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Summary

This dissertation describes doctoral research activities on new computational
techniques based on volume integral equations specifically tailored for bioelectro-
magnetic applications such as electroencephalography (EEG) source localization,
microwave imaging, and inverse scattering synthesis for improved dosimetric as-
sessment.

This thesis work began with an in-depth analysis of the conditioning proper-
ties of full-wave volume integral equations, particularly in a scenario with a low
frequency electromagnetic source illuminating an inhomogeneous object with high
material contrast, which corresponds to the operating regime of numerous bioelec-
tromagnetic applications. This analysis led to the introduction of a new set of
volume quasi-Helmholtz projectors that, with proper re-scaling, renders the elec-
tric flux volume integral equation (D-VIE) accurate and stable at low frequencies in
lossy dielectric objects. This new method was successfully applied in EEG source
localization for solving the forward problem.

In parallel, bioelectromagnetic applications requiring higher frequency model-
ing were investigated. For instance, the usage of the D-VIE formulation in inverse
scattering scenarios required the full derivation of a new inversion algorithm based
on modified gradient methods. The practical use of this new inverse solver is illus-
trated through its application in microwave imaging and inverse source synthesis.
Regarding the former application, numerical examples show that it compares to sev-
eral standard inverse scattering schemes in a canonical setting. The latter responds
to the need of understanding the impact of mobile phones on brain activity. To
remedy one significant limitation of the existing techniques that attempt to assess
this risk with an EEG helmet, which acts as a shield for the incoming radiations of
the phone, an inverse synthesis algorithm was introduced for the design of a defor-
mation source enabling EEG recordings with a non perturbed field distribution in
the head.
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Chapter 1

Introduction

Bioelectromagnetics is an interdisciplinary field in which the interaction
of electromagnetic waves and living organisms is investigated. A significant

portion of bioelectromagnetics is dedicated to the study of the electromagnetic fields
in the human brain. In this spectrum of applications, the fields originate either from
the brain itself or from external sources. Understanding the former type of source
is important for the diagnosis and treatment of several neuro-pathologies such as
Parkinson’s and Alzheimer’s syndromes. The study of latter paves the way to better
treatment (e.g. transcranial electric stimulation) and diagnosis (e.g. microwave
imaging for cancer detection) of brain diseases together with better safety guidelines
for the design of radiating sources (e.g. electromagnetic dosimetry). Regardless of
the nature of the source, it is crucial to infer some knowledge (e.g. geometry,
material) about the environment in which they radiate, that is the head and its
surroundings. This can done from observations (e.g. measured field). This mapping
between the observation space and the physical model is referred to as inverse
problem. To solve an inverse problem, one requires a forward model, which provides
the model response for some given parameters of the physical model. This response
to electromagnetic sources is governed by Maxwell’s equations, which are at the
basis of electromagnetic field theory. They represent a set of equations relating
sources, fields, and fluxes for some given dielectric and ferromagnetic parameters,
thus enabling electromagnetic forward modeling.

However, there exist analytic solutions to Maxwell’s equations in closed form
only in few cases. For complex structures such as the brain, no analytic solution is
known. This leaves two possible options: model the head in a very simplistic way
and use existing analytic solutions (e.g. spherical model of the head) or reformu-
late the original problem into an approximated problem numerically solvable with a
computational method. The increase in computer capacity in the last decades has
led toward the latter option for most of real-world applications. This is especially
true in electromagnetics, in which the domain of computational electromagnet-
ics (CEM) has emerged. This field deals with the theoretical and computational
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Introduction

aspects required to provide stable, fast, and accurate solutions to real-world electro-
magnetic problems. Computational methods in CEM can be split into two classes:
partial differential equations (PDEs) methods and integral equations (IEs) meth-
ods. While the former amounts to directly solve Maxwell’s equations, the latter
recast Maxwell’s equations into integral equations in which the new unknowns are
equivalent sources. In general, solving an electromagnetic problem with IEs requires
less degrees of freedom than with PDEs. In both cases the unknowns (equivalent
sources in IEs, fields or fluxes in PDEs) and the geometry are decomposed into
unitary elements thus translating the continuous problem to a discrete one, having
the form of a matrix equation that once solved gives an approximation of the un-
knowns of the continuous equations. Although IE methods require less unknowns
than PDE methods for a given problem, they give rise to a linear system in which
the matrix is dense, which is computationally expensive to solve. This drawback
has been significantly attenuated with the introduction of acceleration techniques
on top of the standard IE schemes. For these reasons, IE-based computational
methods remain competitive in bioelectromagnetic problems and were employed
in the framework of this thesis work. The main concepts about IEs are briefly
introduced in chapter 2.

Depending on the nature of the bioeletromagnetic problem, IE-based solvers are
generally either surfacic (SIE) or volumic (VIE). Surface formulations are efficient
in the sense that they require the discretization of the surface of the object under
study only while volume integral equations require the discretization of the whole
object. This drawback of VIE methods allows, nevertheless, the modelization of
highly inhomogeneous and anisotropic objects, which is required to get a realistic
head forward modeling. The choice of the volume integral formulation depends on
the requirements of the biomedical method it is applied to. When solely taking
into consideration the resistive effects occurring in biological tissues, VIEs derived
from Poisson equation can be used and when the capacitive and inductive effects
also need to be included, full-wave solvers are employed. On the one hand, Poisson-
based solvers are not valid outside the quasi-static regime and, on the other hand,
full-wave solvers suffer from the low-frequency (LF) breakdown: they are unstable
(i.e. ill-conditioned) and fail to converge at low frequencies. Therefore, there is a
gap between low and high frequency bio-electromagnetic modeling, which prevents
traditional numerical solvers to be used in some applications. This problem is
treated in chapter 3 by introducing a new set of volume quasi-Helmholtz projectors
that enable a proper re-scaling of the electric flux volume integral equation (D-VIE)
when applied to the modeling of inhomogeneous objects. Numerical results confirm
the theoretical treatment and show that this formulation can be used as a forward
bioelectromagnetic solver.

Starting from an existing solver for the forward modeling, inverse scattering (IS)
problems can be solved. This type of inverse problem is emphasized in chapter 4.
In electromagnetics, these problems aim at retrieving the position and material
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Introduction

of an unknown object in the known domain. One of the main issues to tackle
in IS problems is the non-linear relationship between the scattered field and the
material parameters in the object. Two main categories of solvers exist: gradient
based methods and Born iterative methods. The former methods enable simulta-
neously the minimization of the error with the measured data and the enforcement
of Maxwell’s equations in the object while the latter schemes alternatively perform
these operations. In this chapter, a new D-VIE gradient based algorithm is intro-
duced and compared to existing inverse scattering techniques in the two families
above-mentioned.

In chapter 5 another bioelectromagnetic inverse scattering problem is presented
which is motivated by the desire of evaluating the impact of radio frequency (RF)
devices on brain activity. The measurement of brain activity is performed through
an electroencephalography (EEG) setup which requires placing electrodes caps on
the scalp of the patient. When the impact of an RF source on brain activity is
investigated, the metallic caps induce a shielding of the field radiated by the source,
which yields a perturbed field inside the brain. A field reconstruction antenna
should thus be designed to mimic the field radiated by the source in the presence of
an EEG device. This chapter introduces a new inverse synthesis algorithm for the
design of a reconstruction source composed of an array of dipoles and a dielectric
lens.

Finally, chapter 6 summarizes the results presented in this dissertation. Possible
routes for the extension of this thesis work are provided.

3
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Chapter 2

Background and Notations

Electromagnetic theory is a powerful tool for understanding and describing
various phenomena occurring in nature. This theory is governed by Maxwell’s

equations and, in this chapter, some basic concepts of electromagnetism are first
introduced in Section 2.1. Subsequently, Section 2.2 is dedicated to the derivation
of integral equations (IE) formulations, surface and volume IEs in this case, from
which originates the work presented in this thesis. The discretization of these
formulations is provided in Section 2.3. Last step of this chapter, Section 2.4 gives
some insight on a key property of numerical solvers, that is its stability.

2.1 Maxwell’s Equations in Macroscopic Media
Maxwell’s equations are the fundamental equations to describe electromagnetic

phenomena. At position r and at time t they are given as

∇×H(r, t) = J (r, t) + ∂D(r, t)
∂t

, (Maxwell-Ampère law)

∇× E(r, t) = −∂B(r, t)
∂t

, (Maxwell-Faraday law)

∇ · B(r, t) = 0, (Gauss’ law for magnetism)

∇ · D(r, t) = ρ(r, t). (Gauss’ law)

(2.1)

where

• B (T) is the magnetic flux density,

• D (C m−2) is the electric flux density,

• J (A m−2) is the electric current density,

• H (A m−1) is the magnetic field,
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Background and Notations

• E (V m−1) is the electric field,

• ρ (C m−3) is the electric charge density.

If the electromagnetic fields are weak enough (linear medium) and in the absence
of ferroelectric and ferromagnetic materials, the flux and field densities are related
with the following relations

D = ϵE , (2.2)
B = µH, (2.3)

with ϵ (F m−1) and µ (H m−1) being the permittivity and permeability in the
medium, respectively. In this chapter, the objects considered have permittivity
and permeability that are stationary (time independent permittivity), possibly dis-
persive (frequency dependent materials), isotropic (scalar permittivity), and that
depend on the position (inhomogeneous medium). Moreover, the objects studied
here are assumed to be in vacuum, with permittivity ϵ0 and permeability µ0. The
relative permittivity and permeability, defined with respect to ϵ0 and µ0, respec-
tively, read

ϵr = ϵ/ϵ0, (2.4)
µr = µ/µ0. (2.5)

2.1.1 Time-Harmonic Fields
In most engineering problems, Maxwell’s equations can be simplified by assum-

ing time-harmonic electromagnetic fields (i.e. fields, charges, and currents oscillat-
ing at a single frequency). This assumption is adopted in this thesis. It means that
all the quantities have a sinusoidal time dependence. For example, a field F(r, t)
can be formulated as

F(r, t) = F0(r) cos (ωt+ β(r)), (2.6)

in which F0 is the amplitude of F(r, t), ω denotes its angular frequency, and β its
phase. The quantity F and its time derivative then read

F(r, t) = Re
(︂
F0(r)ejωt+jβ(r)

)︂
, (2.7)

∂F(r, t)
∂t

= Re
(︂
jωF0(r)ejωt+jβ(r)

)︂
. (2.8)

Using eq. (2.7), and defining the phasor F (r) = F0(r)ejβ(r), we obtain that

F(r, t) = Re
(︂
F (r, ω)ejωt

)︂
. (2.9)
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2.1 – Maxwell’s Equations in Macroscopic Media

Leveraging the transformations given by eq. (2.8) and eq. (2.9), we obtain Maxwell’s
equations for the time harmonic electromagnetic fields

∇×H = J + jωD,

∇×E = −jωB,

∇ ·B = 0,
∇ ·D = ρ.

(2.10)

2.1.2 Scalar and Vector Potentials in Free Space
The radiation of electromagnetic waves from current and charge distributions

in an unbounded domain with homogeneous permittivity ϵ and permeability µ is
discussed in the following.

First, the magnetic flux and the electric field can be decomposed with scalar
and vector quantities as follows

E = −∇ϕ− jωA, (2.11)
B = ∇×A, (2.12)

in which ϕ and A are the electric scalar potential and the magnetic vector poten-
tial, respectively. The existence of these decompositions can be proven using the
Helmholtz’s theorem, Gauss’ law, and Gauss’ law for magnetism. Note that ϕ and
A do not have a unique expression, i.e. several expressions of ϕ and A can lead to
the same E and B. This degree of freedom is called gauge invariance. Applying
the operator ∇ × ∇× to eq. (2.11) gives

∇ × ∇ × E = −∇ × ∇ × ∇ϕ− jω∇ × ∇ × A, (2.13)

Since ∇ × ∇ϕ = 0, eq. (2.13) reduces to

∇ × ∇ × A = − 1
jω

∇ × ∇ × E. (2.14)

Then, leveraging Maxwell-Ampère and Maxwell-Faraday equations together with
eq. (2.14) gives

∇ × ∇ × A = µ∇ × H

= µ(J + jωϵE)

= µJ − 1
c2 jω∇φ+ 1

c2ω
2A,

(2.15)

in which c = 1/√ϵµ is the speed of light in the medium.
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Next, using the identity ∇ × ∇ × A = ∇(∇ ·A)−∇2A gives

∇(∇ ·A)−∇2A = µJ − 1
c2 jω∇φ+ ω2

c2 A. (2.16)

Recalling that the magnetic and electric fields remain invariant through gauge trans-
formations and applying the Lorenz gauge condition (∇·A+ jω

c2 φ = 0) to eq. (2.16),
we obtain

k2A + ∇2A = −µJ , (2.17)
in which k = ω/c is the wave number of the time harmonic wave. Equation (2.17)

is a vector Helmholtz equation. Under the Sommerfeld radiation condition [91], its
solution, in this case the magnetic vector potential A, can be written as

A(r) = µ
∫︂

Ω
G(r, r′)J(r′) dv′, (2.18)

with G(r, r′) = e−jk∥r−r′∥/(4π∥r − r′∥) being the Green’s function in free space in
R3 and ∥ · ∥ the Euclidean norm. Subsequently, using Maxwell’s equations and the
relations between the fields and the potentials (eq. (2.11) and eq. (2.12)) leads to
the fields radiated by electric sources

Ee(r) = −jωA(r) + 1
jωµϵ

∇(∇ · A(r)) (2.19)

He(r) = 1
µ

∇ × A(r). (2.20)

Similarly, the electric and magnetic fields created by a magnetic current density M
can be obtained by introducing the electric vector potential

F (r) = ϵ
∫︂

Ω
G(r, r′)M (r′) dv′, (2.21)

which is the solution of the following vector Helmholtz equation

∇2F + k2F = −ϵM . (2.22)

Finally, the electromagnetic fields radiated by magnetic sources can be written as
follows

Em(r) = −1
ϵ
∇ × F (r) (2.23)

Hm(r) = −jωF (r) + 1
jωµϵ

∇(∇ · F (r)). (2.24)

Note that the magnetic sources are not physical and are thus not present in the
standard Maxwell’s equations. They are employed for the sake of symmetry when
interchanging the electric and the magnetic quantities in these equations.

8



2.2 – Integral Equations

2.1.3 Boundary Conditions
Up to now, the electromagnetic field behavior was described in a continuous

medium (unbounded domain). To solve problems in the presence of various types
of scatterers, it is necessary to introduce relations between the physical quantities on
both sides of the scatterer. Let Γ ∈ R3 be an interface between two different media
with unit normal n̂ pointing from media − to media +, the physical quantities
must satisfy the following conditions near Γ

n̂× (H+ −H−) = Js, (2.25)
n̂× (E+ −E−) = −Ms, (2.26)
n̂ · (B+ −B−) = ρm,s, (2.27)
n̂ · (D+ −D−) = ρe,s, (2.28)

in which Js denotes an electric surface current density tangential to Γ that makes
the tangential component of H discontinuous, Ms is a magnetic surface current
density that makes the tangential component of E discontinuous, ρm,s is the surface
magnetic charge density on Γ that makes the normal component of B discontin-
uous, and ρe,s is the surface electric charge density on Γ that makes the normal
component of D discontinuous.

If media − is a perfect electric conductor (PEC), there are no magnetic currents
and surface magnetic charges on Γ , the resulting relations near Γ are

n̂× (H+ −H−) = Js, (2.29)
n̂× (E+ −E−) = 0, (2.30)
n̂ · (B+ −B−) = 0, (2.31)

n̂ · (D+ −D−) = ρe,s. (2.32)

This property will be employed later on to derive the surface electric field integral
equation for modeling PEC objects.

2.2 Integral Equations

2.2.1 Equivalence Principles
Integral equation methods originate from the equivalence principles. They allow

reformulating the original problem by substituting the scatterer with equivalent
sources that scatter the same electromagnetic field as the one produced by the
original scatterer in the presence of an incident electromagnetic wave. Note that in
the following the background is supposed to be vacuum.

9
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2.2.1.1 Surface Equivalence Principle

Let Ω ⊂ R3 be an isotropic and homogeneous domain of permittivity ϵ and
permeability µ delimited by a fictitious surface Γ ⊂ R3 enclosed in a homogeneous
background with constant permittivity ϵ0 and permeability µ0 and illuminated by
incident electric and magnetic fields Ei and Hi. From the surface equivalence
principle (SEP), it results that the total fields E and H outside Ω are uniquely
determined by the incident fields and the scattered fields which are functions of
the tangential parts of the E and H on Γ . From the boundary conditions given
in eq. (2.25) and eq. (2.26), these tangential field components are the following
equivalent surface electric and magnetic current densities

Js(r) = n̂(r)×H(r), (2.33)
Ms(r) = −n̂(r)×E(r), (2.34)

in which the fields inside Ω (E− and H−) are chosen to be zero. Then the interior
of Ω can be replaced by a medium with permittivity and permeability equal to ϵ0
and µ0, thus creating a configuration in which the surface equivalent sources radiate
in an unbounded space of permittivity ϵ0 and permeability µ0.

2.2.1.2 Volume Equivalence Principle

The volume equivalence principle also applies to inhomogeneous (potentially
anisotropic) scatterers. Let Ω ⊂ R3 be an isotropic and inhomogeneous object
of permittivity ϵ and permeability µ enclosed in a homogeneous background with
constant permittivity ϵ0 and permeability µ0 and illuminated by incident electric
and magnetic fields Ei and Hi. From the volume equivalence principle (VEP), the
fields scattered by Ω can be formulated in terms of volume electric and magnetic
current densities in the homogeneous background that read [57]

Jv(r) = jωϵ0χ(r)E(r), (2.35)
Mv(r) = jωµ0τ(r)H(r), (2.36)

in which χ(r) = ϵr(r) − 1 is the electric susceptibility and τ(r) = µr(r) − 1 the
magnetic susceptibility. Note that the volume equivalent currents are localized only
in Ω since χ and τ are zero outside the object.

2.2.2 Field-Source Radiation
Recalling the potential operators defined in eq. (2.18) and eq. (2.21) and their

relations with E and H (eq. (2.19) and eq. (2.23)), the total fields radiated by
electromagnetic sources in an infinite space can be expressed as follows

E(r) = Ei(r) + Ee(r) + Em(r), (2.37)
H(r) = Hi(r) + He(r) + Hm(r), (2.38)

10



2.2 – Integral Equations

in which Ei and Hi are the incident electric and magnetic fields, Ee and He are
the electric and magnetic fields due to electric current sources and Em and Hm

are the electric and magnetic fields due to magnetic current sources introduced
in section 2.1.2. Calculating Ee(r), Em(r), He(r), and He(r) near the equivalent
sources (Γ orΩ) yields a singularity. All the (volume and surface) terms behave well
in this limit except for the curl of the vector potentials (eq. (2.19) and eq. (2.23)) on
Γ when considering surface equivalent sources. This singularity requires introducing
an additional term, which is function of the relative solid angle subtended in r by
Γ [92]

Ωs(r) =

⎧⎪⎪⎨⎪⎪⎩
1, r ∈ Ω
1
2 , r ∈ Γ
0, otherwise.

(2.39)

Note that Ωs(r) = 1 everywhere in R3 for volume equivalent sources. Substituting
Ee, He, Em, and Hm by their expressions in eq. (2.37) and taking eq. (2.39) into
account, both the surface and the volume integral equations can be written as [57,
105]

Ωs(r)E(r) = Ei(r)− jωA(r) + 1
jωµ0ϵ0

∇(∇ · A(r))− 1
ϵ0

∇ × F (r), (2.40)

Ωs(r)H(r) = Hi(r)− jωF (r) + 1
jωµ0ϵ0

∇(∇ · F (r)) + 1
µ0

∇ × A(r), (2.41)

in which

A(r) = µ0(SΨ J)(r), (2.42)
F (r) = ϵ0(SΨ M)(r). (2.43)

The operator SΨ is defined as

(SΨ J)(r) =
∫︂

Ψ
G0(r, r′)J(r′) dψ′, (2.44)

with Ψ being the support of the equivalent sources J , that is Γ for the surface
equivalent sources Js andΩ for volume equivalent sources Jv. Note thatG0(r, r′) =
exp(−jk0∥r−r′∥)/(4π∥r−r′∥) is the 3D Green’s function in vacuum and k0 is the
wave number in vacuum. Finally, the following operators, valid for both surface
and volume sources, are introduced for the derivation of the formulations

(LΨ J)(r) =
(︂
∇∇ ·+k2

0

)︂
(SΨ J)(r) (2.45)

(NΨ J)(r) = ∇×∇× (SΨ J)(r) (2.46)
(KΨ J)(r) = ∇× (SΨ J)(r). (2.47)

11
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Note that it is common to split LΨ into the two following operators(︂
T Ψ

A J
)︂

(r) =
∫︂

Ψ
G0(r, r′)J(r′) dψ′, (2.48)(︂

T Ψ
Φ J

)︂
(r) = ∇

∫︂
Ψ
G0(r, r′)∇′ · J(r′) dψ′, (2.49)

such that LΨ = T Ψ
Φ + k2

0T Ψ
A .

2.2.3 Surface Integral Equations
Surface integral equations (SIE) are employed to model piecewise homogeneous

dielectric or conducting objects. Let Ω ⊂ R3 be a simply connected object with
closed boundary Γ of permittivity ϵ and permeability µ and illuminated by a time-
harmonic incident electric field Ei in a background of permittivity ϵ0 and perme-
ability µ0. Equations (2.40) and (2.41) can be solved for the tangential components
of the fields by applying the rotated tangential trace operator γr (trace mapping
HCurl(Ω) into H−1/2

Div (Γ ) [105]), which is defined as

γr : X → n̂(r)×X
⃓⃓⃓
Γ
, (2.50)

where X
⃓⃓⃓
Γ

denotes X at the boundary Γ [19]. Note that a more rigorous definition
of this operator is provided in [19]. Leveraging eq. (2.40), eq. (2.41), the operators
defined in section 2.2.2, and the surface equivalence principle, the resulting electric
field (surface EFIE) and magnetic field (surface MFIE) surface integral equations
can be written as a 2-by-2 matrix system[︄ η0

jk0
γrLΓ

1
2I − γrKΓ

−1
2I + γrKΓ

1
jk0η0

γrLΓ

]︄ [︄
Js

Ms

]︄
=
[︄
−γrEi

−γrHi,

]︄
, (2.51)

in which η0 is the impedance of vacuum and I is the identity operator. In the
dissertation, SIEs are employed to model open metallic objects, which can be con-
sidered as PECs, in which there are no magnetic sources. In that case, eq. (2.51)
simplifies to

η0

jk0
γrLΓ Js = −γrEi, (2.52)

which can also be written as

− jη0k0γrT Γ
A Js + η0

jk0
γrT Γ

Φ Js = −γrEi. (2.53)

2.2.4 Volume Integral Equations
Volume integral equations (VIE) are employed to model inhomogeneous objects

which can possibly be anisotropic, although they are assumed to be isotropic in

12
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the following. Let Ω ⊂ R3 be a dielectric object illuminated by time-harmonic
incident electric and magnetic fields Ei and Hi in a background of permittivity ϵ0
and permeability µ0. Leveraging the volume equivalence principle (section 2.2.1.2),
the scatterer can be substituted by equivalent volume current densities Jv and Mv.

2.2.4.1 Current-based VIE (JM-VIE)

Leveraging eqs. (2.35), (2.36), (2.40) and (2.41), the JM-VIE reads[︄
I − χLΩ jωϵ0χKΩ

−jωµ0τKΩ I − τLΩ

]︄ [︄
Jv

Mv

]︄
=
[︄
jωϵ0χEi

jωµ0τHi

]︄
. (2.54)

In this dissertation, non-magnetic problems are treated, so that eq. (2.54) becomes
the current volume integral equation (J-VIE) and can be written as follows

Jv(r)− χ(r)LΩ(Jv(r)) = jωϵ0χ(r)Ei(r). (2.55)

To make its discretization possible, the J-VIE is written as an equivalent form of
eq. (2.55) which leverages the identity LΩ(Jv) = NΩ(Jv) − Jv introduced in [93].
This second version of the J-VIE reads

Jv(r)− χ(r) (NΩ(Jv(r))− Jv(r)) = jωϵ0χ(r)Ei(r). (2.56)

2.2.4.2 Electric Flux VIE (DB-VIE)

Solving the VIE for the electric flux density D and the magnetic flux density
B requires expressing the volume equivalent currents in terms of D and B

Jv(r) = jωκ(r)D(r), (2.57)
Mv(r) = jωι(r)B(r), (2.58)

where κ(r) = (ϵr(r)−1)/ϵr(r) is the dielectric contrast and ι(r) = (µr(r)−1)/µr(r)
is the ferromagnetic contrast. The DB-VIE thus obtained reads[︄

ϵ−1I −LΩ
κ jωµ0KΩ

ι

−jωϵ0KΩ
κ µ−1I −LΩ

ι

]︄ [︄
D
B

]︄
=
[︄

Ei

Hi

]︄
, (2.59)

in which AΩ
c (X) = AΩ(cX). With non-magnetic objects, eq. (2.59) reduces to the

electric flux volume integral equation (D-VIE)

D(r)
ϵ(r) −

(︂
LΩ

κ D
)︂

(r) = Ei(r), (2.60)

with (︂
LΩ

κ D
)︂

(r) = k2
0
ϵ0

(︂
T κ,Ω

A D
)︂

(r) + 1
ϵ0

(︂
T κ,Ω

Φ D
)︂

(r), (2.61)
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in which T c,Ω
O (X) = T Ω

O (cX). In the following, it will be also required to define
an operator that maps κ to Es for a given electric flux. This new operator LΩD

D is
defined such that (︂

LΩ
Dκ
)︂

(r) =
(︂
LΩ

κ D
)︂

(r). (2.62)

2.2.5 Hybrid Volume Surface Integral Equations
An electric hybrid volume-surface integral equation (HVSIE) combines a surface

integral equation and a volume integral equation to model inhomogeneous dielectric
bodies together with PEC objects. Consider a composite scatterer made of a PEC
object with boundary Γ (can be either open or closed) and a linear inhomogeneous
dielectric object Ω illuminated by a time-harmonic incident electromagnetic wave
Ei in a background medium with permittivity ϵ0 and permeability µ0, as shown in
fig. 2.1.

Figure 2.1: Description of the 3D scattering problem. The PEC parts are modeled
by their boundary (i.e. Γ ) and the dielectric parts are modeled by their volume
(i.e. Ω).

Using both the volume equivalence principle (section 2.2.1.2) and the surface
equivalence principle (section 2.2.1.1), the dielectric bodies can be replaced by
an equivalent volume current density Jd in Ω and the conducting objects by an
equivalent surface current density Js on Γ . The volume current density is defined
as

Jd(r) = jωD(r). (2.63)
Note that the HVSIE is solved for Jd so that both the volume and surface unknowns
have the dimension of a current density. The total field E can then be written as
a sum of the incident field and the scattered fields

E(r) = Ei(r) + Ev
s (r) + Es

s(r), (2.64)
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where Es
s is the field scattered by Js and Ev

s is the field scattered by Jd

Ev
s (r) = −jk0η0T κ,Ω

A (Jd(r′)) + η0

jk0
T κ,Ω

Φ (Jd(r′)), (2.65)

Es
s(r) = −jk0η0T Γ

A (Js(r′)) + η0

jk0
T Γ

Φ (Js(r′)). (2.66)

The resulting volume integral equation in Ω can be expressed as

Jd(r)
jωϵ(r) −Ev

s (Jd(r′))−Es
s(Js(r′)) = Ei(r), r ∈ Ω. (2.67)

On a PEC object, the boundary conditions require that the tangential component
of the total electric field vanishes. This gives the surface integral equation on Γ

−γrEi(r) = γrE
v
s (Jd(r′)) + γrE

s
s(Js(r′)), r ∈ Γ. (2.68)

In the HVSIE, eq. (2.67) and eq. (2.68) should be simultaneously solved for Jd and
Js.

2.3 Numerical Solutions of Integral Equations
The various formulations that were presented above provide the exact solutions

to Maxwell’s equations. However, there exists a known analytical solution only in
few canonical cases (e.g. dielectric sphere, PEC sphere). In real-world scattering
scenarios, the geometry of the scatterer is often too complicated to derive an ana-
lytic solution. This explains the need for numerical methods in electromagnetics.
They allow solving complicated electromagnetic problems by approximating them.
In the following, it is shown how the formulations employed in the rest of the thesis
are numerically solved.

2.3.1 Method of Moments
All the numerical solutions presented in this section are obtained by applying the

method of moments (MoM) [57]. It consists in transforming an integral equation
(e.g. D-VIE, J-VIE) into a linear system. We start from the following integral
equation

Lx = y, (2.69)
in which L is the integral operator, x is the solution that we are looking for, and y
is a known excitation term. To solve eq. (2.69) in the general case, we first assume
that x can be approximated using a set of basis functions {fm}

x ≈
N∑︂

m=1
[x ]mfm, (2.70)
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in which N is the number of basis functions and [x ]m is the coefficient of the
discretized solution associated to the basis function fm. Note that fm is function
of the position r. Inserting eq. (2.70) into eq. (2.69) yields

N∑︂
m=1

[x ]mLfm = y. (2.71)

To be solved numerically, eq. (2.71) also needs to be discretized. This step is called
the testing procedure. It consists in taking the inner product between eq. (2.71)
and a set of testing functions {gn}. We obtain

N∑︂
m=1

[x ]m⟨gn,Lfm⟩Ω = ⟨gn, y⟩Ω, n = 1,2, ..., N, (2.72)

where ⟨a, b⟩Ω =
∫︁

Ω a(r) · b(r) dv is the L2-inner product with r ∈ Ω and Ω ⊂ R3.
Equation (2.72) is a system of equations which can be rewritten in a matrix form
as

Zx = y , (2.73)
in which Z is the system matrix whose elements are defined as

[Z]nm = ⟨gn,Lfm⟩Ω, (2.74)

and x and y are the solution and excitation vectors, respectively. The elements of
y read

[y ]n = ⟨gn, y⟩Ω. (2.75)
After solving eq. (2.73) for x , we finally get an approximation of the solution using
eq. (2.70).

2.3.2 Surface EFIE
In this section, we provide the discretization of the surface EFIE with Rao-

Wilton-Glisson basis functions [86] on a triangular discretization of Γ with NTri
triangles.

