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Impact statement

Linear estimation problems are commonly found in a number of important applica-
tions as arising in applied optics, information processing, bioinformatics and diagnostic
medical imaging. These problems often consist in ill-posed systems of linear equations,
which can be solved using efficient inference techniques. This PhD thesis discusses a
statistical physics based approach for the solution of sparse linear estimation problems,
called expectation propagation (EP). The ideas underlying the method are rooted in the
Thouless-Anderson-Palmer (TAP) approach introduced to study the physics of disor-
dered systems and are well-suited to be applied to probabilistic modeling in general.

We focus on the Gaussian case of the EP algorithm and apply it to the compressed
sensing problem and to the problem of learning a binary classification rule. Both prob-
lems can be recast as finding solutions of underconstrained systems of linear equations
of the kind 𝐅𝒙 = 𝒚, where 𝒙 ∈ ℝ𝑁, 𝒚 ∈ ℝ𝑀 and 𝑀 < 𝑁, to be solved given the knowl-
edge of the linear transformation 𝐅, given the set 𝒚 of partial observations and given
additional constraints concerning the hypothesized structure of the sought solution 𝒙.
In a Bayesian setting, these additional constraints can be encoded in suitable prior dis-
tributions, which, in turn, are easily incorporated in the EP approximation.

The linear transformation producing the observations often needs to fulfill several
constraints dictated by the specific problem of interest, giving rise to some kind of
structure in the related matrix and in the measurements produced. Such constraints
may be due to the experimental setup adopted or to physical limitations associated
with the measuring device used to collect the observations. As a consequence, methods
that rely on the statistical independence of the entries of the matrix 𝐅 can face serious
challengeswhen dealingwith inverse linear problems generated by structuredmatrices.

In this PhD thesis, the performance of Gaussian EP is compared to other message
passing algorithms and is shown to be robust in several cases where correlations are
introduced in the linear transformation matrix of the problem considered. Thus, the
work presented in this dissertation can be relevant for applications where determinis-
tic or random correlated linear transformations arise and can be considered a step to-
wards the development of efficient approximate inference algorithms able to deal with
structured data sets in a variety of settings.
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Chapter 1

Introduction

Linear estimation problems arise in many fields of science and engineering and con-
sist in finding solutions to a system of linear equations based on the knowledge of a
set of observations and of the linear operator which generates them. In most inter-
esting scenarios, such observations are only partial, resulting in an underdetermined
system of equations, for which infinitely many solutions exist1. Noise corrupting the
observations is an additional challenge to be tackled and requires faithfully modeling
its statistics. The development of techniques able to solve ill-posed problems of this
kind is an exciting interdisciplinary field at the intersection between high dimensional
statistics, Bayesian inference, statistical physics, signal processing, statistical learning
theory and optimization and is of utmost importance for many real-world applications.

Among all fields involved in developing novel and effective methods to successfully
deal with linear inverse problems, statistical physics has proven to be a very effective
tool in order to design methods able to solve linear estimation problems efficiently,
thanks to a series of improved mean field techniques originally devised to approximate
complex probability distributions in the context of disordered systems. Indeed, tech-
niques such as approximate message passing (AMP) and adaptive Thouless-Anderson-
Palmer (TAP) methods have been shown to be effective for a variety of real-world rel-
evant problems, especially in optical and medical imaging. Important examples are
magnetic resonance imaging [1] and tomography [2, 3], to name a few.

The development of reconstruction methods requires that the properties of the so-
lution to be retrieved, of the sensing matrix generating the linear projections and of
the statistic of any noise affecting the measurement process are properly taken into
account. Concerning the structure of the solution sought, sparsity is one key property
that needs to be incorporated among the assumptions from a modeling standpoint, as

1By Rouché-Capelli theorem, assuming that the linear operator has maximal rank, these solutions
span an affine space of dimension 𝑁 − 𝑀, where 𝑁 is the number of unknowns and 𝑀 is the number of
equations.
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signals are often approximately sparse in some domain. Additional structural proper-
ties of the signal may involve short and long-range correlations. For instance, natural
images are sparse in the wavelet basis and tend to appear smooth over localized as well
as extended regions, resulting in local and long-range correlations among pixel values.
Reconstructionmethods need to be flexible enough to take into account any useful prior
knowledge about these statistical properties. In a Bayesian framework, this translates
into incorporating extra constraints in the form of highly non linear and non convex
priors. The resulting posterior distribution is often intractable, meaning that its nor-
malization and marginals cannot be computed analytically nor they can be computed
numerically in polynomial time as a function of the size of the system. This intractabil-
ity of the posterior distribution makes it necessary to resort to approximate inference
schemes in order to extract useful information for the problem considered.

A particularly powerful and flexible method inspired by statistical physics able to
incorporate non convex prior information is expectation propagation (EP) (see, e.g.,
[3]). Its Gaussian formulation will be the computational framework used in this PhD
thesis in the context of linear estimation problems.

One important challenge that can hamper the effectiveness of reconstruction algo-
rithms developed for linear models is the presence of structure in the linear operator
that produces the observations. In fact, while there exist many results ensuring that in-
dependent and identically distributed (i.i.d.) random measurement matrices, e.g. Gaus-
sian or Bernoulli, allow reconstruction algorithms to achieve optimal performance, in
practice, the structure of sensingmatrices is often dictated by the specific physical or im-
plementation constraints associated with the problem considered or measuring device
involved [4]. Thus, although very convenient from a mathematical point of view, the
assumption of i.i.d. random entries is unrealistic in most cases of interest and devising
reconstruction algorithms able to deal with (or even exploit) the presence of structure
in deterministic or random measurements is a very active area of research.

The choice of EP as a tool to solve linear estimation problems allows us to address
the issue of dealing with statistical correlations in the measurement matrix, as these
are taken into account at the level of the EP approximation, as it will be argued later in
this PhD thesis. Therefore, the work presented in this dissertation can be considered
an important step towards the development of approximate learning algorithms able to
deal with the presence of structure in the observed data.

1.1 Problems addressed and contribution of the thesis
to the current state of knowledge

The main problems addressed within the EP framework in this PhD thesis are com-
pressed sensing reconstruction and sparse perceptron learning in the teacher-student
scenario.

The main contributions of this thesis to the first application, to which Chapter 5 is
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1.1 – Problems addressed and contribution of the thesis to the current state of knowledge

devoted, are the following ones.

• In the thermodynamic limit𝑁 → ∞, where𝑁 is the length of the signal, the recon-
struction error of the retrieved signal obtained by means of EP when introducing
a sparsity prior of the “spike-and-slab” kind on the entries of the signal exhibits a
continuous phase transition on the (𝜌, 𝛼) plane, where 𝜌 is the fraction of nonzero
components of the signal and 𝛼 is the measurement rate (i.e., the ratio between the
number of equations and the number of unknowns), analogously to those observed
in the same problem considering othermessage passing reconstruction algorithms.

• Given a value of the parameter 𝜌, the “error-free” reconstruction threshold asso-
ciated with EP lies at a lower 𝛼 value than the one obtained by solving the relaxed
version of the problem (LASSO) [5] where, rather than the number of nonzero
variables, one minimizes the 𝐿1 norm of the unknown signal vector. Thus, by us-
ing EP one can retrieve the correct solution to the problem in the case of larger
compression levels of the signal as compared to what would be possible if LASSO
reconstruction were employed (Fig. 5.4). Furthermore, the critical threshold 𝛼𝑐(𝜌)
beyond which one obtains the correct solution by means of EP is left unchanged
if one introduces correlations in the measurement matrix sampling its rows from
a multivariate Gaussian as compared to the standard case of i.i.d. measurements.
Our analysis shows that the same fact does not hold for the other algorithms con-
sidered in our comparisons, which are not able to accurately reconstruct the signal
and often do not converge.

• Both in the presence of i.i.d. andGaussian correlated sensingmatrices, we find that
the parameter 𝜌 can be accurately estimated during the EP inference procedure
using maximum likelihood, by iteratively minimizing the free energy associated
with EP.

The relevant paper, where these results have been published, is:

Alfredo Braunstein, Anna PaolaMuntoni, Andrea Pagnani, andMirko Pieropan.
“Compressed sensing reconstruction using expectation propagation”. Jour-
nal of Physics A: Mathematical and Theoretical 53.18 (Apr. 2020), p. 184001.

The other application studied in this PhD thesis focuses on learning a binary clas-
sification rule implemented by a sparse teacher perceptron using a student perceptron
having diluted weights as well. By using EP to train the student perceptron in this
teacher-student scenario, the following results were obtained:

• We showed that EP allows the student to efficiently estimate the set of weights
of the teacher. The comparison with other message passing algorithms that can
be used to solve the problem, in particular 1-bit Approximate Message Passing
(1bitAMP) andGeneralized Vector ApproximateMessage Passing (grVAMP), shows
that EP is comparable to these in terms of convergence properties and of goodness
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of the solution when considering statistically independent examples (e.g. with
patterns extracted by a standard Gaussian distribution). However, it appears to
be more robust in terms of convergence and more accurate in determining the
nonzero weights as well as their values (better fixed points) in the case where the
patterns presented to the student perceptron are correlated.

• One example showing that using EP is advantageous in the presence of corre-
lated patterns (as compared with 1bitAMP and grVAMP) is given by the case of
binary patterns dynamically correlated by means of an asynchronous generative
process by a recurrent network of perceptrons. Indeed, while EP allows the stu-
dent perceptron to successfully infer the teacher weights, 1bitAMP (in the same
setup) diverges and grVAMP exhibits a high failure rate in terms of convergence
as compared to EP for a large interval of training set sizes.

• We show that the sparsity level of the weights, which is not necessarily known
a priori, can be accurately estimated during the EP inference procedure by mini-
mizing the free energy associated with the algorithm, analogously to the case of
compressed sensing. Likewise, if the teacher mislabels some of the examples and
as long as the noise level thus introduced is small enough, EP allows one not only
to approximately infer the weights of the teacher, but also to estimate the number
of the correctly labeled examples in case this is not known a priori.

These results have been published in:

Alfredo Braunstein, Thomas Gueudré, Andrea Pagnani, and Mirko Pieropan.
“Expectation propagation on the diluted Bayesian classifier”. Phys. Rev. E
103.4 (Apr. 2021), p. 043301.

1.2 Outline of the thesis
The outline of this PhD thesis is as follows. After this initial Chapter, where we state
the relevance of the topics addressed and the contributions of this PhD dissertation to
the current state of knowledge, Chapter 2 introduces the fields of compressed sensing
and of standard and generalized linear estimation problems. The same Chapter also
gives some examples of these problems as arising in physics and discusses the role of
sparsity and how to model it by means of prior distributions in order to encode it in
Bayesian probabilistic models. Chapter 3 presents several advanced mean field meth-
ods obtained by means of a variational principle, from the well known naive mean
field method to sophisticated message passing techniques such as belief propagation,
approximate message passing and vector approximate message passing, some of which
were mentioned above. Chapter 4 focuses on the theoretical and computational aspects
concerning EP, with a particular emphasis on EP with univariate approximating Gaus-
sian factors, which is the particular formulation employed in this PhD thesis, including
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1.2 – Outline of the thesis

its dynamical update rules and its fixed point equations. Furthermore, its free energy
and the variational derivation of its fixed point conditions are presented, together with
the relationship between EP and the methods described in Chapter 3. Chapter 5 dis-
cusses the results obtained applying EP to the compressed sensing problem, the related
phase diagram, its reconstruction properties in the presence of correlated measurement
matrices and compares its performance to other state-of-the-art reconstruction meth-
ods widely employed in compressed sensing. Chapter 6 studies the problem of learning
a binary classification rule from labeled examples using a sparse perceptron and dis-
cusses the results obtained in a variety of regimes, both in the presence of statistically
independent and of correlated patterns presented to the perceptron and both in the case
where labels are noiseless and where they are partly corrupted by noise. Finally, Chap-
ter 7 is devoted to the conclusions of the thesis and to future directions building upon
the work done so far.
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Chapter 2

A brief review of linear
estimation problems

2.1 Standard linear estimationproblems and compressed
sensing

In this section, we will introduce a general family of inverse problems known as linear
estimation problems and relate them to the interdisciplinary field of compressed sens-
ing, which has drawn considerable attention and has been extensively studied in signal
processing, computer science, electrical engineering, applied mathematics and statisti-
cal physics in the last twenty years.

Linear estimation problems can be formulated as systems of𝑀 linear equations in 𝑁
unknowns:

𝒚 = 𝐅𝒘 + 𝒏, (2.1)

where 𝒚 ∈ ℝ𝑀 is a set of observed outcomes or measurements corrupted by a noise vec-
tor 𝒏 ∈ ℝ𝑀, 𝐅 ∈ ℝ𝑀×𝑁 is a known linear operator and 𝒘 ∈ ℝ𝑁 is an unknown signal to
be retrieved from the knowledge of the noisy linear projections 𝒚 and of the projection
operator 𝐅. This definition includes both linear systems with 𝑀 ≥ 𝑁 noisy measure-
ments and linear systems with 𝑀 < 𝑁 in the noiseless or noisy regime. When 𝑀 < 𝑁,
we say that the linear system is underconstrained. The focus of this PhD thesis will be
on underconstrained linear models, as this is the most interesting case for applications.

If the system in Eq. (2.1) is underconstrained, then it admits infinite solutions. There-
fore, additional constraints are required in order to recover the unknown vector 𝒘.
Problems of this kind are often referred to as standard linear estimation problems in
order to distinguish them from their generalized counterpart, where the output vector
𝒚 is generated by a nonlinear or stochastic function of the right hand side of Eq. (2.1).
Generalized linear estimation problemswill be introduced and discussed inmore details
in section 2.2.
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A brief review of linear estimation problems

The problem of reconstructing sparse signals in the context of compressed sensing
is a particular instance of standard linear estimation problems. In this case, the linear
operator 𝐅 is called the measurement, sensing or data matrix. Compressed sensing (CS)
is a mathematical framework for the acquisition and the recovery of signals that admit
a sparse representation in some basis, meaning that a signal of length 𝑁 can be repre-
sented using 𝐾 ≪ 𝑁 coefficients [6]. Compressed sensing leverages sparsity in order
to retrieve the signal from a significantly smaller number of measurements compared
to conventional sampling. In fact, classical sampling is based on Nyquist-Shannon the-
orem [7], which states that any signal with finite bandwidth can be fully reconstructed
by collecting samples at a rate at least equal to twice the largest frequency appearing
in the signal considered (the so called Nyquist rate). However, depending on the spe-
cific task to be accomplished and on the physical limitations of the instrument used to
take the measurements, sampling at the required frequency or storing a large number
of measurements can often be difficult or costly. The practical advantage of CS is that
instead of sampling data at a large rate and then performing a compression, one can
directly acquire the signal in a compressed form by sampling it at a lower rate. One
important example is medical imaging, where a lower number of measurements with
a comparable reconstruction accuracy implies that the images can be acquired in less
time.

The compressed sensing problem can be phrased as:

min
𝒘

‖𝒘‖0, subject to 𝐅𝒘 = 𝒚, (2.2)

if the measurements are noiseless, and as:

min
𝒘

‖𝒘‖0, subject to ‖𝐅𝒘 − 𝒚‖2 ≤ 𝜖, (2.3)

if the measurements are noisy, where the notation ‖𝒘‖0 denotes the cardinality of the
support supp(𝒘) ≔ {𝑖|𝑤𝑖 ≠ 0} of the signal, which is commonly referred to as the 𝐿0
“norm”, where the quotation marks are a reminder that this is not a proper norm1.
However, finding the sparsest solution satisfying the linear constraints leads to a non-
convex problem and is NP-hard, as it requires an exhaustive search over all the possible
supports of the signal to be reconstructed and the number of these supports scales ex-
ponentially with the dimension (or length) 𝑁 of the signal of interest [4]. Therefore,
several approaches have been proposed where other 𝐿𝑝 norms are minimized, where,
for 1 ≤ 𝑝 ≤ ∞, one defines:

‖𝒘‖𝑝 ≔ {(∑
𝑁
𝑖=1|𝑤𝑖|𝑝)

1
𝑝 , 1 ≤ 𝑝 < ∞;

max
𝑖=1,…,𝑁

|𝑤𝑖|, 𝑝 = ∞.
(2.4)

1In the sequel, with some abuse of terminology, we will refer to the 𝐿0 “norm” without quotation
marks, as customary in the signal processing and information theory literature.
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2.1 – Standard linear estimation problems and compressed sensing

The latter definition (2.4) is often extended to 0 < 𝑝 < 1, in which case the resulting
“norms” are rather “quasinorms” [6], in that they fail to fulfill the triangle inequality.
For the special case 𝑝 = 0, which is not a quasinorm either, the notation is justified by
the fact that [6]:

‖𝒘‖0 = lim
𝑝→0

‖𝒘‖𝑝𝑝. (2.5)

A graphical representation of various 𝐿𝑝 norms for different values of 𝑝 is shown in
Fig. 2.1: as it can be seen from the isosurfaces plotted, 𝐿𝑝 norms with 𝑝 ≥ 1 are convex,
whereas 𝐿𝑝 norms with 𝑝 < 1 are concave. Furthermore, when attempting to find a
solution with minimal norm, 𝐿𝑝 norms with 𝑝 ≤ 1 enforce sparsity: intuitively, this can
be realized from Fig. 2.1, where minimizing 𝐿𝑝 norms with 𝑝 = 1

2 and 𝑝 = 1 leads to
solutions that are found on one of the axes, contrary to the case 𝑝 = 2 and 𝑝 = ∞, where
the solution is not sparse, although large values of the norm are indeed penalized.

Figure 2.1: Best approximation of a vector constrained to lie on a linear subspace em-
bedded in ℝ2 and with minimal 𝐿𝑝 norm, for 𝑝 ∈ {12 ,1,2,∞}.

Among the reconstruction methods proposed, one of the most successful ones is the
convex relaxation of the 𝐿0 minimization problem where the 𝐿0 norm is replaced with
the 𝐿1 norm, leading to the basis pursuit problem (BP) in the noiseless case [8]:

min
𝒘

‖𝒘‖1, subject to 𝐅𝒘 = 𝒚. (2.6)

and to the basis pursuit denoising problem (BPDN) if the measurements are affected by
noise [8]:

min
𝒘

‖𝒘‖1, subject to ‖𝐅𝒘 − 𝒚‖22 ≤ 𝜖. (2.7)

The analogous unconstrained problem, known as the Least Absolute Shrinkage and Se-
lection Operator (LASSO) problem [9], is often considered:

min
𝒘

(‖𝐅𝒘 − 𝒚‖22 + 𝜏‖𝒘‖1) (2.8)

where 𝜏 is a regularization parameter that penalizes large values of the 𝐿1 norm and
that is related to the parameter 𝜖 in Eq. (2.7). For suitable choices of the regularization
parameter, the LASSO and the BPDN solutions coincide.
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The results contained in a series of papers [10–14] show that, under certain con-
ditions2, the basis pursuit problem is equivalent to 𝐿0 minimization and can thus be
solved using convex programming reconstruction techniques [16, 17].

The sensing and reconstruction processes in the context of a typical compressed
sensing problem are summarized in Fig. 2.2.

M {

Compressed sensing

N

MeasurementsOriginal data

Reconstructed dataMeasurements CS reconstruction

L1 norm minimization

Figure 2.2: Example of a compressed sensing setup.

2.2 Generalized linear estimation problems
Generalized linear estimation problems [18] (GLM) are models where the observed out-
put vector 𝒚 ∈ ℝ𝑀 is related to a linear transformation of the input data 𝒘 ∈ ℝ𝑁 by
means of a nonlinear or stochastic function. Denoting by:

𝒛 = 𝐅𝒘 (2.9)

2These conditions include the incoherence of the linear projections and the approximate preservation
of distances between any pair of 𝐾-sparse signals when projecting by means of the linear transformation
F. The latter condition corresponds to the so called restricted isometry property (RIP) [15].
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2.2 – Generalized linear estimation problems

the hidden result of the linear transformation, where 𝐅 ∈ ℝ𝑀×𝑁 is assumed to be known,
the measurements are sampled from a so called “measurement channel” given by:

𝑝(𝒚|𝒘) = 𝑝𝒚|𝒛(𝒚|𝐅𝒘). (2.10)

If the channel is deterministic, then the observations are obtained from a nonlinear
output function 𝒈:

𝒚 = 𝒈(𝒛). (2.11)

Standard linear problems can then be viewed as a particular case of this formulation,
where the likelihood function is given by 𝑝𝒚|𝒛 = 𝛿(𝒚 −𝐅𝒛) or, equivalently, the function
𝒈 is simply the identity transformation.

While we refer to Sec. 2.5 for a more detailed description and for more examples,
we shall briefly mention here a few instances of generalized linear models commonly
arising in physics and engineering:

• Quantized compressed sensing [19] consists in considering a generalized linear
model of the kind:

𝑦𝑚 = 𝑄(𝑧𝑚 + 𝑛𝑚), 𝑚 = 1,… ,𝑀, (2.12)

where 𝑄 ∶ ℝ → {0,1}𝑟 is a component-wise quantizer that returns the binary
representation of each component of its argument using a predefined number 𝑟 of
bits and 𝑛𝑚 for 𝑚 = 1,… ,𝑀 is i.i.d. noise. This generalization of the compressed
sensing problem is motivated by the fact that measurements need to be quantized
to a finite number of bits before they can be stored and processed in hardware
implementations [4].

• Binary classification [20] consists in finding a rule to assign eachmember of a set
of objects to one of two classes by associating a binary label with it. This process
can be viewed as the extreme case 𝑄 ∶ ℝ → {0,1} of a quantized compressed
sensing procedure, where only one bit is retained as a result of the measurement
process. The corresponding GLM is given by:

𝑦𝑚 = sign(𝑧𝑚 + 𝑛𝑚), 𝑚 = 1,… ,𝑀, (2.13)

where sign denotes the sign function and 𝑛𝑚 for 𝑚 = 1,… ,𝑀 is i.i.d. statistical
noise. The resulting model is known as probit when the noise is Gaussian and as
logistic when the distribution of the noise is logistic. The problem of learning a
binary classification rule will be dealt with in Chapter 6.

• Phase retrieval is a classic problem in crystallography, optics and astronomy
(see, e.g., [21]). It arises when one needs to retrieve a signal from a set of measure-
ment magnitudes, which are typically obtained in some transform domain (e.g.,
the Fourier domain):

𝑦𝑚 = |𝑧𝑚 + 𝑛𝑚|, 𝑚 = 1,… ,𝑀, (2.14)

where 𝑧𝑚, 𝑛𝑚 ∈ ℂ.
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• The ReLU perceptron is a generalized linear model widely adopted in computer
vision and speech recognition applications involving multilayer artificial neural
networks. It is expressed as:

𝑦𝑚 = max(0, 𝑧𝑚), 𝑚 = 1,… ,𝑀, (2.15)

where the function appearing on the right hand side is called rectified linear unit
(ReLU) activation function.

• Poisson noise linear models [22] arise, for example, in the context of low-light
acquisition and are formulated in terms of measurements drawn from a Poisson
distribution:

𝑝 (𝒚 ∣ 𝝀) =
𝑁
∏
𝑗=1

𝜆
𝑦𝑗
𝑗

𝑦𝑗!
𝑒−𝜆𝑗, (2.16)

where 𝝀 is a vector of latent intensities with components given by the linear model
𝝀 = 𝐅𝒘, 𝒘 is the image of interest and 𝐅 is a linear distortion operator that models
image acquisition and is positive in order to impose non-negativity of the mean
photon count.

In this thesis, the generalized linear estimation problem of binary classification of
sparse input vectors will be studied using the expectation propagation algorithm in
section 6.

2.3 Essential concepts of probabilistic modeling

2.3.1 Bayesian inference
Quoting from Wasserman [23], “Statistical inference, or “learning” as it is called in com-
puter science, is the process of using data to infer the distribution that generated the data”
or some properties of this distribution. In general [24], we have a model:

𝒚 = 𝑓 (𝜔; noise), (2.17)

where 𝜔 is an unknown object that we would like to estimate, 𝒚 is a set of observations
and 𝑓 (⋅; noise) a statistical model or probability distribution to which the variability of
the generated observations is ascribed. Typically, in a parametric setting, the assump-
tions about the generative model that produced the data are encoded in the choice of a
family of probability distributions with some given functional form and a finite dimen-
sional set of parameters 𝜔 to be determined. In a non-parametric framework, instead,
𝜔 is a high dimensional or infinite-dimensional object (a function, for example) in or-
der to make as few assumptions as possible on the statistical model. The general goal
of inference is to estimate the unknown object 𝜔, where the accuracy of the estimator
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2.3 – Essential concepts of probabilistic modeling

used can be evaluated under some metric. We shall give some examples of estimators
in section 2.3.2.

There exist two different approaches to statistical inference. In the frequentist ap-
proach, 𝜔 is an unknown constant, whereas in the Bayesian approach, 𝜔 is considered
a latent (or hidden) random variable and its degree of uncertainty is captured by a prior
distribution encoding any a priori information or assumptions (‘beliefs’) about the typ-
ical realizations of 𝜔. In this thesis, we will mostly use a Bayesian framework for the
inference problems that will be addressed. By Bayes rule, we can write the posterior
distribution of the hidden variable as:

𝑝(𝜔|𝒚) =
𝑝(𝒚|𝜔)𝑝(𝜔)

𝑝(𝒚)
, (2.18)

where 𝑝(𝒚|𝜔) is called likelihood, 𝑝(𝜔) is the prior distribution over 𝜔 and the normal-
ization constant 𝑝(𝒚) in the right-hand side of Eq. (2.18) is known in statistics as the
model evidence and is used to perform model selection [25].

In the problems that will be addressed in this thesis, 𝜔 is typically an high dimen-
sional vector, which we shall denote by 𝒘, and the posterior distribution of interest is
given by 𝑝(𝒘|𝒚). We will be typically interested in the following inference tasks [26,
27]:

• obtaining the marginals (marginalization problem):

𝑝𝑖(𝑤𝑖|𝒚) ≔ ∫ d𝒘⧵𝑖𝑝(𝒘|𝒚), (2.19)

which is needed in order to compute the moments of the latent variables. Here
𝒘⧵𝑖 denotes the set of all components of 𝒘 except 𝑤𝑖;

• computing the model evidence (normalization problem):

𝑍 ≔ 𝑝(𝒚) = ∫ d𝒘𝑝(𝒘, 𝒚), (2.20)

which plays the role of a partition function in statistical physics;

• computing the mode of the posterior:

argmax
𝒘

𝑃(𝒘|𝒚), (2.21)

which gives the most probable value of 𝒘 given a specific observation 𝒚;

• computing the likelihood of the parameters of the model (those appearing in the
prior distribution if their values are not assumed to be known a priori, for instance)
given the set of observations. This will be developed in more detail in the context
of EP based approximate inference in section 4.10.

As will be made clear in Sec. 2.3.2, solving these inference problems allows one to
compute suitable estimators for the unknown variables 𝒘. Each of these estimators is
optimal with respect to a specific criterion that quantifies the accuracy of the associated
estimate.
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2.3.2 Estimators
Maximum a posteriori estimator (MAP). The maximum a posteriori estimator se-
lects the value of 𝒙 at which the maximum of the posterior distribution 𝑃(𝒙|𝒚) is at-
tained:

𝒙̂𝑀𝐴𝑃 = arg max
𝒙

𝑃(𝒙|𝒚). (2.22)

While this is a reasonable estimator in many cases, it can be a bad estimator in some
situations, for example when 𝑃(𝒙|𝒚) takes large values over extended regions but its
maximum coincides with a very narrow peak which is located elsewhere in the support.

Maximum likelihood estimator (MLE). The maximum likelihood estimator returns
the value of 𝒙 which maximizes the likelihood 𝐿(𝒙) = 𝑃(𝒚|𝒙) of the signal given the
measurements:

𝒙̂𝑀𝐿 = arg max
𝒙

𝑃(𝒚|𝒙). (2.23)

It coincides with the MAP estimate if all priors are uniform over the whole space where
the signal 𝒙 is defined.

Minimal mean squared error estimator (MMSE). The minimal mean squared er-
ror estimate is given by the conditional expectation of 𝒙 given 𝒚:

𝒙̂𝑀𝑀𝑆𝐸 = ∫𝒙𝑃(𝒙|𝒚)d𝒙, (2.24)

and corresponds to taking the component-wise mean of the marginal posterior dis-
tribution. The MMSE estimate has the property that the average mean squared error
between the actual signal 𝒔 and the predicted signal 𝒙:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝑠𝑖)2 (2.25)

is minimal, as can be easily checked by imposing stationary conditions for ⟨𝑀𝑆𝐸⟩𝑃(𝒙|𝒚)
with respect to the signal estimate 𝒙.

Minimummean absolute error estimator. The minimum mean absolute error esti-
mator minimizes the mean absolute error (MAE), which is defined as:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑
𝑖=1

|𝑥𝑖 − 𝑠𝑖| (2.26)

and is given by the component-wise median of the marginal posterior distribution.
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2.3.3 Factor graphs
Systems composed of many interdependent variables can often be described in terms
of ‘local’ constraints involving smaller subsets of variables. In a statistical physics per-
spective, this can be seen as a consequence of the fact that, in many relevant cases,
physical interactions have a limited range, resulting in local interactions. The con-
straints (or dependencies or interactions) to which a given subset of variables is subject
can be represented as a factor in the joint probability distribution of the configurations
of the system. The mutual dependencies among the variables composing the system
and their joint distribution can then be represented using factor graphs [28].

Given a probability distribution of 𝑁 variables 𝒙 written in the factorized form:

𝑃(𝒙) =
𝑀
∏
𝑎=1

𝜓𝑎(𝒙𝑎), (2.27)

where 𝒙𝑎 denotes the subset of variables that participates in the factor 𝜓𝑎, a factor graph
is an undirected bipartite graph 𝐺 = (𝑉, 𝐹, 𝐸), where 𝑉 is an index set for the variables,
𝐹 is an index set for the factors and 𝐸 is a set of edges that only connect a variable node
and a factor node. In particular, an edge (𝑖, 𝑎) ∈ 𝐸 if and only if 𝑖 ∈ 𝑉, 𝑎 ∈ 𝐹 and 𝑥𝑖 is one
of the arguments of the factor 𝜓𝑎. In a factor graph, variable nodes 𝑖 ∈ 𝑉 are represented
by circles and factor nodes 𝑎 ∈ 𝐹 are represented as squares. An example of factor graph
is shown in Fig. 2.3.

Figure 2.3: An example of factor graph.

