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Structural Balance via Gradient Flows
over Signed Graphs

Pedro Cisneros-Velarde, Student Member, IEEE, Noah E. Friedkin, Anton V. Proskurnikov, Senior Member, IEEE,
Francesco Bullo, Fellow, IEEE

Abstract—Structural balance is a classic property of signed
graphs satisfying Heider’s seminal axioms. Mathematical sociol-
ogists have studied balance theory since its inception in the 1940s.
Recent research has focused on the development of dynamic mod-
els explaining the emergence of structural balance. In this paper,
we introduce a novel class of parsimonious dynamic models for
structural balance based on an interpersonal influence process.
Our proposed models are gradient flows of an energy function,
called the dissonance function, which captures the cognitive
dissonance arising from the violations of Heider’s axioms. Thus,
we build a new connection with the literature on energy landscape
minimization. This gradient-flow characterization allows us to
study the transient and asymptotic behaviors of our model.
We provide mathematical and numerical results describing the
critical points of the dissonance function.

I. INTRODUCTION

1) Problem description and motivation: Signed graphs rep-
resent networked systems with interactions classified as posi-
tive or negative, e.g., cooperation or antagonism, promotion or
inhibition, attraction or repulsion. Such graphs naturally arise
in diverse fields, e.g., political science [14], communication
studies [19] and biology [20]. In sociology [6], [9], they
are used to represent friendly or antagonistic relationships,
whereby signed edges may be interpreted as interpersonal sen-
timent appraisals. In the work by Heider [12], each individual
appraises all other individuals either positively (friends, allies)
or negatively (enemies, rivals). Heider postulated four famous
axioms: (i) “the friend of a friend is a friend,” (ii) “the enemy
of a friend is an enemy,” (iii) “the friend of an enemy is
an enemy,” and (iv) “the enemy of an enemy is a friend.”
Violations of these axioms lead to cognitive tensions and
dissonances that the individuals strive to resolve; in this sense,
Heider’s axioms are consistent with the general theory of
cognitive dissonance [8]. A signed network satisfying Heider’s
axioms is called structurally balanced and can have only two
possible configurations: either all of its members have positive
relationships with each other and become a unique faction, or
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there exist two factions in which members of the same faction
are friends but enemies with every other member in the other
faction. We refer to [6], [9] for textbook treatment and to [29]
for a recent comprehensive survey.

Whereas Heider’s theory describes the qualitative emer-
gence of structural balance as the result of tension-resolving
cognitive mechanisms, it does not provide a quantitative de-
scription of these mechanisms and dynamic models explaining
the emergence of balance. The aim to fill this gap has given
rise to the important research area of dynamic structural bal-
ance. The Kułakowski et al. [17] model postulates an influence
process, whereby any individual i updates her appraisal of
individual j based on what others positively or negatively think
about j. The Traag et al. [27] model postulates a homophily
process, whereby any individual i updates her appraisal of j
according to how much she agrees with j on the appraisals
of their common acquaintances. Both models explain conver-
gence to structural balance under certain assumptions on the
initial state (see below for more information). Remarkably,
both models assume the existence of so-called self-appraisals
(loops in the signed graph) that strongly influence the system
dynamics. Self-appraisals can be interpreted as individuals’
positive or negative opinions of themselves.

A second line of research, consistent with dissonance theory,
has focused on formulating social balance via appropriate
energy functions. The work [23] proposes an energy function
for binary appraisal matrices with global minima that represent
structurally stable configurations; it is argued that a dynamic
structural balance model should aim to navigate through this
energy landscape and look for its minima. Some models
(e.g., [2], [3]) were designed precisely to achieve this task. The
work [7] computes a distance to balance via a combinatorial
optimization problem, inspired by Ising models.

The purpose of this paper is threefold. First, we aim to
propose a more parsimonious model of the influence process
establishing structural balance, that is, a model without self-
appraisal weights. Our argument for dropping these variables
is that balance theory axioms do not include self-appraisals,
and the inclusion of such appraisals amounts to an additional
assumption and introduces unnecessary complexities. Second,
we aim to connect the literature on dynamic structural balance
with the literature treating social balance as an optimization
problem. Finally, we aim to emphasize through numerical
simulations that our parsimonious model does not suffer from
a key limitation present in the Kułakowski et al. model, namely
that the Kułakowski et al. model cannot predict the emergence
of structural balance from asymmetric initial configurations.
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2) Further comments on the state of the art: We now
present a summary of the current literature on dynamic struc-
tural balance. Historically, the first models appeared in the
physics community [2], [3], [25]. These models borrowed
some concepts from statistical physics and had the particularity
of assuming that the appraisals between individuals are binary
valued (either +1 or −1). At the same time, they rely on hard-
wired random mechanisms for the asynchronous updates of the
appraisals that lack a sociological insightful interpretation.

Another type of proposed models is based on discrete-
and continuous-time dynamical systems with real-valued
appraisals. The seminal models of this kind are due to
Kułakowski et al. [17] (later analyzed more formally by [22])
and Traag et al. [27]. Models with real-valued appraisals
capture not only signs, but also magnitudes of positive or nega-
tive sentiments. All these models adopt synchronous updating
and stipulate sociological meaningful rules for the updating
of appraisals, based on either influence or homophily pro-
cesses. The following facts are known about the Kułakowski
et al. influence-based and the Traag et al. homophily-based
models: the set of well-behaved initial conditions that lead the
social network towards social balance for the first model is a
subset of the set of normal matrices, while the second model
can work under generic initial conditions. Similar results are
obtained by [24] for two discrete-time models based on influ-
ence and homophily respectively: influence-based processes do
not perform well under generic initial conditions (in contrast
to the homophily-based processes). Finally, only the models
proposed in [24] and a variation of the model by Kułakowski et
al. proposed in the early work [17], have a bounded evolution
of appraisals, whereas the others have finite escape time.

Recent work has also started to focus on dynamic models
for other relevant configuration of signed graphs, e.g., config-
urations that satisfy only a subset of the four Heider’s axioms.
The work [10] provides a parsimonious model explaining
the emergence of a generalized version of structural balance
from any initial configuration; this model is based on an
influence process of positive contagion whereby influence is
accorded only to positively-appraised individuals. A second
model in this area is proposed by [16]. Finally, there has been
a third type of models that propose the emergence of structural
balance or other generalized balance structures for undirected
graphs from a game theoretical perspective [5], [21], [28].

3) Contributions: First of all, we contribute by proposing
two new dynamic models that do not adopt the long-standing
assumption of self-appraisals and describe the evolution of
signed networks without self-loops. We argue that the intro-
duction of self-weights is poorly justified and that a model
without them is a more faithful representation of Heider’s
theory. The first model, called the pure-influence model, is a
modification of the classic model by Kułakowski et al. which is
obtained by eliminating self-appraisals (and thus reducing the
system’s dimension). Analysis of its convergence properties
reduces to the analysis of our second model, called the pro-
jected pure-influence model, which arises as a projection of
the first model onto the unit sphere. This second model has a
self-standing interest, since it enjoys bounded evolution of the
appraisals, while the first model shares the finite escape time

property of the classic model by Kułakowski et al.
Our second contribution is to build a bridge between dy-

namic structural balance and structural balance as an optimiza-
tion problem. We propose an energy function inspired by [23],
namely the dissonance function, which measures the degree at
which Heider’s axioms are violated among the individuals of
a social network. We show that this energy function has global
minima that correspond to signed graphs satisfying structural
balance in the case of real-valued appraisals (restricted on the
unit sphere). Moreover, we show that our (projected) pure-
influence model is the gradient system of the dissonance
function in the case of undirected signed graphs, and hence the
critical points of the dissonance function are the equilibria of
our dynamical system. Thus, we establish a novel connection
between dynamic structural balance and the characterization
of structural balance as the minima of an energy function.
Remarkably, our derivations show that this property of our
models is enabled by the elimination of self-appraisals. Thus,
the models contributed in this paper may be considered as both
an interpersonal influence process and an extremum seeking
dynamics for the dissonance function.

Our third and more detailed contribution is the mathematical
analysis of the projected pure-influence model in the cases
where the initial appraisal matrix is symmetric. In particular,
we provide a complete characterization of the critical points
of the dissonance function (i.e., the equilibrium points of the
projected pure-influence model). This characterization relies
upon a special submanifold of the Stiefel manifold and its
properties. Along with the characterization of the critical
points, we analyze their local stability properties and provide
some results on convergence towards structural balance.

Our final contribution is a Monte Carlo numerical study
of the convergence of our models to structural balance under
generic initial conditions in both the symmetric and the asym-
metric case. For the symmetric case, our numerical result is
comparable to, but stronger than, what has already been proved
for the Kułakowski et al. model: our models converge to
structural balance under generic symmetric initial conditions.
One key advantage of our models, as compared with those
by Kułakowski et al., is that convergence to structural balance
emerges under generic asymmetric initial conditions. Based on
these numerical results, we formulate relevant conjectures.

4) Paper organization: Section II presents preliminary con-
cepts. Section III presents our models and shows they are
gradient flows. Section IV and Section V contain an analysis
of equilibria and important convergence results, respectively.
Section VI contains numerical results and conjectures. Finally,
Section VII contains some concluding remarks.

