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Boltzmann-type equations for multi-agent systems with label

switching

Nadia Loy∗ Andrea Tosin†

Department of Mathematical Sciences “G. L. Lagrange”

Politecnico di Torino, Italy

Abstract

In this paper, we propose a Boltzmann-type kinetic description of mass-varying interacting
multi-agent systems. Our agents are characterised by a microscopic state, which changes due
to their mutual interactions, and by a label, which identifies a group to which they belong.
Besides interacting within and across the groups, the agents may change label according to a
state-dependent Markov-type jump process. We derive general kinetic equations for the joint
interaction/label switch processes in each group. For prototypical birth/death dynamics, we
characterise the transient and equilibrium kinetic distributions of the groups via a Fokker-
Planck asymptotic analysis. Then we introduce and analyse a simple model for the contagion
of infectious diseases, which takes advantage of the joint interaction/label switch processes to
describe quarantine measures.

Keywords: Boltzmann-type equations, Markov-type jump processes, transition probabilities,
Fokker-Planck asymptotics, contagion of infectious diseases, quarantine

Mathematics Subject Classification: 35Q20, 35Q70, 35Q84

1 Introduction

Boltzmann-type kinetic equations are a valuable tool to model multi-agent systems, their success
being confirmed by a great variety of modern applications which take advantage of the formalism of
the collisional kinetic theory. The literature in the field is constantly growing as witnessed by very
recent contributions to econophysics [9], human ecology [27], vehicular traffic with autonomous
vehicles [23, 28, 29], opinion formation [22], biology [14, 15, 24].

Kinetic models of multi-agent systems are based on a revisitation of the methods of the classical
kinetic theory, however with remarkable differences due to the different nature of the physical
systems at hand. Classical kinetic theory deals mostly with the dynamics of gas molecules and
their elastic collisions, which conserve microscopically both the momentum and the kinetic energy
of the pairs of colliding molecules. Instead, interactions in multi-agent systems often do not
conserve either the first or the second statistical moment of the distribution function, which
does not only have consequences on the physical interpretation of the dynamics but also on the
techniques required to investigate it mathematically. On the other hand, the virtually ubiquitous
characteristic of kinetic models of multi-agent systems is the fact that the total number of agents
does not change in time. This is equivalent to the conservation of mass in the collisions among
gas molecules and allows one to regard the kinetic distribution function as a probability density
function. Then, the kinetic equations may be derived from stochastic microscopic interaction
dynamics by appealing to probabilistic arguments.

In this paper, we are instead interested in multi-agent dynamics which do not conserve neces-
sarily the number of agents. Indeed, many applications in population dynamics involve processes
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assimilable to “birth” and “death”, i.e. to the appearance and disappearance of interacting agents
on the basis of the microscopic state that they are currently expressing. A similar concept in
classical applications of kinetic theory to gas and plasma dynamics is the absorption of particles,
see e.g., [5]. In particular, we focus on a label switch process, that we may summarise as fol-
lows: while interacting, agents may change a label which denotes their membership of a particular
group/category within the whole population. As a consequence, the number of agents in each
group varies in time. This process clearly affects the interactions in each group, both because the
number of interacting agents changes and because the distribution of the microscopic states in
each group is altered by the introduction or the removal of agents.

For the sake of clarity, we anticipate a prototypical structure of the collisional kinetic equations
with label switching that we will deal with in this paper:

∂tfi(v, t) = λ

 n∑
j=1

T (v, t; i|j)fj(v, t)− fi(v, t)

+ µ

〈∫
R+

1

|J |
fi(v, t)fi(v∗, t) dv

′
∗

〉
− µρi(t)fi(v, t),

where fi is the distribution function of the microscopic state v ∈ R+ of the agents labelled by
the index i ∈ {1, . . . , n}. On the right-hand side, the second and third terms are typical gain
and loss terms due to binary interactions. Conversely, the first term expresses the label switch
process as a balance between the gain and loss of agents with label i mediated by some label
switch probabilities T (v, t; i|j). The precise mathematical meaning of all the symbols appearing
in the equation above will become clearer in the forthcoming sections.

Our label switch process is conceptually analogous to chemical reactions in which the total
density of the molecules is conserved in time whereas that of each species is not. This type of
problems has been deeply studied in the kinetic literature, see e.g., [12, 13, 19, 25]. In our case,
however, the strongly different physical nature of the particles under consideration and of their
microscopic dynamics requires to elaborate a different form of the kinetic equations describing
the label switching. Recently, other contributions dealing with label switching in particle sys-
tems have been proposed, see e.g., [1, 18]. While sharing some conceptual analogies with our
microscopic agent dynamics, these works focus on mean-field descriptions, which in principle may
be regarded as particular cases of Boltzmann-type kinetic descriptions. Indeed, in some regimes
Boltzmann-type “collisional” models might be approximated by mean-field models but in general
they contain a much richer variety of trends depending on the ranges of the parameters. It is
therefore interesting to investigate systematically a Boltzmann-type approach in presence of label
switching. This is the aim and the main novelty of this work compared to other studies about
similar topics.

In more detail, the paper is organised as follows: in Section 2 we review separately some
basic facts about the Boltzmann-type description of binary interactions and Markov-type jump
processes, which in this context provide a proper mathematical framework to formalise the label
switch process. In Section 3 we derive the Boltzmann-type equations with binary interactions and
label switching starting from a stochastic microscopic description of the interaction and relabelling
processes. Within this formalism, in Section 4 we investigate the transient and asymptotic trends
of birth and death processes of interacting agents, which can be regarded as the prototypes of
a wide range of non-conservative particle dynamics. In Section 5 we propose an application of
the mathematical structures previously developed to a problem of contagion of infectious diseases
with quarantine. Finally, in Section 6 we show some numerical simulations of the kinetic model of
Section 5 obtained by means of a Monte Carlo particle algorithm that we derive straightforwardly
from the stochastic microscopic description introduced in Section 3. The algorithm is reported in
Appendix A.

2 Preliminaries on labelled interacting agents

Let us consider a large system of agents described by a microscopic state v ∈ R+ representing a non-
negative physical quantity. Extensions to negative and possibly also bounded microscopic states
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are mostly a matter of technicalities using the very same ideas presented in this paper. The agents
may belong to different groups or categories identified by a discrete label x ∈ I = {1, . . . , n}, that
the agents may change as a result of a Markov-type jump process. Such a stochastic label switch
process is defined by a transition probability

T = T (v, t; x|y) ∈ [0, 1] ∀ v ∈ R+, x, y ∈ I, t > 0, (1)

namely the probability that an agent with state v at time t switches from label y to label x. In
order for T (v, t; ·|y) to be a conditional probability density, it has to satisfy the following further
property: ∫

I
T (v, t; x|y) dx = 1 ∀ v ∈ R+, y ∈ I, t > 0.

A label switch corresponds therefore to a migration of an agent to a different group, however in
such a way that the total mass of the agents in the system is conserved. We say that this process
is formally a Markov-type one because the probability to switch from the current label y to a new
label x does not depend on how the agent reached previously the label y.

Remark 2.1. Since the variable x is discrete, the mapping x 7→ T (v, t; x|y) is a discrete probability
measure. Consequently, we actually have∫

I
T (v, t; x|y) dx =

n∑
i=1

T (v, t; i|y).

Agents within the same group, i.e. with the same label, are assumed to be indistinguishable.
Their microscopic state v evolves in consequence of binary interactions with either other agents of
the same group or agents belonging to a different group. We will take into account the possibility
that the interactions among agents with the same label differ from those among agents with differ-
ent labels. In general, if v, v∗ ∈ R+ denote the pre-interaction states of any two interacting agents,
their post-interaction states v′, v′∗ will be given by general linear and symmetric microscopic rules
of the form

v′ = pv + qv∗, v′∗ = pv∗ + qv, (2)

where p, q ∈ R+ are either deterministic or stochastic coefficients.

2.1 Boltzmann-type description of the interaction dynamics

It is known that an aggregate description of the (sole) interaction dynamics (2) inspired by the
principles of statistical mechanics can be obtained by introducing a distribution function f =
f(v, t) ≥ 0 such that f(v, t)dv gives the proportion of agents having at time t a microscopic state
comprised between v and v + dv. Such a distribution function satisfies a Boltzmann-type kinetic
equation, which in weak form reads

d

dt

∫
R+

ϕ(v)f(v, t) dv = µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f(v, t)f(v∗, t) dv dv∗, (3)

where ϕ : R+ → R is an observable quantity (test function) and µ > 0 is the interaction frequency,
here assumed to be constant. Moreover, 〈·〉 denotes expectation with respect to the laws of
the stochastic coefficients p, q. This equation expresses the fact that the time variation of the
expectation of ϕ (left-hand side) is due to the mean variation of ϕ in a binary interaction (right-
hand side). For a detailed derivation of (3) we refer the interested reader to [21].