2.3.4 Connections between statistical physics and statistical in-
ference

Statistical inference tasks can be turned into statistical physics problems by interpreting
the joint probability distribution 𝑝(𝒘|𝒚) as a Boltzmann distribution of a thermodynam-
ical system with 𝑁 degrees of freedom with a Hamiltonian that accounts for suitable
interactions among the variables 𝒘. Therefore, from a statistical physics standpoint,
statistical inference can be viewed as computing the free energy and the marginals of
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the following Boltzmann distribution:

𝑃(𝒘|𝒚) = 1
𝑍
e−𝛽𝐻(𝒘,𝒚), (2.28)

where 𝛽 = 1 and the Hamiltonian is expressed in terms of the prior and of the likelihood
as [29]:

𝐻(𝒘, 𝒚) = − ln(𝑃(𝒚|𝒘)) − ln(𝑃(𝒘)). (2.29)

If the prior is factorized over the variables:

𝑃(𝒘) =
𝑁
∏
𝑖=1

𝜓𝑖(𝑥𝑖), (2.30)

then the Hamiltonian reads:

𝐻(𝒘, 𝒚) = − ln(𝑃(𝒚|𝒘)) −
𝑁
∑
𝑖=1

ln(𝜓𝑖(𝑤𝑖)). (2.31)

The likelihood term in Eq. (2.31) accounts for the interactions among the variables,
whereas the terms associated with the factors play the role of local (magnetic) fields (or
biases) and drive each variable towards values that are compatible with the additional
constraints encoded in the prior distribution. From the statistical physics point of view
presented in this section, as observed in [29], theMAP estimate (2.22) can be interpreted
as the ground state of the Hamiltonian (2.31).

2.4 Modeling sparsity with regularizers and prior dis-
tributions

In the context of linear estimation and reconstruction problems, sparsity arises in many
different systems and needs to be taken into account when building physical models.
For example, natural images are often sparse in the frequency domain, in particular in
the wavelet basis [30]. Other examples include systems with sparse connectivity and/or
interactions, such as financial networks, gene regulatory networks in immunology and
neural networks in the brain.

Sparsity is often imposed using a regularization approach that consists in formulat-
ing a minimization problem of the kind given in Eq. (2.8), where the additional penalty
term appearing in the cost function favors sparse solutions. The additional regularizer
can be interpreted as a way to incorporate prior knowledge in a probability distribu-
tion, as minimizing the cost function, which we shall here denote as 𝐸(𝒘) for brevity, is
equivalent tomaximize an associated posterior distribution proportional to exp(−𝐸(𝒘)).
This is the same mapping as the one presented in the statistical physics interpretation
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of section 2.3.4. In this thesis, a Bayesian point of view will be preferred, but it should
be clear that the two approaches are related.

In a Bayesian setting, sparsity is enforced by means of sparsity encouraging prior
distributions. Examples of these priors include Laplace, Student’s 𝑡, spike-and-slab pri-
ors [31–33] as well as more complicated hierarchical priors, such as, for example, the
one used in reference [34].

In particular, 𝐿𝑝 norm minimization can be enforced using specific priors. For ex-
ample, 𝐿1 regularization [35] corresponds to introducing a Laplace prior, given by:

𝜓(𝑤; 𝜏 ) = 𝜏
2
exp (− 𝜏

2
|𝑤|) , (2.32)

whereas 𝐿2 regularization (or ridge regression):

min
𝒘

(‖𝐅𝒘 − 𝒚‖22 + 𝜏‖𝒘‖22) . (2.33)

is equivalent to assigning to each variable a Gaussian prior:

𝜓(𝑤; 𝜏 ) =
√

𝜏
2𝜋

exp (− 𝜏
2
𝑤2) . (2.34)

Among these two priors, we notice that only the Laplace prior leads to sparse solutions,
as only 𝐿𝑝 norms with 𝑝 ≤ 1 encourage sparseness of the solution sought.

The spike and slab (or Gauss-Bernoulli) prior [31, 32] corresponds to 𝐿0 regulariza-
tion and is defined as:

𝜓(𝑤; 𝜌, 𝜆) = (1 − 𝜌)𝛿(𝑤) + 𝜌
√

𝜆
2𝜋

e−
1
2𝜆𝑤

2
, (2.35)

where 𝜌 is a parameter between 0 and 1 often referred to as the density parameter, 𝛿(𝑤)
denotes the Dirac delta distribution (the “spike” part of the prior) and 𝜆 > 0 corresponds
to the inverse variance of the Gaussian part of the distribution. As the latter part be-
comes a uniform distribution in the limit 𝜆 → 0, it is referred to as the “slab” part of the
prior. Thus, the spike-and-slab prior is a convex3 combination of two contributions: the
first one enforces the target variable to be zero (with relative frequency 𝜌), whereas the
other one allows nonzero values (with relative frequency 1−𝜌) but penalizes very large
realizations of 𝑤 by assigning an exponentially small probability. The complementary
parameter 1 − 𝜌 which weights the “spike” part is the sparsity level. Intuitively, one
way to see the equivalence between the spike-and-slab prior in a probabilistic setting
and 𝐿0 regularization is the following: one can consider the product

𝑁
∏
𝑖=1

[(1 − 𝜌)𝛿(𝑤𝑖) + 𝜌𝜙(𝑤𝑖)] ,

3The combination is convex with respect to 𝜌.
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where 𝜙(𝑤) = √𝜆/2𝜋 exp(−𝜆𝑤2/2), and expand it in powers of 𝜌, resulting in a mix-
ture of measures weighted by factors of the form (1 − 𝜌)𝑘𝜌𝑁−𝑘, for 𝑘 = 1,… ,𝑁. If the
parameter 𝜌 is small (respectively, large), then the mixture weights will be larger the
larger the number of delta (respectively, 𝜙) factors appearing in the corresponding mix-
ture components, favoring sparse (respectively, dense) configurations of the entries of
the vector 𝒘 when intersecting with the space of solutions that are consistent with the
linear constraints 𝐅𝒘 = 𝒚. A rigourous proof of the equivalence between the use of the
spike-and-slab prior and 𝐿0 regularization can be found in reference [36].

In the following, we will focus on the spike-and-slab prior, which not only has good
shrinkage properties, but also allows analytical computations whenmultiplied by Gaus-
sian distributions and taking integrals. From this point of view, the advantage of using
spike-and-slab priors will be clear in chapters 5 and 6, where the problems of com-
pressed sensing and one-bit compressed sensing, respectively, will be studied using
Gaussian expectation propagation, a method for approximate inference that will be
presented in detail in chapter 4.

2.5 Examples of linear estimationproblems in physics
• Medical imaging.
Magnetic resonance imaging (MRI) is a noninvasive technique used to acquire med-
ical images of soft tissues and based “on the interaction4 of a strong magnetic field
with the hydrogen nuclei contained in the body’s water molecules” [4]. In MRI, a
main magnet generates a strong static magnetic field, which polarizes the object
by inducing an initial magnetization of the sample. As this magnetization vector is
perturbed around equilibrium, it undergoes precession around the direction of the
static magnetic field with a precession frequency known as Larmor frequency. Ra-
diofrequency (RF) pulses of a desired duration and at the precession frequency are
sent from the transmit part of a RF system to the target object in order to excite it.
The precessing excited magnetization, in turn, causes fast variations in the mag-
netic field, which are detected by the receiver part of the RF system. The locations
of the signal sources are encoded by changing the local magnetic field using spa-
tial magnetic encoding fields, one for each of the three directions in space, which
change the precession frequency at each location. Contrast is determined by the
relative concentration of excited water protons and by the relaxation times of the
tissues under examination. Each measurement taken by the RF detector is a time
varying Fourier transform of the magnitude of the magnetization of the body to
be imaged as computed along a known trajectory 𝒌(𝑡) in Fourier space related to
the applied spatial magnetic field gradient [38, 39]. By leveraging sparsity of the

4A detailed description of the physics of the nuclear magnetic resonance is beyond the scope of this
dissertation. See, e.g., [37] for further details.

30



2.5 – Examples of linear estimation problems in physics

image (either in the image domain or in the Fourier domain), compressed sens-
ing can be used in order to reconstruct the image from a relatively small number
of measurements, as first shown in [40]. This allows one to reduce the time of
MRI scans considerably as compared to what is possible using classical sampling,
which is beneficial as it results in lower costs and lower sensitivity to factors, such
as, for example, respiratory motion.

Computed X-ray tomography (CT) [41] is a diagnostic imaging technique which
consists in producing pictures of cross sections (“slices”) of a body by sending X-
rays through it and by measuring the intensity attenuation of the radiation as it
exits from the object. Let us assume that a monochromatic beam having intensity
𝐼0 is sent through an homogeneous object. As the beam travels through the bulk
of the object, its intensity is reduced, due to absorption, as:

𝐼 = 𝐼0 e−𝑤𝐹, (2.36)

where 𝑤 is the attenuation coefficient of the medium and 𝐹 denotes the distance
traveled by the radiation inside the object. If the object is inhomogeneous, then
one can discretize the cross section through which the radiation is transmitted,
resulting in a set of a given number𝑁 of pixels. Thus, as the radiation illuminating
the object leaves the body, the intensity collected by the detector is:

𝐼 = 𝐼0 e−𝑤1𝐹1 e−𝑤2𝐹2 … e−𝑤𝑁𝐹𝑁 . (2.37)

By taking 𝑀 measurements at different angles and considering logarithms, one
obtains the following linear estimation problem:

𝑦𝑚 =
𝑁
∑
𝑛=1

𝐹𝑚𝑛𝑤𝑛, (2.38)

where the measurements are given by

𝑦𝑚 ≔ ln(𝐼 /𝐼0) (2.39)

and the entry 𝐹𝑚𝑛 of the so-called tomographic matrix is the distance traveled by
the 𝑚th ray across the 𝑛th pixel.

• Photon limited imaging. In many imaging applications, it is necessary to ac-
curately extract information in conditions where it is only possible to detect an
extremely low number of photons [22]. Examples of these applications include
remote sensing [42], night vision, biological imaging [43, 44], fluorescence mi-
croscopy [45, 46], and so forth. The number of observed photons obeys the Poisson
statistics:

𝒚 ∼ Poisson(𝑇𝐅𝒘) (2.40)
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where 𝑦𝑖 denotes the number of photons detected at the 𝑖-th element of the de-
tector, 𝑇 is the time of acquisition, 𝐅 is a linear distortion operator (such as blur,
compressed sensing or tomographic projection matrix) and 𝒘 is the image of inter-
est. Photon-limited compressed sensing and image reconstruction pose additional
challenges and depend on different thresholds [22, 47] than standard compressed
sensing problems.

• Single pixel camera. Contrary to digital cameras, where each sensor measures a
different pixel of an image (e.g. 107 sensors for a 10 Megapixel resolution camera),
in single pixel cameras [48, 49] only one sensor, i.e. the single pixel, measures the
entire image. Digital micromirror device (DMD): an array of microscopic mirrors
individually tilted at a low angle, either at +𝜃 (corresponding to active mirrors) or
at −𝜃 (corresponding to inactive mirrors), with 𝜃 ∼ 15°. At any given time, for a
fixed DMD arrangement, only some of the pixel of the image to be measured are
focused to a light detector, whereas all other pixels are directed to a light absorber.
By considering a very large number of arrangements of the mirrors and taking
light measurements in series (one for each of such arrangements), it is possible
to construct a compressed sensing matrix, the row of which being the DMD ar-
rangements, and to retrieve the original image. As the measurements need to be
taken in series, rather than simultaneously, the single pixel camera is not suited
for video applications.

• Phase retrieval. One common problem in applications such as electronmicroscopy
[50], speckle imaging [21, 51] and X-ray crystallography [51] is the so-called phase
retrieval problem, which consists in retrieving a𝑁-dimensional signal given a sens-
ing matrix and 𝑀 observations obtained as:

𝑦𝜇 = |
𝑁
∑
𝑖=1

𝐹𝜇𝑖𝑤𝑖| . (2.41)

In applications, the measurements are typically given by the magnitude of the
Fourier transform of the signal of interest.

For instance, in X-ray crystallography [52, 53], the signal to be estimated is the
crystal electron density, which is sparse as it is nonzero only at the positions of
the atoms, the measurements are the Fourier amplitudes of the electron density
and the measurement matrix is given by a discrete Fourier transform (DFT) ma-
trix. Indeed, as the magnitude of the Fourier transform of the electron density
turns out to be non zero only very close to the points of the reciprocal lattice, it
is possible to express the electron density in terms of a Fourier series, where each
Fourier component is associated with a point in the reciprocal lattice. Experimen-
tally, one measures the intensities of the diffraction peaks, which are related to
the squared modulus of these Fourier components. Therefore, the phases are lost
in the measurement procedure and need to be retrieved as well if one wishes to
compute the structure of the crystal.
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Another example is astronomical imaging, where the phase of the radiation to be
detected is distorted by layers of air having different densities in the atmosphere,
resulting in a decreased resolution at the level of the acquired image. There, the
squared modulus of the Fourier tranform of the image of interest can be computed
using speckle interferometry [54] by averaging a large number of short-exposure
images, with exposure time smaller than the typical time of fluctuations of the
atmosphere5. However, once again, all phase information cannot be accessed ex-
perimentally.

One more example of a phase retrieval problem is coherent diffractive imaging
(CDI) [55], a lensless imaging technique that consists in sending a coherent wave
to a non-periodic object – such as an inorganic [56] or a biological [57] specimen
– in order to obtain a diffraction pattern, from which one wishes to characterize
the structure of the object itself with a high resolution (typically ranging from
nanometers to picometers). It can be realized using, e.g., X-rays, electrons, high
harmonic generation or optical lasers. The measured diffraction intensity is pro-
portional to the squared modulus of the Fourier transform of the wave taken at the
object plane, with suitable spatial scale factors to be taken into account [58]. As
in the previous examples, the phase problem arises from the fact that only the in-
tensity of the diffracted wave can be experimentally accessed, whereas the phase
information is lost. As a consequence, phase retrieval algorithms are needed to
recover the scattering function from the diffraction pattern when reconstructing
the image of the sample.

5In this way, the atmospheric refractive index is “frozen”, resulting in each image being perturbed by
a random speckle structure obeying the same statistic.
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Chapter 3

Advanced mean field methods

This chapter discusses themean fieldmethod and its improvements in statistical physics
and in probabilistic modeling. In particular, we will describe the theoretical ideas and
the approximations underlying the Thouless-Anderson-Palmer (TAP) approach, onwhich
expectation propagation, which will be extensively discussed in chapter 4, is based. We
first recall the variational free energy principle, which allows one to derive the mean
field methods discussed in this dissertation, including expectation propagation, as will
be clear in the next chapter. As this thesis addresses topics at the interface between
statistical physics and machine learning, care was taken to attempt to bridge the gap
between the formulation of the variational principle found in physics and the one of-
ten found in the variational inference literature. Subsequently, after introducing the
naive mean field approximation, several improvements are discussed, starting from be-
lief propagation and finishing with the adaptive TAP approach (adaTAP), approximate
message passing (AMP) and vector approximate message passing (VAMP). The rela-
tionship between these methods and expectation propagation will be further explored
in chapter 4.

3.1 Variational free energy principle
We recall the thermodynamical variational principle for the Helmholtz free energy.
Consider a physical system described by a vector of 𝑁 variables 𝒙 = (𝑥1,… , 𝑥𝑁), either
discrete or continuous. In the following, we will assume that variables are discrete, but
the case of continuous variables is completely analogous. If the system is in thermody-
namical equilibrium with a reservoir at temperature 𝑇, then the global minimum of the
variational Helmholtz free energy functional ℱ:

ℱ [𝑞] = 𝒰[𝑞] − 𝑇𝒮 [𝑞], (3.1)

is attained when 𝑞(𝒙) is equal to the Boltzmann distribution of the system, where the
minimum is taken over all (normalized) trial probability distributions 𝑞(𝒙). In Eq. (3.1),
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𝒰 is a variational internal energy:

𝒰[𝑞] = ∑
𝒙
𝑞(𝒙)𝐸(𝒙), (3.2)

and 𝑆 is the variational entropy1:

𝒮[𝑞] = −𝑘𝐵∑
𝒙
𝑞(𝒙) ln 𝑞(𝒙). (3.3)

The variational principle for the free energy can then be stated as:

𝐹(𝛽, 𝜽) = min
𝑞

ℱ [𝑞], 𝑝(𝒙) = 1
𝑍
e−𝛽𝐻(𝜽) = arg min

𝑞
ℱ [𝑞], (3.4)

where 𝛽 is the inverse temperature and 𝜽 is the vector of all parameters that character-
ize the system (e.g. the couplings and the external fields for a system of spins). The
variational free energy is also called functional free energy and, in reference to out-of-
equilibrium statistical mechanics, non-equilibrium free energy2.

It is interesting to recast the variational free energy in another form, as this clari-
fies the connection with the formulation commonly found in information theory and
variational inference [59]. Starting from Eq. (3.1), we have:

𝛽ℱ [𝑞] = ∑
𝒙
𝑞(𝒙) ln (

𝑞(𝒙)
e−𝛽𝐸(𝒙)

) = − ln𝑍 +∑
𝒙
𝑞(𝒙) ln (

𝑞(𝒙)
𝑝(𝒙)

) = 𝛽𝐹 + 𝐷𝐾𝐿 (𝑞(𝒙)‖𝑝(𝒙)) ,

(3.5)

from which one sees that the variational free energy is an upper bound to the equi-
librium Helmholtz free energy due to the non-negativity of the Kullback-Leibler (KL)
divergence, 𝐷𝐾𝐿, and that, since 𝛽𝐹 is a constant, minimizingℱ [𝑞]with respect to 𝑞(𝒙)
implies that 𝐷𝐾𝐿 is minimized as well, thus forcing 𝑞 to become as close as possible to
𝑝. In variational inference [20, 60], one is normally interested in computing a posterior
distribution given by:

𝑝(𝒙|𝒚) =
𝑝(𝒙, 𝒚)
𝑝(𝒚)

, (3.6)

which cannot be computed because the normalization 𝑝(𝒚) (the evidence) is intractable.
Therefore, the log evidence is decomposed as3:

ln 𝑝(𝒚) = ℒ[𝑞] + 𝐷𝐾𝐿(𝑞(𝒙)‖𝑝(𝒙|𝒚)), (3.7)

1We recall that the thermodynamical entropy corresponds to the statistical or information entropy in
the statistical physics interpretation.

2The variational free energy is often called “Gibbs free energy” as well. However, since this expression
also refers to the thermodynamic potential that is obtained by performing the Legendre transform of the
Helmholtz free energy, we will avoid it in this thesis.

3Notice that this derivation is the same of expectation maximization (EM), the only difference being
that in EM the evidence 𝑝(𝒚) is replaced by the likelihood of the parameters 𝑝(𝒚|𝜽) and one is interested
in estimating 𝜽 via maximum likelihood estimation.
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or lower bounded using Jensen’s inequality:

ln 𝑝(𝒚) ≥ ℒ[𝑞], (3.8)

where ℒ[𝑞] is called evidence lower bound (ELBO) and is given by:

ℒ[𝑞] = ∑
𝒙
𝑞(𝒙) ln

𝑝(𝒙, 𝒚)
𝑞(𝒙)

. (3.9)

Both Eq. (3.7) and Eq. (3.8) hold for any trial distribution 𝑞. Analogously to the case of
Eq. (3.5), maximizingℒ[𝑞]with respect to 𝑞(𝒙) automaticallyminimizes𝐷𝐾𝐿(𝑞(𝒙)‖𝑝(𝒙|𝒚))
and has the advantage of not requiring the computation of the posterior appearing in
the Kullback-Leibler divergence. Recalling the mapping described in section 2.3.4, in
which 𝐻(𝒙, 𝒚) = − ln 𝑝(𝒙, 𝒚) and 𝛽 = 1, one can readily identify:

𝒰[𝑞] = −∑
𝒙
𝑞(𝒙) ln 𝑝(𝒙, 𝒚), (3.10)

and relate the ELBO to the variational free energy:

ℒ[𝑞] = −ℱ [𝑞], (3.11)

which makes the equivalence between the formulation used in statistical physics and
the one encountered in variational inference explicit.

The variational principle can be used to approximately estimate the partition func-
tion or the free energy of a system, which is desirable because if these are known then
all thermodynamical properties can be easily accessed by computing their derivatives.
In order to do so, the true probability distribution of the system is replaced by a trial
distribution belonging to some tractable family 𝒬 and the minimization of the func-
tionalℱ is restricted over all the distributions 𝑞 in 𝒬. Again, “tractable” means that it is
possible to compute the marginals and the partition function exactly and in polynomial
time as a function of the size of the system. Usually, the family 𝒬 is specified by a given
functional form and parameterized by some set of parameters, so that the minimization
over 𝑞(𝒙; 𝜽) translates into a minimization over the values of the parameters 𝜽. Outside
statistical physics, the variational approximation method presented in this section is
also called variational Bayes (VB) or ensemble learning (see, e.g., Refs. [20, 61]).

3.2 Naive mean field approximation
Choosing a family of probability distributions that are fully factorized in terms of single
variable marginals:

𝑞(𝒙) =
𝑁
∏
𝑖=1

𝑞𝑖(𝑥𝑖) (3.12)
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results in the so called naive (or classical)mean field approximation. It is often referred
to simply asmean field approximation and sometimes as Bragg-Williams approximation
[62]. Minimizing ℱ [𝑞] with respect to the single variable marginals yields [63]:

𝑞∗𝑖 (𝑥𝑖) ∝ exp (⟨−𝛽𝐸(𝒙)⟩𝑞∗⧵𝑖) , (3.13)

when using the definition (3.2) for the energetic term or:

𝑞∗𝑖 (𝑥𝑖) ∝ exp (⟨log 𝑝(𝒙, 𝒚)⟩𝑞∗⧵𝑖) , (3.14)

when using the definition (3.10), where, in both cases, ⟨… ⟩𝑞∗⧵𝑖 denotes the expectation
value with respect to ∏𝑗≠𝑖 𝑞

∗
𝑗 (𝑥𝑗).

Historically, the mean field method was developed in order to explain the macro-
scopic properties of condensed matter systems in terms of the interactions of their
microscopic constituents, where each component of the system is thought as a non
interacting particle in an effective external field that summarizes all interactions from
the other components (hence the expression “mean field”). The naive mean field ap-
proximation is widely used in statistical physics and has been especially useful in order
to predict phase transitions, both in discrete and in continuous models. One of the best
known examples is the Curie-Weiss model of ferromagnetism, which is a mean field
theory for the Ising model: in this case,

⟨−𝛽𝐸(𝒙)⟩𝑞∗⧵𝑖 = 𝛽(𝐵𝑖 +∑
𝑗∈𝜕𝑖

𝐽𝑖𝑗⟨𝑥𝑗⟩) 𝑥𝑖, (3.15)

where 𝜕𝑖 denotes the set of the neighbors of the 𝑖th site, 𝐵𝑖 is the external magnetic field
acting on the 𝑖th site and 𝐽𝑖𝑗 is the interaction strength between sites 𝑖 and 𝑗. Inserting
Eq. (3.15) in Eq. (3.13) and using it to compute the magnetization yields the well known
self-consistency equation:

⟨𝑥𝑖⟩ = tanh [𝛽 (𝐵𝑖 +∑
𝑗∈𝜕𝑖

𝐽𝑖𝑗⟨𝑥𝑗⟩)] . (3.16)

However, since the approximating distribution that describes the system is expressed as
a product of single variable marginals, this approach assumes that the variables are sta-
tistically independent, thus failing to capture any correlations among them. Therefore,
despite its mathematical and computational convenience, a naive mean field treatment
is often not sufficiently accurate for large coupled systems and one needs to retain some
information about the most relevant dependencies among the components.
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3.3 – Belief propagation

3.3 Belief propagation

3.3.1 Belief propagation equations on a tree
Belief propagation (or sum-product) is a distributed “message-passing” algorithm used
to approximately compute the marginals and the free energy of the Boltzmann distribu-
tion. Its equations were independently derived many times in several fields. In physics,
the ideas underlying this method date back to an article by Bethe [64], where a simple
form of the belief propagation equations was applied to the ferromagnetic Ising model
on a lattice, and to a work by Guggenheim [65] about the theory of regular binary liq-
uid mixtures. In coding theory, belief propagation was first used by Gallager for error
correction in low density parity check codes [66] and then rediscovered in the 1990s.
As an algorithm for inference in tree-like Bayesian networks, it was developed by Pearl
[67].

In this section, the method will be briefly presented as applied to factor graphs using
a modern formalism similar to the one found in [68]. Wewish to compute the marginals
and the partition function (or, equivalently, the free energy) of a joint probability dis-
tribution expressed as:

𝑃(𝒙) = 1
𝑍

𝑀
∏
𝑎=1

𝜓𝑎(𝒙𝑎), (3.17)

where 𝒙𝑎 denotes the set of variables associated with the set 𝜕𝑎 of variables nodes that
are first neighbors of the factor node 𝑎 in the factor graph, i.e. 𝒙𝑎 = {𝑥𝑖|𝑖 ∈ 𝜕𝑎}. The
belief propagation equations are given by:

𝑚(𝑡+1)
𝑖→𝑎 (𝑥𝑖) =

1
𝑍𝑖→𝑎

∏
𝑏∈𝜕𝑖\𝑎

𝑚(𝑡)
𝑏→𝑖(𝑥𝑖), (3.18)

𝑚(𝑡+1)
𝑎→𝑖 (𝑥𝑖) =

1
𝑍𝑎→𝑖

∑
𝒙𝜕𝑎\𝑖

𝜓𝑎(𝒙𝑎) ∏
𝑗∈𝜕𝑎\𝑖

𝑚(𝑡)
𝑗→𝑎(𝑥𝑗). (3.19)

and are pictorially depicted in Fig. 3.1. The functions 𝑚𝑖→𝑎(𝑥𝑖) and 𝑚𝑎→𝑖(𝑥𝑖) are called
messages. Their fixed point values, which we denote as 𝑚∗

𝑖→𝑎(𝑥𝑖) and 𝑚∗
𝑎→𝑖(𝑥𝑖), corre-

spond to single variable marginals in a modified graphical model. In particular,𝑚∗
𝑖→𝑎(𝑥𝑖)

is the marginal distribution of the variable 𝑥𝑖 in a factor graph where the factor 𝑎 has
been erased and 𝑚∗

𝑎→𝑖(𝑥𝑖) is the marginal distribution of the same variable in a factor
graph where, among the factor nodes that are neighbors of 𝑖, only 𝑎 is kept and all other
factors are removed [68].

After a certain number of iterations, the single variable marginals of the distribution
(3.17) are estimated as the product of the messages from all neighboring factors:

𝑏𝑖(𝑥𝑖) =
1
𝑍𝑖

∏
𝑎∈𝜕𝑖

𝑚𝑎→𝑖(𝑥𝑖). (3.20)
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The messages also allow one to estimate the marginal distributions of subsets of vari-
ables as:

𝑏𝑎(𝒙𝑎) =
1
𝑍𝑎

𝜓𝑎 (𝒙𝑎)∏
𝑖∈𝜕𝑎

𝑚𝑖→𝑎 (𝑥𝑖) . (3.21)

We shall refer to the estimates 𝑏𝑖(𝑥𝑖) and 𝑏𝑎(𝒙𝑎) asmarginal beliefs (or simply as beliefs).

Figure 3.1: Graphical depiction of the belief propagation update rules.

If the factor graph is a tree, i.e. if it has no loops, then the belief propagation equa-
tions (3.18) and (3.19) are exact and the messages converge to fixed point values in a
finite number of iterations. More precisely, the number of updates needed for conver-
gence is given by the maximum distance between any two variable nodes in the tree,
as can be easily verified by induction (see [68] for a proof). In this case, the marginals
of the distribution (3.17) are exactly equal to the marginal beliefs (3.20) and (3.21).

For a tree, the junction tree theorem, which can also be easily proved by induction
[26], states that any joint distribution of the form (3.17) can be factorized in terms of its
marginals as:

𝑃(𝒙) = ∏
𝑎

𝑝(𝒙𝑎)∏
𝑖
𝑝(𝑥𝑖)1−|𝜕𝑖| = (3.22)

= ∏
𝑎

(
𝑝(𝒙𝑎)

∏𝑖∈𝜕𝑎 𝑝(𝑥𝑖)
)∏

𝑖
𝑝(𝑥𝑖). (3.23)

The free energy can be obtained directly from 𝐹 = − ln𝑍, where, comparing (3.17) and
(3.22), one obtains:

𝑍 =
∏𝑎 𝜓𝑎(𝒙𝑎)

∏𝑎 𝑝(𝒙𝑎)∏𝑖 𝑝(𝑥𝑖)1−|𝜕𝑖|
, (3.24)

which is valid for any 𝒙. By multiplying by 𝑃(𝒙) and summing over 𝒙, one has the
following expression for the free energy of a tree:

𝐹 = −∑
𝑎
∑
𝒙𝑎

𝑝𝑎(𝒙𝑎) ln (
𝜓𝑎(𝒙𝑎)
𝑝𝑎(𝒙𝑎)

) +∑
𝑗
(1 − |𝜕𝑗|)∑

𝑥𝑗
𝑝𝑗(𝑥𝑗) ln 𝑝𝑗(𝑥𝑗). (3.25)
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This result is exact and can also be obtained from the decomposition in terms of internal
energy and entropy, namely 𝐹 = 𝑈 − 𝑆, where it can be easily verified that the average
energy reads:

𝑈 = −∑
𝑎
∑
𝒙𝑎

𝑝𝑎(𝒙𝑎) ln 𝜓𝑎(𝒙𝑎), (3.26)

and that, using Eq. (3.22), the entropy is given by:

𝑆 = ∑
𝑎
∑
𝒙𝑎

𝑝𝑎(𝒙𝑎) ln 𝑝𝑎(𝒙𝑎) −∑
𝑗
(1 − |𝜕𝑗|)∑

𝑥𝑗
𝑝𝑗(𝑥𝑗) ln 𝑝𝑗(𝑥𝑗). (3.27)

Alternatively, the free energy can be expressed in terms of the normalizations of the
messages [69]. More precisely, inserting the expressions for the beliefs given by Eq.
(3.20) and by Eq. (3.21) in Eq. (3.24) yields the following expression for the partition
function:

𝑍 = ∏
𝑎

𝑍𝑎∏
(𝑎,𝑖)

𝑍𝑖→𝑎
𝑍𝑖

∏
𝑖
𝑍𝑖, (3.28)

where 𝑍𝑖, 𝑍𝑎 and 𝑍𝑖→𝑎 are the normalization constants appearing in Eq. (3.20), (3.21)
and (3.18), respectively. Defining:

𝑍𝑎𝑖 ≔ ∑
𝑥𝑖

𝑚𝑎→𝑖(𝑥𝑖)𝑚𝑖→𝑎(𝑥𝑖), (3.29)

and noticing that 𝑍𝑖/𝑍𝑖→𝑎 is equal to the right hand side of the last definition4, we finally
obtain:

𝑍 = ∏
𝑎

𝑍𝑎∏
(𝑎,𝑖)

𝑍−1
𝑎𝑖 ∏

𝑖
𝑍𝑖, (3.30)

Accordingly, the associated expression for the free energy reads:

𝐹 = ∑
𝑎
𝐹𝑎 − ∑

(𝑎,𝑖)
𝐹𝑎𝑖 +∑

𝑖
𝐹𝑖, (3.31)

4Indeed, one has:

𝑏𝑖(𝑥𝑖) =
1
𝑍𝑖
𝑚𝑎→𝑖(𝑥𝑖) ∏

𝑏∈𝜕𝑖⧵𝑎
𝑚𝑏→𝑖(𝑥𝑖) =

𝑍𝑖→𝑎

𝑍𝑖
𝑚𝑎→𝑖(𝑥𝑖)𝑚𝑖→𝑎(𝑥𝑖),

and the conclusion follows directly from the normalization condition on the marginal belief 𝑏𝑖(𝑥𝑖).
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where:

𝐹𝑎 = ln𝑍𝑎 = ln (∑
𝒙𝑎

𝜓𝑎 (𝒙𝑎)∏
𝑖∈𝜕𝑎

𝑚𝑖→𝑎 (𝑥𝑖)) , (3.32)

𝐹𝑎𝑖 = ln𝑍𝑎𝑖 = ln (∑
𝑥𝑖

𝑚𝑎→𝑖(𝑥𝑖)𝑚𝑖→𝑎(𝑥𝑖)) , (3.33)

𝐹𝑖 = ln𝑍𝑖 = ln (∑
𝑥𝑖

∏
𝑎∈𝜕𝑖

𝑚𝑎→𝑖(𝑥𝑖)) . (3.34)

On a tree, the expression provided by Eq. (3.31) is exact and coincides with Eq. (3.25)
when the messages appearing in Eq. (3.32), (3.33) and (3.34) are evaluated at their fixed
point.

