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� Spider web-inspired phononic
crystals can achieve optimized
performance.

� One proposed design achieves
maximal band gap width (48%) in the
low-frequency range.

� A second design filters only a
fundamental frequency for non-linear
wave detection.

� Other designs create polarization
band gaps (4.2 kHz range) or isolated
Dirac cones.
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a b s t r a c t

Spider orb webs are versatile multifunctional structures with optimized mechanical properties for prey
capture, but also for transmitting vibrations. The versatility of such a system mainly derives from its vari-
able geometry, which can be effectively used to design phononic crystals, thus inhibiting wave propaga-
tion in wide frequency ranges. In this work, the design of spider web-inspired single-phase phononic
crystals through selective variation of thread radii and the addition of point masses is proposed, deter-
mined through the use of optimization techniques. The obtained results show that spider web geometry
displays a rich vibration spectrum, which by varying its the geometric characteristics and adding local-
ized masses can be tailored to manipulate wave modes, and the resulting two-dimensional phononic
crystals present wide complete band gaps generated by Bragg scattering and local resonances.
� 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spider webs are the product of evolutionary adaptation, being
able to deliver a compromise between demands such as absorbing
the impacts of prey while also efficiently transmitting information
about the nature and position of vibration sources [1,2]. Different
spider web geometries include the vertical orb web, funnel web,
sheet web, and tangle web [3]. Here, a simple plane orb web model
is considered, constituted by radial threads connecting the center
of the web (hub) to the outer region (frame), and viscid threads
(spiral) connecting adjacent radial threads [4,5]. Radial silk threads
are known for their high toughness and tensile strength, with lar-
ger Young’s modulus and diameters, while viscid threads are
known for their large ultimate strain, but have smaller Young’s
modulus and diameters [6,7]. Thus, the versatility observed in spi-
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der web geometries and the resulting remarkable ability to manip-
ulate waves suggests it can be efficiently used to conceive new
artificial materials.

Novel systems designed to exhibit wide attenuation regions
have recently been inspired by biological structures [8–13]. In par-
ticular, Miniaci et al. [4] have proposed to periodically arrange spi-
der web-inspired structures to achieve phononic crystals (PCs)
with efficient wave attenuation performance, through the nucle-
ation of Bragg and local resonance based phononic band gaps
(BGs), i.e., frequency regions where wave propagation is inhibited
[14–24]. Furthermore, spatially sparse (i.e., lightweight) geome-
tries can be particularly attractive to design systems capable of
yielding large attenuation regions [25,26], which further motivates
the investigation of spider web-inspired structures. In particular,
the growing use of additive manufacturing and its application in
various fields [27] enables the design of structures with complex
geometries at a low cost [28], which further encourages the devel-
opment of single-phase PCs with monolithic structures that can be
readily fabricated to yield interesting vibration-control properties
[29].

Several types of strategies have been proposed to achieve BGs in
two-dimensional structures, such as introducing (i) impedance
mismatches through the addition of localized masses [30] or peri-
odic cavities [31], (ii) variations of cross-sections in specific regions
[32,33], or (iii) exploiting the effect of local resonance [34–36]. Spi-
der web structures provide the possibility of adopting all of these
strategies due to their versatility, which allows the combination
of the impedance modulation realized by graded thread diameters
and applied localized masses throughout the web structure, which
can be properly determined through the use of optimization tech-
niques. Optimization techniques have been widely used to design
PCs to achieve wide BGs, including genetic algorithms [37–39],
topology [40–42] and evolutionary optimization [43]. Additionally,
when dealing with a given topology, parametric optimization [44]
is useful to properly select design variables. This is particularly rel-
evant to spider web-inspired structures.

Although spider web-inspired PC structures have been pro-
posed before [4,45], their conception was limited to basic configu-
rations, while their full potential for wave manipulation has
remained largely unexplored. In this paper, the evaluation of the
effects of (i) thread diameter to create impedance mismatches
and (ii) the inclusion of point masses to tune the wave filtering
characteristics of two-dimensional PCs is proposed. These are
designed using simple models of spider orb webs and the parame-
ters optimized to achieve distinctive objectives such as (i) maxi-
mum normalized BG widths; (ii) BGs opened at a fundamental
frequency and its harmonics; (iii) BGs considering distinct out-
of-plane and in-plane polarization modes; (iv) creation of isolated
Dirac cones. This works presents, for the first time, the exploitation
of the design versatility of spider web-inspired single-phase PCs for
different objectives. Its structure can easily be tailored to achieve
optimized performance for various different objectives. The pre-
sented approach is entirely general and may also be applied to
optimize other bio-inspired systems which present similar design
versatility. The paper is organized as follows: Section 2 presents
the models and methods, Section 3 illustrates the obtained results,
and Section 4 provides concluding remarks.
2. Models and methods

2.1. Dynamic models

The development of a two-dimensional PC using a spider orb
web-inspired geometry is initially proposed. The relation between
the initial spider web-inspired structure, its corresponding peri-
2

odic hexagonal lattice, and the resulting unit cell are depicted in
Fig. 1.

The initial spider orb web hexagonal geometry with character-
istic length L is depicted in Fig. 1a, with red lines indicating radial
threads and blue lines indicating viscid threads. This structure can
be interpreted as a composition of ns layers, where each layer is
constituted by 12 radial and 12 viscid threads, as illustrated for
ns ¼ 3. This structure can be repeated to form a hexagonal periodic
lattice, as shown in Fig. 1b, based on the corresponding unit cell
depicted in Fig. 1c, where for the i-th layer, the radius of a radial

thread is denoted by r ið Þ
r , and of a viscid thread by r ið Þ

v . Thus, for ns

layers, there are 2ns possible different thread diameters. Due to
the condition of periodicity, elements connecting corresponding
nodes are removed so they are not duplicated [34].