II. PRELIMINARIES

A. Signed weighted digraphs

Given an n×n matrix X = (xij) with entries taking values
in [−∞,∞], let G(X) denote the signed directed graph where
the directed edge i −→ j exists if and only if xij 6= 0, and
xij represents its signed weight. The directed graph G(X)
is complete if X has no zero entries, except for the main
diagonal. G(X) has no self-loops if and only if X has zero
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diagonal entries. Let xi∗ denote the ith row of the matrix
X and x∗i the ith column of the matrix X . Let sign(X) =
(sign(xij)), where sign : [−∞,∞]→ {−1, 0,+1} is as usual

sign(x) =


−1, if x < 0,

0, if x = 0,

+1, if x > 0.

Given a sequence a1, . . . , an, let B = diag(a1, . . . , an)
denote the diagonal n × n matrix (bij), where bii = ai
and bij = 0 for i 6= j. For an n × n matrix X , define
diag(X) = diag(x11, . . . , xnn). For a vector v ∈ Rn, define
diag(v) = diag(v1, . . . , vn). Let 0n denote the n × 1 vector
of zeros, and 0n×n the n× n matrix with zero entries.

Let � and ≺ denote “entry-wise greater than” and “entry-
wise less than,” respectively.

A triad (if it exists) is a cycle between three nodes in G(X).
The sign of a triad is defined by the sign of the product of the
weights composing a triad. For example, the triad i → j →
k → i has sign sign(xijxjkxki).

A real-valued matrix Z is irreducible if its graph G(Z)
is strongly connected (a directed path between every two
nodes exists) and reducible otherwise. If Z is reducible, a
permutation matrix P exists such that the matrix

PZP> =


Z1 ∗ . . . ∗
0 Z2 . . . ∗
...
0 Zk


is upper-triangular with irreducible blocks Zi (some of them
can be 1× 1 matrices). If Z = Z>, the latter matrix is block-
diagonal matrix PZP> = diag(Z1, . . . , Zk) and the graphs
G(Zi) are the connected components of the graph G(Z).

B. Sets of matrices and the Frobenius inner product

Given two matrices A,B ∈ Rn×n, their Frobenius inner
product is defined by 〈〈A,B〉〉F = trace(B>A); the induced-
norm is ‖A‖F =

√
〈〈A,A〉〉F . Some important properties for

the trace operator are: trace(A) = trace(A>), trace(AB) =
trace(BA), and, for all d ∈ N, trace(Ad) =

∑n
i=1 λ

d
i where

λ1, . . . , λn are the eigenvalues of A.
Let Rn×nzero-diag be the set of n × n real matrices with zero

diagonal entries, and Rn×nzero-diag,symm be the set of symmetric
matrices belonging to Rn×nzero-diag. Let Sn×n be the unit sphere
in Rn×n, that is A ∈ Sn×n if and only if A ∈ Rn×n with
‖A‖F = 1. Similarly, we define the sets Sn×nzero-diag = Rn×nzero-diag∩
Sn×n and Sn×nzero-diag,symm = Rn×nzero-diag,symm ∩ Sn×n.

Let Rn×ndiag be the set of all real diagonal matrices and
Rn×nsk-symm be the set of all skew-symmetric matrices. Then,
we have the following orthogonal decomposition of Rn×n

equipped with the Frobenius inner product:

Rn×n = Rn×nsk-symm ⊕ Rn×nzero-diag,symm ⊕ Rn×ndiag . (1)

C. A review on structural balance

Throughout the paper we deal with social networks com-
posed of n ≥ 3 individuals, although the definition of

structural balance (Definition II.3) is formally applicable to
the case of degenerate networks with n = 1 or n = 2 nodes.

Definition II.1 (Appraisal matrix and network). We let the
entry xij of the matrix X ∈ Rn×n denote the appraisal (or
qualitative evaluation) held by individual i of individual j.
The sign of xij indicates if the relationship is positive (+1),
negative (−1) or of indifference (0). The magnitude of xij
indicates the strength of the relationship. xii can be interpreted
as i’s self-appraisal. We call X the appraisal matrix, and
G(X) the appraisal network.

Definition II.2 (Heider’s axioms and social balance notions).
The Heider’s axioms are
H1) A friend of a friend is a friend,
H2) An enemy of a friend is an enemy,
H3) A friend of an enemy is an enemy,
H4) An enemy of an enemy is a friend.
An appraisal network G(X) is structurally balanced in Hei-
der’s sense, if it is complete and satisfies axioms H1)-H4).

Consider a complete appraisal network G(X). We call
a faction any group of agents whose members positively
appraise each other. We say two factions are antagonistic
if every representative from one faction negatively appraise
every representative of the other faction. It can be shown [4],
[11], [12] that Heider’s structural balance condition for G(X)
with n ≥ 3 nodes holds if and only if either the individuals
constitute a single faction or can be partitioned into two
antagonistic factions. The possession of the latter property may
thus be considered as an alternative definition of structural
balance (and is formally applicable to graphs without triads).

Definition II.3 (Structural balance). A complete appraisal
network G(X) is said to satisfy structural balance, if G(X)
is composed by one faction or two antagonistic factions; or,
whenever n ≥ 3, equivalently, that all triads are positive, i.e.,
xijxjkxki > 0 for any different i, j, k ∈ {1, . . . , n}.

Notice that a structurally balanced graph is always sign-
symmetric: sign(xij) = sign(xji) for any i 6= j. For simplicity
we will say that a matrix X corresponds to structural balance
whenever G(X) satisfies structural balance.

III. PROPOSED MODELS AND REPRESENTATION AS
GRADIENT FLOWS

In this section we propose our models defining them over
the set of symmetric matrices. We postponed the general
asymmetric setting to Section VI.

A. Pure-influence model

We propose our new dynamic model solely based on inter-
personal appraisals.

Definition III.1 (Pure-influence model). The pure-influence
model is a system of differential equations on the set of zero-
diagonal matrices Rn×nzero-diag defined by

ẋij =

n∑
k=1
k 6=i,j

xikxkj , (2)
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for any i, j ∈ {1, . . . , n} and i 6= j. Here xij , i 6= j, are the
off-diagonal entries of a zero-diagonal matrix X ∈ Rn×nzero-diag.
In equivalent matrix form, the previous equations read:

Ẋ = X2 − diag(X2), X(0) ∈ Rn×nzero-diag. (3)

We interpret X as the interpersonal appraisal matrix. While
system (2) does not define the evolution of self-appraisals,
the matrix reformulation (3) ensures diag(Ẋ) = 0n×n and,
since X(0) ∈ Rn×nzero-diag means diag(X(0)) = 0n×n, we have
diag(X(t)) = 0n×n for all positive times t.

Our model is a modification of the classical model proposed
by Kułakowski et al. [17], where self-appraisals play a crucial
role in the dynamics of the interpersonal appraisals.

Definition III.2 (Kułakowski et al. model). The Kułakowski
et al. model is a system of differential equations on the state
space Rn×n defined by

ẋij =

n∑
k=1

xikxkj = xij(xii + xjj) +

n∑
k=1
k 6=i,j

xikxkj , (4a)

ẋii = x2
ii +

n∑
k=1
k 6=i

xikxki, (4b)

for any i 6= j ∈ {1, . . . , n}. In equivalent matrix form, the
previous equations read: Ẋ = X2.

Remark III.1 (The problem with self-appraisals). The intro-
duction of self-appraisals in model (4) is objectionable on
several grounds. The first conceptual problem is that self-
appraisals are not considered in any definition of structural
balance in the social sciences. Heider’s axioms in Defini-
tion II.2 do not take into account self-appraisals: social bal-
ance is a function of only interpersonal appraisals. Moreover,
once self-appraisals are introduced, one needs to postulate
why and how self-appraisals affect interpersonal appraisals,
i.e., justify the choice of the first addendum for the right hand
side of (4a). Finally, one needs to postulate how they evolve,
i.e., justify the choice for the right hand side of (4b). In sum-
mary, the pure influence model (2) avoids these difficulties and
stays closer to the foundations of structural balance, in which
individuals are attending only to interpersonal appraisals.
Even though Ẋ = X2 may appear mathematically simpler or
more elegant than Ẋ = X2− diag(X2), we believe the latter
model is actually more parsimonious, lower dimensional, and
more faithful to Heiders’ axioms.

One easily notices the following important property of the
pure-influence model (3): the right-hand side is an analytic
function of X so that the equation enjoys (local) existence
and uniqueness of the solutions. A second property is that, if
X(0) = X(0)>, then X(t) = X(t)> for all subsequent times.
This implies that the pure-influence model is well defined over
the set of symmetric (zero diagonal) matrices Rn×nzero-diag,symm.

B. Dissonance function

We introduce and study the properties of a useful dissonance
function that summarize the total amount of cognitive disso-
nances [8] among the members of a social network due to the

lack of satisfaction of Heider’s axioms. Recall that, according
to Definition II.3, a triad i→ j → k → i satisfies the axioms
if and only if xijxjkxki > 0.