Choosing ϕ(v) = 1 we obtain
d

dt

∫
R+

f(v, t) dv = 0,

which means that the total mass of the agents is conserved in time by the interactions (2). In this
case, it is customary to assume the normalisation condition

∫
R+
f(v, t) dv = 1 for all t ≥ 0, so that

f may be interpreted as the probability density function of the microscopic state v at time t.
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Choosing instead ϕ(v) = vn, n = 1, 2, . . . , we obtain the evolution of the statistical moments
of f . For instance, with ϕ(v) = v we find that the mean m(t) :=

∫
R+
vf(v, t) dv evolves according

to
dm

dt
= µ〈p+ q − 1〉m.

If 〈p+ q〉 = 1 then m is conserved in time while if 〈p+ q〉 > 1 or 〈p+ q〉 < 1 then m either blows
to infinity or decreases to zero exponentially fast in time.

The trend of the total energy E(t) :=
∫

R+
v2f(v, t) dv is obtained from ϕ(v) = v2 and turns

out to be ruled by the equation

dE

dt
= µ〈p2 + q2 − 1〉E + 2µ〈pq〉m2.

From the trend of m and E we can also infer that of the internal energy e(t) := E(t)−m2(t),
namely the variance of the distribution f :

de

dt
= µ〈p2 + q2 − 1〉e+ µ〈(p+ q − 1)2〉m2.

Notice that if m is conserved in time and m 6= 0 then both E and e tend asymptotically to a
finite non-vanishing value if 〈p2 + q2〉 < 1.

2.2 Kinetic description of the label switching

If we consider only the label switch process then the evolution of the distribution function f =
f(x, t) ≥ 0 of the agents with label x at time t can be modelled by a kinetic equation describing
a Markov-type jump process, see [16]:

∂tf(x, t) = λ

(∫
I
T (t; x|y)f(y, t) dy − f(x, t)

)
, (4)

where λ > 0 is the (constant) switch rate. In weak form (4) reads

d

dt

∫
I
ψ(x)f(x, t) dx = λ

∫
I

∫
I
(ψ(x)− ψ(y))T (t; x|y)f(y, t) dx dy, (5)

where ψ : I → R is another observable quantity (test function).
Since x ∈ I is discrete, we may conveniently represent the distribution function f as

f(x, t) =

n∑
i=1

fi(t)δ(x− i), (6)

where δ(x − i) is the Dirac distribution centred in x = i and fi = fi(t) ≥ 0 is the probability
that an agent is labelled by x = i at time t. In this way, we reconcile the weak form (5) with the
convention introduced in Remark 2.1, for (5) actually becomes

n∑
i=1

ψ(i)f ′i(t) = λ

n∑
i=1

n∑
j=1

(ψ(i)− ψ(j))T (t; i|j)fj(t).

Choosing ψ such that ψ(i) = 1 for a certain i ∈ I and ψ(x) = 0 for all x ∈ I \ {i} we get in
particular

f ′i = λ

 n∑
j=1

T (t; i|j)fj − fi

 , i = 1, . . . , n. (7)
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3 Kinetic description of interactions with label switching

We now want to derive a kinetic equation for the joint distribution function f = f(x, v, t) ≥ 0,
such that f(x, v, t)dv gives the proportion of agents labelled by x ∈ I and having microscopic
state comprised between v and v + dv at time t. The discreteness of x allows us to represent f as

f(x, v, t) =

n∑
i=1

fi(v, t)δ(x− i),

where fi = fi(v, t) ≥ 0 is the distribution function of the microscopic state v of the agents with
label i and, in particular, fi(v, t)dv is the proportion of agents with label i whose microscopic state
is comprised between v and v + dv at time t.

Since both the interactions and the label switching conserve the total mass of the system, we
may assume that f(x, v, t) is a probability distribution, namely:∫

R+

∫
I
f(x, v, t) dx dv =

n∑
i=1

∫
R+

fi(v, t) dv = 1 ∀ t > 0. (8)

Notice, however, that the fi’s are in general not probability density functions because their v-
integral varies in time due to the label switching. We denote by

ρi(t) :=

∫
R+

fi(v, t) dv (9)

the mass of the group of agents with label i, thus 0 ≤ ρi(t) ≤ 1 and

n∑
i=1

ρi(t) = 1 ∀ t > 0.

The following derivation is an extension of the one introduced in [21]. We perform it in some
detail because it provides also a formal justification of a Monte Carlo method for the numerical
solution of the resulting kinetic equation. We will use this method later in Section 6 for our
numerical tests.

Let (Xt, Vt) ∈ I × R+ be a pair of random variables denoting the label and the microscopic
state of a representative agent of the system at time t. The joint probability distribution of such
a pair is f(x, v, t). During a sufficiently small time ∆t > 0 the agent may or may not change the
pair (Xt, Vt) depending on whether a label switch and/or a binary interaction with another agent
takes place. We express this discrete-in-time random process as

Xt+∆t = (1−Θ)Xt + ΘJt,

Vt+∆t = (1− Ξ)Vt + ΞV ′t ,
(10)

where Jt, V
′
t are random variables describing the new label after a label switch and the new

microscopic state after a binary interaction, respectively, while Θ, Ξ ∈ {0, 1} are Bernoulli random
variables, which we assume independent of all the other variables appearing in (10), discriminating
whether a label switch and a binary interaction take place (Θ, Ξ = 1) or not (Θ, Ξ = 0) during
the time ∆t. In particular, we set

Prob(Θ = 1) = λ∆t, Prob(Ξ = 1) = µ∆t (11)

where λ, µ are the frequencies introduced in Sections 2.1, 2.2 and ∆t ≤ min{ 1
λ ,

1
µ} for consistency.

The underlying assumption is that the longer the time interval ∆t the higher the probability that
a label switch and/or a binary interaction takes place. Notice that 1

λ , 1
µ can be understood as the

mean waiting times between two successive label switches/binary interactions, respectively.
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The random variable Jt ∈ I models the Markov-type jump process leading to a label switch.
If P (j, v, t) denotes the joint probability distribution of the pair (Jt, Vt) then

P (j, v, t) =

∫
I
T (v, t; j|y)f(y, v, t) dy,

where T (v, t; j|y) is the transition probability (1).
The random variable V ′t ∈ R+ gives instead the new microscopic state after a binary interaction

with another agent described by the pair (X∗t , V
∗
t ) ∈ I × R+. In order to account for possibly

different interaction rules depending on the labels of the interacting agents, we define

V ′t := δXt,X∗
t
V̄ ′t + (1− δXt,X∗

t
)Ṽ ′t (12)

where

δX,X∗ =

{
1 if X = X∗

0 if X 6= X∗

is the Kronecker delta. In particular, V̄ ′t , Ṽ
′
t ∈ R+ represent the outcomes of binary interactions

between agents with the same and different labels, respectively. They will be both of the form (2),
namely

V̄ ′t = p̄Vt + q̄V ∗t , Ṽ ′t = p̃Vt + q̃V ∗t

with p̄, q̄, p̃, q̃ ∈ R either deterministic or independent random coefficients.
Let now φ = φ(x, v) be an observable quantity defined on I × R+. From (10), (11), together

with the assumed independence of Θ, Ξ, we see that the mean variation rate of φ in the time
interval ∆t satisfies

〈φ(Xt+∆t, Vt+∆t)〉 − 〈φ(Xt, Vt)〉
∆t

=

(1− λ∆t)(1− µ∆t)〈φ(Xt, Vt)〉+ µ∆t(1− λ∆t)〈φ(Xt, V
′
t )〉

∆t

+
λ∆t(1− µ∆t)〈φ(Jt, Vt)〉+ λµ∆t2〈φ(Jt, V

′
t )〉 − 〈φ(Xt, Vt)〉

∆t
,

whence we deduce the instantaneous time variation of the average of φ in the limit ∆t→ 0+ as

d

dt
〈φ(Xt, Vt)〉 = λ〈φ(Jt, Vt)〉+ µ〈φ(Xt, V

′
t )〉 − (λ+ µ)〈φ(Xt, Vt)〉.