Each structural component is modeled as a 2-node frame ele-
ment, which superposes the effects of rod, shaft, and beam ele-
ments. Considering a frame element in the x-direction, transverse
directions are labeled as y and z. The DOFs for the i-th node are rep-
resented by the nodal displacement vector qi, and the forces and
moments in the same node are represented using vector f i, respec-
tively given by

qi ¼ uxi uyi uzi /xi /yi /zi

� �T
; ð1aÞ

f i ¼ Fxi Fyi Fzi Mxi Myi Mzif gT ; ð1bÞ

where uxi; uyi, and uzi represent displacements, /xi; /yi, and /zi rota-
tions, Fxi; Fyi, and Fzi forces, and Mxi; Myi, and Mzi moments, for the
x; y, and z directions, respectively. Quantities ux and Fx are related
using the rod model, /x and Mx using the shaft model, and quanti-
ties uy; /z; Fy, and Mz are related using the beam model, as are also
uz; /y; Fz, and My. The relations between displacements (rotations)
and forces (moments) at nodes are described in the literature
for the case of linear elastic behavior using stiffness and mass
matrices [46].

2.2. Band structure computation

Band diagrams are used to graphically represent dispersion
relations, i.e., relations between the propagating waves circular
frequency x and corresponding wave vectors k. Even though dis-
persion relations are computed considering infinite periodic struc-
tures, they are able to provide important information regarding
wave propagation in finite structures [12,47,48]. In the case of sys-
tems with two-dimensional periodicity, the wave vector can be
restricted to the plane containing the structure and be written in
terms of its Cartesian components (kx and ky) using

k ¼ kx îþ ky ĵ: ð2Þ
Due to the system periodicity, the usual process for computing

the bands diagram consists in analyzing a characteristic unit cell,
representative of the whole structure. In this case, it is possible
to restrict the wave vector to the first Brillouin zone (FBZ) [14].
Also, due to symmetry, only a fraction of the FBZ needs to be con-
sidered, named the irreducible Brillouin zone (IBZ) [49]. For a two-
dimensional hexagonal lattice, the high symmetry points with
respective coordinates in the k-space are given by C (0;0),
M (p=L;�p=L

ffiffiffi
3

p
), and K (4p=3L;0). These concepts are shown in

Fig. 2 for the hexagonal geometry.
For the computation of the band diagrams, the finite element

(FE) method is used with the application of periodicity to enforce
the Bloch-Floquet conditions [50] on the contour of the unit cell.
The propagating wave frequencies are computed for fixed direc-
tions (x ¼ x kð Þ), while the evanescent behavior of waves is
obtained by computing the complex wave vectors for each fre-
quency of interest (k ¼ k xð Þ). Further details on the computational



Fig. 1. Spider web-inspired periodic frame: (a) single hexagonal frame structure (radial threads indicated as red lines and viscid threads indicated as blue lines) with distinct
composing layers, (b) periodic structure obtained from the repetition of the spider web-inspired frame (colored) in a hexagonal lattice, (c) representative unit cell used to
obtain the periodic structure (some frame elements are removed at the edges of the unit cell so they are not duplicated in the corresponding periodic structure).

Fig. 2. (a) Two-dimensional hexagonal periodic medium with a highlighted
unit cell and (b) FBZ with its highlighted IBZ and high symmetry points C (0;0),
M (p=L;�p=L

ffiffiffi
3

p
), and K (4p=3L;0).
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implementation of this FE-based band diagram computation tech-
nique are given in the supplementary material.
2.3. Parameter optimization

2.3.1. Parameters and constraints
The number of possible different thread diameters in the pro-

posed unit cell and the addition of localized masses at the junction
between radial and viscid threads provide considerable design
freedom. A proper selection of design parameters can be obtained
using optimization techniques to achieve designs that fulfill speci-
fic objectives, such as wide BGs with the lowest possible central
frequency [51]. Possible variations of thread diameters in a unit
cell and the arrangement of masses are depicted schematically in
Fig. 3.

Fixed values of L and ns are used (which are usually limited by
physical construction constraints) and maintain the values of
Fig. 3. Design options used for parameter optimization: (a) variation of radial and
viscid thread diameters and (b) introduction of localized masses at the junctions of
threads.

3

thread diameters and added masses as possible optimization
parameters. Henceforth, the list of the continuous optimization
parameters that describe thread radii will be expressed in a vector
r given by

r ¼ r 1ð Þ
v r 1ð Þ

r r 2ð Þ
v r 2ð Þ

r � � � r nsð Þ
v r nsð Þ

r

� �
; ð3Þ

where r ið Þ
v and r ið Þ

r are the values of viscid and radial thread radii for
the i-th layer, respectively, for i ¼ 1; 2; � � � ; ns, as illustrated in
Fig. 1c. For a unit cell with ns layers, this yields a total of 2ns design
parameters. The values of thread radii can be fixed between lower
and upper bounds given by rmin and rmax, respectively. This can be
summarized as a restriction on Rr, stated as

Rr : r ið Þ
v ; r ið Þ

r 2 rmin; rmax½ �; 8i ¼ 1; 2; � � � ; ns: ð4Þ
Similarly, a mass vector m can be defined to describe localized

masses which can be added to the unit cell. The mass distribution
begins from the inner part of the first layer, moving to the center of
the orb web, using the continuous variables vector described by

m ¼ m 1ð Þ m 2ð Þ � � � m nsð Þ
v

� �
; ð5Þ

where m ið Þ describe the masses added to the inner region of the i-th
layer, for i ¼ 1; 2; � � � ; ns, yielding a total of ns design parameters.
Instead of setting the values of masses between fixed bounds, the
total added mass is limited to madd, which can be stated as the
restriction Rm, written as

Rm : 12
Xns�1

i¼1

m ið Þ
 !

þm nsð Þ 6 madd: ð6Þ
2.3.2. Objective functions
2.3.2.1. Normalized band gap width. In the following, various objec-
tive functions for the dispersion spectrum of the considered struc-
ture are presented, showing how each of these alternative
configurations can be achieved, and thus demonstrating the versa-
tility of the spider web-inspired geometry.