Definition III.3 (Dissonance function). The dissonance func-
tion D : Rn×nzero-diag → R is

D(X) = −
n∑

i,j,k=1
i6=j,j 6=k,k 6=i

xijxjkxki = − trace(X3) = −
n∑
i=1

λ3
i ,

(5)
where {λi}ni=1 is the set of eigenvalues of X .

We plot D in a low-dimensional setting in Figure 1.

Fig. 1. For n = 3, an arbitrary symmetric unit-norm zero-diagonal matrix
X ∈ Sn×n

zero-diag,symm is described by (x12, x23, x31) with these coordinates
living in the sphere x2

12 + x2
23 + x2

31 = 1. In the upper figure, we plot
this sphere with a heatmap, with dark blue being the lowest value and
light yellow the largest value, according to the evaluation of the dissonance
function D(X). The function has four global minima corresponding to the
four possible configurations of G(X) satisfying structural balance, and we
can qualitatively appreciate the convergence of solution trajectories to these
minima in the superimposed vector field on the sphere. The lower figure is a
stereographic projection of the upper figure.

Energy landscapes in social balance theory are studied
in [7], [23]. Our proposed dissonance function is the extension
to Rn×nzero-diag of the energy function proposed by [23] for the
setting of binary-valued symmetric appraisal matrices. For
binary-valued appraisals, the global minima of D correspond
to networks that satisfy structural balance, since all triads are
positive (Definition II.3). Thus, D naturally measures to which
extent Heider’s axioms are violated in a complete graph.



5

Lemma III.2 (Properties of the dissonance function). Con-
sider the dissonance function D and pick X ∈ Rn×nzero-diag. Then

(i) D is analytic and attains its maximum and minimum
values on any compact matrix subset of Rn×nzero-diag,

(ii) if G(X) satisfies structural balance, then D(X) < 0,
(iii) D(X) = D(X>),
(iv) D(X) = −〈〈X2, X>〉〉F .
Additionally, if ‖X‖F = 1, that is, X ∈ Sn×nzero-diag, then
(v) −1 ≤ D(X) ≤ 1.

Proof. Here we show only property (v), since the other
properties follow easily from the definition of D. We note:∥∥X2

∥∥2

F
=

n∑
i,j=1

(X2)2
ij =

n∑
i,j=1

(Xi∗X∗j)
2

≤
n∑

i,j=1

‖Xi∗‖22‖X∗j‖22 =
( n∑
i=1

‖Xi∗‖22
)( n∑

j=1

‖X∗j‖22
)

=
(∑n

i,k=1
x2
ik

)2

= ‖X‖2F = 1.

Now, note that the Frobenius norm on the set of matri-
ces coincides with the Euclidean norm of a single vec-
tor obtained by stacking the column vectors of the matrix.
Then, by the Cauchy-Schwarz inequality applied to the inner-
product 〈〈·, ·〉〉F , it follows that: |D(X)| = |〈〈X2, X〉〉F | ≤∥∥X2

∥∥
F
‖X‖F ≤ (‖X‖F )3 ≤ 1 when ‖X‖F ≤ 1.

C. Transcription on the unit sphere and the projected pure-
influence model

We start by noting a simple fact. Given a trajectory X :
R≥0 → Rn×nzero-diag \ {0n×n}, there exist unique trajectories
η : R≥0 → R≥0 and Z : R≥0 → Sn×nzero-diag such that
X(t) = η(t)Z(t), where η(t) = ‖X(t)‖F and Z(t) =
X(t)/ ‖X(t)‖F .

Theorem III.3 (Transcription of the pure-influence model).
The pure-influence model (2) with initial conditions in
Rn×nzero-diag,symm can be expressed as the following system of
differential equations:

Ż = ηPZ⊥(Z2 − diag(Z2))

= η(Z2 − diag(Z2) +D(Z)Z), (6a)

η̇ = −D(Z)η2, (6b)

where η : R≥0 → R≥0 and Z : R≥0 → Sn×nzero-diag,symm. Here
PZ⊥ is the orthogonal projection onto span{Z}⊥ in the vector
space of square matrices with the Frobenius inner product.

Proof. Since Ẋ = η̇Z + ηŻ and X2 − diag(X2) =
η2
(
Z2 − diag(Z2)

)
, equation (3) can be written as

η̇Z + ηŻ = η2
(
Z2 − diag(Z2)

)
. (7)

Differentiating the equality ‖Z(t)‖2F = 〈〈Z(t),Z(t)〉〉F = 1,
one shows that 〈〈Z(t), Ż(t)〉〉F = 0, that is, Z(t) ⊥ Ż(t).
Computing the Frobenius inner product with Z(t) on both
sides of (7), equation (6b) is immediate:

η̇ = η2〈〈Z(t),Z2(t)− diag(Z2(t))〉〉F
= η2〈〈Z(t),Z2(t)〉〉F = −D(Z(t))η2.

(8)

where we have used the fact that Z(t) is symmetric, and
that diag(Z(t)) = 0n×n and hence 〈〈Z(t),diag(Z2(t))〉〉F =
trace(Z(t)> diag(Z2(t))) = 0. Substituting (8) into equa-
tion (7), one arrives at Ż = η

(
Z2 − diag(Z2) +D(Z)

)
.

Given Y ∈ Rn×n, let PZ(Y ) = 〈〈Y,Z〉〉FZ , i.e., PZ is the
orthogonal projection operator onto the linear space spanned
by Z; and let PZ⊥(Y ) = Y − PZ(Y ) = Y − 〈〈Y,Z〉〉FZ be
the orthogonal projection onto the space perpendicular to the
linear space spanned by Z . Then, we observe that PZ⊥(Z) =
0 and PZ⊥(Z) = Ż . Using these results, we apply PZ⊥ to
both sides of (7) and obtain Ż = ηPZ⊥(Z2−diag(Z2)). This
concludes the proof of equations (6).

In what follows, we are primarily interested in the dynam-
ics (6a), describing the behavior of the bounded component
Z(t). From Lemma A.1 we observe that η is a time-scale
change for (6a) and so, for our convenience, we get rid of it
and obtain the following dynamical system on the unit sphere.

Definition III.4 (Projected pure-influence model). The pro-
jected pure-influence model is a system of differential equa-
tions on the manifold Sn×nzero-diag,symm defined by

Ż = Z2 − diag(Z2) +D(Z)Z. (9)

Given a solution Z(t) to (9) with initial condition Z(0),
Lemma A.1 in the Appendix shows that Z(t) is a time-scaled
version of a solution Z(t) to (6a) with initial condition Z(0) =
Z(0), where η in (6b) can have any positive initial condition.
Therefore, there is a solution X(t) to (3) that is both a scaled
and time-scaled version of Z(t).

Similarly, projecting onto the unit sphere leads to a new
model based on the Kułakowski et al. model.

Definition III.5 (Projected Kułakowski et al. model). The
projected Kułakowski et al. model is a system of differential
equations on the manifold Sn×nzero-diag,symm defined by

Ż(t) = Z2 +D(Z)Z. (10)

D. Pure-influence is the gradient flow of the dissonance func-
tion

We now let gradD denote the gradient vector field of the
dissonance function D on the manifold Rn×nzero-diag equipped with
the Riemannian metric tensor 〈〈·, ·〉〉F . We also let D

∣∣
Sn×nzero-diag,symm

denote the restriction of D onto the manifold Sn×nzero-diag,symm. We
now present the first of our main results.

Theorem III.4 (The pure-influence models over symmetric
matrices are gradient flows). Consider the pure-influence
model (2) with X(0) ∈ Rn×nzero-diag,symm and the projected pure-
influence model (9) with Z(0) ∈ Sn×nzero-diag,symm. Then

(i) t 7→ X(t) remains in the set Rn×nzero-diag,symm and

Ẋ = − 1
3 gradD(X), (11)

(ii) t 7→ Z(t) remains in the set Sn×nzero-diag,symm and

Ż = − 1
3PZ⊥

(
gradD(Z)

)
= − 1

3 gradD
∣∣∣
Sn×nzero-diag,symm

(Z).

(12)
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In other words, the projected pure-influence model (9) is,
modulo a constant factor, the gradient flow of the dissonance
function D restricted to the manifold of zero-diagonal unit-
norm symmetric matrices Sn×nzero-diag,symm.

Proof of Theorem III.4. The forward invariance of the set of
symmetric matrices in both statements is immediate from the
solution uniqueness. To prove equation (12), we adopt the
slight abuse of notation gradD(Z) = gradD

∣∣∣
Sn×nzero-diag,symm

(Z). With

this notation, Z 7→ gradD(Z) is [13, pages 15-17] the unique
vector field on Sn×nzero-diag,symm such that

d

dt
D(Z(t)) = 〈〈gradD(Z(t)), Ż(t)〉〉F (13)

for any differentiable Z : [0,∞) → Sn×nzero-diag,symm. Here, both
gradD(Z(t)) and Ż(t) belong to the tangent space to the
manifold Sn×nzero-diag,symm. Now, using the various properties of
the trace inner product (e.g., Ż(t) ⊥ Z(t)), we compute

Ḋ(Z(t)) = −(trace(Ż(t)Z(t)Z(t)) + trace(Z(t)Ż(t)Z(t)))

+ trace(Z(t)Z(t)Ż(t))

= −3 trace(Ż(t)Z2(t)) = −3〈〈Ż(t), Z2(t)〉〉F
= −3〈〈Ż(t), Z2(t)− diag(Z2(t)) +D(Z(t))Z(t)〉〉F .

