment
nor have any moving mechanical parts.
Given a stereo rig, i.e. a setup with two aligned and syn-
chronized cameras, the geometrical (epipolar) constraint [20]
allows to infer depth by mean of triangulation once the corre-
spondence between pixels in the two views is addressed. Due
to its central relevance in computer vision, since the ’60s many
algorithms have been proposed in the literature [21]–[24].
Recently, thanks to the more and more increasing capabilities
of hardware devices, deep learning proved to be able to tackle
the complexity of such a problem allowing to reach astonishing
results. In particular, starting with [25] many approaches have
been proposed [26]–[29]. Although stereo vision represents a
prevalent solution concerning depth from images, it requires
two calibrated cameras and synchronized image acquisition.
Thus, this setup may limit its practical deployment when it
is not available or feasible (e.g. on existing installations), too
expensive or cumbersome. Moreover, it becomes unreliable in
the case of miscalibration or when large dis-occlusions occur
between the two cameras due to the particular image content

framed.
Therefore, to prevent all previous issues, a recent trend in
this field consists in inferring depth using a single camera.
Despite monocular depth estimation is a strongly ill-posed
problem, in the last few years, deep learning enabled to
obtain compelling results. Specifically, [7], [8], [10]–[13],
[30]–[39] adopted different strategies to obtain reliable depth
estimation from a single camera by learning to exploit monoc-
ular clues such as shadows, occlusions and relative scales
between objects. In this field, a particularly appealing practice
consists of training end-to-end models in a self or semi-
supervised manner [12], [36], replacing the need for ground-
truth depth labels with image reprojection across different
viewpoints according to two main strategies, respectively
acquiring images with a single, moving camera [36], [38],
[40], [41] or using a stereo camera [10], [12], [37], [42]–
[44]. The latter approach usually turns out more effective, in
particular when deploying self-supervision extracting proxy
labels using stereo algorithms [10], [11]. Unfortunately, de-
spite their effectiveness, these architectures are quite complex
and for inference generally require high computing capabilities
(e.g. GPUs) and have large memory footprints. Consequently,
they also lead to high power consumption, frequently around
250W. For these reasons, they are not suited at all for
embedded devices. Nonetheless, this issue has been partially
addressed in recent works [1], [2] aimed at obtaining real-
time performance, possibly on embedded devices, paying a
low or negligible contribution in terms of accuracy. Despite
these remarkable achievements, monocular depth estimation
on low-power MCUs has never been addressed before.

B. Quantization

Quantization is a reduction technique commonly used to
improve the processing of CNNs. Its adoption is paramount for
deploying CNNs into devices with tight memory constraints
and limited computational resources, like low-power MCUs.
Let’s consider the Arm Cortex-M family for instance, widely
used in low-cost and power-efficient portable systems. First,
the flash memory is limited to few MBs, while the SRAM size
ranges from tens to hundreds of KBs only. The flash memory

4

3x3 conv 3x3 conv upsample concat
(stride 1) (stride 2)

Fig. 3. µPyD-Net architecture. Three levels of features are extracted by the pyramidal encoder, while three compact decoders gradually restore the original
input resolution and produce depth predictions. Overall, µPyD-Net counts only about 100K parameters.

stores the binary of the application, including the network
weights, which is block-loaded into the SRAM at run-time to
ensure faster execution. The SRAM also stores intermediate
features of the network, whose size is not negligible in deep
CNNs like µPyD-Net. Intuitively, 8-bit quantization is highly
desirable as it enables a 4× reduction of the memory footprint
with respect to 32-bit, still with negligible accuracy degrada-
tion. Second, most of the low-power RISC-based architectures
have a limited instruction set. In the Cortex-M architectures,
the floating-point units are optional for many chip-sets, and
even if available there is no support for vector instructions.
To meet the throughput requirements of typical computer
vision applications, the only practical option is to exploit
the parallelism of the 2-way Single-Instruction Multiple-Data
(SIMD) integer data-path (available on the M7 core). This sug-
gests quantization becomes a must rather than an optimization
option.

The aim of this subsection is to briefly summarize the key
aspects of quantization and to provide a synthetic review
of existing techniques. Earlier works showed that a 32-bit
floating-point representation is redundant at inference time.
The most of existing CNNs can be quantized to 16-bit and 8-
bit integers [45] with no, or minimal loss on the output quality.
More recent works also proposed extreme bit-width lowering,
down to ternary [46] or binary [47] representation, yet with
a substantial quality drop depending on the application and
the network topology. However, the lowest integer option is
the 8-bit for off-the-shelf MCUs. More scaled precision can
be only implemented by custom software routines that induce
substantial performance overhead [48]. In view of the above, 8-
bit quantization represents the best trade-off between memory
compression and performance.

Floating-point numbers can be discretized using different
schemes investigated in the past in the field of Digital Signal
Processing (DSP). They can be broadly classified as linear and
non-linear. According to the linear scheme, the quantization
step, i.e. the distance between two adjacent integer values,
is kept constant across the entire input range. This allows
a straightforward implementation that is based on simple
arithmetic operations. The mapping can be symmetric, if the
integer distribution is centered around zero, or asymmetric if
shifted by a given offset; the first choice is simpler, while
the second one reaches the best fit on the original floating-
point distribution with an additional cost due to the offset.
Finally, it is possible to adopt a power-of-two scaling or an
arbitrary scaling factor. The former makes use of simple shift
operations for scaling among the quantized levels [49], the

latter might be more accurate but it generally requires addi-
tional arithmetic [49]. Concerning the non-linear quantization,
it applies a custom function for encoding the original real
data on a discrete set of integer values. Common approaches
are logarithmic quantization [50] or clustering [51]. They
achieve the highest quality when the distribution of the original
data is not uniform. Obviously, the implementation introduces
additional overhead, mainly due to custom procedures to
be stored and run. As a rule of thumb, accurate strategies,
i.e. linear/asymmetric and non-linear quantization, achieve
higher fidelity at the cost of lower performance [49]. For this
specific reason, we adopted a linear quantization scheme with
a power-of-two scaling, more suited for general purpose low-
power MCUs. As it will be discussed in Section VII-D, the
strategy adopted in this work guarantees accuracy comparable
to a floating-point representation. Therefore, higher efficiency
comes with no penalty on the quality-of-results.

C. Pruning

Pruning is a reduction technique orthogonal to quantiza-
tion. Concerning compression pipelines for deployment onto
MCUs, a joint application of the two strategies is studied
in [52] for classification tasks.
Based on the assumption that CNNs are over-parametrized,
pruning strategies aim to identify and remove those parameters
with a negligible contribution to the predictive quality of the
model. The key difference among the existing implementa-
tions lies in the level of spatial granularity at which pruning
operates. Weight-pruning [51] is the finest level of granularity,
i.e. every single weight can be removed. To keep a regular
shape of the weight matrices, unimportant parameters are
simply zeroed. This increases the overall sparsity, i.e. the
ratio between zero and non-zero parameters, thereby enabling
compression methods based on sparse data representations
such as Huffman coding. Group-pruning represents a middle
level of granularity. Weights are pruned in blocks of a size
such that the utilization of the parallel arithmetic units of the
hosting hardware is maximized [53]. Filter-pruning [54] is
the coarsest level. It works in a structured manner, namely
entire convolutional filters are dropped reducing both memory
footprint and number of operations.
In the context of monocular depth estimation, a recent
study [55] demonstrated that pruning can reduce the number
of parameters up to 5× with competitive accuracy. However,
porting standard monocular depth estimation models on MCUs
requires a much more aggressive compression, i.e. >100×, as
will be shown later in the text (Section VII-C). Motivated

5

Fig. 4. Examples of self-sourced proxy labels on 48× 48 (left) and 32× 32 (right) images. From top to bottom, we show reference images, disparity maps
produced by SGM [22] (on full resolution images, then downsampled by means of nearest neighbor interpolation) and predictions by µPyD-Net. In the SGM
map, outliers detected by the left-right consistency check depicted in dark blue.

by this observation, we resorted to topology restructuring in
order to obtain an already compact model that fits the available
memory budget.