With the purpose of achieving BGs with maximum widths and
minimum central frequencies (typical for structural vibration mit-
igation applications), the optimization objective is chosen as the
maximization of the normalized width of the difference between
the n-th and nþ 1ð Þ-th bands [52]. Considering a given band dia-
gram, the difference between consecutive propagating frequencies
xn andxnþ1 for the IBZ position given by the wave vector k can be
calculated as xnþ1 kð Þ �xn kð Þ. Furthermore, if k is considered over
all possible positions along the contour of the IBZ, one can define
the difference between the n-th and nþ 1ð Þ-th propagating fre-
quencies over this contour, given by minkxnþ1 kð Þ �maxkxn kð Þ,
which means that, for a positive value of this difference, a BG exists
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between the n-th and nþ 1ð Þ-th bands, which can be further
widened. Thus, this metric can be combined with the correspond-
ing central (mean) frequency to describe the objective function un,
as

u sð Þ
n ¼

min
k

xnþ1 kð Þ �max
k

xn kð Þ

min
k

xnþ1 kð Þ þmax
k

xn kð Þ
� �

=2
; ð7Þ

where the superscript s refers to the optimization of a single BG.
The optimization objective described by Eq. (7) is especially

useful for the optimization process, since it defines a continuous
metric between given bands. Although wave modes may cross

and change their ordering in the band diagram, u sð Þ
n consistently

provides the difference between the bands chosen for the opti-
mization, and in the case where a BG is closed, it becomes negative.
2.3.2.2. Attenuation of harmonics. Another interesting possibility
concerns structural health monitoring problems, where the pres-
ence of a defect in a structure may be determined by the detection
of its nonlinear response, i.e. the presence of harmonics [53,54].
Thus, it is important to control both the opening and closing of
BGs at a specific frequency (fundamental) and its harmonics, i.e.,
attenuate a fundamental frequency while preserving its harmonics
for detection. With this in mind, a metric can be defined using the
minimum attenuation computed at a given fundamental frequency
(x0) and its harmonics (nx0, for a positive integer n), also applying
weighting factors that account for the greater importance of lower
harmonics. This metric can be written using the imaginary part of
the wave vector, Im k xð Þð Þ, which accounts for the wave evanes-
cent behavior for a given circular frequency x [55], as

u fhð Þ
x0

¼ 1� e�min jIm k x0ð Þð Þj� �þXNh

n¼2

1
n
e�min jIm k nx0ð Þð Þj; ð8Þ

where the superscript "fh" refers to a first harmonic approach, and
min jIm k xð Þð Þj is the minimum of the imaginary part of all com-
puted wave vectors, which indicates if all waves are attenuated at
a given frequency [56], considering the first Nh harmonics. The fac-
tor e�min jIm k xð Þð Þj becomes 1 for min jIm k xð Þð Þj ¼ 0 and 0 for a suffi-
ciently large min jIm k xð Þð Þj, providing a continuous metric for the
attenuation considering the chosen harmonics. Thus, this metric
yields positive values that increase for a BG opened at the funda-
mental frequency (1) and for at least one propagating frequency
for each of the higher harmonics (1=n). The weighting factor 1=n
is somewhat arbitrary and can be generally replaced by any
integer-based positive function that reflects the relative importance
of each harmonic.

The simplicity in the presented objective function suggests it
can be further modified to design structures capable of opening
BGs at each harmonic, which can be written as

u ahð Þ
x0

¼
XNh

n¼1

1
n

1� e�min jIm k nx0ð Þð Þj� �
; ð9Þ

where the superscript "ah" now refers to an all harmonics approach.
In this case, the opening of multiple BGs is a different objective from

those previously presented, since objective function u sð Þ
n aims to

open and widen a single BG and objective functionu fhð Þ
x0

opens a sin-
gle BG and ensures that higher harmonics do not lie inside BGs.

Both proposed objective functions (u fhð Þ
x0

and u ahð Þ
x0

) are generic
and can be used for optimization procedures applied to structures
with frequency-dependent damping, such as viscoelastic struc-
tures [10,57].
4

2.3.2.3. Uncoupled mode polarization. The proposed PC is also used
to obtain BGs relative to distinct polarization modes, useful for
applications in wave controlling and confinement [58,59]. To this
end, a metric is proposed in the form

u pð Þ ¼
XNb

n¼1

e�
1
Np

Nout xnð ÞNin xnð Þð Þ
; ð10Þ

where the superscript p refers to a polarization approach, Nout xnð Þ
and Nin xnð Þ represent the number of out-of-plane and in-plane
wave modes contained in the n-th frequency interval centered at
xn with width Dx (i.e., x 2 xn � Dx=2; xn þ Dx=2½ �), respectively.
This metric is built in such a way that consecutive intervals do not

overlap, Np ¼
PNb

n¼1Nout xnð Þ þ Nin xnð Þ is the total number of com-
puted wave modes, and Nb ¼ xmax=Dx is the number of frequency
intervals (bins) for a given maximum frequency xmax and width
Dx. The sets of corresponding pairs xn � Nout xnð Þ and
xn � Nin xnð Þ have the same meaning as states histograms, where
each n-th component represents a frequency bin for propagating
frequencies contained in that frequency region. Whenever
Nout xnð Þ or Nin xnð Þ are zero, the metric yields a 1 for the corre-
sponding bin, decaying to 0 otherwise, while the term 1=Np pro-
vides a smoother transition between these limits. The polarization
of modes can be computed by comparing out-of-plane and in-
plane displacements for each propagating wave mode and catego-
rizing the modes according to their relative magnitudes.