Recalling that Z2 − diag(Z2) + D(Z)Z
(6a)
= PZ⊥(Z2 −

diag(Z2)) belongs to the tangent space to the manifold
Sn×nzero-diag,symm at the point Z(t), one arrives at the equality

gradD(Z) = −3
(
Z2 − diag(Z2) +D(Z)Z

)
.

This concludes the proof of statement (ii). Finally, equa-
tion (11) can be proved in a similar way.

IV. CLASSIFICATION OF SYMMETRIC EQUILIBRIA

We here give the complete classification of the symmetric
equilibria in the projected pure-influence model (9); the clas-
sification of general asymmetric equilibria remains an open
problem. Thanks to Theorem III.4, all symmetric equilibria
of the projected pure-influence model are critical points of the
dissonance function D. We start with the equilibrium equation:

Z2 +D(Z)Z−diag(Z2) = 0n×n, Z ∈ Sn×nzero-diag,symm. (14)

Note that the equilibria Z∗ with D(Z∗) = 0 correspond to
equilibria of the original system (3) X(t) ≡ X∗ = η(0)Z∗,
whereas the others with D(Z∗) 6= 0 lead to

X(t) = η(t)Z∗, η(t) =
η(0)

1 + tη(0)D(Z∗)

defined for t ∈ [0, 1
η(0)D(Z∗) ) if D(Z∗) < 0 (for which the

solution is unbounded) or for t ≥ 0 if D(Z∗) > 0.

A. Normalized Stiefel matrices

To start with, we introduce a special important manifold of
non-square matrices that we will use throughout the paper.

Definition IV.1 (Normalized Stiefel matrices). A matrix V ∈
Rn×k, for k ≤ n, is normalized Stiefel (nSt), if

(i) the columns of V are pairwise orthogonal unit vectors,
i.e., V >V = Ik;

(ii) the norm of each row is the same (obviously, it must be√
k/n ≤ 1): diag(V V >) = n−1kIn.

Let nSt(n, k) ⊆ Rn×k denote the set of normalized Stiefel
matrices.

In general, the rows of an nSt matrix need not be orthogonal.
We recall from [15] the notion of compact Stiefel manifold,
denoted by St(k, n) = {X ∈ Rn×k | X>X = Ik}.
Lemma IV.1 (Characterization of nSt matrices). The set
nSt(n, k), k ≤ n, is a compact and analytic submanifold of
Rn×k of dimension (k − 1)n + 1 − k(k + 1)/2, and it is
also a submanifold of the compact Stiefel manifold (and thus,
nSt(n, k) ⊆ St(k, n)). Moreover,

(i) nSt(n, n) is the set of orthogonal matrices,
(ii) for k = 1, the matrix V is nSt if and only if

V =
1√
n

s1

...
sn

 , (15)

for any numbers si ∈ {−1,+1}, i ∈ {1, . . . , n},
(iii) for k = 2, the matrix V is nSt if and only if

V =

√
2

n

cosα1 sinα1

...
...

cosαn sinαn

 , (16)

for any set of angles α1, . . . , αn satisfying
n∑

m=1

e2αm
√−1 = 0. (17)

We postpone the proof of Lemma IV.1 to Appendix A. We
remark that in the case of n = k = 2, the constraint (17)
implies that 2α2 = π + 2πs + 2α1, where s ∈ Z, that is,
α2 = π/2 + πs+ α1 and cosα2 = (−1)s+1 sinα1, sinα2 =
(−1)s cosα1. Thus, the matrices in nSt(2, 2) are orthogonal
2× 2 matrices (representing proper or improper rotations):

V =

[
cosα1 sinα1

−ε sinα1 ε cosα1

]
, ε ∈ {−1,+1}.

For a general k, it is difficult to give a closed-form description
of all matrices from nSt(n, k). However, there are simple
examples of matrices from nSt(n, k) in the case where n = 2k,
including every matrix of the form

V =
1√
2

[
U1

U2

]
,

where Ui are orthogonal k × k matrices.

B. Technical results

The classification of equilibria relies on the following tech-
nical results that will be proved in Appendix A.

Lemma IV.2. Suppose that Z2 − 2αZ = βIn for some
symmetric n× n matrix Z with diag(Z) = 0n×n and scalars
α, β. Then Z can be decomposed as

Z = pV V > − qIn = Z> (18)
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for some V ∈ nSt(n, k) (1 ≤ k < n) and constants p, q ≥ 0
such that pk = qn, 2α = p − 2q and β = q(p − q). Namely,
p = 2

√
α2 + β, q =

√
α2 + β − α.

Corollary IV.3. Given a matrix Z = Z> with diag(Z) =
0n×n, the matrix Z2 − 2αZ is diagonal with s different
eigenvalues β1 < . . . < βs of multiplicities n1, . . . , ns
respectively (n1 + n2 + . . . + ns = n) if and only if there
exists such a permutation matrix S that

SZS−1 = diag(Z1, . . . , Zs),

where each Zi is decomposed as (18) with parameters
pi, qi, Vi, where Vi ∈ nSt(ni, ki) for some ki < ni and

pi = 2
√
α2 + βi, qi =

√
α2 + βi − α. (19)

Thus, for irreducible Z = Z> the matrix Z2−2αZ is diagonal
if and only if Z is decomposed as (18) with p, q ≥ 0.

C. Classification of irreducible symmetric equilibria

Theorem IV.4 (Irreducible equilibria for the projected pure-in-
fluence model). For the projected pure-influence model (9),

(i) all irreducible symmetric equilibria are of the form

Z∗ = pV V > − qIn, (20)

with V ∈ nSt(n, k), 1 ≤ k < n, and

p =

√
n

k(n− k)
, q =

√
k

n(n− k)
; (21)

(ii) Z∗ has k positive eigenvalues with value p−q and n−k
negative eigenvalues with value −q;

(iii) the dissonance function satisfies

D(Z∗) = − n− 2k√
kn(n− k)

, (22)

and the right-hand side is monotonically increasing in
k ∈ {1, . . . , n− 1} (see Figure 2).

k
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Fig. 2. For a network with size n = 10, the dissonance function D
evaluated on all irreducible symmetric equilibria with k ∈ {1, . . . , 9} positive
eigenvalues, according to equation (22).

Proof. We start by proving a technical statement. Pick V ∈
nSt(n, k), p, q real numbers and set θ = p − 2q. Then, the
matrix Z = pV V > − qIn = Z> satisfies the following
properties:
(a) Z2−θZ = q(p−q)In, and thus diag(Z2) = θ diag(Z)+

q(p− q)In;
(b) for any p 6= 0, the matrix Z has two eigenvalues p−q and

(−q) whose multiplicities are k and (n−k) respectively;

(c) the eigenspaces corresponding to p − q and −q are the
image of V and the kernel of V > respectively;

(d) diag(Z) = 0n×n if and only if pk = qn; in this situation,
trace(Z2) = q(p − q)n and D(Z) = − trace(Z2Z>) =
−θnq(p− q).

To prove (a), recall that V >V = Ik and therefore

Z2 = p2V V >V V > + q2In − 2pqV V > = pθV V > + q2In

= θZ + (pq − q2)In.

To prove (b) and (c), notice that for any vector z = V y one
has V V >z = V (V >V )y = V y = z, and thus Zz = (p− q)z.
The space of such vectors is nothing else than the image of
V and has dimension k (recall that the columns of V are
orthogonal, and hence are linearly independent). If V >z =
0, then Zz = −qz, and the dimension of ker(V >) is (n −
k). Since Z = Z> and p − q 6= −q (except for the case
where p = q = 0 and Z = 0, which is trivial), the two
eigenspaces are orthogonal and their sum coincides with Rn.
Hence, there are no other eigenvalues. To prove (d), note first
p diag(V V >) = (pk/n)In, and thus diag(Z) = 0n×n if and
only if pk/n = q. Using statement (a), one shows that in this
situation diag(Z2) = q(p−q)In and hence trace(Z2) = q(p−
q)n. Thanks to (a), Z3 = θZ2 + q(p− q)Z =⇒ trace(Z3) =
θ trace(Z2) = θnq(p− q), which finishes the proof of (d).

Now, to prove the statement (i) of the theorem, let Z∗

be an irreducible symmetric solution to equation (14). For
α = −D(Z∗)/2, the matrix (Z∗)2−2αZ∗ = diag(Z∗2) is di-
agonal. Since Z∗ is irreducible, it follows from Corollary IV.3
that Z∗ can be decomposed as (20) with some p, q ≥ 0. Then,
from (a) and (d), it also follows that Z∗ satisfies equation (14)
if and only if pk = qn (which comes from diag(Z∗) = 0n×n)
and pq−q2 = 1/n (which comes from trace(Z∗2) = 1). This
implies that q =

√
k

n(n−k) and p =
√

n
k(n−k) .

Finally, statement (ii) follows from (b); and (iii) is obtained
by substituting the values of p and q into the definition of the
dissonance function (5) and noting that the smooth function
κ 7→ − n−2κ√

nκ(n−κ)
has positive derivative on (0, n).