IV. µPYD-NET ARCHITECTURE

In order to accomplish monocular depth estimation under
the challenging constraints outlined, two main factors need
to be carefully taken into account to keep both manageable
memory footprint and execution time: input spatial resolution
and network complexity, with the former usually driving most
of the design choices linked to the latter. For instance, pooling
and stride parameters in convolution are adjusted to enlarge
the receptive field as well as to reduce the computational
burden at higher resolutions. Thus, the first design choice
to meet our constraints consists of inferring inverse depth
from a small input image resulting in an extremely compact
model, namely microPyD-Net (µPyD-Net). Figure 3 sketches
our architecture. Following the PyD-Net design, a shallow
encoder extracts a three-level pyramid of features using six
3×3 convolutional layers followed by leaky ReLU activations
having α = 0.125, producing respectively 8, 8, 16, 16, 32,
and 32 features. According to Figure 3, orange layers apply
a stride factor of 2, halving the spatial resolution. Then, three
decoders made of three convolutional layers, followed by leaky
ReLU (except the last one), process each level of the pyramid
producing 32 features each. The output of the last layer is
up-sampled through a 2 × 2 transposed convolution layer.
The extremely compact architecture, counting barely 100K
parameters, is thought to run on tiny resolution images and
thus is tailored to low power devices such as MCUs. This,
coupled with appropriate image resolutions, i.e. 48 × 48 and
32 × 32, allows for breaking the 512 kB memory and 1 FPS
barriers on such a low-powered device, as we will show in
detail in our evaluation. Adding more layers either to the
features extractor or the decoders would make one or both
the requirements not met. Moreover, in our experiments, we
will prove how processing 48× 48 and 32× 32 will allow for
deployment on such family of devices and still source results
accurate enough for several high-level applications. In addition
to the issues induced by processing low-resolution images,
such as loss of details, providing supervision at such resolution
becomes challenging. In particular, when the annotation is
sparse like in the KITTI dataset [6], downsampling such sparse
depth data to the small input resolution of our network would
make labels no longer reliable because of interpolation. For
this reason, during training, we rely on proxy-supervision [10]

deploying a traditional stereo algorithm such as Semi-Global
Matching (SGM) [22].

V. PROXY-SUPERVISION

Since sourcing accurate depth labels is expensive and time-
consuming, several works replaced the need for accurate
ground truth labels using view synthesis [12], [36] deploying
pairs of synchronized images acquired by a stereo camera to
exploit a re-projection loss for supervision [12]. That is, given
a stereo pair made of images L and R, the network is trained to
infer from L an inverse depth map (i.e. disparity) DL. Then,
we warp R according to DL so as to obtain R̃. A photometric
loss Ll

ap between L and warped image R̃ defined as in [12]

Ll
ap = 0.85 · (1− SSIM(L, R̃)

2
+ 0.15 · |L− R̃| (1)

supervises the network. The network can be trained also to
infer a synthetic disparity map DR for the right image R
so as to enforce consistency between the two. In this case,
an equivalent Lr

ap signal can be obtained comparing R with
warped image L̃. In our previous work [2] we followed this
strategy. Nevertheless, we argue that at such a low resolution,
the photometric loss alone is not enough to obtain sufficiently
reliable supervision. Hence, we follow a different strategy.
In this field, a further step forward consists of using traditional
stereo algorithms [21] to produce noisy disparity estimations
and leverage on them for supervision. This latter strategy
proved to be very effective for self-supervised training of
both stereo [56], [57] and monocular [10], [57] networks,
outperforming re-projection losses.
We follow this strategy also to avoid downsampling of sparse
ground truth labels, which would result in even sparser annota-
tions or incorrect values introduced by interpolation when the
depth data is not available at the reduced resolution. Purposely,
as in [10], we use the SGM algorithm [22] to generate dense
proxy labels from stereo pairs. For each pixel p and disparity
hypothesis d, a Hamming matching cost C(p, d) is computed
between 9 × 7 census transformed images, then it is refined
according to multiple scanline optimizations as follows:

E(p, d) =C(p, d) + min
q>1

[C(p′, d), C(p′, d± 1) + P1,

C(p′, d± q) + P2]− min
k<Dmax

(C(p′, k))
(2)

with P1 and P2 two smoothness penalties, discouraging dis-
parity gaps between p and previous pixel p′ along the scanline

6

path. A winner-takes-all strategy is applied after summing up
the outcome of each optimization phase. Finally, the left-right
consistency constraint [21] is enforced to filter out outliers
as follows. By computing disparity maps DL and DR with
SGM, respectively assuming as reference left and right images,
we invalidate pixels having different disparities across the two
maps:

D(p) =

{
d̃(p) if |DL(p)−DR(p−DL(p))| ≤ ε
−1 otherwise

(3)

As reported in the remainder, to validate our approach, we
rely on the popular high-resolution KITTI dataset [6]. Hence,
in order to obtain proxy labels as accurate as possible, we
run SGM on images at the original resolution W × H , then
we downsample them respectively to 48 × 48 and 32 × 32
using nearest neighbor interpolation, and opportunely scale
disparity values by 48

W and 32
W , to effectively obtain proxy

labels at the same resolution of the network inputs. It is worth
to note that such labels are not entirely dense since outliers
are filtered-out enforcing the left-right consistency constraint.
Nonetheless, most points survive this process, and each valid
value available in the inverse depth map is obtained without
any interpolation from nearby points.
The obtained labels are then used to provide supervision to
µPyD-Net employing a reverse Huber (berHu) loss [58]

Lps =
1

N

∑
p

berHu(d(p), d̃(p), c) (4)

berHu(d(p), d̃(p), c) =

{
|d(p)− d̃(p)| if |d(p)− d̃(p)| ≤ c
|d(p)−d̃(p)|2−c2

2c otherwise
(5)

where d(p) and d̃(p) are, respectively, the predicted disparity
and the proxy annotation for pixel p while c is set as
αmaxp |d(p)− d̃(p)|, with α = 0.2.
Figure 4 shows, from top to bottom, some qualitative examples
of low-resolution images (48× 48), followed by proxy labels
generated by SGM and disparity maps estimated by µPyD-Net.
One can notice how the network accurately reproduces inverse
depth estimations consistent with the self-sourced annotations.
Finally, as in [10], we sum to proxy-supervision the contribu-
tion given by photometric loss to obtain our final loss as

Linit = αap(Ll
ap + Lr

ap) + αps(Ll
ps + Lr

ps) (6)

We tuned αap and αps following [10]. Although SGM is
effective, additional sources of proxy labels can be stereo
networks trained in a self-supervised manner with photometric
losses, as shown in [59], or in a supervised manner at the cost
of requiring ground truth labels. In our ablation experiments,
we will thoroughly study the impact of the different strategies.