2.3.2.1 Rao-Wilton-Glisson basis functions

The RWG basis functions are divergence conforming basis functions (they live
in the functional space H−1/2

Div (Γ )) and thus allow the proper discretization of the
EFIE. An RWG function associated to the edge n in a triangular discretization is
defined as

fn(r) =
⎧⎨⎩f+

n (r) = r−r+
n

2A+
n
, r ∈ T+

n

f−
n (r) = −r−r−

n

2A−
n
, r ∈ T−

n

(2.76)
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r+
n r−

n
T +

n T −
n

en

Figure 2.2: Convention used to define the RWG functions: the RWG basis function
is defined on the two triangles T+

n and T−
n that are formed with their common edge

en and the vertices r+
n and r−

n , respectively.

in which T±
n denotes the pair of triangles on which f±

n is defined, A±
n is the area of

T±
n , and r±

n is the vertex of T±
n that does not belong to en, the shared edge of T+

n

and T−
n (see fig. 2.2).

The current Js can be approximated as a linear combination of RWG basis
functions as follows

Js(r) ≈
NE∑︂

m=1
[α]mfm(r), (2.77)

in which NE is the number of RWG basis functions. Since the surface EFIE oper-
ators maps H−1/2

Div (Γ ) to itself, the testing functions should belong to the dual of
H

−1/2
Div (Γ ), which is H−1/2

Curl (Γ ) [19]. The basis functions pertaining to that space are
the rotated RWG functions {n̂× fn}. The resulting linear system reads

Zα = (ZA + ZΦ)α = v , (2.78)

where

[ZA]nm = −jη0k0⟨n̂× fn,γrT Γ
A fm⟩Γ , (2.79)

[ZΦ]nm = η0

jk0
⟨n̂× fn,γrT Γ

Φ fm⟩Γ , (2.80)

[v ]n = −⟨n̂× fn,γrEi⟩Γ . (2.81)

2.3.3 J-VIE
In the J-VIE the inhomogeneous scatterer Ω is discretized with NT tetrahedra

with each tetrahedron having a constant permittivity. The current Jv is decom-
posed into its three Cartesian components (Jv(r) = Jx

v (r)x̂ + Jy
v (r)ŷ + Jz

v (r)ẑ).
Each component is discretized with a piecewise constant basis function

Jα
c (r) ≈

NT∑︂
m=1

[a]αmfα
m(r), (2.82)

in which α̂ = x̂, ŷ, ẑ. The basis function fα
m, which lives in the functional space

L2(Ω)3, is defined as
fα

m(r) = α̂Pm(r), (2.83)
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with Pn ∈ L2(Ω) being a volumetric patch with support in tetrahedron Tn. The
relative permittivity in Ω is also defined using Pn

ϵr(r) =
NT∑︂

m=1
ϵr(rm)Pm(r), (2.84)

in which rn is the center of tetrahedron Tn. Using the fact that the J-VIE operator
(eq. (2.55)) maps L2(Ω)3 to itself and that L2(Ω)3 is its own dual [70], a Gar-
lerkin testing procedure (same source and testing basis functions) can be applied
on eq. (2.56), which results in the following linear system(︂

[R]βα + [Rχ]βα − [I]βα
)︂

[a]α = [v ]β, (2.85)

in which [R]βα ∈ RNT ×NT , [Rχ]βα ∈ RNT ×NT , [I]βα ∈ RNT ×NT , and [v ]β ∈ RNT ×1 are
defined as

[R]βα
nm = ⟨fβ

n ,f
α
m⟩Ω, (2.86)

[Rχ]βα
nm = ⟨fβ

n , χfα
m⟩Ω, (2.87)

[I]βα
nm = ⟨fβ

n , χNfα
m⟩Ω, (2.88)

[v ]βn = jωϵ0⟨fβ
n , χEi⟩Ω, (2.89)

where α, β = x, y, z. The procedure to numerically compute eq. (2.86), eq. (2.88),
and eq. (2.89) can be found in [83].

2.3.4 D-VIE
This section presents the discretization of the D-VIE with Schaubert-Wilton-

Glisson (SWG) basis functions [89] in a tetrahedral discretization of Ω with NT

tetrahedra.

2.3.4.1 Schaubert-Wilton-Glisson basis functions

The SWG basis functions are divergence conforming basis functions (they live
in the functional space HDiv(Ω) ⊂ L2(Ω)3) and are thus suitable functions for the
discretization of the D-VIE. The SWG function associated to the face n is

fn(r) =
⎧⎨⎩f+

n (r) = 1
3V +

n
(r − r+

n ), r ∈ T+
n

f−
n (r) = − 1

3V −
n

(r − r−
n ), r ∈ T−

n ,
(2.90)

in which T±
n denotes the pair of tetrahedra on which fn is defined, V ±

n is the volume
of T±

n , and r±
n is the vertex of T±

n that does not to belong to Γn, the shared face of
T+

n and T−
n (see fig. 2.3). In the following, we will use the notation f±

n to denote
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r+
n

r−
n

Γn

T +
n T −

n

Figure 2.3: Convention used to define the SWG and the star functions: the SWG
basis function is defined on the two tetrahedra T+

n and T−
n that are formed with

their common face Γn and the vertices r+
n and r−

n , respectively. The half SWG
basis functions are defined on T+

n only.

the part of the basis function fn that is defined in T±
n . The basis functions defined

at the boundary of a discretized object are defined in one tetrahedron to properly
model the surface charges, they are referred to as half basis functions. Note here
that, by convention, the half basis function fm is always supported by tetrahedron
T+

m . Another important property of an SWG basis function is the expression of its
divergence

∇ · fn(r) =
⎧⎨⎩∇ · f

+
n (r) = 1

V +
n
, r ∈ T+

n

∇ · f−
n (r) = − 1

V −
n
, r ∈ T−

n .
(2.91)

2.3.4.2 Discretization of the D-VIE

The unknown D in Equation (2.60) must exhibit a continuous normal compo-
nent through material discontinuities, it is thus discretized with SWG basis func-
tions {fm}

D(r) ≈
NF∑︂

m=1
[α]mfm(r). (2.92)

in which NF is the number of faces in the tetrahedral mesh. Since the range of
the D-VIE operator lies in HCurl(Ω) [70], this formulation can be properly tested
with SWG basis functions which are in its dual space. Moreover, testing with the
functions {κfn}, which are SWG functions scaled with the material contrast κ [16],
yields the linear system

Zκα = (Gκϵ + ZκA + ZκΦ)α = vκ, (2.93)
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where

[Gκϵ ]nm = ⟨κfn,fm/ϵ⟩Ω (2.94)
[ZκA]nm = −k2

0ϵ0
−1⟨κfn,TAfm⟩Ω (2.95)

[ZκΦ]nm = −ϵ0
−1⟨κfn,TΦfm⟩Ω (2.96)

[vκ]n = ⟨κfn,Ei⟩Ω, (2.97)

in which all the matrices are symmetric. By expanding eq. (2.94), eq. (2.95),
eq. (2.96), and eq. (2.97), we get

[Gκϵ ]nm =
∫︂

Ω
κ(r)fn(r) · ϵ(r)−1fm(r) dv (2.98)

[ZκA]nm = −k
2
0
ϵ0

∫︂
Ω
κ(r)fn(r) ·

∫︂
Ω
κ(r′)fm(r′)G0(r, r′) dv′ dv (2.99)

[ZκΦ]nm = − 1
ϵ0

∫︂
Ω
κ(r)fn(r) · ∇

∫︂
Ω
∇′ · (κ(r′)fm(r′))G0(r, r′) dv′ dv (2.100)

[vκ]n =
∫︂

Ω
κ(r)fn(r) ·Ei(r) dv. (2.101)

The term [ZκΦ]nm in eq. (2.100) can be expanded further. Using an integration by
parts, the divergence theorem, and the property of SWG basis functions, it can be
shown that

[ZκΦ]nm = − 1
ϵ0

∫︂
Ω
∇ · (κ(r)fn(r))

∫︂
Ω
∇′ · (κ(r′)fm(r′))G0(r, r′) dv′ dv,

= − 1
ϵ0

∫︂
Ω
κ(r)∇ · fn(r)

∫︂
Γm

δκmn̂m · fm(r′)G0(r, r′) ds′ dv

+
∫︂

Ω
κ(r)∇ · fn(r)

∫︂
Ω
κ(r)∇ · fm(r′)G0(r, r′) dv′ dv

+
∫︂

Γn

δκnn̂n · fn(r)
∫︂

Γm

δκmn̂m · fm(r′)G0(r, r′) ds′ ds

+
∫︂

Γn

δκnn̂n · fn(r)
∫︂

Ω
κ(r)∇ · fn(r)G0(r, r′) dv′ ds,

(2.102)

in which δκn = κ−
n − κ+

n and n̂m is a unit vector normal to Γm oriented from T+
m

to T−
m . For the half basis functions fn, δκn = −κ+

n .

2.3.4.3 Discretization of the D-VIE with monopolar SWG functions

In some applications, it can be convenient to extract the material dependence
from the discretized operator to be able to update the full discretized operator Z
by recalculating solely its material dependent part. Since the material is piecewise
constant in the tetrahedra of the discretized geometry, this can be done by splitting
the SWG basis function into two, a part defined on T+

n (f+
n ) and another part
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defined in T−
n (f−

n ). A similar procedure is presented in [97, 63] for RWG basis
functions, it is referred to as a monopolar representation of the basis function. The
monopolar matrices, which are the matrices that do not depend on the material
parameters, are provided in the following. Gvv ∈ C2NF ×2NF is defined as follows

Gvv =
[︄
G++
vv G+−

vv

G−+
vv G−−

vv

]︄
, (2.103)

in which G±±
vv ∈ CNF ×NF is defined as [G±±

vv ]nm =
∫︁

Ω f±
n (r) · f±

m(r) dv.
The monopolar matrix for the vector potential ZA reads

ZA,vv =
[︄
Z++
A,vv Z

+−
A,vv

Z−+
A,vv Z

−−
A,vv

]︄
, (2.104)

in which [Z±±
A,vv ]nm = k2

0ϵ
−1
0
∫︁

Ω f±
n (r)·

∫︁
Ω G0(r, r′)f±

m(r′) dv′ dv. The scalar potential
matrix ZΦ can be subdivided into 4 monopolar matrices. ZΦ,vv ∈ C2NF ×2NF is
defined as follows

ZΦ,vv =
[︄
Z++
Φ,vv Z

+−
Φ,vv

Z−+
Φ,vv Z

−−
Φ,vv

]︄
, (2.105)

where [Z±±
Φ,vv ]nm = ϵ−1

0
∫︁

Ω∇ · f±
n (r)

∫︁
Ω G0(r, r′)∇ · f±

m(r′) dv′ dv.
The monopolar matrix ZΦ,sv ∈ CNF ×2NF include the surface terms in the testing

and the volume terms in the source, it is defined as

ZΦ,sv =
[︂
Z+
Φ,sv Z

−
Φ,sv

]︂
(2.106)

in which [Z±
Φ,sv ]nm = ϵ−1

0
∫︁

Γn
n̂n · fn(r)

∫︁
Ω G0(r, r′)∇ · f±

m(r′) dv′ ds.
Similarly, ZΦ,vs ∈ C2NF ×NF ,

ZΦ,vs = ZΦ,sv
T. (2.107)

Finally, the matrix ZΦ,ss ∈ CNF ×NF , that includes the surface terms in the testing
and the source, reads

[ZΦ,ss ]nm = ϵ−1
0

∫︂
Γn

n̂n · fn(r)
∫︂

Γm

G0(r, r′)n̂m · fm(r′) ds′ ds (2.108)

After building Gvv , ZA,vv , ZΦ,vv , ZΦ,vs , ZΦ,sv , and ZΦ,ss , the next step is to obtain
the matrices defined in eq. (2.94), eq. (2.95), and eq. (2.96) to define rectangular
sparse matrices called mapping matrices that enable re-scaling the monopolar ma-
trices. For volume terms, a re-scaling by 1/ϵ±

n and κ±
n is needed and for the surface

terms δκn = κ−
n −κ+

n is required. The following sparse matrices are first introduced[︂
Υ±
ϵ−

]︂
nn

= 1
ϵ±

n

(2.109)

[Υκ± ]nn = κ±
n (2.110)

[Υδκ]nn = δκn, (2.111)
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they all pertain to CNF ×NF . Next we define Υϵ− and Υκ from eq. (2.109) and
eq. (2.111)

Υϵ− =
[︂
Υ+
ϵ− Υ

−
ϵ−

]︂
(2.112)

Υκ =
[︂
Υ+
κ Υ−

κ

]︂
. (2.113)

All the matrices to build the matrices Gκϵ , ZκA, and ZκΦ have been introduced, which
yields the following definitions

Gκϵ = ΥκGvvΥϵ−T (2.114)
ZA
κ = ΥκZA,vvΥκ

T (2.115)
ZΦ
κ = ΥκZΦ,vvΥκ

T + ΥκZΦ,vsΥδκ
T + ΥδκZΦ,svΥκ

T + ΥδκZΦ,ssΥδκ
T, (2.116)

in which Zκ = Gκϵ + ZκA + ZκΦ.

2.3.4.4 Numerically Solving the D-VIE for the Contrast κ

Another useful way to express the discretization of the D-VIE is to write it
such that κ, the vector containing the contrast in each tetrahedron, becomes the
unknown and α is the scaling of the new impedance matrix Zα [73]. This matrix
corresponds to the discretization of an identity operator scaled with α and the
scattering operator introduced in eq. (2.62). To perform this operation, the D-
VIE should be tested with {fn} instead of {κfn}. In the following, this D-VIE is
denoted by “non-symmetric D-VIE” while the previous discretization (eq. (2.93))
is referred to as “symmetric D-VIE”. Testing by {fn} yields the following linear
system

Zα = (Gϵ + ZA + ZΦ)α = v , (2.117)
where

[Gϵ]nm = ⟨fn,fm/ϵ⟩Ω (2.118)
[ZA]nm = −k2

0ϵ0
−1⟨fn,TAfm⟩Ω (2.119)

[ZΦ]nm = −ϵ0
−1⟨fn,TΦfm⟩Ω (2.120)

[v ]n = ⟨fn,Ei⟩Ω. (2.121)

Similarly to the symmetric D-VIE, Z can be reformulated using a monopolar rep-
resentation, which yields

Gϵ = ΥGvvΥϵ−T (2.122)
ZA = ΥZA,vvΥκ

T (2.123)
ZΦ = ΥZΦ,vvΥκ

T + ΥZΦ,vsΥδκ
T + ΥδZΦ,svΥκ

T + ΥδZΦ,ssΥδκ
T (2.124)
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in which
Υ =

[︂
I I

]︂
, (2.125)

with I being an identity matrix in RNF ×NF and

[Υδ]nn =
⎧⎨⎩−1 if Γn ∈ ∂Ω

0 otherwise.
(2.126)

From this non-symmetric discretization (eq. (2.117)), an equivalent equation in
which κ is the unknown can be derived

Zακ = ZαAκ+ ZαΦκ−
1
ϵ0
Gακ = v − 1

ϵ0
Gα. (2.127)

The matrices G, ZαA , ZαΦ , and Gα are provided in the following. They can be
written as products of mapping matrices containing α and the monopolar matrices
Gvv , ZA,vv , ZΦ,vv , ZΦ,vs , ZΦ,sv , and ZΦ,ss . The following mapping matrices should
be defined

[︂
Ψ±
v

]︂
mn

=
⎧⎨⎩ [α]n if tetrahedron Tm is tetrahedron T±

n

0 otherwise,
(2.128)

[Ψs ]mn =

⎧⎪⎪⎨⎪⎪⎩
[α]n if tetrahedron Tm is tetrahedron T+

n

−[α]n if tetrahedron Tm is tetrahedron T−
n

0 otherwise,
(2.129)

in which Ψ±
v ∈ CNT ×NF and Ψs ∈ CNT ×NF .

Leveraging Ψv =
[︂
Ψ+
v Ψ−

v

]︂
and Ψs , the matrices introduced in eq. (2.127) can

be expressed as

ZαA = −ΥZA,vvΨv
T (2.130)

ZαΦ = −ΥZΦ,vvΨv
T + ΥZΦ,vsΨs

T + ΥδZΦ,svΨv
T + ΥδZΦ,ssΨs

T (2.131)
Gα = ΥGvvΨvT (2.132)
G = ΥGvvΥT. (2.133)

2.3.4.5 Near Field Radiated from the Electric Flux

By solving the discretized D-VIE (eq. (2.93) or eq. (2.117)), we can obtain the
electric field inside the object by evaluating eq. (2.92) at the desired location in
the object. To get the scattered electric field Es(r) at r ∈ R3 radiated by the
electric flux D, the scattering operator defined in eq. (2.61) should be employed.
Substituting D by its expansion with SWG basis functions in eq. (2.61) gives

Es(r) ≈ k2
0
ϵ0

NF∑︂
m=1

αmTA(fm(r′)) + 1
ϵ0

NF∑︂
m=1

αmTΦ(fm(r′)). (2.134)
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2.3.5 Hybrid VSIE
In the HVSIE (presented in section 2.2.5), the volume dielectric current density

is discretized with SWG basis functions and the surface current density with RWG
basis functions, as follows

Jd(r) = jωD(r) =
NF∑︂

m=1
[αv]mf v

m(r), (2.135)

and
Js(r) =

NE∑︂
m=1

[αs]mf s
m(r), (2.136)

in which NF and NE are the number of faces and edges in the tetrahedral and
triangular mesh, respectively. Applying this discretization and testing the equation
in a symmetric manner results in the following block matrix equation[︄

Zss Zvs

Zsv Zvv

]︄ [︄
αs

αv

]︄
=
[︄
vs
vv

]︄
, (2.137)

where

[Zss]nm = −jk0η0⟨n̂× f s
n,γrT Γ

A f s
m⟩Γ + η0

jk0
⟨n̂× f s

n,γrT Γ
Φ f s

m⟩Γ (2.138)

[Zvs]nm = −jk0η0⟨n̂× f s
n,γrT κ,Ω

A f v
m⟩Γ + η0

jk0
⟨n̂× f s

n,γrT κ,Ω
Φ f v

m⟩Γ (2.139)

[Zsv]nm = −jk0η0⟨κf v
n,T

Γ
A f s

m⟩Ω + η0

jk0
⟨κf v

n,T
Γ

Φ f s
m⟩Ω (2.140)

[Zvv]nm = η0

jk0
⟨κf v

n, ϵ
−1f v

m⟩Ω + jk0η0⟨κf v
n,T

κ,Ω
A f v

m⟩Ω −
η0

jk0
⟨κf v

n,T
κ,Ω

Φ f v
m⟩Ω
(2.141)

[vs]n = −⟨n̂× f s
n,γrEi⟩Γ (2.142)

[vv]n = ⟨κf v
n,Ei⟩Ω. (2.143)

2.4 Iterative Solvers and Conditioning
In this section, a special focus is given to the solving of the discretized MoM

equations that were derived above. Generally, the discretized system is a linear
system that can be formulated as

Zx = y , (2.144)

in which x is the solution vector, y is the known right hand side, and Z is one
of the discretized operators introduced above. Since the direct inversion of Z to
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solve eq. (2.144) is very demanding computationally (cubic complexity), iterative
solvers, which operate in quadratic complexity, are usually preferred for solving
real-world problems, which often have a large number of degrees of freedom. When
using iterative methods, the problem is generally expressed as a cost functional

Fn = ∥Zxn − y∥2, (2.145)

which has to be minimized by successively updating xn as

xn+ = xn + αnvn, (2.146)

in which xn+ is the solution at step n + 1, vn is the update direction, and αn is a
weight chosen to minimize Fn.

2.4.0.1 Convergence of the Steepest Descent Method

A fundamental property of an iterative solver is its convergence rate. This
property is illustrated in the following by considering convergence in the steepest
descent method [18, 90], which is one of the simplest iterative solvers. Note that
Z is assumed to be a positive-definite matrix in this derivation. In this scheme, αn

and vn can be updated at each iteration as

αn = rn
Trn
∥rn∥2

Z

(2.147)

vn = rn, (2.148)

in which rn = Zxn − y is the residual and ∥x∥Z =
(︂
xTZx

)︂ 1
2 is the energy norm. In

the convergence analysis, the error on the solution at step n, en = x − xn (x being
the correct solution), should be considered. It has the following relation with the
residual error

rn = −Zen. (2.149)
To analyze the convergence of the steepest descent method, en is first expanded as
a linear combination of orthogonal eigenvectors of Z (Z being symmetric)

en =
N∑︂

i=1
ξi χi , (2.150)

in which χi is the eigenvector of Z associated to the eigenvalue λi, ξi are the
coefficients of the expansion, and N is the number of unknowns. To show the con-
vergence of the algorithm, the errors en+ and en between two consecutive iterations
should be compared. To this aim, the squared energy norm of en+ is expanded
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using eq. (2.146), eq. (2.147), eq. (2.149), and the fact that Z is symmetric. This
gives

∥en+∥2
Z = en+TZen+

= (en + αnrn)TZ(en + αnrn)
= enTZen + 2αnrn

TZen + α2
nrn

TZrn

= ∥en∥2
Z − 2 rn

Trn
∥rn∥2

Z

rn
Trn +

(︄
rn

Trn
∥rn∥2

Z

)︄2

∥rn∥2
Z

= ∥en∥2
Z −

(︂
rn

Trn
)︂2

∥rn∥2
Z

.

(2.151)

Then, leveraging eq. (2.150) and factoring out ∥en∥2
Z in eq. (2.151) yields

∥en+∥2
Z = ∥en∥2

Z

⎛⎜⎝1−

(︂
rn

Trn
)︂2

(enTZen) (rnTZrn)

⎞⎟⎠
= ∥en∥2

Z

⎛⎜⎝1−

(︂
(−∑︁N

i=1 ξiZχi)
T(−∑︁N

i=1 ξiZχi)
)︂2

(︂
(∑︁N

i=1 ξiχi)
T
Z(∑︁N

i=1 ξiχi)
)︂ (︂

(−∑︁N
i=1 ξiZχi)

T
Z(−∑︁N

i=1 ξiZχi)
)︂
⎞⎟⎠

= ∥en∥2
Z

⎛⎜⎝1−

(︂∑︁N
i=1 ξ

2
i λ

2
i

)︂2

(∑︁N
i=1 ξ

2
i λi)(

∑︁N
i=1 ξ

2
i λ

3
i )

⎞⎟⎠
= ∥en∥2

Z(1− c2).
(2.152)

From eq. (2.152), it results that the strict inequality 1 − c2 < 1 is required to
reduce the error and that the convergence rate increases when c2 gets closer to 1.
To understand how c varies, we take the example of a linear system with only two
unknowns (N = 2). In that case, Z has two eigenvalues λ1 and λ2 with λ1 being
the largest eigenvalue. This simplifies the expression of c2 to

c2 = (ξ2
1λ

2
1 + ξ2

2λ
2
2)2

(ξ2
1λ1 + ξ2

2λ2)(ξ2
1λ

3
1 + ξ2

2λ
3
2)

= (κ2 + µ2)2

(κ+ µ2)(κ3 + µ2) ,
(2.153)

in which κ = λ1/λ2 is called the condition number of Z (Z being positive-definite)
and µ = ξ2/ξ1. Next we observe by differentiating eq. (2.153) with respect to µ (for
a fixed condition number) that c2 is minimized when µ = κ. This is the worst-case
scenario for the convergence and thus it gives us a lower bound for c2, which reads

c2 ≥ 4κ4

κ5 + 2κ4 + κ3 = 4κ
(κ+ 1)2 . (2.154)
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We can see in eq. (2.154) that the maximum lower bound of c2 (fastest convergence
rate) is obtained for κ = 1 (minimum condition number possible). Another obser-
vation is that when κ increases, the lower bound for c2 decreases, so the convergence
rate of the steepest descent might decrease also. Therefore, it is important to keep
the condition number κ of Z as low as possible. Note that since eq. (2.154) is a
lower bound, it represents the worst case scenario for the convergence rate of the
iterative solver.

2.4.0.2 Condition Number

In general (not only for symmetric matrices), the condition number of an in-
vertible matrix Z is defined as

cond(Z) = ∥Z∥∥Z−1∥ = smax

smin
, (2.155)

in which smax and smin are the maximum and minimum singular values of Z, respec-
tively. As we observed in the case of the steepest descent method, the conditioning
of the system matrix dictates the convergence rate of the iterative solver employed.
Another issue with ill-conditioned matrices is that they induce numerical instability
in the problem. This originates from the fact that the exact expression of the exci-
tation vector y and the system matrix Z cannot be used due to the finite precision
used to store numbers in computers. This inaccuracy can be taken into account by
adding a perturbation to y and Z [51] as follows

Z → Z + ϵZ

y → y + ϵy,

in which ϵ ∈ R and Z and y have the same dimensions as Z and y , respectively.
Inserting the perturbed matrix and the perturbed excitation vector in eq. (2.144),
we get

(Z + ϵZ) x̃ = y + ϵy, (2.156)
in which x̃ is the perturbed solution. Next, we derive an upper bound for the
relative error between x̃ and the exact solution x . To do this, we first subtract
eq. (2.144) from eq. (2.156), which after rearrangement gives

x̃ − x = ϵZ−1(y − Zx − Z(x̃ − x)). (2.157)

Then, taking the norm of eq. (2.156) yields the following inequality

∥x̃ − x∥ ≤ ϵ∥Z−1∥∥y − Zx − Z(x̃ − x)∥
≤ ϵ∥Z−1∥ (∥y ∥+ ∥Z∥ ∥x∥+ ∥Z∥∥x̃ − x∥) .

(2.158)
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Assuming that ∥Z−1∥∥Z∥ < 1, putting all terms in ∥x̃ − x∥ on the left hand side
of the inequality, and dividing by ∥x∥, eq. (2.158) can be formulated as

∥x̃ − x∥
∥x∥

≤ ϵ
∥Z−1∥

1− ∥Z−1∥∥Z∥

(︄
∥y∥
∥x∥

+ ∥Z∥
)︄
. (2.159)

Then using the fact that ∥y∥ ≤ ∥Z∥∥x∥ and leveraging eq. (2.155), we can write
eq. (2.159) as

∥x̃ − x∥
∥x∥

≤ ϵ
cond(Z)

1− cond(Z)∥Z∥/∥Z∥

(︄
∥y∥
∥y∥

+ ∥Z∥
∥Z∥

)︄
. (2.160)

From eq. (2.160), we observe that cond(Z) plays the role of an amplifier for the
relative perturbations ∥Z∥/∥Z∥ and ∥y∥/∥y∥ in the upper bound of the relative
perturbation of the solution. Note that since this is an upper bound, it represents
the worst case scenario for the relative perturbation of the solution.

Since a high condition number can yield a lower convergence rate and numerical
instability, it is important to work with formulations that have a low and bounded
condition number. For this reason, a preconditioner is generally employed on top
of the original formulation to guarantee the well-conditioning of the system matrix.
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Chapter 3

A Full-wave Volume Formulation
for Neuro-imaging

This chapter describes research conducted on a new regularized electric flux vol-
ume integral equation (D-VIE) for modeling lossy dielectric objects in a broad

frequency range. This new formulation is particularly suitable for modeling biolog-
ical tissues at low frequencies, as it is required by brain epileptogenic area imaging,
but also at higher ones, as it is required by several applications including, but
not limited to transcranial magnetic and deep brain stimulation (TMS and DBS,
respectively). When modeling at low frequency inhomogeneous objects with high
complex permittivities, the traditional D-VIE is ill-conditioned and suffers from
numerical instabilities, which results in slower convergences and in less accurate
solutions. In this work we address these shortcomings by leveraging a new set
of volume quasi-Helmholtz projectors. Their scaling makes the proposed method
accurate and stable for high permittivity objects until arbitrarily low frequencies.
Numerical results, canonical and realistic, corroborate the theory and confirm the
stability and the accuracy of this new method both in the quasi-static regime and
at higher frequencies.

3.1 Introduction
The electromagnetic modeling of human tissues has numerous applications that

include brain source localization [7], dosimetry [3], deep brain stimulation (DBS)
[64], transcranial magnetic stimulation (TMS) [8], electric impedance tomography
[20], and hyperthermic cancer therapy [99]. All these procedures require an accurate
modeling of the interactions between electromagnetic fields and the human body.
Depending on the application, numerical solvers can be either full-wave solvers di-
rectly derived from Maxwell’s equations or static solvers based on Poisson’s equa-
tion, which are valid only in the quasi-static regime [15]. While static solvers are
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sufficient to model resistive effects occurring in biological tissues, full-wave solvers
are required when capacitive, inductive, and propagation effects should also be
taken into consideration [15, 82]. This is the case when the source has a larger
spectral content (e.g. a magnetic pulse emitted by TMS coil [30] or an electrical
current injected by an electrode in neurostimulation [53]). For these applications,
the modeling should be done at various frequencies and, hence, the solver used
should be able to perform accurately at arbitrary frequency.

Two main families of numerical solvers are widely employed for frequency do-
main bio-electromagnetic modeling: integral equation (IE) and differential equation
solvers. In particular, integral equation solvers can be either surfacic (SIE) or vo-
lumic (VIE) depending on the nature of the tissue to model [105]. Although these
solvers give rise to dense matrices, the higher computational cost incurred can
be significantly reduced using acceleration techniques such as the fast multipole
method (FMM) [43] or the adaptive cross approximation (ACA) [9]. Moreover,
as IE formulations automatically enforce radiation conditions, no discretization is
required outside the object. Unfortunately, bio-electromagnetic modeling is a chal-
lenging task for solvers based on integral equations because of the high external
permittivity contrast between the biological tissues and the background in which
they are studied [37]. Indeed both a high-contrast object and/or a low operating
frequency introduce a severe ill-conditioning in the discretized IE operator, which
yields a slower convergence and a loss of accuracy in the solution [5]. These two
phenomena are often referred to as the low-frequency (LF) and the high-contrast
(HC) breakdowns respectively [85, 101, 42, 17]. In addition, the ill-scaling between
the different components of the solution of the discretized system causes the latter
to have fewer digits of accuracy due to finite machine precision [84].