Notice that the simultaneous change of label and microscopic state, i.e. the term 〈φ(Jt, V
′
t )〉, turns

out to be a higher order effect in time disregarded in this limit equation. Owing to (12), we further
obtain

d

dt
〈φ(Xt, Vt)〉 = λ〈φ(Jt, Vt)〉

+ µ〈δXt,X∗
t
φ(Xt, V̄

′
t )〉+ µ〈(1− δXt,X∗

t
)φ(Xt, Ṽ

′
t )〉

− (λ+ µ)〈φ(Xt, Vt)〉. (13)

We consider now that

〈φ(Jt, Vt)〉 =

∫
R+

∫
I
φ(i, v)P (i, v, t) di dv =

n∑
i=1

n∑
j=1

∫
R+

φ(i, v)T (v, t; i|j)fj(v, t) dv

and that

〈δXt,X∗
t
φ(Xt, V̄

′
t )〉 =

n∑
i=1

∫
R+

∫
R+

〈φ(i, v̄′)〉fi(v, t)fi(v∗, t) dv dv∗
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〈(1− δXt,X∗
t
)φ(Xt, Ṽ

′
t )〉 =

n∑
i=1

n∑
j=1
j 6=i

∫
R+

∫
R+

〈φ(i, ṽ′)〉fi(v, t)fj(v∗, t) dv dv∗,

where 〈·〉 denotes the average with respect to the possibly random coefficients p̄, q̄, p̃, q̃ con-
tained in v̄′ and ṽ′. As typically done in kinetic theory [5], in writing these interaction terms we
assume the propagation of chaos, which allows us to perform the factorisation f(x, v, y, v∗, t) =
f(x, v, t)f(y, v∗, t) of the two-particle distribution function. Hence from (13) we deduce the fol-
lowing equation:

d

dt

n∑
i=1

∫
R+

φ(i, v)fi(v, t) dv = λ

n∑
i=1

n∑
j=1

∫
R+

φ(i, v)T (v, t; i|j)fj(v, t) dv

+ µ

n∑
i=1

∫
R+

∫
R+

〈φ(i, v̄′)〉fi(v, t)fi(v∗, t) dv dv∗

+ µ

n∑
i=1

n∑
j=1
j 6=i

∫
R+

∫
R+

〈φ(i, ṽ′)〉fi(v, t)fj(v∗, t) dv dv∗

− (λ+ µ)

n∑
i=1

∫
R+

φ(i, v)fi(v, t) dv,

which has to hold for every φ : I × R+ → R. Choosing φ(x, v) = ψ(x)ϕ(v) with ψ such that
ψ(i) = 1 for a certain i ∈ I and ψ(x) = 0 for all x ∈ I \ {i} and exploiting (8) to merge the loss
term (last term on the right-hand side) with the other terms on the right-hand side, we finally
obtain the following system of equations for the fi’s:

d

dt

∫
R+

ϕ(v)fi(v, t) dv = λ

∫
R+

ϕ(v)

 n∑
j=1

T (v, t; i|j)fj(v, t)− fi(v, t)

 dv

+ µ

∫
R+

∫
R+

〈ϕ(v̄′)− ϕ(v)〉fi(v, t)fi(v∗, t) dv dv∗

+ µ

n∑
j=1
j 6=i

∫
R+

∫
R+

〈ϕ(ṽ′)− ϕ(v)〉fi(v, t)fj(v∗, t) dv dv∗, i = 1, . . . , n. (14)

Letting ϕ(v) = 1 we discover that the mass ρi of the agents with label i, cf. (9), evolves
according to

dρi
dt

+ λρi = λ

n∑
j=1

∫
R+

T (v, t; i|j)fj(v, t) dv,

which depends explicitly on the label switch process.
As a particular case, we may reproduce in (14) the situation in which only agents with the

same label interact by letting ṽ′ = v. This corresponds to saying that interactions among agents
with different labels do not produce a change of microscopic state, hence they are actually “non-
interactions”. Consequently, (14) simplifies as

d

dt

∫
R+

ϕ(v)fi(v, t) dv = λ

∫
R+

ϕ(v)

 n∑
j=1

T (v, t; i|j)fj(v, t)− fi(v, t)

 dv

+ µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉fi(v, t)fi(v∗, t) dv dv∗, i = 1, . . . , n (15)

with v′ given e.g., by (2).

7



4 Death and birth processes

We now use the kinetic equations derived in the previous section to study death and birth processes.
We regard them as prototypes and building blocks of general label switch dynamics in a wide
range of applications, one of which will be illustrated in the next Section 5. Kinetic and mean-
field descriptions of birth-death processes have been considered also in the recent literature, see
e.g., [1, 11]. We mention moreover the kinetic approach to growth processes described in [2] and
in [21, Chapter 2], where, unlike our case, the size itself of the ensemble of agents is taken as
the microscopic state of the system and the evolution of the corresponding probability density
function is modelled. In the present context, the interest is due to the fact that the structure of
our kinetic equations allows for a quite detailed characterisation of the transient and equilibrium
distribution functions of the various groups of agents, possibly via suitable asymptotic analyses.

To be definite, we consider n = 2 labels: i = 1 denotes interacting or “living” agents whilst
i = 2 denotes inert or “dead” agents. The total mass of the agents is conserved but the mass of
the agents with either label may change in time in consequence of label switches, i.e. “deaths”
(transitions from i = 1 to i = 2) or “births” (transitions from i = 2 to i = 1).

Since we consider the agents labelled with i = 2 as inert, we implicitly mean that they do not
interact either with one another or with the agents labelled with i = 1. Therefore, the reference
equation for this application is (15) with v′ = v for i = 2, i.e.

d

dt

∫
R+

ϕ(v)f1(v, t) dv = λ

∫
R+

ϕ(v)

 2∑
j=1

T (v, t; 1|j)fj(v, t)− f1(v, t)

 dv

+ µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f1(v, t)f1(v∗, t) dv dv∗

and

d

dt

∫
R+

ϕ(v)f2(v, t) dv = λ

∫
R+

ϕ(v)

 2∑
j=1

T (v, t; 2|j)fj(v, t)− f2(v, t)

 dv.

4.1 Death

We begin by considering the death process only, in which only transitions from i = 1 to i = 2 are
possible. Therefore, the transition probabilities describing the Markov-type jump process may be
chosen as

T (v, t; 1|2) = 0, T (v, t; 2|2) = 1
T (v, t; 2|1) = β(v, t), T (v, t; 1|1) = 1− β(v, t)

(16)

with 0 ≤ β(v, t) ≤ 1 for all v ∈ R+ and t > 0. From (15), the evolution equations for the
distribution functions f1, f2 take then the form

d

dt

∫
R+

ϕ(v)f1(v, t) dv = −λ
∫

R+

ϕ(v)β(v, t)f1(v, t) dv

+ µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f1(v, t)f1(v∗, t) dv dv∗ (17)

and
d

dt

∫
R+

ϕ(v)f2(v, t) dv = λ

∫
R+

ϕ(v)β(v, t)f1(v, t) dv. (18)

4.1.1 Mass balance

Letting ϕ(v) = 1 in (17), (18) yields the time evolution of the masses ρ1, ρ2 of the two groups of
agents:

dρ1

dt
= −λ

∫
R+

β(v, t)f1(v, t) dv (19)

8



dρ2

dt
= λ

∫
R+

β(v, t)f1(v, t) dv.

Actually, since ρ1(t) + ρ2(t) is constant, if we assume a unitary total mass we may replace the
second equation simply by ρ2(t) = 1− ρ1(t).

If the transition probability β does not depend on v, i.e. β = β(t), then we get in particular

ρ1(t) = ρ1,0 exp

(
−λ
∫ t

0

β(s) ds

)
,

ρ1,0 ∈ [0, 1] being the prescribed mass ρ1 at the initial time t = 0. From here we see that ρ1 tends
to vanish asymptotically in time if e.g., β does not depend on t or if it approaches a constant
non-zero value for large times. Conversely, if β vanishes definitively from a certain time t = t0 on
then a residual mass of agents with label i = 1 remains for large times.

If β features a full dependence on v and t, we cannot deduce from (19) an explicit expression
for ρ1(t). Nevertheless, we observe that if there exists β0 > 0 such that β(v, t) ≥ β0 for all v ∈ R+

and all t > 0 then
ρ1(t) ≤ ρ1,0e

−λβ0t,

which implies that ρ1 still vanishes for t→ +∞. Consequently, we deduce f1(·, t)→ 0 in L1(R+)
for t→ +∞.

4.1.2 Quasi-invariant limit and asymptotic distributions

One of the most interesting issues in the study of kinetic models is the characterisation of the
stationary distributions arising asymptotically for t→ +∞, which depict the emergent behaviour
of the system. For conservative kinetic equations this is typically carried out by means of asymp-
totic procedures, which, in suitable regimes of the parameters of the microscopic interactions,
transform a Boltzmann-type integro-differential equation into a partial differential equation usu-
ally more amenable to analytical investigations. An effective asymptotic procedure is the so-called
quasi-invariant limit, which leads to Fokker-Planck-type equations.

The idea behind the quasi-invariant limit is that one studies a regime in which the post-
interaction state v′ is close enough to the pre-interaction state v, so that interactions produce a
small transfer of microscopic state between the interacting agents. This concept was first intro-
duced in the kinetic literature on multi-agent systems in [6, 26] for binary collisions and in [10]
for the interactions with a fixed background and has its roots in the concept of grazing collisions
studied in the classical kinetic theory [30].