3.3.2 Bethe approximation and loopy belief propagation
The function defined by the right hand side of Eq. (3.31) is called Bethe free energy.
Another way to write the same quantity consists in replacing the exact marginals with
the marginal beliefs in Eq. (3.25):

𝐹 = −∑
𝑎
∑
𝒙𝑎

𝑏𝑎(𝒙𝑎) ln (
𝜓𝑎(𝒙𝑎)
𝑏𝑎(𝒙𝑎)

) +∑
𝑗
(1 − |𝜕𝑗|)∑

𝑥𝑗
𝑏𝑗(𝑥𝑗) ln 𝑏𝑗(𝑥𝑗). (3.35)

As already mentioned, for an acyclic factor graph, the Bethe free energy is exact at
the belief propagation fixed point, because the beliefs are exactly equal to the true
marginals. Therefore, in this case, both Eq. (3.31) and Eq. (3.35) yield the exact free
energy of the system.

However, if the graph is not tree-like, one can still approximate the free energy of
the system by means of the Bethe free energy under the assumption that the graph
can be considered locally acyclic. This is called the Bethe approximation [26, 70]. More
precisely, given a set of marginals (beliefs) that satisfy the following conditions:

𝑏𝑖(𝑥𝑖) ≥ 0, 𝑏𝑎(𝒙𝑎) ≥ 0, (3.36)

∑
𝑥𝑖

𝑏𝑖(𝑥𝑖) = 1, (3.37)

∑
𝒙𝑎

𝑏𝑎(𝒙𝑎) = 1, (3.38)

∑
𝒙𝑎⧵𝑖

𝑏𝑎(𝒙𝑎) = 𝑏𝑖(𝑥𝑖), (3.39)

we associate a Bethe free energy (3.35) with it. The stationary points of the resulting
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variational problem:

ℒ(𝒃,𝝀) = 𝐹𝐵𝑒𝑡ℎ𝑒[𝒃] −∑
𝑎
𝜆𝑖 [∑

𝑥𝑖
𝑏𝑖(𝑥𝑖) − 1] − ∑

(𝑖,𝑎)
∑
𝑥𝑖

𝜆𝑎𝑖(𝑥𝑖) [∑
𝒙𝑎⧵𝑖

𝑏𝑎(𝒙𝑎) − 𝑏𝑖(𝑥𝑖)] ,

(3.40)

where 𝜆𝑖 (𝜆𝑎𝑖, respectively) are the Lagrange multipliers that impose the constraints
specified by Eq. (3.37) (Eq. (3.39), respectively), are in one-to-one correspondence with
the fixed points of the belief propagation algorithm. It can be proved that solving the
variational problem and defining the messages in terms of the Lagrange multipliers as:

𝑚𝑖→𝑎(𝑥𝑖) ∝ e−𝜆𝑎𝑖(𝑥𝑖), (3.41)

𝑚𝑎→𝑖(𝑥𝑖) ∝ ∑
𝒙𝑎⧵𝑖

𝜓𝑎(𝒙𝑎) ∏
𝑗∈𝜕𝑎⧵𝑖

e−𝜆𝑎𝑗(𝑥𝑗), (3.42)

leads to the belief propagation equations (3.18) and (3.19). When applied to graphical
models with cycles, the belief propagation recursion is referred to as loopy belief prop-
agation. While the Bethe free energy is convex and there exists a unique fixed point
on trees, in the general case of factor graphs with loops 𝐹𝐵𝑒𝑡ℎ𝑒 is, instead, non convex
and there may be multiple belief propagation fixed points. Therefore, in the loopy case,
convergence is not guaranteed, nor it is guaranteed that the iterative procedure will
converge to the global minimum of 𝐹𝐵𝑒𝑡ℎ𝑒.

3.4 The Thouless-Anderson-Palmer approach
The Thouless-Anderson-Palmer approach (TAP) [71–73] is an improvement of the naive
mean field approximation that consists in including linear response corrections at lead-
ing order in the mean field equations. These corrections give rise to an additional term,
called theOnsager reaction term, in the self-consistent equations of themodel of interest.

The TAP equations were originally introduced for the Sherrington-Kirkpatrick (SK)
model of a spin glass [71]:

⟨𝑥𝑗⟩ = tanh (𝐵𝑗 + ∑
𝑘∈𝜕𝑗

𝐽𝑗𝑘 ⟨𝑥𝑘⟩ − ⟨𝑥𝑗⟩∑
𝑘∈𝜕𝑗

𝐽 2𝑗𝑘 (1 − ⟨𝑥𝑘⟩
2)) , (3.43)

By comparing with Eq. (3.16), one sees that the two approximations differ as the On-
sager correction is taken into account in Eq. (3.43). The TAP equations for the SKmodel
can be derived from a Plefka expansion [74] by retaining all terms up to the second or-
der.

The TAP equations can also be obtained by means of the cavity method, as we shall
now outline, following [72, 75], for a general model with pairwise interactions between
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the variables:

𝑃(𝒙) = 1
𝑍(𝑩, 𝑱 )

exp [∑
𝑖<𝑗

𝑥𝑖𝐽𝑖𝑗𝑥𝑗 +∑
𝑖
𝑥𝑖𝐵𝑖] 𝑃0(𝒙), (3.44)

where 𝑃0(𝒙) plays the role of a prior and will be assumed to be factorized over the
variables 𝒙:

𝑃0(𝒙) = ∏
𝑖
𝜓𝑖(𝑥𝑖). (3.45)

Using the cavitymethod, wewill now showhow to compute the single variablemarginal
distribution:

𝑃𝑖 (𝑥𝑖) =
∫∏𝑗,𝑗≠𝑖 d𝑥𝑗𝜓𝑖 (𝑥𝑖) exp [𝑥𝑖 (∑𝑗∈𝜕𝑖 𝐽𝑖𝑗𝑥𝑗 + 𝐵𝑖)] 𝑃 (𝒙⧵𝑖)

∫∏𝑗 d𝑥𝑗𝜓𝑖 (𝑥𝑖) exp [𝑥𝑖 (∑𝑗∈𝜕𝑖 𝐽𝑖𝑗𝑥𝑗 + 𝐵𝑖)] 𝑃 (𝒙⧵𝑖)
, (3.46)

where we have separated the part of 𝑃(𝒙) that depends on 𝑥𝑖, whereas 𝑃(𝒙⧵𝑖) is the
distribution of a system where the 𝑖th variable has been removed. Notice that variable
𝑥𝑖 only interacts with all other variables by means of the effective field ℎ𝑖 = ∑𝑗∈𝜕𝑖 𝐽𝑖𝑗𝑥𝑗.
Therefore, we introduce the cavity distribution of the field ℎ𝑖 at the location of the empty
site 𝑥𝑖:

𝑃 (ℎ𝑖\𝑥𝑖) = ∫∏
𝑗≠𝑖

d𝑥𝑗𝛿 (ℎ𝑖 −∑
𝑗∈𝜕𝑖

𝐽𝑖𝑗𝑥𝑗) 𝑃 (𝒙⧵𝑖) . (3.47)

In the large connectivity limit, under the assumption that correlations are weak, one
can use the central limit theorem and approximate Eq. (3.47) by a Gaussian distribution:

𝑃 (ℎ𝑖 ⧵ 𝑥𝑖) ≈
1

√2𝜋𝑉𝑖
exp [−

(ℎ𝑖 − ⟨ℎ𝑖⟩⧵𝑖)
2

2𝑉𝑖
] , (3.48)

where 𝑉𝑖 = ⟨ℎ2𝑖 ⟩⧵𝑖 − ⟨ℎ𝑖⟩2⧵𝑖. This is equivalent to neglecting all cumulants of the cavity
distribution having order larger than 2.

By introducing the effective single variable Hamiltonian:

𝐻𝑖(𝑥) = − ln⟨e𝑥(ℎ𝑖+𝐵𝑖)⟩⧵𝑖, (3.49)

where the average ⟨… ⟩⧵𝑖 denotes the expectation value computed with respect to the
cavity field distribution (3.47), Eq. (3.46) can be rewritten as:

𝑃𝑖 (𝑥𝑖) =
𝜓𝑖 (𝑥𝑖)

𝑍 (𝑖)
0

e−𝐻𝑖(𝑥𝑖) ≈ 1

𝑍 (𝑖)
0

𝜓𝑖(𝑥𝑖) exp [𝑥𝑖 (⟨ℎ𝑖⟩\𝑖 + 𝐵𝑖) +
𝑉𝑖
2
𝑥𝑖2] , (3.50)
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where the partition function is given by:

𝑍 (𝑖)
0 = ∫ d𝑥𝜓𝑖(𝑥) e−𝐻𝑖(𝑥) ≈ ∫ d𝑥𝜓𝑖(𝑥) exp [𝑥 (⟨ℎ𝑖⟩\𝑖 + 𝐵𝑖) +

𝑉𝑖
2
𝑥2] , (3.51)

and we have used the Gaussian approximation of the cavity field distributions (3.48) in
the last step.

In order to self-consistently compute ⟨ℎ𝑖⟩⧵𝑖 for 𝑖 = 1,… ,𝑁, we start from the identity:

⟨ℎ𝑖⟩ =
1

𝑍 (𝑖)
0

∫ d𝑥𝜓𝑖(𝑥) ∫ dℎ𝑖ℎ𝑖𝑝(ℎ𝑖 ⧵ 𝑥) e𝑥(ℎ𝑖+𝐵𝑖) =
1

𝑍 (𝑖)
0

∫ d𝑥𝜓𝑖(𝑥)
𝜕
𝜕𝑥

e−𝐻𝑖(𝑥) . (3.52)

On the one hand, one obtains:

⟨ℎ𝑖⟩ = ∑
𝑗∈𝜕𝑖

𝐽𝑖𝑗⟨𝑥𝑗⟩, (3.53)

and, on the other hand, using again the Gaussian approximation (3.48) one has:

⟨ℎ𝑖⟩ ≈ ⟨ℎ𝑖⟩⧵𝑖 + 𝑉𝑖⟨𝑥𝑖⟩. (3.54)

Thus, the ⟨ℎ𝑖⟩⧵𝑖 can be determined by:

⟨ℎ𝑖⟩⧵𝑖 = ∑
𝑗∈𝜕𝑖

𝐽𝑖𝑗⟨𝑥𝑗⟩ − 𝑉𝑖⟨𝑥𝑖⟩, (3.55)

where the correction 𝑉𝑖⟨𝑥𝑖⟩ to the naive mean-field term ∑𝑗∈𝜕𝑖 𝐽𝑖𝑗⟨𝑥𝑗⟩ is the Onsager
reaction term. By definition, the 𝑉𝑖 are given by:

𝑉𝑖 = ⟨ℎ2𝑖 ⟩⧵𝑖 − ⟨ℎ2𝑖 ⟩⧵𝑖 = ∑
𝑗,𝑘

𝐽𝑖𝑗𝐽𝑖𝑘(⟨𝑥𝑗𝑥𝑘⟩⧵𝑖 − ⟨𝑥𝑗⟩⧵𝑖⟨𝑥𝑘⟩⧵𝑖). (3.56)

In the thermodynamic limit 𝑁 → ∞, for independent random couplings and assuming
⟨… ⟩⧵𝑖 ≈ ⟨… ⟩, the non-diagonal correlations appearing in 𝑉𝑖 can be neglected and one
has:

𝑉𝑖 = ∑
𝑗∈𝜕𝑖

𝐽 2𝑖𝑗 (1 − ⟨𝑥𝑗⟩2). (3.57)

From Eq. (3.50), the magnetizations for Ising binary variables 𝑥𝑖 ∈ {−1,+1} read:

⟨𝑥𝑖⟩ = tanh((𝐵𝑖 + ⟨ℎ𝑖⟩⧵𝑖)𝑥𝑖), (3.58)

so that, substituting Eq. (3.55) and Eq. (3.57), one finally recovers the TAP equations
for the Sherrington-Kirkpatrick model (3.43).
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3.5 The adaptiveThouless-Anderson-Palmer approach
The adaptive Thouless-Anderson-Palmer approach [75] introduced by Opper differs
from standard TAP in the way the variances 𝑉𝑖 are computed. In fact, noticing that:

⟨𝑥𝑖⟩ =
𝜕 ln𝑍 (𝑖)

0
𝜕𝐵𝑖

(3.59)

and using the linear response relation:

𝜒𝑖𝑗 ≡
𝜕⟨𝑥𝑖⟩
𝜕𝐵𝑗

= ⟨𝑥𝑖𝑥𝑗⟩ − ⟨𝑥𝑖⟩⟨𝑥𝑗⟩, (3.60)

where 𝜒𝑖𝑗 denotes the susceptibility, we obtain:

𝜒𝑖𝑗 = (𝛿𝑖𝑗 +
𝜕⟨ℎ𝑖⟩⧵𝑖
𝜕𝐵𝑗

)
𝜕⟨𝑥𝑖⟩
𝜕𝐵𝑖

. (3.61)

Moreover, inserting Eq. (3.55) and computing its derivative, the susceptibility finally
reads:

𝜒𝑖𝑗 =
𝜕⟨𝑥𝑖⟩
𝜕𝐵𝑖

[𝛿𝑖𝑗 +∑
𝑘
(𝐽𝑖𝑘 − 𝑉𝑘𝛿𝑖𝑘)𝜒𝑘𝑗] , (3.62)

or, in matrix form:

(𝜦 − 𝐉)𝝌 = 𝐈, (3.63)

where 𝜦 is defined as:

Λ = diag(Λ1,… ,Λ𝑁),Λ𝑖 ≡ 𝑉𝑖 +
1
𝜒𝑖𝑖

. (3.64)

Rewriting the last relation as:

𝝌 = (𝜦 − 𝐉)−1 (3.65)

and taking the diagonal elements of the susceptibility matrix, one finally obtains an
implicit equation for the variances 𝑉𝑖:

1
Λ𝑖 − 𝑉𝑖

= 𝜒𝑖𝑖 = [(𝜦 − 𝐉)−1]𝑖𝑖, (3.66)

which replaces Eq. (3.57) and that should be solved self-consistently. Once the updated
values ⟨ℎ𝑖⟩∗⧵𝑖 and 𝑉 ∗

𝑖 are available, the means and the variances are given by:

⟨𝑥𝑖⟩ =
𝜕
𝜕𝐵𝑖

ln𝑍 (𝑖)
0 (𝐵𝑖, ⟨ℎ𝑖⟩∗⧵𝑖, 𝑉 ∗

𝑖 ), (3.67)

and by:

⟨𝑥2𝑖 ⟩ − ⟨𝑥𝑖⟩2 =
𝜕2

𝜕𝐵2𝑖
ln𝑍 (𝑖)

0 (𝐵𝑖, ⟨ℎ𝑖⟩∗⧵𝑖, 𝑉 ∗
𝑖 ). (3.68)
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3.6 Approximate Message Passing (AMP)
Approximate message passing (AMP) is an efficient algorithm originally proposed by
Donoho, Maleki and Montanari [76] and inspired by belief propagation that is able to
perform compressed sensing reconstruction significantly faster than convex optimiza-
tion techniques. It has the remarkable property that the dynamics of the algorithm can
be rigorously tracked via a scalar state-evolution that holds in the case of large i.i.d.
sub-Gaussian measurement matrices. In the following, a derivation based on loopy be-
lief propagation is presented, as found e.g. in references [29] and [77]. With regard
to the scalar state-evolution property, as it will not be used in this thesis, we refer the
interested reader to references [78–80], where a proof is provided.

3.6.1 Loopy belief propagation for the GLM
Given a GLM and its related posterior distribution:

𝑃 (𝒘| 𝒚, 𝐅) = 1
𝑍

𝑀
∏
𝜇=1

𝑃𝜇 (𝑦𝜇| 𝑧𝜇)
𝑁
∏
𝑖=1

𝜓𝑖 (𝑤𝑖) , where 𝑧𝜇 =
𝑁
∑
𝑖=1

𝐹𝜇𝑖𝑤𝑖, (3.69)

we can associate a factor graph with it, where, as usual, factor nodes correspond to
interactions and variable nodes to the variables 𝑤𝑖.

For the factor graph in Fig. 3.2, it is straightforward to write the following set of
2𝑁𝑀 BP update equations, one for each variable-factor pair (𝑖, 𝜇):

𝑚𝑖→𝜇(𝑤𝑖) =
1

𝑍𝑖→𝜇
𝜓𝑖(𝑤𝑖)∏

𝛾≠𝜇
𝑚𝛾→𝑖(𝑤𝑖) (3.70)

and one for each interaction-variable pair (𝜇, 𝑖):

𝑚𝜇→𝑖(𝑤𝑖) =
1

𝑍𝜇→𝑖
∫∏

𝑗≠𝑖
d𝑤𝑗𝑃𝜇(𝑦𝜇|𝑭⊤𝜇 𝒘)∏

𝑗≠𝑖
𝑚𝑗→𝜇(𝑤𝑗) (3.71)

Unfortunately, without further approximations, this BP formulation is computation-
ally intractable, even assuming that a suitable discretization of the continuous variables
𝑤𝑖 induces a reliable approximation of the messages and of the resulting posterior dis-
tribution. The intractability arises from the fact that one needs to solve a set of coupled
integral equations where the integrals are taken over variables interacting through the
factors 𝑃𝜇(𝑦𝜇|𝑭⊤𝜇 𝒘).

3.6.2 Relaxed belief propagation
Under the assumption that the entries of the signal are independent (but not necessarily
identically distributed) and that the scaling of the entries of the matrix F is 1/√𝑁, the
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Figure 3.2: Factor graph associated with the posterior distribution of the GLM. Circles
correspond to the unknowns, whereas squares correspond to interactions.

relaxed belief propagation (rBP) scheme allows one to obtain a tractable recursion by
exploiting the central limit theorem and by projecting the messages to a pair of means
and variances which parameterize the marginals for every given factor-variable pair of
nodes of the factor graph.

In order to see this, we first note that Eq. (3.71) can be rewritten as:

𝑚𝜇→𝑖(𝑤𝑖) =
1

𝑍𝜇→𝑖
∫ d𝑠𝑃𝜇 (𝑦𝜇|𝑠 + 𝐹𝜇𝑖𝑤𝑖)∫∏

𝑗≠𝑖
d𝑤𝑗𝛿 (𝑠 −∑

𝑗≠𝑖
𝐹𝜇𝑗𝑤𝑗)∏

𝑗≠𝑖
𝑚𝑗→𝜇(𝑤𝑗), (3.72)

where the integral with respect to the signal entries expresses the probability that the
weighted sum ∑𝑗≠𝑖 𝐹𝜇𝑗𝑤𝑗 takes values 𝑠 when each variable 𝑤𝑗, with 𝑗 ≠ 𝑖, is indepen-
dently distributed according to its own associated message 𝑚𝑗→𝜇(𝑤𝑗). By the central
limit theorem, the sum 𝑠 is then Gaussian distributed, with mean 𝜔𝜇→𝑖 and variance
𝑉𝜇→𝑖 given by:

𝜔𝜇→𝑖 = ∑𝑗≠𝑖 𝐹𝜇𝑗𝑎𝑗→𝜇
𝑉𝜇→𝑖 = ∑𝑗≠𝑖 𝐹

2
𝜇𝑗𝑣𝑗→𝜇,

(3.73)

where 𝑎𝑗→𝜇 and 𝑣𝑗→𝜇 are the mean and the variance of the message 𝑚𝑗→𝜇, respectively:

𝑎𝑗→𝜇 = ∫ d𝑤𝑗𝑤𝑗𝑚𝑗→𝜇 (𝑤𝑗)
𝑣𝑗→𝜇 = ∫ d𝑤𝑗𝑤2

𝑗 𝑚𝑗→𝜇 (𝑤𝑗) − 𝑎2𝑗→𝜇
(3.74)

As a consequence, in terms of the intermediate reconstruction variable 𝑧𝜇 = 𝑠+𝐹𝜇𝑖𝑤𝑖,
one can approximate Eq. (3.71) as:

𝑚𝜇→𝑖(𝑤𝑖) =
1

𝑍𝜇→𝑖
∫ d𝑧𝜇𝑃𝜇(𝑦𝜇|𝑧𝜇) e

−
(𝑧𝜇−𝐹𝜇𝑖𝑤𝑖−𝜔𝜇→𝑖)2

2𝑉𝜇→𝑖 . (3.75)
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Using the fact that 𝐹𝜇𝑖 is𝒪 ( 1
√𝑁

), one can expand the exponential in Eq. (3.75) around
small values of 𝐹𝜇𝑖𝑤𝑖. Defining:

𝑍𝑜𝑢𝑡(𝑦,𝜔, 𝑉 ) = ∫ d𝑧𝑃(𝑦 |𝑧) e−
(𝑧−𝜔)2

2𝑉

𝑔𝑜𝑢𝑡(𝑦,𝜔, 𝑉 ) =
1

𝑍𝑜𝑢𝑡 ∫
d𝑧 (𝑧 − 𝜔

𝑉
) 𝑃(𝑦|𝑧) e−

(𝑧−𝜔)2

2𝑉

(3.76)

and noticing that:

𝜕𝜔𝑍𝑜𝑢𝑡(𝑦,𝜔, 𝑉 )
𝑍𝑜𝑢𝑡(𝑦,𝜔, 𝑉 )

= 𝑔𝑜𝑢𝑡(𝑦,𝜔, 𝑉 )

𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔, 𝑉 ) =
1

𝑍𝑜𝑢𝑡 ∫
d𝑧 (𝑧 − 𝜔

𝑉
)
2
𝑃(𝑦|𝑧) e−

(𝑧−𝜔)2

2𝑉 −1
𝑉
− 𝑔2𝑜𝑢𝑡(𝑦,𝜔, 𝑉 )

(3.77)

one can insert the definition (3.6.2), obtaining:

𝑚𝜇→𝑖(𝑤𝑖) ∝ 1 + 𝑔𝑜𝑢𝑡𝐹𝜇𝑖𝑤𝑖 +
1
2
(𝜕𝜔𝑔𝑜𝑢𝑡 + 𝑔2𝑜𝑢𝑡) 𝐹 2𝜇𝑖𝑤2

𝑖 + 𝒪(𝑁− 3
2) (3.78)

and re-exponentiate the terms that depend on 𝑤𝑖. Doing so leads to a Gaussian form of
the messages:

𝑚𝜇→𝑖(𝑤𝑖) ∝ e−
1
2𝐴𝜇→𝑖𝑤2

𝑖 +𝐵𝜇→𝑖𝑤𝑖, (3.79)

where:

𝐴𝜇→𝑖 = −𝜕𝜔𝑔𝑜𝑢𝑡(𝑦𝜇,𝜔𝜇→𝑖, 𝑉𝜇→𝑖)𝐹 2𝜇𝑖
𝐵𝜇→𝑖 = 𝑔𝑜𝑢𝑡(𝑦𝜇,𝜔𝜇→𝑖, 𝑉𝜇→𝑖)𝐹𝜇𝑖

(3.80)

The Gaussian form of the messages (3.79) implies that the product of messages ap-
pearing in Eq. (3.70) is also Gaussian, with mean:

𝑅𝑖→𝜇 =
∑𝛾≠𝜇 𝐵𝛾→𝑖

∑𝛾≠𝜇𝐴𝛾→𝑖
(3.81)

and variance:

Σ𝑖→𝜇 =
1

∑𝛾≠𝜇𝐴𝛾→𝑖
. (3.82)

Thus, the messages in Eq. (3.70) can be expressed as:

𝑚𝑖→𝜇(𝑤𝑖) =
1

𝑍𝑖→𝜇
𝜓𝑖(𝑤𝑖) e

−
(𝑤𝑖−𝑅𝑖→𝜇)2

2Σ𝑖→𝜇 (3.83)
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and the set of equations can be closed by inserting the latter expression in the means
and variances (3.74)

𝑎𝑖→𝜇 = 𝑓𝑎(𝑅𝑖→𝜇,Σ𝑖→𝜇)
𝑣𝑖→𝜇 = 𝑓𝑣(𝑅𝑖→𝜇,Σ𝑖→𝜇)

(3.84)

where the functions 𝑓𝑎 and 𝑓𝑣 are given by:

𝑓𝑎(𝑅,Σ) =
1
𝒵 ∫ d𝑤𝑤𝜓𝑖(𝑤) e

− (𝑤−𝑅)2

2Σ (3.85)

𝑓𝑣(𝑅,Σ) =
1
𝒵 ∫ d𝑤𝑤2𝜓𝑖(𝑤) e

− (𝑤−𝑅)2

2Σ −𝑓 2𝑎 (𝑅,Σ) (3.86)

𝒵 = ∫ d𝑤𝜓𝑖(𝑤) e
− (𝑤−𝑅)2

2Σ (3.87)

and are related by the identity:

𝜕𝑅𝑓𝑎(𝑅,Σ) =
1
Σ
𝑓𝑣(𝑅,Σ). (3.88)

In conclusion, the rBP equations can be cast to one set of self-consistent equations for
each variable-interaction pair, leading to 𝒪(𝑀𝑁) message updates per iteration. This
set of iterative equations is given by (3.73), (3.80), (3.81), (3.82) and (3.84) and involves
𝒪(𝑁𝑀2 + 𝑀𝑁 2) operations per iteration. The resulting algorithm gives as output the
means and variances of the estimated BP marginals:

𝑎𝑖 = 𝑓𝑎(𝑅𝑖,Σ𝑖), 𝑣𝑖 = 𝑓𝑣(𝑅𝑖,Σ𝑖) (3.89)

where:

𝑅𝑖 =
∑𝜇 𝐵𝜇→𝑖

∑𝜇𝐴𝜇→𝑖
, Σ𝑖 =

1
∑𝜇𝐴𝜇→𝑖

. (3.90)

3.6.3 Approximate message passing
The computational cost of solving the rBP equations presented in section 3.6.2 can be
further reduced by using the fact that the contribution of the target factor node in Eq.
(3.84) can be considered to some extent negligible in the large𝑁 limit. As a consequence,
the parameters 𝑎𝑖 and 𝑣𝑖 of the estimated marginals can be used directly in the iterative
procedure, allowing to reduce the computational cost of the whole recursive scheme.
The algorithm that results from Taylor expanding Eq. (3.84) and conserving the lead-
ing order contributions to the means and variances of the marginals corresponds to
the TAP form of the belief propagation equations and goes under the name of approxi-
mate message passing (AMP) [76] or generalized approximate message passing (GAMP)
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[81] in the compressed sensing literature. Following [29], we start by introducing the
quantities:

𝜔𝜇 = ∑
𝑖
𝐹𝜇𝑖𝑎𝑖→𝜇, 𝑉𝜇 = ∑

𝑖
𝐹 2𝜇𝑖𝑣𝑖→𝜇 (3.91)

and by recalling the definitions of 𝑅𝑖 and Σ𝑖 given in Eq. (3.90).
Before proceeding with the Taylor expansion of 𝑎𝑖→𝜇 and 𝑣𝑖→𝜇, we notice that

𝜔𝜇→𝑖 = 𝜔𝜇 − 𝐹𝜇𝑖𝑎𝑖→𝜇, 𝑉𝜇→𝑖 = 𝑉𝜇 − 𝐹 2𝜇𝑖𝑣𝑖→𝜇 (3.92)

and that the difference Σ𝑖→𝜇 − Σ𝑖 can be neglected as it is 𝒪(𝑁−2), whereas for the
difference 𝑅𝑖→𝜇 − 𝑅𝑖 we have:

𝑅𝑖→𝜇 − 𝑅𝑖 = −𝐵𝜇→𝑖Σ𝑖 + 𝒪(𝑁−1). (3.93)

For 𝑉𝜇, one simply has:

𝑉𝜇 = ∑
𝑖
𝐹 2𝜇𝑖𝑣𝑖→𝜇 ≈ ∑

𝑖
𝐹 2𝜇𝑖𝑣𝑖 (3.94)

Performing a Taylor expansion of 𝑔𝑜𝑢𝑡 around (𝑦,𝜔𝜇, 𝑉𝜇) yields:

𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇→𝑖, 𝑉𝜇→𝑖) = 𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇) − 𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖𝑎𝑖→𝜇 + 𝒪(𝑁−1)
= 𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇) − 𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖𝑎𝑖 + 𝒪(𝑁−1),

(3.95)

where the term that is linear in the matrix element 𝐹𝜇𝑖 plays the role of an Onsager
reaction term. We also expand Σ𝑖 and 𝑅𝑖 around the same point:

Σ𝑖 = (−𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇→𝑖, 𝑉𝜇→𝑖)𝐹 2𝜇𝑖)
−1

≈ (−𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹 2𝜇𝑖)
−1

𝑅𝑖 = (−∑
𝜇
𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇→𝑖, 𝑉𝜇→𝑖)𝐹 2𝜇𝑖)

−1

(∑
𝜇
𝑔𝑜𝑢𝑡(𝑦𝜇,𝜔𝜇→𝑖, 𝑉𝜇→𝑖)𝐹𝜇𝑖)

≈ (−∑
𝜇
𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹 2𝜇𝑖)

−1

(∑
𝜇
𝑔𝑜𝑢𝑡(𝑦𝜇,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖 −∑

𝜇
𝜕𝜔𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹 2𝜇𝑖𝑎𝑖)

= 𝑎𝑖 + Σ𝑖∑
𝜇
𝑔𝑜𝑢𝑡(𝑦𝜇,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖.