The high-contrast breakdown in piecewise homogeneous scatterers has been
cured in the case of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) for-
mulation [74] and in a novel single-source integral equation [42] by leveraging the
Calderón identities and the low-frequency breakdown of the PMCHWT was tack-
led by preconditioning it with quasi-Helmholtz projectors [10]. These two methods
allow for an appropriate re-scaling of the PMCHWT operator to make it stable
regardless of the permittivity or of the frequency. While these stabilized surface
formulations have numerous advantages, in particular the fact that they require
only the boundaries of the homogeneous parts of the scatterer to be discretized,
like most integral equations, they are limited to piecewise homogeneous models of
biological tissues. While these stabilized surface formulations have numerous ad-
vantages, they are limited to piecewise homogeneous models of biological tissues.
Volume integral equations, instead, can model objects with a high degree of inho-
mogeneity. Unfortunately, as their surface counterparts, they suffer from the HC
breakdown [69, 70, 107, 17, 27, 98, 33] and fail to converge rapidly in applica-
tions with scatterers that have a high permittivity contrast with respect to their
background. Another limitation of traditional VIE is that, even though they are
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immune from the low-frequency breakdown in purely dielectric objects [23], a fre-
quency ill-scaling between the different parts of the VIE can occur when the object
under study has a complex permittivity which depends on the frequency [88]. The
LF breakdown can therefore be considered as an intrinsic part of the HC breakdown
in the VIE. These limitations prevent the standard volume formulations to perform
well in realistic biomedical applications where the modeling of high-contrast tissues
from the quasi-static regime to the microwave regime is required.

Some regularization techniques have been introduced for solving the LF and the
HC problems in the electric current VIE (J-VIE), the electric field VIE (E-VIE),
and the electric flux VIE (D-VIE). The LF breakdown has been cured in the J-VIE
for anisotropic and inhomogeneous scatterers using a loop-star-facet decomposition
for re-scaling properly the unknown [36]. However, solving this problem using a
Helmholtz discretization deteriorates the dense discretization behavior of the VIE,
i.e., it causes the conditioning of the system matrix to deteriorate when the average
edge length h of the discretized geometry decreases [4]. The quasi-Helmholtz pro-
jectors [5] allow for the removal of the ill-scaling in the formulation while keeping its
dense mesh behavior unchanged. These projectors have been adapted to the J-VIE
and used for curing the HC limitation of this equation for isotropic inhomogeneous
scatterers in [68]. Another approach to solve the HC problem is presented in [107],
where the E-VIE is regularized using the symbol calculus and the Calderón iden-
tities. Its application to the J-VIE is discussed in [83]. While being free from the
HC breakdown, the two above-mentioned methods do not consider the numerical
stability of the J-VIE or the E-VIE at low frequencies when modeling lossy dielec-
tric objects, which is an important feature for a solver operating in low-frequency
biomedical applications. For the D-VIE, an effective solution to both the LF and
HC breakdowns has been proposed in [41, 40] where an additional surface inte-
gral equation is used to adjust the background permittivity and lower the external
dielectric contrast.

In this chapter, we introduce a new set of volume quasi-Helmholtz projectors
compatible with the D-VIE to separate the solenoidal (loop) and non-solenoidal
(star) parts of the discretized formulation and re-scale them appropriately, thus
curing the ill-conditioning and the loss of accuracy occurring at low frequencies in
lossy dielectric objects. The investigation of a new set of projectors has been neces-
sary because the projectors proposed in [68], designed for the J-VIE, would not work
for the D-VIE due to the different discretization strategies of these two equations:
single cell piecewise constant basis functions for the former and Schaubert-Wilton-
Glisson (SWG) basis functions [89] for the latter.

The new projectors, when combined with the appropriate re-scaling, can be
used to tackle the LF breakdown. The regularized D-VIE exhibits a solution that
is valid until arbitrarily low frequencies in lossy dielectric objects, unlike standard
full-wave solvers. This versatility makes it an excellent formulation for biomedical
applications where solvers that can operate in a broad frequency range are required.

31



A Full-wave Volume Formulation for Neuro-imaging

This chapter is organized as follows: in Section 3.2 we set the background and
notation, including the definition of the D-VIE along with its discrete Helmholtz
decomposition. The low-frequency behavior of the D-VIE is analyzed in Section 3.4
together with the regularization we propose. Implementation details are presented
in Section 3.5. Finally, Section 3.6 presents numerical examples showing the sta-
bility and accuracy of the new formulation in a broad frequency range. Some
preliminary results have been presented in a conference contribution [47].

3.2 Background and Notations
Let Ω ⊂ R3 be a simply connected object composed of a lossy dielectric and

illuminated by a time-harmonic incident electric field Ei in a background of per-
mittivity ϵ0 and permeability µ0. The scatterer is characterized by its complex
isotropic relative permittivity ϵr(r) = ϵ′

r(r)− jσ(r)/ωϵ0 with r ∈ Ω, ϵ′
r(r) the rel-

ative permittivity, σ(r) the conductivity, and ω the angular frequency of Ei. The
permeability of the scatterer is further assumed to be the permeability of vacuum
µ0. Leveraging the volume equivalence principle (section 2.2.1.2), the scatterer can
be substituted by a volume current density distribution

J(r) = jωκ(r)D(r), (3.1)

where κ(r) = (ϵ(r) − ϵ0)/ϵ(r) is the dielectric contrast and D is the electric flux
density. We then recall the D-VIE introduced in section 2.2.4.2,

D(r)
ϵ(r) −

k2
0
ϵ0

(︂
T κ,Ω

A D
)︂

(r)− 1
ϵ0

(︂
T κ,Ω

Φ D
)︂

(r) = Ei(r) , r ∈ Ω, (3.2)

where the vector potential T κ,Ω
A and the scalar potential T κ,Ω

Φ are defined as(︂
T κ,Ω

A D
)︂

(r) =
∫︂

Ω
G0(r, r′)κ(r′)D(r′) dv′, (3.3)(︂

T κ,Ω
Φ D

)︂
(r) = ∇

∫︂
Ω
G0(r, r′)∇′ · (κ(r′)D(r′)) dv′, (3.4)

in which G0(r, r′) = exp (−jk0∥r − r′∥)/∥r − r′∥ is the free space 3D Green’s
function and k0 = ω/c0 is the wavenumber of Ei in free space. In the context of
bio-electromagnetic modeling, excitations are typically generated by plane waves
and current sources. In general, the electric field radiated by an electric current
distribution Ji, which is commonly used to model the brain’s electric activity, is

Ei(r) = (T ′
ΦJi) (r) + (T ′

AJi) (r), (3.5)

where T ′
AJi = −jk0η0

∫︁
Ω G0(r, r′)Ji(r′) dv′ and T ′

ΦJi = η0/jk0∇
∫︁

Ω G0(r, r′)∇′ ·
Ji(r′) dv′.
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3.2 – Background and Notations

Equation (3.2) can be numerically solved by expanding the unknown electric
flux with SWG basis functions {fm} (introduced in section 2.3.4)

D(r) ≈
NF∑︂

m=1
[α]mfm(r), (3.6)

with NF being the number of triangular faces in the tetrahedral mesh, and then by
testing the equation in a non-symmetric manner with {fn}, thus resulting in the
non-symmetric discretized D-VIE (i.e. eq. (2.117))

Zα = (Gϵ + ZA + ZΦ)α = v , (3.7)

in which

[Gϵ]nm = ⟨fn,fm/ϵ⟩Ω (3.8)
[ZA]nm = −k2

0ϵ0
−1⟨fn,T κ,Ω

A fm⟩Ω (3.9)
[ZΦ]nm = −ϵ0

−1⟨fn,T κ,Ω
Φ fm⟩Ω (3.10)

[v ]n = ⟨fn,Ei⟩Ω. (3.11)

In the following, we review some results regarding the Helmholtz decomposition
of the electric flux in the D-VIE as it is particularly useful to identify how the
loop and star components of the D-VIE scale with respect to the frequency. The
unknown α which corresponds to the expansion coefficients of a divergence con-
forming quantity can be decomposed into a sum of its solenoidal and non-solenoidal
components [70]

α = Λl + Σ̃s , (3.12)
where Λ ∈ RNF ×NL is the loop-to-SWG transformation matrix, Σ̃ ∈ RNF ×NS is the
star-to-SWG transformation matrix, l are the expansion coefficients of the unknown
in the solenoidal basis, and s are the expansion coefficients in the non-solenoidal
basis.

The dimensions NL and NS are the numbers of independent loops and stars in
the discretized geometry, respectively. In a tetrahedral discretization of a simply
connected object, the number of stars and loops are [65, 44, 70]

NS = NT +NeF

NL = NiE −NiV ,
(3.13)

where NT , NeF , NiE, and NiV are the number of tetrahedra, external faces, internal
edges, and internal vertices, respectively.

Volume star functions are defined on the tetrahedra of the mesh (as illustrated
in fig. 3.1b) and can be defined as linear combinations of SWG basis functions. The
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mapping Σv ∈ RNF ×NT relates the volume stars and the SWG functions as

[Σv ]mn =

⎧⎪⎪⎨⎪⎪⎩
1 if tetrahedron Tn is tetrahedron T+

m

−1 if tetrahedron Tn is tetrahedron T−
m

0 otherwise,
(3.14)

where T+
m and T−

m represent the two tetrahedra on which the basis function fm

is defined (fig. 2.3). For half basis functions, only the entries corresponding to
tetrahedron T+

m are filled in Σv . Since these specific basis functions also model
surface charges at the boundary of the object, another transformation matrix Σs ∈
RNF ×NeF needs to be filled for these basis functions

[Σs ]mn =
⎧⎨⎩−1 if face n is face Γm

0 otherwise.
(3.15)

Note here that, by convention, the half basis function fm is always supported by
tetrahedron T+

m . The transformation matrix from star-to-SWG is then defined as
Σ̃ = [Σv Σs ].

(a)
(b)

Figure 3.1: (a) 3D visualization of a volume loop associated to an edge of the mesh
(shown in green). (b) 3D visualization of a volume star associated to a tetrahedron
of the mesh (shown in green).

The loop functions are defined on the edges of the mesh (i.e. fig. 3.1a) as linear
combinations of SWG basis functions [65]. Although schemes for the creation of
an independent set of loops in a tetrahedral mesh exist [65, 72], we do not build
them explicitly here, they are only introduced for supporting the discussion. For
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3.3 – A New Quasi-Helmholtz Decomposition of the D-VIE

the purpose of this chapter, we will employ the properties ΛTΣ̃ = 0 and Σ̃T
Λ = 0,

that Λ and Σ̃ satisfy by construction [14].
After eliminating one column from Σ̃ (zero total charge in Ω) yielding the

mapping matrix Σ, we obtain the full rank loop/star-to-SWG basis BI
ΛΣ = [Λ Σ] ∈

RNF ×NF . Applying BI
ΛΣ to the D-VIE operator allows for separating its solenoidal

and non-solenoidal parts that can be subsequently re-scaled appropriately to cure
the ill-conditioning of the matrix. However, the matrix BI

ΛΣ is ill-conditioned with a
condition number that increases when the discretization of the geometry is refined.

3.3 A New Quasi-Helmholtz Decomposition of
the D-VIE

In this work, we use a novel approach for performing a quasi-Helmholtz de-
composition of the D-VIE without being limited by the conditioning issue of the
discrete Helmholtz decomposition. We start by introducing the following loop-star
decomposition of the unknown coefficients

α = Λl + AΣs , (3.16)

in which A is an invertible symmetric matrix. Note that it is shown in appendix A
that Λ and AΣ have their column vectors linearly independent. Then, from this
new decomposition, a scaled loop/star-to-SWG mapping matrix BA−

ΛΣ = [Λ AΣ] ∈
RNF ×NF can be introduced. When A = I, we obtain the standard mapping matrix
introduced in section 3.2 whereas using A = Gϵ−1 gives a decomposition matrix
that, when used to decompose the Gram matrix Gϵ, yields the following 2-by-2
matrix

BGϵΛΣ
T
GϵB

Gϵ
ΛΣ =

[︄
ΛT

ΣTGϵ
−1

]︄
Gϵ[Λ Gϵ−1Σ]

=
[︄
ΛTGϵΛ 0

0 ΣTGϵ
−1Σ

]︄
,

(3.17)

which shows that Gϵ is canceled in the off-diagonal blocks of its decomposition with
BGϵΛΣ.

Besides the loop/star-to-SWG mapping matrix, a new form of volume quasi-
Helmholtz projectors can be introduced from (3.16). This new set of projectors,
PΣA− and P ΛA− , can respectively select the non-solenoidal and the solenoidal parts
of the discretized operator without being limited by the conditioning issue of the
mapping matrix BA−

ΛΣ . They are defined as

PΣA− = AΣ
(︂
ΣTAΣ

)︂+
ΣT (3.18)

P ΛA− = I− PΣA− = Λ
(︂
ΛTA−1Λ

)︂+
ΛTA−1, (3.19)
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where + is the Moore-Penrose pseudo inverse. Differently from the definitions of
quasi-Helmholtz projectors in previous works [5, 68], we introduce here the invert-
ible and symmetric scaling matrix A in the projectors. Given this new definition,
identity (3.19) does not follow directly from the properties of standard projectors,
but its proof is provided in appendix A. These new projectors are not necessarily
symmetric and their transposes are denoted by P ΛT

A− and PΣT
A− in the following.

When A = I, we obtain volume quasi-Helmholtz projectors, denoted by P ΛI and
PΣI , that have the same form as their surface counterparts [5]. Instead, by choosing
A = Gϵ−1, we obtain the scaled projectors PΣGϵ and P ΛGϵ defined as

PΣGϵ = Gϵ−1Σ
(︂
ΣTGϵ

−1Σ
)︂+
ΣT (3.20)

P ΛGϵ = I− PΣGϵ = Λ
(︂
ΛTGϵΛ

)︂+
ΛTGϵ, (3.21)

for which it can be easily seen that the following identities hold

P ΛT
Gϵ
GϵP

Λ
Gϵ

= GϵP ΛGϵ (3.22)
P ΛT
Gϵ
GϵP

Σ
Gϵ

= 0 (3.23)
PΣT
Gϵ
GϵP

Λ
Gϵ

= 0 (3.24)
PΣT
Gϵ
GϵP

Σ
Gϵ

= GϵPΣGϵ . (3.25)

The mapping matrix BA−
ΛΣ and the associated set of scaled projectors will be further

employed for the analysis and stabilization of the D-VIE, respectively.

3.4 Low-frequency Regularization of the D-VIE
We analyze here the low-frequency behavior of the D-VIE when modeling lossy

dielectric objects surrounded by free space. At low frequencies, VIEs are subject
to the low-frequency breakdown due to the frequency dependence of the complex
permittivity of the object [88]. In the discretized D-VIE, this ill-scaling causes the
ill-conditioning of the system matrix and the loss of significant digits in the solution
coefficients. In this section, we first expose the low-frequency behavior of the D-
VIE through a loop-star decomposition. This behavior will then be regularized
using the volume quasi-Helmholtz projectors P ΛA− and PΣA− in combination with
appropriate scalings determined during the loop-star analysis to regularize the D-
VIE at low frequencies without deteriorating its dense discretization behavior. To
benefit from the cancellations of identity (3.17) in the loop-star decomposition of
the D-VIE and (3.22) to (3.25) for its projector counterpart, the scaling matrix
A could be set to Gϵ−1. However, since Gϵ is function of ω when the object is
conductive (i.e. expression of the complex permittivity), it becomes singular in the
static limit. For this reason, the symmetric and invertible scaling matrix A = G̃ϵ

−1
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3.4 – Low-frequency Regularization of the D-VIE

such that Gϵ = jωG̃ϵ is employed in the following. Another issue of this loop-star
decomposition is that it could be singular due to the non-orthogonality between the
column vectors of Λ and Gϵ−1Σ. In appendix C, it is shown that the normalization
of Λ and G̃ϵ

−1
Σ results in a decomposition matrix that is non-singular. The new

loop/star-to-SWG decomposition matrix reads

BG̃ϵΛΣ =
[︂
Λ, Σ

]︂
, (3.26)

in which

Λ = Λ(ΛTΛ)− 1
2 , (3.27)

Σ = G̃ϵ
−1
Σ(ΣTG̃ϵ

−2
Σ)− 1

2 . (3.28)

Note that this normalized version of the loop-star decomposition matrix is only
used for the purpose of the low-frequency analysis. Using BG̃ϵΛΣ, the loop-star de-
composition of the D-VIE can be expressed as

BG̃ϵΛΣ
T
(Gϵ + ZA + ZΦ)BG̃ϵΛΣαΛΣ = BG̃ϵΛΣ

T
v , (3.29)

where BG̃ϵΛΣαΛΣ = α. Before pursuing with the expansion of eq. (3.29), we further
decompose ZΦ as follows

ZΦ = ZΦ, + ZΦ,ϵ, (3.30)
in which ZΦ, only accounts for the volumic contributions in the object and the
surfacic contributions on its boundary (∂Ω)

[ZΦ,]nm =

ϵ−1
0

[︃∫︂
Ω
∇ · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm(r′) dv′ dv

−
∫︂

Ω
∇ · fn(r)

∫︂
∂Ω
G0(r, r′)κ+

mn̂m · fm(r′) ds′ dv

−
∫︂

∂Ω
n̂n · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm(r′) dv′ ds

+
∫︂

∂Ω
n̂n · fn(r)

∫︂
∂Ω
G0(r, r′)κ+

mn̂m · fm(r′) ds′ ds
]︃
,

(3.31)

with κ+
m being the dielectric contrast in tetrahedron T+

m and n̂m the outward unit
normal of the triangle of T+

m which pertains to ∂Ω and ZΦ,ϵ includes the purely
surfacic contributions internal to the object (at the interface Γm between two tetra-
hedra T−

m and T+
m of different material contrasts κ−

m and κ+
m)

[ZΦ,ϵ]nm = ϵ−1
0 .[︃∫︂

Ω
∇ · fn(r)

∫︂
Γm

G0(r, r′)δκmn̂m · fm(r′) ds′ dv

−
∫︂

∂Ω
n̂n · fn(r)

∫︂
Γm

G0(r, r′)δκmn̂m · fm(r′) ds′ ds
]︃
.

(3.32)
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in which δκm = κ−
m − κ+

m and n̂m is a unit vector normal to Γm oriented from T+
m

to T−
m . The following cancellations can be shown to arise when applying Λ

T
and Λ

to the scalar potential

Λ
T
ZΦ, = 0, Λ

T
ZΦ,ϵ = 0, ZΦ,Λ = 0. (3.33)

The fact that Λ (and thus Λ) cancels the surface terms defined on ∂Ω in ZΦ, and
ZΦ,ϵ results from the absence of loops functions on ∂Ω. This property is proven
in appendix B.

We then represent ZΛΣ from (3.29) as a 2-by-2 block matrix

ZΛΣ = BG̃ϵΛΣ
T
ZBG̃ϵΛΣ

=
⎡⎣Λ

T
ZΛ Λ

T
ZΣ

Σ
T
ZΛ Σ

T
ZΣ

⎤⎦ , (3.34)

in which

Λ
T
ZΛ = Λ

T
(Gϵ + ZA)Λ (3.35)

Λ
T
ZΣ = Λ

T
ZAΣ (3.36)

Σ
T
ZΛ = Σ

T
(ZA + ZΦ,ϵ)Λ (3.37)

Σ
T
ZΣ = Σ

T
(Gϵ + ZA + ZΦ)Σ. (3.38)

We have the following frequency scalings for the real and imaginary parts of the
terms in the decomposition of ZΛΣ ((3.35), (3.36), (3.37), and (3.38))

Re (Gϵ) =
ω→0

O(ω2), Im (Gϵ) =
ω→0

O(ω), (3.39)

Re (ZA) =
ω→0

O(ω2), Im (ZA) =
ω→0

O(ω3), (3.40)

Re (ZΦ,) =
ω→0

O(1), Im (ZΦ,) =
ω→0

O(ω), (3.41)

Re (ZΦ,ϵ) =
ω→0

O(ω2), Im (ZΦ,ϵ) =
ω→0

O(ω). (3.42)

Using (3.39) to (3.42), we deduce the scalings for ZΛΣ at low frequencies

Re (ZΛΣ) =
ω→0

[︄
O(ω2) O(ω2)
O(ω2) O(1)

]︄
, (3.43)

Im (ZΛΣ) =
ω→0

[︄
O(ω) O(ω3)
O(ω) O(ω)

]︄
, (3.44)

which, according to the Gershgorin circle theorem, confirm that ZΛΣ is ill-conditioned.
Besides the conditioning of the impedance matrix, it is also important to determine
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3.4 – Low-frequency Regularization of the D-VIE

whether or not the solution coefficients and the right hand side vectors are preserved
in the static limit. We first provide the scalings of the right hand side for plane
wave and dipole excitations, which are frequently employed in bioelectromagnetic
applications. For a plane wave excitation, the right hand side of (3.29) has the
following scalings when ω → 0

Re
(︃
BG̃ϵΛΣ

T
vPW

)︃
=

ω→0

[︄
O(ω2)
O(1)

]︄
; Im

(︃
BG̃ϵΛΣ

T
vPW

)︃
=

ω→0

[︄
O(ω)
O(ω)

]︄
, (3.45)

in which [vPW]n =
∫︁

Ω fn(r) ·E0 exp (−jk · r) dv with E0 being the polarization of
the plane wave and k its wave vector. It can be noted that the right hand side for
a plane wave excitation scales similarly in the D-VIE and in the surface electric
field integral equation [84]. To derive the frequency dependence of the loop-star
decomposition of a dipole excitation, we start from the expression of the field it
radiates (3.5) in which Ji(r, r0) = jωδ(r − r0)p is the current dipole with δ, p,
and r0 being the Dirac delta function, the dipole moment, and the dipole position,
respectively. We then test (3.5) with {fn} to obtain the discretized right hand side

[vdip]n = [vA]n + [vΦ]n

= k2
0
ϵ0

p ·
∫︂

Ω
fn(r)G0(r, r0) dv

− 1
ϵ0

∫︂
Ω
∇ · fn(r)p · ∇G0(r, r0) dv.

(3.46)

From the Taylor expansion of G0 and its gradient, we obtain that Re (G0(r, r0)) =
O(1), Im (G0(r, r0)) = O(ω), Re (∇G0(r, r0)) = O(1), and Im (∇G0(r, r0)) =
O(ω3) at low frequencies. This yields the following frequency dependencies for the
real and imaginary parts of the loop-star decomposition of vA and vΦ

Re (Λ
T
vA) =

ω→0
O(ω2), Im (Λ

T
vA) =

ω→0
O(ω5) (3.47)

Re (Σ
T
vA) =

ω→0
O(ω2), Im (Σ

T
vA) =

ω→0
O(ω3) (3.48)

Re (Λ
T
vΦ) =

ω→0
0, Im (Λ

T
vΦ) =

ω→0
0 (3.49)

Re (Σ
T
vΦ) =

ω→0
O(1), Im (Σ

T
vΦ) =

ω→0
O(ω), (3.50)

from which we obtain the scalings of vdip at low frequencies

Re
(︃
BG̃ϵΛΣ

T
vdip

)︃
=

ω→0

[︄
O(ω2)
O(1)

]︄
; Im

(︃
BG̃ϵΛΣ

T
vdip

)︃
=

ω→0

[︄
O(ω5)
O(ω)

]︄
. (3.51)

This concludes the scaling analysis of the right hand side for plane wave and dipole
excitations. The scalings obtained are summarized in Table 3.1a, in which vΛ
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denotes the loop part of the right hand side and vΣ its star part. The terms
recovered correspond to the terms for which the real (or imaginary) part of the
loop and star components have the same frequency scaling. All the other terms are
lost due to finite precision arithmetic. To identify the impact of this loss on the
solution coefficients, we subsequently retrieve the scalings of αΛΣ for plane wave
and dipole excitations. This requires the knowledge of the frequency scalings of
the inverse of ZΛΣ, which are derived by inverting (3.34) using Schur complement
formulas [46]

Re
(︂
ZΛΣ

−1
)︂

=
ω→0

[︄
O(1) O(ω2)
O(1) O(1)

]︄
(3.52)

Im
(︂
ZΛΣ

−1
)︂

=
ω→0

[︄
O(1/ω) O(ω)
O(ω) O(ω)

]︄
. (3.53)

Finally by multiplying the scaling matrix of ZΛΣ−1 ((3.52) and (3.53)) and the
scaling vector of BG̃ϵΛΣ

T
v ((3.45) for the plane wave or (3.51) for the dipole), we

obtain the following scalings of αΛΣ for plane wave excitations

Re
(︂
αPW
ΛΣ

)︂
=

ω→0

[︄
O(1)
O(1)

]︄
; Im

(︂
αPW
ΛΣ

)︂
=

ω→0

[︄
O(ω)
O(ω)

]︄
, (3.54)

and
Re

(︂
αdip
ΛΣ

)︂
=

ω→0

[︄
O(ω2)
O(1)

]︄
; Im

(︂
αdip
ΛΣ

)︂
=

ω→0

[︄
O(ω)
O(ω)

]︄
, (3.55)

for dipole excitations. These scalings are summarized in table 3.1b.
The dominant terms in table 3.1b represent the real (or imaginary) components

of the solution coefficients that are preserved at low frequencies, the remaining
components are lost. For example, the real part of the loop component of the
solution vector for the dipole excitation is lost at low frequencies. In the scope of
this chapter, the D-VIE is applied in scenarios where the electric field inside the
object is required. Since there is a simple scalar relation between the unknown
of the D-VIE (i.e. electric flux) and the electric field, there is no re-amplification
of a lost (loop or star) part possible, and thus it is not required to preserve the
components of the solution lost due to finite precision at low frequencies.

Nevertheless, a loss of accuracy in the solution occurs when a term of the right
hand side, which is lost at low frequencies, contributes to one of the dominant
terms of the solution. In fact, it is possible that the inverse matrix ZΛΣ−1 amplifies
some vanishing terms in the right hand side vector and make them non-negligible
in the solution. In table 3.1a, the terms contributing to the solution for both types
of excitation are provided. For the dipole and the plane wave, it can be observed
that the real part of the loop component of the right hand side is lost due to finite
precision while it is supposed to contribute to the solution. For this reason, there

40



3.4 – Low-frequency Regularization of the D-VIE

Table 3.1: Frequency scalings of the real and imaginary parts of v , αΛΣ, and ṽ .

(a) Right hand side v

Source (Re , Im ) (vΛ) (Re , Im )(vΣ) Terms Terms required
recovered for a correct solution

Plane Wave (ω2, ω) (1, ω) Re (vΣ) Re (vΛ),Re (vΣ)
Im (vΛ), Im (vΣ) Im (vΛ), Im (vΣ)

Dipole (ω2, ω5) (1, ω) Im (vΛ), Im (vΣ) Re (vΛ)
Im (vΛ), Im (vΣ)

(b) Solution αΛΣ

Source (Re , Im ) (αΛ) (Re , Im )(αΣ) Terms recovered

Plane Wave (1, ω) (1, ω) Re (αΛ),Re (αΣ)
Im (αΛ), Im (αΣ)

Dipole (ω2, ω) (1, ω) Re (αΣ)
Im (αΛ), Im (αΣ)

(c) Scaled right hand side ṽ

Source (Re , Im ) (ṽΛ) (Re , Im )(ṽΣ) Terms Terms required
recovered for a correct solution

Plane Wave (1, ω) (1, ω) Re (ṽΛ),Re (ṽΣ) Re (ṽΛ),Re (ṽΣ)
Im (ṽΛ), Im (ṽΣ) Im (ṽΛ), Im (ṽΣ)

Dipole (ω4, ω) (1, ω) Re (ṽΣ) Re (ṽΣ)
Im (ṽΛ), Im (ṽΣ) Im (ṽΛ), Im (ṽΣ)

is a loss of accuracy in the solution at low frequencies with plane wave and dipole
excitations.

To solve the two above-mentioned issues, we regularize (3.29) by re-scaling ap-
propriately the loop/star-to-SWG transformation matrices, resulting in the follow-
ing loop-star D-VIE⎡⎣C1Λ

T

C2Σ
T

⎤⎦ (Gϵ + ZA + ZΦ)[C3Λ, C4Σ]α̃ΛΣ =
⎡⎣C1Λ

T

C2Σ
T

⎤⎦ v , (3.56)

in which the coefficients C1, C2, C3 and C4 have to be determined to make the loop
and star parts of the preconditioned matrix (Z̃ΛΣ), its right hand side (ṽ ), and its
re-scaled solution (α̃ΛΣ) free from ill-conditioning and loss of accuracy. Since the
numerical loss comes from the right hand side and not from the solution directly,
we can set C3 and C4 to 1 and attempt to leverage the two remaining coefficients
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to regularize the rest of the equation, which gives αΛΣ = α̃ΛΣ. Therefore, we
now need to determine C1 and C2 for Z̃ΛΣ to be well-conditioned and to avoid
numerical loss. By choosing C1 = 1/(jωϵ0) and C2 = 1, the matrix becomes
well-conditioned and the right hand side is no longer subject to numerical loss of
accuracy for both plane wave and dipole excitations. The resulting loop-star matrix
Z̃ΛΣ = B̃G̃ϵΛΣ

T
(Gϵ + ZA + ZΦ)BG̃ϵΛΣ has the following frequency scalings

Re
(︂
Z̃ΛΣ

)︂
=

ω→0

[︄
O(1) O(ω2)
O(ω2) O(1)

]︄
(3.57)

Im
(︂
Z̃ΛΣ

)︂
=

ω→0

[︄
O(ω) O(ω)
O(ω) O(ω)

]︄
, (3.58)

where B̃G̃ϵΛΣ = [C1Λ, C2Σ]. While the diagonal blocks of (3.57) scale as O(1),
all the other blocks get to zero at low frequencies, thus it results that Z̃ΛΣ is well-
conditioned. Note that leveraging the standard loop-star decomposition (eq. (3.12))
instead would have led to an upper triangular block matrix, of which the proper
conditioning would have been cumbersome to prove (Z being non-symmetric). The
preconditioned right hand side then scales as

Re
(︄
B̃
G̃ϵ
ΛΣ

T
vPW

)︄
=

ω→0

[︄
O(1)
O(1)

]︄
; Im

(︄
B̃
G̃ϵ
ΛΣ

T
vPW

)︄
=

ω→0

[︄
O(ω)
O(ω)

]︄
, (3.59)

for the plane wave and

Re
(︄
B̃
G̃ϵ
ΛΣ

T
vdip

)︄
=

ω→0

[︄
O(ω4)
O(1)

]︄
; Im

(︄
B̃
G̃ϵ
ΛΣ

T
vdip

)︄
=

ω→0

[︄
O(ω)
O(ω)

]︄
, (3.60)

for the dipole. From table 3.1c, it results that all the coefficients contributing to
the solution are preserved at low frequencies. Therefore, the coefficients C1, C2, C3,
and C4 together with the loop-star decomposition have successfully cured the ill-
scaling in the matrix and the right hand side. The final equation in the normalized
loop-star D-VIE reads

B̃
G̃ϵ
ΛΣ

T
ZBG̃ϵΛΣαΛΣ = B̃G̃ϵΛΣ

T
v . (3.61)

We note that, since the computation of the square roots present in the definition
of the normalized loop/star-to-SWG matrix is not efficient, the non-normalized
version of this mapping matrix should be employed in a numerical implementation
of the loop-star D-VIE.