VI. OPTIMIZATION STACK

The optimization stack designed for the deployment of µPyD-
Net into Cortex-M MCUs is depicted in Figure 5. It consists
of two main stages: (i) the front-end, where the model is

QuantizerTrained
Neural.Net

Training
Data-Set

QFP

Fine Tuner

FrontEnd

int8 SIMD Kernels

Compiler

BackEnd

CMSIS

NN

Fig. 5. Pictorial representation of the optimization framework used to translate
the high-level description of a neural network in an optimized version ready
to deployed on a MCU powered by a Cortex-M CPU.

quantized using 8-bit fixed-point representation; (ii) the back-
end, where the high-level description of the quantized network
is translated into low-level routines optimized for the target
device.
As previously introduced, the quantization is built following a
linear scheme with power-of-two scaling in order to efficiently
exploit the integer data-path of the Cortex-M architecture.
More in detail, we adopted a dynamic approach by which the
radix-point of both feature maps and weights is assigned layer-
by-layer. To calculate the optimal radix-point, we developed a
simple heuristic that returns the optimal fraction length of each
layer such that the mean squared error between the original
floating-point distribution and the quantized one is minimized.
For intermediate features, we collected the statistics on a
subset of the training set (referred to as the calibration set). The
accuracy loss due to quantization is then recovered through a
fine-tuning stage based on knowledge distillation [60]. The
quantized model, set as the student, is re-trained to mimic the
original floating-point network, the teacher. As a training loss,
we adopted the mean squared error between the disparity maps
inferred by the two actors (teacher and student). An important
aspect to be noticed is that the re-training of the quantized
model encompasses the execution of the integer model. Since
GPUs do not support integer arithmetic (at least those available
in our setup) we implemented an emulation framework, built
upon the concept of fake-quantization [61] and tuned to be
compliant with the arithmetic units of the Cortex-M cores. It
is a software wrapper that converts activations and weights
(stored in fixed-point) to the 32-bit floating-point; after being
processed, results are converted back to fixed-point. We experi-
mentally tested the flow, and the results produced by emulation
exactly match those collected on the target hardware.
After quantization and fine-tuning, the network is ready to
be deployed on the target device. The porting stages leverage
the CMSIS-NN library developed by Arm. It is a collection
of handwritten routines that ensure efficient processing of
integer CNNs. Unfortunately, the CMSIS-NN was mainly de-
signed for simple tasks, like image classification and keyword-
spotting [49], hence it supports a limited set of operators. We
augmented the library with optimized routines for the missing
operators: deconvolution and leaky ReLU. For deconvolution,
the input features are upsampled using a factor equal to the
stride, then convolved with unit stride. For the leaky ReLU,
the slope is constrained to be a power-of-two, hence it can be
implemented with a simple shift operation. We observed that
this choice achieves better performance with no impact on the

7

final accuracy.

VII. EXPERIMENTAL RESULTS

In this section, we describe the datasets, the implementation
details, and report exhaustive experiments aimed at assessing
the performance of µPyD-Net, according to both functional
(i.e., accuracy) and extra-functional (i.e., latency and memory
footprint) metrics; to notice that the energy consumption is
inversely proportional to latency. This two-fold evaluation will
show how µPyD-Net performs in terms of depth accuracy
compared to much more complex state-of-the-art solutions,
highlighting its much superior efficiency and suitability for
low-power MCU platforms.

A. Dataset & Training

Our quantitative evaluation primarily involves two datasets:
KITTI [6] and CityScapes [62]. Moreover, we use the Make3D
dataset [30] for additional experiments concerning the gener-
alization of µPyD-Net and other state-of-the-art models.
KITTI. The KITTI stereo dataset [6] is a collection of rectified
stereo pairs made up of 61 scenes (more than 42K stereo
frames) concerned with driving scenarios and it is the standard
dataset for evaluating monocular depth estimation methods as
well as for many other purposes. The average image resolution
is 1242 × 375 and a LiDAR device, mounted and calibrated
in proximity to the left camera, was deployed to measure
depth information. Following other works in this field [7],
[12], we divided the overall dataset into two subsets, composed
respectively of 29 and 32 scenes. This subdivision is referred
to as Eigen split. We used 697 frames belonging to the first
group for testing purposes and 22600 more taken from the
second for training.
CityScapes. The CityScapes dataset [62] contains stereo pairs
concerning about 50 cities in Germany taken from a moving
vehicle in various weather conditions. It consists of 22,973
stereo pairs with a resolution of 2048 × 1024 pixels. It is
often used for pre-training [10], [12], [37] before moving to
the KITTI dataset, but not for evaluation since no ground truth
maps are provided (only disparity maps computed with SGM).
As in [12] the lowest 20% of each stereo pair is discarded at
training time.
Make3D. The Make3D dataset [30] consists of a set of images
and depth maps from a custom-built 3D scanner, collected
during daytime in a diverse set of urban and natural areas in
the city of Palo Alto and its surrounding regions. It contains
534 images at 1704×2272 resolution. We run experiments on
the 134 testing images without retraining as in [12], [63].

B. Hardware Set-up

The proposed µPyD-Net is tested and validated on a
NUCLEO-F767ZI [66] development board manufactured by
ST-Microelectronics. It hosts a chip-set powered with an Arm
Cortex-M7 CPU with 216MHz clock frequency, 512 kB of
SRAM and 2MB of flash memory. As reported in the data-
sheet [67], the current consumption is ≈100mA for a data-
intensive application run under the same operating condition

TABLE I
PROXY LABELS ACCURACY ON THE TEST SET OF KITTI DATASET [6]

USING THE SPLIT OF EIGEN ET AL. [7], MAXIMUM DEPTH SET TO 80M.

Lower is better ⇓ Higher is better ⇑
Method Resolution Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

SGM [22] native 0.064 0.584 3.700 0.149 0.951 0.976 0.986
UnOS [64] native 0.064 0.582 3.690 0.169 0.932 0.964 0.979
DispNet-CSS [65] native 0.060 0.442 3.543 0.167 0.940 0.967 0.981
SGM [22] 48× 48 0.415 10.963 11.836 0.481 0.539 0.785 0.881
SGM [22] ↓ 48× 48 0.107 1.594 5.556 0.199 0.906 0.960 0.978
UnOS [64] ↓ 48× 48 0.102 1.145 5.140 0.197 0.901 0.955 0.976
DispNet-CSS [65] ↓ 48× 48 0.089 0.723 4.420 0.183 0.909 0.961 0.980
SGM [22] 32× 32 0.652 21.745 15.319 0.638 0.370 0.667 0.797
SGM [22] ↓ 32× 32 0.133 2.083 6.448 0.222 0.873 0.949 0.974
UnOS [64] ↓ 32× 32 0.131 1.622 6.040 0.221 0.867 0.945 0.972
DispNet-CSS [65] ↓ 32× 32 0.110 0.940 4.948 0.199 0.882 0.955 0.978

TABLE II
ABLATION STUDY ON THE TEST SET OF KITTI DATASET [6] USING THE

SPLIT OF EIGEN ET AL. [7], MAXIMUM DEPTH SET TO 80M.