In the present context, we extend this procedure to quasi-invariant microscopic dynamics
encompassing both quasi-invariant interactions and quasi-invariant transition probabilities. We
anticipate that, as a result, we obtain Fokker-Planck equations with reaction terms linked to
the label switch process. Interestingly, these equations are explicitly solvable at least in some
representative cases, whereby analytical approximations of the Maxwellians can be derived.

In (2), after introducing a small parameter 0 < ε � 1, we scale the coefficients as p → pε,
q → qε, where pε, qε are random variables such that

〈pε〉 = 1− ε, Var(pε) = κε

〈qε〉 = ε, Var(qε) = κε1+θ
(20)

and κ, θ > 0 are constant parameters. These choices are motivated by the following considerations:
for ε → 0+, on one hand pε, qε converge in law to the constants p = 1, q = 0, respectively, thus
in the regime of small ε the interaction (2) is quasi-invariant. On the other hand, for finite ε > 0
it results 〈pε + qε〉 = 1 and, if ε is sufficiently small, 〈(pε)2 + (qε)2〉 = 1 + (κ − 2)ε + o(ε), hence
〈(pε)2 + (qε)2〉 < 1 if κ < 2. Therefore, owing to the discussion set forth in Section 2.1, in the
regime of small ε the scaling (20) allows one to observe physical dynamics with conserved mean and
internal energy evolving towards a finite non-zero value. Moreover, considering that the variation
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of the microscopic state due to the interaction is v′− v = (pε− 1)v+ qεv∗, we further observe that
the parameter

κ =

∣∣∣∣Var(pε − 1)

〈pε − 1〉

∣∣∣∣
is the ratio between the stochastic and the deterministic average contributions of the v-coefficient
pε to the post-interaction variation of the microscopic state v itself. Conversely, since Var(qε) =
o(Var(pε)) for ε→ 0+, the scaling (20) implies that the stochastic contribution of the v∗-coefficient
qε to the variation of the microscopic state v is negligible in the limit with respect to that of pε.

Furthermore we scale the transition probability as β → βε, where βε is defined as

βε(v, t) = εβ(v, t).

In practice, the new, viz. scaled, transition probability βε coincides the old, viz. unscaled,
one modulated by the coefficient ε, which changes its order of magnitude. From (16) with the
consequent scaling T (v, t; ·|1)→ T ε(v, t; ·|1) we deduce then T ε(v, t; 2|1)→ 0 and T ε(v, t; 1|1)→ 1
when ε → 0+, meaning that also the label switching tends to be quasi-invariant (in probability)
for ε small enough.

To compensate for the smallness of each interaction and each label switching, we simultaneously
scale the corresponding rates as

λ = µ =
1

ε
, (21)

which imply a high number of interactions and instances of label switch per unit time when ε ≈ 0.
Let us denote by f ε1(v, t) the distribution function of the group i = 1 parametrised by the

scaling parameter ε. From (17) we deduce that it satisfies

d

dt

∫
R+

ϕ(v)f ε1(v, t) dv = −
∫

R+

ϕ(v)β(v, t)f ε1(v, t) dv

+
1

ε

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f ε1(v, t)f ε1(v∗, t) dv dv∗. (22)

Now, let ϕ be a smooth and compactly supported function. Expanding the difference ϕ(v′)−ϕ(v)
in Taylor series about v and using (2) with p = pε, q = qε like in (20) we get

d

dt

∫
R+

ϕ(v)f ε1(v, t) dv = −
∫

R+

ϕ(v)β(v, t)f ε1(v, t) dv

+

∫
R+

∫
R+

ϕ′(v)(v∗ − v)f ε1(v, t)f ε1(v∗, t) dv dv∗

+
κρε1(t)

2

∫
R+

ϕ′′(v)v2f ε1(v, t) dv +Rϕ(f ε1 , f
ε
1)(v, t), (23)

where the remainder Rϕ(f ε1 , f
ε
1) satisfies1 (cf. [6] for similar calculations)

|Rϕ(f ε1 , f
ε
1)(v, t)| . ‖ϕ′′‖∞

(
ε+ εθ

) ∫
R+

v2f ε1(v, t) dv

+ ‖ϕ′′′‖∞
(√

ε+ ε
1+3θ

2 + ε2
)∫

R+

v3f ε1(v, t) dv. (24)

In view of the scaling (20), we can standardise pε, qε as

pε = 1− ε+
√
κεZ, qε = ε+

√
κε1+θZ∗,

1Here and henceforth we use the notation a . b to mean that there exists a constant C > 0, independent of ε
and whose specific value is unimportant, such that a ≤ Cb.
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where Z, Z∗ are two independent random variables with zero mean and unitary variance, which we
assume to be such that 〈|Z|3〉, 〈|Z∗|3〉 < +∞. Thanks to this representation, setting ϕ(v) = v2, v3

in (22) we further discover, after some algebraic calculations using in particular the inequalities
ab ≤ 1

2 (a2 + b2) and ab2 ≤ 2
3 (a3 + b3) for a, b ≥ 0, that

d

dt

∫
R+

v2f ε1(v, t) dv .
(
1 + ε+ εθ

) ∫
R+

v2f ε1(v, t) dv

d

dt

∫
R+

v3f ε1(v, t) dv .
(

1 +
√
ε+ ε+ ε2 + εθ + ε

1+3θ
2 + ε1+θ

)∫
R+

v3f ε1(v, t) dv,

which imply that, for all fixed t > 0, the terms
∫

R+
v2f ε1(v, t) dv,

∫
R+
v3f ε1(v, t) dv remain bounded

when ε→ 0+. Therefore, from (24) we formally infer

Rϕ(f ε1 , f
ε
1)

ε→0+

−−−−→ 0.

Let us assume now that (f ε1) converges in C(R+; L1(R+) ∩ L1(R+; v dv)), possibly up to sub-
sequences, to a distribution function f1 when ε→ 0+. Hence we have in particular

ρε1(t) =

∫
R+

f ε1(v, t) dv
ε→0+

−−−−→ ρ1(t) =

∫
R+

f1(v, t) dv

ρε1(t)mε
1(t) =

∫
R+

vf ε1(v, t) dv
ε→0+

−−−−→ ρ1(t)m1(t) =

∫
R+

vf1(v, t) dv,

where m
(ε)
1 (t) := 1

ρ
(ε)
1 (t)

∫
R+
vf

(ε)
1 (v, t) dv denotes the first moment of the distribution function f

(ε)
1 .

Then, passing formally to the limit ε→ 0+ in (23) we obtain the limit equation

d

dt

∫
R+

ϕ(v)f1(v, t) dv = −
∫

R+

ϕ(v)β(v, t)f1(v, t) dv

+

∫
R+

∫
R+

ϕ′(v)(v∗ − v)f1(v, t)f1(v∗, t) dv dv∗

+
κρ1(t)

2

∫
R+

ϕ′′(v)v2f1(v, t) dv,

which, by integration by parts and recalling the compactness of the support of ϕ, can be recognised
as a weak form of the following Fokker-Planck equation with non-constant coefficients and reaction
term:

∂tf1 =
κρ1(t)

2
∂2
v(v2f1) + ρ1(t)∂v

(
(v −m1(t))f1

)
− β(v, t)f1. (25)

The same quasi-invariant limit applied to (18) leads to

∂tf2 = β(t, v)f1. (26)

If we look for the stationary distributions, say f∞1 , f∞2 , in the quasi-invariant regime we find
that they satisfy the system of equations

κρ∞1
2

∂2
v(v2f∞1 ) + ρ∞1 ∂v

(
(v −m∞1 )f∞1

)
− β∞(v)f∞1 = 0

β∞(v)f∞1 = 0,

where the symbols ρ∞1 , m∞1 have an obvious meaning while β∞(v) := limt→+∞ β(v, t).
If β∞ is not identically zero then the second equation implies f∞1 (v) = 0, which is clearly also

a solution of the first equation. This is consistent with the idea that, in the long run, all living
agents labelled with i = 1 die by switching to the label i = 2. Conversely, if β∞ ≡ 0 then we
distinguish two cases:
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(i) if β(v, t) → 0+ for t → +∞ but there exists β0 = β0(t) > 0 such that β(v, t) ≥ β0(t) for
all t > 0 and all v ∈ R+ and moreover

∫
R+
β0(t) dt = +∞ (i.e., roughly speaking, β(v, t)

tends to zero slowly enough in time) then from (19) with the quasi-invariant scaling λ = 1
ε ,

βε0(t) = εβ0(t) we deduce

ρ1(t) ≤ ρ1,0 exp

(
−
∫ t

0

β0(s) ds

)
t→+∞−−−−→ 0,

whence we obtain again the stationary distribution f∞1 (v) = 0;

(ii) if there exists t0 > 0 such that β(v, t) ≡ 0 for t ≥ t0 then from t0 onwards the masses ρ1,
ρ2 are conserved. Moreover, owing to the quasi-invariant scaling (20), also the first moment
m1 is conserved. Indeed from (22) with ϕ(v) = v we get, for t > t0, d

dt (ρ
ε
1m

ε
1) = 0 and the

result follows passing to the limit ε → 0+. Hence ρ∞1 = ρ1(t0) > 0, m∞1 = m1(t0) and the
stationary distribution f∞1 satisfies

κ

2
∂v(v

2f∞1 ) + (v −m1(t0))f∞1 = 0,

whose unique solution with mass ρ1(t0) and first moment m1(t0) is

f∞1 (v) = ρ1(t0)
(2κm1(t0))2κ+1

Γ(2κ+ 1)
· e
− 2κm1(t0)

v

v2(κ+1)
,

namely an inverse-gamma-type distribution with shape parameter 2κ+1 and scale parameter
2κm1(t0). Notice however that the exact determination of ρ1(t0), m1(t0) requires to solve
the transient dynamics described by (25) up to t = t0. The same is also necessary for the
determination of f∞2 (v) = f2(v, t0).