Subsequently, we can logically relate the above-mentioned coefficients and the
quasi-Helmholtz projectors defined in (3.18) and (3.19) with A = G̃ϵ

−1 to build a
preconditioned equation that does not suffer from the dense discretization break-
down. We obtain the following left and right preconditioners

L = C1P
ΛT
G̃ϵ

+ C2P
ΣT
G̃ϵ

(3.62)
R = C3P

Λ
G̃ϵ

+ C4P
Σ
G̃ϵ
. (3.63)

42



3.5 – Implementation Related Details

Since C3 = C4 = 1, we have R = I, and the resulting preconditioned equation to
be solved reads

LZα = Lv , (3.64)
in which

L = C1γΛP
ΛT
G̃ϵ

+ C2γΣP
ΣT
G̃ϵ

= γΛ

jωϵ0
P ΛT
G̃ϵ

+ γΣP
ΣT
G̃ϵ

.
(3.65)

Note that the frequency-independent coefficients γΛ and γΣ were added in (3.65)
to make the norms of (γΛ/(jωϵ0))P ΛT

G̃ϵ
ZP Λ

G̃ϵ
and of γΣP

ΣT
G̃ϵ
ZPΣ

G̃ϵ
of order O(1) re-

gardless of the geometry. They are defined as

γΛ = (∥ϵ−1
0 GP

Λ
G̃ϵ
∥)−1 (3.66)

γΣ = (∥PΣT
G̃ϵ
ZΦP

Σ
G̃ϵ
∥)−1, (3.67)

with ∥·∥ denoting the L2-norm and [G]nm = ⟨fn,fm⟩Ω being the SWG-SWG Gram
matrix.

Also, note that the coefficients in front of P ΛT
G̃ϵ

and PΣT
G̃ϵ

in L (eq. (3.65)) are
suitable only at low frequencies (f < 1 MHz). Above this frequency, they should
be set to 1, which is equivalent to using the standard D-VIE, that has a reasonably
low condition number at high frequencies.

3.5 Implementation Related Details
This section presents the details related to the implementation of the proposed

preconditioner. Starting from an existing D-VIE, the quasi-Helmholtz projectors
must be computed in quasi-linear complexity not to deteriorate the overall com-
plexity of the solver. In the case of the surface EFIE, the construction of the
projectors requires inverting the graph Laplacian matrix ΣRWGTΣRWG in which
ΣRWG denotes the surface star-to-RWG transformation matrix [5]. This operation
can be performed in linear complexity by leveraging the algebraic multigrid (AMG)
method as preconditioner [4] together with an iterative solver. However, to solve
the low-frequency problem in the D-VIE we use scaled projectors, which involve
the inversion of the weighted graph Laplacian ΣTG̃ϵ

−1
Σ. Since the scatterer is

inhomogeneous, G̃ϵ is ill-conditioned and its inverse cannot always be computed ef-
ficiently. Instead, we observed numerically that using the real part of the diagonal
of G̃ϵ to weight the graph Laplacian matrix also makes the formulation stable. The
new set of projectors is defined as follows

PΣD = D−1Σ(ΣTD−1Σ)+ΣT (3.68)
P ΛD = I− PΣD = Λ(ΛTDΛ)+ΛTD, (3.69)
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where D = Re (DG) with DG ∈ RNF ×NF being filled with the diagonal of G̃ϵ.
Following the same approach employed for the determination of C1 and C2 in (3.65),
the preconditioned D-VIE with PΣD and P ΛD reads

LDZα = LDv , (3.70)
in which

LD = 1/(jωϵ0∥ϵ−1
0 P

ΛT
D GP

Λ
D∥)P ΛT

D + 1/∥PΣT
D ZΦP

Σ
D ∥PΣT

D . (3.71)
This new preconditioner has been numerically verified to be stable in a broad
frequency range, as illustrated in the next section. Moreover the weighted graph
Laplacian matrix ΣTD−1Σ can be inverted efficiently using an aggregation-based
AMG method from [76, 77] together with a conjugate gradient (CG) algorithm.

3.6 Numerical Results
To demonstrate the proper behavior of the formulations introduced in this chap-

ter, we compared them to the traditional D-VIE in various settings. The numerical
results are provided for the D-VIE regularized with the two above-mentioned sets
of scaled quasi-Helmholtz projectors: the preconditioned D-VIE leveraging pro-
jectors scaled with the Gram matrix and scaled with the diagonal matrix D are
referred to as the “Regularized D-VIE G̃ϵ” (i.e. (3.64)) and “Regularized D-VIE
D” (i.e. (3.70)), respectively. In the experiments related to the low-frequency and
the dense discretization behaviors of the D-VIE, we also compared the regularized
formulations to the non-normalized loop-star D-VIE. In addition to its behavior,
the correctness of the new D-VIE is validated against reference solutions which are
either obtained from Mie series or finite element method (FEM) with quadratic el-
ements. Note that the results regarding the accuracy of the solver will be provided
only for the "Regularized D-VIE D" for the sake of clarity.

The geometry used for the first numerical examples is composed of 3 homoge-
neous concentric spheres (i.e. three-layer head model) with radii 87 mm, 92 mm,
and 100 mm and respective normalized conductivities σ1 = 1, σ2 = 1/15, and
σ3 = 1, which represent the conductivities of brain, skull, and scalp in the quasi-
static regime [78]. First, we verify the conditioning of the system matrices of the
regularized D-VIE, the loop-star D-VIE, and the standard D-VIE as a function of
the frequency (Figure 3.2). The condition number of the standard D-VIE grows
as the frequency decreases while the condition number of the two regularized D-
VIE and the loop-star D-VIE remains constant until very low frequencies, which
confirms the curative effects of our preconditioners.

The dense discretization conditioning of the new D-VIE is verified by increasing
the discretization of a geometry composed of 3 homogeneous concentric spheres
with radii 0.4 m, 0.7 m, and 1 m and respective normalized conductivities σ1 = 1,
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Figure 3.2: Low frequency conditioning of the standard D-VIE, the loop-star D-
VIE, and the proposed D-VIE computed on a 3-layer conductive sphere with radii
87 mm, 92 mm, and 100 mm and respective conductivities σ1 = 1, σ2 = 1/15, and
σ3 = 1.

σ2 = 1/5, and σ3 = 1 (Figure 3.3). Both the traditional and the regularized D-VIE
do not experience a dense mesh instability, which shows that our preconditioners do
not introduce a new breakdown, unlike the D-VIE preconditioned with a standard
loop-star decomposition, which has its condition number that grows unbounded
when the discretization of the geometry is refined.

To complement our stability experiments we verify the correctness of the new
formulation against references in the quasi-static regime and at higher frequencies.
First, we establish the correctness of the formulation in an electroencephalography
(EEG) setting by comparing the potential radiated by an electric point dipole on
the surface of a conductive object since they are considered good models for focal
brain activity [31]. The electric point dipole source has a moment of

[︂
0 0 1

]︂
and

an eccentricity of 43 % in a 3-layer sphere with the aforementioned conductivities
(Figure 3.4). The frequency used in the simulation is 10−40Hz, although neurons
operate at a frequency between 0.1 Hz and 100 Hz. The reason behind this choice
is to show that the formulation does not suffer from a loss of significant digits
at very low frequencies unlike standard full-wave solvers. The potential obtained
in the tetrahedra of the mesh with the new formulation and the loop-star D-VIE
shows a good agreement with the well-established reference solution and confirms
the applicability of the new D-VIE in a typical biomedical setting.

45



A Full-wave Volume Formulation for Neuro-imaging

4 5 6 7 8101

102

103

104

105

106

107

108

1/h (m−1)

C
on

di
tio

n
nu

m
be

r

Standard D-VIE
Loop-star D-VIE
Regularized D-VIE G̃ϵ
Regularized D-VIE D

Figure 3.3: Dense discretization behavior of the standard D-VIE, the loop-star D-
VIE, and the proposed D-VIE computed on a 3-layer conductive sphere with radii
0.4 m, 0.7 m, and 1 m and respective conductivities σ1 = 1, σ2 = 1/5, and σ3 = 1
at f = 1 kHz.

At higher frequencies, we use the previous 3-layer sphere with the relative per-
mittivities ϵr,1 = 70, ϵr,2 = 15, and ϵr,3 = 65 and conductivities σ1 = 0.55, σ2 = 0.75,
and σ3 = 1.42. These values match the relative permittivities and conductivities
of the brain, skull, and skin at f = 100 MHz [37]. The excitation is a plane wave
and the reference solution is obtained analytically from the Mie series. Once again,
the solution obtained with the proposed D-VIE shows a good agreement with the
reference solution (Figure 3.5).

Now that the correctness and stability of the proposed formulation have been
verified in canonical settings, we verify its applicability to challenging, realistic bio-
electromagnetic compatible scenarios. To assess the low- and high-frequency ver-
satility of the new formulation we study its applicability to the bio-electromagnetic
modeling of the human head. The head geometry used for these simulations has
been obtained from the segmentation of an MRI image of 256 × 256 × 256 voxels
in FieldTrip [79], subsequently discretized into 44 733 tetrahedra.

At low frequencies, the formulation is applied to the problem of brain source lo-
calization which aims at retrieving the neural activity from the potential recordings
on the scalp measured by EEG. This inverse problem has numerous applications
ranging from epilepsy diagnosis [25] to brain computer interface [24]. Solving the
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Figure 3.4: Potential obtained at the surface (in the tetrahedra of the mesh) of a
3-layer conductive sphere with the corresponding conductivities σ1 = 1, σ2 = 1/15,
and σ3 = 1. The excitation is an electric point dipole radiating at f = 10−40Hz.
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Figure 3.5: Magnitude of the field scattered by a 3-layer sphere with corresponding
relative permittivities ϵr,2 = 70, ϵr,2 = 15, and ϵr,3 = 65 and conductivities σ1 =
0.55, σ2 = 0.75, and σ3 = 1.42 illuminated by a plane wave at f = 100 MHz.
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inverse problem – the mapping from EEG scalp measurement to the current dis-
tribution inside the head – requires solving the forward problem multiple times,
which is the mapping from individual current sources to scalp potentials. In the
distributed approach, the individual current sources are placed on a grid covering
the parts of interest in the brain. In Figure 3.6, we show the potential radiated
on the scalp by a single intracranial current source oscillating at f = 1 Hz. The
conductivities of the different homogeneous layers – the scalp, the skull, and the
brain – are σscalp = 1, σskull = 1/15, and σbrain = 1 [24]. The scalp potential, mea-
sured at 65 electrodes, is compared to a reference solution obtained from a FEM
solver. The relative error obtained at each electrode remains below 4 % (Figure 3.6),
which confirms the use of the regularized D-VIE in the EEG source reconstruction
(Figure 3.7).

Figure 3.6: 3D visualization of the potential radiated from a current dipole oscil-
lating at 1 Hz in the brain obtained on the scalp of the head (left color bar). The
colored dots represent the 65 EEG electrodes with the corresponding relative error
(right color bar).

At higher frequencies, the new formulation can be applied in the field of radia-
tion dosimetry in the brain. It consists in the quantification of the specific absorp-
tion rate (SAR) radiated by a given source in human tissues [75]. In this scenario, we
use the same head geometry as for the EEG source localization with ϵr,scalp = 70,
ϵr,skull = 15, and ϵr,brain = 65 for the relative permittivities and σscalp = 0.55,
σskull = 0.75, and σbrain = 1.42 for the conductivities. The head is illuminated
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Figure 3.7: Localization of the epileptogenic area via source reconstruction.

by an electric dipole placed at 10 cm from its right side, with dipole moment of[︂
0 0 1

]︂
, and oscillating at f = 100 MHz. The brain is divided into voxels of side

length 3 cm. The SAR is computed in each voxel n as σn|En|2/2ρn, where |En|
is the norm of the electric field averaged over the voxel n and ρn its mass density
in kg m−3. The SAR obtained with the proposed D-VIE is consistent with the
reference solution, which is obtained with a FEM solver (Figure 3.9). Figure 3.8
shows the magnitude of the electric field obtained at the surface of the tetrahedral
discretization of the brain.

3.7 Conclusion and Future Work
We introduced a novel volume integral equation for modeling lossy dielectric

objects in a broad frequency range. The new D-VIE scheme leverages scaled volume
quasi-Helmholtz projectors to cure both its low-frequency ill-conditioning without
deteriorating its dense discretization behavior. Numerical examples illustrate the
stability and accuracy of this new method. The preconditioned D-VIE shows good
accuracy in the biomedical applications presented in this chapter, both in the quasi-
static regime and at higher frequencies. A possible improvement of this method is
to make it well-conditioned also in scenarios in which the internal contrast in the
object under study is significant.
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Figure 3.8: Norm of the electric field radiated by a dipole source oscillating at
100 MHz located at 10 cm from the head.
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Figure 3.9: Comparison of the SAR obtained in a cubic voxel subdivision of the
brain at 100 MHz.
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Chapter 4

A D-VIE Based Inverse Scattering
Scheme for Microwave Imaging

Microwave imaging (MWI) is a research field in which techniques for probing
unknown domains using electromagnetic waves in the microwave regime are

developed. Besides the research conducted on the hardware part, it is also cru-
cial to create performing inverse scattering solvers that provide accurate images
of the domain under study from collected measurements. This chapter presents
a new inverse scattering scheme based on the electric flux volume integral equa-
tion formulation. Numerical results show that this new method can reconstruct
three-dimensional permittivity profiles.

4.1 Introduction
Inverse scattering (IS) consists in retrieving the shape, the location, or the ma-

terial parameters of an object from measurements of scattered waves (e.g. acoustic
wave, electromagnetic wave) from this object. It has numerous applications such
as non destructive testing [104, 96], biomedical imaging [6, 2], and occupancy esti-
mation [32].

Scattering problems can be of different nature including electromagnetic, acous-
tic, and thermal. In the framework of this chapter, electromagnetic inverse scat-
tering is considered. In this type of problems, the data collected can be the elec-
tric or the magnetic field in the vicinity of the object under study. The goal is
to reconstruct the object’s relative permittivity, conductivity (lossy materials), or
permeability from this measured data. Note that the location of an object can be
obtained from the knowledge of the material parameters of both the object and of
the background in which it is immersed.

While only the knowledge of the material parameters is useful in many applica-
tions, an inverse scattering problem generally consists of two unknowns: the total
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electric (magnetic) field in a domain and the permittivity (permeability) in that
domain. Due to the specific relation between these two unknowns, inverse scatter-
ing problems are more complex than standard inverse source problems (e.g. inverse
problem described in the numerical results of chapter 3). While in classical inverse
source problems the relation between the measured data and the unknown currents
is linear, the inverse scattering problem is non-linear. This comes from the fact that
there are high-order interactions in the object (multiple scattering phenomena).

An inverse scattering problem is generally composed of a data and a state equa-
tion. The data equation relates the unknown quantities in the object to the scat-
tered field at the measurement locations. The state equation can be viewed as the
forward problem in an inverse source algorithm. Its role is to enforce Maxwell’s
equations in the object under study and it hence acts as a regularizer for the data
equation. The goal of an IS scheme is to minimize the sum of the norms of the
residual errors of these two equations, referred to as cost functional, leveraging an
iterative solver. The non-linearity of IS problems translates into the existence of
local minima in the cost functional. Some ways to remedy this problem are to lin-
earize it (Born approximation) or to use a priori information on some parameters
of the object.

Besides being non-linear, an inverse scattering problem is often ill-posed due to
the lack of information. Ill-posed problems can be subdivided into two groups: ill-
defined problems and ill-conditioned problems. An ill-defined problem has an non-
existing solution if over-determined and non-unique solution if under-determined
[26]. Note that the latter is more frequent in inverse scattering. The conditioning
properties of a system were already discussed in chapter 2 and chapter 3.

There exists two main families of algorithms to solve inverse scattering problems:
Born iterative methods (BIM) and gradient based methods. In Born iterative
methods, a forward problem needs to be solved at each iteration to enforce the
state equation. In the gradient based algorithms, the state and data equations
are simultaneously solved, and the state equation can be seen as a regularizer of
the problem. In that sense, Born iterative methods are more similar to standard
inverse source problems since they require solving explicitly the state equation at
each iteration (i.e. forward problem). Gradient methods do not require this and for
these reasons, gradient approaches are generally more efficient than Born iterative
methods [39] in inverse scattering problems.

Up to now, the methods introduced from this family are the contrast source
inversion [100, 12, 1] (CSI) and the modified gradient method [59, 60] (MGM).
Due to its ease of implementation and performance, the CSI method is frequently
employed in microwave imaging. It has been been combined with various compu-
tational methods: IE [100], FEM [106], and the finite-difference method (FDM)
[35]. The advantage of integral equation formulations is that the background of the
scatterer (if known) does not need to be discretized. Here we introduce an electric
flux based inverse scattering scheme, which required the full derivation of a gradient
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based algorithm combined with the D-VIE formulation. The D-VIE is discretized
with SWG basis functions, which naturally enforce the divergence conformity of
the electric flux during the inversion.

The chapter is divided as follows: a general framework for inverse scattering
problems is introduced in Section 4.2 together with some standard inverse scattering
schemes. Then, Section 4.3 presents the new electric flux based inversion scheme.
Finally the new IS method is compared to standard IS methods to evaluate its
performance in Section 4.4.

4.2 Background and Notations
In this section, some basic concepts about inverse scattering problems are intro-

duced. Moreover, the derivations of the standard IS algorithms that are compared
to the electric flux inversion method in the numerical results section are provided.

4.2.1 Notations
Let ΩD ⊂ R3 and ΓS ⊂ R3 be the domain to image and the measurement

surface, respectively. The derivation of the inverse scattering algorithms further
described can be facilitated by introducing the following notations. The L2-inner
product between two vectors u and v defined on ΩD or ΓS is expressed as

⟨u,v⟩{ΩD,ΓS} =
∫︂

{ΩD,ΓS}
u(r) · v̄(r) dψ(r), r ∈ {ΩD, ΓS} (4.1)

in which v̄ denotes the complex conjugate of v and the curly bracket notation
{A,B} means that it is defined either on A or B. The L2-norm of u is then defined
as

∥u∥{ΩD,ΓS} = ⟨u,u⟩
1
2
{ΩD,ΓS}. (4.2)

It is also useful to introduce the adjoint operator G⋆ of G, which follows the
relation

⟨v,Gu⟩ΓS
= ⟨G⋆v,u⟩ΩD

. (4.3)

with G being an operator mapping ΩD to ΓS.
Another necessary mathematical tool in the following is the Fréchet derivative

[34]. Let U be a Banach space. For a Fréchet differentiable functional F : U → R,
the Fréchet derivative at x ∈ U is defined as

∂F (x)
∂x

= lim
ϵ→0

F (x + ϵh)− F (x)
ϵ

, (4.4)

for every h ∈ U . In this chapter, U and F correspond to L2(ΩD)3 and ∥ · ∥2
{ΩD,ΓS},

respectively. In that case, the Fréchet derivation gives the variation of ∥x∥2
{ΩD,ΓS}
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for a small variation ϵ along the direction h with respect to x. Equation (4.4) can
be expanded as

∂∥x∥2
{ΩD,ΓS}

∂x
= lim

ϵ→0

∥x + ϵh∥2
{ΩD,ΓS} − ∥x∥2

{ΩD,ΓS}

ϵ

= lim
ϵ→0

⟨x + ϵh,x + ϵh⟩{ΩD,ΓS} − ⟨x,x⟩{ΩD,ΓS}

ϵ
= ⟨x,h⟩{ΩD,ΓS} + ⟨h,x⟩{ΩD,ΓS}

= 2Re (⟨x,h⟩{ΩD,ΓS}),

(4.5)

in which the polarization identity was employed in the last step of the expansion. It
can be observed from eq. (4.5) that the variation of ∥x∥2

{ΩD,ΓS} (Fréchet derivative)
is maximized when the direction h is equal to the left hand side of the inner prod-
uct, which is x here. Note that this particular direction with maximum variation
corresponds to the gradient of ∥x∥2

{ΩD,ΓS} with respect to x, which is required in
the following to derive update directions in the gradient based algorithms.

4.2.2 Inverse Scattering Problems
Before treating inverse scattering problems, inverse source problems in general

are first briefly discussed. An inverse source problem can be defined as a mapping
from a scattered field Es measured on ΓS to a source current distribution J in
ΩD, as illustrated in fig. 4.1a. This type of problem is governed by the following
equation

Es(r) = GSJ r ∈ ΓS, (4.6)
in which GS is a scattering operator from ΩD to ΓS. In inverse scattering problems,
the unknown (dielectric) source current is replaced by two unknowns: the field and
material contrast in ΩD. The goal of an inverse scattering problem is to retrieve
these unknowns from a scattered field Es on a measurement surface ΓS ∈ R3,
generally outside ΩD. In general, inverse scattering problems are described by the
following system of equations

E(r) = Ei(r) + GD(C)E r ∈ ΩD, (4.7)
Es(r) = GS(C)E r ∈ ΓS, (4.8)

in which GD is a scattering operator from ΩD to ΩD and E is the total field in
ΩD. In this chapter, the contrast C is a function of the permittivity ϵ in the object
(non-magnetic objects are considered). Moreover, the background is assumed to be
vacuum and hence the material contrast is always defined with respect to ϵ0. In the
inverse scattering formulations presented in the following, the contrast can either
be the dielectric contrast C(r) = κ(r) or the dielectric susceptibility C(r) = χ(r)
depending on the VIE formulation employed (defined in section 2.2.1.2). The field
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Figure 4.1: (a) Definition of an inverse source problem. It consists in retrieving
the distribution of the source currents J in ΩD from measurements of the field at
the receivers positions on ΓS. (b) Definition of the inverse scattering problem. The
goal is to determine E and ϵ in ΩD from the knowledge of the field measured by
the receivers on ΓS. The incident field is usually emitted on ΓS also.

unknowns associated to χ and κ are J = χE and D, respectively. The incident
field Ei is the field produced by the transmitting antennas placed on ΓS. Each
transmitting antenna induces a different scattered field Es which is measured by the
receiving antennas. Note that the same set of antennas can be used for transmitting
and receiving and that in practice, the total field is measured at the antennas
and the scattering field is deduced from the knowledge of both the total and the
incident field. The following derivations of the IS algorithms are provided for single
illumination to make the notation lighter, however the results for multi-illumination
remain unchanged.

Equation (4.7) can be further simplified by introducing the operator L defined
as

L(C) = I − GD(C), (4.9)
in which I is the identity operator. With this definition, eq. (4.7) can be rewritten
as

Ei(r) = L(C)E r ∈ ΩD. (4.10)
The goal of an inverse scattering problem is to minimize the following cost functional
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F (C,E) = Fdata(C,E) + Fstate(C,E)

=
∥ρ∥2

ΓS

∥Es∥2
ΓS

+
∥f∥2

ΩD

∥Ei∥2
ΩD

=
∥Es − GS(C)E∥2

ΓS

∥Es∥2
ΓS

+
∥Ei −L(C)E∥2

ΩD

∥Ei∥2
ΩD

,

(4.11)

in which f and ρ are the residual errors of the state and data equations, respectively.
Due the inherent non-linearity of inverse scattering problems, the minimization of
F has to be performed iteratively. At step n, the contrast and the field at step
n− 1 (Cn−1 and En−1) are updated with δC and δE as follows

Cn = Cn−1 + δC , (4.12)
En = En−1 + δE, (4.13)

and the residuals at step n can be written as

ρn = Es − GS(Cn)En, (4.14)
fn = Ei −L(Cn)En. (4.15)

Thus the cost functional at step n reads

Fn =
∥ρn∥2

ΓS

∥Es∥2
ΓS

+
∥fn∥2

ΩD

∥Ei∥2
ΩD

. (4.16)

The goal at each iteration is to determine δE and δC to minimize Fn. Different
strategies exist in inverse scattering to determine δC and δE, Born iterative meth-
ods and gradient based methods. While Born iterative methods require inserting
the solution of the state equation (eq. (4.7)) into the data equation (eq. (4.8)) at
each iteration, gradient based methods minimize both equations simultaneously.
Algorithms from both families are presented next.

4.2.3 Born Approximation and Non-Linearity in Inverse
Scattering

In this section, the non-linearity of inverse scattering problems is highlighted.
This can be done by inserting the state equation (eq. (4.10)) into the data equation
(eq. (4.8)) so that a single equation describing the whole inverse scattering problem
is obtained

Es = GS(C)L(C)−1Ei

= GS(C)(I − GD(C))−1Ei.
(4.17)
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As long as ∥GD(C)∥ΩD
< 1, L−1 can be expanded in Neumann series as follows

(I − GD(C))−1 = I +
∞∑︂

j=1
(GD(C))j . (4.18)

In that case, the scattered field can be expanded as

Es = GS(C)
⎛⎝I +

∞∑︂
j=1

(GD(C))j

⎞⎠Ei. (4.19)

Equation (4.19) clearly illustrates the non-linearity of inverse scattering problems,
i.e., the lack of proportionality between Es and C. The degree of non-linearity is
determined by ∥GD(C)∥ΩD

. If the object is a weak scatterer, then ∥GD(C)∥ΩD
≪ 1,

eq. (4.19) can thus be approximated as

Es ≈ GS(C)Ei. (4.20)

With this approximation, the relation between the contrast C and the scattered
field becomes linear. This approximation is called Born approximation [13], it
amounts to considering that E ≈ Ei.

4.2.4 Regularization
Besides being non-linear, inverse scattering problems suffer from ill-posedness

because of the ill-conditioning of the system and the lack of data available (under-
determined problems). Here some regularization techniques that help in determin-
ing the correct (physical) solution from an infinite set of possible solutions and that
reduce the impact of the noise content of data on the accuracy of the solution are
briefly summarized.

The regularization of an inverse scattering problem is generally done by adding
(sometimes multiplying) one or several regularization terms to the original cost
functional (eq. (4.11)). The regularized cost functional F̃ then reads

F̃ (C,E) = Fdata(C,E) + Fstate(C,E) + αFreg(C), (4.21)

in which α ∈ R+ is the regularization parameter and Freg is the regularization
penalty. The regularization parameter is usually determined through numerical
experiments. When it is too high the penalty is correctly enforced but the resulting
solution could not be physical and when it is too low it does not impact the solution
of the original system [39].

In the Tikhonov regularization [45, 95],

FTik
reg = ∥C(r)∥2

ΩD
, r ∈ ΩD , (4.22)
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which enforces the minimization of the L2-norm of the contrast. It is particularly
useful when the data is noisy. However, the solution C is very sensible to the choice
of α.

Another common regularization technique is the total variation (TV) method
[12] in which the penalty has the form

FTV
reg =

∫︂
ΩD

∥∇C(r)∥ dv(r), r ∈ ΩD. (4.23)

This regularizer penalizes the cost functional for large contrast variation in the
object. It thus enforces smooth permittivity profiles even in the presence of noisy
data. However, as for the Tikhonov regularization, the parameter α should be
chosen experimentally [67]. An interesting property of the TV regularization is
that it can be used as a multiplicative regularizer, in which case the choice of a
regularization parameter α is not required anymore.

Note the original inverse scattering problem admits the state equation as an
intrinsic regularizer [1]. This regularizer is sometimes referred to as Maxwell’s reg-
ularizer [1]. While the regularizers presented previously are mathematical artifacts,
the state equation is directly based on physical properties of the object.

4.2.5 Born Iterative Method
The Born iterative method (BIM) was introduced in [103]. It attempts to solve

the non-linear system presented in eq. (4.7) and eq. (4.8) by successively solving
the forward problem (eq. (4.7)) for the field inside the object and then solve the
data equation (eq. (4.8)) for the contrast given that field. At the beginning of the
algorithm (iteration n = 0), the Born approximation is employed (eq. (4.20)) to
initialize the field. If the contrast C0 is not close to zero, the Born approximation
does not apply and it is better to use a-priori knowledge on the contrast. In
that case, the first initialization step can be replaced by a minimization of the
state equation (4.7) for the initial field E0 with the estimated contrast (forward
problem).

The contrast Cn at iteration n is updated as

Cn = arg min
Cn∈C

∥Es − GS(Cn)En−1∥2
ΓS

∥Es∥2
ΓS

, (4.24)

in which arg min is the argument of the minimum and En−1 is determined by
solving the state equation (eq. (4.10)) assuming that the contrast Cn−1 is known.
The overall algorithm is delineated in Algorithm 1.

4.2.5.1 Implementation and Discretization of the D-VIE based BIM

For the numerical implementation of this algorithm, we opted for the D-VIE
formulation. Recalling the operators defined in section 2.2.4.2, we have the following
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correspondence between the unknowns and operators used in the general inverse
scattering problem introduced in section 4.2.2 and the unknowns and operators of
this problem

C ←→ κ , (4.25)
E ←→D/ϵ , (4.26)
GD ←→ LΩD

κ , (4.27)
GS ←→ LΩD

D . (4.28)

With these operators, the state and data equations as a function of the electric flux
D and κ read

Ei(r) + LΩD
κ (D) = 1− κ(r)

ϵ0
D(r) r ∈ ΩD (4.29)

Es(r) = LΩD
D (κ) r ∈ ΓS . (4.30)

In the D-VIE-based BIM, the forward problem consists in retrieving the electric
flux D from the knowledge of the contrast κ using eq. (4.29) while the inverse
problem aims at retrieving the κ from Es using eq. (4.30).

The unknown electric flux D is discretized with SWG basis functions following
the procedure explained in section 2.3.4. In eq. (4.29), the discretization of LΩD

κ

follows the approach given in section 2.3.4.3 in which only the sparse matrices
containing κ need to be updated at each iteration while in eq. (4.30), LΩD

D is
discretized according to section 2.3.4.4 where the procedure to update the electric
flux D in the discretized D-VIE is provided. In both cases, the non-symmetric
D-VIE is employed.