Lower is better ⇓ Higher is better ⇑
Supervision Res. Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Photo 48× 48 0.260 3.386 9.416 0.391 0.593 0.805 0.903
SGM ↓ 48× 48 0.200 2.107 7.144 0.295 0.707 0.871 0.943
UnOS ↓ 48× 48 0.200 2.095 7.224 0.298 0.701 0.870 0.944
DispNet-CSS ↓ 48× 48 0.191 1.825 6.697 0.286 0.716 0.881 0.949
Photo 32× 32 0.315 4.984 11.007 0.451 0.539 0.764 0.879
SGM ↓ 32× 32 0.221 2.547 7.625 0.312 0.681 0.858 0.935
UnOS ↓ 32× 32 0.221 2.625 7.623 0.313 0.677 0.853 0.935
DispNet-CSS ↓ 32× 32 0.217 2.195 7.171 0.314 0.680 0.855 0.934

of our experiments, and hence a resulting power consumption
<400mW. The .C description of the optimized µPyD-Net
model is built using the GNU Arm Embedded Toolchain,
version 6.3.1, and flashed into the board using the mbed-cli
toolchain.
The optimization framework is run on a workstation powered
by a GPU NVIDIA GTX-1080 Ti. Extensive simulations
on the KITTI dataset validated the integer emulation engine
integrated into the front-end side. Collected traces show 100%
accuracy with respect to on-board measurement.

C. Evaluation – Functional metrics

We evaluate predictions according to standard functional met-
rics [7], [12]: Abs rel, Sq rel, RMSE and RMSE log represent
error measures (⇓, the lower the better), while δ < K
the percentage of predictions whose maximum between ratio
and inverse ratio with respect to the ground truth is lower
than a threshold K (⇑, the higher the better). The detailed
formulation of each metric can be found in [7].
Proxy labels evaluation. Since the performance of µPyD-
Net is limited to the accuracy of the proxy labels used for
supervision, we study different strategies to source such data
and how they behave at low resolution. In particular, although
SGM represents a popular choice and trade-off in terms of
accuracy and speed, more accurate methods exist. To this
aim, we consider labels obtained by means of SGM and
by distillation [59] from two state-of-the-art neural networks,
respectively trained with self-supervision and ground truth.
Specifically, we choose UnOS by Wang et al. [64], currently
state-of-the-art for self-supervised stereo, and DispNet-CSS by
Ilg et al. [65]. For both we use the weights made available
by the authors, respectively trained with the photometric loss
on the full KITTI dataset (UnOS) or with ground truth on
the SceneFlow dataset [26] and fine-tuned on KITTI 2015

8

TABLE III
QUANTITATIVE EVALUATION ON THE TEST SET OF KITTI DATASET [6] USING THE SPLIT OF EIGEN ET AL. [7] WITH MAXIMUM DEPTH SET TO 80M.

METHODS WITH ∗ RUN POST-PROCESSING [12].

Lower is better ⇓ Higher is better ⇑
Method Resolution Params MCU Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Eigen et al. [7] Fine 172× 576 54.2M No 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [8] - 40.0M No 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Zhou et al. [36] 128× 416 34.2M No 0.198 1.836 6.565 0.275 0.718 0.901 0.960
MonoDepth [12] ResNet50∗ 256× 512 48.0M No 0.114 0.898 4.935 0.206 0.861 0.949 0.976
3Net [37] ResNet50∗ 256× 512 65.0M No 0.111 0.849 4.822 0.202 0.865 0.952 0.978
MonoDepth2 (S) [63] 192× 640 11.0M No 0.109 0.873 4.960 0.209 0.864 0.948 0.975
DSVO [9]∗ 256× 512 96.2M No 0.097 0.734 4.442 0.187 0.888 0.958 0.980
MonoResMatch [10]∗ 384× 1280 42.5M No 0.096 0.673 4.351 0.184 0.890 0.961 0.981
DepthHints [11]∗ 320× 1024 34.5M No 0.096 0.710 4.393 0.185 0.890 0.962 0.981
PyD-Net [1] 256× 512 1.9M No 0.146 1.291 5.907 0.245 0.801 0.926 0.967
µPyD-Net 48× 48 0.1M Yes 0.193 2.312 6.952 0.277 0.735 0.890 0.953
µPyD-Net 32× 32 0.1M Yes 0.215 2.395 7.252 0.301 0.696 0.866 0.939

training set (DispNet-CSS). We point out that, being ground
truth labels required to train DispNet-CSS, distilling proxy
labels through this model adds some constraints to such a
solution.
Table I collects results concerning a comparison between the
three, conducted on the Eigen test split. We first report the
accuracy of the disparity maps processed at full resolution, to
highlight the importance of spatial resolution. We highlight the
almost equivalent performance by SGM and UnOS on error
metrics, with DispNet-CSS producing better results. Concern-
ing deltas, SGM produces better accuracy. Considering the
48 × 48 resolution, we report four main experiments respec-
tively evaluating disparity map obtained by running SGM on
48× 48 images and by either SGM, UnOS, and DispNet-CSS
at full resolution and then downsampled by means of nearest-
neighbor interpolation (↓ 48× 48), i.e. to the resolution used
to train µPyD-Net. We cannot run either UnOS or DispNet-
CSS at 48 × 48 because of their high compression factor
(1
64), requiring larger images. We point out the extremely bad

performance achieved by running SGM on 48 × 48 images,
because of the high quantization of pixels at this resolution,
making this solution unreliable both for applications on mi-
crocontrollers as well as for training neural networks to run on
these latter. Conversely, full-resolution images downsampled
to 48 × 48 maintain acceptable performance, with DispNet-
CSS labels resulting much more accurate. In general, SGM
and UnOS are close in performance, with the former resulting
slightly more accurate and thus preferable to train µPyD-Net.
The same behavior can be observed by running experiments
at 32 × 32 resolution. Although DispNet-CSS labels show
much higher accuracy compared to SGM and UnOS, they need
ground truth labels to be obtained. We will highlight next how
training µPyD-Net on DispNet-CSS rather than SGM achieves
only minor improvements, thus making SGM better suited for
practical applications.
Ablation study on µPyD-Net. Finally, we study the effec-
tiveness of µPyD-Net variants trained with different sources
of self-supervision. Table II collects results of 48 × 48 and
32 × 32 models trained respectively with image reprojection
losses [12], proxy labels sourced through SGM algorithm,
UnOS and DispNet-CSS. At first, we point out how the
supervision from photometric losses performs much worse

compared to the use of proxy labels. Although this approach is
extremely popular [1], [12], [37], we argue that, intuitively, the
image content at such low resolution is much lower compared
to the one available at the original resolution, thus leading
to poor supervision. Exploiting the guidance from accurate
disparity maps at training time allows to greatly boost the
accuracy achieved by µPyD-Net. Nevertheless, although the
proxy labels show different accuracy according to Table I,
in particular comparing row 4, 5,6 and 8, 9, 10 sourcing
supervision from SGM algorithm results slightly better than
using UnOS, with a minor margin compared to DispNet-
CSS, although DispNet-CSS needs ground truth for training
conversely to SGM. Thus, for practical applications, we prefer
the SGM solution because of the low margin with respect to
DispNet-CSS moderate, yet the much greater flexibility.
Comparison with state-of-the-art. In Table III we compare
µPyD-Net with state-of-the-art solutions for monocular depth
estimation. The upper portion of the table contains complex
architectures with millions of trainable parameters, suited only
for high-end GPUs (e.g. the NVIDIA Titan XP). On the
other hand, the lower portion of the table lists networks
requiring much less computational and memory requirements
compatible with a broader range of devices. Moreover, we
also report for each network the resolution of the input image
processed. At first glance, we can notice the large gap between
the amount of information processed by µPyD-Net and other
proposals. However, shrinking the image using this extreme
factor (down to 1