(3.96)

Finally, we Taylor expand 𝑎𝑖→𝜇 and keep the Onsager correction:

𝑎𝑖→𝜇 = 𝑓𝑎(𝑅𝑖→𝜇,Σ𝑖→𝜇) ≈ 𝑓𝑎(𝑅𝑖→𝜇,Σ𝑖) ≈ 𝑓𝑎(𝑅𝑖,Σ𝑖) − 𝜕𝑅𝑓𝑎(𝑅𝑖,Σ𝑖)𝐵𝜇→𝑖Σ𝑖
= 𝑓𝑎(𝑅𝑖,Σ𝑖) − 𝐵𝜇→𝑖𝑓𝑣(𝑅𝑖,Σ𝑖) = 𝑎𝑖 − 𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖𝑣𝑖,

(3.97)
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which, in turn, allows to rewrite 𝜔𝜇 as:

𝜔𝜇 ≈ ∑
𝑖
𝐹𝜇𝑖 (𝑎𝑖 − 𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇)𝐹𝜇𝑖𝑣𝑖) = ∑

𝑖
𝐹𝜇𝑖𝑎𝑖 − 𝑉𝜇𝑔𝑜𝑢𝑡(𝑦,𝜔𝜇, 𝑉𝜇). (3.98)

Overall, the TAP form of the belief propagation scheme consists in a closed set of
equations that are given by (3.94), (3.98) and, after having evaluated 𝑔𝑜𝑢𝑡 and the deriva-
tive 𝜕𝜔𝑔𝑜𝑢𝑡, by (3.96) and (3.89). The algorithm involves only 𝒪(𝑁 + 𝑀) message up-
dates per iteration, thus lowering the computational cost to 𝒪(𝑀𝑁). In order for this
recursion to converge properly, it is crucial that the Onsager correction in equation is
evaluated one time step back. This aspect is a peculiar feature of the TAP equations
that needs to be taken into account when constructing iterative TAP based iterative
schemes.

3.7 Vector approximate message passing
TheAMP algorithm for standard linear estimationmodels introduced above is extremely
efficient, yet it can diverge when the entries of the measurement matrix are not i.i.d.
[82, 83]. Vector approximate message passing algorithm (VAMP) [84] is an extension
of the AMP scheme that is able to deal with a larger class of measurement matrices. It
has a rigorous state-evolution that holds under large right-orthogonally invariant ran-
dom matrices, namely, matrices F that have a singular value decomposition (SVD) of
the form F = USV⊤, where U is a deterministic 𝑀 ×𝑀 orthogonal matrix, V is a 𝑁 × 𝑁
matrix uniformly distributed over the set of orthogonal matrices (a Haar distributed
matrix), S = Diag(s) is a 𝑀 × 𝑁 diagonal matrix and s is the vector of singular values.

VAMP can be derived in terms of an approximation based on belief propagation,
where messages are passed on the factor graph associated with a joint distribution
𝑝(𝒚, 𝒙) and where the vector variable 𝒙 is “duplicated” as 𝒙1 = 𝒙2. As a consequence,
the joint distribution 𝑝(𝒚, 𝒙) is rewritten as:

𝑝(𝒚, 𝒙1, 𝒙2) = 𝑝(𝒙1)𝛿(𝒙 − 𝒙2)𝒩 (𝒚; 𝐅𝒙, 𝛾−1𝑤 𝐈). (3.99)

The factor graph related to (3.99) is shown in Fig. 3.3, where we assume that the
prior 𝑝(𝒙) is i.i.d.:

𝑝(𝒙) =
𝑁
∏
𝑙=1

𝜓𝑙(𝑥𝑙), (3.100)

and messages are computed according to the following variation of the belief propaga-
tion scheme:

Beliefs. At variable node 𝑖, the variable marginal belief 𝑏𝐵𝑃(𝒙𝑖) ∝ ∏𝑎∈𝜕𝑖 𝑚𝑎→𝑖(𝒙𝑖) is
projected onto a Gaussian distribution with mean vector 𝒙̂ = ∫ 𝒙𝑏𝐵𝑃(𝒙)d𝒙 and
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covariance matrix proportional to the identity matrix with common variance 𝜂−1

given by the average variance of 𝑏𝐵𝑃(𝒙𝑖), namely 𝜂−1 = 1
𝑁 ∑𝑁

𝑙=1 Var𝑏𝐵𝑃(𝑥𝑖,𝑙). Thus,
the approximated belief is: 𝑏𝑎𝑝𝑝(𝒙) = 𝒩 (𝒙; 𝒙̂, 𝜂−1𝐈).

Variable-to-factor. In belief propagation, themessage from a variable node to a neigh-
boring factor node would be given by Eq. (3.18): 𝑚𝑖→𝑎(𝒙𝑖) = 𝑏𝐵𝑃(𝒙𝑖)/𝑚𝑎→𝑖(𝒙𝑖). In
VAMP, it is computed from the approximate belief as: 𝑚𝑖→𝑎(𝒙𝑖) ∝ 𝑏𝑎𝑝𝑝(𝒙𝑖)/𝑚𝑎→𝑖(𝒙𝑖).

Factor-to-variable. The message from a factor node to an adjacent variable node is
computed using𝑚𝑎→𝒙𝑖(𝒙𝑖) = ∫∏𝑗∈𝜕𝑎⧵𝑖 d𝒙𝑗𝑓𝑎(𝒙𝑎)∏𝑗∈𝜕𝑎⧵𝑖 𝑚𝑎→𝒙𝑗(𝒙𝑗) as in belief prop-
agation (cfr. Eq. (3.19)).

Figure 3.3: Representation of the VAMP factor graph with vector valued nodes (left)
and with scalar nodes (right).

Passing the messages along the factor graph in Fig. 3.3 gives rise to the linear min-
imum mean squared error (LMMSE) formulation of the VAMP algorithm. In order to
see this, we shall here highlight the correspondence between the steps of the algorithm
and the messages passed along the factor graph, as detailed in Appendix A of reference
[84], to which we refer for further details:

• Initialization. At iteration 0, the message from the delta factor to variable 𝒙1 is
initialized as:

𝑚𝛿→𝒙1(𝒙1) = 𝒩 (𝒙1; 𝒓10, 𝛾−110 𝐈); (3.101)

• (→) Message from variable 𝒙1 to factor 𝛿.
Given the BP belief 𝑏𝐵𝑃(𝒙1) ∝ 𝑝(𝒙1)𝒩 (𝒙1𝑘; 𝒓1𝑘, 𝛾−11𝑘 𝐈), let its mean be denoted by
𝒙̂1𝑘 and its average variance by 𝜂1𝑘. Then, we have for the associated approximate
belief:

𝑏𝑎𝑝𝑝(𝒙1) = 𝒩 (𝒙1; 𝒙̂1𝑘, 𝜂−11𝑘 𝐈) (3.102)
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and the message from 𝒙1 to 𝛿 reads:

𝑚𝒙1→𝛿(𝒙1) ∝
𝑏𝑎𝑝𝑝(𝒙1)
𝑚𝛿→𝒙1(𝒙1)

∝ 𝒩 (𝒙1; 𝒓2𝑘, 𝛾−12𝑘 𝐈), (3.103)

where:

𝒓2𝑘 =
𝒙̂1𝑘𝜂1𝑘 − 𝒓1𝑘𝛾1𝑘

𝜂1𝑘 − 𝛾1𝑘
; (3.104)

𝛾2𝑘 = 𝜂1𝑘 − 𝛾1𝑘. (3.105)

• (→) Message from factor 𝛿 to variable 𝒙2. Due to the Dirac delta distribution,
computing the message 𝑚𝛿→𝒙2 results in a “copy” of message 𝑚𝒙1→𝛿, namely:

𝑚𝛿→𝒙2(𝒙2) ∝ 𝒩 (𝒙2; 𝒓2𝑘, 𝛾−12𝑘 𝐈), (3.106)

with 𝒓2𝑘 and 𝛾2𝑘 given by Eq. (3.104) and Eq. (3.105), respectively.

• (→) Message from variable 𝒙2 to factor 𝒩 (𝒚; 𝐅𝒙, 𝛾−1𝑤 𝐈). Here the BP belief is
𝑏𝐵𝑃(𝒙2) ∝ 𝒩 (𝒙2; 𝒓2𝑘, 𝛾−12𝑘 𝐈)𝒩 (𝒚; 𝐅𝒙2𝑘, 𝛾−1𝑤 𝐈), namely a Gaussian with mean:

𝒙̂2𝑘 = (𝛾𝑤𝐅⊤𝐅 + 𝛾2𝑘𝐈)
−1 (𝛾𝑤𝐅⊤𝒚 + 𝛾2𝑘𝒓2𝑘) , (3.107)

and covariance matrix:

𝜮𝑉𝐴𝑀𝑃 = (𝛾𝑤𝐅⊤𝐅 + 𝛾2𝑘𝐈)
−1 . (3.108)

The approximate belief is then obtained by projecting the BP belief onto an isotropic
Gaussian with mean 𝒙̂2𝑘 and shared precision parameter 𝜂2𝑘 computed as the in-
verse of the average of the variances in (3.108):

𝑏𝑎𝑝𝑝(𝒙2) = 𝒩 (𝒙2; 𝒙̂2𝑘, 𝜂−12𝑘 𝐈). (3.109)

• (←) Message from variable 𝒙2 to factor 𝛿:

𝑚𝒙2→𝛿(𝒙2) ∝
𝒩 (𝒙2; 𝒙̂2𝑘, 𝜂−12𝑘 𝐈)

𝒩 (𝒙2; 𝒓2𝑘, 𝛾−12𝑘 𝐈)
∝ 𝒩 (𝒙2; 𝒓1,𝑘+1, 𝛾−11,𝑘+1𝐈), (3.110)

where, by the quotient rule, the means and precision are expressed as:

𝒓1,𝑘+1 =
𝒙̂2𝑘𝜂2𝑘 − 𝒓2𝑘𝛾2𝑘

𝜂2𝑘 − 𝛾2𝑘
, (3.111)

𝛾1,𝑘+1 = 𝜂2𝑘 − 𝛾2𝑘. (3.112)
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• (←) Message from factor 𝛿 to variable 𝒙1. As before, the message “flowing”
through the delta factor is left unchanged on the other side. Therefore, one has:

𝑚𝛿→𝒙1(𝒙1) = 𝒩 (𝒙1; 𝒓1,𝑘+1, 𝛾−11,𝑘+1𝐈). (3.113)

In VAMP, two functions 𝒈1(𝒓1𝑘, 𝛾1𝑘) and 𝒈2(𝒓2𝑘, 𝛾2𝑘) are defined. The function 𝒈1(𝒓1𝑘, 𝛾1𝑘)
plays the role of a denoising function and is assumed to be separable, meaning that
(𝒈1(𝒓1𝑘, 𝛾1𝑘))𝑙 = 𝑔1(𝑟1𝑘,𝑙, 𝛾1𝑘) for all 𝑙 = 1,… ,𝑁. It was denoted as 𝑔𝑜𝑢𝑡 in the presenta-
tion of the AMP algorithm in Section 3.6.2. For the MMSE problem, the 𝑙-th component
of 𝒈1(𝒓1𝑘, 𝛾1𝑘) returns the expectation value:

𝑔1(𝑟1𝑘,𝑙, 𝛾1𝑘) ≔
∫ 𝑥𝑙𝜓(𝑥𝑙)𝒩 (𝑥𝑙; 𝑟1𝑘,𝑙, 𝛾−11𝑘 )d𝑥𝑙
∫ 𝜓(𝑥𝑙)𝒩 (𝑥𝑙; 𝑟1𝑘,𝑙, 𝛾−11𝑘 )d𝑥𝑙

, (3.114)

which is used to compute the mean 𝒙̂1𝑘 of the approximate belief (3.102). The function
𝒈2(𝒓2𝑘, 𝛾2𝑘) can be recognized as a MMSE estimate of 𝒙2 under the Gaussian likelihood
𝐿(𝒙2) = 𝒩 (𝒚; 𝐅𝒙2, 𝛾−1𝑤 𝐈) and under the Gaussian prior 𝑝(𝒙2) = 𝒩 (𝒙2; 𝒓2𝑘, 𝛾−12𝑘 𝐈). It is
referred to as the linear MMSE (LMMSE) estimator [84], because the related estimate is
linear in 𝒓2𝑘:

𝒈2(𝑟2𝑘, 𝛾2𝑘) ≔ (𝛾𝑤𝐅⊤𝐅 + 𝛾2𝑘𝐈)
−1 (𝛾𝑤𝐅⊤𝒚 + 𝛾2𝑘𝒓2𝑘) (3.115)

The divergence of 𝒈(𝒓, 𝛾 ), where 𝒈 ∈ {𝒈1, 𝒈2}, is the diagonal of the Jacobian matrix
𝐉𝒈(𝒓) ≔ ∇𝒓𝒈(𝒓, 𝛾 ):

𝒈′(𝒓, 𝛾 ) ≔ diag[𝐉𝒈(𝒓)]. (3.116)

For the MMSE problem, the componentwise derivatives 𝑔′1((𝑟1𝑘)𝑙, 𝛾1𝑘) are related to the
variances var(𝑥𝑙|(𝑟1𝑘)𝑙, 𝛾1𝑘) by means of the identity:

𝑔′1((𝑟1𝑘)𝑙, 𝛾1𝑘) = 𝛾1𝑘var(𝑥𝑙|(𝑟1𝑘)𝑙, 𝛾1𝑘). (3.117)

The precision parameter 𝜂1𝑘 of the tilted distribution is extracted from Eq. (3.117) by
taking the empirical average on both sides. On the other hand, one immediately realizes
that the divergence of 𝒈2(𝒓2𝑘, 𝛾2𝑘) is proportional to the diagonal of 𝜮𝑉𝐴𝑀𝑃 (3.108). As
a consequence, the empirical average of 𝒈′2(𝒓2𝑘, 𝛾2𝑘), which is proportional to the trace
of 𝜮𝑉𝐴𝑀𝑃:

1
𝑁

𝑁
∑
𝑛=1

[𝑔′2(𝒓2𝑘, 𝛾2𝑘)]𝑛 =
𝛾2𝑘
𝑁

tr𝜮𝑉𝐴𝑀𝑃, (3.118)

is used to compute the precision parameter 𝜂2𝑘 in lines 11-12 of Algorithm 1. More
details on the interpretation of the VAMP quantities will be given in Section 4.8, where
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Algorithm 1 VAMP (LMMSE formulation).

1: procedure VAMP(𝑎, 𝑏)
2: for 𝑘 = 1,… ,maxiter do
3: # Denoising
4: 𝒙̂1𝑘 = 𝒈1(𝒓1𝑘, 𝛾1𝑘) ▷ Denoising on 𝒓1
5: 𝛼1𝑘 = mean(𝒈′1(𝒓1𝑘, 𝛾1𝑘)) ▷ Divergence step
6: 𝜂1𝑘 = 𝛾1𝑘/𝛼1𝑘
7: 𝛾2𝑘 = 𝜂1𝑘 − 𝛾1𝑘
8: 𝒓2𝑘 = (𝒙̂1𝑘𝜂1𝑘 − 𝒓1𝑘𝛾1𝑘)/𝛾2𝑘 ▷ Onsager correction step
9: # LMMSE estimation

10: 𝒙̂2𝑘 = 𝒈2(𝒓2𝑘, 𝛾2𝑘) ▷ MMSE estimation of 𝒙2
11: 𝛼2𝑘 = mean(𝒈′2(𝒓2𝑘, 𝛾2𝑘)) ▷ Divergence step
12: 𝜂2𝑘 = 𝛾2𝑘/𝛼2𝑘
13: 𝛾1,𝑘+1 = 𝜂2𝑘 − 𝛾2𝑘
14: 𝒓1,𝑘+1 = (𝒙̂2𝑘𝜂2𝑘 − 𝒓2𝑘𝛾2𝑘)/𝛾1,𝑘+1 ▷ Onsager correction step

15: return 𝒙̂1,maxiter.

56



3.7 – Vector approximate message passing

VAMP will be shown to be a particular instance of the expectation propagation algo-
rithm.

The computational complexity of VAMP is 𝑂(𝑁 3), as it involves the inversion of the
𝑁 × 𝑁 matrix 𝜮𝑉𝐴𝑀𝑃 at each iteration. However, we notice that if a one-time singular
value decomposition (SVD) of the matrix 𝐅 is precomputed at the beginning, then the
rest of the algorithm is dominated by matrix-vector multiplications and thus shares the
same cost as AMP. Indeed, by taking advantage of the standard SVD 𝐅 = 𝐔𝐒𝐕⊤, where
𝐔 is a 𝑀 ×𝑀 orthogonal matrix, 𝐒 is a rectangular diagonal matrix of size 𝑀 × 𝑁 and 𝐕
is a 𝑁 × 𝑁 orthogonal matrix, starting from Eq. (3.115) and performing some algebraic
manipulations leads to the expression:

𝒙2𝑘 = 𝐕𝐃−1 (𝛾𝑤𝐒⊤𝐔⊤𝒚 + 𝛾2𝑘𝑽⊤𝒓2𝑘) , (3.119)

which only involves inverting the 𝑁 × 𝑁 diagonal matrix:

𝐃 = 𝛾𝑤𝐒⊤𝐒 + 𝛾2𝑘𝐈. (3.120)

Another option is to use the compact (or “economy”) SVD, leading to the SVD formu-
lation of VAMP presented in Reference [84]. Either way, although the initial SVD still
requires 𝑂(𝑁 3) elementary operations, it only needs to be computed once, while the
cost of the remaining part of the VAMP scheme is 𝑂(𝑁 2).

3.7.1 Generalized vector approximate message passing
While the formulation of VAMP presented in the previous Section applies to the stan-
dard linear model, the algorithm can be extended to generalized linear estimation mod-
els as well. The approach pursued in Ref. [85] consists in alternating two inference
steps, which are implemented as two nested loops, until convergence is achieved: the
outer loop corresponds toMMSE estimation of the intermediate reconstruction variable
𝒛 = 𝐅𝒙 under a Gaussian prior and likelihood 𝑝(𝒚|𝒛), whereas the inner loop implements
a standard linear model (SLM) inference step, in which VAMP is run for a predefined
number of iterations given the current estimate of 𝒛. The two modules and the associ-
ated factor graph are shown in Fig. 3.4.

More explicitly, MMSE module takes as input the mean 𝑧𝑒𝑥𝑡𝑎,𝐴 and the variance 𝑣 𝑒𝑥𝑡𝑎,𝐴 of
the auxiliary variable 𝒛 as estimated by the VAMP module. Given the Gaussian prior:

𝑃0(𝒛) =
𝑀
∏
𝑎=1

𝒩 (𝑧𝑎; 𝑧𝑒𝑥𝑡𝑎,𝐴, 𝑣
𝑒𝑥𝑡
𝑎,𝐴),

and a likelihood with componentwise factorization:

𝑝(𝒚|𝒛) =
𝑀
∏
𝑎=1

𝑝(𝑦𝑎|𝑧𝑎),
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Figure 3.4: Representation of the grVAMP factor graph with scalar nodes.

the posterior of 𝒛 reads:

𝑞(𝑧𝑎) ∝ 𝑝(𝑦𝑎|𝑧𝑎)𝒩 (𝑧𝑎; 𝑧𝑒𝑥𝑡𝑎,𝐴, 𝑣
𝑒𝑥𝑡
𝑎,𝐴),

and we denote its mean and variances with 𝑧𝑝𝑜𝑠𝑡𝑎,𝐴 and 𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 , respectively. Then, at iter-
ation 𝑡, the output of the MMSE estimation module is given by the so-called extrinsic
mean and variance of 𝒛, denoted as ̃𝑦𝑎(𝑡) and 𝜎̃2𝑎 (𝑡) respectively, which are obtained by
excluding the contribution of input messages 𝑧𝑒𝑥𝑡𝑎,𝐴(𝑡 − 1) and 𝑣 𝑒𝑥𝑡𝑎,𝐴(𝑡 − 1) from 𝑧𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡)
and from 𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡), as prescribed by the turbo principle [86]. Therefore, we have that the
extrinsic variance of 𝑧𝑎 is obtained as:

1
𝜎̃2𝑎 (𝑡)

= 1
𝑣𝑝𝑜𝑠𝑡𝑎,𝐵 (𝑡)

− 1
𝑣 𝑒𝑥𝑡𝑎,𝐴(𝑡 − 1)

,

and its extrinsic mean reads:

̃𝑦𝑎(𝑡) = 𝜎̃2𝑎 (𝑡) (
𝑧𝑝𝑜𝑠𝑡𝑎,𝐵 (𝑡)

𝑣𝑝𝑜𝑠𝑡𝑎,𝐵 (𝑡)
−
𝑧𝑒𝑥𝑡𝑎,𝐴(𝑡 − 1)

𝑣 𝑒𝑥𝑡𝑎,𝐴(𝑡 − 1)
) .

The extrinsicmeans and variances are then sent as input to the VAMPmodule, where
̃𝑦𝑎(𝑡) is interpreted as a pseudo-observation of 𝑧𝑎 corrupted by Gaussian noise with

variance 𝜎̃2𝑎 (𝑡). Here, the SLM inference step in consists in solving the standard linear
estimation problem for 𝒙:

̃𝒚 = 𝐅𝒙 + 𝒘̃(𝑡), 𝒘̃(𝑡) ∼ 𝒩 (𝒘̃(𝑡); 0, diag(𝝈̃2(𝑡)), (3.121)
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resulting in the VAMP estimate of the posterior mean and of the variance of 𝒙. Once
these are determined, the posterior mean 𝑧𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡) and the posterior variance 𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡) for
𝒛 = 𝐅𝒙 are computed and, by applying again the turbo principle, the extrinsic mean and
variance of 𝒛 are extracted from 𝑧𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡) and from 𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡) by excluding the contribution
of the input messages 𝜎̃2𝑎 (𝑡) and ̃𝑦𝑎(𝑡):

1
𝑣 𝑒𝑥𝑡𝑎,𝐴(𝑡)

= 1
𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡)

− 1
𝜎̃2𝑎 (𝑡)

𝑧𝑒𝑥𝑡𝑎,𝐴(𝑡) = 𝑣 𝑒𝑥𝑡𝑎,𝐴(𝑡) (
𝑧𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡)

𝑣𝑝𝑜𝑠𝑡𝑎,𝐴 (𝑡)
−

̃𝑦𝑎(𝑡)
𝜎̃2𝑎 (𝑡)

) .

Finally, the VAMPmodule outputs the estimates 𝑧𝑒𝑥𝑡𝑎,𝐴(𝑡) and 𝑣
𝑒𝑥𝑡
𝑎,𝐴(𝑡), which are sent back

to the MMSE module, and the procedure is repeated iteratively until the estimate of the
vector 𝒙 to be inferred converges within a specified threshold.
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Chapter 4

Expectation propagation

In this Chapter, we present the general framework onwhich the results presented in this
PhD thesis build. The framework is called expectation propagation (EP) and was pro-
posed by Thomas Minka in his seminal work [87], although, historically, the Gaussian
case of EP that will be used in this dissertation was originally developed by Manfred
Opper and Ole Winther under the name of adaTAP [75, 88, 89]. For the sake of gen-
erality, we will first briefly introduce EP using the formalism of exponential families,
in terms of which the EP update rules can be cast in a very natural way as operations
on so-called natural parameters and on their associated moment parameters, and then
specialize to the Gaussian case of EP.Wewill highlight the connections between EP and
some advanced mean field methods developed in the statistical physics of disordered
systems, such as adaTAP and message passing algorithms including belief propagation
and vector approximate message passing. Finally, we will review EP under the lens
of variational problems, by introducing its variational free energy and by relating its
stationary points to the fixed points of the algorithm. We will also show how this vari-
ational free energy can be used in order to construct an expectation-maximization like
scheme allowing one to estimate unknown parameters by maximum likelihood.

4.1 Exponential families
In order to set the notation for the next sections, we introduce the exponential families
of probability distributions [90] and highlight some parallels with statistical physics.
As a thorough treatment of the topic is beyond the scope of this PhD thesis, we refer
the reader to Refs. [26, 90] for additional details.

An exponential family is a family of probability distributions taking the form:

𝑝𝜽(𝒙) = ℎ(𝒙) e𝜽
⊤𝑻(𝒙)−Φ(𝜽), (4.1)

where 𝑻(𝒙) is a vector of sufficient statistics and 𝜽 is a vector of parameters called nat-
ural (or canonical) parameters. The factor ℎ(𝒙) is often absorbed in the exponential
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function by adding a term 𝑇0(𝒙) = ln(ℎ(𝒙)) to the set of sufficient statistics and by
defining the corresponding natural parameter as 𝜃0 = 1. The function Φ(𝜽) is a nor-
malization constant and is called the log partition function. In statistical mechanics, it
corresponds to a negative free energy and is often called free entropy [68].

Exponential families play an important role in statistical physics. In fact, any Boltz-
mann distribution with Hamiltonian 𝛽𝐻 = −∑𝑁

𝑖=1 𝜃𝑖𝑇𝑖(𝒙) belongs to an exponential
family of distributions specified by the choice of the sufficient statistics 𝑇𝑖(𝒙), for 𝑖 =
1,… ,𝑁. We here give a few examples:

• The probability distribution of the Ising model on a graph is:

𝑝𝜽(𝒙) =
1
𝑍
exp ( ∑

(𝑖,𝑗)∈𝐸
𝐽𝑖𝑗𝑥𝑖𝑥𝑗 +∑

𝑖∈𝑉
ℎ𝑖𝑥𝑖) ,

where 𝑥𝑖 ∈ {−1,+1} and we have absorbed the inverse temperature 𝛽 in the cou-
plings 𝐽𝑖𝑗 and in the external fields ℎ𝑖. The vector of canonical parameters is

𝜽 = ({ℎ𝑖}𝑖∈𝑉 , {𝐽𝑖𝑗}(𝑖,𝑗)∈𝐸)
⊤

and the vector of sufficient statistics is

𝑻(𝒙) = ({𝑥𝑖}𝑖∈𝑉 , {𝑥𝑖𝑥𝑗}(𝑖,𝑗)∈𝐸) ;

• In the Potts model on a graph (see, e.g., [91]), we have:

𝑝𝜽(𝒙) =
1
𝑍
exp ( ∑

(𝑖,𝑗)∈𝐸
𝐽𝑖𝑗𝛿𝑥𝑖,𝑥𝑗 +∑

𝑖∈𝑉
ℎ𝑖𝛿𝑥𝑖,1) =

= 1
𝑍
exp (

𝑞
∑
𝑢=1

𝑞
∑
𝑣=1

∑
(𝑖,𝑗)∈𝐸

𝐽𝑖𝑗𝕀((𝑥𝑖, 𝑥𝑗) = (𝑢, 𝑣)) +∑
𝑖∈𝑉

ℎ𝑖𝕀(𝑥𝑖 = 1)) ,

where 𝑥𝑖 ∈ {1,… , 𝑞} and we have absorbed the inverse temperature 𝛽 in the cou-
plings 𝐽𝑖𝑗 and in the external fields ℎ𝑖. The vector of canonical parameters is

𝜽 = ({ℎ𝑖}𝑖∈𝑉 , {𝐽𝑖𝑗}(𝑖,𝑗)∈𝐸)
⊤

and the vector of sufficient statistics is

𝑻(𝒙) = ({𝕀(𝑥𝑖 = 1)}𝑖∈𝑉 , {𝕀((𝑥𝑖, 𝑥𝑗) = (𝑢, 𝑣))}(𝑖,𝑗)∈𝐸,𝑢∈{1,…,𝑞},𝑣∈{1,…,𝑞}) ,

where 𝕀 denotes the indicator function;
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• Similarly, in the generalized Potts model on a graph [92], we have:

𝑝𝜽(𝒙) =
1
𝑍
exp ( ∑

(𝑖,𝑗)∈𝐸
𝐽𝑖𝑗(𝑥𝑖, 𝑥𝑗) +∑

𝑖∈𝑉
ℎ𝑖(𝑥𝑖)) =

= 1
𝑍
exp (

𝑞
∑
𝑎=1

𝑞
∑
𝑏=1

∑
(𝑖,𝑗)∈𝐸

𝐽 𝑎𝑏𝑖𝑗 𝕀((𝑥𝑖, 𝑥𝑗) = (𝑎, 𝑏)) +
𝑞
∑
𝑎=1

∑
𝑖∈𝑉

ℎ𝑎𝑖 𝕀(𝑥𝑖 = 𝑎)) ,

where 𝐽 𝑎𝑏𝑖𝑗 is a 𝑁 × 𝑁 × 𝑞 × 𝑞 rank-4 tensor (𝑁 being the number of nodes) such
that 𝐽 𝑎𝑏𝑖𝑗 = 0 if (𝑖, 𝑗) ∉ 𝐸 and, as before, 𝑥𝑖 ∈ {1,… , 𝑞}. The vector of canonical
parameters is

𝜽 = ({ℎ𝑎𝑖 }𝑖∈𝑉,𝑎∈{1,…,𝑞} , {𝐽
𝑎𝑏
𝑖𝑗 }(𝑖,𝑗)∈𝐸,𝑎∈{1,…,𝑞},𝑏∈{1,…,𝑞})

⊤

and the vector of sufficient statistics is

𝑻(𝒙) = ({𝕀(𝑥𝑖 = 𝑎)}𝑖∈𝑉,𝑎∈{1,…,𝑞} , {𝕀((𝑥𝑖, 𝑥𝑗) = (𝑎, 𝑏))}(𝑖,𝑗)∈𝐸,𝑎∈{1,…,𝑞},𝑏∈{1,…,𝑞}) .