4.2.6 Newton-Kantorovich Method
This method was introduced in [87] and is equivalent to the distorted Born

iterative method (DBIM) [22, 67]. It allows for a larger variation of the contrast
since it accounts for the terms of order O(δC) in the Taylor expansion of L(Cn−1 +
δC)−1 for δC near zero. The data and state residual errors (eq. (4.14) and eq. (4.15))
at step n can be first rewritten in the following symbolic form

fn = Ei −L(Cn)En = Ei −En + GD(Cn)En (4.31)
ρn = Es − GS(Cn)En. (4.32)

59



A D-VIE Based Inverse Scattering Scheme for Microwave Imaging

Then, the inverse of the state operator can be expanded as

L(Cn)−1 = (I − GD(Cn))−1 = (L(Cn−1)− GD(δC))−1

=
(︂
L(Cn−1)

(︂
I −L(Cn−1)−1GD(δC)

)︂)︂−1

=
⎛⎝I + L(Cn−1)−1

∞∑︂
j=1

GD(δj
C)
⎞⎠L(Cn−1)−1

=
(︂
I + L(Cn−1)−1GD(δC)

)︂
L(Cn−1)−1 + O(δ2

C),
(4.33)

in which a Taylor expansion of (I −L(Cn−1)−1GD(δC))−1 for δC near zero was
performed. The terms of order O(δC) are kept here, neglecting them corresponds
to the Born iterative method presented in section 4.2.5. Then En is substituted by
L(Cn)−1Ei in the residual of the data equation (eq. (4.32)), which gives

ρn = Es − GS(Cn)En

= Es − GS(Cn)L(Cn)−1Ei

= Es − GS(Cn−1 + δC)
(︂
I + L(Cn−1)−1GD(δC)

)︂
L(Cn−1)−1Ei + O(δ2

C)
= Ẽs,n−1 − GS(δC)En−1 − GS(Cn−1)L(Cn−1)−1GD(δC)En−1 + O(δ2

C),

(4.34)

in which
Ẽs,n−1 = Es − GS(Cn−1)En−1. (4.35)

The contrast update should be calculated to minimize the residual obtained in
eq. (4.34). The update for the electric field remains the same as in the BIM. The
resulting norms to minimize for obtaining δC is

δC = arg min
δC∈C

∥Ẽs,n − GS(Cn−1)L(Cn−1)−1GD(δC)En−1∥2
ΓS

∥Ẽs,n∥2
ΓS

. (4.36)

in which En−1 is determined by solving the state equation (eq. (4.10)) assuming
that the contrast Cn−1 is known. Note that the initialization step (n = 0) is the
same as in the Born iterative method (section 4.2.5). The overall algorithm is
delineated in Algorithm 2.

4.2.6.1 Discretization and Implementation of the D-VIE based NKM

The discretization procedure presented in section 4.2.5.1 applies also to this
algorithm.
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Algorithm 1: Born Iterative Method
Assume that the contrast C0 is small enough to have E0 ≈ Ei , r ∈ ΩD;
n = 1;
Solve eq. (4.24) for C1 using E0;
Determine the total field E1 (forward problem) using C1 and eq. (4.10);
Update F1 using (4.16);
while Fn > tolerance do

n=n+1;
Determine the new contrast Cn using En−1 and eq. (4.24);
Determine the total field En (forward problem) using Cn and eq. (4.10);
Update Fn using (4.16);

end

Algorithm 2: Newton-Kantorovich Method
Assume that the unknown contrast C0 is small enough so that E0 ≈ Ei for
r ∈ ΩD;

n=1;
Solve eq. (4.36) for C1 using E0 and C0;
Use C1 together with eq. (4.10) to obtain E1 (forward problem);
Update F1 using eq. (4.16);
while Fn > tolerance do

n=n+1;
Use Cn−1, En−1, and eq. (4.36) to obtain δC ;
Update Cn with the new δC following eq. (4.12) ;
Use Cn together with eq. (4.10) (forward problem) to obtain En ;
Update Fn using eq. (4.16);

end
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4.2.7 Contrast Source Inversion
The contrast source inversion (CSI) method was introduced in [100]. Unlike the

methods presented until now, CSI is a gradient based method. Since the derivation
of the update sequence for this kind of method depends on the type of formulation
used, the general notation previously used (C and E) is not employed in the fol-
lowing. The two unknowns in this algorithm are the susceptibility χ(r) = ϵr(r)−1
(C ←→ χ) and the contrast source defined as w(r) = χ(r)E (E ←→ χE).

4.2.7.1 Data and State Equations

In CSI, the state and the data equations read

χ(r)Ei(r) + χ(r)LΩD
(w) = w(r) r ∈ ΩD, (4.37)

Es(r) = LΩD
(w) r ∈ ΓS, (4.38)

in which LΩD
is defined in section 2.2.4.1 (with Jv(r) = jωϵ0w(r)). To simplify the

notations, the integral representations of the state and data equations (eq. (4.37)
and eq. (4.38)) are symbolically written as

χEi + χLΩD
w = w r ∈ ΩD, (4.39)

Es = LΩD
w r ∈ ΓS. (4.40)

4.2.7.2 Residuals and Cost Functional

Then, the following residual errors should be defined to quantify the errors of
the state equation (eq. (4.39)) and data equation (eq. (4.40))

ρ = Es −LΩD
w, (4.41)

f = χEi −w + χLΩD
w. (4.42)

Using these errors, the normalized cost functional to be minimized can be written
as

F (χ,w) = Fdata(w) + Fstate(χ,w)
= ηS∥ρ∥2

ΓS
+ ηD∥f∥2

ΩD

= ηS∥Es −LΩD
w∥2

ΓS
+ ηD∥χEi −w + χLΩD

w∥2
ΩD
,

(4.43)

in which ηS = 1/∥Es∥2
ΓS

and ηD = 1/∥χEi∥2
ΩD

. These two coefficients are used
to balance the minimization of the F , i.e., Fdata and Fstate should have similar
magnitudes.

To minimize F in eq. (4.43), the two unknowns are updated iteratively as follows

wn = wn−1 + αwvn, (4.44)
χn = χn−1 + αχdn, (4.45)
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in which vn and dn are the update directions obtained from the gradients of the
cost functional with respect to w and χ at step n, respectively, and αw and αχ are
coefficients obtained through line minimization of F along the update directions
given by vn and dn. At each iteration vn, dn, αw, and αχ should be determined.
The cost functional at step n can then be defined as

Fn(χn,wn) = ηS∥Es −LΩD
wn∥2

ΓS
+ ηD,n−1∥χnEi −wn + χnLΩD

wn∥2
ΩD
, (4.46)

in which ηD,n−1 = 1/∥χn−1Ei∥2
ΩD

.

4.2.7.3 Gradient of the cost functional with respect to w

The update directions at step n can be obtained by deriving the gradient of
the cost functional with respect to the unknowns at step n− 1. To determine the
gradient of the cost functional F with respect to the contrast current w at step
n− 1, the following Fréchet derivative should be first computed using eq. (4.4)

∂Fn−1(χn−1,wn−1)
∂wn−1

= lim
ϵ→0

F (χn−1,wn−1 + ϵvn)− F (χn−1,wn−1)
ϵ

, (4.47)

in which χn−1 is kept constant. We start from ∂Fdata,n−1, which has the following
Fréchet derivative with respect to w

∂Fdata,n−1(wn−1)/∂wn−1

= lim
ϵ→0

[Fdata(wn−1 + ϵvn)− Fdata(wn−1)] /ϵ

= lim
ϵ→0

ηS

ϵ

[︂
∥Es −LΩD

wn−1 − ϵLΩD
vn∥2

ΓS
− ∥Es −LΩD

wn−1∥2
ΓS

]︂
= lim

ϵ→0

ηS

ϵ
[−ϵ⟨Es,LΩD

vn⟩ΓS
−ϵ⟨LΩD

vn,Es⟩ΓS
+ ϵ2∥LΩD

vn∥ΓS

+ϵ⟨LΩD
wn−1,LΩD

vn⟩ΓS
+ϵ⟨LΩD

vn,LΩD
wn−1⟩ΓS

]
= ηS [−⟨Es,LΩD

vn⟩ΓS
−⟨LΩD

vn,Es⟩ΓS

+⟨LΩD
wn−1,LΩD

vn⟩ΓS
+⟨LΩD

vn,LΩD
wn−1⟩ΓS

]

(4.48)

To simplify eq. (4.48) further, we introduce the adjoint operator L⋆
ΩD

of LΩD
which

follows the relation
⟨v,LΩD

u⟩ΓS
= ⟨L⋆

ΩD
v,u⟩ΩD

. (4.49)
Then from eq. (4.49) and using the fact that ⟨u,v⟩+⟨u,v⟩ = 2Re (⟨u,v⟩), eq. (4.48)
can be written as

∂Fdata,n−1(wn−1)/∂wn−1

= −ηS⟨L⋆
ΩD

ρn−1,vn⟩ΩD
− ηS⟨vn,L⋆

ΩD
ρn−1⟩ΩD

= −2ηSRe ⟨L⋆
ΩD

ρn−1,vn⟩ΩD
.

(4.50)
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Next the same approach is employed to obtain the Fréchet derivative of the cost
functional Fstate,n−1 with respect to w

∂Fstate,n−1(wn−1)/∂wn−1

= lim
ϵ→0

[Fstate(wn−1 + ϵvn)− Fstate(wn−1)] /ϵ

= lim
ϵ→0

ηD,n−1

ϵ

[︂
∥χEi −wn−1 − ϵvn + χLΩD

wn + ϵχLΩD
vn∥2

ΩD

−∥χEi −wn + χLΩD
wn∥2

ΩD

]︂
= −ηD,n−1⟨fn−1,vn⟩ΩD

+ ηD,n−1⟨L⋆
ΩD
χ̄n−1fn−1,vn⟩ΩD

− ηD,n−1⟨vn,fn−1⟩ΩD
+ ηD,n−1⟨vn,L⋆

ΩD
χ̄n−1fn−1⟩ΩD

= −2ηD,n−1
[︂
⟨fn−1,vn⟩ΩD

− ⟨L⋆
ΩD
χ̄n−1fn−1,vn⟩ΩD

]︂
.

(4.51)

From eq. (4.48), eq. (4.51), and leveraging the fact that the gradient is the
update direction that maximizes the Fréchet derivative (section 4.2.1), the resulting
gradient of the cost functional with respect to w at step n reads

gw
n = ηSL⋆

ΩD
ρn−1 + ηD,n−1(fn−1 −L⋆

ΩD
χ̄n−1fn−1). (4.52)

Note that the signs of the gradient terms in eq. (4.52) are opposite to the signs in
eq. (4.48) and eq. (4.51), this originates from the fact that the cost functional should
be minimized and thus the gradient should make the cost functional decrease.

4.2.7.4 Gradient of the cost functional with respect to χ

The susceptibility is only present in the state equation so only Fstate needs to be
considered in the following derivations. We can repeat the expansion of eq. (4.51)
for ∂Fstate/∂χ. To simplify the following derivation, the residual at step n of the
state equation can be recast as

f ′
n = χnEn −wn. (4.53)

The Fréchet derivative of Fstate,n−1 with respect to χn−1 then reads

∂Fstate,n−1(χn−1,wn−1)/∂χn−1 = −2ηD,n−1Re ⟨Ēn−1 · f ′
n−1, dn⟩ΩD

. (4.54)

in which (·) denotes the dot product between two vector functions. Note that the
change of the gradient due to the variation of χ in ηD is neglected here [67]. The
gradient of F with respect to κ at step n finally reads

gχ
n = ηD,n−1Ēn−1 · f ′

n−1. (4.55)
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4.2.7.5 Polak-Ribière update

To improve the update directions given by the gradients gw
n and gχ

n , the Polak-
Ribière conjugate directions can be used [61]. They allow restarting the update
process when the solution is not improving sufficiently (gw

n ≈ gw
n−1 or gχ

n ≈ gχ
n−1).

The new update direction dn for the susceptibility can be expressed as

d1 = gχ
1 , n = 1 (4.56)

dn = gχ
n + γχ

ndn−1, n ≥ 2 (4.57)

in which
γχ

n = ⟨g
χ
n , g

χ
n−1⟩ΩD

∥gχ
n−1∥2

ΩD

. (4.58)

The update direction for the contrast source reads

v1 = gw
1 , n = 1 (4.59)

vn = gw
n + γw

n vn−1, n ≥ 2 (4.60)

in which
γw

n = ⟨g
w
n , g

w
n−1⟩ΩD

∥gw
n−1∥2

ΩD

. (4.61)

4.2.7.6 Determination of the weights αw and αχ for minimizing the cost
functional

Now that the update directions are determined, the next step is to derive the
weights αw and αχ that will minimize the cost functional F in the given update
directions. First the following relations between the residuals at step n and at step
n− 1 are required

fn = fn−1 − αw
n vn + αwχn−1LΩD

vn, (4.62)
ρn = ρn−1 − αwLΩD

vn. (4.63)

Substituting eqs. (4.62) and (4.63) into eq. (4.46) gives

Fn = αw
n [ηD,n−1⟨fn,−vn + χn−1LΩD

vn⟩ΩD
+ ηS⟨ρn,−LΩD

vn⟩ΓS
] , (4.64)

Then, using eq. (4.62) and eq. (4.63) and equating Fn = 0 gives

[ηD,n−1⟨fn−1,−vn + χn−1LΩD
vn⟩ΩD

+ ηS⟨ρn−1,−LΩD
vn⟩ΓS

]
= αw

n

[︂
ηD,n−1∥vn − χn−1LΩD

vn∥2
ΩD

+ ηS∥LΩD
vn∥2

ΓS

]︂
. (4.65)

Inserting the gradient gw
n from eq. (4.52) in eq. (4.65), the resulting weight for the

update of the contrast current that minimizes the cost functional reads

αw
n = ⟨gw

n ,vn⟩ΩD

ηD,n−1∥vn − χn−1LΩD
vn∥2

ΩD
+ ηS∥LΩD

vn∥2
ΓS

. (4.66)
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Next, the appropriate weight αχ is obtained with a procedure slightly different
from the one that was used to determine αw. Fstate,n−1 is minimized by substituting
χn by its expression in eq. (4.45) as follows

Fstate,n−1(χn−1 + αχ
ndn,wn) =

∥(χn−1 + αχ
ndn)En −wn∥2

ΩD

∥(χn−1 + αχ
ndn)Ei∥2

ΩD

. (4.67)

The numerator of eq. (4.67) can be expanded as

∥χn−1En −wn + αχ
ndnEn∥2

ΩD
= ∥χn−1En −wn∥2

ΩD
+ (αχ

n)2∥dnEn∥2
ΩD

+ 2Re ⟨χn−1En −wn, α
χ
ndnEn⟩,

(4.68)

and its denominator as

∥χn−1Ei + αχ
ndnEi∥2

ΩD
= ∥χn−1Ei∥2

ΩD
+ (αχ

n)2∥dnEi∥2
ΩD

+ 2αχ
nRe ⟨χn−1Ei, dnEi⟩.

(4.69)

Finally, Fstate,n−1 can be rewritten as

FD(χn−1 + αχ
ndn) = a(αχ

n)2 + 2bαχ
n + c

A(αχ
n)2 + 2Bαχ

n + C
, (4.70)

in which a = ∥dnEn∥2
ΩD

, b = Re ⟨χn−1En − wn, α
χ
ndnEn⟩, c = ∥χn−1En −

wn + αχ
ndnEn∥2

ΩD
, A = ∥dnEi∥2

ΩD
, B = Re ⟨χn−1En − wn, α

χ
ndnEn⟩, and C =

∥χn−1Ei∥2
ΩD

.
This cost functional can be minimized by taking its derivative equal to 0, this

gives a second order polynomial that has to be solved for αχ
n

(−2bA+ 2aB)(αχ
n)2 + (2aC − 2Ac)αχ

n + (2bC − 2Bc) = 0 (4.71)

which gives

αχ
n =
−(aC − Ac) +

√︂
(aC − Ac)2 − 4(−bA+ aB)(bC −Bc)

2(−bA+ aB) . (4.72)

In CSI, a simpler way to minimize the cost functional for χ without the need
for the computation of the gradient and the weight is to minimize directly f ′

n

in eq. (4.53). The updated susceptibility can be obtained as follows from the
knowledge of the electric field and the contrast source at step n [11]

χn = En · w̄n

|En|2
. (4.73)

However, this update does not hold if regularization terms depending on χ are
added to the standard CSI cost functional.
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4.2.7.7 Initialization of the susceptibility and contrast current

Now that all the update procedure has been defined, the starting values for the
CSI algorithm should be chosen. In general, the contrast source is initialized first
and then the susceptibility is initialized from it. The initialization of the contrast
current is equivalent to an inverse source problem in which only the data equation
eq. (4.40) is employed, i.e. find w0 such that Fdata is minimized. The minimization
can be achieved via back propagation [62]. The resulting initial contrast source
reads

w0 =
∥L⋆

ΩD
Es∥2

ΩD

∥LΩD
L⋆

ΩD
Es∥2

ΩD

, (4.74)

and the resulting initial total field is

E0 = Ei + LΩD
w0. (4.75)

Finally the susceptibility at step n = 0 can be obtained from eq. (4.73). The overall
CSI algorithm is provided in Algorithm 3.

Algorithm 3: Contrast Source Inversion
n = 0;
Init w0 with eq. (4.74);
Init E0 with eq. (4.75);
Init χ0 with eq. (4.73);
Init F0;
Update ηD,0;
while Fn > tolerance do

n=n+1;
Compute the gradients gχ

n and gw
n using eq. (4.52) and eq. (4.55);

Compute the update directions dn and vn from eq. (4.56) and eq. (4.59);
Compute the weights αχ

n and αw
n using eq. (4.66) and eq. (4.72);

Update the contrast source as wn = wn−1 + αwvn ;
Update the susceptibility as χn = χn−1 + αχdn;
Update the residuals fn and ρn using eq. (4.41) and eq. (4.42);
Update ηD,n;
Update Fn;

end

4.2.7.8 Discretization of the J-VIE based CSI

This CSI algorithm is based on the J-VIE, of which the discretization is given
in section 2.3.3.
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4.3 A New D-VIE-Based Inverse Scattering Scheme
In this section we present a new inverse scattering scheme based on the electric

flux volume integral equation. In this inverse scattering problem, the unknown
quantities are the electric flux and the dielectric contrast κ. This algorithm pertains
to the family of the gradient based methods as the CSI method, which is presented
in section 4.2.7.

4.3.1 Data and State Equations
Since D and κ are the unknowns of this inverse scattering problem, the first

step is to rewrite the state and data equations as a function of these unknowns

Ei(r) + LΩD
κ (D) = 1− κ(r)

ϵ0
D(r) r ∈ ΩD, (4.76)

Es(r) = LΩD
κ (D) r ∈ ΓS, (4.77)

where LΩD
κ is defined in section 2.2.4.2 and the dielectric contrast κ = (ϵr−1)/ϵr. To

simplify the following derivations, the operator MΩD
κ = 1−κ

ϵ0
I−LΩD

κ is introduced.
With this operator, eq. (4.76) simplifies to MΩD

κ (D) = Ei.

4.3.2 Residuals and Cost Functional
A cost functional enforcing simultaneously the state and data equations should

then be defined

F (κ,D) = Fdata(κ,D) + Fstate(κ,D)

= ηS∥Es −LΩD
κ (D)∥2

ΓS
+ ηD∥Ei + LΩD

κ D − 1− κ
ϵ0

D∥2
ΩD
,

(4.78)

where ηS and ηD are used for normalization as in the CSI method. Here we define
ηS = 1/∥Es∥2

ΓS
and ηD = 1/∥Ei∥2

ΩD
. The residual errors of the data and state

equations are defined as follows

ρ = Es −LΩD
κ D

f = Ei + LΩD
κ D − 1− κ

ϵ0
D

= Ei −MΩD
κ D

(4.79)

To minimize F in eq. (4.78), the two unknowns are updated iteratively as follows

Dn = Dn−1 + αDvn (4.80)
κn = κn−1 + ακwn (4.81)
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in which vn and wn are the update directions given by the gradients of the cost
functional with respect to D and κ at step n, respectively, and αD and αχ are
coefficients obtained through line minimization of F along the update directions.
At each iteration vn, wn, αD, and ακ should be determined. The cost functional at
step n can then be defined as

F (κn,Dn) = Fdata(κn,Dn) + Fstate(κn,Dn)

= ηS∥Es −LΩD
κn

Dn∥2
ΓS

+ ηD∥Ei + LΩD
κn

Dn −
1− κn

ϵ0
Dn∥2

ΩD
. (4.82)

4.3.3 Gradients of the Cost Functional
4.3.3.1 Gradient of the cost functional with respect to D

As for the CSI method, the gradient of the cost functional F with respect to D
at step n can be obtained by deriving the Fréchet derivative at step n− 1. For the
the data equation, it reads

∂Fdata,n−1/∂Dn−1 = lim
ϵ→0

(Fdata,n−1(κn−1,Dn−1 + ϵvn)− Fdata,n−1(κn−1,Dn−1)) /ϵ

= lim
ϵ→0

ηS

ϵ

[︂
−ϵ⟨Es,LΩD

κn−1(vn)⟩ −ϵ⟨LΩD
κn−1(vn),Es⟩

+ϵ⟨LΩD
κn−1(Dn−1),LΩD

κn−1(vn)⟩ +ϵ⟨LΩD
κn−1(vn),LΩD

κn−1(Dn−1)⟩
]︂

= −ηS⟨LΩD
κn−1

⋆(ρn−1),vn⟩ − ηS⟨vn,LΩD
κn−1

⋆(ρn−1)⟩
= −2ηSRe ⟨LΩD

κn−1

⋆(ρn−1),vn⟩,
(4.83)

and for the state equation we have

∂Fstate,n−1/∂Dn−1 = lim
ϵ→0

(Fstate,n−1(κn−1,Dn−1 + ϵvn)− Fstate,n−1(κn−1,Dn−1)) /ϵ

= −2ηDRe (⟨MΩD
κn−1

⋆(fn−1),vn⟩).
(4.84)

Finally, the gradient of F at step n with respect to D deduced from eq. (4.83)
and eq. (4.84) is

gD
n = ηSLΩD

κn−1

⋆(ρn−1) + ηDMΩD
κn−1

⋆(fn−1). (4.85)

4.3.3.2 Gradient of the cost functional with respect to κ

Unlike for the CSI, the contrast is also present in the data equation, thus both
the state and the data cost functionals should be differentiated. Moreover, since
κ pertains to the definition of the D-VIE operator (LΩD

κ ), the operator LΩD
D intro-

duced in eq. (2.62) should be used to be able to Fréchet differentiate F with respect
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to κ. With this operator, the residual errors of the object and data equations can
be rewritten as

ρ = Es −LΩD
D (κ)

f = Ei −
D

ϵ0
+ LΩD

D (κ) + D

ϵ0
κ.

(4.86)

The Frechet derivative of Fdata with respect to κ can be expanded as follows

∂Fdata,n−1/∂κn−1 = lim
ϵ→0

(Fdata,n−1(κn−1 + ϵwn,Dn−1)− Fdata,n−1(κn−1,Dn−1)) /ϵ

= ηS⟨ρn−1,LΩD
Dn−1

(wn)⟩+ ηS⟨LΩD
Dn−1

(wn),ρn−1⟩

= ηS⟨LΩD
Dn−1

⋆(ρn−1), wn⟩+ ηS⟨wn,LΩD
Dn−1

⋆(ρn−1)⟩
= 2ηSRe ⟨LΩD

Dn−1

⋆(ρn−1), wn⟩.
(4.87)

Next the expansion of the Fréchet derivative of the cost functional of the state
equation with respect to κ gives

∂Fstaten−1/∂κn−1 = lim
ϵ→0

(Fstate,n−1(κn−1 + ϵwn,Dn−1)− Fstate,n−1(κn−1,Dn−1)) /ϵ

= ηD⟨fn−1,LΩD
Dn−1

(wn)⟩+ ηD⟨LΩD
Dn−1

(wn),fn−1⟩

− ηD⟨fn−1,
1
ϵ0

Dn−1wn⟩ − ηD⟨
1
ϵ0

Dn−1wn,fn−1⟩

= 2ηDRe ⟨LΩD
Dn−1

⋆(fn−1), wn⟩ − 2ηD

ϵ0
Re ⟨D̄n−1 · fn−1, wn⟩.

(4.88)

The resulting gradient of F at step n with respect to κ reads

gκ
n = −ηSLΩD

Dn−1

⋆(ρn−1)− ηD

(︃
LΩD

Dn−1

⋆(fn−1)− 1
ϵ0

D̄n−1 · fn−1

)︃
. (4.89)

As in the CSI, the update directions can be improved by choosing a Polak-
Ribière update scheme (section 4.2.7.5).

4.3.3.3 Polak-Ribière Update

The new update direction wn for the dielectric contrast can be expressed as

w1 = gκ
1 , n = 1 (4.90)

wn = gκ
n + γκ

nwn−1, n ≥ 2 (4.91)

in which
γκ

n = ⟨g
κ
n, g

κ
n−1⟩ΩD

∥gκ
n−1∥2

ΩD

. (4.92)
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The update direction for the electric flux reads

v1 = gD
1 , n = 1 (4.93)

vn = gD
n + γD

n vn−1, n ≥ 2 (4.94)

in which
γD

n = ⟨g
D
n , g

D
n−1⟩ΩD

∥gD
n−1∥2

ΩD

. (4.95)

4.3.4 Determination of the Weights
Now that the update directions are determined, the next step is to derive the

weights αD and ακ that minimize the cost functional F in the given update direc-
tions. At each iteration, κ and D are updated as follows

Dn = Dn−1 + αD
n vn (4.96)

κn = κn−1 + ακ
nwn, (4.97)

where wn and vn are given in eq. (4.91) and eq. (4.94), respectively. Substituting
eq. (4.96) and eq. (4.97) into the residual errors gives the following relations between
the residual errors at step n and at step n− 1

ρn = ρn−1 − αD
n LΩD

κn−1(vn)− ακ
nα

D
n LΩD

wn
(vn)− ακ

nL
ΩD
wn

Dn−1, (4.98)

for the data equation and

fn = fn−1 + αD
n (LΩD

κn−1(vn)− vn

ϵ0
+ κn−1

ϵ0
vn)

+ ακ
n(LΩD

wn
(Dn−1) + wn

ϵ0
Dn−1) + αD

n α
κ
n(LΩD

wn
(vn) + wn

ϵ0
vn),

(4.99)

for the state equation.
The next step is to replace eq. (4.98) and eq. (4.99) into the cost functional

(4.78)

Fn = Fn,data(κn,Dn) + Fn,state(κn,Dn) = ηS∥ρn∥2
ΓS

+ ηD∥fn∥2
ΩD
. (4.100)

The expansion of the data cost functional at step n gives

Fn,data(κn,Dn) = ηS

[︂
αD

n a+ ακ
nb+ αD

n α
κ
nc+ (αD

n )2A+ (ακ
n)2B

+(αD
n α

κ
n)2C +D + αD

n (ακ
n)2E + (αD

n )2ακ
nF
]︂
,

(4.101)
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where a, b, c, A,B,C,D,E, F are defined as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = ηS

[︂
−2Re ⟨ρn−1,LΩD

κn−1(vn)⟩ΓS

]︂
b = ηS

[︂
−2Re ⟨ρn−1,LΩD

wn
(Dn−1)⟩ΓS

]︂
c = ηS

[︂
2Re ⟨LΩD

κn−1(vn),LΩD
wn

(Dn−1)⟩ΓS
− 2Re ⟨ρn−1,LΩD

wn
(vn)⟩ΓS

]︂
A = ηS∥LΩD

κn−1(vn)∥2
ΓS

B = ηS∥LΩD
wn

(Dn−1)∥2
ΓS

C = ηS∥LΩD
wn

(vn)∥2
ΓS

D = ηD∥ρn−1∥2
ΓS

E = ηS

[︂
2Re ⟨LΩD

wn
(vn),LΩD

wn
(Dn−1)⟩ΓS

]︂
F = ηS

[︂
2Re ⟨LΩD

κn−1(vn),LΩD
wn

(vn)⟩ΓS

]︂
.

(4.102)

Similarly the cost functional of the state equation has the following form when
expanded

Fn,state(κn,Dn−1) = ηD

[︂
αD

n a
′ + ακ

nb
′ + αD

n α
κ
nc

′ + (αD
n )2A′

+(ακ
n)2B′ + (αD

n α
κ
n)2C ′ +D′ + αD

n (ακ
n)2E ′ + (αD

n )2ακ
nF

′
]︂
,

(4.103)

where a′, b′, c′, A′, B′, C ′, D′, E ′, F ′ are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′ = ηD(− 2
ϵ0
⟨vn,fn−1⟩ΩD

+ 2
ϵ0

Re ⟨κn−1vn,fn−1⟩ΩD
+ 2Re ⟨fn−1,LΩD

κn−1(vn)⟩ΩD
)

b′ = ηD( 2
ϵ0

Re ⟨wnDn−1,fn−1⟩ΩD
+ 2Re ⟨fn−1,LΩD

wn
(Dn−1)⟩ΩD

)
c′ = ηD(− 2

ϵ2
0
Re ⟨vn, wnDn−1⟩ΩD

+ 2
ϵ2

0
Re ⟨κn−1vn, wnDn−1⟩ΩD

+ 2
ϵ2

0
⟨wnvn,fn−1⟩ΩD

+ 2
ϵ0

Re ⟨wnDn−1,LΩD
κn−1(vn)⟩ΩD

− 2
ϵ0

Re ⟨vn,LΩD
wn

(Dn−1)⟩ΩD
+ 2

ϵ0
Re ⟨κn−1vn,LΩD

wn
(Dn−1)⟩ΩD

+2Re ⟨LΩD
κn−1(vn),LΩD

wn
(Dn−1)⟩ΩD

+ 2⟨fn−1,LΩD
wn

(vn)⟩ΩD
)

A′ = ηD( 1
ϵ2

0
∥vn∥2

ΩD
− 2

ϵ2
0
⟨vn, κn−1vn⟩ΩD

+ 1
ϵ2

0
∥κn−1vn∥2

ΩD
− 2

ϵ0
⟨vn,LΩD

κn−1(vn)⟩ΩD

+ 2
ϵ0

Re ⟨κn−1v,LΩD
κn−1(vn)⟩ΩD

+ ∥LΩD
κn−1(vn)∥2

ΩD
)

B′ = ηD( 1
ϵ2

0
∥wnDn−1∥2

ΩD
+ 2

ϵ0
Re ⟨wnDn−1,LΩD

wn
(Dn−1)⟩ΩD

+ ∥LΩD
wn

(Dn−1)∥2
ΩD

)
C ′ = ηD( 1

ϵ2
0
∥wnvn∥2

ΩD
+ 2

ϵ0
Re ⟨wnvn,LΩD

wn
(vn)⟩ΩD

+ ∥LΩD
wn

(vn)∥2
ΩD

)
D′ = ηD∥fn−1∥2

ΩD

E ′ = ηD( 2
ϵ2

0
⟨wnDn−1, wnvn⟩ΩD

+ 2
ϵ0
⟨wnvn,LΩD

wn
(Dn−1)⟩ΩD

+ 2
ϵ0

Re ⟨wnDn−1,LΩD
wn

(vn)⟩ΩD
+ 2Re ⟨LΩD

wn
(Dn−1),LΩD

wn
(vn)⟩ΩD

)
F ′ = ηD(− 2

ϵ2
0
Re ⟨vn, wnvn⟩ΩD

+ 2
ϵ2

0
⟨κn−1vn−1, wnv⟩ΩD

+ 2
ϵ0

Re ⟨wnvn,LΩD
κn−1(vn)⟩ΩD

− 2
ϵ0

Re ⟨vn,LΩD
wn

(vn)⟩ΩD

+ 2
ϵ0

Re ⟨κn−1vn−1,LΩD
wn

(vn)⟩ΩD
+ 2Re ⟨LΩD

κn−1(vn),LΩD
wn

(vn)⟩ΩD
).