38 for width, 1
11 for height in case of 32×32

images) has a non-negligible impact on the input image fed
to µPyD-Net. This degradation is particularly evident for
small objects at a longer distance or thin structures as poles,
causing higher errors compared to the ground-truths acquired
at full-resolution. For this reason, Table III also includes
the lightweight PyD-Net [1] network processing much larger
256× 512 images. Nonetheless, it is important to notice that
even stretching the input of other proposals to either 48×48 or
32×32 they would not be able to run on the targets hardware
device due to excessive memory requirements. Moreover,
PyD-Net [1] would not be compatible with such tiny image
sizes since its pyramidal structure is too deep. However, as
pointed out by previous studies in other fields [68], [69], the
image content encoded in such tiny images is still enough

9

Fig. 6. Qualitative results concerning traffic monitoring. For each example,
we show the high-resolution frame, followed by 32 × 32 images processed
by µPyD-Net.

to estimate a coarse estimation of the scene, comparable to
state-of-the-art techniques proposed just a few years ago [7],
[8], with hundred times fewer parameters and computational
requirements. Not surprisingly, 48 × 48 input images yield
better results compared to 32× 32.
Comparison with state-of-the-art models on low-resolution
images. To further support that µPyD-Net is effective
at extracting most of the knowledge available from low-
resolution images, we show the performance achieved by two
state-of-the-art networks, respectively MonoDepth2 [63] and
MonoResMatch [10], when processing 32×32 images. Being
these latter not able to process such tiny images because of
architectural limitations, we simulate low-resolution images
by downsampling the inputs to 32× 32 (↓ 32× 32) and then
upsampling (↑) them back to the original resolution. Table IV
collects the outcome of this evaluation, showing how µPyD-
Net places in between the two competitors for most metrics
(i.e., Sq Rel, RMSE, RMSE log, δ < 1.25, δ < 1.253)
although counting two order of magnitude less parameters.
This supports the fact that µPyD-Net itself is enough to extract
most of the information available from low-resolution content,
while keeping low complexity. This latter property is crucial
for deployment on the target microcontrollers, over which
MonoDepth2 and MonoResMatch parameters alone would not
fit into the available memory.
Close-range and quantization evaluation. We stress the fact
that the farther points in the scene are those most affected by
the degradation introduced by processing tiny images since
each pixel senses a larger portion of the real scene. Therefore,
we will assess the accuracy of µPyD-Net when sensing at
different ranges the scenes included in the datasets. Table
V reports a detailed comparison between µPyD-Net and its
optimized counterpart considering different depth ranges, from
0m to 15, 25, 50 and 80m. In the upper portion results
obtained by µPyD-Net processing 32× 32 images and in the

middle processing with the same network 48 × 48 images.
On the very bottom of the same table, we also report for
comparison results yielded by state-of-the-art [10]. We can
notice in general how, independently of the input resolution
and evaluation range, introducing the quantization it dramat-
ically drops the performance of µPyD-Net (float32 vs int8
entries), as already observed in [2]. However, by fine-tuning
the model after quantization (int8-ft entries), the original
performance is restored for most metrics and sometimes even
improved. Focusing on how the metrics change across the
different evaluation ranges, we can perceive how on nearby
measurements the gap between µPyD-Net and much more
complex state-of-the-art [10] gets lower. For instance, by look-
ing at the RMSE metric, we can observe how the difference
in terms of average error is about 3 when considering the
full evaluation range 0-80m, while it drops to about 0.6
and 0.8 respectively for 48 × 48 and 32 × 32 images when
dealing with the 0-15m range. This behavior suggests that
µPyD-Net might be not particularly suited for long-range
depth measurements. However, for close-range depth sensing,
it provides a valid alternative when a low-power budget is
paramount. For instance, Figure 6 shows a qualitative example
of a traffic monitoring system processing images from the
KITTI dataset [6] downsampled to 48 × 48 resolution. We
show four images acquired from a static point of view to
simulate a monitoring camera placed on a crossroad. For each
one, we report on the right their downsampled counterpart,
the estimated disparity map sourced by µPyD-Net and a
segmentation map detecting objects on the scene over imposed
to the original KITTI image. To this aim, given the depth
layout estimated for the empty scene (i.e., in absence of
vehicles) estimated by µPyD-Net, a simple change-detection
algorithm in the depth domain is sufficient to detect nearby
cars reliably. Although this application allows for simple traffic
monitoring, the depth cue provided by µPyD-Net can be
exploited for other purposes (e.g., 3D tracking) and to replace
other sensors as well. Therefore, such information could be
used in place of other sensors or to enrich other image-based
cues such as object detection or semantic segmentation.
Generalization on Make3D dataset. In order to assess the
generalization properties, in Table VI we report results on
the Make3D dataset [30] following the evaluation proposed
in [63], on a center crop of 2× 1 ration and without applying
median scaling (not required when training on stereo pairs).
We point out how state-of-the-art networks suffer from huge
drops when moved to unseen environments as well. µPyD-Net
can still provide meaningful predictions, very close to those
by MonoDepth when running at 48×48. Figure 7 show some
qualitative examples, showing in particular how the coarse
disparity maps by µPyD-Net are often less affected by artifacts
with respect to the predictions by MonoResMatch.

D. Evaluation – Hardware-related metrics

The shift from high-performance GPUs to ultra-low-power
MCUs encompasses the evaluation of hardware-related metrics
besides accuracy, i.e. latency and memory, in order to assess
the portability and the efficiency. As shown in Table III, the

10

TABLE IV
QUANTITATIVE EVALUATION ON THE TEST SET OF KITTI DATASET [6] USING THE SPLIT OF EIGEN ET AL. [7] WITH MAXIMUM DEPTH SET TO 80M.

Lower is better ⇓ Higher is better ⇑
Method Resolution Params Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

MonoDepth2 [63] ↓ 32× 32 ↑ 34.5M 0.188 1.724 7.447 0.318 0.686 0.869 0.938
MonoResMatch [10] ↓ 32× 32 ↑ 42.5M 0.191 2.103 6.670 0.279 0.742 0.896 0.953
µPyD-Net 32× 32 0.1M 0.215 2.395 7.252 0.301 0.696 0.866 0.939

TABLE V
EVALUATION OF µPYD-NET AND QUANTIZED VARIANTS AT DIFFERENT

RANGES. COMPARISON WITH STATE-OF-THE-ART [10] ON THE SAME
RANGES.