D. Classification of reducible symmetric equilibria
The next theorem generalizes Theorem IV.4 and character-

izes all symmetric equilibria for the projected pure-influence
model and its proof can be found in Appendix A.

Theorem IV.5 (All equilibria for the projected pure-influence
model). The matrix Z∗ is an equilibrium (14) of the projected
pure-influence model if and only if a permutation matrix S
exists such that:

(i) SZ∗S−1 = diag(Z∗1 , . . . , Z
∗
s ), s ≥ 1, Z∗i = Z∗i

> ∈
Rni×ni ;

(ii) the blocks Z∗i admit representation (18): Z∗i = piViV
>
i −

qiIni , where pi, qi ≥ 0 and Vi ∈ nSt(ni, ki), 1 ≤ ki <
ni;

(iii) the sign ε = sign(ni − 2ki) ∈ {−1, 0, 1} is the same for
all i = 1, . . . , s such that Z∗i 6= 0ni×ni and

(iv) each block Z∗i 6= 0ni×ni is irreducible and the corre-
sponding coefficients pi, qi have the form

pi = 2
√
α2 + βi, qi =

√
α2 + βi − α, (23)
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where
a) for ε 6= 0, α and βi are determined from

α = ε

( ∑
i:Zi 6=0

4kini(ni − ki)
(ni − 2ki)2

)−1/2

,

βi = α2 4niki − 4k2
i

(ni − 2ki)2
;

(24)

b) for ε = 0, α = 0, for all i, and βi are chosen in such
a way that

∑
i:Zi 6=0 βini = 1.

Remark IV.6. Let Z∗ be a reducible equilibrium for the
projected pure-influence model such that G(Z∗) is composed
of m (disconnected) subgraphs that satisfy structural balance.
According to Definition II.3, G(Z∗) does not satisfy structural
balance since this definition requires G(Z∗) to be complete.

E. Structural balance and equilibria

We now characterize the equilibria corresponding to struc-
tural balance and how they minimize the dissonance function.

Corollary IV.7 (Balanced equilibria of the projected pure-in-
fluence model). For the projected pure-influence model (9), let
Z∗ ∈ Sn×nzero-diag be an equilibrium point with a single positive
eigenvalue. Then,

(i) after a relabelling of the agents, Z∗ has the form

Z∗ =

[
Z ′ 0n1×(n−n1)

0(n−n1)×n1
0(n−n1)×(n−n1)

]
(25)

with n1 ≤ n and

Z ′ =
1√

n1(n1 − 1)
(ss> − In1

), (26)

for some s ∈ {−1,+1}n1 ; and thus, for any fixed n1,
there are only 2n1−1 different equilibria (with a single
positive eigenvalue),

(ii) G(Z ′) satisfies structural balance, with the binary vector
s characterizing the distribution of the individuals in the
single faction or in the two factions, and

(iii) if G(Z∗) is a connected graph, then G(Z∗) satisfies
structural balance (being thus complete) and Z∗ is a
global minimizer to the optimization problem:

minimize
Z∈Rn×n

D(Z)

subject to Z ∈ Sn×nzero-diag,symm

and satisfies D(Z∗) = − n−2√
n(n−1)

.

Proof. Consider a permutation of indices from Theorem IV.5.
Since Z∗ has only one positive eigenvalue, it can have only one
non-zero diagonal block Z∗i = Z ′. Statement (i) now follows
from (20),(21) (with k = 1, n = n1) and (15).

Regarding statement (ii), observe that for any different i, j
and k,

z′ijz
′
jkz
′
ki =

(sisj)(sjsk)(sksi)

(n1(n1 − 1))3/2
=

1

(n1(n1 − 1))3/2
> 0.

This inequality implies sign(z′ij) = sign(z′jkz
′
ki) and thus we

know that Z ′ satisfies structural balance. It is immediate to

see that any i and j such that si = sj correspond to the same
faction in the network G(Z ′). This completes the proof for (ii).

Regarding statement (iii), we notice that the smooth func-
tion η 7→ − η−2√

η(η−1)
has negative derivative for η > 3/2.

Hence, the value of D(Z∗) = D(Z ′) = − n1−2√
n1(n1−1)

at

equilibrium (25) with one positive eigenvalue is minimal when
Z ′ = Z∗ and n1 = n, that is, the matrix is irreducible.
Now, let us focus on the points that vanish the gradient of
D, i.e., the equilibria of the projected pure-influence model.
Permuting the agents, we may confine ourselves to equilibria
described in Theorem IV.5 that have s blocks of size ni with
ki < ni positive eigenvalues, i ∈ {1, . . . , s}. To see why
this is true, in the proof of Theorem IV.4 it was shown that
D(Z∗i ) = −2αnqi(pi − qi) = −2αβi. Next, if ε = −1, then
α < 0 and D(Z∗) > 0. If ε = sign(ni − 2ki) = 0 for
all Z∗i 6= 0, then D(Z∗) =

∑
iD(Z∗i ) = 0. As we know, the

minimal value should be negative, so such equilibria cannot be
global minimizers. Therefore, we may assume that ε = 1, that
is, ki < ni/2 for all such i that Z∗i 6= 0. Assume, without loss
of generality, that Z∗1 , . . . , Z

∗
m 6= 0 and Z∗m+1, . . . , Z

∗
s = 0.

Denote k1 + · · · + km = k′ and n1 + · · · + nm = n′ ≤ n.
Note that the function f(ξ) = ξ(1 − ξ)/(1 − 2ξ)2 is convex
on (0, 1/2). Therefore, Jensen’s inequality implies

1

n

m∑
i=1

kini(ni − ki)
(ni − 2ki)2

=

m∑
i=1

ni
n
f
( ki
ni

)
≥ f

( m∑
i=1

ki
n′

)
= f

(k′
n′

)
=
k′(n′ − k′)
(n′ − 2k′)2

,

and, in turn,

D(Z∗) = −
(

m∑
i=1

kini(ni − ki)
(ni − 2ki)2

)−1/2

≥ − n′ − 2k′√
k′n′(n′ − k′)

.

We know, however from Theorem IV.4 that the right-hand side
is minimal when k′ = 1, in which case the minimal value, as
we have seen in the beginning in the proof, is achieved at
n′ = n. Hence, the irreducible equilibrium with one positive
eigenvalue is the global minimizer of D∗.
Remark IV.8. Let Z∗ denote an equilibrium point with one
positive eigenvalue. Then, −Z∗ has one negative eigenvalue
and does not correspond to structural balance. All such −Z∗
correspond to isolated critical points of D.

F. Examples of equilibria with two positive eigenvalues

Let Z∗ be any equilibrium of the projected pure-influence
model parameterized by nSt(n, 2) matrices, so that it has
two positive eigenvalues. Let us assume first that it is irre-
ducible. Then, another class of equilibria is found using the
parametrization (16). It can be easily shown that

Z∗ =

√
2

n(n− 2)
(θij)

n
i,j=1, θij =

{
0, i = j

cos(αi − αj), i 6= j.

Here the angles αi should satisfy the relation (17). Interest-
ingly, many of such matrices do not correspond to structural
balance. Consider, for example, the case where the unit vectors
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in (17) constitute a regular n-gon: αi = π(i−1)
n , i = 1, . . . , n.

For any pair i, j > i the entry zij is negative if (j− i) > n/2,
positive if j− i < n/2 and zero if j− i = n/2 (possible only
for even n). If n is odd, the graph is complete, otherwise,
the pairs of nodes (i, i + n/2) for i = 1, . . . , n/2 are not
connected. For example, in the smallest dimension n = 3, by
setting α1 = 0, α2 = π/3 and 2π/3, we obtain the equilibrium

Z∗ =
1√
6

 0 +1 −1
+1 0 +1
−1 +1 0


which does not correspond to structural balance. Actually, in
the case where n = 3 or n ≥ 5, the graph always contains
imbalanced triads. For instance, for n ≥ 3 being odd the nodes
i = 1, j = (n − 1)/2 and ` = (n + 3)/2 always constitute
such a triad: zi` < 0, whereas zij , zj` ≥ 0. For an even number
n ≥ 6, one may take i = 1, j = n/2, ` = n/2 + 2. In the
case n = 4, the equilibrium Z∗ corresponds to an incomplete
cyclic graph such that D(Z∗) = 0:

Z∗ =
1

2
√

2


0 1√

2
0 − 1√

2
1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

 .
For the reducible matrix case, since Z∗ has two positive

eigenvalues, G(Z∗) contains two disconnected subgraphs that
satisfy structural balance with possibly other isolated nodes.

V. CONVERGENCE TO BALANCED EQUILIBRIA AND
STABILITY ANALYSIS

We now provide convergence results for our models towards
equilibria that correspond to structural balance. We present a
supporting lemma and then our main theorem.

Lemma V.1. Assume that the solution of (2) satisfies
xi∗(t0) = 01×n at some t0 ≥ 0, that is, in the graph
G(X(t0)) node i does not communicate to any other node.
Then, xi∗(t) ≡ 01×n for any t ≥ 0. The same holds for the
solutions of (9).