(4.104)
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The two above-mentioned equations (eq. (4.101) and eq. (4.103)) in αD
n and ακ

n

should be simultaneously minimized to obtain αD
n and ακ

n. This system is nonlinear,
not as in the CSI method (eq. (4.71)). However, since the equations are scalar, the
system can be solved using a standard nonlinear conjugate gradient method.

4.3.5 Initialization of the Electric Flux Inversion Method
The EFI is initialized similarly to the D-VIE based Born iterative method (sec-

tion 4.2.5) and the DVIE-based Newton-Kantorovich method (section 4.2.6).

4.3.6 Summary of the Algorithm
The overall electric flux inversion algorithm is provided in Algorithm 4.

Algorithm 4: Electric Flux Inversion
n = 0;
Compute ηD and ηS ;
Assume that the unknown dielectric contrast κ is small enough so that
D0 ≈ ϵ0Ei for r ∈ ΩD;

Solve Es(r) = LΩD
D0 (κ0) for κ0;

Init F0;
while Fn > tolerance do

n=n+1;
Compute the gradients gκ

n and gD
n using eq. (4.89) and eq. (4.85);

Compute the update directions wn and vn from eq. (4.91) and
eq. (4.94);

Compute the weights ακ and αD by simultenaously solving eq. (4.101)
and eq. (4.103) ;

Update the electric flux as Dn = Dn−1 + αDvn ;
Update the dielectric contrast as κn = κn−1 + ακwn ;
Update the residuals fn and ρn using eq. (4.99) and eq. (4.98);
Update Fn;

end

4.3.7 Discretization of the EFI
The EFI follows the same discretization procedure as the Born iterative method,

which is presented in section 4.2.5.1.
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4.4 Numerical Results
This section provides a numerical comparison of the new EFI with the other

inverse scattering algorithms introduced above.
In this numerical example, the inverse scattering scheme should localize a cube

in an unknown domain. The domain is of size 0.67λ by 0.67λ by 0.67λ and is
divided into 216 cubes as shown in fig. 4.2. Each cube is made of 6 tetrahedra
since the formulations used in the inverse scattering schemes (J-VIE and D-VIE)
are here discretized on a tetrahedral mesh. The total number of tetrahedra in
the mesh used in the inverse schemes is 1296. The cube to localize has a size of
0.22λ by 0.22λ by 0.22λ and a relative permittivity 1.5 and is illustrated in fig. 4.3.
The unknown domain is illuminated by 100 antennas (point dipoles) emitting in
two orthogonal directions tangent to ΓS. The antennas are also acting as receivers.
The measured data (scattered electric field) is synthetic, is generated by the forward
solver associated to the inverse scheme: the D-VIE for the BIM, NKM, and EFI
schemes and the J-VIE for the CSI scheme. In the first experiment the mesh used
to generate the data is the same as the mesh used in the inverse scattering scheme.
Note that this way of generating data, commonly referred to as inverse crime [58],
is too optimistic when testing an inverse scattering scheme. In the following we
provide additional numerical results in which this problem is avoided by using a
different mesh to generate the data.

From fig. 4.4a and fig. 4.4b we can see that the permittivity profile of the
reconstructed domain is close to the one of the real one, i.e. the target object is
correctly localized. Figure 4.5 provides the convergence of the data and the state
cost functionals (errors) of the EFI inverse scheme. We observe that the convergence
is smooth and that as expected both the data equation and the state equation
errors are minimized simultaneously. Now that the proper behavior of the EFI has
been presented, we compare its convergence to the other inverse scattering schemes
(BIM, NKM, and CSI). Figure 4.6 shows the relative error on the permittivity
profile of the reconstructed object with respect to the number of iterations for all
the methods. Note that the relative error between the reconstructed permittivity
ϵn at step n and the target permittivity ϵtarget is calculated as

Eϵ,n = ∥ϵn − ϵtarget∥
∥ϵtarget∥

, (4.105)

and that the relative error tolerance is set to 0.03. It can be observed that the
algorithms are all converging to this tolerance but not at the same speed.

To illustrate the performance of the algorithms in a scenario which does not
correspond to an inverse crime, another numerical test was performed using dif-
ferent discretized geometries to generate the synthetic data. The convergence of
the IS methods in that case is illustrated in fig. 4.7. While the convergence of the
gradient based methods (EFI and CSI) is weakly affected by these “noisy” data,
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Figure 4.2: Domain to be imaged (ΩD) surrounded by 100 antennas (point dipoles)
tangent to ΓS located at 0.8λ from the origin.

the Born iterative methods were significantly perturbed and could not converge to
the tolerance.

Subsequently, it should be noted that since the computational complexity of
one iteration differs depending on the inverse scattering scheme employed, the con-
vergence of the different algorithms provided in fig. 4.6 and fig. 4.7 does not reflect
accurately the computational efficiency of the schemes. To make a comparison that
is more fair, the total number of matrix-vector products (MVP) between the dis-
cretized operators and the unknowns quantities of the state equation are compared
in the following. Here only the MVPs with the state equation operators are con-
sidered since they represent the highest computational cost in all the IS problems.
Also, note that the MVPs with Gram matrices are not counted since the Gram
matrix is naturally sparse and represents a negligible cost. The BIM and the NKM
require solving 1 and 2 forward problems per iteration, respectively. The forward
problem is solved with a linear iterative method, here the conjugate gradient (CG)
method, that has to perform MVPs to reach the desired error tolerance. This
number of iterations depends on the condition number (see section 2.4) and the
tolerance. In the numerical experiments that led to those results, it was observed
that the average number of iterations to reach a relative error tolerance of 10−6

was around 20. Thus in the following, the number of MVPs per iteration in the
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Figure 4.3: Object of relative permittivity 1.5 and size 0.22λ by 0.22λ by 0.22λ and
located in ΩD to be imaged.

(a) (b)

Figure 4.4: (a)Target permittivity profile. (b) Reconstructed permittivity profile
with the EFI.

BIM and NKM are respectively 20 and 40. In the case of the EFI, there are 6
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Figure 4.5: Convergence of the data and state equations in the EFI.

MVPs per iteration that are required to compute the gradients and the weights.
They arise from the following mappings (LΩD

κn−1Dn−1, LΩD
κn−1vn, LΩD

wn
Dn−1, LΩD

wn
vn,

LΩD
Dn−1

⋆
fn−1, LΩD

κn−1

⋆
fn−1). In CSI, there are only two MVPs needed per iterations,

they originate from L⋆
ΩD

fn−1 and LΩD
vn. The resulting number of MVPs to reach

the desired tolerance in the numerical results provided in fig. 4.6 and fig. 4.7 are
reported in table 4.1. It can be observed that the EFI method compares to the
other methods in terms of efficiency when the same mesh is employed to generate
the data and that its convergence (in this scenario) is not deteriorated when a dif-
ferent mesh is used. Note that, while giving the total number of MVPs is more
accurate than simply observing the number of iterations, some other considera-
tions should be taken to provide a better estimate for the computational efficiency
of these algorithms (e.g. number of unknowns, time for one MVP).
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Figure 4.6: Relative error between the permittivity obtained and the target per-
mittivity versus the number of iterations for the electric flux inversion (EFI), the
Born iterative method (BIM), the Newton-Kantorovich method (NKM), and the
contrast source inversion (CSI). Case in which the same mesh is employed to gen-
erate the synthetic data (inverse crime).

Table 4.1: Comparison of the total number of matrix vector products (MVP) re-
quired for the convergence of EFI, CSI, BIM, and NKM using the same mesh to
generate the synthetic data (Es) and using a different mesh (Ẽs).

Method Num. of MVPs/iter. Num. of iter. (Es,Ẽs) Tot. num. of MVPs (Es,Ẽs)
EFI 6 (200,213) (1200,1278)
CSI 2 (4122,4928) (8244,9856)
BIM 20 (51,no convergence) (1020,no convergence)
NKM 40 (10,no convergence) (400,no convergence)
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Figure 4.7: Relative error between the permittivity obtained and the target per-
mittivity versus the number of iterations for the electric flux inverse (EFI), the
Born iterative method (BIM), the Newton-Kantorovich method (NKM), and the
contrast source inversion (CSI). The synthetic data was generated with a different
mesh in that case.

4.5 Conclusion and Future Work
A new D-VIE inverse scattering scheme has been introduced for imaging un-

known objects in the frequency domain. It was compared to existing standard in-
verse scattering techniques such as the Born iterative method, the Newton-Kantorovich
method, and the contrast source inversion method. In the two numercal scenar-
ios, the EFI method successfully reconstructed the permittivity profile. Further
research is needed to theoretically determine the convergence rate of this algorithm
and apply it to more challenging bioelectromagnetic scenarios. The latter can be
done by accelerating the discretized D-VIE with the fast multipole method (FMM)
or the adaptive cross approximation (ACA) and by adding regularization techniques
to the electric flux inversion method that are specifically tailored for the application
it is applied to.
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Chapter 5

Inverse Design of a Lensed
Antenna Enabling EEG
Recordings in the Presence of a
RF Source

Inverse electromagnetic design is the process that consists in determining
some geometric and electromagnetic properties of a source so that it radiates

the desired field. This chapter presents a new scheme for the inverse synthesis of
a lensed antenna enabling the reconstruction of the field radiated by a phone in
the the presence of electroencephalography (EEG) caps. The source obtained from
this procedure paves the way to a more realistic study of the impact of a radio
frequency (RF) source on brain activity.

5.1 Introduction
From telecommunication to medical devices, sources radiating electromagnetic

waves extensively spread in society. It is thus important to understand precisely
their effect on human health. One field of study that received a lot of attention
with the spreading of mobile phones is the quantification of the penetration of elec-
tromagnetic waves in the human brain, which enables a better evaluation of the
risk of ionization in human tissues. The electromagnetic power due to electromag-
netic sources in a given area is quantified with the specific absorption rate (SAR).
When conceiving a radiating device meant to be used in the vicinity of persons,
the antenna should be designed so that the SAR remains below a certain limit.
A comprehensive study on these limitations was performed by the international
commission on non-ionizing radiation protection (ICNIRP) providing guidelines
for devices operating in various frequency ranges (below 100 kHz [66] and up to
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300 GHz [75]).
A less covered aspect about radio frequency (RF) sources is their possible impact

on brain activity. Apart from ionization, other phenomena could occur in the brain
and yield a perturbation of brain activity. The experimental research on this topic
has reached conflicting conclusions. Some of the studies showed that there is an
influence of RF devices on cerebral activity [29, 28, 102], while some others disagree
[50, 52]. This clearly shows that that the topic is still an active field of research with
several open research questions. Among them, we will address in this chapter the
potential problem of electromagnetic disturbance occurring between the RF device
and the system used for recording brain activity, which has been raised in [38].

As explained in the numerical results of chapter 3, the measurement of brain
activity is generally done with an electroencephalography (EEG) setup which re-
quires placing electrode caps on the scalp of the patient. Since they are metallic,
the EEG caps have a shielding effect on the field radiated by the source. For this
reason, a solution should be found to allow the recording of electrical signals in the
brain from an EEG device, in the presence of an RF source. In this way, the impact
of an RF source on the cerebral activity could be better investigated.

In this chapter, a new type of source is designed for the reconstruction of the
original field distribution radiated by the RF source in the brain while recording
the brain activity with an EEG setup. In other words, the goal is to synthesize a
source able to radiate a pre-deformed field that compensates for the interference
between the EEG caps and the head. Inverse design algorithms are particularly
suitable for solving problems involving field reconstruction [81, 80, 56]. For this
reason, this field reconstruction problem is reformulated as an inverse scattering
problem, thus allowing the use of the new IS algorithm presented in chapter 4 as
a basis for a synthesis framework that optimizes both the dielectric properties of a
lens and the coefficients of an array of dipoles.

The chapter is divided as follows: the general framework for computational
modeling of the lens, the dipole array, the head, and the EEG caps is first introduced
in section 5.2. Then, section 5.3 presents the new inverse synthesis algorithm
employed for the reconstruction of the field in the presence of the EEG electrodes.
Finally the new framework is tested in a canonical numerical scenario section 5.4.

5.2 Background and Notations

5.2.1 Modeling of the EEG caps, the Head, and the Lens
This section provides the modeling of the head covered with EEG caps and

the lens used in the reconstruction together with the mutual interactions occurring
between them. The requirements for the solver are to model the metallic EEG
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caps and the head, which can be considered as PEC surfaces and as an inhomoge-
neous lossy dielectric material, respectively. The solver chosen is based on a hybrid
volume-surface integral equation (HVSIE). It combines a surface integral equa-
tion (EFIE) to model the PEC objects and a volume integral equation (D-VIE) to
model inhomogeneous bodies. Note that the lens is also modeled using the D-VIE.
To avoid reconstructing the field too near the EEG caps where the reconstruction
would be too cumbersome due to the shielding of the electrodes, the head volume
is divided into two parts: a part where the field should be reconstructed ΩH̃ in the
presence of the electrodes and a complementary part in the head where the recon-
struction is not needed ΩH (see fig. 5.1). Following section 2.2.5 and the notations
provided in fig. 5.1 for the unknowns and the domains, the system composed of the
head, the lens, and the EEG caps can be described with the following equations.

5.2.1.1 Integral formulation describing the whole system

The volume integral equation in ΩH can be expressed as
Jv(r)
jωϵh(r) = El

s(Dl) + Ev
s (Jv) + E ṽ

s (Jṽ) + Es
s(Js) + Ei(Ji), r ∈ ΩH (5.1)

in which ϵh is the permittivity of the head and Ei is the field radiated by the array
of dipoles. The volume integral equation in ΩH̃ can be expressed as

Jṽ(r)
jωϵh(r) = El

s(Dl) + Ev
s (Jv) + E ṽ

s (Jṽ) + Es
s(Js) + Ei(Ji), r ∈ ΩH̃ . (5.2)

The surface integral equation on ΓC can be expressed as

− n̂×Ei(Ji) = n̂×El
s(Dl) + n̂×Ev

s (Jv)
+ n̂×E ṽ

s (Jṽ) + n̂×Es
s(Js), r ∈ ΓC . (5.3)

The volume integral equation in ΩL can be expressed as
Dl(r)
ϵl(r) = El

s(Dl) + Ev
s (Jv) + E ṽ

s (Jṽ) + Es
s(Js) + Ei(Ji), r ∈ ΩL (5.4)

in which ϵl is the permittivity of the lens. The scattered fields used in eq. (5.1),
eq. (5.2), eq. (5.3), and eq. (5.4) are defined as

Ev
s (Jv(r′)) = −jk0η0T κ,ΩH

A (Jv(r′)) + η0

jk0
T κ,ΩH

Φ (Jv(r′)) = η0

jk0
LΩH

κ (Jv(r′)), (5.5)

E ṽ
s (Jṽ(r′)) = −jk0η0T

κ,ΩH̃
A (Jṽ(r′)) + η0

jk0
T κ,ΩH̃

Φ (Jṽ(r′)) = η0

jk0
LΩH̃

κ (Jṽ(r′)), (5.6)

Es
s(Js(r′)) = −jη0k0

(︂
T ΓC

A Js(r′)
)︂

+ η0

jk0

(︂
T ΓC

Φ Js(r′)
)︂

= η0

jk0
LΓC

(Js(r′)), (5.7)

El
s(Dl(r′)) = k2

0
ϵ0

T κ,ΩL
A (Dl(r′)) + 1

ϵ0
T κ,ΩL

Φ (Dl(r′)) = LΩL
κ (Dl(r′)). (5.8)

in which r′ lies in ΩH , ΩH̃ , ΓC , and ΩL, respectively.
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Ji,αi

Dl,αl

Jv,αv

Jṽ,αṽ

Js,αs

Dipoles
Lens (ΩL) Head (ΩH and ΩH̃) with EEG caps (ΓC)

Brain

Figure 5.1: Volume and surface definitions, continuous (Ji, Dl, Jv, and Js) and
discretized (αi, αl, αv, and αs) unknowns and continuous (Jṽ) and discretized (αṽ)
known quantities (zone where the field is reconstructed).

5.2.1.2 Field Radiated by an Array of Dipoles

Electric point dipoles are employed for the field reconstruction. The field radi-
ated by such a dipole at position r in free space reads

Ei,dip(r) = (TiJi,dip) (r) = (T ′
ΦJi,dip) (r) + (T ′

AJi,dip) (r), (5.9)

where Ti = T ′
A + T ′

Φ, with

T ′
AJi,dip = −jk0η0

∫︂
Ω
G0(r, r′)Ji,dip(r′, r0) dv′, (5.10)

T ′
ΦJi,dip = η0

jk0
∇
∫︂

Ω
G0(r, r′)∇′ · Ji,dip(r′, r0) dv′, (5.11)

r′ ∈ R3, and Ji,dip(r′, r0) = jωδ(3)(r′ − r0)p is the current dipole with δ(3), p,
and r0 being the Dirac delta function, the dipole moment, and the dipole po-
sition, respectively. The total current of an array of N dipoles is defined as
Ji(r) = ∑︁N

m=1[αi]mf i
m(r) in which [αi]m is the coefficient of dipole m and f i

m(r) =
jωδ(3)(r − r0,m)pm with r0,m and pm being the position and moment of dipole m,
respectively. Then, the total electric field radiated by the dipole array reads

Ei(r) = Ti(Ji(r′)) =
N∑︂

m=1
[αi]mTi(f i

m(r′)). (5.12)

In the following this incident field operator will be tested with the basis functions
defined in ΩL, ΩH , ΩH̃ , and ΓC .
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5.2.1.3 Discretization of the equations

This section provides the discretization of the operators introduced above. The
currents in the lens, the EEG caps, and the head are expanded as

Dl(r) ≈
Nl∑︂

m=1
[αl]mf l

m(r), (5.13)

Js(r) ≈
Nmh∑︂
m=1

[αs]mf s
m(r), (5.14)

Jv(r) ≈
Nvh∑︂
m=1

[αv]mf v
m(r), (5.15)

Jṽ(r) ≈
Nṽh∑︂
m=1

[αṽ]mf ṽ
m(r), (5.16)

in which {f l
m}, {f v

m}, and {f ṽ
m} are SWG basis functions defined in ΩL, ΩH , and

ΩH̃ , respectively, {f s
m} are RWG basis functions defined on ΓC , and Nl, Nvh, Nṽh,

and Nmh are the corresponding numbers of basis functions. The discretization of
the operators modeling the scattering in the head together with the EEG caps
corresponds to the discretization of the hybrid VSIE introduced in section 2.3.5. It
yields the following linear system

ZH =

⎡⎢⎣Zss Zvs Zṽs

Zsv Zvv Zṽv

Zsṽ Zvṽ Zṽṽ

⎤⎥⎦
⎡⎢⎣αs

αv

αṽ

⎤⎥⎦ =

⎡⎢⎣vsvv
vṽ

⎤⎥⎦ , (5.17)

in which the nine blocks of ZH correspond to the interaction matrices between ΩH ,
ΩH̃ , and ΓC and vs, vv, and vṽ denote the tested incident field on ΓC , ΩH , and
ΩH̃ , respectively. The discretization procedure for the operators defined in the lens
(ΩL) corresponds to the non-symmetric discretization of the D-VIE formulation,
which is presented in section 2.3.4. The resulting matrix is

[ZL]nm = ⟨f l
n, ϵ

−1
l f l

m⟩ΩL
− ⟨f l

n,L
ΩL
κ f l

m⟩ΩL
. (5.18)

85



Inverse Design of a Lensed Antenna Enabling EEG Recordings in the Presence of a RF Source

Next the following discretized operators are introduced to describe the mutual
coupling between the lens and the head covered with caps

[ZLs]nm = ⟨n̂× f s
n,L

ΩL
κ f l

m⟩ΓC
(5.19)

[ZLv]nm = ⟨κf v
n,L

ΩL
κ f l

m⟩ΩH
(5.20)

[ZLṽ]nm = ⟨κf ṽ
n,L

ΩL
κ f l

m⟩ΩH̃
(5.21)

[Hs]nm = η0

jk0
⟨f l

n,LΓC
f s

m⟩ΩL
(5.22)

[Hv]nm = η0

jk0
⟨f l

n,L
ΩH
κ f v

m⟩ΩL
(5.23)

[Hṽ]nm = η0

jk0
⟨f l

n,L
ΩH̃
κ f ṽ

m⟩ΩL
. (5.24)

Finally, the following matrices giving the incident field scattered by the dipole array
should also be defined

[ZIs]nm = ⟨n̂× f s
n,Tif

i
m⟩ΓC

(5.25)
[ZIv]nm = ⟨κf v

n,Tif
i
m⟩ΩH

(5.26)
[ZI ṽ]nm = ⟨κf ṽ

n,Tif
i
m⟩ΩH̃

(5.27)
[ZI l]nm = ⟨κf ṽ

n,Tif
i
m⟩ΩL

. (5.28)

5.3 Proposed Algorithm for Field Reconstruction
In this section a new framework for the design of a lensed antenna for the

reconstruction of the field radiated by an RF source in the head in the presence of
EEG caps is presented. The main goal is to reduce the reconstruction error with
the addition of the lens and the array of dipoles. The flowchart shown in fig. 5.2
summarizes the main steps of this scheme, which correspond to the different parts
of this section.

5.3.1 Obtain the Target Field from the Initial Source
The aim of this step is to retrieve the target electric field in ΩH̃ , that is the field

radiated by the initial source in the head without EEG caps (ΓC = ∅). This field
should subsequently be reconstructed with the dipoles and the lens in the presence
of the EEG caps. It can be obtained from eq. (5.17) by solving the following linear
system [︄

Zvv Zṽv

Zvṽ Zṽṽ

]︄ [︄
αv

αṽ

]︄
=
[︄
vv
vṽ

]︄
, (5.29)
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Get the target field
with the real source and

no EEG caps on the head
Section 5.3.1

Init the permittivity of the lens ϵl

and the dipole array currents
Section 5.3.2

EFI-based inverse design algorithm
(Algorithm 5 in section 5.3.3)

End

αṽ

αṽ, ϵl,0 αi,0

ϵl,n αi,n

Figure 5.2: Flowchart representing the main steps to design the lens for field re-
construction.

for αṽ. The right hand side [vv, vṽ]T is obtained by testing the field radiated by
the real source with the functions {κf v

n} and {κf ṽ
n}. Note that αṽ corresponds to

the coefficients of the expansion of the dielectric current in ΩH̃ , which is directly
proportional to the total electric field. For this reason, αṽ is sometimes referred to
as target field in the following.

5.3.2 Initialization of the Permittivity of the Lens and the
Dipole Array Currents

The permittivity of the lens should be initialized at the beginning of the opti-
mization procedure. One solution is to set the initial relative permittivity at 1 in
all the lens, which would enable the use of the Born approximation (section 4.2.3).
However, after numerical experimentation, it was observed that this initialization
choice does not lead to satisfying results for the design of the lens. Instead, the
starting permittivity should be determined through numerical experiments.

Next the coefficients of the dipole array should be initialized so that the error
between the reconstructed field and the target field is minimized. In a first ap-
proach, it is assumed that the scattering of the head does not influence the field
in the lens (Hs = 0, Hv = 0, and Hṽ = 0). However, the interactions in the head
and with the EEG caps are considered. The dipole coefficients αi should be then

87



Inverse Design of a Lensed Antenna Enabling EEG Recordings in the Presence of a RF Source

determined such that the following matrix equation holds⎡⎢⎢⎢⎣
ZL 0 0 0
ZLs Zss Zvs Zṽs

−ZLv Zsv Zvv Zṽv

−ZLṽ Zsṽ Zvṽ Zṽṽ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
αl

αs

αv

αṽ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

A Zṽs

Zṽv

−ZLṽ Zsṽ Zvṽ Zṽṽ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
αl

αs

αv

αṽ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ZI lαi

−ZIsαi

ZIvαi

ZI ṽαi

⎤⎥⎥⎥⎦ .
(5.30)

This matrix equation models scattering in the head, the EEG caps, the lens, and
their mutual coupling (partly neglected here) under the excitation of the dipole
array (right hand side of eq. (5.30)). The goal is to find a relation between the
known target field αṽ and the unknown dipole coefficients αi which does not depend
on the other unknowns (αl, αs, and αv) and then specify αl, αs, and αv from the
knowledge of αi. This can be done by splitting the system matrix into a 2-by-2
block matrix as suggested in eq. (5.30). Applying the Schur complement formulas
[46] on those blocks, the following relation between αṽ and αi is obtained

B

⎡⎢⎣ZI lZIs
ZIv

⎤⎥⎦αi +BZI ṽαi = αṽ, (5.31)

in which

B = −Z−1
ṽṽ

[︂
−ZLṽ Zsṽ Zvṽ

]︂⎛⎜⎝A−
⎡⎢⎣ 0
Zṽs

Zṽv

⎤⎥⎦Z−1
ṽṽ

[︂
−ZLṽ Zsṽ Zvṽ

]︂⎞⎟⎠
−1

(5.32)

B =

⎛⎜⎝Zṽṽ −
[︂
−ZLṽ Zsṽ Zvṽ

]︂
A−1

⎡⎢⎣ 0
Zṽs

Zṽv

⎤⎥⎦
⎞⎟⎠

−1

. (5.33)

The resulting equation (eq. (5.31)) is independent of the unknowns αl, αs, and αv

and can be solved from the knowledge of the permittivity of the lens ϵl and the
target field. Now that the method to initialize the permittivity of the lens and the
coefficients of the dipole array is described, the next step is to introduce the scheme
for reconstructing the field by simultaneously optimizing for αi, αl, and ϵl.

5.3.3 A New Scheme for the Design of a Lensed Antenna
In this section, the inverse scattering scheme employed for field reconstruction

is presented. This iterative procedure aims at minimizing the error between the
reconstructed field and the target field by simultaneously updating the dipole array
coefficients and the permittivity of the lens. Here, the goal is to perform inverse
scattering for a design purpose, so falling into a local minimum would not be too
problematic since there is no true solution, unlike in microwave imaging (chapter 4).
Note that the following derivation is performed with the continuous equations, not
the discretized ones.
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5.3.3.1 Data and State Equations

For this specific application, the standard inverse scattering setup presented in
chapter 4 requires additional degrees of freedom that correspond to the currents
in the dipole array and the unknown currents in the head. The data equation
(r ∈ ΩH̃) obtained from eq. (5.2) reads

Eṽ(r) = LΩL
κ (Dl) + η0

jk0
LΩH

κ (Jv) + η0

jk0
LΩH

κ (Jṽ)

+ η0

jk0
LΓS

(Js) + Ti(Ji), r ∈ ΩH̃ (5.34)

in which Eṽ = Jṽ/(jωϵh) is the target electric field in ΩH̃ and Jv, Js, Ji, κ (for
r ∈ ΩL), and Dl are the unknowns. Note that here the data equation is not be
solved for the currents Jv and Js in the head. These currents are supposed to
be defined from the knowledge of Ji and Dl. This idea originates from the fact
that algebraically the data and the state equations in ΩH̃ and ΩL can be solved
for the unknowns αi and αl and then the unknown current coefficients αs and
αv can simply be obtained using αi, αl, and the discretized equations in ΩH and
ΓC . For instance, a similar procedure was employed to determine the dipole array
coefficients in section 5.3.2. For this reason, the data equation is redefined as

Eṽ(r) = L̃ΩL

κ (Dl) + η0

jk0
LΩH

κ (Jṽ) + T̃ i(Ji), r ∈ ΩH̃ (5.35)

in which L̃ΩL

κ and T̃ i are the new operators implicitly taking into account the
currents Jv and Js.

Then since fields radiated by Jv, Jṽ, and Js in ΩL are neglected in this chapter
(as a first approach), the state equation (r ∈ ΩL) can be expressed in ΩL using
eq. (5.4) as

Ti(Ji) + LΩL
κ (Dl) = 1− κ

ϵ0
Dl(r), r ∈ ΩL. (5.36)

5.3.3.2 Residual Errors and Cost Functional

Equations (5.35) and (5.36) are solved iteratively for the unknowns Ji, κ, and
Dl, which are updated as follows

Dl,n = Dl,n−1 + αDvn, (5.37)
κn = κn−1 + ακdn, (5.38)

Ji,n = Ji,n−1 + αJzn, (5.39)

in which vn, zn, and dn are the update directions derived from the gradients of the
cost functional F with respect to Dl, Ji, and κ at step n, respectively, and αD, αJ ,

89



Inverse Design of a Lensed Antenna Enabling EEG Recordings in the Presence of a RF Source

and ακ are coefficients obtained through line minimization of F along the update
directions. The goal at each iteration is to determine vn, zn, dn, αD, αJ , and ακ.