Lower is better ⇓ Higher is better ⇑

R
es

.
R

an
ge

Precision Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

float32 0.215 2.395 7.256 0.302 0.695 0.865 0.939
int8 0.498 11.712 15.133 0.656 0.439 0.714 0.850

0-
80

m

int8-ft 0.219 2.478 7.379 0.307 0.687 0.861 0.937
float32 0.206 1.865 5.710 0.287 0.710 0.875 0.946

int8 0.421 6.004 9.769 0.529 0.461 0.751 0.889

0-
50

m

int8-ft 0.209 1.928 5.809 0.292 0.702 0.872 0.943
float32 0.172 0.929 3.155 0.238 0.764 0.910 0.965

int8 0.308 2.023 4.717 0.354 0.546 0.854 0.944

3
2
×

3
2

0-
25

m

int8-ft 0.174 0.939 3.179 0.240 0.758 0.908 0.964
float32 0.136 0.448 1.800 0.189 0.822 0.939 0.979

int8 0.219 0.761 2.438 0.248 0.718 0.919 0.972

0-
15

m

int8-ft 0.138 0.457 1.815 0.191 0.817 0.938 0.978
float32 0.193 2.308 6.943 0.277 0.736 0.890 0.953

int8 0.322 5.919 10.648 0.394 0.615 0.837 0.925

0-
80

m

int8-ft 0.193 2.252 6.922 0.276 0.735 0.890 0.954
float32 0.182 1.685 5.308 0.261 0.751 0.901 0.960

int8 0.285 3.329 7.266 0.343 0.636 0.860 0.942

0-
50

m

int8-ft 0.182 1.656 5.299 0.260 0.750 0.901 0.960
float32 0.149 0.748 2.843 0.212 0.804 0.932 0.975

int8 0.220 1.208 3.629 0.261 0.716 0.914 0.967

4
8
×

4
8

0-
25

m

int8-ft 0.150 0.744 2.854 0.212 0.803 0.931 0.975
float32 0.118 0.348 1.601 0.168 0.856 0.956 0.986

int8 0.166 0.501 1.967 0.199 0.821 0.948 0.983

0-
15

m

int8-ft 0.119 0.347 1.608 0.168 0.855 0.955 0.986

[10] 0-80m 0.096 0.673 4.351 0.184 0.890 0.961 0.981
[10] 0-50m 0.092 0.504 3.336 0.174 0.899 0.965 0.984
[10] 0-25m 0.078 0.242 1.799 0.141 0.925 0.977 0.990
[10] 0-15m 0.067 0.119 1.027 0.111 0.949 0.986 0.994

TABLE VI
QUANTITATIVE EVALUATION ON MAKE3D DATASET [30].

Lower is better ⇓
Method Resolution Abs Rel Sq Rel RMSE RMSE log
MonoDepth [12] ResNet50 256× 512 0.451 7.299 10.139 0.223
3Net [37] ResNet50 256× 512 0.407 5.060 8.558 0.203
MonoDepth2 [63] 192× 640 0.375 3.694 8.218 0.204
MonoResMatch [10] 384× 1280 0.375 4.072 8.859 0.213
DepthHints [11] 320× 1024 0.350 3.385 8.242 0.200
PyD-Net [1] 256× 512 0.510 9.106 10.538 0.225
µPyD-Net 48× 48 0.531 7.607 9.726 0.226
µPyD-Net 32× 32 0.607 10.687 10.252 0.237

number of parameters of standard monocular networks exceeds
by far the memory constraints of commercial MCUs, prevent-
ing the deployment on the edge and therefore a direct compar-
ison with µPyD-Net. For this reason, this section focuses on
the hardware characterization of µPyD-Net, demonstrating that
the adopted architectural choices are mandatory to guarantee
compliance with the limited resources of the hosting system.
Table VII reports the hardware-related metrics measured at
run-time on the NUCLEO-F767ZI board: RAM usage and
execution time (averaged on 100 inference runs). The proposed
µPyD-Net reaches a throughput of 3.4 FPS, which can be

Fig. 7. Qualitative results on Make3D. From top to bottom, reference images,
inverse depth maps by MonoResMatch [10] and by 48× 48 µPyD-Net.

considered a remarkable result given the limited power budget
of the adopted device. Moreover, the collected results demon-
strate that input resolution is an effective knob in the accuracy-
latency-memory space: a resolution of 32 × 32 enables 38%
of memory savings and 2.24× higher throughput compared to
48 × 48. This comes at the cost of some accuracy loss (as
already shown in Table V). However, this might be a false
problem as errors can be masked by subsequent processing
stages. The resolution is a design choice indeed, and it should
be weighted depending on the requirements of the downstream
application.
Even though the limited computational resources of the host-
ing MCU prevent real-time processing even for such a compact
network, the measured performance meets the requirements
of the applications described in Section II. However, if higher
power and area budgets are available, µPyD-Net can be ported
to more powerful systems and its application extended to
other use-cases. To assess the scalability of µPyD-Net from
the IoT to the embedded segment, we tested its performance
on the mobile CPUs (ARM Cortex-A53) adopted in our
previous work [2]. In this system, µPyD-Net processes up to
320 frame/s, a 94× boost that comes at the cost of 10× power
consumption (~4W).
It might seem like the high efficiency brought by µPyD-Net
is simply due to the input rescaling, hence our proposal may
seem a relatively naive approach. A more detailed analysis
reveals the design of µPyD-Net goes beyond this simplistic
analysis. On the one hand, it is correct that a lower input space
contributes to the reduction of the memory footprint as all the
inner feature maps get intrinsically smaller. On the other hand,
what makes µPyD-Net smaller and faster, hence less energy-
hungry and able to fit tiny MCUs with marginal accuracy
loss, lies in the topology of the network. Input resolution
scaling alone is not enough, but when jointly applied on the
structure of µPyD-Net it enables design options that would
not be possible otherwise. Like other pyramidal architectures,
µPyD-Net applies a coarse-to-fine strategy where information
is processed in a hierarchical manner. Since features of higher

11

TABLE VII
EXTRA-FUNCTIONAL METRICS OF µPYD-NET AT DIFFERENT INPUT

RESOLUTIONS ON THE NUCLEO-F767ZI BOARD.