2.3.2.4. Dirac cones. For the last optimization objective, the use of a
variable spider web-inspired PC structure to create isolated Dirac
cones [60–62] is proposed. These features may result in elastic sys-
tems with localized wave modes that potentially yield topological
mode protection and lossless energy transport [63,64]. Thus, a
metric proportional to the differences regarding the propagating
frequencies corresponding to the high-symmetry points C, M,
and K (denoted respectively as x Cð Þ; x Mð Þ, and x Kð Þ) relative to
the consecutive n-th and nþ 1ð Þ-th bands is proposed in the form

u Dð Þ
n ¼ g MCð Þ

n g KMð Þ
n g Dxð Þ

n;nþ1 g
MKð Þ
nþ1 g CMð Þ

nþ1 ; ð11Þ
where the superscript D refers to a Dirac cone approach, and the
functions that compose this metric are given by

g MCð Þ
n ¼ g xn Mð Þ; xn Cð Þð Þ, g KMð Þ

n ¼ g xn Kð Þ; xn Mð Þð Þ, g MKð Þ
nþ1 ¼

g xnþ1 Mð Þ; xnþ1 Kð Þð Þ, g CMð Þ
nþ1 ¼ g xnþ1 Cð Þ; xnþ1 Mð Þð Þ, and

g Dxð Þ
n;nþ1 ¼ g Dx; xnþ1 Kð Þ �xn Kð Þð Þ. The function g a; bð Þ ¼ 1� e� a=bð Þ2

becomes 0 for a � b and 1 for a � b, thus performing a simple com-

parison between its arguments. Terms g MCð Þ
n ; g KMð Þ

n ; g MKð Þ
nþ1 , and g CMð Þ

nþ1

account for the separation of propagating frequencies of high-

symmetry points, while the term g Dxð Þ
n;nþ1 closes the distance between

consecutive propagating frequencies at the K-point using a thresh-
old value Dx.

2.3.3. Optimization problems
Optimization problems may be formulated by separately opti-

mizing the radii (2ns variables), the masses (ns variables), or by
simultaneously optimizing both radii and masses (3ns variables).
The proposed objective functions need to be maximized, which
may be subject to Rr and Rm, either simultaneously, yielding the
optimization problem

maximize
r;m

u; subjecttoRr; Rm; ð12Þ

or sequentially, yielding

maximize
r

u ; subject toRr; ð13aÞ
maximize

m
u ; subject toRm; ð13bÞ
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where the optimization variables r and m are given, respectively by
Eqs. (3) and (5), restrictions Rr and Rm are given, respectively by
Eqs. (4) and (6); the generic objective function, u, may refer to

u sð Þ
n (Eq. (7)), u fhð Þ

x0
(Eq. (8)), u ahð Þ

x0
(Eq. (9)), u pð Þ (Eq. (10)), or u Dð Þ

n

(Eq. (11)), depending on which optimization objective is considered.
The resulting constrained nonlinear optimization problems can

be solved using a sequential quadratic programming (SQP) algo-
rithm, which yields excellent efficiency and percentage of success-
ful solutions when compared to several other methods [65]. The
SQP algorithm uses a quadratic approximation of a Lagrangian
function to formulate a quadratic programming subproblem [66].
Candidate solutions are iterated using approximations for the Hes-
sian matrix of the Lagrangian function, conveniently updated
through quasi-Newton methods [67]. This type of method is also
particularly useful for constrained parameters, and is currently
available in commercial software such as Matlab [68]. The inter-
ested reader is referred to the general overviews presented in
[69,70].

3. Results

3.1. Initial considerations

To compute the band diagrams of the structure shown in Fig. 1c,
the material properties of Digital ABS Plus (a commonly used
material for 3D printing) are considered for both the radial and vis-
cid threads (which simplifies the fabrication process): Young’s
modulus E ¼ 2800 MPa, Poisson’s ratio m ¼ 0:35, and mass density
q ¼ 1175 kg/m3. Before applying the optimization process for dis-
tinct objectives, the band diagrams yielded by a PC with all threads
having the same diameters are first investigated.

3.1.1. Initial band diagrams
The band diagram (real and imaginary parts of the wave vector)

of a hexagonal lattice with length L ¼ 50 mm, number of layers
ns ¼ 3, and elements with radius r ¼ 1:5 mm, using the material
properties of Digital ABS Plus are initially computed, which yields
a unit cell with a mass of 4:84� 10�3 kg. The resulting band dia-
gram, unit cell, and corresponding wave mode displacements are
shown in Fig. 4 with the real part of wave vectors marked in blue;
since the imaginary part of wave vectors serves as an indication of
the type of mechanism associated with BG formation, these are
also shown in red, indicated as Im kCMa=2pð Þ and Im kCKa=2pð Þ for
the CM and CK directions at the left and right portions of the band
diagram, respectively. Also, the normalized frequency
x ¼ xa=2pcL is used, where a ¼ L

ffiffiffi
3

p
is the hexagonal lattice char-

acteristic length and cL ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the speed of longitudinal waves

in the material.
The band diagram in Fig. 4a shows no BGs. Wave mode shapes

are marked using letters in Fig. 4b, where a rigid-body-like trans-
lational behavior can be noticed in wave modes V (out-of-plane
displacements) and H1/H2 (in-plane displacements); wave mode
pairs B1/B2, BB1/BB2, and BB3/BB4 represent first-, second-, and
third-order-like bending modes, respectively; and wave mode T
is torsional. Although the lack of impedance mismatches indicates
that no BGs are formed in this initial structure, these initial results
allow further comprehension on the influence that the parameter
optimization has on altering the band diagram and wave modes,
as discussed in the subsequent sections.

3.2. Optimization of normalized band gap width

3.2.1. Optimization of thread radii
Here, the results of the optimization process considering the

diameters of threads (Fig. 3a) with the objective of opening and
5

widening various BGs (Eq. (7)) through the selection of proper val-
ues of n using the optimization problem stated in Eq. (13a) are pre-
sented. The same initial structure as in the previous section is
chosen, with a lattice length of L ¼ 50 mm and ns ¼ 3 layers, which
yields 6 design variables.

In view of future experiments, the bounds for the optimization
variable r are chosen compliant to typical manufacturing restric-
tions such as the resolution of the additive process. Here, the
bounds rmin ¼ 0:5 mm and rmax ¼ 3:0 mm are set. Also, due to
the large number of converging threads at the unit cell center
(see Fig. 1a), an increase in the thread diameters in this vicinity
might be unfeasible for the manufacturing process of the PC. Thus,
to facilitate the connection between these elements, the innermost
thread diameters are removed from the list of parameters and fix it

at the lower limit (i.e., r nsð Þ
r ¼ rmin).