To quantify the errors of the state equation (eq. (5.36)) and the data equation
(eq. (5.35)) at step n, the following residual errors are defined in symbolic form

fn = Ti(Ji,n) + LΩL
κn

(Dl,n)− 1− κn

ϵ0
Dl,n, (5.40)

ρn = Eṽ −
η0

jk0
LΩH

κ (Jṽ)− L̃ΩL

κn
(Dl,n)− T̃ i(Ji,n), (5.41)

and the resulting cost functional at step n reads

Fn(κn,Dl,n,Ji,n) = Fdata,n(κ,Dl,Ji) + Fstate,n(κ,Dl,Ji)
= ηS∥ρn∥2

ΩD
+ ηD∥fn∥2

ΩL
,

(5.42)

in which the normalization factors ηD,n and ηS are defined as follows

ηD,n = ∥Ti(Ji,n)∥ΩL
(5.43)

ηS = ∥Eṽ −
η0

jk0
LΩH

κ (Jṽ)∥ΩH̃
. (5.44)

5.3.3.3 Gradient of the Cost Functional with respect to Dl, κ, and Ji

The gradient of the cost functional F with respect to the electric flux Dl at step
n has the same form as in eq. (4.85), it reads

gD
n = ηSL̃

ΩL

κn−1

⋆
ρn−1 + ηD,n−1MΩL

κn−1

⋆
fn−1, (5.45)

in which MΩL
κ Dl = −LΩL

κ Dl + 1−κ
ϵ0

Dl. The gradient of F with respect to κ is
equal to the gradient obtained in eq. (4.89). This leads to

gκ
n = ηSL̃

ΩL

Dl,n−1

⋆
(ρn−1)− ηD,n−1

(︃
LΩL

Dl,n−1

⋆(fn−1)− 1
ϵ0

D̄l,n−1 · fn−1

)︃
(5.46)

in which (·) denotes the dot product between two vector functions. The gradient
of F with respect to the dipole currents Ji can be obtained leveraging a Fréchet
derivative of the cost functional, which gives

∂Fn−1/∂Ji,n−1 = lim
ϵ→0

(F (Ji,n−1 + ϵzn)− F (Ji,n−1))/ϵ

= −2ηSRe ⟨T ⋆
i ρn−1, zn⟩ΩL

− 2ηD,n−1Re ⟨T ⋆
i fn−1, zn⟩ΩL

.
(5.47)

Note that the dependence of the normalization coefficient ηD,n−1 with respect to Ji

was neglected in this derivation. The resulting expression for the gradient at step
n is

gJ
n = ηST̃ i

⋆
ρn−1 + ηD,n−1Ti

⋆fn−1. (5.48)
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5.3.3.4 Polak-Ribière Update

The new update direction wn for the dielectric contrast is defined as

w1 = gκ
1 , n = 1 (5.49)

wn = gκ
n + γκ

nwn−1, n ≥ 2 (5.50)

in which
γκ

n = ⟨g
κ
n, g

κ
n−1⟩ΩL

∥gκ
n−1∥2

ΩL

. (5.51)

The update direction for the electric flux reads

v1 = gD
1 , n = 1 (5.52)

vn = gD
n + γD

n vn−1, n ≥ 2 (5.53)

in which
γD

n = ⟨g
D
n , g

D
n−1⟩ΩL

∥gD
n−1∥2

ΩL

, (5.54)

and the update direction for the dipole array currents is

z1 = gD
1 , n = 1 (5.55)

zn = gD
n + γD

n zn−1, n ≥ 2 (5.56)

in which
γJ

n = ⟨g
J
n , g

J
n−1⟩

∥gJ
n−1∥2 . (5.57)

5.3.3.5 Determination of the Weights for the Minimization

In this section, the weights αD, ακ, and αJ are determined to minimize the
cost functional at each iteration when updating the electric flux, the dielectric
contrast, and dipole array coefficients. As in section 4.3.4, the first step is to expand
residual errors using the expressions of Dl,n, κn, and Ji,n (eq. (5.37), eq. (5.38), and
eq. (5.39)). This results in

ρn = Et − L̃ΩL

κn
Dl,n − T̃ iJi,n

= Et − (L̃ΩL

κn−1 + ακL̃ΩL

wn
)(Dl,n−1 + αD

n vn)− T̃ i(Ji,n−1 + αJ
nzn)

= ρn−1 − αD
n L̃ΩL

κn−1vn − ακ
nL̃

ΩL

wn
Dl,n−1 − αD

n α
κ
nL̃

ΩL

wn
vn − αJ

nT̃ izn,

(5.58)
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in which Et = Eṽ − η0
jk0

LΩH
κ (Jṽ) for the data equation and

fn = TiJi,n −
η0

jk0
(LΩH

κ (Jv) + LΩH
κ (Jṽ) + LΓS

(Js)) + LΩL
κn

Dl −
1− κn

ϵ0
Dl

= Ti(Ji,n−1 + αJ
nzn) + (LΩL

κn−1 + ακLΩL
wn

)(Dl,n−1 + αD
n vn)

− 1− (κn−1 + ακ
nwn)

ϵ0
(Dl,n−1 + αD

n vn)

= fn−1 + αJ
nTizn + αD

n LΩL
κn−1vn + ακ

nL
ΩL
wn

Dl,n−1 + ακ
nα

D
n LΩL

wn
vn

− αD
n

ϵ0
vn + αD

n

ϵ0
κn−1vn + ακ

n

ϵ0
wnDl,n−1 + ακ

nα
D
n

ϵ0
wnvn,

(5.59)

for the state equation. The next step is to substitute eq. (5.58) and eq. (5.59) into
the cost functional eq. (5.42)

Fn = Fn,data(κn,Dl,n,Ji,n) + Fn,state(κn,Dl,n,Ji,n)
= ηS∥ρn∥2

ΩH̃
+ ηD,n−1∥fn∥2

ΩL
.

(5.60)

The cost functional Fn,data(κn,Dl,n,Ji,n) can be rearranged as

Fn,data(κn,Dl,n,Ji,n) = ηS

[︂
αD

n a+ ακ
nb+ αu

nc+ αD
n α

κ
nd+ αu

nα
κ
ne+ αu

nα
D
n f

+αu
nα

κ
nα

D
n g + (αD

n )2A+ (ακ
n)2B + (αu

n)2C

+(αD
n α

κ
n)2D + E + αD

n (ακ
n)2F + (αD

n )2ακ
nG
]︂
,

(5.61)

where the scalar coefficients a, b, c, d, e, f, g, A,B,C,D,E, F , and G are provided in
appendix D. Similarly the cost functional of the state equation is written as

Fn,state(κn,Dl,n,Ji,n) = ηD,n−1
[︂
αD

n a
′ + ακ

nb
′ + αu

nc
′ + αD

n α
κ
nd

′ + αu
nα

κ
ne

′ + αu
nα

D
n f

′

+αu
nα

κ
nα

D
n g

′ + (αD
n )2A′ + (ακ

n)2B′ + (αu
n)2C ′ + (αD

n α
κ
n)2D′ + E ′

+αD
n (ακ

n)2F ′ + (αD
n )2ακ

nG
′
]︂
,

(5.62)

where a′, b′, c′, d′, e′, f ′, g′, A′, B′, C ′, D′, E ′, F ′, and G′ are also given in appendix D.
Finally, the weights αD, ακ, and αJ can be obtained through the line minimiza-

tion of eq. (5.61) and eq. (5.62). This system of scalar equations is nonlinear, it can
be solved using a standard nonlinear conjugate gradient method. This synthesis
algorithm is delineated in Algorithm 5.

5.3.4 Discretization of the EFI-Based Inverse Algorithm
This algorithm follows the same discretization procedure as the Born iterative

method (section 4.2.5.1). Note that a discretized version of the operators L̃ΩL

κ and
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Algorithm 5: EFI-based Inverse Design Algorithm
n=0 ;
Init Ji,0 and ϵl,0 following the algebraic procedure described in section 5.3.2;
Init Dl,0 accordingly (eq. (5.30)) ;
Init the residuals f0 and ρ0 using eq. (5.40) and eq. (5.41);
Init ηD,0 and ηS using eq. (5.43) and eq. (5.44);
Init F0;
while Fn > tolerance do

Compute the gradients gκ
n, gD

n , and gJ
n using eq. (5.46), eq. (5.45), and

eq. (5.48) ;
Compute the Polak-Ribière update directions wn, vn, and zn from
eq. (5.49), eq. (5.52), eq. (5.55);

Compute the weights αD
n , ακ

n, and αJ
n by simultaneously minimizing

eq. (5.62) and eq. (5.61);
Update Dl,n, κn, and Ji,n using eq. (5.37), eq. (5.38), and eq. (5.39);
Update the residuals fn and ρn using eq. (5.40) and eq. (5.41);
Update ηD,n using eq. (5.43);
Update Fn;
n=n+1;

end
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T̃ i introduced in eq. (5.35) can be obtained by leveraging the Schur complement
formulas on eq. (5.30), as performed in section 5.3.2 to obtain a relation between
the coefficients of the target field and the coefficients of the currents in the dipole
array.

5.4 Numerical Results
The numerical results regarding the reconstruction of the electric field in the

brain in the presence of EEG electrodes are provided in this section. The geomet-
rical model employed for testing the algorithm is a homogeneous sphere of radius
10 cm and relative permittivity 40− 15j. The domains Ωv and Ωṽ which are intro-
duced in section 5.2 are depicted in fig. 5.3a. The sphere is discretized with 1069
tetrahedra (see fig. 5.3a and fig. 5.3b) and is covered with 18 EEG caps that are
made of triangles of the surface of the tetrahedral mesh (as shown in fig. 5.3b). The
frequency used in the simulation for the real source and the reconstruction source
is 0.1 GHz. The real source is a point dipole with dipole moment ẑ placed at 10 cm
from the left side of the head. Regarding the reconstruction setup, an array of 18
dipoles is placed at 9 positions on the same plane as the real source (at each point
there is a ŷ−oriented dipole and ẑ−oriented dipole). The lens is placed between
the dipole array and the head and is discretized with 1536 tetrahedra forming 256
cubes, each cube possibly having a different permittivity. The relative permittivity
of the lens is initialized at 8. The reconstruction source composed of the array of
dipoles and the lens is illustrated in fig. 5.4a. In the reconstruction algorithm, the
coefficients of the 18 dipoles and the permittivities of the 256 cubes are optimized
to get the minimum error as possible with respect to the field originally radiated
by the real source (i.e. minimum Fn in eq. (5.60)).

(a) (b)

Figure 5.3: (a) Cut view of the sphere showing the two layers Ωv (orange) and Ωṽ

(pink). (b) 3D view of the discretized sphere covered with discretized EEG caps.
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(a) (b)

Figure 5.4: (a) 3D visualization of the discretized lens and the array of 18 dipoles.
(b) Permittivity profile of the synthesized lens.

The convergence of the reconstruction algorithm for the system dipole array
and lens (lensed antenna) is provided (in blue) in fig. 5.6. The black horizontal
line corresponds to the error on the field when no reconstruction is performed, it
represents how perturbed the field is. The red line corresponds to the reconstruction
error using only the dipole array. It results that the reconstruction error for the
lensed antenna is converging below the errors mentioned above (black and red lines).
In that case, the addition of the lens to the array of dipoles enables lowering the
reconstruction error. The resulting permittivity profile of the synthesized lens is
displayed in fig. 5.4b.

Finally, the relative errors between the norm of the target electric field and the
norm of the fields without and with reconstruction as a function of the position in
the reconstruction region are shown in figs. 5.5a and 5.5b, respectively. The proper
reconstruction of the field can be clearly visualized in fig. 5.5b, especially in the
region that is on the same side as the lensed antenna (i.e. left hand side).

5.5 Conclusion and Future Work
A synthesis method has been introduced for the design of a lensed antenna

enabling the reconstruction of the electric field radiated by a source in the head in
the presence of EEG electrodes on the scalp. This was achieved by leveraging a
hybrid volume surface integral equation method together with an inverse scattering
scheme applied in the context of material and source synthesis. The remaining tasks
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(a) (b)

Figure 5.5: Cut view of the sphere showing the relative error between the norm of
the target electric field and the norm of the field obtained (a) without reconstruction
and (b) with reconstruction.
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Figure 5.6: Convergence of the reconstruction error Fn.

to further improve the reconstruction and make it more realistic are the following

• Use a more realistic source for the modeling of the phone,

• Use a realistic head model (i.e. specific anthropomorphic mannequin (SAM)
head [54] shown in fig. 5.7),
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Figure 5.7: 3D view of the discretized SAM head model covered with discretized
EEG caps.

• Constrain the algorithm to get a permittivity profile that can be manufac-
tured,

• Consider the coupling between the head and the lens in the source design,

• Perform the experimental validation of the reconstruction source.
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Chapter 6

Conclusion and Future Work

In this dissertation the following techniques based on volume integral equations
were introduced for the improvement of the forward modeling and the resolution
of inverse problems in bioelectromagnetics

• Regularized D-VIE for bioelectromagnetic forward modeling Lever-
aging a new set of volume quasi-Helmholtz projectors, the D-VIE was regu-
larized at low frequencies in lossy dielectric objects, making it a formulation
of choice when the full-wave electromagnetic modeling of biological tissues is
needed,

• D-VIE based inverse scheme for microwave imaging An inverse scat-
tering scheme in the family of gradient based methods has been introduced
for the D-VIE formulation. It successfully reconstructed three-dimensional
permittivity profiles in a microwave imaging setting,

• Design of a lensed antenna for field reconstruction in a head with
EEG caps An inverse synthesis technique for the design of a source composed
of a dipole array and a dielectric lens was presented. This source is specifically
tailored to pre-deform a field so that the resulting field distribution in the head
is not perturbed by the EEG electrodes placed on it.

The techniques introduced in this work can be further improved and pave the way
to some new research lines.

• Acceleration of the D-VIE formulation The acceleration of the D-VIE
formulation would benefit to the three contributions above-mentioned. Some
existing acceleration techniques (e.g. the FMM, the ACA, or the adaptive
integral method (AIM)) could be applied to the D-VIE to enable fast matrix-
vector products, which is a property highly desired in iterative methods such
as the inverse scattering schemes presented in this thesis,
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• Benefit from the regularized D-VIE in deep brain stimulation In this
thesis, the preconditioned formulation was applied to the problem of EEG
source localization. While it proves that the formulation behaves correctly in
the quasi-static regime, this application does not fully exploit its potential.
In deep brain stimulation, pulses beyond the kilohertz regime are injected in
the brain to treat pathologies. For this reason, the regularized D-VIE could
be employed instead of Poisson-based solvers to better capture the frequency
effects occurring,

• Add a sparsity constraint in the cost functional of the inverse de-
sign algorithm In the scheme employed to optimize the coefficients of the
array of dipoles and the permittivity of the lens, the dipoles were placed at a
(reasonable) number of discrete positions on a grid. A better solution would
be to use a dense grid of possible positions for the dipoles and at the same
time to enforce that the coefficients of the dipoles on that grid must be sparse.
This constraint would possibly increase the number of degrees of freedom for
a given number of dipoles,

• Tackle the high internal contrast limitation of the D-VIE While the
regularized D-VIE introduced in this thesis cures the high-contrast problem
between lossy dielectric objects and their background, the limitations caused
by the internal contrasts between the different parts of the inhomogeneous
object cannot be solved with the proposed preconditioner. A further theoret-
ical analysis around the new set of volume quasi-Helmholtz projectors should
be performed to show that they can cure the high internal contrast problem
in the D-VIE with proper re-scaling.
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Appendix A

Complementarity of the Scaled
Projectors

In this appendix, it is shown that eq. (3.19) is valid, i.e., the sum of the two
scaled projectors is equal to the identity matrix. We first prove that any SWG
coefficient vector α can be uniquely decomposed with the scaled loop-star decom-
position

α = AΣs̃ + Λl̃ , (A.1)
where A ∈ CNF ×NF is an invertible complex symmetric matrix with one of the
(potentially many different) square root matrices denoted by A 1

2 and l̃ and s̃ are
the coefficient vectors of the solenoidal and non-solenoidal basis functions in this
new decomposition. Equation eq. (A.1) is equivalent to say that the column vectors
of Λ and AΣ form complementary subspaces in CNF and also equivalent to say that
the matrix [AΣ Λ] is invertible.

To prove eq. (A.1) we show that A− 1
2α can be orthogonally decomposed as

A− 1
2α = A− 1

2Λl̃ + A 1
2Σs̃ , (A.2)

the existence (and unicity) of which is equivalent to the existence (and unicity)
of eq. (A.1) since A 1

2 is invertible. Since
(︂
A− 1

2Λ
)︂T
A

1
2Σ = 0, the decomposition

is an orthogonal one and these two scaled transformation matrices have linearly
independent column vectors. Then we need to show that the rank of the sum
of A− 1

2Λ and A 1
2Σ is equal to the number of SWG basis functions NF . Since

rank(A− 1
2Λ) = rank(Λ) (A 1

2 is invertible), rank(A 1
2Σ) = rank(Σ), rank([Σ Λ]) =

NF , and A− 1
2Λ and A 1

2Σ have their column vectors linearly independent, we have

rank
(︂[︂
A

1
2Σ A− 1

2Λ
]︂)︂

= rank(A 1
2Σ) + rank(A− 1

2Λ)
= rank(Σ) + rank(Λ) = NF .

(A.3)

for which it follows the invertibility of
[︂
A

1
2Σ A− 1

2Λ
]︂

and thus of [AΣ Λ] which
proves eq. (A.1).
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Then, from eq. (A.1), we want to show that eq. (3.19) is true. To this aim, we
first multiply eq. (A.1) by ΛTA−1 and ΣT, and we obtain the following equations

ΛTA−1α = ΛTA−1Λl̃ (A.4)
ΣTα = ΣTAΣs̃ , (A.5)

in which we used the properties that ΛTA−1AΣ = 0 and ΣTΛ = 0. From eq. (A.4)
and eq. (A.5), we can now express the coefficients of the loop and star basis functions
from the coefficients of the SWG basis functions

l̃ = (ΛTA−1Λ)+ΛTA−1α (A.6)
s̃ = (ΣTAΣ)+ΣTα. (A.7)

The next step is to obtain the solenoidal and non-solenoidal parts of α (αl and αs)
in terms of α by applying Λ and AΣ to equations eqs. (A.6) and (A.7)

αl = Λl̃ = Λ(ΛTA−1Λ)+ΛTA−1f = P ΛA−α (A.8)
αs = AΣs̃ = AΣ(ΣTAΣ)+ΣTf = PΣA−α, (A.9)

where

PΣA− = AΣ
(︂
ΣTAΣ

)︂+
ΣT (A.10)

P ΛA− = Λ
(︂
ΛTA−1Λ

)︂+
ΛTA−1. (A.11)

Finally, α = αl + αs yields α = (P ΛA− + PΣA−)α, and thus P ΛA− + PΣA− = I.
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Appendix B

Cancellation of the Surface Terms
with the Loop-to-SWG Mapping
Matrix

We show in this appendix that ZΦ,Λ = 0. To this aim, we first decompose
ZΦ, as

ZΦ, = Zfull
Φ, + Zhbf

Φ,, (B.1)
where

[Zfull
Φ,]nm1 =

ϵ−1
0

[︃∫︂
Ω
∇ · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm1(r′) dv′ dv

−
∫︂

∂Ω
n̂n · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm1(r′) dv′ ds

]︃
,

(B.2)

and

[Zhbf
Φ,]nm2 =

ϵ−1
0

[︃∫︂
Ω
∇ · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm2(r′) dv′ dv

−
∫︂

Ω
∇ · fn(r)

∫︂
∂Ω
G0(r, r′)κ+

m2n̂m2 · fm2(r′) ds′ dv

−
∫︂

∂Ω
n̂n · fn(r)

∫︂
Ω
G0(r, r′)κ(r′)∇ · fm2(r′) dv′ ds

+
∫︂

∂Ω
n̂n · fn(r)

∫︂
∂Ω
G0(r, r′)κ+

m2n̂m2 · fm2(r′) ds′ ds
]︃
,

(B.3)

in which {fm1} and {fm2} are the sets of SWG basis functions defined on two
tetrahedra and the half SWG basis functions, respectively and the indices m1 and
m2 are the indices of these basis functions in the original set of SWG basis functions.
The total number of SWG basis functions NF is the sum of the cardinality of {fm1}
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and the cardinality of {fm2}. Note that the matrix entries of Zfull
Φ, and Zhbf

Φ, that
are not filled in eqs. (B.2) and (B.3) are filled with zeros, that is [Zfull

Φ,]nm2 = 0 and
[Zhbf
Φ,]nm1 = 0.
The property Zfull

Φ,Λ = 0 can be verified trivially. However, we need a further
analysis to show that Zhbf

Φ,Λ = 0. Instead of directly proving that Zhbf
Φ,Λ = 0, we

will show that Zhbf
Φ,P

Λ
A− = 0, which implies that Zhbf

Φ,Λ = 0 (Λ being a full column
rank matrix). Recalling that the basis functions in Zhbf

Φ, can be reordered such that

Zhbf
Φ, =

[︂
0 H

]︂
, (B.4)

in which H ∈ CNF ×NeF contains all the matrix entries defined in eq. (B.3) (i.e.
columns of Zhbf

Φ, that are not zero) and that ΣsT can be rearranged as [0 − I]
following its definition in eq. (3.15). Using the above-mentioned definitions of Zhbf

Φ,

and ΣsT, we can expand Zhbf
Φ,P

Λ
A− as

Zhbf
Φ,P

Λ
A− =

[︂
0 H

]︂ [︄I 0
0 I

]︄
P ΛA−

=
[︂
0 H

]︂ [︄ I 0

−ΣsT
]︄
P ΛA−

= −HΣsTP ΛA− .

(B.5)

Therefore, ΣsTP ΛA− = 0 leads to Zhbf
Φ,P

Λ
A− = 0. Given that the expansion of

ΣTP ΛA− results in

ΣTP ΛA− = ΣT
(︂
I− PΣA−

)︂
= ΣT

(︃
I− AΣ

(︂
ΣTAΣ

)︂+
ΣT

)︃
= ΣT −ΣTAΣ

(︂
ΣTAΣ

)︂+
ΣT

= ΣT −ΣT

= 0,

(B.6)

and that the property ΣTP ΛA− = [Σv Σs ]T P ΛA− = 0 implies that ΣsTP ΛA− = 0
since ΣsT is of the form [0 − I], we obtain that ΣsTP ΛA− = 0. Finally, leveraging
eq. (B.5), it results that Zhbf

Φ,P
Λ
A− = 0, which in turn gives ZΦ,Λ = 0.
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Appendix C

Non-Singularity of the Normalized
Loop-Star Decomposition Matrix

In this appendix, we show that the normalized loop/star-to-SWG decomposition
matrix introduced in eq. (3.26) is non-singular, and hence can be employed to
investigate the conditioning behavior of the discretized D-VIE in section 3.4. To
this aim, we first expand MLS = BG̃ϵΛΣ

T
BG̃ϵΛΣ to study the singular values of BG̃ϵΛΣ

MLS = BG̃ϵΛΣ
T
BG̃ϵΛΣ

=
⎡⎣Λ

T
Λ Λ

T
Σ

Σ
T
Λ Σ

T
Σ

⎤⎦
=
[︄

I O
OT I

]︄
.

(C.1)

in which
O = (ΛTΛ)− 1

2ΛTG̃ϵ
−1
Σ(ΣTG̃ϵ

−2
Σ)− 1

2 . (C.2)

From eq. (C.1), it results that BG̃ϵΛΣ has no singular value at 0 if the norm of the
off-diagonal block O is strictly lower than 1. To show that this condition is fulfilled,
some properties regarding the angle between complementary subspaces [94, 55] are
employed in the following. Here the angle of interest is the angle between the
subspaces R and N in CNF , associated to the orthonormal bases formed by the
column vectors of Σ and Λ, respectively. By introducing the following orthogonal
(symmetric) projectors onto R and N

PR = ΣΣ
T

= G̃ϵ
−1
Σ(ΣTG̃ϵ

−2
Σ)−1ΣTG̃ϵ

−1 (C.3)

PN = ΛΛ
T

= Λ(ΛTΛ)−1ΛT, (C.4)
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the cosine of the minimal angle θ (0 ≤ θ ≤ π/2) between R and N can be defined
as [94, 55]

cos θ = ∥PNPR∥ = ∥PRPN∥. (C.5)

Then, using the fact that Λ
T
Λ = I and Σ

T
Σ = I yields the following inequalities

∥PNPR∥ = ∥ΛΛ
T
ΣΣ

T
∥ ≤ ∥Λ

T
Σ∥ (C.6)

∥Λ
T
Σ∥ = ∥Λ

T
ΛΛ

T
ΣΣ

T
Σ∥ = ∥Λ

T
PNPRΣ∥ ≤ ∥PNPR∥, (C.7)

which shows that ∥PNPR∥ = ∥Λ
T
Σ∥. From eq. (C.5), it follows that

cos θ = ∥Λ
T
Σ∥. (C.8)

Then, recalling the fact that R and N are complementary subspaces in CNF (see
Appendix A), we have cos θ < 1 [94, 55]. Finally, leveraging eq. (C.8), it results
that BG̃ϵΛΣ is non-singular.

106



Appendix D

Estimation of the Update Weights
in the EFI-Based Inverse Design
Algorithm

The coefficients of the nonlinear systems which solved for the weights αD
n , ακ

n,
and αJ

n are given in the following. The cost functional Fn,data(κn,Dl,n,Ji,n) can be
rearranged as

Fn,data(κn, Dl,n, Ji,n) = ηS

[︁
αD

n a + ακ
nb + αu

nc + αD
n ακ

nd + αu
nακ

ne + αu
nαD

n f + αu
nακ

nαD
n g

+(αD
n )2A + (ακ

n)2B + (αu
n)2C + (αD

n ακ
n)2D + E

+αD
n (ακ

n)2F + (αD
n )2ακ

nG
]︁ (D.1)

in which the coefficients a, b, c, d, e, f, g, A,B,C,D,E, F , and G read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = −2Re ⟨ρn−1, L̃ΩL
κn−1 vn⟩ΩH̃

b = −2Re ⟨ρn−1, L̃ΩL
wn

Dl,n−1⟩ΩH̃

c = −2Re ⟨ρn−1, T̃ izn⟩ΩH̃

d = 2Re ⟨L̃ΩL
κn−1 vn, L̃ΩL

wn
Dl,n−1⟩ΩH̃

− 2Re ⟨ρn−1, L̃ΩL
wn

vn⟩ΩH̃

e = 2Re ⟨T̃ izn, L̃ΩL
wn

Dl,n−1⟩ΩH̃

f = 2Re ⟨T̃ izn, L̃ΩL
κn−1 vn⟩ΩH̃

g = 2Re ⟨T̃ izn, L̃ΩL
wn

vn⟩ΩH̃

A = ∥L̃ΩL
κn−1 vn∥2

ΩH̃

B = ∥L̃ΩL
wn

Dl,n−1∥2
ΩH̃

C = ∥T̃ izn∥2
ΩH̃

D = ∥L̃ΩL
wn

vn∥2
ΩH̃

E = ∥ρn−1∥2
ΩH̃

F = 2Re ⟨L̃ΩL
wn

Dl,n−1, L̃ΩL
wn

vn⟩ΩH̃

G = 2Re ⟨L̃ΩL
κn−1 vn, L̃ΩL

wn
vn⟩ΩH̃

.

(D.2)

and the cost functional of the state equation can be rewritten as
Fn,state(κn, Dl,n, Ji,n) = ηD,n−1

[︁
αD

n a′ + ακ
nb′ + αu

nc′ + αD
n ακ

nd′ + αu
nακ

ne′ + αu
nαD

n f ′ + αu
nακ

nαD
n g′

+(αD
n )2A′ + (ακ

n)2B′ + (αu
n)2C′ + (αD

n ακ
n)2D′ + E′

+αD
n (ακ

n)2F ′ + (αD
n )2ακ

nG′
]︁

,

(D.3)
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in which a′, b′, c′, d′, e′, f ′, g′, A′, B′, C ′, D′, E ′, F ′, and G′ are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′ = 2Re ⟨fn−1,LΩL
κn−1 vn⟩ΩL

− 2
ϵ0

Re ⟨vn, fn−1⟩ΩL
+ 2

ϵ0
Re ⟨κn−1vn, fn−1⟩ΩL

b′ = 2Re ⟨fn−1,LΩL
wn Dl,n−1⟩ΩL

+ 2
ϵ0

Re ⟨wnDl,n−1, fn−1⟩ΩL

c′ = 2Re ⟨fn−1,Tizn⟩ΩL

d′ = − 2
ϵ02 Re ⟨vn, wnDl,n−1⟩ΩL

+ 2
ϵ2

0
Re ⟨κn−1vn, wnDl,n−1⟩ΩL

+ 2
ϵ0

Re ⟨wnvn, fn−1⟩ΩL

+ 2
ϵ0

Re ⟨wnDl,n−1,LΩL
κn−1 vn⟩ΩL

− 2
ϵ0

Re ⟨vn,LΩL
wn Dl,n−1⟩ΩL

+ 2
ϵ0

Re ⟨κn−1vn,LΩL
wn Dl,n−1⟩ΩL

+2Re ⟨LΩL
κn−1 vn,LΩL

wn Dl,n−1⟩ΩL
+ 2Re ⟨fn−1,LΩL

wn vn⟩ΩL

e′ = 2
ϵ0

Re ⟨wnDl,n−1,Tizn⟩ΩL
+ 2Re ⟨LΩL

wn Dl,n−1,Tizn⟩ΩL

f ′ = − 2
ϵ0

Re ⟨vn,Tizn⟩ΩL
+ 2

ϵ0
Re ⟨κn−1vn,Tizn⟩ΩL

+ 2Re ⟨LΩL
κn−1 vn,Tizn⟩ΩL

g′ = 2
ϵ0

Re ⟨wnvn,ZIzn⟩ΩL
+ 2Re ⟨LΩL

wn vn,ZIzn⟩ΩL

A′ = 1
ϵ0

∥vn∥2
ΩL

+ 1
ϵ0

∥κn−1vn∥2
ΩL

+ ∥LΩL
κn−1 vn∥2

ΩL
+ 2

ϵ02 Re ⟨vn, κn−1vn⟩ΩL

− 2
ϵ0

Re ⟨vn,LΩL
κn−1 vn⟩ΩL

+ 2
ϵ0

Re ⟨κn−1vn,LΩL
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B′ = 1
ϵ0

∥wnDl,n−1∥2
ΩL

+ ∥LΩL
wn Dl,n−1∥2

ΩL
+ 2

ϵ0
Re ⟨wnDl,n−1,LΩL

wn Dl,n−1⟩ΩL

C′ = ∥Tizn∥2
ΩL

D′ = 1
ϵ0

∥wnvn∥2
ΩL

+ ∥LΩL
wn vn∥2

ΩL
+ 2

ϵ0
Re ⟨wnvn,LΩL

wn vn⟩ΩL

E′ = ∥fn−1∥2
ΩL

F ′ = 2
ϵ02 Re ⟨wnDl,n−1, wnvn⟩ΩL

+ 2
ϵ0

Re ⟨wnvn,LΩL
wn Dl,n−1⟩ΩL

+ 2
ϵ0

Re ⟨wnDl,n−1,LΩL
wn vn⟩ΩL

+ 2Re ⟨LΩL
wn Dl,n−1,LΩL

wn vn⟩ΩL

G′ = − 2
ϵ02 Re ⟨vn, wnvn⟩ΩL

+ 2
ϵ02 Re ⟨κn−1vn, wnvn⟩ΩL

+ 2
ϵ0

Re ⟨wnvn,LΩL
κn−1 vn⟩ΩL

− 2
ϵ0

Re ⟨vn,LΩL
wn vn⟩ΩL

+ 2
ϵ0

Re ⟨κn−1vn,LΩL
wn vn⟩ΩL

+ 2Re ⟨LΩL
κn−1 vn,LΩL

wn vn⟩ΩL
.