Resolution RAM Execution Time
32× 32 208 kB 290ms
48× 48 337 kB 651ms

semantic level are inferred layer-by-layer traversing the pyra-
mid bottom-up, it is intuitive to understand that the lower
the resolution of the input image, the lower the number of
layers needed to achieve a certain accuracy. This is a general
trend also recognized in other deep learning models, but on the
specific case of µPyD-Net it has a much higher impact. With
smaller inputs it is in fact possible to compress the topology
by reducing the number of encoders and decoders, and not
just their size, thus achieving aggressive RAM reduction.
To support this analysis, the bar chart in Figure 8 shows the
memory footprint vs. input resolution of PyD-Net (hatched
bars) and µPyD-Net (plain bars), both quantized to 8-bit;
the comparison is made splitting the contributions of weights
(blue) and inner features (orange). The horizontal black line
marks the RAM constraint (512 kB). For both the networks,
the dimensionality of the internal activations is re-scaled
according to the input size. It is worth noticing that the
minimum input resolution of PyD-Net is 64×64 since the input
image is down-sampled by a factor of 26 across the pyramidal
encoders. For such reason, the results below are not reported.
We can infer the following considerations. First, PyD-Net runs
out of space and cannot fit into MCUs beacuse the size of the
weights does not scale with the input resolution. Even using
the smallest input size (i.e. 64 × 64), the weight storage is
about 2MB, namely 4× the RAM on-board. Second, µPyD-
Net shows an activations/weights ratio larger than PyD-Net.
For instance, with the highest input resolution (256 × 128)
the RAM taken by the features significantly increases, from
2.3MB (PyD-Net) to 3.2MB (µPyD-Net). The reason is that
in PyD-Net the size of the feature maps processed by the top-
most decoder, which is the most energy-hungry layer, is half
of the input resolution, while in µPyD-Net it is not. Therefore,
µPyD-Net is less suited for high resolution. However, as soon
as inputs got re-scaled to 48×48, the activation footprint scales
well and it meets the memory constraint. Working with 32×32
images ensures even some free space for other background
applications or tasks.
These findings support our claim: µPyD-Net does work not
just because of the lower cardinality of the input space,
but precisely because it has been tailored to adapt to the
requirements of tiny applications.

VIII. CONCLUSIONS

Depth is of paramount importance in countless practical com-
puter vision applications and the compelling results recently
obtained by frameworks aimed at inferring this cue from a
single camera have dramatically increased the interest for
this topic. Unfortunately, in most cases these methods require
high-end GPUs or sufficiently capable embedded devices,
precluding their practical deployment in several application

256x128 128x128 64x64 48x48 32x32

Input Resolution

0

1

2

3

4

M
em

o
ry

[M
B

]

512 kB

- -

activations

weights

PyD-net

µPyD-net

Fig. 8. Memory breakdown of PyD-Net and µPyD-Net at different input
resolutions. The dash (-) indicates that the resolution is not compliant with
the network topology.

contexts characterized by extreme low-power constraints such
as those involving MCUs. Starting from these facts, in this
paper, we proposed a two-fold strategy to enable monocular
depth estimation on MCUs. At first, we designed a lightweight
Convolutional Neural Network based on a pyramidal architec-
ture, trained in a semi-supervised manner leveraging proxy-
supervision obtained through a conventional stereo algorithm,
capable of inferring accurate depth maps from the tiny input
image fed to the network. Then, we proposed optimization
strategies aimed at performing computations with quantized
8-bit data and we mapped the high-level description of the
network to low-level routines suited for the target architecture.
Exhaustive experimental results and an in-depth evaluation
with devices belonging to the popular Arm Cortex-M family,
confirm that monocular depth estimation is feasible with
devices characterized by low-power constraints as MCUs.
To the best of our knowledge, our method is the first one
achieving this goal, fostering the deployment of monocular
depth estimation to new application contexts.

REFERENCES

[1] M. Poggi et al., “Towards real-time unsupervised monocular depth
estimation on cpu,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 5848–5854.

[2] V. Peluso et al., “Enabling energy-efficient unsupervised monocular
depth estimation on armv7-based platforms,” in 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2019,
pp. 1703–1708.

[3] R. Sanchez-Iborra et al., “Tinyml-enabled frugal smart objects: Chal-
lenges and opportunities,” IEEE Circuits and Systems Magazine, vol. 20,
no. 3, pp. 4–18, 2020.

[4] D. Wofk et al., “Fastdepth: Fast monocular depth estimation on em-
bedded systems,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6101–6108.

[5] E. Chou et al., “Privacy-preserving action recognition for smart hospitals
using low-resolution depth images,” arXiv preprint arXiv:1811.09950,
2018.

[6] A. Geiger et al., “Vision meets robotics: The kitti dataset,” The Inter-
national Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237,
2013.

[7] D. Eigen et al., “Depth map prediction from a single image using a
multi-scale deep network,” in Advances in neural information processing
systems, 2014, pp. 2366–2374.

[8] F. Liu et al., “Learning depth from single monocular images using deep
convolutional neural fields,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 10, pp. 2024–2039, 2015.

[9] N. Yang et al., “Deep virtual stereo odometry: Leveraging deep depth
prediction for monocular direct sparse odometry,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 817–833.

12

[10] F. Tosi et al., “Learning monocular depth estimation infusing traditional
stereo knowledge,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9799–9809.

[11] J. Watson et al., “Self-supervised monocular depth hints,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
2162–2171.

[12] C. Godard et al., “Unsupervised monocular depth estimation with left-
right consistency,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 270–279.

[13] H. Fu et al., “Deep ordinal regression network for monocular depth
estimation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2002–2011.

[14] T. Bagautdinov et al., “Probability occupancy maps for occluded depth
images,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 2829–2837.

[15] S. Sun et al., “Benchmark data and method for real-time people
counting in cluttered scenes using depth sensors,” IEEE Transactions
on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3599–3612,
2019.

[16] V. Srivastav et al., “Human pose estimation on privacy-preserving low-
resolution depth images,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2019, pp.
583–591.

[17] M.-R. Lee et al., “Vehicle counting based on a stereo vision depth maps
for parking management,” Multimedia Tools and Applications, vol. 78,
no. 6, pp. 6827–6846, 2019.

[18] R. Hg et al., “An rgb-d database using microsoft’s kinect for windows
for face detection,” in 2012 Eighth International Conference on Signal
Image Technology and Internet Based Systems. IEEE, 2012, pp. 42–46.

[19] A. E. Eshratifar et al., “Jointdnn: an efficient training and inference
engine for intelligent mobile cloud computing services,” IEEE Transac-
tions on Mobile Computing, 2019.

[20] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[21] D. Scharstein et al., “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” International journal of computer
vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[22] H. Hirschmuller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 2. IEEE, 2005, pp. 807–814.

[23] L. Di Stefano et al., “A fast area-based stereo matching algorithm,”
Image and vision computing, vol. 22, no. 12, pp. 983–1005, 2004.

[24] T. Kanade et al., “A stereo matching algorithm with an adaptive window:
Theory and experiment,” IEEE transactions on pattern analysis and
machine intelligence, vol. 16, no. 9, pp. 920–932, 1994.

[25] J. Zbontar et al., “Computing the stereo matching cost with a con-
volutional neural network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1592–1599.

[26] N. Mayer et al., “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
4040–4048.

[27] A. Kendall et al., “End-to-end learning of geometry and context for deep
stereo regression,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 66–75.

[28] J.-R. Chang et al., “Pyramid stereo matching network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 5410–5418.

[29] F. Zhang et al., “Ga-net: Guided aggregation net for end-to-end stereo
matching,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 185–194.

[30] A. Saxena et al., “Make3d: Learning 3d scene structure from a single still
image,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 5, pp. 824–840, 2008.

[31] I. Laina et al., “Deeper depth prediction with fully convolutional residual
networks,” in 2016 Fourth international conference on 3D vision (3DV).
IEEE, 2016, pp. 239–248.

[32] Y. Cao et al., “Estimating depth from monocular images as classification
using deep fully convolutional residual networks,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 28, no. 11, pp. 3174–
3182, 2017.

[33] Y. Cao et al., “Monocular depth estimation with augmented ordinal depth
relationships,” IEEE Transactions on Circuits and Systems for Video
Technology, 2020.