The first bands that could be successfully separated using the
optimization process were the 6th and 7th bands. The optimized
parameter vector that widens the corresponding normalized BG
width is obtained as

r 6; 7ð Þ
opt ¼ 0:500 0:594 3:000 3:000 3:000 0:500f gmm;

ð14Þ
which yields the corresponding band diagram, unit cell, and wave
modes shown in Fig. 5. Henceforth, the obtained parameters repre-
senting the unit cell with the thickness of elements proportional to
the optimized diameters are depicted, also using colors to indicate
the added masses at nodes, ranging from white (no added mass)
to black (all added mass).

The band diagram computed using optimized geometric param-
eters for widening the normalized BG width between the 6th and
7th bands (Fig. 5a) has the first BG located between 2296 Hz and
2788 Hz (19% normalized width) which separates wave modes
(presented in Fig. 5b) associated with the motion of a rigid-body-
like inclusion (wave modes B1, B2, V, H1, H2, and T) from wave
modes with higher frequencies and localized motion (L1, L2, L3,
and L4). The second-order bending modes (BB1 and BB2, Fig. 4b)
are not present.

As side effects, additional BGs are opened at 2998 Hz – 3205 Hz,
3464 Hz – 3742 Hz, 4433 Hz – 4640 Hz, and 6633 Hz – 7000 Hz
frequency ranges, which are associated with the localized wave
modes. Thus, although above 2788 Hz no wide BGs are noticed,
one can expect limited energy propagation, given the low group
velocity presented by these wave modes.

The imaginary parts of wave vectors have a fairly symmetrical
distribution around the central frequency of each BG, indicating
they are formed through Bragg scattering, although localized
modes are visible in the diagram (e.g., a locally resonant BG
appears around 7000 Hz). This indicates that the lattice length
can be scaled to match the desired wavelengths associated with
a given vibration attenuation application. Also, since Bragg scatter-
ing is associated with the lattice length, the opening of BGs at fre-
quencies corresponding to multiple wavelengths is usually
expected. The occurrence of several Bragg scattering BGs for wave-
lengths in the same order of magnitude indicates another advan-
tage of the proposed structure.

Regarding the optimal radii distribution r 6; 7ð Þ
opt , it is interesting to

notice that the first parameter is equal to the lower bound (0:5
mm), and the second parameter is close to this lower bound, while
all other optimized parameters (viscid and radial threads starting
from the second layer, with exception of the innermost radial
threads) are equal to the upper bound (3:0 mm). This indicates that
the optimal configuration to achieve the maximum normalized BG
width consists in maximizing the stiffness and mass of the inner
regions, while minimizing the stiffness of the outer regions, which
leads to a spring-mass-like system with the outer region acting as



Fig. 4. Initial results for the hexagonal lattice structure: (a) band diagram with the real and imaginary parts of the wave vector marked in blue and red, respectively, showing
no BGs; (b) mode displacements profiles (colored according to the magnitude of displacement and normalized according to the maximum of displacement in each case): V is
an out-of-plane displacement mode, B1 and B2 represent bending modes, BB1 and BB2 represent second-order-like bending modes, BB3 and BB4 represent third-order-like
bending modes, H1 and H2 are in-plane displacement modes, and T is a torsional mode.

Fig. 5. Results for optimized structure for maximum normalized BG width between 6th and 7th bands: (a) band diagram with BGs between 2296 Hz – 2788 Hz, 2998 Hz –
3025 Hz, 3464 Hz – 3742 Hz, 4433 Hz – 4640 Hz, and 6633 Hz – 7000 Hz and its corresponding unit cell obtained using optimization objective u sð Þ

6 (Eq. (7)). (b) Wave modes
are separated between low-frequency (B1, B2, V, H1, H2, and T, dominated by rigid-body-like inclusion behavior) and mid- to high-frequency wave modes (L1, L2, L3, and L4)
with localized motion at the outer threads.
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soft springs and the inner region acting as a rigid and heavy core.
This result agrees with what has been previously presented in lit-
erature [25,26] and validates the proposed optimization scheme.

With this configuration, the unit cell has a total mass of 9:65 g,
which represents a 99%weight increase in the mass of the unit cell
when compared to the initial configuration. This further reinforces
the spring-mass behavior for the low-frequency wave modes of the
system, i.e., low stiffness with large mass values. It is also interest-
ing that the second parameter is not exactly equal to the lower
bound. To understand why, it is necessary to analyze the band dia-
gram considering the radii vector
r ¼ 0:5 0:5 3:0 3:0 3:0 0:5f g mm (not shown here, for the
sake of brevity). For these parameters, the first BG has a slightly
narrower normalized width (15%), which suggests that a smoother
radii transition between the outer and inner regions of the PC is
beneficial for BG formation, as opposed to excessively large differ-
ences in thread radii.

The described optimization procedure can also be used to
manipulate other characteristics of the band diagram, for example
to obtain a BG associated with the separation of the 8th and 9th
bands. In this case, the optimization process yields the optimized
radii vector given by

r 8; 9ð Þ
opt ¼ 0:680 0:500 3:000 3:000 3:000 0:500f gmm;

ð15Þ
showing a smooth variation between the optimized radii (as
opposed to setting the first 2 variables at the lower bound), rein-
forcing the previous observation that a smoother radii transition
is beneficial for BG formation, which would not be possible if an
optimization method using a discrete set of variables were chosen.
The corresponding computed band diagram, unit cell, and some
wave modes are depicted in Fig. 6.

In this case, the band diagram (Fig. 6a) shows that the first BG,
formed between the 8th and 9th bands, appears between 1980 Hz
and 2570 Hz, which indicates a better result (26% normalized
width) than the one obtained using the previous configuration,
and smaller BGs appear at higher frequencies (4116 Hz –
Fig. 6. Results for optimized structure for maximum normalized BG width between 8th
4202 Hz, 4205 Hz – 4768 Hz, and 7180 Hz – 7327 Hz and its corresponding unit cell obta
and L4) control BG limits and a vertical localized wave mode L5 with zero group veloci
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4202 Hz and 4205 Hz – 4768 Hz). Also, in this configuration the
unit cell has a mass of 9:68 g (a 100% increase when compared
to the initial design). Thus, a wider normalized BG width is
obtained using practically the same amount of added mass, indi-
cating a more efficient use of mass addition.