4.1.3 An explicitly solvable case

Further insights into the solutions to (17), (18) can be obtained in the particular case in which the
transition probability β(v, t) is constant, say β(v, t) ≡ β0 > 0. Then from (17) with ϕ(v) = 1, v,
together with the quasi-invariant scaling λ = 1

ε , βε0 = εβ0 plus (20), we obtain respectively, for
ε→ 0+,

dρ1

dt
= −β0ρ1,

d

dt
(ρ1m1) = −β0ρ1m1,

which imply ρ1(t) = ρ1,0e
−β0t and m1 ≡ constant, i.e. the first moment of f1 is conserved in time.

In this situation, it is reasonable to look for a self-similar solution of the form

f1(v, t) =
ρ1(t)

m1
g

(
v

m1

)
,

where g : R+ → R+ is such that∫
R+

g(w) dw = 1,

∫
R+

wg(w) dw = 1. (27)

Plugging into (25), we discover that g satisfies the following stationary Fokker-Planck equation:

κ

2
∂2
w(w2g) + ∂w

(
(w − 1)g

)
= 0, (28)

whose unique solution with unitary mass is

g(w) =
(2κ)2κ+1

Γ(2κ+ 1)
· e−

2κ
w

w2(κ+1)
, (29)
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namely an inverse-gamma distribution with shape parameter 2κ + 1 and scale parameter 2κ.
Consequently, we determine

f1(v, t) = ρ1,0e
−β0t

(2κm1)2κ+1

Γ(2κ+ 1)
· e
− 2κm1

v

v2(κ+1)

and from (26)

f2(v, t) = f2,0(v) + ρ1,0

(
1− e−β0t

) (2κm1)2κ+1

Γ(2κ+ 1)
· e
− 2κm1

v

v2(κ+1)
,

where f2,0(v) ≥ 0 with
∫

R+
f2,0(v) dv = 1 − ρ1,0 is the initial distribution function of the agents

with label i = 2. These solutions provide the exact evolution of the system under the joint label
switch and interaction processes.

4.2 Birth

We consider now the birth process, in which the group i = 1 composed of interacting agents
accepts new incomes from the inert group i = 2. The transition probabilities may therefore be
chosen as

T (v, t; 1|2) = β(v, t), T (v, t; 2|2) = 1− β(v, t)
T (v, t; 2|1) = 0, T (v, t; 1|1) = 1

with 0 ≤ β(v, t) ≤ 1 for all t > 0 and all v ∈ R+. The kinetic equations describing the evolution
of f1 and f2 can be deduced from (15), considering that the agents of the population i = 2 do not
interact. Therefore, we have

d

dt

∫
R+

ϕ(v)f1(v, t) dv = λ

∫
R+

ϕ(v)β(v, t)f2(v, t) dv

+ µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f1(v, t)f1(v∗, t) dv dv∗ (30)

and
d

dt

∫
R+

ϕ(v)f2(v, t) dv = −λ
∫

R+

ϕ(v)β(v, t)f2(v, t) dv. (31)

Notice that in this case from (31) we obtain explicitly

f2(v, t) = f2,0(v) exp

(
−λ
∫ t

0

β(v, s) ds

)
,

which can be possibly plugged into (30) to obtain a self-consistent equation for the sole distribution
function f1.

4.2.1 Mass balance

The evolution of the mass of the two populations is obtained with ϕ(v) = 1 in (30), (31) and reads

dρ1

dt
= λ

∫
R+

β(v, t)f2(v, t) dv

dρ2

dt
= −λ

∫
R+

β(v, t)f2(v, t) dv.

Like in Section 4.1.1, if β does not depend on v, i.e. β = β(t), we determine explicitly

ρ2(t) = ρ2,0 exp

(
−λ
∫ t

0

β(s) ds

)
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and consequently, recalling that ρ1,0 + ρ2,0 = 1,

ρ1(t) = 1− ρ2,0 exp

(
−λ
∫ t

0

β(s) ds

)
.

In this case, if
∫

R+
β(t) dt = +∞ then ρ2 → 0 and ρ1 → 1 for t→ +∞, i.e. the whole population

i = 2 is born in the long run. If instead β vanishes definitively from a certain time t = t0 onwards
then a residual mass of agents in i = 2 remains and ρ1 < 1 for t→ +∞.

If β features a full dependence on t and v then it is not possible to determine explicitly the
evolution of ρ1, ρ2. Nevertheless, if there exists β0 = β0(t) ≥ 0 such that β(v, t) ≥ β0(t) for all
t ≥ 0 and all v ∈ R+ then we may estimate

ρ1(t) ≥ 1− ρ2,0 exp

(
−λ
∫ t

0

β0(s) ds

)
, ρ2(t) ≤ ρ2,0 exp

(
−λ
∫ t

0

β0(s) ds

)
,

which still imply ρ1 → 1 and ρ2 → 0 as t→ +∞ if
∫ +∞

0
β0(t) dt = +∞.

4.2.2 Quasi-invariant limit and explicit solutions

The same quasi-invariant scaling (20), (21) of Section 4.1.2 applied to (30), (31) produces in this
case

∂tf1 =
κρ1(t)

2
∂2
v(v2f1) + ρ1(t)∂v

(
(v −m1(t))f1

)
+ β(v, t)f2 (32)

and
∂tf2 = −β(v, t)f2. (33)

From (33), we obtain that at the steady state it results β∞(v)f∞2 = 0, hence from (32) that
f∞1 solves

κ

2
∂2
v(v2f∞1 ) + ∂v

(
(v −m∞1 )f∞1

)
= 0.

Hence we deduce that f∞1 is always an inverse-gamma-type distribution with mean m∞1 and mass
ρ∞1 = limt→+∞ ρ1(t). Using the arguments of Section 4.2.1, we observe that ρ∞1 = 1 whenever
β(v, t) tends to zero slowly enough for t → +∞. Otherwise, if β(v, t) ≡ 0 for t ≥ t0 then
ρ∞1 = ρ1(t0) ≤ 1.

Let us now consider (32), (33) in the case of constant β, say β(v, t) = β0 > 0 for all t ≥ 0 and
all v ∈ R+. Then (33) yields f2(v, t) = f2,0(v)e−β0t and the first moment m2 is conserved, say
m2(t) = m for all t ≥ 0. Next, from (30) with ϕ(v) = v, under the scaling (20), (21) and in the
quasi-invariant limit ε→ 0+, we deduce

dm1

dt
= β0

ρ2

ρ1
(m−m1),

which shows that m1(t) → m for t → +∞ and, if m1,0 = m, that m1 is in turn conserved and
equals m at all times. Therefore, it makes sense to look for a self-similar solution of (32) of the
form

f1(v, t) =
ρ1(t)

m
g
( v
m

)
,

where g : R+ → R+ satisfies (27). Plugging into (32) we get

κ

2
∂2
w(w2g) + ∂w((w − 1)g) =

β0m

ρ2
1

(ρ2

m
g − f2

)
, (34)

whence, choosing the initial shape of f2 as f2,0(v) =
ρ2,0
m g

(
v
m

)
so that f2(v, t) = ρ2(t)

m g
(
v
m

)
, we

recover for g the Fokker-Planck equation (28). This allows us to conclude that the time evolution
of f1, f2 is given explicitly by

f1(v, t) =
(
1− ρ2,0e

−β0t
) (2κm)2κ+1

Γ(2κ+ 1)
· e
− 2κm

v

v2(κ+1)
, f2(v, t) = ρ2,0e

−β0t
(2κm)2κ+1

Γ(2κ+ 1)
· e
− 2κm

v

v2(κ+1)
.
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If at the initial time f2 is not the g-shaped distribution above then (34) cannot be solved expli-
citly due to the time-varying reaction term on the right-hand side. Nevertheless, since f2(v, t)→ 0,
ρ1(t) → 1 and ρ2(t) → 0 when t → +∞, we formally infer that for large times g still solves (28).
Consequently, we at least characterise the stationary distributions as

f∞1 (v) =
(2κm)2κ+1

Γ(2κ+ 1)
· e
− 2κm

v

v2(κ+1)
, f∞2 (v) = 0.