[34] H. Mohaghegh et al., “Aggregation of rich depth-aware features in a
modified stacked generalization model for single image depth estima-
tion,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 29, no. 3, pp. 683–697, 2018.

[35] K. Karsch et al., “Depth transfer: Depth extraction from video using
non-parametric sampling,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2144–2158, 2014.

[36] T. Zhou et al., “Unsupervised learning of depth and ego-motion from
video,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1851–1858.

[37] M. Poggi et al., “Learning monocular depth estimation with unsuper-
vised trinocular assumptions,” in 2018 International Conference on 3D
Vision (3DV). IEEE, 2018, pp. 324–333.

[38] R. Mahjourian et al., “Unsupervised learning of depth and ego-motion
from monocular video using 3d geometric constraints,” in CVPR, 2018.

[39] H. Kumar et al., “Depth map estimation using defocus and motion
cues,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 29, no. 5, pp. 1365–1379, 2018.

[40] C. Wang et al., “Learning depth from monocular videos using direct
methods,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2022–2030.

[41] Z. Yin et al., “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1983–1992.

[42] R. Garg et al., “Unsupervised cnn for single view depth estimation:
Geometry to the rescue,” in European conference on computer vision.
Springer, 2016, pp. 740–756.

[43] A. Pilzer et al., “Refine and distill: Exploiting cycle-inconsistency and
knowledge distillation for unsupervised monocular depth estimation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9768–9777.

[44] L. Andraghetti et al., “Enhancing self-supervised monocular depth
estimation with traditional visual odometry,” in 2019 International
Conference on 3D Vision (3DV). IEEE, 2019, pp. 424–433.

[45] J. Qiu et al., “Going deeper with embedded fpga platform for con-
volutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[46] H. Alemdar et al., “Ternary neural networks for resource-efficient
ai applications,” in 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2017, pp. 2547–2554.

[47] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in European conference on computer
vision. Springer, 2016, pp. 525–542.

[48] M. Rusci et al., “Quantized nns as the definitive solution for inference
on low-power arm mcus? work-in-progress,” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis, 2018, pp. 1–2.

[49] L. Lai et al., “Enabling deep learning at the iot edge,” in 2018
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2018, pp. 1–6.

[50] S. Vogel et al., “Efficient hardware acceleration of cnns using logarith-
mic data representation with arbitrary log-base,” in Proceedings of the
International Conference on Computer-Aided Design, 2018, pp. 1–8.

[51] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[52] M. Grimaldi et al., “Optimality assessment of memory-bounded con-
vnets deployed on resource-constrained risc cores,” IEEE Access, vol. 7,
pp. 152 599–152 611, 2019.

[53] J. Yu et al., “Scalpel: Customizing dnn pruning to the underlying
hardware parallelism,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2017, pp. 548–
560.

[54] H. Li et al., “Pruning filters for efficient convnets,” in 5th International
Conference on Learning Representations (ICLR), 2017.

[55] S. Elkerdawy et al., “Lightweight monocular depth estimation model by
joint end-to-end filter pruning,” in 2019 IEEE International Conference
on Image Processing (ICIP). IEEE, 2019, pp. 4290–4294.

[56] A. Tonioni et al., “Unsupervised adaptation for deep stereo,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2017,
pp. 1605–1613.

[57] A. Tonioni et al., “Unsupervised domain adaptation for depth prediction
from images,” IEEE transactions on pattern analysis and machine
intelligence, 2019.

[58] A. B. Owen, “A robust hybrid of lasso and ridge regression,” Contem-
porary Mathematics, vol. 443, no. 7, pp. 59–72, 2007.

13

[59] X. Guo et al., “Learning monocular depth by distilling cross-domain
stereo networks,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 484–500.

[60] A. Mishra et al., “Apprentice: Using knowledge distillation techniques to
improve low-precision network accuracy,” in International Conference
on Learning Representations, 2018.

[61] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2704–2713.

[62] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 3213–3223.

[63] C. Godard et al., “Digging into self-supervised monocular depth estima-
tion,” in Proceedings of the IEEE international conference on computer
vision, 2019, pp. 3828–3838.

[64] Y. Wang et al., “Unos: Unified unsupervised optical-flow and stereo-
depth estimation by watching videos,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8071–8081.

[65] E. Ilg et al., “Occlusions, motion and depth boundaries with a generic
network for disparity, optical flow or scene flow estimation,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018, pp.
614–630.

[66] Nucleo-f767zi. [Online]. Available: https://www.st.com/en/evaluation-
tools/nucleo-f767zi.html

[67] Stm32f767zit6-datasheet. [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf

[68] A. Torralba et al., “80 million tiny images: A large data set for
nonparametric object and scene recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 30, no. 11, pp. 1958–
1970, 2008.

[69] A. Torralba et al., “Object and scene recognition in tiny images,” Journal
of Vision, vol. 7, no. 9, pp. 193–193, 2007.

Valentino Peluso Valentino Peluso received the
M.Sc. degree in Electronic Engineering and the
Ph.D. degree in Computer Engineering both from
Politecnico di Torino. He is currently a Postdoc-
toral researcher in the Department of Control and
Computer Engineering, Politecnico di Torino. His
main research interests focus on the optimization
and compression of deep learning models for their
deployment on low-power embedded systems.

Antonio Cipolletta holds a Master degree in Com-
puter Engineering from Politecnico di Torino (2018).
He also received the M.Sc. in Electrical and Com-
puter Engineering from University of Illinois at
Chicago (2019). He is currently pursuing a Ph.D.
degree with the Department of Control and Com-
puter Engineering at Politecnico di Torino. His main
research interests focus on hardware-software co-
design for emerging computing paradigms.

Andrea Calimera took the M.Sc. degree in Elec-
tronic Engineering and the Ph.D. degree in Com-
puter Engineering both from Politecnico di Torino.
He is currently an Associate Professor of Computer
Engineering at Politecnico di Torino. His research
interests cover the areas of design automation of
digital circuits and embedded systems with emphasis
on optimization techniques for low-power and reli-
ability, energy/quality management, logic synthesis,
and emerging computing paradigms.

Matteo Poggi received Master degree in Computer
Science and PhD degree in Computer Science and
Engineering from University of Bologna in 2014
and 2018 respectively. Currently, he is a Post-doc
researcher at Department of Computer Science and
Engineering, University of Bologna. His research
interests include deep learning for depth estimation
and embedded computer vision.

Fabio Tosi received the Master degree in Computer
Science and Engineering at Alma Mater Studiorum,
University of Bologna in 2017. He is currently in
the PhD program in Computer Science and Engi-
neering of University of Bologna, where he conducts
research in deep learning and depth sensing related
topics.

Filippo Aleotti received the Master degree in
Computer Science and Engineering at Alma Mater
Studiorum, University of Bologna in 2018. He is
currently in the PhD program in Structural and
Environmental Health Monitoring and Management
(SEHM2) of University of Bologna, where he con-
ducts research in deep learning for depth sensing.

Stefano Mattoccia received a Ph.D. degree in
Computer Science Engineering from the University
of Bologna in 2002. Currently he is an associate
professor at the Department of Computer Science
and Engineering of the University of Bologna. His
research interest is mainly focused on computer
vision, depth perception, embedded vision and deep
learning.