Proof. Since the right-hand sides of (2) and (9) are analytic,
any solution is a real-analytic function of time. Assuming
that xij(t0) = 0 for all j, one finds that ẋij(t0) = 0.
Differentiating (2), it is easy to show that ẍij(t0) = 0, and
so on, x(m)

ij (t0) = 0 for any m ≥ 1. In view of analyticity,
one has xij(t) ≡ 0 for any t. Similarly, zij(t0) = 0∀j entails
that zij(t) ≡ 0 for any solution of (9).

Theorem V.2 (Convergence results and dynamical properties).
Consider the pure-influence model (2) with an initial condi-
tion X(0) ∈ Rn×nzero-diag,symm and the projected pure-influence
model (9) with initial condition Z(0) = X(0)

‖X(0)‖F
. Then,

(i) the solution Z(t) converges to a single critical point of
the dissonance function D;

(ii) the number of negative eigenvalues of Z(t) is non-
decreasing.

Moreover, if X(0) has one positive eigenvalue, then

(iii) limt→+∞ Z(t) = Z∗, where Z∗ is as in (26), so that
G(Z(t)) or one of its connected components (while the
rest of nodes are isolated) reaches structural balance in
finite time;

(iv) X(t) achieves the same sign structure as Z∗ in finite
time;

(v) nonzero entries of X(t) diverge to infinity in finite time.

Proof. For convenience, throughout this proof, let us denote
W (t) = X(t)

‖X(t)‖F
, i.e., X(t) = η(t)W (t) with η(t) evolving

according to (6a) and W (t) evolving according to (6b). From
the construction of the transcription of the pure-influence
model in Theorem III.3, we have that η(t) = ‖X(t)‖F and so
η(t) > 0 for all well-defined t ≥ 0. Moreover, Lemma A.1 let
us conclude that W (t) = Z(

∫ t
0
η(s)ds) for all t ≥ 0, and thus

the solution X(t) is well defined.
To prove (i), recall that (9) is a gradient flow dynamics of

the analytic function D, and the trajectory Z(t) stays on a
compact manifold and, in particular, is bounded. The classical
result of Łojasiewicz [1] implies convergence of the trajectory
to a single fixed point.

To prove (ii), we enumerate the eigenvalues of Z(t) in the
descending order λ1(t) ≥ λ2(t) . . . ≥ λn(t) and consider the
corresponding orthonormal bases of eigenvectors vi(t). Since
Zi(t)vi(t) = λi(t)vi(t) and vi(t)>vi(t) = 1, we obtain Żvi+
Zv̇i = λ̇ivi + λiv̇i and v̇i(t)>vi(t) = 0. Therefore,

λ̇i = v>i Żvi + v>i Zv̇i = v>i Żvi + λiv
>
i v̇i = v>i Żvi,

entailing the following differential equation

λ̇i = λ2
i +D(Z)λi − v>i diag(Z2)vi. (27)

Notice that all diagonal entries of diag(Z2) are nonnegative.
Now, due to Lemma V.1, if the ith row of X was initially
the zero vector, then it will continue being the same for all
times and also for Z; and, moreover, diag(Z2)ii = 0 and there
exists a zero eigenvalue with its associated eigenvector having
zero entries in all the positions of the entries where diag(Z2)
are positive. Then, it immediately follows from (27) that if
λi(0) = 0 due to Z(0) having a row being the zero vector
01×n, then λ̇i = 0.

Now, let N be the set of indices i such that diag(Z2)ii > 0.
Thus, for any i ∈ N , if λi crosses the real axis at time t∗,
i.e., λ(t∗) = 0, then

λ̇i(t
∗) = −(vi(t

∗))> diag (Z2(t∗))vi(t
∗) < 0. (28)

Therefore, if λi(t0) ≤ 0 for some t0 ≥ 0, then λi(t) ≤ 0 for
all t ≥ t0. This finishes the proof for (ii).

Notice that since trace(Z(t)) = 0 and Z(t) = Z(t)> 6=
0n×n, then Z(t) has at least one positive eigenvalue. Then,
equation (28) implies that

Λ := {Z ∈ Sn×nzero-diag,symm | Z has only one positive eigenvalue}

is forward invariant and, in particular, the limit Z∗ =
limt→∞ Z(t) (existing in view of statement (i)) belongs to Λ.
Since Z∗ is a critical point of D (or, in view of Theorem III.4,
the equilibrium of (9)), it has the structure described by
Corollary IV.7.
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By continuity of the flow Z(t), there is a finite time τ such
that G(Z(t)) has the same sign structure as G(Z∗) for all
t ≥ τ . This finishes the proof for (iii).

Now we prove the last two statements of the theorem.
Knowing the convergence result from (iii), Lemma A.1 tells
us that introducing the term η as in the transcribed sys-
tem (6a) to the projected pure-influence model has the simple
effect of altering the convergence rate properties for Z(t).
Therefore, there always exist a finite time τ∗ ≥ 0 such
that, for any t ≥ τ∗, W (t) satisfies the sign properties
of statement (iii) regarding structural balance. Moreover, the
fact that X(t) = η(t)W (t) and η(t) ≥ 0 by construction,
immediately implies (iv). Now, let g(t) := −D(W (t)), and
notice that g(t) is a strictly positive continuous function for all
(well-defined) t ≥ τ∗. Now, from equation (6b), we have the
system η̇(t) = g(t)η2(t), with solution η(t) = η(τ)

1−η(τ)
∫ t
τ
g(s)ds

for t ≥ τ . Then, since
∫ t
τ
g(s)ds is a monotonic strictly

increasing function on t ≥ τ , we have that η(t) → +∞
as t → t∗, where t∗ > τ∗ is some finite time such that∫ t∗
τ
g(s)ds = 1

η(τ) (note that t∗ > τ∗ holds from the

relationship W (t) = Z(
∫ t

0
η(s)ds)). Then, we conclude that

the solution η(t) and the entries of X(t) diverge in some finite
time t∗, which proves (v).

Corollary V.3. Consider the same conditions as in Theo-
rem V.2, i.e., the projected pure-influence model with initial
condition Z(0) ∈ Sn×nzero-diag,symm having one positive eigen-
value. If D(Z(0)) < − n−3√

(n−1)(n−2)
, then G(Z(t)) eventually

reaches structural balance.

The previous theorem immediately implies that the set
of irreducible equilibria with a single positive eigenvalue is
(locally) asymptotically stable. We present further results on
the stability of equilibria.

Lemma V.4 (Further results on stability of the equilibria).
Consider a symmetric equilibrium point Z∗ for the projected
pure-influence model (9). Without loss of generality, assume
that Z∗ has no row equal to the zero vector1. If D(Z∗) ≥ 0,
then Z∗ is an unstable equilibrium point and does not corre-
spond to structural balance.

Proof. Write the analytic projected influence system (9) as
Ż = f(Z) := Z2 − diag(Z2) + D(Z)Z, thereby defining
f : Rn×n → Rn×n, and compute

∂fij(Z)

∂zij
= D(Z) +

∂D(Z)

∂zij
zij ,

∂D(Z∗)
∂zij

= −3
∑n

k=1
k 6=i,j

z∗ikz
∗
kj .

Now, the Jacobian of f , denoted by Df , is a (n2−n)×(n2−n)
matrix (since we do not consider self-appraisals). Let Df(Z∗)

1If Z∗ had a row equal to the zero vector, then, in the lemma statement,
we would replace n by n1 < n, where n1 is the number of rows of Z∗ that
are not equal to the zero vector.

be the Jacobian evaluated at Z∗ and let {λi}n
2−n
i=1 be the set

of its eigenvalues. Then, we compute

n2−n∑
i=1

λi = trace(Df(Z∗)) =

n∑
i=1

∑n

j=1
j 6=i

∂fij(Z
∗)

∂zij

= (n2 − n)D(Z∗) + 3D(Z∗) = (n2 − n+ 3)D(Z∗).

Since n2 − n + 3 > 0 for n ≥ 3, we draw the following
conclusions for D(Z∗) ≥ 0: (i) Df(Z∗) contains at least
one positive eigenvalue and so the equilibrium point Z∗ is
unstable; (ii) at least one triad in G(Z∗) is unbalanced and so
Z∗ does not correspond to structural balance.

VI. SIMULATION RESULTS AND CONJECTURES

The generic convergence of trajectories to the minima of
D (or, equivalently, the convergence from almost all initial
conditions) is an open problem. However, we present strong
numerical evidence that support such claim. We first remark
that, from the proof of Theorem III.3, the projected pure-
influence model (9) can be generalized over any asymmetric
matrix in Sn×nzero-diag by replacing D(Z) by − trace(Z>Z2) and
this is the model we will refer throughout this section.