As observed in [93], a very useful property is the fact that the product of densities
from a given exponential family ℱ is proportional to a member of the same family:

𝑅
∏
𝑟=1

𝑝(𝒙|𝜽𝑟) ∝ 𝑝 (𝒙 |
𝑅
∑
𝑟=1

𝜽𝑟) . (4.2)

However, closure with respect to marginalization only holds for some exponential fam-
ilies, such as, for instance, multivariate Gaussian distributions.

Any exponential family admits an alternative parameterization in terms of moment
parameters (also called mean parameters) [26], defined as:

𝜼 = ⟨𝑻(𝒙)⟩𝑝𝜽 = ∫𝑻(𝒙)𝑝𝜽(𝒙)d𝒙. (4.3)

These can be simply obtained by computing the derivatives of the log partition function,
as customary in statistical physics (using theHelmholtz free energy). Using the notation
of this section, we have:

𝜼(𝜽) = 𝜵𝜽Φ, (4.4)

which allows one to obtain the moment parameters from the knowledge of the natural
ones. The mapping from moment parameters to natural parameters is established by
means of the Legendre transform of Φ with respect to the canonical parameters, which
is equal to the negative Shannon entropy [26] and given by:

Φ∗ = ⟨ln 𝑝𝜼(𝒙)⟩𝑝𝜼, (4.5)
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where we used the notation 𝑝𝜼(𝒙) = 𝑝(𝒙|𝜼(𝜽)). Then, using Φ∗ and assuming that the
moments 𝜼 are known, the mapping reads [26]

𝜽(𝜼) = 𝜵𝜼Φ∗. (4.6)

In statistical physics, one example is the case of the inverse Ising model on a graph
𝒢 = (𝑉, 𝐸) [94]: there, the function Φ∗ corresponds to the Legendre transform of ln𝑍
with respect to the external fields and couplings, which yields the entropy 𝑆 changed
of sign:

Φ∗(𝒎,𝝌) ≡ −𝑆(𝒎,𝝌) = min
𝐉,𝒉

(−∑
𝑖
ℎ𝑖𝑚𝑖 − ∑

(𝑖,𝑗)∈𝐸
𝐽𝑖𝑗𝜒𝑖𝑗) ,

where 𝒎 and 𝝌 denote the magnetizations and the correlations, respectively. Finally,
the canonical parameters are obtained from the knowledge of the magnetizations and
of the correlations by evaluating the derivatives of 𝑆 at the known values 𝒎 and 𝝌:

𝐽𝑖𝑗 = − 𝜕𝑆
𝜕𝜒𝑖𝑗

|
(𝝌,𝒎)

, ℎ𝑖 = − 𝜕𝑆
𝜕𝑚𝑖

|
(𝝌,𝒎)

.

4.2 Expectation propagation
EP is an efficient approximation to compute posterior probabilities in Bayesian infer-
ence and was introduced in the machine learning community by Minka in its seminal
paper [87]. However, as mentioned at the beginning of this chapter, it is rooted in ideas
from the statistical physics of disordered systems and the Gaussian special case of EP
was first developed as an improved mean-field method by Opper and Winther [75, 89].
Here, we will present the algorithm using the formalism of exponential families, as
it is done in Matthias Seeger’s PhD thesis [95] and in [93], before specializing to the
Gaussian case. It is interesting to remark that the name “expectation propagation” is
related to the fact that, from a message passing point of view, EP can be interpreted as
an algorithm sending expected sufficient statistics from one region of a factor graph to
another.

4.2.1 Assumed density filtering
Consider an intractable posterior distribution of the form:

𝑃(𝒙) = 1
𝑍
𝐺(𝒙)∏

𝑎
𝜓𝑎(𝒙), (4.7)

where 𝐺(𝒙) could be a likelihood term and ∏𝑎 𝜓𝑎(𝒙) a prior distribution1 and 𝑍 is a
normalization, which will be interpreted as a partition function from a statistical me-
chanics standpoint. We shall assume that the term 𝐺(𝒙) is tractable, while ∏𝑎 𝜓𝑎(𝒙)

1Or 𝐺(𝒙) could be a prior and ∏𝑎 𝜓𝑎(𝒙) a factorized likelihood, depending on the application.
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is not. The aim is to approximate 𝑃(𝒙) by a member 𝑄(𝒙) from an exponential family
ℱ and we shall assume that the tractable term 𝐺(𝒙) belongs in ℱ as well. While one
could think of fitting each approximating factor to the corresponding exact factor inde-
pendently, in practice this approximation tends not to be a good one (see, e.g., [96]). A
better way to proceed consists in approximating each exact factor one at a time, so that
each approximating factor can be adjusted in order to correct for errors in earlier terms.
This is the idea underlying the so-called assumed density filtering (ADF) algorithm [88,
97].

In ADF, one starts from 𝑄(𝒙) = 𝐺(𝒙) and updates the current approximation 𝑄(𝒙) by
including a factor in it by multiplication, as ̂𝑃 (𝒙) ∝ 𝑄(𝒙)𝜓𝑎(𝒙), and then projecting ̂𝑃 (𝒙)
back to the chosen exponential family2. The projection step is performed by choosing
𝑄𝑛𝑒𝑤 such that the Kullback-Leibler (KL) divergence between ̂𝑃 and 𝑄𝑛𝑒𝑤 is minimal:

𝑄𝑛𝑒𝑤(𝒙) = arg min
𝑄̂∈ℱ

𝐷𝐾𝐿 ( ̂𝑃(𝒙)||𝑄̂(𝒙)) . (4.8)

An important fact that will be used in the sequel is that, for exponential families, mini-
mization of𝐷𝐾𝐿 ( ̂𝑃(𝒙)||𝑄̂(𝒙)) is equivalent to matching the expected sufficient statistics
with respect to the distributions ̂𝑃 and 𝑄̂ (moment matching), namely:

⟨𝑻(𝒙)⟩ ̂𝑃 = ⟨𝑻(𝒙)⟩𝑄̂, (4.9)

as it can be easily verified by requiring that the gradient of 𝐷𝐾𝐿 ( ̂𝑃(𝒙)||𝑄̂(𝒙)) computed
with respect to the natural parameters ̂𝜽 of the 𝑄̂(𝒙) distribution is equal to zero. To see
this, let us start from the expressions of ̂𝑃 (𝒙) and 𝑄̂(𝒙):

̂𝑃 (𝒙) = 1
𝑍𝑄

ℎ(𝒙) e𝜽
⊤𝑻(𝒙) 𝜓𝑎(𝒙)

𝑄̂(𝒙) = 1
𝑍𝑄̂

ℎ(𝒙) e ̂𝜽⊤𝑻(𝒙)

and write their KL divergence:

𝐷𝐾𝐿 ( ̂𝑃(𝒙)||𝑄̂(𝒙)) = ∫ d𝒙 ̂𝑃(𝒙) [ln𝑍𝑄̂( ̂𝜽) − ln𝑍𝑄(𝜽) + ln 𝜓𝑎(𝒙) + (𝜽 − ̂𝜽)⊤𝑻(𝒙)] .

As only the first and last terms in the square bracket on the right hand side depend on
̂𝜽, we have:

𝜵 ̂𝜽𝐷𝐾𝐿 ( ̂𝑃(𝒙)||𝑄̂(𝒙)) = 1
𝑍𝑄̂( ̂𝜽)

𝜵 ̂𝜽𝑍𝑄̂( ̂𝜽) − ∫ d𝒙 ̂𝑃(𝒙)𝑻(𝒙),

2If there is no factor 𝐺(𝒙) ∈ ℱ in 𝑃(𝒙), one sets 𝑄(𝒙) to a uniform distribution.

65



Expectation propagation

where:
1

𝑍𝑄̂( ̂𝜽)
∇ ̂𝜽𝑍𝑄̂( ̂𝜽) = ∫ d𝒙𝑄̂(𝒙)𝑻(𝒙).

Setting the gradient to zero, we obtain the moment matching conditions, as anticipated:

⟨𝑻(𝒙)⟩ ̂𝑃 = ⟨𝑻(𝒙)⟩𝑄̂. (4.10)

The inclusion and projection procedure outlined above is repeated sequentially, until
all factors have been included in the approximated distribution 𝑄(𝒙).

4.2.2 From assumed density filtering to expectation propagation
By construction, ADF is an online inference algorithm, meaning that input is processed
in sequence, in a piece-by-piece fashion, as opposed to offline or batch algorithms,
where a complete input data set is assumed to be available at once. As a consequence,
each factor can be included only once and the result depends on the order in which
these factors are presented. The expectation propagation algorithm is based on a revis-
ited version of ADF, which was established by Minka in [87], where replacing 𝑄(𝒙) by
𝑄𝑛𝑒𝑤(𝒙) is interpreted as a refinement operation on approximating factors:

𝜙𝑎(𝒙) ∝
𝑄𝑛𝑒𝑤(𝒙)
𝑄(𝒙)

. (4.11)

Each factor 𝜓𝑎(𝒙) can be thought as being included in the approximated distribution by
replacing 𝑄(𝒙) with the product 𝑄𝑛𝑒𝑤(𝒙) = 𝑄(𝒙)𝜙𝑎(𝒙). In terms of natural parameters,
one has:

𝜽𝑛𝑒𝑤 = 𝜽 + 𝜽𝑎,
where 𝜽 (resp., 𝜽𝑛𝑒𝑤) is the vector of natural parameters of 𝑄(𝒙) (resp., 𝑄𝑛𝑒𝑤(𝒙)) and
𝜽𝑎 is the one of 𝜙𝑎(𝒙). At the beginning, the approximating factors are initialized as
𝜙𝑎(𝒙) = 1 and the approximating distribution is given by 𝑄(𝒙) = 𝐺(𝒙). Accordingly,
the natural parameters are initialized as 𝜽𝑎 = 0 and as 𝜽 = 𝜽0, where 𝜽0 denotes the
vector of canonical parameters of 𝐺(𝒙). The relevance of this formulation of the ADF
update lies in the fact that it allows multiple passes over the factors, which makes the
resulting computational scheme iterative.

Keeping in mind the interpretation of ADF given above, the EP update is defined
as deleting a factor 𝜙𝑎(𝒙) followed by an inclusion step in which the deleted factor is
updated. More explicitly, we have:

Deletion: Given the current approximating distribution 𝑄(𝒙), compute the cavity dis-
tribution [89] 𝑄⧵𝑎(𝒙):

𝑄⧵𝑎(𝒙) ∝ 𝐺(𝒙)∏
𝑏≠𝑎

𝜙𝑏(𝒙). (4.12)

In terms of natural parameters, one has 𝜽⧵𝑎 = 𝜽−𝜽𝑎, where 𝜽⧵𝑎 denotes the natural
parameters of the cavity distribution.
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Inclusion: Construct the tilted distribution, defined as:

𝑄(𝑎)(𝒙) ≔ 1
𝑍𝑄(𝑎)

𝜓𝑎(𝒙)𝑄⧵𝑎(𝒙), (4.13)

and compute its moments:

𝜼𝑛𝑒𝑤 = ⟨𝑻(𝒙)⟩𝑄(𝑎) . (4.14)

Note that the tilted distribution differs from the approximated posterior 𝑄(𝒙) ∈ ℱ
only in one factor, as it contains the exact factor 𝜓𝑎(𝒙) instead of the approximated
one 𝜙𝑎(𝒙). Then, choose 𝑄𝑛𝑒𝑤(𝒙) with these moments (moment matching) and
replace 𝜙𝑎(𝒙) with 𝜙𝑛𝑒𝑤𝑎 (𝒙) using Eq. (4.11). In terms of natural parameters, one
has 𝜽𝑎 = 𝜽𝑛𝑒𝑤 − 𝜽⧵𝑎.

Analogously to the case of ADF, we remark that the matching of the moment pa-
rameters in the inclusion step is equivalent to minimizing a KL divergence, which, in
the EP case, is the one between the tilted distribution 𝑄(𝑎)(𝒙) and the EP approximation
𝑄(𝒙)with respect to the canonical parameters 𝜽 of the latter. By iteratively refining the
approximating factors 𝜙𝑎(𝒙), EP attempts to mimick the way each factor 𝜓𝑎(𝒙) influ-
ences the tilted distribution 𝑄(𝑎)(𝒙) as a whole, rather than to simply fit 𝜓𝑎(𝒙). Notice
that, contrary to variational Bayes (see Section 3.1), both ADF and EP minimize the for-
ward KL divergence 𝐷𝐾𝐿 (𝑝(𝒙)||𝑞(𝒙)), rather than the reverse one, i.e. 𝐷𝐾𝐿 (𝑞(𝒙)||𝑝(𝒙)),
where 𝑞(𝒙) denotes the chosen approximating distribution. However, while in vari-
ational Bayes 𝑝(𝒙) is the true intractable distribution, we recall that in EP 𝑝(𝒙) cor-
responds to the tilted distribution, as computing the moments of the exact posterior
distribution is an intractable problem. The fact that the two approximation schemes
minimize two different KL divergences has relevant consequences on the properties of
the support of the approximating distributions obtained as a result of the minimiza-
tion [60]. In particular, notice that, on the one hand, the reverse KL divergence is zero
forcing for 𝑞(𝒙): in fact, if 𝑝(𝒙) is zero for some 𝒙, then 𝑞(𝒙) must be zero as well,
otherwise 𝐷𝐾𝐿(𝑞||𝑝) would become infinite. On the other hand, the forward KL is zero
avoiding for 𝑞(𝒙), meaning that whenever 𝑝(𝒙) is strictly greater than zero, so must be
𝑞(𝒙) in order to prevent 𝐷𝐾𝐿(𝑝||𝑞) from diverging. As a consequence, minimizing the
reverse KL divergence results in 𝑞(𝒙) underestimating the support of 𝑝(𝒙), whereas, on
the contrary, minimizing the forward KL divergence, as done in ADF and EP, leads to
an approximating 𝑞(𝒙) which overestimates the support of the target distribution.

To conclude, notice that while EP is more robust and accurate than ADF as an ap-
proximation scheme, at the same time going from ADF to EP implies that the online
nature of ADF is lost, making EP not suitable for online inference.
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4.3 The Gaussian case of EP with univariate approxi-
mating factors

We will now introduce the Gaussian case of expectation propagation, in which the ex-
ponential family of distributionsℱ is chosen to be the set of multivariate Gaussian dis-
tributions. Besides being closed under products, the Gaussian exponential family has
the additional property of being closed under marginalization, as already mentioned in
Sec. 4.1. Here, the EP moment matching condition reduces to matching the first and
second moments of the tilted distribution and of the approximated (Gaussian) distribu-
tion. We will focus on the special case of Gaussian EP with univariate approximating
factors, which is the computational framework used in the context of the linear esti-
mation problems studied in this thesis. The formulation of Gaussian EP that will be
presented in this section is published in Refs. [3, 96, 98].

Given a probability distribution expressed as in Eq. (4.7), namely:

𝑃(𝒙) = 1
𝑍
𝐺(𝒙)

𝑁
∏
𝑖=1

𝜓𝑖(𝑥𝑖), (4.15)

where 𝐺(𝒙) is a multivariate Gaussian distribution:

𝐺(𝒙) ∝ exp (−1
2
𝒙⊤𝐀𝒙 + 𝒙⊤𝒎) (4.16)

and 𝜓𝑖(𝑥𝑖) are factors the product of which makes the full distribution 𝑃(𝒙) intractable,
we aim at computing its approximate marginals by means of the EP approximation.
The fully approximated distribution 𝑄(𝒙) is obtained by replacing each exact factor
𝜓𝑖(𝑥𝑖) with a univariate Gaussian distribution 𝜙𝑖(𝑥𝑖) = 𝒩 (𝑤𝑖; 𝑎𝑖, 𝑑𝑖) having mean 𝑎𝑖 and
variance 𝑑𝑖. We have:

𝑄(𝒙) = 1
𝑍𝑄

𝐺(𝒙)
𝑁
∏
𝑖=1

𝜙𝑖(𝑥𝑖) (4.17)

≔ 1
𝑍𝑄

e−
1
2 (𝒙− ̄𝒙)𝑇𝜮−1(𝒙− ̄𝒙)

, (4.18)

where:

𝑍𝑄 = (2𝜋)
𝑁
2 (det𝜮)

1
2 , (4.19)

𝜮−1 ∶= A + 𝑫, ̄𝒙 ∶= 𝜮(𝒎 + 𝑫𝒂), (4.20)

and 𝑫 is a diagonal matrix having diagonal elements 𝑑−11 ,… , 𝑑−1𝑁 .
In order to refine the mean 𝑎𝑛 and the variance 𝑑𝑛 of each factor 𝜙𝑛(𝑥𝑛), for 𝑛 =

1,… ,𝑁, we perform an EP update consisting of a deletion of 𝜙𝑛(𝑥𝑛) followed by an
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inclusion of the same term. To do so, we construct a tilted distribution 𝑄(𝑛), which, in
the Gaussian case, is defined as:

𝑄(𝑛)(𝒙) ≔ 1
𝑍𝑄(𝑛)

𝐺(𝒙)𝜓𝑛(𝑥𝑛)∏
𝑙≠𝑛

𝜙𝑙(𝑥𝑙; 𝑎𝑙,𝑑𝑙) (4.21)

= 1
𝑍𝑄(𝑛)

e−
1
2 (𝒙− ̄𝒙(𝑛))⊤(𝜮(𝑛))

−1
(𝒙− ̄𝒙(𝑛)) 𝜓𝑛(𝑥𝑛), (4.22)

where

(𝜮(𝑛))
−1

= A + 𝑫(𝑛), ̄𝒙(𝑛) = 𝜮(𝑛) (𝒎 + 𝑫(𝑛)𝒂) (4.23)

are Gaussian, and, analogously to Eq. (4.20), 𝑫(𝑛) is a diagonal matrix the entries of
which are 𝑑−1𝑚 for all diagonal elements such that 𝑚 ≠ 𝑛 and zero for 𝑚 = 𝑛. In order
to complete the inclusion step, the tilted distribution is projected onto a multivariate
Gaussian distribution by moment matching:

⟨𝑥𝑛⟩𝑄(𝑛) = ⟨𝑥𝑛⟩𝑄 , ⟨𝑥2𝑛 ⟩𝑄(𝑛) = ⟨𝑥2𝑛 ⟩𝑄 . (4.24)

The computation of the moments of the tilted distribution on the left-hand side of Eq.
(4.24) is dependent on the specific functional form of the distribution 𝜓𝑖(𝑥). In many
cases, these can be computed analytically. When this is not possible, one can resort
to numerical methods, such as Gaussian quadrature. On the other hand, the moments
of 𝑄 can be easily computed by means of the product rule for univariate Gaussian dis-
tributions, which we recall here: given two univariate Gaussian distributions having
means 𝑚1 and 𝑚2 and having variances 𝑆1 and 𝑆2, it is straightforward to verify that
their product is given by:

exp (
(𝑥 − 𝑚1)2

2𝑆1
) exp (

(𝑥 − 𝑚2)2

2𝑆2
) ∝ exp (−

(𝑥 − 𝑀)2

2𝑆
) , (4.25)

where the variance 𝑆 is expressed as:

𝑆 = ( 1
𝑆1

+ 1
𝑆2
)
−1

(4.26)

and the mean 𝑀 reads:

𝑀 = 𝑆 (
𝑚1
𝑆1

+
𝑚2
𝑆2

) . (4.27)

Indeed, considering the right hand side of Eq. (4.24), one sees that by integrating with
respect to all variables 𝑥𝑚 for𝑚 ≠ 𝑛 and by using Eq. (4.25), the first and secondmoment
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of 𝑄 are expressed as:

⟨𝑥𝑛⟩𝑄 = ( 1
𝑑𝑛

+ 1

Σ(𝑛)𝑛𝑛
)
−1

(
𝑎𝑛
𝑑𝑛

+
̄𝑥𝑛

Σ(𝑛)𝑛𝑛
) , (4.28)

⟨𝑥2𝑛 ⟩𝑄 = 1
1
𝑑𝑛
+ 1

Σ(𝑛)𝑛𝑛

+ ⟨𝑥𝑛⟩2𝑄. (4.29)

Since the twomatrices 𝜮−1, and (𝜮(𝑛))
−1

in Eqs. (4.20) and (4.23), respectively, only dif-
fer in one diagonal entry, we can leverage a low-rank update property to relate the two
inverses, which follows from applying Sherman-Morrison formula [99] (see Sec. 4.5).
As a consequence, the tilted parameters can be expressed in terms of the approximated
ones:

̄𝑥(𝑛)𝑛 = (Σ(𝑛)𝑛𝑛 ) (
̄𝑥𝑛

Σ𝑛𝑛
−
𝑎𝑛
𝑑𝑛
) , (Σ(𝑛)𝑛𝑛 ) =

Σ𝑛𝑛
1 − Σ𝑛𝑛

𝑑𝑛

, (4.30)

which allows us to perform only one matrix inversion per iteration rather than 𝑁. Af-
ter imposing the moment matching condition (4.24), we obtain an update rule for the
parameters 𝑎𝑛, 𝑑𝑛 of the approximating Gaussian factors 𝜙𝑛(𝑥𝑛), for 𝑛 = 1,… ,𝑁:

𝑑𝑛 = ( 1
⟨𝑥2𝑛 ⟩𝑄(𝑛) − ⟨𝑥𝑛⟩2𝑄(𝑛)

− 1

Σ(𝑛)𝑛𝑛
)

−1

, (4.31)

𝑎𝑛 = ⟨𝑥𝑛⟩𝑄(𝑛) +
𝑑𝑛
Σ(𝑛)𝑛𝑛

(⟨𝑥𝑛⟩𝑄(𝑛) − ( ̄𝑥(𝑛))𝑛) . (4.32)

The iterations of the algorithm stop as soon as the EP parameters converge to a fixed
point. When this happens, the tilted distributions provide the best approximation to
the marginal densities of the posterior distribution in Eq. (4.15). In practice, from a
numerical point of view, convergence at each iteration 𝑡 (i.e. for each update of the 𝒂, 𝒅
vectors) is verified by checking the quantity:

𝜖𝑡 = max
𝑛=1,…,𝑁

{|⟨𝑥𝑛⟩𝑄(𝑛)
𝑡

− ⟨𝑥𝑛⟩𝑄(𝑛)
𝑡−1
| + |⟨𝑥2𝑛 ⟩𝑄(𝑛)

𝑡
− ⟨𝑥2𝑛 ⟩𝑄(𝑛)

𝑡−1
|} ,

where 𝑄(𝑛)
𝑡 is the tilted distribution with parameters computed at iteration 𝑡, and by

setting a convergence threshold 𝜖stop. Thus, as soon as 𝜖𝑡 < 𝜖stop, Gaussian EP returns
the means and variances of the marginal tilted distributions. The means ⟨𝑥𝑖⟩𝑄(𝑖) provide
the EP estimate of the variables to be inferred, whereas the variances allow to extract the
standard deviations √⟨𝑥

2
𝑖 ⟩𝑄(𝑖) − ⟨𝑥𝑖⟩2𝑄(𝑖) , which provide the estimate of the uncertainties

associated with the EP inferred variables.
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4.4 Gaussian EP with a Dirac delta factor
It is interesting to consider distributions of the kind:

𝑃(𝒙) = 1
𝑍𝑃

𝛿𝑀(G𝒙 − ̃𝒚)
𝑁
∏
𝑖=1

𝜓𝑖(𝑥𝑖), (4.33)

where 𝛿𝑀(𝒛) denotes the 𝑀-dimensional Dirac delta distribution, 𝐆 ∈ ℝ𝑀×𝑁 and ̃𝒚 ∈
ℝ𝑀, because they arise when taking a suitable infinite precision matrix limit of the
multivariate Gaussian distribution 𝐺(𝒙) appearing in Eq. (4.7). This fact will be justified
in the context of linear estimation problems in Sec. 5.1, where 𝐺(𝒙) and, consequently,
𝛿𝑀(G𝒙) are interpreted as likelihood functions. There, the matrix𝐆 is𝑀×𝑁 and has the
formG = (−F|I) and the vector 𝒙 is composed of 𝑁 variables, such that𝑀 < 𝑁 variables
depend on all other variables. Indeed, without loss of generality, we may assume that
𝒗 ≔ (𝑥𝑁−𝑀+1,… , 𝑥𝑁)⊤ depends on the set of variables 𝒖 ≔ (𝑥1,… , 𝑥𝑁−𝑀)⊤ as:

𝒗 = 𝐅𝒖 + ̃𝒚. (4.34)

The aim of this Section will be to outline the derivation of a Gaussian EP algorithm able
to deal with this scenario. This formulation of EP will be used to obtain the results in
Chapters 5 and 6 and is published in Ref. [100] in the homogeneous case ̃𝒚 = 0.

To set the notation, let us define the sets 𝑈 ≔ {1,… ,𝑁 − 𝑀} and 𝑉 ≔ {𝑁 − 𝑀 +
1,… ,𝑁}. Furthermore, let 𝒆𝑖 denote the 𝑖-th basis vector of the standard basis of ℝ𝑁−𝑀

if 𝑖 ∈ 𝑈 or that of ℝ𝑀 in the case where 𝑖 ∈ 𝑉. In order to adapt the EP scheme introduced
in Sec. 4, we start by defining the Gaussian approximating factors:

𝜙𝑖(𝑥𝑖) = exp (−
(𝑥𝑖 − 𝑎𝑖)2

2𝑑𝑖
) , (4.35)

and a fully Gaussian approximation of the posterior distribution (4.33), in which all
priors 𝜓𝑖 are replaced by factors of the form (4.35):

𝑄(𝒙) = 1
𝑍𝑄

𝛿𝑀(G𝒙 − ̃𝒚)
𝑁
∏
𝑖=1

𝜙𝑖(𝑥𝑖). (4.36)

From the linear dependence (4.34), it follows that 𝑄(𝒙) can be rewritten as:

𝑄(𝒙) = 1
𝑍𝑄

𝛿𝑀(G𝒙 − ̃𝒚) exp (−1
2
(𝒖 − ̄𝒖)⊤𝜮−1

𝑈 (𝒖 − ̄𝒖)) , (4.37)

where the covariance matrix 𝜮𝑈 and the mean ̄𝒖 in Eq. (4.37) are given by:

𝜮−1
𝑈 = ∑

𝑖∈𝑈

1
𝑑𝑖
𝒆𝑖𝒆⊤𝑖 + 𝐅⊤ (∑

𝑖∈𝑉

1
𝑑𝑖
𝒆𝑖𝒆𝑇𝑖 ) 𝐅, (4.38)
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and by:

̄𝒖 = 𝜮𝑈 (∑
𝑖∈𝑈

𝑎𝑖
𝑑𝑖
𝒆𝑖 +∑

𝑖∈𝑉

𝑎𝑖 + ̃𝑦𝑖
𝑑𝑖

𝐅⊤𝒆𝑖) , (4.39)

respectively. Notice that, since the marginal distribution of 𝑄(𝒖) is Gaussian with mean
̄𝒖 and covariance matrix 𝜮𝑈 and since the random vector 𝒙 = (𝒖, 𝒗)⊤ is an affine trans-

formation of 𝒖, given by:

𝒙 = (𝐈𝐅) 𝒖 + (0̃𝒚) ,

the joint distribution 𝑄(𝒙) is Gaussian, with mean ̄𝒙 = ( ̄𝒖, 𝐅 ̄𝒖+ ̃𝒚)⊤ and𝑁 ×𝑁 covariance
matrix 𝜮 expressed as:

𝜮 = (𝐈𝐅) 𝜮𝑈 (𝐈 𝐅) = ( 𝜮𝑈 𝜮𝑈𝐅⊤
𝐅𝜮𝑈 𝐅𝜮𝑈𝐅⊤

) .

Moreover, as 𝑄(𝒙) is Gaussian, the marginal distributions 𝑄(𝑥𝑖) for each 𝑥𝑖 (𝑖 = 1,… ,𝑁)
are also Gaussian, with means:

̄𝑥𝑖 = {
̄𝑢𝑖, 𝑖 ∈ 𝑈
̃𝑦𝑖 + 𝒆⊤𝑖 𝐅 ̄𝒖, 𝑖 ∈ 𝑉,

(4.40)

and variances:

Σ𝑖𝑖 = {
𝒆⊤𝑖 𝜮𝑈𝒆𝑖, 𝑖 ∈ 𝑈,
(𝒆⊤𝑖 𝐅) 𝜮𝑈 (𝐅⊤𝒆𝑖) , 𝑖 ∈ 𝑉 .

(4.41)

We now need to introduce one tilted distribution 𝑄(𝑖)(𝒙) for each 𝑖 = 1,… ,𝑁:

𝑄(𝑖)(𝒙) ≔ 1
𝑍𝑄(𝑖)

𝛿𝑀(G𝒙 − ̃𝒚)𝜓𝑖(𝑥𝑖)∏
𝑗≠𝑖

𝜙(𝑥𝑗) = 𝜓𝑖(𝑥𝑖)𝑄⧵𝑖(𝒙), (4.42)

where, in the last equality, we have isolated the Gaussian cavity distribution 𝑄⧵𝑖(𝒙):

𝑄⧵𝑖(𝒙) = 1
𝑍𝑄(𝑖)

𝛿𝑀(G𝒙 − ̃𝒚) exp (−1
2
(𝒖 − ̄𝒖(𝑖))

⊤
(𝜮(𝑖)

𝑈 )
−1

(𝒖 − ̄𝒖(𝑖))) (4.43)

having cavity covariance matrix:

(𝜮(𝑖)
𝑈 )

−1
= {

∑𝑗∈𝑈⧵{𝑖}
1
𝑑𝑗
𝒆𝑗𝒆⊤𝑗 + 𝐅⊤ (∑𝑗∈𝑉

1
𝑑𝑗
𝒆𝑗𝒆⊤𝑗 ) 𝐅, if 𝑖 ∈ 𝑈,

∑𝑗∈𝑈
1
𝑑𝑗
𝒆𝑗𝒆⊤𝑗 + 𝐅⊤ (∑𝑗∈𝑉 ⧵{𝑖}

1
𝑑𝑗
𝒆𝑗𝒆⊤𝑗 ) 𝐅, if 𝑖 ∈ 𝑉,

(4.44)
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and cavity mean:

̄𝒙(𝑖) = {
𝜮(𝑖)
𝑈 (∑𝑗∈𝑈⧵{𝑖}

𝑎𝑗
𝑑𝑗
𝒆𝑗 +∑𝑗∈𝑉

̃𝑦𝑗+𝑎𝑗
𝑑𝑗

𝐅⊤𝒆𝑗) , if 𝑖 ∈ 𝑈,

𝜮(𝑖)
𝑈 (∑𝑗∈𝑈

𝑎𝑗
𝑑𝑗
𝒆𝑗 +∑𝑗∈𝑉 ⧵{𝑖}

̃𝑦𝑗+𝑎𝑗
𝑑𝑗

𝐅⊤𝒆𝑗) , if 𝑖 ∈ 𝑉 .
(4.45)

The marginals of the cavity distribution in Eq. (4.43) are Gaussian distributions having
means:

̄𝑥(𝑖)𝑖 = {
̄𝑢(𝑖)𝑖 , if 𝑖 ∈ 𝑈
̃𝑦𝑖 + 𝒆⊤𝑖 𝐅 ̄𝒖(𝑖), if 𝑖 ∈ 𝑉,

(4.46)

and variances:

Σ(𝑖)𝑖𝑖 = {
𝒆⊤𝑖 𝜮

(𝑖)
𝑈 𝒆𝑖, if 𝑖 ∈ 𝑈,

(𝒆⊤𝑖 𝐅) 𝜮
(𝑖)
𝑈 (𝐅⊤𝒆𝑖) , if 𝑖 ∈ 𝑉 .