5 A kinetic model of the contagion of infectious diseases
with quarantine

Models for the spreading of infectious diseases are a prominent example of dynamics in which
agents switch from one group to another depending on their infection condition. Classical popu-
lation dynamics models take a super-macroscopic point of view and describe the time evolution
of the total number of susceptible (S), infected (I) and recovered (R) individuals assuming that
the probability of a contagious encounter between a susceptible and an infected individual is
proportional to the size of either group.

As an example, we show that the popular SIR model may be derived from the kinetic description
of the pure Markov-type jump process presented in Section 2.2. Let x = 1 label the susceptible
individuals, x = 2 the infected individuals and x = 3 the recovered individuals. The kinetic
distribution function f may be represented by setting n = 3 in (6), f1, f2, f3 being the probabilities
(normalised masses) of the three groups of individuals at time t. They satisfy the system of
equations (7) in which, up to a time scaling, we may conveniently assume λ = 1. If we further
specify the transition probabilities as

T (t; 1|1) = 1− βf2(t), T (t; 2|1) = βf2(t), T (t; 3|1) = 0
T (t; 1|2) = 0, T (t; 2|2) = 1− γ, T (t; 3|2) = γ
T (t; 1|3) = 0, T (t; 2|3) = 0, T (t; 3|3) = 1

with 0 ≤ β, γ ≤ 1, we obtain from (7)
f ′1 = −βf1f2

f ′2 = βf1f2 − γf2

f ′3 = γf2,

which has indeed the form of the SIR model. Notice that all the transition probabilities are
constant but those associated with the label switch 1→ 2 from susceptible to infected, which are
proportional to the density of infected individuals.

As this example demonstrates, this type of models does not describe the progression of the
contagion as the result of an actual exchange of microscopic state, viz. viral load, among the
individuals but simply as a consequence of their jumps from one label to another. The kinetic
framework introduced in the previous sections allows us to conceive a richer model, in which indi-
vidual contacts are taken into account in more detail. Consequently, me may describe contagion
dynamics by invoking explicitly some relevant microscopic determinants, such as the viral load of
the individuals. Our model, which shares formal analogies with the one presented in [7], is actually
an epidemiological caricature susceptible of several improvements towards a more accurate descrip-
tion of real-world scenarios. It has however the merit of introducing a microscopic individual-based
characterisation of the disease, normally lacking in classical epidemiological models, while allowing
us to address quite precisely a few interesting properties of the solutions, including the determin-
ation of hydrodynamic equations and of the asymptotic equilibrium distributions.

In this application, we assume that the microscopic state v ∈ R+ of the individuals represents
their viral load and moreover that there are two groups of people: those labelled by x = 1, who
have not been diagnosed with the infection yet, and those labelled by x = 2, who have been
detected as infected and quarantined. Undiagnosed people (x = 1) interact with one another and
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switch to label x = 2 once diagnosed. Conversely, quarantined people (x = 2) do not interact due
to isolation and possibly switch back to label x = 1 when their viral load has decreased enough. To
describe these dynamics, the reference framework is provided by the kinetic equation (15), which
takes into account interactions within the same labels only. In particular, we model the transition
probabilities as

T (v; 1|1) = 1− α(v), T (v; 2|1) = α(v) (35a)

T (v; 1|2) = β(v), T (v; 2|2) = 1− β(v), (35b)

where 0 ≤ α(v), β(v) ≤ 1 are the probabilities that an individual with viral load v is diagnosed
and quarantined or is readmitted in the society, respectively. We assume that these probabilities
are time-independent and moreover that α is non-decreasing and β is non-increasing in v.

As far as the interaction rules are concerned, we assume that undiagnosed people (x = 1) may
infect other undiagnosed people depending on their current viral load. Specifically, we set

v′ = (1− ν1 + η)v + ν2v∗ (36)

where ν1, ν2 ∈ (0, 1) are exchange rates among the individuals modelling the contagion dynamics
and η ∈ (ν1−1, +∞) is a centred (i.e. 〈η〉 = 0) random variable accounting for random fluctuations
in the individual viral load. Notice that (36) is of the form (2) with stochastic p = 1− ν1 + η and
deterministic q = ν2.

Conversely, we assume that quarantined people (x = 2) may only recover from the infection
due to the lack of contacts with other individuals:

v′ = (1− γ + ξ)v, (37)

where γ ∈ (0, 1) is the rate of recovery and ξ ∈ (γ − 1, +∞) is another centred random variable
independent of η. Also (37) is of the form (2) with stochastic p = 1 − γ + ξ and deterministic
q = 0.

Consequently, the equations for the distribution functions f1, f2 of the undiagnosed and quar-
antined people read:

d

dt

∫
R+

ϕ(v)f1(v, t) dv = λ

∫
R+

ϕ(v)
(
β(v)f2(v, t)− α(v)f1(v, t)

)
dv

+ µ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f1(v, t)f1(v∗, t) dv dv∗ (38)

and

d

dt

∫
R+

ϕ(v)f2(v, t) dv = λ

∫
R+

ϕ(v)
(
α(v)f1(v, t)− β(v)f2(v, t)

)
dv

+ µ

∫
R+

〈ϕ(v′)− ϕ(v)〉f2(v, t) dv. (39)

We observe that, unlike the general equation (14), in (39) the interaction term (second term on
the right-hand side) is linear with respect to f2. The reason is that (37) is not a binary interaction
but simply an update of the state of a quarantined individual based on their current state only.
Equation (39) may be obtained from (14) by assuming that v̄′ = ṽ′ are independent of v∗ and
using (8).

Remark 5.1. Recently, another kinetic model dealing with the spreading of infectious diseases and
which may be seen as a particular case of the general framework presented in this paper has been
proposed [9]. However, contagion dynamics are not the main focus of that work, indeed they are
described by a kinetic rephrasing of the SIR model analogous to the one discussed ad the beginning
of this section. The focus is instead on the impact of infectious diseases on the socio-economic
status of the individuals.
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5.1 Constant transition probabilities

We investigate first the simple case of constant α, β, which allows for a detailed analysis of the
trend of model (38)-(39).

Assume
λ = µ = 1,

meaning that the label switch and the interactions take place on the same time scale. Setting
ϕ(v) = 1, v in (38), (39) and using the interaction rules (36), (37), we obtain the following
equations for the evolution of the zeroth and first moments of f1, f2:

dρ1

dt
= −αρ1 + βρ2

dρ2

dt
= αρ1 − βρ2

d

dt
(ρ1m1) = −[α+ (ν1 − ν2)ρ1]ρ1m1 + βρ2m2

d

dt
(ρ2m2) = αρ1m1 − (β + γ)ρ2m2.

(40a)

(40b)

(40c)

(40d)

From (40a), (40b), together with the natural initial conditions ρ1,0 = 1, ρ2,0 = 0, we obtain

ρ1(t) =
β

α+ β

(
1 +

α

β
e−(α+β)t

)
, ρ2(t) =

α

α+ β

(
1− e−(α+β)t

)
, (41)

whence ρ∞1 = β
α+β and ρ∞2 = α

α+β . Therefore, quarantine apparently settles as a persistent
condition involving a fixed fraction ρ∞2 of the population. This may indicate that the infection
cannot be eradicated and becomes endemic.

Nevertheless, we obtain a clearer picture by considering the further piece of information
provided by (40c), (40d), which unveil the evolution of the mean viral loads m1, m2 of undia-
gnosed and quarantined individuals. Using (40a), (40b), we rewrite system (40c)-(40d) in vector
form as

d

dt

(
m1

m2

)
=

(
(ν2 − ν1)ρ1 − β ρ2ρ1 β ρ2ρ1

αρ1ρ2 −
(
αρ1ρ2 + γ

))(m1

m2

)
.

Due to the presence of ρ1, ρ2 the system matrix is time-dependent, namely the system is non-
autonomous. To approach the qualitative study of the large time trend of its trajectories we
linearise the system around the equilibria ρ1 = ρ∞1 , ρ2 = ρ∞2 and m1 = m2 = 0. The goal is to
investigate the stability and attractiveness of the asymptotic state expressing eradication of the
infection, i.e.

f∞1 (v) =
β

α+ β
δ(v), f∞2 (v) =

α

α+ β
δ(v).