A generic asymmetric initial condition X(0) for the pure-
influence model (2) is a matrix that is generated with each
entry independently sampled from a uniform distribution with
support [−100, 100], and its diagonal entries set to zero. A
generic symmetric initial condition is similarly constructed by
only sampling the upper triangular entries of the matrix. For
the projected pure-influence model, we say Z(0) = X(0)

‖X(0)‖F
is

a (non-)symmetric generic initial condition depending on how
X(0) was generated. We immediately see from the proof of
Theorem V.2, that Z(t) converges to social balance if and only
if X(t) converges to social balance. Indeed, given that X(t)

diverges at some finite time t̄, we have Z(∞) = X(t̄−)
‖X(t̄−)‖F

.
For a fixed network size n, we use a Monte Carlo

method [26] to estimate the probability p of the event “under a
generic asymmetric initial condition Z(0), Z(t) converges to
structural balance in finite time”. We estimate p by performing
N independent simulations (i.e., each simulation generates a
new independent initial condition) and obtaining the propor-
tion p̂N , also known as the empirical probability, of times
that the simulation indeed had Z(t) converging to structural
balance in finite time. For any accuracy 1 − ε ∈ (0, 1) and
confidence level 1 − η ∈ (0, 1) we have that |p̂N − p| < ε
with probability greater than 1 − η if the Chernoff bound
N ≥ 1

2ε2 log 2
η is satisfied. For ε = η = 0.01, the bound

is satisfied by N = 27000. We performed the N = 27000
independent simulations with n ∈ {5, 6}, and found that
p̂N = 1. Our observations let us conclude that for generic
asymmetric initial condition Z(0) and n ∈ {5, 6}, with 99%
confidence level, there is at least 0.99 probability that Z(t)
converges to structural balance in finite time.

Similarly, we performed the same Monte Carlo analysis for
generic symmetric initial conditions with n ∈ {3, 5, 6, 15},
and found for that p̂N = 1 for all n. Therefore, we conclude
that for any symmetric generic initial condition Z(0) and n ∈
{3, 5, 6, 15}, with 99% confidence level, there is at least 0.99



11

probability that Z(t) converges to structural balance in finite
time.

We report three more observations and then state a resulting
conjecture. First, remarkably, we found that all of our simula-
tions (for any type of random initial condition) that converged
to structural balance in finite time, did it by converging to an
equilibrium point having only one positive eigenvalue inside
the set of scale-symmetric matrices, which is a superset of
the set of symmetric matrices (see Appendix B). Second, we
did not perform experiments for larger sizes of n due to
computational constraints. Third, unfortunately, for n = 3,
we did find randomly-generated asymmetric initial conditions
whose numerically-computed solutions do not converge to
structural balance.

Conjecture 1 (Convergence from generic initial conditions).
Consider the pure-influence model (2) with some initial con-
dition X(0), and the projected pure-influence model (9) with
initial condition Z(0) = X(0)

‖X(0)‖F
. Then,

(i) under generic asymmetric initial conditions,
limt→+∞ Z(t) = Z∗ for a sufficiently large n,

(ii) under generic symmetric initial conditions,
limt→+∞ Z(t) = Z∗ for any n,

where Z∗ is scale-symmetric (and particularly symmetric
for (ii)) corresponding to structural balance. Then, Z(t)
reaches structural balance in finite time. Moreover, X(t)
reaches structural balance in finite time with same sign
structure as Z∗, and also diverges in finite time.

Similarly, we performed the same simulation analysis for
the Kułakowski et al. model (4), which converges to structural
balance if and only if the projected Kułakowski model (10)
does. To generate a generic initial condition for this system,
we generated an n× n matrix with each entry independently
sampled from a uniform distribution with support [−100, 100],
and then divide it by its Frobenius norm. We performed N =
27000 independent simulations with n ∈ {5, 6}, and found
that for generic initial condition Z(0) and n = 5, only 16.94%
converged to structural balance, and for n = 6, only 11.50%
converged to structural balance.

Also, for n = 3, not all simulations converged to structural
balance. We remark that not all of the networks for which
the system converged and did not satisfy structural balance
were complete, some of them were networks with only self-
loops, e.g., Figure 5(a). Similarly, we performed the same
Monte Carlo analysis for symmetric initial conditions with
n ∈ {3, 5, 6, 15}. Our results show that for symmetric generic
initial condition, Z(0) did not always converge to structural
balance for n = 3, but, for n ∈ {5, 6, 15}, with 99%
confidence level, there is at least 0.99 probability that Z(t)
converges to structural balance in finite time.

These Monte Carlo results are expected, since it has been
formally proved that the Kułakowski et al. model converges
to structural balance only under generic symmetric initial
conditions as n→∞ [22] and negative results for asymmetric
conditions are given by [27].

See Figure 3 for a comparison of trajectories of the pure-
influence model in both generic and symmetric generic initial
conditions. Figure 4 shows a comparison between our pro-

jected pure-influence model, which does not consider self-
appraisals, and the projected influence model, which considers
self-appraisals. Note how not considering self-appraisals dras-
tically changes the convergence time as well as the dynamic
behavior of the interpersonal appraisals.

(a) Projected pure-influence model (9)
with generic asymmetric initial condi-
tion
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(b) Projected pure-influence
model (9) with generic symmetric
initial condition

Fig. 3. Convergence to structural balance for a network of size n = 10. We
plot the evolution of all the entries of Z(t).
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(a) Projected influence
model (10) with generic
asymmetric initial condition
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(b) Projected pure-influence
model (9) with generic asymmetric
initial condition

Fig. 4. Convergence comparison for a network of size n = 7 (a) with and
(b) without the consideration of self-appraisals. We first generated an n× n
random matrix W with each entry independently sampled from a uniform
distribution with support [−100, 100]. Then, for (a), we normalize this matrix
to have unit Frobenius norm and used it as the initial condition. For (b), we set
the diagonal entries of W to zero and then normalize it to have unit Frobenius
norm and use it as the initial condition. In this example, (a) did not converged
to structural balance, whereas (b) did. We plot the evolution of all the entries
of the appraisal matrix.
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(a) Projected influence model (10)
with generic asymmetric initial con-
dition
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(b) Projected pure-influence
model (9) with generic asym-
metric initial condition

Fig. 5. Convergence comparison for a network of size n = 7 (a) with and
(b) without the consideration of self-appraisals. The setting is the same one
as in Figure 4, but with a different random initial condition. (a) converged to
a network with only diagonal negative entries (all interpersonal appraisals go
to zero), whereas (b) converged to structural balance.
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VII. CONCLUSION

We propose two new dynamic structural balance models that
incorporates more psychologically plausible assumptions than
previous models in the literature, based on a modification by
a model proposed by Kułakowski et al. We have established
important convergence properties for these models and also
that, most importantly, they correspond to gradient systems
over an energy function that characterizes the violations of
Heider’s axioms for the symmetric case. We also expanded
our results to a set of asymmetric matrices called scale-
symmetric. Numerical results illustrates that, under generic
initial conditions, our models converges to structural balance
(for sufficiently large n) and thus have better convergence
properties than the previous model by Kułakowski et al.

As future work, we propose to further study the general
case of asymmetric (and non-scale-symmetric) equilibria and
the convergence properties of our models under arbitrary
initial conditions. For example, numerical simulations of the
projected pure-influence model from generic (asymmetric)
initial conditions illustrate how this system features transient
chaos before converging towards an equilibrium. Future work
will focus on models with a more sociologically justified
transient behavior. Finally, one could study the removal of the
self-appraisals in other dynamical structural balance models,
like the homophily-based model by Traag el al. [27].
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This finishes proof of the “if” part. The “only if” part follows
from the uniqueness theorem.

Proof of Lemma IV.1. First, to prove that the set nSt(n, k),
k ≤ n is a submanifold of the compact Stiefel manifold,
define the smooth map Φ : St(n, k) → Rn by X 7→
(‖Xi∗‖22 , . . . , ‖Xn∗‖22)>, where Xi∗ is the ith row of X .
Then, we have that nSt(n, k) = Φ−1((k/n, . . . , k/n)>) and it
is easy to prove the mapping Φ has constant rank n. Thus, we
use the Constant-Rank Level Set Theorem [18] to conclude
our claim. The properties of compactness and analyticity are
immediate from the definition of the set nSt(n, k), k ≤ n.

Now, notice that conditions ((i)) and ((ii)) from Defini-
tion IV.1 impose, in total, k(k+1)

2 + n constraints on kn
independent variables, however, these constraints are linearly
dependent: one of them can be removed (for instance, if one
requires condition (i) from Definition IV.1, then suffices to
constrain only sums of n − 1 rows, whereas the remaining
sum automatically equals k/n)). Whenever k ≤ n and n ≥ 3,
one has k(k+1)

2 + n − 1 < kn, which implies that the set
nSt(n, k) has the dimension (k − 1)n+ 1− k(k + 1)/2.

Statements (i) and (ii) are immediate. Now regarding (iii), it
is obvious that each row has norm

√
k/n if and only if V can

be written as (16). Notice now the columns are unit vectors if
and only if

∑n
m=1 cos2 αi = n/2 =

∑n
m=1 sin2 αi, which in

turn holds if and only if
∑
m cos 2αm = 2

∑
m cos2 αm −

n = 0. Similarly, the columns are orthogonal if and only
if
∑n
m=1 cosαi sinαi = 0 = 1

2

∑
m sin 2αm. These two

constraints are equivalent to (17).