(4.47)

We are now able to determine the means 𝒂 and variances 𝒅 of the Gaussian ap-
proximating factors (4.35) by moment matching of the Gaussian approximation of the
posterior distribution and of each tilted distribution for all 𝑖 = 1,… ,𝑁:

⟨𝑥𝑖⟩𝑄(𝑖) = ⟨𝑥𝑖⟩𝑄, ⟨𝑥2𝑖 ⟩𝑄(𝑖) = ⟨𝑥2𝑖 ⟩𝑄, (4.48)

which, in turn, allows us to obtain the EP update equations. Indeed, proceeding exactly
as we did in Sec. 4.3, namely, using the product rule for Gaussian distributions and
imposing the moment matching conditions, the EP update rules for the variances 𝒅 and
the means 𝒂 are given by Eq. (4.32), which we rewrite here for the sake of completeness:

𝑑𝑖 = ( 1
⟨𝑥2𝑖 ⟩𝑄(𝑖) − ⟨𝑥𝑖⟩2𝑄(𝑖)

− 1

Σ(𝑖)𝑖𝑖
)

−1

,

𝑎𝑖 = ⟨𝑥𝑖⟩𝑄(𝑖) +
𝑑𝑖
Σ(𝑖)𝑖𝑖

(⟨𝑥𝑖⟩𝑄(𝑖) − ̄𝑥(𝑖)𝑖 ) ,

for all 𝑖 = 1,… ,𝑁. Furthermore, the cavity variances Σ(𝑖)𝑖𝑖 and means ̄𝑥(𝑖)𝑖 appearing in
the EP update equations can be computed in terms of the variances Σ𝑖𝑖 and means ̄𝑥𝑖
using the low rank update rule given in Eq. (4.30), which allows to perform only one
matrix inversion per iteration.

The main advantage of the formulation of EP presented in this section, which was
obtained exploiting the linear relationship between the variables to be inferred, as
compared to that of the previous one is the fact that one only needs to invert the
(𝑁 − 𝑀) × (𝑁 − 𝑀) matrix (4.38), rather than a larger 𝑁 × 𝑁 matrix.
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4.5 Sequential and parallel update schemes for Gaus-
sian EP

In this section, we show two ways of implementing Gaussian EP: the first one involves
a sequential update scheme which requires a matrix inversion for each variable 𝑘 =
1,… ,𝑁, whereas the second one uses the low rank update mentioned in Secs. 4.3 and
4.4, resulting in a parallel update scheme.

In Alg. 2, we show a pseudocode describing the sequential update scheme as applied
to the formulation of Gaussian EP of Sec. 4.3 and notice that this version of Gaussian
EP requires that 𝑁 matrices of size 𝑁 × 𝑁 are inverted at each iteration. The number of
operations needed to invert each matrix (𝐀+𝐃(𝑘)) is 𝑂(𝑁 3), so the computational cost
of each iteration is 𝑂(𝑁 4).

Algorithm 2 Expectation Propagation: sequential update

procedure EP(𝐀, 𝒎, {𝜓1, ..., 𝜓𝑁})
Initialize 𝒂old and 𝒅old

for iter < maxiter do
𝒂𝒗 = 𝟎, Δav = 0
for 𝑘 = 1, ...,𝑁 do

𝐃(𝑘) = Diag ( 1
𝑑1
... 1𝑑𝑁)

− 1
𝑑𝑘
𝒆𝑘𝒆𝑇𝑘

𝜮(𝑘) = (A + 𝐃(𝑘))
−1

̄𝒙(𝑘) = 𝜮(𝑘)(𝒎 + 𝐃(𝑘)𝐀)
⟨𝑥𝑘⟩𝑄(𝑘) , ⟨𝑥2𝑘 ⟩𝑄(𝑘) = moments (𝜇(𝑘)𝑘 ,Σ(𝑘)𝑘𝑘 , 𝜓𝑘)
Δav ← max(Δav, |⟨𝑥𝑘⟩𝑄(𝑘) − av𝑘|)
av𝑘 ← ⟨𝑥𝑘⟩𝑄(𝑘)

var𝑘 ← ⟨𝑥2𝑘 ⟩𝑄(𝑘) − ⟨𝑥𝑘⟩2𝑄(𝑘)

𝑑new𝑘 = ( 1
var𝑘

− 1
Σ(𝑘)𝑘𝑘

)
−1

𝑎new𝑘 = ⟨𝑥𝑘⟩𝑄(𝑘) + 𝑑𝑘 (
⟨𝑥𝑘⟩𝑄(𝑘)

Σ(𝑘)𝑘𝑘
− 𝜇(𝑘)𝑘

Σ(𝑘)𝑘𝑘
)

𝑑old𝑘 ← 𝛾𝑑old𝑘 + (1 − 𝛾)𝑑new𝑘
𝑎old𝑘 ← 𝛾𝑎old𝑘 + (1 − 𝛾)𝑎new𝑘

if Δav < 𝜖 then
return 𝒂𝒗, 𝒗𝒂𝒓

In order to reduce the computational complexity of the algorithm, a parallel update
scheme, shown in Alg. 3, was proposed in Ref. [96], in which only one inversion per
iteration is required. In both Algs. 2 and 3, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 denotes the maximum number of
iterations allowed, the function moments computes the first and second moments of
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the 𝑘th tilted distribution, 𝛾 is a damping factor used in the refinement step of the EP
update, Δ𝑎𝑣 denotes the maximal absolute difference between the tilted means at the
current iteration 𝑖𝑡𝑒𝑟 and at the previous iteration and 𝜖 is the convergence threshold to
which Δ𝑎𝑣 is compared in order to decide whether convergence has been achieved.

A simple way to derive the relation between the variances Σ𝑘𝑘 of the Gaussian ap-
proximation 𝑄(𝒙) and the associated cavity variances Σ(𝑘)𝑘𝑘 , for 𝑘 = 1,… ,𝑁, consists in
using the Sherman-Morrison formula (see, e.g., [101]):

(𝐂 + 𝒖𝒗⊤)−1 = 𝐂−1 − 𝐂−1𝒖𝒗⊤𝐂−1

1 + 𝒗⊤𝐂−1𝒖
. (4.49)

In particular, considering Eqs. (4.20) and (4.23) and recalling the definitions of 𝐃 and
𝐃(𝑘), we have:

𝜮(𝑘) = (𝜮−1 − 1
𝑑𝑘
𝒆𝑘𝒆⊤𝑘 )

−1
. (4.50)

Therefore, identifying 𝐂 with 𝜮−1 as well as, e.g., 𝒖 with 𝑑−1𝑘 𝒆𝑘 and 𝒗 with 𝒆𝑘 in Eq.
(4.49), we obtain:

Σ(𝑘)𝑘𝑘 =
Σ𝑘𝑘

1 − 1
𝑑𝑘
Σ𝑘𝑘

which is the second relation in Eq. (4.30), whereas the first one is obtained using the
product rule for univariate Gaussian distributions given in Eq. (4.27), which in our case
reads:

𝜇𝑘
Σ𝑘𝑘

=
𝜇(𝑘)𝑘

Σ(𝑘)𝑘𝑘

+
𝑎𝑘
𝑑𝑘

(4.51)

and substituting the above relation for Σ(𝑘)𝑘𝑘 .

4.6 Relationship to loopy belief propagation
It is interesting to notice that the loopy belief propagation algorithm discussed in Sec.
3.3.2 can be interpreted as a particular instance of expectation propagation, as reported
in [26, 60, 63, 87, 102].

In order to see this, consider a factor graph 𝒢 = (𝑉, 𝐹, 𝐸) and the following expo-
nential family of distributions defined on 𝒢:

𝑝(𝒙|𝜽) = 1
𝑍(𝜽)

e𝜽
⊤𝑻(𝒙) = 1

𝑍(𝜽)
exp (∑

𝑖∈𝑉
𝜃𝑖(𝑥𝑖) +∑

𝑎∈𝐹
𝜃𝑎(𝒙𝑎)) , (4.52)
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Algorithm 3 Expectation Propagation: parallel update

procedure EP(𝐀, 𝒎, {𝜓1, ..., 𝜓𝑁})
Initialize 𝒂old and 𝒅old

for iter = 1, ...,maxiter do
𝒂𝒗 = 𝟎, Δav = 0
𝜮 = (A + 𝐃)−1

̄𝒙 = 𝜮(𝒎 + 𝐃𝐀)
for 𝑘 = 1, ...,𝑁 do

̄𝑥(𝑘)𝑘 =
̄𝑥𝑘−Σ𝑘𝑘

𝑎𝑘
𝑑𝑘

1−Σ𝑘𝑘
𝑑𝑘

Σ(𝑘)𝑘𝑘 = Σ𝑘𝑘
1− 1

𝑑𝑘
Σ𝑘𝑘

⟨𝑥𝑘⟩𝑄(𝑘) , ⟨𝑥2𝑘 ⟩𝑄(𝑘) = moments (𝜇(𝑘)𝑘 ,Σ(𝑘)𝑘𝑘 , 𝜓𝑘)
Δav ← max(Δav, |⟨𝑥𝑘⟩𝑄(𝑘) − av𝑘|)
av𝑘 ← ⟨𝑥𝑘⟩𝑄(𝑘)

var𝑘 ← ⟨𝑥2𝑘 ⟩𝑄(𝑘) − ⟨𝑥𝑘⟩2𝑄(𝑘)

𝑑new𝑘 = ( 1
var𝑘

− 1
Σ(𝑘)𝑘𝑘

)
−1

𝑎new𝑘 = ⟨𝑥𝑘⟩𝑄(𝑘) + 𝑑𝑘 (
⟨𝑥𝑘⟩𝑄(𝑘)

Σ(𝑘)𝑘𝑘
− 𝜇(𝑘)𝑘

Σ(𝑘)𝑘𝑘
)

𝑑old𝑘 ← 𝛾𝑑old𝑘 + (1 − 𝛾)𝑑new𝑘
𝑎old𝑘 ← 𝛾𝑎old𝑘 + (1 − 𝛾)𝑎new𝑘

if Δav < 𝜖 then
return 𝒂𝒗, 𝒗𝒂𝒓
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where we have used the shorthand notations:

𝜃𝑖(𝑥𝑖) = ∑
𝑗∈𝒳

𝜃𝑖;𝑗𝕀(𝑥𝑖 = 𝑗), (4.53)

𝜃𝑎(𝒙𝑎) = ∑
𝒌∈𝒳 |𝜕𝑎|

𝜃𝑎;𝒌𝕀(𝒙𝑎 = 𝒌). (4.54)

Here, the vector of sufficient statistics is given by the set of indicator functions:

𝑻(𝒙) = ({𝕀(𝑥𝑖 = 𝑗)}𝑖∈𝑉,𝑗∈𝒳, {𝕀(𝒙𝑎 = 𝒌)}𝑎∈𝐹,𝒌∈𝒳 |𝜕𝑎|) , (4.55)

and 𝜽 = ({𝜃𝑖;𝑗}𝑖∈𝑉,𝑗∈𝒳, {𝜃𝑎;𝒌}𝑎∈𝐹,𝒌∈𝒳 |𝜕𝑎|) is the vector of natural parameters. For this choice
of sufficient statistics, the mean parameters of the model are given by the variable
marginals and by the factor marginals:

⟨𝑻(𝒙)⟩ = ({𝑝(𝑥𝑖 = 𝑗)}𝑖∈𝑉, {𝑝(𝒙𝑎 = 𝒌)}𝑎∈𝐹) . (4.56)

The tractable part of the distribution is fully factorized over all the variables and
reads:

𝐺(𝒙) = exp (∑
𝑖∈𝑉

𝜃𝑖(𝑥𝑖)) , (4.57)

whereas, concerning the intractable part, we shall approximate:

𝜓𝑎(𝒙𝑎) = exp (𝜃𝑎(𝒙𝑎)) (4.58)

by means of fully factorized approximating terms given by:

𝜙𝑎(𝒙𝑎) ∝ ∏
𝑖∈𝜕𝑎

ℎ𝑎𝑖(𝑥𝑖). (4.59)

Within the EP framework, this corresponds to identifying:

ℎ𝑎𝑖(𝑥𝑖) = exp(𝜆𝑎𝑖(𝑥𝑖)), (4.60)

thereby approximating Eq. (4.52) by means of another exponential family of distribu-
tions:

𝑝(𝒙|𝜽) = 1
𝑍(𝜽)

e𝜽
⊤𝑻(𝒙) = 1

𝑍(𝜽)
exp (∑

𝑖∈𝑉
𝜃𝑖(𝑥𝑖) +∑

𝑎∈𝐹
∑
𝑖∈𝜕𝑎

𝜆𝑎𝑖(𝑥𝑖)) , (4.61)

where all sufficient statistics are now given by single variable indicator functions and
where we have used the shorthand notation:

𝜆𝑎𝑖(𝑥𝑖) = ∑
𝑗∈𝒳

𝜆𝑎𝑖;𝑗𝕀(𝑥𝑖 = 𝑗). (4.62)
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By defining:

𝑞𝑖(𝑥𝑖) ∝ ∏
𝑎∈𝜕𝑖

ℎ𝑎𝑖(𝑥𝑖), (4.63)

we thus obtain a fully factorized approximated distribution:

𝑄(𝒙) ∝ 𝐺(𝒙)∏
𝑎∈𝐹

∏
𝑖∈𝜕𝑎

ℎ𝑎𝑖(𝑥𝑖) = ∏
𝑖∈𝑉

(exp (𝜃𝑖(𝑥𝑖))∏
𝑎∈𝜕𝑖

ℎ𝑎𝑖(𝑥𝑖)) ∝ ∏
𝑖∈𝑉

𝑞𝑖(𝑥𝑖), (4.64)

After performing the removal step, the cavity distribution reads:

𝑄⧵𝑎(𝒙) =
𝑄(𝒙)
𝜙𝑎(𝒙𝑎)

∝ 𝐺(𝒙)∏
𝑏≠𝑎

∏
𝑖∈𝜕𝑏

ℎ𝑏𝑖(𝑥𝑖) ∝ ∏
𝑖∈𝜕𝑎

𝑞⧵𝑎𝑖 (𝑥𝑖), (4.65)

where, given a fixed 𝑎 ∈ 𝐹 and 𝑖 ∈ 𝜕𝑎, we have defined 𝑞⧵𝑎𝑖 (𝑥𝑖) as:

𝑞⧵𝑎𝑖 (𝑥𝑖) ∝
𝑞𝑖(𝑥𝑖)
ℎ𝑎𝑖(𝑥𝑖)

∝ ∏
𝑏∈𝜕𝑖⧵𝑎

ℎ𝑏𝑖(𝑥𝑖). (4.66)

As a consequence, for the tilted distribution, we have that:

𝑄(𝑎)(𝒙) ∝ 𝜓𝑎(𝒙𝑎)𝑄⧵𝑎(𝒙) ∝ 𝜓𝑎(𝒙𝑎)∏
𝑖∈𝜕𝑎

𝑞⧵𝑎𝑖 (𝑥𝑖). (4.67)

While in Gaussian EP the projection step consists in the matching of the first and
second moments of 𝑄(𝒙) and of 𝑄(𝑎)(𝒙), for the sufficient statistics given in Eq. (4.55)
we have a condition on the matching of their marginals:

𝑄𝑖(𝑥𝑖) = 𝑄(𝑎)
𝑖 (𝑥𝑖). (4.68)

On the one hand, if the variable node 𝑖 is not connected to the factor node 𝑎, then
the matching condition (4.68) leaves the approximating factors ℎ𝑏𝑖(𝑥𝑖) (with 𝑏 ∈ 𝜕𝑖)
unchanged. On the other hand, if 𝑖 ∈ 𝜕𝑎, then the marginal of the tilted distribution can
be expressed as:

𝑄(𝑎)
𝑖 (𝑥𝑖) = ∑

𝒙⧵𝑖
𝑄(𝑎)(𝒙) ∝ ∑

𝒙𝜕𝑎⧵𝑖
𝜓𝑎(𝒙𝑎)∏

𝑗∈𝜕𝑎
𝑞⧵𝑎𝑗 (𝑥𝑗) ≕ 𝑞(𝑎)𝑖 (𝑥𝑖) (4.69)

and the approximating factors 𝜙𝑎(𝒙𝑎) are updated at the refine step by computing the
new terms ℎ𝑎𝑖(𝑥𝑖) as follows:

ℎ𝑎𝑖(𝑥𝑖) ∝
𝑞𝑖(𝑥𝑖)
𝑞⧵𝑎𝑖 (𝑥𝑖)

=
𝑞(𝑎)𝑖 (𝑥𝑖)
𝑞⧵𝑎𝑖 (𝑥𝑖)

= ∑
𝒙𝜕𝑎⧵𝑖

𝜓𝑎(𝒙𝑎) ∏
𝑗∈𝜕𝑎⧵𝑖

𝑞⧵𝑎𝑗 (𝑥𝑗), (4.70)

where we took advantage of the projection step.
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Equations (4.66) and (4.70) coincide with the belief propagation equations. In par-
ticular, from Eq. (4.66), one sees that the {𝑞⧵𝑎𝑖 (𝑥𝑖)}𝑎∈𝐹 play the role of variable to factor
messages, whereas, from Eq. (4.70) the factors ℎ𝑎𝑖(𝑥𝑖) can be interpreted as factor to
variable messages. Finally, we see that each 𝑞𝑖(𝑥𝑖) corresponds to the marginal belief of
the variable 𝑥𝑖:

𝑞𝑖(𝑥𝑖) ∝ 𝑞⧵𝑎𝑖 (𝑥𝑖)ℎ𝑎𝑖(𝑥𝑖) = ∏
𝑏∈𝜕𝑖

ℎ𝑏𝑖(𝑥𝑖), (4.71)

namely, the product of all incoming messages ℎ𝑏𝑖(𝑥𝑖).

4.7 Relationship to adaTAP
Gaussian EP is equivalent to the adaTAP approach described in Sec. 3.5 [103], as will
now be made precise. Consider the marginal distribution 𝑃𝑖(𝑥𝑖) given in Eq. (3.50) and
let us replace the factor 𝜓𝑖(𝑥𝑖) with a Gaussian 𝜙𝑖(𝑥𝑖) ∝ exp (−1

2Λ𝑖𝑥2𝑖 + 𝛾𝑖𝑥𝑖):

𝑄𝑖 (𝑥𝑖) =
1
𝑍𝑄

𝜙𝑖(𝑥𝑖) exp [𝑥𝑖 (⟨ℎ𝑖⟩\𝑖 + 𝐵𝑖) +
𝑉𝑖
2
𝑥𝑖2] , (4.72)

the parameters Λ𝑖 and 𝛾𝑖 of which are chosen so that the first two moments of 𝑃𝑖(𝑥𝑖) and
of 𝑄𝑖(𝑥𝑖) are matched. In other words, we require that the following equalities hold:

⟨𝑥𝑖⟩𝑃𝑖 =
𝛾𝑖 + ⟨ℎ𝑖⟩⧵𝑖
Λ𝑖 − 𝑉𝑖

, (4.73)

⟨𝑥2𝑖 ⟩𝑃𝑖 − ⟨𝑥𝑖⟩2𝑃𝑖 =
1

Λ𝑖 − 𝑉𝑖
, (4.74)

where the quantities on the right hand side are the mean and the variance of 𝑄𝑖(𝑥𝑖) ex-
pressed in terms of the cavity parameters and of the parameters of 𝜙𝑖(𝑥𝑖). However, the
moments of 𝑄𝑖(𝑥𝑖) can also be directly obtained starting from the multivariate Gaussian
approximation 𝑄(𝒙):

𝑄(𝒙) ∝ exp (1
2
𝒙⊤𝐉𝒙)∏

𝑖
𝜙𝑖(𝑥𝑖), (4.75)

resulting in:

⟨𝑥𝑖⟩𝑄𝑖 = ((𝜦 − 𝐉)−1𝜸)𝑖 , (4.76)

⟨𝑥2𝑖 ⟩𝑄𝑖 − ⟨𝑥𝑖⟩2𝑄𝑖
= ((𝜦 − 𝐉)−1)𝑖𝑖 . (4.77)

In particular, from the relations for the variance in Eqs. (4.74) and (4.77) one recovers
the adaTAP relation (3.66).
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4.8 Vector approximate message passing as a special
case of Gaussian EP

The vector approximate message passing (VAMP) algorithm presented in Sec. 3.7 can
be seen as a special case of Gaussian EP with univariate Gaussian approximating fac-
tors too. In this case, the main difference is that in VAMP the approximating Gaus-
sian factors have the same variance. Thus, the exponential family of distributions con-
sidered in VAMP is that of isotropic Gaussian distributions. In order to highlight the
relationship to Gaussian EP, we shall consider the LMMSE formulation of VAMP as
presented in Algorithm 1, where all but one factor nodes are connected to only one
variable. More precisely, we have 𝑃(𝒙) ∝ 𝜓0(𝒙)∏

𝑁
𝑎=1 𝜓𝑎(𝑥𝑎) or, equivalently, 𝑃(𝒙, 𝒙

′) =
𝜓0(𝒙′)𝛿(𝒙 − 𝒙′)∏𝑁

𝑎=1 𝜓𝑎(𝑥𝑎) for the intractable distribution.
In VAMP, each marginalized tilted distribution, for 𝑙 = 1,… ,𝑁, has mean given by

the output of the MMSE scalar denoiser 𝑔1((𝑟1𝑘)𝑙, 𝛾1𝑘), namely:

(𝑥̂1𝑘)𝑙 = ∫𝑥𝜓(𝑥)𝒩 (𝑥; (𝑟1𝑘)𝑙, 𝛾−11𝑘 ) d𝑥, (4.78)

where 𝒓1𝑘 and 𝛾1𝑘 play the role of cavity means and cavity precisions and are associated
with the projection of the multivariate factor 𝜓0(𝒙) onto an isotropic Gaussian distribu-
tion 𝒩 (𝒙; 𝒓1𝑘, 𝛾−11𝑘 𝐈). At iteration 𝑘, the resulting tilted distributions are also projected
onto a single isotropic Gaussian distribution 𝒩 (𝐱; 𝒙̂1, 𝜂−11𝑘 𝐈). The Gaussian approxima-
tion of the product ∏𝑁

𝑎=1 𝜓𝑎(𝑥𝑎) appearing in the intractable distribution 𝑃(𝒙) is com-
puted from the projected tilted distribution 𝒩 (𝐱; 𝒙̂1, 𝜂−11𝑘 𝐈) and from 𝒩 (𝒙; 𝒓1𝑘, 𝛾−11𝑘 𝐈) by
means of the quotient rule, yielding the isotropic Gaussian distribution 𝒩 (𝐱; 𝐫2𝑘, 𝛾−12𝑘 𝐈).
Therefore, in VAMP, the EP-like approximating Gaussian factors 𝜙(𝑥𝑖; 𝑎𝑖, 𝑏𝑖) have mean
𝑎𝑖 = 𝑟2𝑘,𝑖 and common precision 𝑏−1𝑖 = 𝛾2𝑘. The fully approximate Gaussian approxima-
tion of the posterior distribution, which in EP was denoted as 𝑄(𝒙), is obtained by first
combining themultivariate Gaussian factor 𝜓0(𝒙) and the approximation𝒩 (𝐱; 𝐫2𝑘, 𝛾−12𝑘 𝐈)
of the product ∏𝑁

𝑎=1 𝜓𝑎(𝑥𝑎) using the product rule for Gaussian distributions and then
by projecting back onto the family of isotropic Gaussian distributions. The result of the
projection is used to recompute the approximation of 𝜓0(𝒙) at iteration 𝑘+1 by dividing
by 𝒩 (𝐱; 𝐫2𝑘, 𝛾−12𝑘 𝐈) by means of the quotient rule. Notice that, contrary to VAMP, the
multivariate factor 𝜓0(𝒙) is treated without further approximations in Gaussian EP. The
steps are then repeated until a predefined maximum number of iterations is reached.
The VAMP quantities are compared to the associated Gaussian EP quantities in Table
4.1.

The EP moment matching conditions are not explicitly imposed but, at the fixed
point of the algorithm, they are implied by self-consistency, as the two Gaussian dis-
tributions 𝒩 (𝒙1; 𝒙̂1𝑘, 𝜂−11𝑘 𝐈) and 𝒩 (𝒙2; 𝒙̂2𝑘, 𝜂−12𝑘 𝐈) that are updated at each iteration both
aim at approximating the intractable distribution 𝑃(𝒙). As a consequence, at the fixed
point, one must have that 𝒓1𝑘 = 𝒓2𝑘 and that 𝜂1𝑘 = 𝜂2𝑘.
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Quantity Expression in VAMP Expression in Gaussian EP
Tilted distribution 𝒩 (𝒙1; 𝒙̂1𝑘, 𝜂−11𝑘 𝐈) 𝒩 (𝒙; 𝝁̂(𝑙),𝜮(𝑙))

Base distribution 𝜓0(𝒙) 𝒩 (𝒙1; 𝒓1𝑘, 𝛾−11𝑘 ) 𝐺(𝒙)
Approximating factors 𝒩 (𝒙2; 𝒙̂2𝑘, 𝛾−12𝑘 𝐈) ∏𝑁

𝑛=1
1

√2𝜋𝑑𝑛
exp (− (𝑥−𝑎𝑛)2

2𝑑𝑛
)

Full Gaussian approximation 𝒩 (𝒙1; ̂𝒓2𝑘, 𝜂−12𝑘 𝐈) 𝒩 (𝒙; 𝝁,𝜮)

Table 4.1: Relationship of the VAMP quantities to the Gaussian EP related ones.

4.9 Expectation propagation as a variational problem
Expectation propagation can be viewed as a variational problemwhere the approximat-
ing factors are theminimizers of a variational free energy associatedwith the algorithm.
In this section, we will introduce the EP free energy having in mind Gaussian EP and
show that the fixed points of the algorithm are stationary points of this variational free
energy.

4.9.1 EP free energy
In order to obtain the variational free energy of Gaussian EP, we can proceed by anal-
ogy with the case of loopy belief propagation (A. Braunstein, personal communication,
2018). Indeed, let us consider the distribution:

𝑃(𝒙) = 1
𝑍
∏
𝑎

𝜓𝑎(𝒙𝑎), (4.79)

and recall the definitions of its Gaussian EP approximation:

𝑄(𝒙) = 1
𝑍𝑄

∏
𝑎

𝜙𝑎(𝒙𝑎) (4.80)

and of the tilted distributions:

𝑄(𝑎)(𝒙) = 1
𝑍𝑄

𝜓𝑎(𝒙𝑎)∏
𝑏≠𝑎

𝜙𝑏(𝒙𝑏), (4.81)

for 𝑎 = 1,… ,𝑁.
As anticipated above, let us first consider the case of loopy belief propagation. It can

be proved that the following identity for the intractable distribution 𝑃(𝒙) holds:

𝑃(𝒙) = 𝛼𝐵𝑃 ̂𝑃 (𝒙), (4.82)

where the proportionality constant reads 𝛼𝐵𝑃 ≔ 𝑍Bethe/𝑍, with 𝑍Bethe given by Eq.
(3.30), and the distribution ̂𝑃 (𝒙) is a Bethe factorization in terms of the marginal beliefs
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(3.20) and (3.21):

̂𝑃 (𝒙) ≔ ∏
𝑎

𝑏𝑎(𝒙𝑎)
∏𝑖∈𝜕𝑎 𝑏𝑖(𝑥𝑖)

∏
𝑖
𝑏𝑖(𝑥𝑖). (4.83)

Note, that in the case of a tree, the identity (4.82) holds with 𝛼𝐵𝑃 = 1 by the junction
tree theorem [26].