We obtain:
d

dt

(
m1

m2

)
=

(
(ν2 − ν1) β

α+β − α α

β −(β + γ)

)(
m1

m2

)
, (42)

that we study in two representative cases.
As a first example, let us consider ν1 = ν2 in (36). With classical arguments of linear stability

we find that the equilibrium (m∞1 , m
∞
2 ) = (0, 0) is globally asymptotically stable if α > 0. Thus

any arbitrarily small quarantine rate leads, in the long run, to the eradication of the infection.
However, the smallness of α affects considerably the speed of convergence to such an equilibrium.
To see this, we compute the eigenvalues ω1, ω2 of the linear system (42):

ω1,2 =
1

2

(
−α− β − γ ±

√
(α+ β + γ)

2 − 4αγ

)
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and we observe that for α→ 0+ a first order Taylor expansion produces

ω1 = − αγ

β + γ
+ o(α), ω2 = −(β + γ) + o(1).

The first order approximation of ω1 shows that the convergence is indeed slow whenever α is small.
As a second example, let us consider ν1 = 0, ν2 > 0 in (36). Hence an individual can only get

more infected by the contact with another infected individual. Notice that without label switching,
i.e. for α = β = 0, such a microscopic interaction would lead to a blow up of the mean viral load
m1 in time, indeed 〈p+q〉 = 1+ν2 > 1 (cf. Section 2.1). Conversely, thanks to the label switching,
if

α > α† := max

max

{
0,
−(2β + γ) +

√
γ2 + 4ν2β

2

}
,

−β +

√(
1 + 4ν2

γ

)
β2 + 4ν2β

2

 (43)

then m1 converges to zero. Clearly, the higher the contagion rate ν2 the more promptly infected
individuals have to be diagnosed and quarantined.

Remark 5.2. Condition (43) is sufficient but not necessary for the asymptotic stability of the
disease-free equilibrium (m∞1 , m

∞
2 ) = (0, 0). It can be obtained considering that the eigenvalues

of the matrix in (42) solve the following quadratic equation:

ω2 + bω + c = 0

with

b := −
(

ν2β

α+ β
− α− β − γ

)
, c := αγ − ν2β(β + γ)

α+ β
.

Then a sufficient condition for their real parts to be negative is

{
b > 0
c > 0

, whence (43) follows.

5.2 Variable transition probabilities: Two-scale dynamics and hydro-
dynamic limit

For variable α, β, a regime which allows us to gain some insights into the trends of model (38)-(39)
is when the label switching and the interaction processes take place on two well separated time
scales. Assume

λ = 1, µ =
1

δ
,

where 0 < δ � 1 is a small parameter. This implies that interactions among the agents with the
same label are much more frequent than changes of label. In view of this argument, we can split
e.g., (38) as

d

dt

∫
R+

ϕ(v)f1(v, t) dv =
1

δ

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f1(v, t)f1(v∗, t) dv dv∗

d

dt

∫
R+

ϕ(v)f1(v, t) dv =

∫
R+

ϕ(v)
(
β(v)f2(v, t)− α(v)f1(v, t)

)
dv.

By introducing the new time scale

τ :=
t

δ

and defining f̃1(v, τ) := f1(v, t), we rewrite the system above as

d

dτ

∫
R+

ϕ(v)f̃1(v, τ) dv =

∫
R+

∫
R+

〈ϕ(v′)− ϕ(v)〉f̃1(v, τ)f̃1(v∗, τ) dv dv∗

d

dt

∫
R+

ϕ(v)f1(v, t) dv =

∫
R+

ϕ(v)
(
β(v)f2(v, t)− α(v)f1(v, t)

)
dv,

(44a)

(44b)
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that we interpret as follows: while the conservative interaction dynamics (44a) reach rapidly an
equilibrium on the quick time scale τ , the label switching dynamics (44b) are basically frozen
on the slow time scale t. We remark that this procedure is a restatement of the hydrodynamic
limit, which in classical kinetic theory is used to separate the time scale of quick local interactions
and that of slow transport of the particles. In this case, the transport is replaced by the label
switching.

The equilibrium on the τ -scale is especially interesting when ν1 = ν2 in (36), for then the
contagion dynamics do not only conserve the mass ρ1 of the undiagnosed individuals but also their
mean viral load m1. Indeed, in this case we have 〈p+q〉 = 1, cf. Section 2.1. As a consequence, the
τ -asymptotic distribution produced by (44a) is parametrised by both these macroscopic quantities
on the t-scale and can be expressed in self-similar form as

ρ1(t)

m1(t)
g1

(
v

m1(t)

)
,

where g1 : R+ → R+ satisfies the normalisation conditions∫
R+

g1(v) dv = 1,

∫
R+

vg1(v) dv = 1.

An analogous splitting argument applied to (39) produces

d

dτ

∫
R+

ϕ(v)f̃2(v, τ) dv =

∫
R+

〈ϕ(v′)− ϕ(v)〉f̃2(v, τ) dv

d

dt

∫
R+

ϕ(v)f2(v, t) dv =

∫
R+

ϕ(v)
(
α(v)f1(v, t)− β(v)f2(v, t)

)
dv

(45a)

(45b)

with f̃2(v, τ) := f2(v, t). We now let ρ2(t)g2(v) denote the τ -asymptotic distribution generated
by (45a), where g2 : R+ → R+ satisfies only the normalisation condition∫

R+

g2(v) dv = 1

because the recovery dynamics (37) conserve only the mass of the quarantined individuals.
On the whole, on the t-scale we express

f1(v, t) =
ρ1(t)

m1(t)
g1

(
v

m1(t)

)
, f2(v, t) = ρ2(t)g2(v) (46)

so that, plugging these distributions into (44b), (45b) and taking the conservation relationship
ρ1(t) + ρ2(t) = 1 into account, we obtain the evolution of the macroscopic parameters ρ1, ρ2, m1

on the slow time scale t:

dρ1

dt
=

(∫
R+

β(v)g2(v) dv

)
ρ2 −

(∫
R+

α(m1v)g1(v) dv

)
ρ1

ρ2 = 1− ρ1

d

dt
(ρ1m1) =

(∫
R+

vβ(v)g2(v) dv

)
ρ2 −

(∫
R+

vα(m1v)g1(v) dv

)
ρ1m1.

(47)

It is not difficult to check that (45a), together with the microscopic dynamics (37), produces
g2(v) = δ(v). Indeed, (37) is such that 〈p+ q〉 = 1− γ < 1, which according to Section 2.1 implies
m2 → 0+ asymptotically in time. Therefore, (47) specialises as

dρ1

dt
= β(0)(1− ρ1)−

(∫
R+

α(m1v)g1(v) dv

)
ρ1

d

dt
(ρ1m1) = −

(∫
R+

vα(m1v)g1(v) dv

)
ρ1m1,
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Table 1: Parameters kept constant in all numerical tests of Section 6

Parameter N λ ∆t ν2 γ

Value 106 1 10−3 0.2 0.3

whose steady states are given by

β(0)−

(
β(0) +

∫
R+

α(m∞1 v)g1(v) dv

)
ρ∞1 = 0,

(∫
R+

vα(m∞1 v)g1(v) dv

)
ρ∞1 m

∞
1 = 0.

Assume β(0) > 0, then from the first equation we deduce ρ∞1 > 0. Assume also that the
mapping v 7→ α(v) is strictly increasing with α(0) = 0. Then from the second equation we get
m∞1 = 0, considering that the integral term does not vanish if m∞1 > 0. Indeed, from the assumed
monotonicity of α we have∫

R+

vα(m∞1 v)g1(v) dv ≥ α
(
m∞1

2

)∫ +∞

1
2

vg1(v) dv

and moreover, from the normalisation properties of g1,∫ +∞

1
2

vg1(v) dv =

∫
R+

vg1(v) dv −
∫ 1

2

0

vg1(v) dv ≥ 1− 1

2

∫ 1
2

0

g1(v) dv ≥ 1

2
.

In conclusion, we obtain ρ∞1 = 1 and m∞1 = 0, which from (46) produce

f∞1 (v) = δ(v), f∞2 (v) = 0.

Hence the quarantine leads, in the long run, to a full recovery of the population x = 1 with no
quarantined individuals.

6 Numerical tests

We show now some numerical solutions to model (38)-(39) with interaction rules (36), (37), which
confirm the findings of Sections 5.1, 5.2 and allow us to explore also cases not explicitly covered
by the previous theoretical study.

To solve the kinetic equations (38)-(39) numerically we use a modified version of the Nanbu-
Babovski Monte Carlo algorithm [3, 20, 21], see Algorithm 1 in Appendix A, which includes the
transfer of agents from one label to another. Algorithm 1 is based on a direct implementation of the
time discrete stochastic microscopic processes (10), which in the limit ∆t→ 0+ produce the kinetic
equations. In particular, Θ, Ξ are distributed according to (11), Jt is conditionally distributed
according to (35) and V ′t is defined like either (36) or (37) depending on the population label. The
algorithm consists of two main blocks, which may be executed in parallel: i) lines 6–15 implement
the label switch process; ii) lines 16–25 implement the microscopic interactions.