The opening mechanisms of the computed BGs can be explained
analyzing the wave modes depicted in Fig. 6b. The slight increase
in the outermost viscid threads radius yields several localized
wave modes. In the case of L1, a negligible group velocity is
noticed, and its lower frequency controls the first BG opening,
which closes at the localized wave mode depicted as L2. A similar
mechanism occurs between L3 and L4, where a wave mode with
zero group velocity (L5) can be noticed, which is explained due
to the localized vibration of the innermost threads. In fact, the
presence of mode L5 is barely noticeable when analyzing the imag-
inary part of the wavenumbers, which further reinforces the con-
clusion that in practice, a single BG is achieved between L3 and
L4. It should also be noticed that the mechanisms associated with
the opening of BGs are based on localized wave modes not obvi-
ously foreseen using simple design guidelines, which further sup-
ports the use of an optimization process for a more efficient use
of design variables.
3.2.2. Optimization of added masses
The optimization of the distribution of added masses (Fig. 3b),

considering the same objective function as the previous section
(Eq. (7)) is now investigated. Initially, only mass addition is dis-
cussed (without variations in thread radii), as stated by Eq. (13b).
For an unbiased comparison, the initial structure (r ¼ 1:5 mm) is
considered, and the total added mass is limited to the difference
between the initial design and the maximum mass addition
obtained in the previous cases, i.e., madd ¼ 4:84 g.

The obtained results show that when such restrictions are
imposed, no complete (i.e., for all types of waves) or full (i.e., for
all wave vector values) BGs can be opened considering up to the
10th band. These results also suggest that the simple addition of
and 9th bands: (a) band diagram with BGs between 1980 Hz – 2570 Hz, 4116 Hz –
ined using optimization objective u sð Þ

8 (Eq. (7)). (b) Localized wave modes (L1, L2, L3,
ty can be noticed.
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masses, i.e., without the manipulation of local stiffness, is not effec-
tive in creating complete BGs.

To further investigate the effects of mass addition, the neces-
sary allocated mass is computed increasing madd until a first com-
plete and full BG is obtained using two distinct configurations: (i)
at the PC center and (ii) with equally distributed masses located at
the radial-viscid junctions closest to the PC center. Results are
shown in Fig. 7. The band diagram shown in Fig. 7a was obtained
for m ¼ 0:000 0:000 305f g g and indicates that the addition
of mass at the PC center is able to separate the vertical and hori-
zontal rigid-body-like wave modes from the first bending modes.
However, an excessively large mass addition (nearly 63�madd) is
necessary to nucleate this BG. Meanwhile, in Fig. 7b, the band dia-
gram obtained using masses allocated around the PC center
(radial-viscid junctions closest to the PC center) is shown, obtained
for m ¼ 0:000 0:687 0:000f g g, indicating that localized wave
modes can be more efficiently used to nucleate BGs at higher fre-
quencies and require less mass addition (in this case, 1:7�madd).

To further investigate the effects of mass addition, the alloca-
tion of masses using a previously optimized structure presented
in Section 3.2.1 is now considered. The same restrictions on the
addition of masses are imposed, i.e., madd ¼ 4:84 g, and consider

the optimized radii given by r 6; 7ð Þ
opt .

Since this optimization process is independent of the previous
one, different BGs may be widened. The BGs between two different
sets of bands are then chosen: (i) the 6th and 7th and (ii) the 7th
and 8th bands. The obtained optimized mass vectors are respec-
tively given by

m 6; 7ð Þ
opt ¼ 0:000 0:403 0:000f gg; ð16Þ

which represents masses allocated at the junction between radial
and viscid threads closest to the PC center, and

m 7; 8ð Þ
opt ¼ 0:000 0:000 4:84f gg; ð17Þ

which represents all of the mass allocated at the PC center. The cor-
responding band diagrams and unit cells are presented in Fig. 8.

Considering the band diagram shown in Fig. 8a, obtained using
the mass vector given by Eq. (16), BGs are noticed between
1868 Hz – 2759 Hz, 2985 Hz – 3098 Hz, 3353 Hz – 3684 Hz,
4425 Hz – 4532 Hz, 4565 Hz – 4640 Hz, and 6633 Hz – 7000 Hz.
The first BG presents a 39% normalized width, which represents
a significant improvement over its previous version, i.e., without
added masses. Interestingly, even though the optimization
constraints are based on an inequality (i.e., not all masses must
Fig. 7. Band diagrams of structures with added masses: (a) concentrated at the PC center
(BG around 4410 Hz).
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be allocated), these results indicate that the allocation of total
masses is capable of yielding improved results.

Moreover, the band diagram shown in Fig. 8b, obtained using
the mass vector given by Eq. (17), displays BGs between 1705 Hz
– 2788 Hz, 2998 Hz – 3205 Hz, 4429 Hz – 4640 Hz, and 6633 Hz
– 7000 Hz, which indicate a first BG with a considerable improve-
ment in its normalized width (48%). However, this result also indi-
cates a shortcoming of the optimization objective, since a better
result was obtained considering different bands to be separated
in consecutive optimization processes, i.e., 8th and 9th bands for
the mass addition and 6th and 7th bands for the thread diameters
processes, instead of using the same pair of bands in both cases.
The interplay between optimization objectives relative to different
bands to be separated can present intricate solutions, in which
case, the procedure shown here is meant to be an initial approach
in demonstrating the versatility of the proposed structure. Further
investigations are beyond the scope of this paper and left for future
work.

3.3. Optimization of fundamental frequency and harmonics

The results of the optimization process considering the diame-
ters of threads and distribution of added masses with the objective
of attenuating a fundamental frequency and preserving or attenu-
ating its higher harmonics using the problem stated in Eq. (12) and
the objective functions given in Eqs. (8) and (9) are now presented.
The same initial geometry, material properties, and optimization
variable constraints as presented in the last section are considered.
Also, the considered harmonics are restricted to the maximum fre-
quency of 7000 Hz. Two distinct fundamental harmonics are con-
sidered: (i) 2000 Hz and (ii) 2500 Hz, which were chosen to
demonstrate the versatility of the structure, since no harmonics
are common to both fundamental frequencies in the analyzed fre-
quency range. The lowest fundamental frequency was chosen to
reflect the lowest limit of previously obtained BGs.