Proof of Lemma IV.2. The case where α = β = 0 is trivial:
Z = 0 and it obviously can be decomposed as in (18) with p =
q = 0. Notice that every eigenvalue of Z = Z> corresponds
to the eigenvalue λ2 − 2αλ of Z2 − 2αZ, and hence λ2 −
2αλ− β = 0. Therefore, α2 + β ≥ 0 (otherwise, eigenvalues
of Z would be complex). Furthermore, α2 +β 6= 0 (otherwise,
λ = α would be the only eigenvalue of Z of multiplicity n,
and one would have trace(Z) = αn, entailing that α = β =
0). Denoting ∆ =

√
α2 + β, the matrix Z has two different

eigenvalues α + ∆ and α −∆, denote their multiplicities by
k and n−k. Then (α+ ∆)k+ (α−∆)(n−k) = 0. Denoting
q = ∆−α and p = 2∆ > 0, one has (p− q)k− q(n−k) = 0
or, equivalently, pk = qn thus, q > 0.

Consider the orthonormal eigenvectors v1, . . . , vk, corre-
sponding to the eigenvalue p − q = α + ∆ and orthonormal
eigenvectors w1, . . . , wn−k, corresponding to −q = α − ∆.
The sequence v1, . . . , vk, w1, . . . , wn−k constitutes an or-
thonormal basis of eigenvectors for the operator Z. Stacking
the columns vi and wi, one obtains n × k and n × (n − k)
matrices V = (v1, . . . , vk), W = (w1, . . . , wn−k). The matrix
[V,W ] is orthonormal and diagonalizes Z, that is, Z[V,W ] =

[V,W ]

[
(p− q)IFIXHERE 0

0 −qIFIXHERE

]
and thus Z =

(p − q)V V > − qWW>. Since V V > + WW> = In, Z is
decomposed as (18). It remains to notice that V >V = Ik
by definition of the orthonormal basis and diag(V V >) =
(q/p)In = (k/n)In since, by (18), diag(Z) = 0n×n. To finish
the proof, notice that p − 2q = 2α and β = ∆2 − α2 =
(∆− α)(∆ + α) = q(p− q).

Proof of Corollary IV.3. Let f(z) = z2 − 2αz, z ∈ C. It
suffices to show that, if f(Z) = diag(β1In1 , . . . , βsIns), then
Z = diag(Z1, . . . , Zs), where f(Zi) = βiIni . This statement
will be proved for any analytic function f(z). It is well known
that the spectrum of f(Z) consists of all points f(λ), where
λ is an eigenvalue of Z. Consider the set of eigenvalues of Z
that belong to f−1(βi) and let Xi be the sum of corresponding
eigenspaces. Then Xi is invariant under the operator Z, and
Rn = ⊕si=1Xi (the sum is orthogonal). Also, f(Z)x = βix
for any x ∈ Xi. For any basis vector er = (0, . . . , 1, . . . , 0)>

consider the decomposition er = ⊕si=1e
i
r, e

i
r ∈ Xi. Then

Zer = ⊕si=1Ze
i
r, Ze

i
r ∈ Xi and f(Z)er = ⊕si=1f(Z)eir =

⊕si=1βie
i
r. Suppose that 1 ≤ r ≤ n1. Then f(Z)er = β1er.

Since β1, . . . , βs are pairwise different, we have er = e1
r and

e2
r = . . . = esr = 0. Similarly, for n1 +n2 + . . .+nj−1 + 1 ≤
r ≤ n1 +n2 + . . .+nj−1 +nj one has er = ejr (j = 2, . . . , s).

In other words, each Xi contains ni basis vectors er, where
n1 + n2 + . . . + ni−1 + 1 ≤ r ≤ n1 + n2 + . . . + ni−1 + ni
and thus dimXi ≥ ni. Recalling that n1 + . . . + ns = n,
one shows that dimXi = ni ∀i and thus Xi is spanned by
the corresponding basis vectors. Since Xi is invariant under
Z, Z = diag(Z1, . . . , Zs), where the block Zi has dimension
ni×ni. Obviously, f(Zi) = βiIni . The statement of Corollary
is now immediate from Lemma IV.2.

Proof of Theorem IV.5. We prove the necessity first. Denot-
ing 2α = −D(Z). By assumption, Z2 − 2αZ is diagonal.
Statements (i) and (ii) follow from Corollary IV.3, entailing
also that pi, qi can be represented as (23) with some βi.
Since Z2

i = 2αZi + βiIni and diag(Zi) = 0ni×ni , one has
traceZ2

i = βini, therefore∑s

i=1
βini = trace(Z2) = 1. (29)

Recall also that for each i one has piki = qini or, equivalently,

2ki
ni

=

√
α2 + βi − α√
α2 + βi

= 1− α√
α2 + βi

∀i : pi, qi 6= 0.

(if α = 0, one always has pi, qi 6= 0, otherwise it is possible
that βi = 0 and then Zi = 0). This implies condition 3 (ε =
signα) and allows to determine α, βi. In the case where ε 6= 0
notice that ni − 2ki 6= 0 for any i such that Zi 6= 0. Thus

βi + α2

α2
=

n2
i

(ni − 2ki)2
⇐⇒ βi = α2 4niki − 4k2

i

(ni − 2ki)2
.

In view of (29), one obtains that

α = ε

 ∑
i:Zi 6=0ni×ni

4kini(ni − ki)
(ni − 2ki)2

−1/2

,

which entails (24). In the case of α = 0, one has pi =
2
√
βi, qi =

√
βi for any i, and (29) implies that

∑
i q

2
i ni = 1.

This finishes the proof of statement (iv).
The proof of sufficiency is similar. For any i such that

Zi 6= 0, the coefficients pi, qi have the form (23) (if ε 6= 0,
this is implied by (iv)a, otherwise we choose α = 0 and
βi = q2

i = p2
i /4). Therefore, we have Z2

i − 2αZi = βiZi and,
in particular, Z2−2αZ is diagonal. A straightforward compu-
tation shows that piki = qini and thus diag(Zi) = 0ni×ni ∀i,
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in particular, diag(Z) = 0n×n. Also, diag(Z2
i ) = βiIni , and

statement (iv) now implies that traceZ2 = 1. It remains to no-
tice that Z3

i = 2αZ2
i + βiZi, and hence trace(Z3

i ) = 2αβini.
Hence, D(Z) = − trace(Z3) = −2α, Z2 + D(Z)Z is a
diagonal matrix, and Z is an equilibrium (14).

APPENDIX B
SCALE-SYMMETRIC MATRICES

We now generalize our results for symmetric appraisal
networks to a class of asymmetric matrices. We define the
sets of scale-symmetric matrices

Rn×nzero-diag,dss = {A ∈ Rn×nzero-diag | there exists γ � 0n such that

Adiag(γ) = (A diag(γ))>},
Sn×nzero-diag,dss = Sn×nzero-diag ∩Rn×nzero-diag,dss.

Note that Sn×nzero-diag,dss ⊃ Sn×nzero-diag,symm and

Sn×nzero-diag,dss =
⋃
γ�0n

Sn×nzero-diag,dss(γ),

Sn×nzero-diag,dss(γ) = {A ∈ Sn×nzero-diag | Adiag(γ) = (A diag(γ))>}.
.

Lemma B.1. Consider any γ � 0n and some matrix A ∈
Rn×n such that Adiag(γ) = diag(γ)A>. Then,

(i) A has real eigenvalues and it is diagonalizable,
(ii) trace(A2) = 0 if and only if A = 0.

Proof. Since Adiag(γ) is symmetric, then A′ =
diag(γ)−1/2A diag(γ)1/2 is also symmetric and thus
has real eigenvalues and its eigenvectors form an orthogonal
basis. Now, let (λ, v) be an eigenpair for A′. Then, by
defining u = diag(γ)1/2v, we observe that Au = λu, and so
(λ,diag(γ)v) is an eigenpair for A. Hence the eigenvectors
of A form a basis, and thus A is diagonizable. This proves (i).

Observe that A = diag(γ)A> diag(γ)−1. Then,
trace(A2) = trace(A diag(γ)A> diag(γ)−1). From
simple algebraic operations, it can be found that
trace(A2) =

∑n
i=1

∑n
j=1

γj
γi
a2
ij . Since γi

γj
> 0,

trace(A2) = 0 if and only if A = 0. This proves (ii).

In view of Lemma B.1, a matrix A is scale-symmetric if and
only if A = D−1AsD, where D > 0 is a positive diagonal
matrix (in Lemma B.1, D = diag(γ−1/2) for some γ � 0n)
and As a symmetric matrix.

Recall the invariance property of the pure-influence
model (2): if X(0) = X(0)>, then X(t) = X(t)> for all
t > 0. We are now ready to provide a more general version
of this property: If D > 0 is a diagonal matrix and X(t) is a
solution, then DX(t)D−1 is also a solution. For this reason, if
X(0) = DXs(0)D−1 is a scale-symmetric matrix with some
Xs(0) = Xs(0)>, then the solution X(t) = DXs(t)D

−1

is scale-symmetric. A similar result holds for the projected
pure-influence model (9). Indeed, all of the theoretical results
obtained in this paper for symmetric appraisal matrices, can
be generalized to scale-symmetric appraisal matrices. For
example, if X(0) ∈ Rn×nzero-diag,dss (Z(0) ∈ Sn×nzero-diag,dss) then
t 7→ D(X(t)) (t 7→ D(Z(t))) is monotonically nondecreasing
in Rn×nzero-diag,dss (Sn×nzero-diag,dss).
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