In Table 1 we list the parameters of the algorithm and of the model that we keep fixed in all
numerical tests. In Table 2 we list instead those that we vary from test to test. In all numerical
tests we prescribe as initial conditions:

f1,0(v) = 1[0, 1](v), f2,0(v) = 0.

Hence, f0
1 is the uniform distribution in [0, 1] (from which we sample initially the particles with

label x = 1 in Algorithm 1) while no agents are quarantined at t = 0.
Figures 1, 2 refer to the case of constant transition probabilities discussed in Section 5.1. In

particular, in Figure 1 where α > α† we recover both the trends of the densities predicted by (41)
and those of the mean viral loads predicted by (40c)-(40d). We notice, in particular, the decay to
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Table 2: Parameters varying from test to test of Section 6

Parameter Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

µ 1 1 10 1 10 1
α 0.8 0.2 0.8 (1− e−v) 0.8 (1− e−v) 0.8 (1− e−v) 0.8 (1− e−v)
β 0.4 0.4 0.4e−v 0.4e−v 0.4e−v 0.4e−v

ν1 0 0 0.2 0.2 0 0
α† 0.28 0.28 – – – –

(a) (b)

Figure 1: The problem of Section 5.1 with ν1 = 0 and α > α†. The continuous lines are the
solutions of the hydrodynamic model (40a)–(40d). In particular, the solutions to (40a)-(40b) are
given exactly by (41) while the solutions to (40c)-(40d) have been obtained numerically by a fourth
order Runge-Kutta scheme

(a) (b)

Figure 2: The problem of Section 5.1 with ν1 = 0 and α < α†. The continuous lines are the
solutions of the hydrodynamic model (40a)–(40d), which have been computed as in Figure 1

zero of the mean viral loads. Conversely, in Figure 2 where α < α† we see that both the trends of
the densities (41) and of the viral loads (40c)-(40d) are still reproduced at the particle level but
this time the mean viral loads blow as predicted by the qualitative analysis.

Figures from 3 to 6 refer instead to the case of variable transition probabilities discussed in
Section 5.2. Specifically, we set

α(v) ∝ 1− e−v, β(v) ∝ e−v,

which are respectively a monotonically increasing and a monotonically decreasing function with
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(a) (b)

Figure 3: The problem of Section 5.2 with ν1 = ν2 and µ� λ

(a) (b)

Figure 4: The problem of Section 5.2 with ν1 = ν2 and µ = λ

α(0) = 0 and β(0) > 0. This way we reproduce exactly the conditions of the qualitative analysis
of Section 5.2.

In Figures 3, 4 we set ν1 = ν2. Furthermore, in Figure 3 we consider the regime µ � λ,
which produces a label switching-driven hydrodynamic evolution of the densities and mean viral
loads based on a local-in-time equilibrium of the interactions. The Monte Carlo numerical solu-
tion confirms the theoretical predictions obtained in Section 5.2 by means of the hydrodynamic
splitting (44a)-(44b) and (45a)-(45b): in the long run, ρ1 → 1 and ρ2 → 0 with m1, m2 → 0.
Conversely, in Figure 4 we consider the regime µ = λ, which does not allow for a hydrodynamic
splitting of the kinetic equations because the interactions and the label switching take place on
the same time scale. Although in Section 5.2 we have not explored this case, from the numerical
results we observe that the qualitative trends of both the densities and the mean viral loads are
very similar to those obtained for µ� λ. In particular, up to a slightly slower rate of convergence
in time, the asymptotic states are the same.

In Figures 5, 6 we finally examine the case ν1 = 0 in the frame of variable transition probab-
ilities, that we have not investigated in Section 5.2. This corresponds to infection dynamics (36)
such that an individual may only get more infected after coming into contact with another infected
individual. In Figure 5 we illustrate the case µ � λ: since interactions are much quicker than
label switches, the mean viral load of the undiagnosed individuals (x = 1) tends to grow rapidly
(Figure 5b). As a result, in the long run a large percentage of the population tends to be quarant-
ined (Figure 5a). Finally, in Figure 6 we illustrate the regime µ = λ: this time, similarly to the
case of Figure 1, the quarantine can control more effectively the spreading of the infection because
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(a) (b)

Figure 5: The problem of Section 5.2 with ν1 = 0 and µ� λ

(a) (b)

Figure 6: The problem of Section 5.2 with ν1 = 0 and µ = λ

the contagion among the individuals takes place on the same time scale of the label switches. Nev-
ertheless, due to the infection-dependent transition probabilities, the infection is not completely
eradicated in time but becomes endemic. In particular, Figure 6a shows that in the long run a
fixed percentage (however lower than in Figure 5a) of individuals is systematically quarantined
and Figure 6b confirms that such a quarantine is not fictitious like in the numerical test illustrated
in Figure 1. Indeed, the quarantined population is not fully healthy like in Figure 1b because its
asymptotic mean viral load is strictly positive.

7 Conclusions

In this paper, we have considered Boltzmann-type kinetic models with label switching derived
from stochastic microscopic dynamics accounting for the superposition of conservative interactions
and group-wise non-conservative state-dependent relabelling of the agents. Remarkably, such a
derivation has yielded straightforwardly a simple and efficient Monte Carlo particle scheme for the
numerical approximation of the resulting kinetic equations.

For prototypical death and birth processes, we have been able to characterise explicitly both
the transient and the equilibrium (“Maxwellian”) kinetic distributions in the special regime of
sufficiently small parameters (quasi-invariant regime) by means of Fokker-Planck asymptotics and
self-similar solutions.

Moreover, we have applied our kinetic framework to the construction of a simple, and certainly
improvable, model of the contagion of infectious diseases with quarantine, which describes from a
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statistical mechanics point of view the interplay among: i) the microscopic dynamics of contact and
contagion among the individuals of a community; ii) the isolation of individuals diagnosed as in-
fected; iii) the reintroduction in the community of quarantined individuals diagnosed as recovered.
In particular, the isolation and the reintroduction are regarded as label switches modelled on an
viral load-dependent probabilistic basis. Thanks to its kinetic structure, this model depends on a
relatively small number of parameters. Yet, it shows a quite rich variety of trends, which suggest
clearly the impact of the microscopic features of the system on either the success or the failure of
the quarantine as a control strategy of the global spreading of the infection. More importantly, the
kinetic structure of the model has allowed us to address analytically several significant regimes by
taking advantage of powerful methods of the kinetic theory, such as e.g., the hydrodynamic limit.
This way, we have obtained a precise characterisation of the role of the microscopic parameters in
the emergence of either global trend.

As research prospect, we mention that our kinetic equations with label switching provide a
framework for the statistical modelling of network-structured social interactions, see e.g., [4], with
the further possibility for the agents to jump from one node of the network to another. Applications
include for instance social interactions on graphs, whose vertices represent spatial locations across
which agents migrate or social compartments that the agents may change in time. Some of these
applications are currently in preparation [8, 17] as developments of the model of the contagion of
infectious diseases presented in Section 5.
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A Numerical algorithm

Algorithm 1: Nanbu-Babovski algorithm with mass transfer for model (38)-(39)

Data:
• N ∈ N total number of agents of the system;
• Nn

1 , N
n
2 ∈ N numbers of agents in x = 1, x = 2, respectively, at time tn := n∆t;

1 Fix ∆t ≤ min{ 1
λ ,

1
µ};

2 for n = 0, 1, 2, . . . do
3 Compute

ρn1 =
Nn

1

N
, ρn2 =

Nn
2

N
, mn

1 =
1

Nn
1

Nn1∑
k=1

vnk , mn
2 =

1

Nn
2

Nn2∑
k=1

vnk ;

4 repeat
5 Pick randomly two agents (xni , v

n
i ), (xnj , v

n
j ) with i 6= j;

6 for h = i, j do
7 Sample Θ ∼ Bernoulli(λ∆t);
8 if Θ = 1 then
9 if xnh = 1 then

10 Sample J ∈ {1, 2} with law
Prob(J = 1) = 1− α(vnh), Prob(J = 2) = α(vnh);

11 if xnh = 2 then
12 Sample J ∈ {1, 2} with law

Prob(J = 1) = β(vnh), Prob(J = 2) = 1− β(vnh);

13 Set xn+1
h = J ;

14 else
15 Set xn+1

h = xnh;

16 Sample Ξ ∼ Bernoulli(µ∆t);
17 if Ξ = 1 then
18 if xni = xnj = 1 then

19 Update vni , v
n
j to vn+1

i , vn+1
j according to (36);

20 if xni = 1, xnj = 2 or vice versa then

21 Set vn+1
i = vni and update vnj to vn+1

j according to (37) or vice versa;

22 if xni = xnj = 2 then

23 Update vni , v
n
j to vn+1

i , vn+1
j according to (37);

24 else
25 Set vn+1

i = vni , vn+1
j = vnj ;

26 until no unused pairs of agents are left ;

26
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