Even though the BG opening mechanisms have already been
explained in the last section, the optimized parameters results
are presented for additional insight on the obtained band dia-
grams, comparing the results that yield a single BG at the funda-
mental frequency to those that also attenuate higher harmonics.
For case (i), the optimized thread radii and masses to open a BG
only at the fundamental frequency are obtained as

r f 0¼2000Hzð Þ
opt;f ¼ 0:565 0:602 0:500 0:684 2:720 0:500f gmm;

ð18aÞ
(BG around 630 Hz) and (b) distributed around the first junctions around PC center



Fig. 8. Band diagrams computed (considering a previously optimized threads configuration) using a mass distribution for maximizing the normalized BG width between (a)
the 6th and 7th bands (first BG between 1868 Hz – 2759 Hz) and (b) the 7th and 8th bands (first BG between 1705 Hz – 2788 Hz) and their corresponding unit cells obtained
using optimization objectives u sð Þ

n (Eq. (7)) for n ¼ 6 and n ¼ 7, respectively.

Fig. 9. Band diagrams and their corresponding unit cells obtained using the optimization objective that (a) opens a BG only at the fundamental frequency (u fhð Þ
x0

, Eq. (8)) and
(b) attenuates all harmonics (u ahð Þ

x0
, Eq. (9)) for f 0 ¼ 2000 Hz. Harmonics are indicated using dashed lines ( ).
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m f 0¼2000Hzð Þ
opt;f ¼ 0:403 0:000 0:000f gg; ð18bÞ

while in the case of opening BGs at each harmonic, the optimization
yields
9

r f 0¼2000Hzð Þ
opt;a ¼ 0:900 0:744 2:994 0:501 0:559 0:500f gmm;

ð19aÞ
m f 0¼2000Hzð Þ

opt;a ¼ 0:000 0:402 0:000f gg; ð19bÞ
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which indicate that, for multiple BGs, the thick viscid layer is shifted
from the center to the periphery of the unit cell, while allocated
masses are shifted in the opposite direction. The corresponding
band diagrams and unit cells are shown in Fig. 9, where the corre-
sponding fundamental frequencies and their harmonics are marked
using orange dashed lines.

Results presented in Fig. 9 indicate the successful opening of
BGs only for a fundamental frequency (Fig. 9a) or also attenuating
higher harmonics (Fig. 9b). In both cases, a large number of zero
group velocity waves are located below the first BG, explained
due to the small value of radii in the first viscid layer. It is worth
noticing that in Fig. 9a, at least one propagating mode (i.e., zero
attenuation) is obtained for each of the higher harmonics, thus
ensuring detectable wave modes. Also, the analysis of the imagi-
nary part of the obtained wave vectors in Fig. 9b indicates decreas-
ing attenuation values for the harmonics as frequency increases.

For case (ii), the optimized thread radii and masses to open a BG
only at the fundamental frequency are given by

r f 0¼2500Hzð Þ
opt;f ¼ 0:657 0:544 2:317 1:877 2:109 0:500f gmm;

ð20aÞ
m f 0¼2500Hzð Þ

opt;f ¼ 0:340 0:011 0:542f gg; ð20bÞ

while in the case of opening a BGs at each harmonic, the optimiza-
tion yields

r f 0¼2500Hzð Þ
opt;a ¼ 0:676 0:636 2:996 1:813 2:698 0:500f gmm;

ð21aÞ
m f 0¼2500Hzð Þ

opt;a ¼ 0:004 0:000 4:330f gg; ð21bÞ

which indicate somehow similar distributions, with a more notice-
able difference in the shifting of added mass between the periphery
and the center of the unit cell. The corresponding band diagrams
and unit cells are shown in Fig. 10.

The band diagrams presented in Figs. 10a and 10b show that
some BGs are opened at frequencies unrelated to the desired har-
Fig. 10. Band diagrams and their corresponding unit cells obtained using the optimizatio
(b) attenuates all harmonics (u ahð Þ

x0
, Eq. (9)) for f 0 ¼ 2500 Hz. Harmonics are indicated u
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monics, which do not impede the proposed objective from being
achieved. Also, in Fig. 10a, the second harmonic is close to a BG
unrelated to the optimization objective, which is shifted up in
Fig. 10b. This slight change in the dispersion relation is enough
to achieve the objective of attenuating all harmonics, which helps
to understand why both objectives could be achieved with a small
change in the parameters.

3.4. Optimization of in-plane and out-of-plane mode polarization

The results of the optimization process considering the diame-
ters of threads and distribution of added masses to obtain BGs with
distinct (out-of-plane and in-plane) polarization modes using the
problem stated in Eq. (12) and the objective function given in Eq.
(10) are now presented. The same previous initial geometry, mate-
rial properties, and optimization constraints are considered. The
optimization process yields the radii and mass vectors given by

r pð Þ
opt ¼ 0:500 0:500 0:502 3:000 3:000 0:500f gmm;

ð22aÞ
m pð Þ

opt ¼ 0:403 0:000 0:000f gg; ð22bÞ

indicating a single layer of thick viscid and radial threads, with
masses distributed around its outer nodes. Results for the optimized
unit cell, initial and final band diagrams, and density of states (DOS,
shown in arbitrary units) histograms are shown in Fig. 11, calcu-
lated using 20 equally spaced frequency bins between 0 and
7000 Hz.

The band diagram and DOS histogram (Figs. 11a and 11b) show
that initially, every frequency bin contains wave modes from both
types of polarization (out-of-plane and in-plane). The final results
indicate how the optimization procedure allows to open wide
BGs relative to both types of polarization (Fig. 11c), with non-
overlapping polarization modes between 350 Hz – 1750 Hz,
2100 Hz – 4550 Hz and 6300 Hz – 7000 Hz (Fig. 11d). The final
band diagram also shows several almost zero group velocity out-
n objective that (a) opens a BG only at the fundamental frequency (u fhð Þ
x0

, Eq. (8)) and
sing dashed lines ( ).