(D.4)
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Nomenclature

Acronyms

ACA Adaptive cross approximation

BIM Born iterative method

CEM Computational electromagnetics

D-VIE Electric flux volume integral equation

EEG Electroencephalography

EFI Electric flux inversion

EFIE Electric field integral equation

FDM Finite difference method

FEM Finite element method

FMM Fast multipole method

HVSIE Hybrid volume-surface integral equation

ICNIRP International commission on non-ionizing radiation protection

IE Integral equation

IS Inverse scattering

J-VIE Current volume integral equation

MGM Modified gradient method

MoM Method of moments

MVP Matrix-vector product

MWI Microwave imaging
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Nomenclature

NKM Newton Kantorovich method

PEC Perfect electric conductor

RCS Radar cross section

RF Radio frequency

RWG Rao-Wilton-Glisson

SAR Specific absorption rate

SEP Surface equivalence principle

SIE Surface integral equation

SWG Schaubert-Wilton-Glisson

VEP Volume equivalence principle

VIE Volume integral equation

Notations

arg min Argument of the minimum

ϵr Relative permittivity

I Identity matrix

O Big O Bachmann–Landau symbol

A∗ Conjugate transpose of A

A+ Moore-Penrose pseudo inverse of A

cond(Z) Condition number of Z

uT Transpose of u

n̂(r) Unit normal to the boundary of the domain at position r

A⋆ Adjoint of A

γr Rotated tangential trace operator

smax(Z) Maximum singular value of Z

smin(Z) Minimum singular value of Z
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Nomenclature

Physical Quantities

ϵ0 (F m−1) Permittivity of vacuum

µ0 (H m−1) Permeability of free space

ω (rad s−1) Angular frequency

ρ (C m−3) Electric charge density

ϕ (V) Electric scalar potential

r, r′ Position vectors

A (V s m−1) Magnetic vector potential

B (T) Magnetic flux density

D (C m−2) Electric flux density

E (A m−1) Electric field

H (A m−1) Magnetic field

J (A m−2) Electric current density

M (V/m2) Magnetic current density

c0 (m s−1) Speed of light in vacuum

G0(r, r′) 3D Green’s function in vacuum

k0 Wave number in vacuum
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Publications

Journal Publications
• Xi Cheng, Clément Henry, Francesco P. Andriulli, Christian Person, and

Joe Wiart. “A Surrogate Model Based on Artificial Neural Network for RF
Radiation Modelling with High-Dimensional Data”. In: International Journal
of Environmental Research and Public Health 17.7 (2020)

• Jade Martínez-Llinàs, Clément Henry, Daniel Andrén, Ruggero Verre, Mikael
Käll, and Philippe Tassin. “A Gaussian reflective metasurface for advanced
wavefront manipulation”. In: Opt. Express 27.15 (July 2019), pp. 21069–
21082

Publications in Preparation
• Clément Henry, Adrien Merlini, Lyes Rahmouni, and Francesco P. Andriulli.

“On a Low-Frequency and Contrast Stabilized Full-Wave Volume Integral
Equation Solver for Lossy Media”. 2021

Conference Contributions
• Clément Henry, Adrien Merlini, Lyes Rahmouni, and Francesco P. Andriulli.

“A Regularized Electric Flux Volume Integral Equation for Brain Imaging”.
In: 2020 IEEE International Symposium on Antennas and Propagation and
North American Radio Science Meeting. 2020, pp. 1025–1026

• Clément Henry, Adrien Merlini, Lyes Rahmouni, and Francesco P. Andriulli.
“On the Use of a Full-Wave Solver in the Solution of the Electroencephalogra-
phy Forward Problem”. In: 2019 IEEE International Symposium on Anten-
nas and Propagation & USNC/URSI National Radio Science Meeting. July
2019, Abstract and presentation

113



114



Bibliography

[1] Aria Abubakar and Peter M van den Berg. “Iterative forward and inverse
algorithms based on domain integral equations for three-dimensional electric
and magnetic objects”. In: Journal of computational physics 195.1 (2004),
pp. 236–262.

[2] A. Afsari, A. M. Abbosh, and Y. Rahmat-Samii. “A Rapid Medical Mi-
crowave Tomography Based on Partial Differential Equations”. In: IEEE
Transactions on Antennas and Propagation 66.10 (Oct. 2018), pp. 5521–
5535.

[3] Erik Aguirre Gallego et al. “Evaluation of electromagnetic dosimetry of wire-
less systems in complex indoor scenarios with human body interaction”. In:
Progress In Electromagnetics Research B, Vol. 43, 189-209, 2012. (2012).

[4] F. P. Andriulli. “Loop-Star and Loop-Tree Decompositions: Analysis and
Efficient Algorithms”. In: IEEE Transactions on Antennas and Propagation
60.5 (May 2012), pp. 2347–2356.

[5] F. P. Andriulli et al. “On a Well-Conditioned Electric Field Integral Operator
for Multiply Connected Geometries”. In: IEEE Transactions on Antennas
and Propagation 61.4 (Apr. 2013), pp. 2077–2087.

[6] M. Azghani and F. Marvasti. “L2-Regularized Iterative Weighted Algorithm
for Inverse Scattering”. In: IEEE Transactions on Antennas and Propagation
64.6 (June 2016), pp. 2293–2300.

[7] S. Baillet, J. C. Mosher, and R. M. Leahy. “Electromagnetic brain mapping”.
In: IEEE Signal Processing Magazine 18.6 (2001), pp. 14–30.

[8] Anthony T Barker, Reza Jalinous, and Ian L Freeston. “Non-invasive mag-
netic stimulation of human motor cortex”. In: The Lancet 325.8437 (1985),
pp. 1106–1107.

[9] Mario Bebendorf. “Approximation of boundary element matrices”. In: Nu-
merische Mathematik 86.4 (2000), pp. 565–589.

[10] Yves Beghein et al. “On a low-frequency and refinement stable PMCHWT in-
tegral equation leveraging the quasi-Helmholtz projectors”. In: IEEE Trans-
actions on Antennas and Propagation 65.10 (2017), pp. 5365–5375.

115



BIBLIOGRAPHY

[11] P. M. van den Berg and A. Abubakar. “Contrast Source Inversion Method:
State of Art”. In: Progress In Electromagnetics Research 34 (2001), pp. 189–
218.

[12] Peter M van den Berg, AL Van Broekhoven, and Aria Abubakar. “Extended
contrast source inversion”. In: Inverse problems 15.5 (1999), p. 1325.

[13] Max Born. “Quantenmechanik der stoßvorgänge”. In: Zeitschrift für Physik
38.11-12 (1926), pp. 803–827.

[14] A Bossavit. “Computational electromagnetism and geometry: Building a
finite-dimensional “Maxwell’s house””. In: Journal of Japanese Society of
Applied Electromagnetics and Mechanics 7 (1999), pp. 150–159.

[15] Chad A Bossetti, Merrill J Birdno, and Warren M Grill. “Analysis of the
quasi-static approximation for calculating potentials generated by neural
stimulation”. In: Journal of Neural Engineering 5.1 (Dec. 2007), pp. 44–53.

[16] Matthys M. Botha. “Solving the volume integral equations of electromag-
netic scattering”. In: Journal of Computational Physics 218.1 (2006), pp. 141–
158.

[17] Neil V. Budko and Alexander B. Samokhin. “Spectrum of the Volume Inte-
gral Operator of Electromagnetic Scattering”. In: SIAM Journal on Scien-
tific Computing 28.2 (2006), pp. 682–700.

[18] Augustin Cauchy et al. “Méthode générale pour la résolution des systemes
d’équations simultanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–
538.

[19] Michel Cessenat. Mathematical methods in electromagnetism: linear theory
and applications. Vol. 41. World scientific, 1996.

[20] Margaret Cheney, David Isaacson, and Jonathan C. Newell. “Electrical Impedance
Tomography”. In: SIAM Review 41.1 (1999), pp. 85–101.

[21] Xi Cheng et al. “A Surrogate Model Based on Artificial Neural Network for
RF Radiation Modelling with High-Dimensional Data”. In: International
Journal of Environmental Research and Public Health 17.7 (2020).

[22] W. C. Chew and Y. M. Wang. “Reconstruction of two-dimensional per-
mittivity distribution using the distorted Born iterative method”. In: IEEE
Transactions on Medical Imaging 9.2 (June 1990), pp. 218–225.

[23] I.-T. Chiang and W.-C. Chew. “New Formulation and Iterative Solution for
Low-Frequency Volume Integral Equation”. In: Journal of Electromagnetic
Waves and Applications 19.3 (2005), pp. 289–306.

[24] Febo Cincotti et al. “High-resolution EEG techniques for brain–computer
interface applications”. In: Journal of Neuroscience Methods 167.1 (2008),
pp. 31–42.

116



BIBLIOGRAPHY

[25] J. Claassen et al. “Continuous EEG monitoring and midazolam infusion
for refractory nonconvulsive status epilepticus”. In: Neurology 57.6 (2001),
pp. 1036–1042.

[26] David L Colton, Rainer Kress, and Rainer Kress. Inverse acoustic and elec-
tromagnetic scattering theory. Vol. 93. Springer, 1998.

[27] Martin Costabel, Eric Darrigrand, and Hamdi Sakly. “The essential spec-
trum of the volume integral operator in electromagnetic scattering by a ho-
mogeneous body”. In: Comptes Rendus Mathematique 350.3 (2012), pp. 193–
197.

[28] RJ Croft et al. “The effect of mobile phone electromagnetic fields on the al-
pha rhythm of human electroencephalogram”. In: Bioelectromagnetics: Jour-
nal of the Bioelectromagnetics Society, The Society for Physical Regulation
in Biology and Medicine, The European Bioelectromagnetics Association
29.1 (2008), pp. 1–10.

[29] G Curcio et al. “Is the brain influenced by a phone call?: an EEG study of
resting wakefulness”. In: Neuroscience research 53.3 (2005), pp. 265–270.

[30] M. Cvetković, D. Poljak, and J. Haueisen. “Analysis of Transcranial Mag-
netic Stimulation Based on the Surface Integral Equation Formulation”. In:
IEEE Transactions on Biomedical Engineering 62.6 (2015), pp. 1535–1545.

[31] J. C. de Munck, B. W. van Dijk, and H. Spekreijse. “Mathematical dipoles
are adequate to describe realistic generators of human brain activity”. In:
IEEE Transactions on Biomedical Engineering 35.11 (Nov. 1988), pp. 960–
966.

[32] S. Depatla, C. R. Karanam, and Y. Mostofi. “Robotic Through-Wall Imag-
ing: Radio-Frequency Imaging Possibilities with Unmanned Vehicles.” In:
IEEE Antennas and Propagation Magazine 59.5 (2017), pp. 47–60.

[33] D. Dobbelaere et al. “A Calderón multiplicative preconditioner for the elec-
tromagnetic Poincaré–Steklov operator of a heterogeneous domain with scat-
tering applications”. In: Journal of Computational Physics 303 (2015), pp. 355–
371.

[34] Marián Fabian et al. Functional analysis and infinite-dimensional geometry.
Springer Science & Business Media, 2013.

[35] Elise C Fear et al. “Microwave breast imaging with a monostatic radar-
based system: A study of application to patients”. In: IEEE transactions on
microwave theory and techniques 61.5 (2013), pp. 2119–2128.

[36] C. Forestiere et al. “A Frequency Stable Volume Integral Equation Method
for Anisotropic Scatterers”. In: IEEE Transactions on Antennas and Prop-
agation 65.3 (Mar. 2017), pp. 1224–1235.

117



BIBLIOGRAPHY

[37] S Gabriel, R W Lau, and C Gabriel. “The dielectric properties of biological
tissues: III. Parametric models for the dielectric spectrum of tissues”. In:
Physics in Medicine and Biology 41.11 (Nov. 1996), pp. 2271–2293.

[38] Rania Ghosn et al. “Effets des radiofréquences sur le système nerveux cen-
tral chez l’homme: EEG, sommeil, cognition, vascularisation”. In: Comptes
Rendus Physique 14.5 (2013), pp. 395–401.

[39] C. Gilmore, P. Mojabi, and J. LoVetri. “Comparison of an Enhanced Dis-
torted Born Iterative Method and the Multiplicative-Regularized Contrast
Source Inversion method”. In: IEEE Transactions on Antennas and Propa-
gation 57.8 (Aug. 2009), pp. 2341–2351.

[40] L. J. Gomez, A. C. Yücel, and E. Michielssen. “Low-Frequency Stable Inter-
nally Combined Volume-Surface Integral Equation for High-Contrast Scat-
terers”. In: IEEE Antennas and Wireless Propagation Letters 14 (2015),
pp. 1423–1426.

[41] L. J. Gomez, A. C. Yücel, and E. Michielssen. “The ICVSIE: A General
Purpose Integral Equation Method for Bio-Electromagnetic Analysis”. In:
IEEE Transactions on Biomedical Engineering 65.3 (Mar. 2018), pp. 565–
574.

[42] M. Gossye et al. “A Calderón Preconditioner for High Dielectric Contrast
Media”. In: IEEE Transactions on Antennas and Propagation 66.2 (Feb.
2018), pp. 808–818.

[43] L. Greengard and V. Rokhlin. “A Fast Algorithm for Particle Simulations”.
In: Journal of Computational Physics 135.2 (1997), pp. 280–292.

[44] Stefan Gumhold, Stefan Guthe, and Wolfgang Straundefineder. “Tetrahe-
dral Mesh Compression with the Cut-Border Machine”. In: Proceedings of
the Conference on Visualization ’99: Celebrating Ten Years. San Francisco,
California, USA: IEEE Computer Society Press, 1999, pp. 51–58.

[45] Per Christian Hansen. Rank-deficient and discrete ill-posed problems: nu-
merical aspects of linear inversion. SIAM, 1998.

[46] Harold V Henderson and Shayle R Searle. “On deriving the inverse of a sum
of matrices”. In: Siam Review 23.1 (1981), pp. 53–60.

[47] Clément Henry et al. “A Regularized Electric Flux Volume Integral Equa-
tion for Brain Imaging”. In: 2020 IEEE International Symposium on An-
tennas and Propagation and North American Radio Science Meeting. 2020,
pp. 1025–1026.

[48] Clément Henry et al. “On a Low-Frequency and Contrast Stabilized Full-
Wave Volume Integral Equation Solver for Lossy Media”. 2021.

118



BIBLIOGRAPHY

[49] Clément Henry et al. “On the Use of a Full-Wave Solver in the Solution of
the Electroencephalography Forward Problem”. In: 2019 IEEE International
Symposium on Antennas and Propagation & USNC/URSI National Radio
Science Meeting. July 2019, Abstract and presentation.

[50] Maila Hietanen, Tero Kovala, and Anna-Maija Hämäläinen. “Human brain
activity during exposure to radiofrequency fields emitted by cellular phones”.
In: Scandinavian journal of work, environment & health (2000), pp. 87–92.

[51] Desmond J Higham. “Condition numbers and their condition numbers”. In:
Linear Algebra and its Applications 214 (1995), pp. 193–213.

[52] K.-A. Hossmann and D.M. Hermann. “Effects of electromagnetic radiation
of mobile phones on the central nervous system”. In: Bioelectromagnetics
24.1 (2003), pp. 49–62.

[53] Bryan Howell, Leonel E Medina, and Warren M Grill. “Effects of frequency-
dependent membrane capacitance on neural excitability”. In: Journal of neu-
ral engineering 12.5 (2015), p. 056015.

[54] “IEEE Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Head from Wireless Com-
munications Devices: Measurement Techniques”. In: IEEE Std 1528-2013
(Revision of IEEE Std 1528-2003) (2013), pp. 1–246.

[55] Ilse CF Ipsen and Carl D Meyer. “The angle between complementary sub-
spaces”. In: The American mathematical monthly 102.10 (1995), pp. 904–
911.

[56] T. Isernia et al. “Inverse scattering and compressive sensing as advanced
e.m. design tools”. In: 2017 IEEE International Symposium on Antennas
and Propagation USNC/URSI National Radio Science Meeting. 2017 IEEE
International Symposium on Antennas and Propagation USNC/URSI Na-
tional Radio Science Meeting. July 2017, pp. 433–434.

[57] Jian-Ming Jin. Theory and computation of electromagnetic fields. John Wiley
& Sons, 2011.

[58] Jari Kaipio and Erkki Somersalo. Statistical and computational inverse prob-
lems. Vol. 160. Springer Science & Business Media, 2006.

[59] R. E. Kleinman and P. M. Van den Berg. “A modified gradient method for
two-dimensional problems in tomography”. In: Journal of Computational
and Applied Mathematics 42.1 (1992), pp. 17–35.

[60] Ralph Ellis Kleinman and PM Van den Berg. “An extended range-modified
gradient technique for profile inversion”. In: Radio Science 28.5 (1993),
pp. 877–884.

119



BIBLIOGRAPHY

[61] Ralph Ellis Kleinman and PM Van den Berg. “Iterative methods for solving
integral equations”. In: Radio Science 26.1 (1991), pp. 175–181.

[62] RE Kleinman and PM Van den Berg. “Two-dimensional location and shape
reconstruction”. In: Radio Science 29.4 (1994), pp. 1157–1169.

[63] J. Kornprobst, J. Knapp, and T. F. Eibert. “Approximate Inverse of the
Rao-Wilton-Glisson Basis Functions Gram Matrix via Monopolar Repre-
sentation”. In: 2019 IEEE International Symposium on Antennas and Prop-
agation and USNC-URSI Radio Science Meeting. 2019, pp. 795–796.

[64] Alexis M. Kuncel and Warren M. Grill. “Selection of stimulus parame-
ters for deep brain stimulation”. In: Clinical Neurophysiology 115.11 (2004),
pp. 2431–2441.

[65] Maokun Li and Weng Cho Chew. “Applying divergence-free condition in
solving the volume integral equation”. In: Progress In Electromagnetics Re-
search 57 (2006), pp. 311–333.

[66] J. Lin et al. “ICNIRP Guidelines for limiting exposure to time-varying elec-
tric and magnetic fields (1 Hz to 100 kHz).” In: Health Physics 99 (2010),
pp. 818–836.

[67] P. M. van den Berg. “Chapter 1.3.3 - Nonlinear Scalar Inverse Scattering:
Algorithms and Applications”. In: Scattering. Ed. by Roy Pike and Pierre
Sabatier. London: Academic Press, 2002, pp. 142–161.

[68] J. Markkanen. “Discrete Helmholtz Decomposition for Electric Current Vol-
ume Integral Equation Formulation”. In: IEEE Transactions on Antennas
and Propagation 62.12 (Dec. 2014), pp. 6282–6289.

[69] J. Markkanen et al. “Analysis of Volume Integral Equation Formulations for
Scattering by High-Contrast Penetrable Objects”. In: IEEE Transactions on
Antennas and Propagation 60.5 (May 2012), pp. 2367–2374.

[70] Johannes Markkanen and Pasi Ylä-Oijala. “Numerical comparison of spec-
tral properties of volume-integral-equation formulations”. In: Journal of
Quantitative Spectroscopy and Radiative Transfer 178 (2016), pp. 269–275.

[71] Jade Martínez-Llinàs et al. “A Gaussian reflective metasurface for advanced
wavefront manipulation”. In: Opt. Express 27.15 (July 2019), pp. 21069–
21082.

[72] L. S. Mendes and S. A. Carvalho. “Scattering of EM waves by homogeneous
dielectrics with the use of the method of moments and 3D solenoidal ba-
sis functions”. In: Microwave and Optical Technology Letters 12.6 (1996),
pp. 327–331.

[73] Rajendra Mitharwal. “Innovative Computational Paradigms for Invisible
Radio Frequency Devices”. PhD thesis. Télécom Bretagne, 2015.

120



BIBLIOGRAPHY

[74] K. Niino and N. Nishimura. “Calderón preconditioning approaches for PM-
CHWT formulations for Maxwell’s equations”. In: International Journal of
Numerical Modelling: Electronic Networks, Devices and Fields 25.5-6 (2012),
pp. 558–572.

[75] International Commission on Non-Ionizing Radiation Protection. “ICNIRP
Guidelines for limiting exposure to time-varying electric, magnetic and elec-
tromagnetic fields (up to 300 GHz).” In: Health Physics 97 (2009), pp. 257–
258.

[76] Yvan Notay. “AGMG software and documentation”. In: see http://agmg.eu
().

[77] Yvan Notay. “An aggregation-based algebraic multigrid method”. In: Elec-
tronic transactions on numerical analysis 37.6 (2010), pp. 123–146.

[78] T. F. Oostendorp, J. Delbeke, and D. F. Stegeman. “The conductivity of
the human skull: results of in vivo and in vitro measurements”. In: IEEE
Transactions on Biomedical Engineering 47.11 (2000), pp. 1487–1492.

[79] Robert Oostenveld et al. “FieldTrip: open source software for advanced anal-
ysis of MEG, EEG, and invasive electrophysiological data”. In: Computa-
tional intelligence and neuroscience 2011 (2011), p. 1.

[80] R. Palmeri et al. “Design of Artificial-Material-Based Antennas Using In-
verse Scattering Techniques”. In: IEEE Transactions on Antennas and Prop-
agation 66.12 (Dec. 2018), pp. 7076–7090.

[81] Roberta Palmeri and Tommaso Isernia. “Inverse Design of Artificial Ma-
terials Based Lens Antennas through the Scattering Matrix Method”. In:
Electronics 9.4 (Mar. 27, 2020), p. 559.

[82] Robert Plonsey and Dennis B Heppner. “Considerations of quasi-stationarity
in electrophysiological systems”. In: The Bulletin of mathematical biophysics
29.4 (1967), pp. 657–664.

[83] A.G. Polimeridis et al. “Stable FFT-JVIE solvers for fast analysis of highly
inhomogeneous dielectric objects”. In: Journal of Computational Physics 269
(2014), pp. 280–296.

[84] Z. Qian and W. C. Chew. “Enhanced A-EFIE With Perturbation Method”.
In: IEEE Transactions on Antennas and Propagation 58.10 (2010), pp. 3256–
3264.

[85] Zhi Guo Qian and Weng Cho Chew. “A quantitative study on the low fre-
quency breakdown of EFIE”. In: Microwave and Optical Technology Letters
50.5 (2008), pp. 1159–1162.

121



BIBLIOGRAPHY

[86] Sadasiva Rao, D Wilton, and Allen Glisson. “Electromagnetic scattering
by surfaces of arbitrary shape”. In: IEEE Transactions on antennas and
propagation 30.3 (1982), pp. 409–418.

[87] André Roger. “Newton-Kantorovitch algorithm applied to an electromag-
netic inverse problem”. In: IEEE Transactions on Antennas and Propagation
29.2 (1981), pp. 232–238.

[88] G. Rubinacci and A. Tamburrino. “A Broadband Volume Integral Formu-
lation Based on Edge-Elements for Full-Wave Analysis of Lossy Intercon-
nects”. In: IEEE Transactions on Antennas and Propagation 54.10 (2006),
pp. 2977–2989.

[89] D. Schaubert, D. Wilton, and A. Glisson. “A tetrahedral modeling method
for electromagnetic scattering by arbitrarily shaped inhomogeneous dielec-
tric bodies”. In: IEEE Transactions on Antennas and Propagation 32.1 (Jan.
1984), pp. 77–85.

[90] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient
method without the agonizing pain. 1994.

[91] Arnold Sommerfeld. Partial differential equations in physics. Academic press,
1949.

[92] Julius Adams Stratton. Electromagnetic theory. Vol. 33. John Wiley & Sons,
2007.

[93] LE Sun and Weng Cho Chew. “A novel formulation of the volume integral
equation for electromagnetic scattering”. In: Waves in Random and Complex
Media 19.1 (2009), pp. 162–180.

[94] Daniel B Szyld. “The many proofs of an identity on the norm of oblique
projections”. In: Numerical Algorithms 42.3-4 (2006), pp. 309–323.

[95] Andrei Nikolaevich Tikhonov. “Regularization of incorrectly posed prob-
lems”. In: Soviet Mathematics Doklady. 1963.

[96] J. A. Tobon Vasquez et al. “Noninvasive Inline Food Inspection via Mi-
crowave Imaging Technology: An Application Example in the Food Indus-
try”. In: IEEE Antennas and Propagation Magazine 62.5 (2020), pp. 18–
32.

[97] Eduard Ubeda and Juan M Rius. “Monopolar divergence-conforming and
curl-conforming low-order basis functions for the electromagnetic scatter-
ing analysis”. In: Microwave and Optical Technology Letters 46.3 (2005),
pp. 237–241.

[98] MC Van Beurden and SJL Van Eijndhoven. “Well-posedness of domain in-
tegral equations for a dielectric object in homogeneous background”. In:
Journal of Engineering Mathematics 62.3 (2008), pp. 289–302.

122



BIBLIOGRAPHY

[99] P. M. Van Den Berg et al. “A Computational Model of the Electromagnetic
Heating of Biological Tissue with Application to Hyperthermic Cancer Ther-
apy”. In: IEEE Transactions on Biomedical Engineering BME-30.12 (1983),
pp. 797–805.

[100] Peter M Van Den Berg and Ralph E Kleinman. “A contrast source inversion
method”. In: Inverse problems 13.6 (1997), p. 1607.

[101] G. Vecchi. “Loop-star decomposition of basis functions in the discretization
of the EFIE”. In: IEEE Transactions on Antennas and Propagation 47.2
(Feb. 1999), pp. 339–346.

[102] Zsuzsanna Vecsei et al. “Short-term radiofrequency exposure from new gen-
eration mobile phones reduces EEG alpha power with no effects on cognitive
performance”. In: Scientific reports 8.1 (2018), pp. 1–12.

[103] Y. M. Wang and W. C. Chew. “An iterative solution of the two-dimensional
electromagnetic inverse scattering problem”. In: International Journal of
Imaging Systems and Technology 1.1 (1989), pp. 100–108.

[104] Zhipeng Wu and Haigang Wang. “Microwave Tomography for Industrial
Process Imaging: Example Applications and Experimental Results.” In: IEEE
Antennas and Propagation Magazine 59.5 (2017), pp. 61–71.

[105] Pasi Yla-Oijala et al. “Surface and volume integral equation methods for
time-harmonic solutions of Maxwell’s equations”. In: Progress in electro-
magnetics Research 149 (2014), pp. 15–44.

[106] Amer Zakaria, Colin Gilmore, and Joe LoVetri. “Finite-element contrast
source inversion method for microwave imaging”. In: Inverse Problems 26.11
(2010), p. 115010.

[107] Grigorios P. Zouros and Neil V. Budko. “Transverse Electric Scattering on
Inhomogeneous Objects: Spectrum of Integral Operator and Precondition-
ing”. In: SIAM Journal on Scientific Computing 34.3 (2012), B226–B246.

123






	Introduction
	Background and Notations
	Maxwell's Equations in Macroscopic Media
	Time-Harmonic Fields
	Scalar and Vector Potentials in Free Space
	Boundary Conditions

	Integral Equations
	Equivalence Principles
	Field-Source Radiation
	Surface Integral Equations
	Volume Integral Equations
	Hybrid Volume Surface Integral Equations

	Numerical Solutions of Integral Equations
	Method of Moments
	Surface EFIE
	J-VIE
	D-VIE
	Hybrid VSIE

	Iterative Solvers and Conditioning

	A Full-wave Volume Formulation for Neuro-imaging
	Introduction
	Background and Notations
	A New Quasi-Helmholtz Decomposition of the D-VIE
	Low-frequency Regularization of the D-VIE
	Implementation Related Details
	Numerical Results
	Conclusion and Future Work

	A D-VIE Based Inverse Scattering Scheme for Microwave Imaging
	Introduction
	Background and Notations
	Notations
	Inverse Scattering Problems
	Born Approximation and Non-Linearity in Inverse Scattering
	Regularization
	Born Iterative Method
	Newton-Kantorovich Method
	Contrast Source Inversion

	A New D-VIE-Based Inverse Scattering Scheme
	Data and State Equations
	Residuals and Cost Functional
	Gradients of the Cost Functional
	Determination of the Weights
	Initialization of the Electric Flux Inversion Method
	Summary of the Algorithm
	Discretization of the EFI

	Numerical Results
	Conclusion and Future Work

	Inverse Design of a Lensed Antenna Enabling EEG Recordings in the Presence of a RF Source
	Introduction
	Background and Notations
	Modeling of the EEG caps, the Head, and the Lens

	Proposed Algorithm for Field Reconstruction
	Obtain the Target Field from the Initial Source
	Initialization of the Permittivity of the Lens and the Dipole Array Currents
	A New Scheme for the Design of a Lensed Antenna
	Discretization of the EFI-Based Inverse Algorithm

	Numerical Results
	Conclusion and Future Work

	Conclusion and Future Work
	Complementarity of the Scaled Projectors
	Cancellation of the Surface Terms with the Loop-to-SWG Mapping Matrix
	Non-Singularity of the Normalized Loop-Star Decomposition Matrix
	Estimation of the Update Weights in the EFI-Based Inverse Design Algorithm
	Nomenclature
	Publications
	Bibliography