Considering now EP, we define the factorization:

̂𝑃 (𝒙) ≔ 𝑄(𝒙)∏
𝑎

𝑄(𝑎)(𝒙)
𝑄(𝒙)

, (4.84)

and we may assume that:

𝑃(𝒙) = 𝛼𝐸𝑃 ̂𝑃 (𝒙), (4.85)

where we identify 𝛼𝐸𝑃 ≔ 𝑍𝐸𝑃
𝑍 . Indeed, in the Gaussian case, all 𝜓𝑎(𝒙𝑎) are Gaussian

factors:

𝜓𝑎(𝒙𝑎) = 𝜙𝑎(𝒙𝑎), (4.86)

so the equalities 𝑃(𝒙) = ̂𝑃(𝒙) and 𝛼𝐸𝑃 = 1 are identically satisfied. On the other hand,
if the priors are not Gaussian, we can express the constant 𝛼𝐸𝑃 in terms of the partition
functions (or, equivalently, just take the expression of ̂𝑃 (𝒙), rearrange it and isolate 𝑍𝐸𝑃
by comparison with the assumption (4.85)):

1 = ∫ d𝒙𝑃(𝒙) = 𝛼𝐸𝑃 ∫ d𝒙 ̂𝑃(𝒙) = 𝛼𝐸𝑃 ∫ d𝒙𝑄(𝒙)∏
𝑎

𝑄(𝑎)(𝒙)
𝑄(𝒙)

= 𝛼𝐸𝑃 ∫ d𝒙𝑄(𝒙)∏
𝑎

𝜓𝑎(𝒙𝑎)
𝑍𝑄(𝑎)

𝜙𝑎(𝒙𝑎)
𝑍𝑄

= 𝛼𝐸𝑃
1
𝑍𝑄

(∏
𝑎

𝑍𝑄
𝑍𝑄(𝑎)

) (∫ d𝒙𝑃(𝒙)) 𝑍

= 𝛼𝐸𝑃𝑍𝑁−1
𝑄 (∏

𝑎
𝑍−1
𝑄(𝑎)) 𝑍

(4.87)

Therefore, we have that:

𝛼𝐸𝑃 =
1
𝑍
(𝑍 1−𝑁

𝑄 ∏
𝑎

𝑍𝑄(𝑎)) , (4.88)

which, by the definition of 𝛼𝐸𝑃, implies:

𝑍𝐸𝑃 = 𝑍 1−𝑁
𝑄 ∏

𝑎
𝑍𝑄(𝑎) . (4.89)

Finally, we obtain that the associated EP free energy is expressed as:

𝐹𝐸𝑃 = − ln𝑍𝐸𝑃 = (𝑁 − 1) ln𝑍𝑄 −∑
𝑎
ln (𝑍𝑄(𝑎)) . (4.90)
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4.9.2 EP free energy and EP fixed points
The fixed points (𝒂∗, 𝒅∗) of Gaussian EP, which fulfill the moment matching conditions
(4.24) for all 𝑛 = 1,… ,𝑁, are stationary points of the EP free energy (4.90), i.e., they
satisfy the conditions:

0 =
𝜕𝐹𝐸𝑃
𝜕𝑎𝑛

|
𝒂∗,𝒅∗

= [(𝑁 − 1)⟨𝑤𝑛⟩𝑄 −∑
𝑙≠𝑛

⟨𝑤𝑛⟩𝑄(𝑙)]
𝒂∗,𝒅∗

, (4.91)

0 =
𝜕𝐹𝐸𝑃
𝜕𝑑𝑛

|
𝒂∗,𝒅∗

= [(𝑁 − 1)⟨𝑤2
𝑛 ⟩𝑄 −∑

𝑙≠𝑛
⟨𝑤2

𝑛 ⟩𝑄(𝑙)]
𝒂∗,𝒅∗

, (4.92)

for 𝑛 = 1,… ,𝑁.
In order to show this, we shall prove that the moment matching conditions imply

that (4.91) and (4.92) are satisfied. This proof is published in Ref. [98].
We start from the expressions of the tilted moments ⟨𝑤𝑛⟩𝑄(𝑙) and ⟨𝑤2

𝑛 ⟩𝑄(𝑙) and write
them as:

⟨𝑤𝛼
𝑛 ⟩𝑄(𝑙) = ∫

𝑍𝑄
𝑍𝑄(𝑙)

𝑄(𝒘)
𝜓𝑙(𝑤𝑙)
𝜙𝑙(𝑤𝑙)

𝑤𝛼
𝑛 d𝒘 = ∫𝑄(𝒘)

𝑄(𝑙)(𝑤𝑙)
𝑄(𝑤𝑙)

𝑤𝛼
𝑛 d𝒘

= ⟨∫
+∞

−∞

𝑄(𝑤𝑛,𝑤𝑙)
𝑄(𝑤𝑙)

𝑤𝛼
𝑛 d𝑤𝑛⟩

𝑄(𝑙)(𝑤𝑙)
, 𝛼 = 1,2,

where, in the last equality, for 𝛼 = 1 (resp., 𝛼 = 2), the integral that appears in the
average with respect to 𝑄(𝑙)(𝑤𝑙) is the first (resp., second) moment of 𝑤𝑛, conditioned
on 𝑤𝑙 and computed with respect to 𝑄. These moments depend on 𝑤𝑙 through the mean
(resp., squared mean) of 𝑄(𝑤𝑛|𝑤𝑙). In turn, the dependence of such mean on 𝑤𝑙 is lin-
ear, implying that ⟨𝑤𝑛⟩𝑄(𝑤𝑛|𝑤𝑙) and ⟨𝑤2

𝑛 ⟩𝑄(𝑤𝑛|𝑤𝑙) depend on 𝑤𝑙 linearly and quadratically,
respectively. As a consequence, by the moment matching conditions, we have that:

⟨∫
+∞

−∞

𝑄(𝑤𝑛,𝑤𝑙)
𝑄(𝑤𝑙)

𝑤𝛼
𝑛 d𝑤𝑛⟩

𝑄(𝑙)(𝑤𝑙)
= ⟨∫

+∞

−∞

𝑄(𝑤𝑛,𝑤𝑙)
𝑄(𝑤𝑙)

𝑤𝛼
𝑛 d𝑤𝑛⟩

𝑄(𝑤𝑙)
, (4.93)

for 𝛼 = 1,2, implying that ⟨𝑤𝛼
𝑛 ⟩𝑄(𝑙) = ⟨𝑤𝛼

𝑛 ⟩𝑄 and, therefore, that the conditions (4.91) and
(4.92) are identically true.

4.10 Learning the parameters of the priors within the
EP framework

Let us consider a Bayesian inference problem and let 𝜻 be the set of parameters of a prior
distribution 𝑃(𝒙|𝜻) = ∏𝑎 𝜓𝑎(𝑥𝑎|𝜻𝑎). For example, the parameters 𝜻𝑎 could be the density
𝜌 and the precision 𝜆 of the spike-and-slab prior introduced in Eq. (2.35), as it will be
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the case in Chapters 5 and 6. Moreover, let us assume that 𝒚 is a set of observations,
from the knowledge of which we would like to infer a set of hidden variables 𝒙. We can
estimate the parameters 𝜻 of the prior by maximimum likelihood, where the likelihood
function reads:

𝑃(𝒚|𝜻) = ∫ d𝒙𝑃(𝒚, 𝒙|𝜻) = ∫ d𝒙𝑃(𝒚|𝒙)𝑃(𝒙|𝜻) = 𝑍(𝜻), (4.94)

which is nothing but the intractable normalization of the posterior distribution in Eq.
(4.7). Equivalently, one can associate a free energy to the partition function (4.94) by
means of the definition 𝐹 = − ln𝑍(𝜻). However, since this is intractable too, it is desir-
able to consider an approximate free energy to be optimized.

One way to approximate 𝐹(𝜻) is by means of the EP free energy. Indeed, at the fixed
point of the EP algorithm, 𝐹(𝜻) can be approximated by Eq. (4.90), to be minimized 𝐹𝐸𝑃
via gradient descent:

𝜁 (𝑡+1)𝑗 = 𝜁 (𝑡)𝑗 − 𝛿𝜁𝑗
𝜕𝐹𝐸𝑃
𝜕𝜁𝑗

, (4.95)

where 𝑡 denotes the current iteration, 𝜁𝑗 denotes the 𝑗-th component of the parameter
vector 𝜻 and 𝛿𝜁𝑗 is its corresponding learning rate.

Notice that, although the only contributions to 𝐹𝐸𝑃 depending explicitly on the pa-
rameters 𝜻 of the prior are the terms 𝐹𝑄(𝑎) , the components of the gradient should, in
principle, include other terms as well. However, since these contributions depend on
the derivatives of the free energy with respect to the cavity parameters, which vanish
at the EP fixed point, we can neglect those terms.

The EP inference algorithm can be combined with the estimation of the parameters
of the prior by iteratively alternating an EP update step at fixed 𝜻 and an update of 𝜻
performed via gradient descent at fixed EP parameters. This is completely analogous
to an expectation maximization (EM) scheme, where the optimization over the EP pa-
rameters corresponds to the expectation step (E-step) and the minimization of 𝐹𝐸𝑃 with
respect to 𝜻 corresponds to the maximization step (M-step). Notice that a “standard”
EM procedure could also be performed. In this case, one can alternate a complete EP
estimation of the approximating posterior distributions at fixed prior parameters until
convergence is reached (E-step) and a maximum likelihood update of the prior param-
eters (M-step). The fact that we employ an alternating minimization procedure of this
kind justifies the fact that we only consider the explicit dependence of 𝐹𝐸𝑃 on the prior
parameters.
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Chapter 5

Expectation propagation on
compressed sensing

As discussed in Sec. 2.1, the compressed sensing (CS) problem involves finding the
𝐾-dimensional support set of an 𝑁-dimensional sparse signal, with 𝐾 ≪ 𝑁, which is,
in principle, an NP complete problem. As a consequence, a number of approximate
techniques have been developed in order to find the non-zero entries of the signal and
estimate their values. These methods are based on convex relaxation (e.g., LASSO),
greedy approaches (e.g., matching pursuit) or Bayesian inference (e.g., message passing
algorithms). In this Chapter, we present a Gaussian EP based scheme for the CS prob-
lem. After formulating the problem within a Bayesian framework and describing how
Gaussian EP can be applied to it, we will present empirical results about the perfor-
mance of the method as compared to other state-of-the-art techniques from statistical
physics and signal processing: in particular, we will first consider CS reconstruction
with random i.i.d. sensing matrices and then focus on a simple case of correlated ran-
dom matrices. The work presented in this Chapter is published in Ref. [98] and partly
develops some preliminary results appearing in Anna PaolaMuntoni’s PhD thesis [104].
The implementation of Gaussian EP used to obtain the results shown in this chapter can
be found in Ref. [105].

5.1 Bayesian framework for the CS problem and EP
approximation of the posterior distribution

We will now introduce the Bayesian setup that will be used to study the CS problem.
Let us denote the unknown vector (or signal) to be retrieved as 𝒘 ∈ ℝ𝑁 and let 𝐅 ∈ ℝ𝑀×𝑁

be a matrix with maximum rank, called sensing or measurement matrix in the context
of CS. We consider the standard linear estimation problem:

𝒚 = 𝐅𝒘 + 𝒏, (5.1)
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where 𝒚 ∈ ℝ𝑀 is a set of noisy measurements, 𝒏 ∼ 𝒩 (𝒏; 0, 𝛽−1𝐈) is additive white noise
with variance 1/𝛽 and we are interested in the undersampling1 regime 𝑀 < 𝑁. Notice
that Eq. (5.1) can be recast as the problem of minimizing an energy function:

𝒘̂ = arg min
𝒘

𝐸(𝒘), (5.2)

where 𝐸(𝒘) is the quadratic form given by:

𝐸(𝒘) ≔ 1
2
‖𝒚 − F𝑤‖22 =

1
2
(𝒚 − F𝒘)𝑇 (𝒚 − F𝒘). (5.3)

In this sense, the problem is akin to that of finding the ground state of a system of
interacting particles, where the interactions are determined by the matrix 𝐅.

5.1.1 Case of nonrigid linear constraints
In a Bayesian framework, we can enforce the linear constraints in Eq. (5.1) by defining
the likelihood :

𝐿(𝒘) ≔ 𝑃(𝒚|𝒘) = (
𝛽
2𝜋

)
𝑀
2
e−𝛽𝐸(𝒘), (5.4)

which, for fixed 𝒘 and given 𝐅, can be interpreted as the probability of observing an
additive white noise vector 𝒏 = 𝒚−F𝒘 distributed according to𝒩 (𝒏; 0, 𝛽−1𝐈). The value
of 𝛽 determines the extent to which the linear constraints can be violated and is set to
a very large value (e.g., 𝛽 ∼ 109) when dealing with the problem of CS reconstruction
from noiseless measurements. The extra constraints on the entries of 𝒘will be imposed
in terms of a prior distribution, which we assume to be factorized:

𝑃(𝒘) =
𝑁
∏
𝑖=1

𝜓𝑖(𝑤𝑖).

In particular, we choose factors 𝜓𝑖(𝑤𝑖) of the spike-and-slab kind [31] in order to promote
sparsity of the solution sought:

𝜓(𝑤𝑖) = (1 − 𝜌)𝛿(𝑤𝑖) + 𝜌
√
2𝜋
𝜆
e−

1
2𝜆𝑤

2
𝑖 , (5.5)

Therefore, we have for the posterior distribution of the signal 𝒘:

𝑃 (𝒘|𝐅, 𝒚) =
𝑃 (𝒚|𝐅,𝒘) 𝑃 (𝒘)

𝑃 (𝒚)

= 1
𝑍𝑃

e−
𝛽
2 (𝒚−𝐅𝒘)

𝑇(𝒚−𝐅𝒘)
𝑁
∏
𝑖=1

[(1 − 𝜌)𝛿(𝑤𝑖) + 𝜌
√
2𝜋
𝜆
e−

1
2𝜆𝑤

2
𝑖 ] .

(5.6)

1Notice that the overdetermined regime 𝑀 ≥ 𝑁 can also be addressed using the same computational
framework and, in particular, using Gaussian EP. In the noiseless case, the system can be solved exactly
using Gaussian elimination.
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We are interested in determining the MMSE estimate 𝒘̂ of the signal 𝒘. Since the pos-
terior probability in equation (5.6) is intractable, we can approximate it using Gaussian
EP.

In order to compute the approximated distribution 𝑄(𝒘), we replace the intractable
factors 𝜓𝑖(𝑤𝑖)with univariate Gaussian distributions 𝜙𝑖(𝑤𝑖) = 𝒩 (𝑤𝑖; 𝑎𝑖, 𝑑𝑖), for 𝑖 = 1,… ,𝑁:

𝑄(𝒘|𝐅, 𝒚) = 1
𝑍𝑄

e−
𝛽
2 (𝒚−𝐅𝒘)

⊤(𝒚−𝐅𝒘)
𝑁
∏
𝑖=1

𝜙𝑖(𝑤𝑖),

and rewrite the exponent:

𝛽(𝒚 − 𝐅𝒘)⊤(𝒚 − 𝐅𝒘) + (𝒘 − 𝒂)⊤𝐃(𝒘 − 𝒂) =
= 𝒘⊤(𝛽𝐅⊤𝐅 + 𝐃)𝒘 − 2𝒘⊤(𝛽𝐅⊤𝒚 + 𝐃𝒂) + cst,

(5.7)

where 𝐃 is a diagonal matrix having diagonal elements 𝑑−11 ,… , 𝑑−1𝑁 . Then, defining the
covariance matrix

𝜮−1 ≔ 𝛽𝐅𝑇𝐅 + 𝑫, (5.8)

and the mean vector:

𝒘̄ ≔ 𝜮(𝛽𝐅𝑇𝒚 + 𝑫𝒂), (5.9)

we obtain a multivariate Gaussian distribution with this mean and covariance matrix
after completing the square in Eq. (5.7):

𝑄(𝒘) ≔ 1
𝑍𝑄

e−
1
2 (𝒘−𝒘̄)

𝑇𝜮−1(𝒘−𝒘̄)
, (5.10)

where the normalization constant is given by 𝜮:

𝑍𝑄 = (2𝜋)
𝑁
2 (det𝜮)

1
2 . (5.11)

Analogously, the tilted distributions 𝑄(𝑖)(𝒘) are expressed as:

𝑄(𝑖)(𝒘) ≔ 1
𝑍𝑄(𝑖)

e−
1
2 (𝒘−𝒘̄)

𝑇(𝜮(𝑖))
−1
(𝒘−𝒘̄) [(1 − 𝜌)𝛿(𝑤𝑖) + 𝜌

√
2𝜋
𝜆
e−

1
2𝜆𝑤

2
𝑖 ] , (5.12)

where

(𝜮(𝑖))
−1

≔ 𝛽𝐅𝑇𝐅 + 𝑫(𝑖), 𝒘̄(𝑖) ≔ 𝜮(𝑖)(𝛽𝐅𝑇𝒚 + 𝑫𝒂). (5.13)

Given these definitions, one can apply the Gaussian EP scheme to the CS problem by
iterating the EP moment matching conditions as described in Section 4.3.
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5.1.2 Limit of rigid linear constraints
We can take the limit 𝛽 → ∞ of Eq. (5.6) in order to take advantage of the formulation of
Gaussian EP described in Sec. 4.4. In this limit, the likelihood (5.4) becomes a Dirac delta
factor, 𝛿(𝐅𝒘 −𝒚), which enforces the linear constraints exactly. As we have 𝑁 variables
and 𝑀 constraints, we can separate the signal 𝒘 into two subvectors, one of which is
made of 𝑁 −𝑀 variables, whereas the other one is made of the remaining 𝑀 variables.
We shall call the former 𝒖 and the latter 𝒗, where 𝒗 depends on all components of the
subvector 𝒖. Without loss of generality, we can take, for instance, 𝒖 = (𝑤1,… ,𝑤𝑁−𝑀)⊤
and 𝒗 = (𝑤𝑁−𝑀+1,… ,𝑤𝑁)⊤. Then, by performing elementary row operations, the linear
system of equations:

𝒚 = 𝐅𝒘

can be rewritten as:
̃𝒚 = (−𝐗| 𝐈) 𝒘,

where 𝐈 is the 𝑀 × 𝑀 identity matrix, or, equivalently, as:

𝒗 = 𝐗𝒖 + ̃𝒚,

where we have isolated the dependent variables and expressed them as a function of
the independent ones. As a consequence, the posterior distribution of 𝒘 can be written
as:

𝑃(𝒖, 𝒗) = 1
𝑍
𝛿(𝒗 − 𝐗𝒖 − ̃𝒚)

𝑁−𝑀
∏
𝑖=1

[(1 − 𝜌)𝛿(𝑢𝑖) + 𝜌
√
2𝜋
𝜆
e−

1
2𝜆𝑢

2
𝑖 ] ×

×
𝑀
∏
𝑖=1

[(1 − 𝜌)𝛿(𝑣𝑖) + 𝜌
√
2𝜋
𝜆
e−

1
2𝜆𝑣

2
𝑖 ] ,

(5.14)

which can be approximated using Gaussian EP as detailed in Sec. 4.4.

5.2 Moments of the tilted distributions in theCSprob-
lem

In this section, we give the expressions of the moments of the tilted distributions given
by Eq. (5.12), which are needed when imposing the moment matching conditions in
Gaussian EP.

5.2.1 Tilted moments with a spike-and-slab prior
Starting from the 𝑖-th marginal of the tilted distribution (4.22):

𝑄(𝑖)(𝑤𝑖) =
1

𝑍𝑄(𝑖)
𝑄⧵𝑖(𝑤𝑖)𝜓𝑖(𝑤𝑖) (5.15)
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where, given the cavity distribution:

𝑄⧵𝑖(𝑤𝑖) =
1

√2𝜋Σ
′
𝑖
e
−

(𝑤𝑖− ̄𝑤′𝑖 )
2

2Σ′𝑖 , (5.16)

we have simplified the notation by replacing ( ̄𝑤(𝑖))𝑛 with ̄𝑤 ′
𝑖 and (Σ(𝑖))𝑖,𝑖 with Σ′𝑖 . After

inserting the definition of the spike-and-slab prior prior, Eq. (5.5), in Eq. (5.15), the
tilted partition function appearing in Eq. (5.15) reads:

𝑍𝑄(𝑖) = (1 − 𝜌) 1

√2𝜋Σ
′
𝑖
e
−

̄𝑤
′2
𝑖

2Σ′𝑖 +
𝜌

√2𝜋(𝜆 + Σ′𝑖 )
e
− 1

2
̄𝑤
′2
𝑖

𝜆+Σ′𝑖 , (5.17)

and the first and second tilted moments of 𝑤𝑛 yield the expressions:

⟨𝑤𝑖⟩𝑄(𝑖) =
1

𝑍𝑄(𝑖)

𝜌

√2𝜋(𝜆 + Σ′(𝑖))

𝜆 ̄𝑤 ′
𝑖

𝜆 + Σ′𝑖
e
− 1

2
̄𝑤
′2
𝑖

𝜆+Σ′𝑖 , (5.18)

⟨𝑤2
𝑛 ⟩𝑄(𝑛) =

1
𝑍𝑄(𝑛)

𝜌

√2𝜋(𝜆 + Σ′𝑛)
(
𝜆Σ′𝑛(𝜆 + Σ′𝑛) + 𝜆2 ̄𝑤

′2
𝑛

(𝜆 + Σ′𝑛)2
) e−

1
2

̄𝑤
′2𝑛

𝜆+Σ′𝑛 . (5.19)

5.3 Learning of the density parameter
The density parameter of the sparsity prior can be estimated iteratively via maximum
likelihood by following the procedure outlined in Sec. 4.10. In this section, we give the
expression of the EP free energy and of its partial derivative with respect to the density
parameter 𝜌, as this is needed for the gradient descent step given the current values of
the EP parameters:

𝜌(𝑡+1) ← 𝜌(𝑡) − 𝜂
𝜕𝐹𝐸𝑃
𝜕𝜌

, (5.20)

where the index 𝑡 denotes the current iteration and 𝜂 is a learning rate, which we set as
𝜂 = 5 × 10−4 in the numerical experiments of this chapter.

5.3.1 EP free energy with spike-and-slab priors
We recall that the EP free energy is given by:

𝐹𝐸𝑃 = (1 − 𝑁)𝐹𝑄 +
𝑁
∑
𝑖=1

𝐹𝑄(𝑖) .
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The contribution associated with the Gaussian approximate posterior 𝑄(𝒘) is indepen-
dent of the prior and reads:

𝐹𝑄 = ln𝑍𝑄 = 𝑁
2
ln (2𝜋) + 1

2
ln(det𝜮), (5.21)

whereas the expression of 𝐹𝑄(𝑖) depends on the type of prior considered:

𝐹𝑄(𝑖) = − ln𝑍𝑄(𝑖) = − ln (∫ 𝑄̃(𝑖)(𝒘|𝒚)𝜓𝑖(𝑤𝑖)d𝒘) (5.22)

We are interested in the case of spike-and-slab prior factors, for which we have:

ln𝑍𝑄(𝑖) = ln ((1 − 𝜌) 1

√2𝜋Σ𝑖
e
−

𝜇2𝑖
2Σ𝑖 +

𝜌

√2𝜋√
𝜆

1 + 𝜆Σ𝑖
e
− 1

2
𝜆𝜇2𝑖
1+𝜆Σ𝑖 ) . (5.23)

Since the update of the parameters of the prior is assumed to be done at fixed EP
parameters, as we already argued in Sec. 4.10, we only need to focus on the tilted
contributions to the EP free energy. In fact, these are the only terms that depend on 𝜌
explicitly. As a consequence, we simply have:

𝜕𝐹𝐸𝑃
𝜕𝜌

=
𝑁
∑
𝑖=1

𝜕𝐹𝑄(𝑖)

𝜕𝜌
, (5.24)

where the partial derivatives on the right hand side are computed as:

𝜕𝐹𝑄(𝑖)

𝜕𝜌
= − 1

𝑍𝑄(𝑖)
∫𝑄⧵𝑖(𝑤𝑖)

𝜕
𝜕𝜌

𝜓𝑖(𝑤𝑖)d𝑤𝑖. (5.25)

Taking into account the fact that:

𝜕
𝜕𝜌

𝜓𝑖(𝑤𝑖) = −𝛿(𝑤𝑖) +
1

√2𝜋𝜆
e−

𝑤2𝑖
2𝜆 , (5.26)

we finally obtain:

𝜕𝐹𝐸𝑃
𝜕𝜌

=
𝑁
∑
𝑖=1

1

√2𝜋Σ𝑖,𝑖
e
−

̄𝑤2𝑖
2Σ𝑖,𝑖 − 1

√2𝜋(𝜆+Σ𝑖,𝑖)
e
− 1

2
̄𝑤2𝑖

𝜆+Σ𝑖,𝑖

(1 − 𝜌) 1

√2𝜋Σ𝑖,𝑖
e
−

̄𝑤2𝑖
2Σ𝑖,𝑖 + 𝜌

√2𝜋(𝜆+Σ𝑖,𝑖)
e
− 1

2
̄𝑤2𝑖

𝜆+Σ𝑖,𝑖

. (5.27)

By computing the second derivative of 𝐹𝐸𝑃 with respect to 𝜌, we easily realize that 𝐹𝐸𝑃
is strictly convex in 𝜌 for positive 𝜆. In fact, by taking the derivative of the last equation
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with respect to 𝜌 one more time, we immediately have:

𝜕2𝐹𝐸𝑃
𝜕𝜌2

=
𝑁
∑
𝑛=1

⎡
⎢
⎢
⎢
⎢
⎣

1

√2𝜋Σ𝑛,𝑛
e
− ̄𝑤2𝑛

2Σ𝑛,𝑛 − 1

√2𝜋(𝜆+Σ𝑛,𝑛)
e
− 1

2
̄𝑤2𝑛

𝜆+Σ𝑛,𝑛

(1 − 𝜌) 1

√2𝜋Σ𝑛,𝑛
e
− ̄𝑤2𝑛

2Σ𝑛,𝑛 + 𝜌

√2𝜋(𝜆+Σ𝑛,𝑛)
e
− 1

2
̄𝑤2𝑛

𝜆+Σ𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

2

, (5.28)

which ensures that the estimate of 𝜌 is unique for fixed values of ̄𝑤𝑛 and Σ𝑛,𝑛.

5.4 Results on uncorrelated measurements
First of all, we consider the case of noiseless uncorrelated measurements, obtained by
multiplying the signal to be reconstructed by an 𝑀 × 𝑁 sensing matrix with i.i.d. en-
tries drawn from a standard Gaussian distribution 𝒩 (𝑤; 0,1). We assume the signal to
be 𝐾-sparse, namely, with only 𝐾 nonzero components, each of which is drawn from
a standard Gaussian distribution. We consider a Bayes optimal scenario, where the
generative model of the signal coincides with its prior distribution. We also define the
density of the signal 𝜌 = 𝐾/𝑁 and the measurement rate 𝛼 = 𝑀/𝑁. The parameter 𝜌
is the true value of the density parameter of the spike-and-slab prior, which, in gen-
eral, is not assumed to be known: it can be learned using the free energy minimization
procedure outlined in Sec. 4.10.

We quantify the goodness of the reconstructed signal 𝒘̂ using the sample Pearson
correlation coefficient 𝑟 of the true and inferred vectors, defined as:

𝑟 =
∑𝑁

𝑘=1(𝑤𝑘 − 𝑤𝑠𝑚)(𝑤̂𝑘 − 𝑤̂𝑠𝑚)

√∑
𝑁
𝑘=1(𝑤𝑘 − 𝑤𝑠𝑚)2√∑

𝑁
𝑘=1(𝑤̂𝑘 − 𝑤̂𝑠𝑚)2

, (5.29)

where 𝑤𝑠𝑚 is the sample mean of the signal and 𝑤̂𝑠𝑚 is that of the reconstructed vector.
We also consider the within-sample mean squared error (MSE) as a measure of the
reconstruction error:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑘=1

(𝑤𝑘 − 𝑤̂𝑘)2. (5.30)

In the limit 𝑁 → ∞, the Pearson correlation coefficient 𝑟 and the MSE of the signal
estimate reconstructed using Gaussian EP reveal a phase transition occurring as one of
the two parameters 𝜌 and 𝛼 is varied while the other one is kept fixed. We demonstrate
this fact at fixed 𝛼 and increasing 𝜌 in Fig. 5.1, for 𝑁 = 400 and 𝑁 = 1600, where we
show the average Pearson coefficient over 𝑁𝑡 = 100 instances of a signal reconstructed
withGaussian EP. Here and in the following sections of this chapter, we set the precision
parameter of the spike-and-slab to 𝜆 = 1 and 𝛽 = 109 when using the formulation of
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Figure 5.1: Pearson correlation as a function of 𝜌 at 𝛼 = 0.5, with𝑁 = 400 and𝑁 = 1600.
The error bars are estimated as 𝜎(𝑟)/𝑁𝑡, where 𝑁𝑡 = 100 is the number of instances
considered. © IOP Publishing. Reproduced with permission. All rights reserved.
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Figure 5.2: Sample standard deviation of 𝑟 as a function of 𝑁. The value of the density
and of the measurement rate are fixed and given by 𝜌 = 0.4 and 𝛼 = 0.55.
© IOP Publishing. Reproduced with permission. All rights reserved.

section 5.1.1. The average value of 𝑟 appears to be independent of the size 𝑁 of the
system, whereas its sample standard deviation decreases as a function of 𝑁, as shown
in Fig. 5.2.

The fact that fluctuations are low for large 𝑁 when considering different instances
of the CS problem at fixed values of 𝜌 and 𝛼 allow us to obtain an EP dependent phase
diagram numerically by considering only one instance for each pair of parameters (𝜌, 𝛼)
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and the associated Pearson coefficient. To this aim, we plot the value of 𝑟 for various
values of 𝜌 and 𝛼 and 𝑁 = 200, 𝑁 = 400, 𝑁 = 800 and 𝑁 = 1600 in Fig. 5.3. For
each value of 𝜌 and 𝛼, a signal with 𝐾 = 𝜌𝑁 nonzero entries and a i.i.d. matrix 𝐅 with
𝑀 = 𝛼𝑁 rows and 𝑁 columns were generated and EP reconstruction of the signal was
attempted. The resulting Pearson coefficient shows that the probability of achieving
perfect reconstruction above a well defined transition line increases as the size of the
system increases, as it can be appreciated from the fact that the separation between
the two regions becomes sharper at larger values of 𝑁 in Fig. 5.3. The 𝐿0 line 𝛼(𝜌) =
𝜌, plotted in blue, is the information theoretic limit under which reconstructing the
signal is not possible, the infeasibility of the region being due to the fact that its points
correspond to the situation where one has less equations than nonzero unknowns to be
retrieved. The 𝐿1 line, plotted in black in the figure, is the one obtained by Kabashima
in [106, 107] in the thermodynamic limit 𝑁 → ∞ and 𝑀 → ∞, with 𝛼 finite, by means
of the replica method. Finally, the white region is the one where EP simulations failed
to converge.