Fig. 11. Band diagrams and histograms accounting for ( ) out-of-plane and ( ) in-plane polarization modes. The initial band diagram (a) and its corresponding propagating
frequency histograms (b) show each of the 20 frequency bins with wave modes from each type of polarization. After the optimization, the final band diagram and unit cell (c)
– obtained using the optimization objective u pð Þ (Eq. (9)) – with its corresponding histogram (d) show 13 frequency bins with a single type of polarization and a few with non
polarized modes.
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of-plane modes starting below 2000 Hz and going up to approxi-
mately 4500 Hz. This suggests that the thin outer threads play a
major role in determining this type of behavior. Curiously, the case
Np ¼ 1 was also tested in the metric proposed in Eq. (10) and
obtained very similar results, even though in the latter case, each
component of the metric is practically restricted to binary values.

3.5. Dirac cones

Finally, the results of the optimization process considering the
diameters of threads and distribution of added masses to create
Dirac cones using the problem stated in Eq. (12) and the objective
function given in Eq. (11) are presented, with Dx ¼ 0:2p rad/s. The
same previous initial geometry, material properties, and optimiza-
tion constraints are considered. Using the proposed optimization
process, the radii and mass vectors that create a Dirac cone (D1)
between the 10th and 11th bands are obtained as

r D1ð Þ
opt ¼ 0:944 0:712 0:500 0:741 2:391 0:500f gmm;

ð23aÞ
m D1ð Þ

opt ¼ 0:000 0:348 0:007f gg: ð23bÞ
It is also possible to experiment on creating another Dirac cone (D2)
between the 17th and 18th bands, yielding the radii and mass
vectors

r D2ð Þ
opt ¼ 1:252 0:500 2:950 0:863 2:937 0:500f gmm;

ð24aÞ
m D2ð Þ

opt ¼ 0:000 0:000 0:080f gg: ð24bÞ
11
The corresponding band diagrams, unit cells, and dispersion sur-
faces indicating the 6 cones corresponding to the vertices of the
FBZ (high-symmetry K point) representing the Dirac cones D1 and
D2 are shown in Fig. 12.

When comparing band diagrams shown in Figs. 12a and 12c, it
is worth noticing that the Dirac cones D1 and D2 seem to be asso-
ciated with the same localized wave modes (see Fig. 6 for the
description of wave modes), but at different frequencies
(2839 Hz and 4298 Hz, respectively). The resemblance between
these wave modes is further reinforced by the imaginary part of
the wave vectors, which have analogous partial BGs in the CM
direction, and the dispersion surfaces (Figs. 12b and 12d, respec-
tively). Also, the difference in the band ordering (D1 is formed
between the 10th and 11th bands, while D2 is formed between
the 17th and 18th bands) is due to the addition of several localized
modes in the low frequency range below D2. Furthermore, the opti-
mized parameters values (Eqs. (23) and (24)) show that, in this
case, mass addition is less necessary to create Dirac cones for
increasing values of frequency (4:19 g for D1 and 0:080 g for D2,
respectively).
4. Concluding remarks

In summary, several two-dimensional PCs inspired by distinc-
tive geometric characteristics of spider web structures were
designed and optimized, incorporating additional features for
improved dynamic behavior in applications. Starting from simple
spider orb web models, the effects of impedance modulation using



Fig. 12. Band diagrams, corresponding unit cells, and dispersion surfaces computed for the generated Dirac cones obtained using the optimization objectives u Dð Þ
n (Eq. (11))

for n ¼ 10 and n ¼ 17, respectively: D1 (2839 Hz) with its (a) band diagram, unit cell, (b) and dispersion surface and D2 (4298 Hz) with its (c) band diagram, unit cell, and (d)
dispersion surface.
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variable diameters of radial and viscid threads and the addition of
point masses at the junctions of threads to manipulate the disper-
sion characteristics were investigated. The proposed designs con-
sider a single material, which allows realizations of single-phase
PCs amenable to additive manufacturing. In the case of hexagonal
periodic lattices with all elements having the same diameters, low-
to mid-frequency wave modes are dominated by rigid-body-like
(translational, bending, and torsional) wave modes and mid- to
high-frequencies usually show localized wave modes. The design
freedom in the proposed lattice yields a great number of possible
combinations, and optimization techniques were employed to
achieve objectives such as (i) wide normalized BG widths, (ii)
opening a BG at a fundamental frequency while preserving or
attenuating its higher harmonics, (iii) BGs with respect to distinct
polarization modes, and (iv) generating Dirac cones.

The first of these objectives is relatively standard and has been
used to validate our optimization process. The optimization of
thread diameters confirms expected results, i.e., low-frequency
BGs can be obtained using thick central threads with a soft bound-
ary configuration, resembling a heavy central resonator. Less obvi-
ous configurations can also be achieved and yield wider BGs
through the manipulation of localized wave modes. The addition
of masses alone is not efficient in opening BGs, but can enhance
BGs thatwere previously opened using optimized thread diameters.

When optimizing the structure to achieve BGs at a chosen fun-
damental frequency, similar configurations may yield distinct
objectives, such as preserving or attenuating higher harmonics.
The shifting of thick viscid layers in one direction while shifting
masses in the opposite direction may open several BGs at higher
12
harmonics where none existed before. In the cases where band dia-
grams are not very different and harmonics are already close to
similar BGs between different objectives, mass reallocation seems
more necessary to achieve each objective.

It was also demonstrated that the highly tailorable impedance
of the system can be used to achieve configurations that yield
BGs with respect to distinct polarization modes. A proposed metric
was tested and yielded optimization parameters indicating that
wide frequency ranges with separate polarization modes, espe-
cially due to highly localized wave modes at the outer threads.

Finally, it was shown that the presented PC structure may pre-
sent configurations that yield Dirac cones, revealed using a newly
proposed metric, also suggesting that mass addition is not as nec-
essary as in the case of BG nucleation.

The presented optimization process is entirely general and can
be used to manipulate several dispersion characteristics according
to the requirements of the desired application, but requires a struc-
ture with tailorable characteristics. The proposed spider web-
inspired PC provides a versatile structure suitable for optimization
procedures, given the richness of available vibration modes and
their tunability through the variation of geometric parameters
and localized masses.
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