Fig. 5.3 confirms the fact that there is a Gaussian EP dependent phase transition line
located under the 𝐿1 line, which separates the region where reconstruction is perfect –
that is, where 𝑟 is close to 1 (the yellow region in the figure) – from the one where, on
the contrary, reconstruction is unsuccessful. We obtain the coordinates (𝜌, 𝛼(𝜌)) of the
points of the EP transition line using a bisection-like algorithm, which we summarize
in Alg. 4. We first discretize the interval 0 ≤ 𝜌 ≤ 1 and then, for each discretized value
𝜌0, we select two values 𝛼0 and 𝛼1 for the bisection algorithm, which we choose on the
𝐿0 transition line and on the 𝐿1 transition line, respectively. Thus, we have for 𝛼0:

𝛼0(𝜌0) = 𝜌0, (5.31)

and for 𝛼1 [106]:

𝛼1(𝜌0) = 2(1 − 𝜌0)𝐻( ̂𝜒−1/2) + 𝜌0, (5.32)

where ̂𝜒 is given by the solution of the equation [107]:

̂𝜒 = 𝛼−1 [2(1 − 𝜌0) (( ̂𝜒 + 1)𝐻( ̂𝜒−1/2) − ̂𝜒1/2 e−1/(2 ̂𝜒)

√2𝜋
) + 𝜌0( ̂𝜒 + 1)] , (5.33)

and 𝐻(𝑥) = ∫+∞𝑥
1
2𝜋 exp(−

𝑡2
2 )d𝑡. We perform EP simulations at points (𝜌0, 𝛼0), (𝜌0, 𝛼1)

and (𝜌0, 𝛼∗), where 𝛼∗ = (𝛼0 + 𝛼1)/2 and we compute the mean squared error of the
related EP solutions, which we shall denote as𝑀𝑆𝐸(𝛼0),𝑀𝑆𝐸(𝛼1) and𝑀𝑆𝐸(𝛼∗), respec-
tively. In order to iteratively restrict the interval 𝛼0 < 𝛼 < 𝛼1 via bisection, we define
a threshold 𝛿 and set 𝛼1 = 𝛼∗ if the absolute difference |𝑀𝑆𝐸(𝛼1) − 𝑀𝑆𝐸(𝛼∗)| < 𝛿 and
𝛼0 = 𝛼∗ otherwise. Finally, we recompute 𝛼∗ = (𝛼0 + 𝛼1)/2. By repeating these steps
until a predefined accuracy for the estimate 𝛼∗ is achieved, we obtain an EP dependent
phase transition line, which we show in Fig. 5.4 for the case 𝑁 = 1600.

93



Expectation propagation on compressed sensing

Algorithm 4 Bisection algorithm

procedure bisection(𝑁, 𝜌0,𝛼0,𝛼1;𝛿,Δ𝛼𝑚𝑖𝑛)
Set 𝐾 = 𝜌0𝑁.
Set 𝛼∗ = (𝛼0 + 𝛼1)/2.
repeat

Set 𝑀1 = 𝛼1𝑁.
Generate signal 𝒘1 and sensing matrix F1.
Infer 𝒘̂1 using Parallel EP scheme with inputs 𝒚1 = F1𝒘1, F1 and 𝜌 = 𝜌0.
Compute 𝑀𝑆𝐸(𝛼1) between 𝒘̂1 and 𝒘1.
Set 𝑀∗ = 𝛼∗𝑁 .
Generate signal 𝒘∗ and sensing matrix F∗.
Infer 𝒘̂∗ using Parallel EP scheme with inputs 𝒚∗ = F∗𝒘∗, F∗ and 𝜌 = 𝜌0.
Compute 𝑀𝑆𝐸(𝛼∗) between 𝒘̂∗ and 𝒘∗.
if |𝑀𝑆𝐸(𝛼1) − 𝑀𝑆𝐸(𝛼∗)| > 𝛿 then

𝛼0 = 𝛼∗.
else

𝛼1 = 𝛼∗.
Reassign 𝛼∗ = (𝛼0 + 𝛼1)/2.

until |𝛼1 − 𝛼0|/2 < Δ𝛼𝑚𝑖𝑛
return 𝛼∗
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5.4 – Results on uncorrelated measurements

a

c

N = 200

N = 800

b N = 400

d N = 1600

Figure 5.3: Compressed sensing phase diagram for 𝑁 = 200,400,800,1600. Each point
(𝜌, 𝛼) corresponds to a single simulation over a different instance with signal density 𝜌
andmeasurement rate 𝛼. The color refers to the Pearson correlation coefficient between
the true signal and the EP reconstructed signal. The black line corresponds to the 𝐿1
reconstruction, while the blue line corresponds to the 𝐿0 condition. Adapted from [98]
© IOP Publishing. All rights reserved.

Overall, the variable selection properties of EP tend to be quite good, despite the fact
that the reconstruction of the signal is no more accurate below the EP phase transition
line. In fact, by separating the MSE in two contributions:

𝑀𝑆𝐸 = 𝜌𝑀𝑆𝐸1 + (1 − 𝜌)𝑀𝑆𝐸2, (5.34)

the first of which (𝑀𝑆𝐸1) is related to the vector of the 𝐾 nonzero components of the
signal and the second of which (𝑀𝑆𝐸2) is associated with the vector of the remaining
𝑁 − 𝐾 components, we see that the dominant contribution to the reconstruction error
in the region where 𝑟 < 1 comes from the estimates of the 𝐾 nonzero components of
the signal, as it can be deduced from Figs. 5.5a and 5.5b, where the two contributions
appearing in Eq. (5.34) are compared to the total mean squared error. This fact implies
that the sparse support of the signal is approximately retrieved by Gaussian EP and
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Figure 5.4: EP phase transition line resulting from the bisection-like algorithm given in
Alg. 4. The length of the signals to be retrieved is 𝑁 = 1600 and the threshold 𝛿 for the
MSE difference between the evaluated points is 10−5. © IOP Publishing. Reproduced
with permission. All rights reserved.

that the reconstruction error is mainly due to the nonzero values not being accurately
estimated below the phase transition threshold.

5.5 Results on correlated measurements
We now consider a simple case of correlated sensing matrices 𝐅, where the rows are
sampled from a multivariate Gaussian distribution:

𝐅 = (𝒇1, ..., 𝒇𝑀)𝑇 (5.35)
𝒇𝑖 ∼ 𝒩 (0, 𝐒), 𝑖 = 1, ...,𝑀, (5.36)

so that the entries of each given row 𝒇𝑖 ∈ ℝ𝑁 are correlated. We assume the covariance
matrix S appearing in Eq. (5.36) to be constructed as:

𝐒 = 𝐘⊤𝐘 + 𝜟, (5.37)

where Y is a 𝑘 × 𝑁 matrix, the entries of which are i.i.d. and drawn from a standard
Gaussian distribution 𝒩 (𝑦; 0,1), and 𝜟 is a diagonal matrix with positive diagonal en-
tries obtained by sampling again from a standard normal distribution and taking the
absolute value. The Gram matrix 𝐘⊤𝐘 is symmetric and positive semi-definite by defi-
nition and its rank 𝑘 is a parameter that can be varied in order to change the degree of
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MSE2
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(b)

Figure 5.5: (a) Contribution of the first 𝐾 components to the MSE (dashed lines), com-
pared to the MSE itself (solid lines). (b) Contribution of the last 𝑁 −𝐾 components (the
“tail” of the vector) to the MSE (dotted lines), compared to the MSE itself (solid lines).
In both panels a) and b), 𝑁 = 400, the number of simulations is 100 and each curve
corresponds to a different value of 𝜌, for 𝜌 = 0.1, 0.2,… , 0.9. The points are averages
computed over the 𝑁𝑐 converged simulations and the uncertanties are estimated from
the sample standard deviations 𝜎 using 𝜎/√𝑁𝑐. © IOP Publishing. Reproduced with
permission. All rights reserved.
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Figure 5.6: (a),(b) Comparison between theMSE obtained fromGaussian EP reconstruc-
tion and from EMBP reconstruction for correlated Gaussian sensing matrices. The MSE
was evaluated over 𝑁𝑡 = 1000 converged trials and the uncertainty was estimated as
𝜎/√𝑁𝑡, where 𝜎 is the sample standard deviation. For all values of 𝛼, the EMBP algo-
rithm fails to reconstruct correctly the signal, whereas EP achieves zero MSE beyond
a critical value 𝛼𝑐(𝜌). (c),(d) MSE resulting from CS reconstruction with i.i.d. and cor-
related Gaussian sensing matrices. Each point was evaluated over 𝑁𝑡 = 1000 trials.
Lower values of 𝑘 correspond to more correlated measurements. The length of the sig-
nal is 𝑁 = 50 and its density is (a),(c) 𝜌 = 0.3 and (b),(d) 𝜌 = 0.5. © IOP Publishing.
Reproduced with permission. All rights reserved.

correlation among the entries of the rows of 𝐅. Notice that we have added the matrix 𝜟
in order to guarantee that S has maximum rank, equal to 𝑁.

We compare the reconstruction performance of EP to that of Expectation Maximiza-
tion Belief Propagation (EMBP) [108, 109]. In order to do so, we use the MATLAB
implementation of Ref. [110]. The motivation for choosing EMBP in our comparisons
lies on the fact that, in general, the entries of the measurement matrix are not indepen-
dent for matrices constructed as in Eq. (5.36), especially for small values of the rank 𝑘
of 𝐘, as, in this case, the covariances and the variances of S are comparable in terms
of magnitude. Conversely, the case of i.i.d. entries is recovered in the large 𝑘 limit: in
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fact, due to cancellation effects, the off-diagonal entries of S become negligible as com-
pared to its diagonal ones and the associated multivariate Gaussian measure resembles
an isotropic Gaussian distribution, according to which the variables are approximately
independent of each other. We show the MSE achieved by EP and EMBP in the pres-
ence of this kind of correlated matrices as a function of 𝛼 for densities of the signal
given by 𝜌 = 0.3 and 𝜌 = 0.5, respectively, in Figs. 5.6a and 5.6b, where we only include
converged trials. We estimate the signal density using expectation maximization in the
case of EMBP and using gradient descent on the EP free energy at each iteration in the
case of EP (see Sec. 5.3.1). Remarkably, the results in Figs. 5.6a and 5.6b show that BP is
not able to reconstruct the signal nor its density from the knowledge of 𝐅 and of the ob-
servation vector 𝒚, regardless of the specific value of 𝛼 considered. In particular, notice
that the BP reconstruction fails even in the case where the number of equations equals
the number of variables, which corresponds to 𝛼 = 1, as it is deduced from the fact that
the MSE is nonzero. However, as correlations become weaker, which corresponds to
larger values of 𝑘, we see that the reconstruction accuracy of EMBP tends to improve.
On the contrary, the MSE associated with EP does not appear to depend on the degree
of correlation of the entries of the sensing matrix. This is shown in Figs. 5.6a and 5.6b
and is further confirmed in Figs. 5.6c and 5.6d, where we consider the i.i.d. sensing
matrix case 𝑘 → ∞ and the correlated case with 𝑘 = 50, 𝑘 = 20, 𝑘 = 10, 𝑘 = 5 and
𝑘 = 1. In particular, notice that the reconstruction threshold separating the successful
and unsuccessful reconstruction regions does not change.

Finally, we performed further numerical tests in order to assess how EP compares to
state of the art algorithms for CS reconstruction of sparse signals in the setup consid-
ered in this section. The algorithms that we analyzed include 𝐿1 based convex optimiza-
tion, in particular Basis Pursuit [5], message passing algorithms from statistical physics
such as EMBP [108] and approximate message passing (AMP) [76], signal processing
algorithms of the matching pursuit type, namely, Orthogonal Matching Pursuit (OMP)
[111], Regularized Orthogonal Matching Pursuit [112], Compressive Sampling Match-
ing Pursuit (CoSaMP) [113] and Subspace Pursuit [114], and the smoothed 𝐿0 norm
regularization algorithm (SL0) from Ref. [115]. We used the implementation available
in the C++ library KL1p [116], which is based on the linear algebra library Armadillo
[117, 118].

We generated 𝑁𝑡 = 100 different Gaussian i.i.d. signals of length 𝑁 = 100 and
as many random correlated sensing matrices, with 𝑘 = 5, for various values of the
measurement rate 𝛼. For each pair of signal 𝒘 and measurement matrix F, we ran EP
and all algorithms implemented in KL1p in order to solve the related CS reconstruction
problem. The outcome of our numerical experiments are shown in Fig. 5.7, where we
obtain that EP is the only algorithm displaying a reconstruction phase transition, as it
can be seen in Fig. 5.7a and in the semi-logarithmic plot in Fig. 5.7b, contrary to all the
other algorithms, the MSE of which is larger than zero at all values of 𝛼. Empirically, we
find that the running time of EP is mostly comparable to several of the reconstruction
methods examined in our tests, as Fig. 5.7c shows.
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Figure 5.7: (a) Comparison of the MSE resulting from CS reconstruction with vari-
ous state-of-the-art algorithms with correlated Gaussian sensing matrices. (b) Semi-
logarithmic plot of the MSE associated with Basis Pursuit, SL0 and EP reconstruction.
(c) Comparison of the elapsed running time of the algorithms considered in panel (a)
with correlated Gaussian sensing matrices. In all panels, the instances considered are
the same, their total number being 𝑁𝑡 = 100, and the parameters of the generated sig-
nals are 𝑁 = 100, 𝜌 = 0.5 and 𝑘 = 5. Both unconverged and converged simulations
were considered. © IOP Publishing. Reproduced with permission. All rights reserved.
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Chapter 6

Expectation propagation on
the sparse perceptron learning
problem

In this chapter, we apply Gaussian EP to the problem of learning a binary classification
rule in the teacher-student scenario and compare its performance to other variational
algorithms. We will be mostly interested in assessing the variable selection properties
of EP in various settings, where the examples provided to the student perceptron can
be noiseless, noisy, uncorrelated or correlated. The work presented in this chapter is
published in Ref. [100], from which figures and tables are either taken or adapted.
Therefore, copyright (2021) by the American Physical Society applies to all figures and
tables in this chapter, except for Figs. 6.3, 6.4 and 6.7, which were not published before.

6.1 The sparse perceptron learning problem
We consider two perceptrons having 𝑁 units and continuous valued weights in the
teacher-student scenario [119, 120]. Let us denote the weights of the teacher perceptron
as 𝑩 ∈ ℝ𝑁 and those of the student perceptron as 𝒘 ∈ ℝ𝑁. We assume that the teacher
has sparse weights, a fraction 𝜌 of which are nonzero. In the teacher-student frame-
work, a set of 𝑀 binary labels 𝜎𝜏, 𝜏 = 1,… ,𝑀 is assigned to as many pattern vectors
𝑥𝜏 ∈ ℝ𝑁 according to the teacher’s classification rule:

𝜎𝜏 = sign(𝑩⊤𝒙𝜏), 𝜏 = 1,… ,𝑀, (6.1)

where we use the convention that sign(0) ≔ 1, and the task of the student percep-
tron is to learn the rule (6.1) by adjusting the weights 𝒘 based on the set of examples
{(𝒙1, 𝜎1),… , (𝒙𝑀, 𝜎𝑀)}, so that the relation:

𝜎𝜏 = sign(𝒘⊤𝒙𝜏), 𝜏 = 1,… ,𝑀. (6.2)
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is fulfilled. Using the terminology adopted in the neural network literature, wewill refer
to the process of learning the relationship between inputs and outputs by updating the
weights of the perceptron based on a set of examples as training. Accordingly, we will
use the expression training set to refer to the set of examples provided to the student.

In order to enforce the classification rule of the student, we notice that Eq. (6.2) can
be equivalently written as a set of positivity constraints:

(𝜎𝜏𝒙⊤𝜏 ) 𝒘 ≥ 0 𝜏 = 1,… ,𝑀. (6.3)

Moreover, we define the auxiliary variables 𝑦𝜏 ∶= (𝜎𝜏𝒙⊤𝜏 ) 𝒘 and the data matrix:

𝐗𝝈 ≔
⎛
⎜
⎜
⎝

𝜎1𝒙⊤1
𝜎2𝒙⊤2
⋮

𝜎𝑀𝒙⊤𝑀

⎞
⎟
⎟
⎠

. (6.4)

Using these definitions, we immediately obtain the linear estimation problem:

𝒚 = X𝜎𝒘, (6.5)

where the dependent sets of variables 𝒚 and 𝒘 need to be jointly estimated.

6.1.1 Bayesian framework for the sparse perceptron learning prob-
lem and EP approximation of the posterior distribution

We introduce a Bayesian setup for the linear estimation problem given in Eq. (6.5),
similarly to what was done in Sec. 5.1. In order to do so, we define the variable vector
𝒉 = (𝑤1,… ,𝑤𝑁, 𝑦1,… , 𝑦𝑀)

⊤ and the energy function:

𝐸(𝒘, 𝒚) = ‖𝒚 − X𝜎𝒘‖2 = 𝒉⊤E−1𝒉, (6.6)

where the matrix 𝐄−1 is expressed as:

E−1 = ( X⊤
𝜎X𝜎 −X⊤

𝜎
−X𝜎 I ) . (6.7)

The likelihood function of the 𝑁 weights of the student perceptron is given by:

𝐿(𝒘) = 𝑃(𝜎1,… , 𝜎𝑀|𝒘) =
1
𝑍
e−𝛽𝐸(𝒘,𝒚) . (6.8)

If we wish to enforce the linear constraints that define the variables 𝒚 exactly, we can
consider the limit 𝛽 → +∞ of 𝐿(𝒘):

lim
𝛽→+∞

𝐿(𝒘) = 𝛿𝑀(𝒚 − X𝜎𝒘), (6.9)
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where 𝛿𝑀(𝒛) denotes the 𝑀-dimensional Dirac delta distribution.
Furthermore, we introduce prior distributions in order to enforce sparsity of the

weights of the student and consistency (or lack thereof) between the patterns and the
labels given the student classification rule. Therefore, we associate a spike-and-slab
prior Γ(𝑤𝑖) with each weight 𝑤𝑖:

Γ(𝑤𝑖) = (1 − 𝜌)𝛿(𝑤𝑖) + 𝜌
√

𝜆
2𝜋

𝑒−
𝜆𝑤2𝑖
2 , 𝑖 = 1,… ,𝑁 .

and a pseudoprior Λ(𝑦𝜏), which we express as:

Λ(𝑦𝜏) = Θ(𝑦𝜏), 𝜏 = 1,… ,𝑀. (6.10)

if the consistency relations (6.3) are fulfilled (theta pseudoprior) and as:

Λ(𝑦𝜇) = 𝜂Θ(𝑦𝜇) + (1 − 𝜂)Θ(−𝑦𝜇). (6.11)

if some consistency relations are violated (theta mixture pseudoprior), in which case we
assume that some examples are mislabeled according to:

𝜎̃ = {
sign(𝑩⊤𝒙) with probability 𝜂,
−sign(𝑩⊤𝒙) with probability 1 − 𝜂,

(6.12)

where 0 ≤ 𝜂 ≤ 1, and that the student perceptron receives the set of corrupted exam-
ples (𝑥𝜇, 𝜎̃𝜇), 𝜇 = 1,… ,𝑀 [121]. In Eqs. (6.10) and (6.11), we used Θ(𝑧) to denote the
Heaviside step function:

Θ(𝑧) = {
1, 𝑧 ≥ 0,
0, 𝑧 < 0.

We will consider a Bayes-optimal scenario, where the priors to be incorporated in the
student posterior distribution match both the model that generates the weights of the
teacher and the process that assigns the labels to the patterns. Despite the fact that
sparsity and the presence of inconsistencies between patterns and labels are modeled
as prior knowledge, we stress that, in general, the values of the sparsity level 𝜌0 of the
teacher weights and of the consistency level 𝜂0 of the examples are not assumed to be
known a priori and, therefore, need to be estimated during the learning task performed
by the student.

Considering the limit (6.9) and using Bayes’ rule, we have for the joint posterior
distribution of the variables 𝒘 and 𝒚:

𝑃(𝒘, 𝒚) = 1
𝑍𝑃

𝛿(𝒚 − X𝜎𝒘)
𝑁
∏
𝑖=1

Γ𝑖(𝑤𝑖)
𝑀
∏
𝜏=1

Λ𝜏(𝑦𝜏), (6.13)

which we wish to approximate using Gaussian EP. We can straightforwardly apply the
formulation of Gaussian EP with rigid linear constraints, which we derived in Sec. 4.4,
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to the homogeneous linear system (6.5) by identifying 𝒗 ≔ 𝒚, 𝒖 ≔ 𝒘, 𝐅 ≔ 𝐗𝜎 and
̃𝒚 ≔ 01. As we did in the CS problem, the estimate of the variables of interests will be

provided by the MMSE estimator.

6.2 Moments of the tilted distributions in the sparse
perceptron learning problem

In this section, we express the moments of the tilted distributions relevant to the sparse
perceptron learning problems and entering in the EPmoment matching updates. As the
tilted moments related to the spike-and-slab prior were already given in Chapter 5, we
do not repeat them here and refer to Sec. 5.2.1. Instead, we only give the expressions
of the tilted moments related to the consistency variables 𝑦𝜏, 𝜏 = 1,… ,𝑀 and consider
both the case of theta pseudoprior factors, Eq. (6.10), and the case of theta mixture
pseudoprior factors, Eq. (6.11). For ease of notation, we will denote the means of the
cavity distribution by 𝜇𝑘, its variances by Σ𝑘 and introduce the ratios 𝑜𝑘 ≔ 𝜇𝑘/√Σ𝑘 for
𝑘 = 𝑁 + 1,… ,𝑁 + 𝑀.

6.2.1 Tilted moments with a theta pseudoprior factor
In the case of a theta pseudoprior the expression of the tilted distributions associated
with the variables 𝒚 = (ℎ𝑁+1,… , ℎ𝑁+𝑀)⊤ is given by:

𝑄(𝑘)(ℎ𝑘) =
1

𝑍𝑄(𝑘)
𝑄⧵𝑘(ℎ𝑘)Θ(ℎ𝑘), 𝑘 = 𝑁 + 1,… ,𝑁 + 𝑀, (6.14)

where, as usual, 𝑄⧵𝑘 is the cavity Gaussian distribution. The normalization of the tilted
distribution (6.14) reads:

𝑍𝑄(𝑘) =
1
2
[1 + erf (

𝜇𝑘

√2Σ𝑘
)] , (6.15)

where erf is the error function:

erf(𝑥) ≔ 2
√𝜋 ∫

𝑥

0
e−𝑧

2
d𝑧. (6.16)

Computation of the first tilted moment yields:

⟨ℎ𝑘⟩ = 𝜇𝑘 + √
Σ𝑘
2𝜋

e− 𝜇2𝑘
2Σ𝑘

Φ( 𝜇𝑘
√Σ𝑘

)
= 𝜇𝑘 (1 +

𝑅(𝑜𝑘)
𝑜𝑘

) , (6.17)

1Notice that in this chapter the total number of variables is 𝑁 + 𝑀, whereas it is 𝑁 in Sec. 4.4.
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where Φ(𝑥) denotes the cumulative density function (CDF) of the standard normal dis-
tribution:

Φ(𝑥) ≔ 1
2
[1 + erf ( 𝑥

√2
)] ,

and the function 𝑅(𝑥) is defined as:

𝑅(𝑥) = 1
√2𝜋

e−𝑥
2/2

Φ(𝑥)
.

With regard to the second tilted moment, we obtain:

⟨ℎ2𝑘⟩ = 𝜇2𝑘 + Σ𝑘 + 𝜇𝑘√Σ𝑘𝑅 (𝑜𝑘) , (6.18)

so that the tilted variance can be compactly written as:

Var(ℎ𝑘) = Σ𝑘(1 − 𝑜𝑘𝑅(𝑜𝑘) − 𝑅2(𝑜𝑘)). (6.19)

6.2.2 Tilted moments with a theta mixture pseudoprior factor
In the case of a theta mixture pseudoprior, the tilted distribution reads:

𝑄(𝑘)(ℎ𝑘) =
1

𝑍𝑄(𝑘)
𝑄⧵𝑘(ℎ𝑘) [𝜂Θ(ℎ𝑘) + (1 − 𝜂)Θ(−ℎ𝑘)] , 𝑘 = 𝑁 + 1,… ,𝑁 + 𝑀, (6.20)

its normalization 𝑍𝑄(𝑘) being:

𝑍𝑄(𝑘) = 𝜂 [1
2
erfc (−

𝑜𝑘
√2

)] + (1 − 𝜂) [1
2
erfc (

𝑜𝑘
√2

)] =
√
𝜋Σ𝑘
2

[1
2
+ (𝜂 − 1

2
) erf (

𝑜𝑘
√2

)] .

(6.21)

For the first moment, one obtains:

⟨ℎ𝑘⟩𝑄(𝑘) =
1

𝑍𝑄(𝑘)
{

𝜂

√2𝜋Σ𝑘
[Σ𝑘 e

−
𝑜2𝑘
2 +𝜇𝑘√

𝜋Σ𝑘
2

erfc (−
𝑜𝑘
√2

)]

+
1 − 𝜂

√2𝜋Σ𝑘
[−Σ𝑘 e

−
𝑜2𝑘
2 +𝜇𝑘√

𝜋Σ𝑘
2

erfc (
𝑜𝑘
√2

)]}

= 𝜇𝑘 + √
2Σ𝑘
𝜋

(2𝜂 − 1) e−
𝑜2𝑘
2

𝜂erfc (− 𝑜𝑘
√2
) + (1 − 𝜂)erfc ( 𝑜𝑘

√2
)
,

(6.22)
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whereas for the second tilted moment we have:

⟨ℎ2𝑘⟩𝑄(𝑘) =
1

𝑍𝑄(𝑘)
{

𝜂

√2𝜋Σ𝑘
[𝜇𝑘Σ𝑘 e

−
𝑜2𝑘
2 +

√
𝜋Σ𝑘
2

(𝜇2𝑘 + Σ𝑘) erfc (−
𝑜𝑘
√2

)]

+
1 − 𝜂

√2𝜋Σ𝑘
[−𝜇𝑘Σ𝑘 e

−
𝑜2𝑘
2 +

√
𝜋Σ𝑘
2

(𝜇2𝑘 + Σ𝑘) erfc (
𝑜𝑘
√2

)]}

= 𝜇2𝑘 + Σ𝑘 + 𝜇𝑘√
2Σ𝑘
𝜋

(2𝜂 − 1) e−
𝑜2𝑘
2

𝜂erfc (− 𝑜𝑘
√2
) + (1 − 𝜂)erfc ( 𝑜𝑘

√2
)
.

(6.23)

6.3 Learning of the parameters of the prior
As discussed in the previous chapters, Gaussian EP allows one to iteratively estimate
the parameters of the priors by minimizing the EP free energy. In the sparse perceptron
learning problem, the parameters of interest are the density level of the weights of
the teacher and, if there is noise flipping some of the labels, the fraction of mislabeled
examples. After writing the expression of the EP free energy for the problem that we are
considering, wewill give the expression of the gradient descent update of the parameter
𝜂 of the theta mixture prior. Concerning the spike-and-slab prior, we already wrote the
update in Sec. 5.3.1, to which the reader is referred for further details.

6.3.1 EP free energy for the diluted perceptron problem
In the case of the diluted classifier, the total number of variable is 𝑁 + 𝑀 and the EP
free energy is given by:

𝐹𝐸𝑃 = (𝑁 + 𝑀 − 1) ln𝑍𝑄 −
𝑁+𝑀
∑
𝑘=1

ln𝑍𝑄(𝑘), (6.24)

where:

ln𝑍𝑄 = 𝑁 + 𝑀
2

ln (2𝜋) + 1
2
ln(det𝜮), (6.25)

and the expression of ln𝑍𝑄(𝑘) reads:

ln𝑍𝑄(𝑘) = ln((1 − 𝜌) 1

√2𝜋Σ𝑘
e
−

𝜇2𝑘
2Σ𝑘 +

𝜌

√2𝜋√
𝜆

1 + 𝜆Σ𝑘
e
− 1

2
𝜆𝜇2𝑘

1+𝜆Σ𝑘) , 𝑘 = 1, ...,𝑁 (6.26)

for the weights variables, as the associated priors are spike-and-slab priors, while for
the consistency enforcing variables ℎ𝑁+1,… , ℎ𝑁+𝑀 we have two possibilities:
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1. if, on the one hand, their associated pseudoprior is of the theta kind, then 𝑍𝑄(𝑘) is
expressed as:

𝑍𝑄(𝑘) =
√
𝜋Σ𝑘
2

(1 + erf (
𝜇𝑘

√2Σ𝑘
)) , 𝑘 = 𝑁 + 1, ...,𝑁 + 𝑀 (6.27)

2. if, on the other hand, their associated pseudoprior is of the theta mixture kind,
then we have:

𝑍𝑄(𝑘) =
√
𝜋Σ𝑘
2

[
𝜂
2
erfc (−

𝜇𝑘

√2Σ𝑘
) +

1 − 𝜂
2

erfc (
𝜇𝑘

√2Σ𝑘
)]

=
√
𝜋Σ𝑘
2

[1
2
+ (𝜂 − 1

2
) erf (

𝜇𝑘

√2Σ𝑘
)] , 𝑘 = 𝑁 + 1, ...,𝑁 + 𝑀,

(6.28)

Inserting these terms in the EP free energy, we finally obtain:

1. for the case Λ(ℎ𝑘) = Θ(ℎ𝑘):

𝐹𝐸𝑃 = (𝑁 + 𝑀 − 1) (𝑁 + 𝑀
2

ln (2𝜋) + 1
2
ln(det𝜮))

−
𝑁
∑
𝑘=1

ln((1 − 𝜌) 1

√2𝜋Σ𝑘
e
−

𝜇2𝑘
2Σ𝑘 +

𝜌

√2𝜋√
𝜆

1 + 𝜆Σ𝑘
e
− 1

2
𝜆𝜇2𝑘

1+𝜆Σ𝑘)

− 𝑀
2
ln (𝜋/2) − 1

2

𝑁+𝑀
∑

𝑘=𝑁+1
lnΣ𝑘 −

𝑁+𝑀
∑

𝑘=𝑁+1
ln (1 + erf (

𝜇𝑘

√2Σ𝑘
)) ,

(6.29)

2. for the case Λ(ℎ𝑘) = 𝜂Θ(ℎ𝑘) + (1 − 𝜂)Θ(−ℎ𝑘):

𝐹𝐸𝑃 = (𝑁 + 𝑀 − 1) (𝑁 + 𝑀
2

ln (2𝜋) + 1
2
ln(det𝜮))

−
𝑁
∑
𝑘=1

ln((1 − 𝜌) 1

√2𝜋Σ𝑘
e
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√2Σ𝑘
)) .

(6.30)

As a technical side comment, we notice that the ln(det𝜮) contribution in the EP free
energy can be efficiently computed by means of the Cholesky decomposition of the
covariance matrix 𝜮. In fact, the covariance matrix can be written as 𝜮 = 𝐋𝐋⊤, where 𝐋
is a lower triangular matrix with real positive diagonal elements 𝐿𝑘𝑘 for 𝑘 = 1,… ,𝑁+𝑀.
Therefore, recalling that the determinant of a lower triangular matrix is nothing but the
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product of its diagonal entries, the term 1
2 ln(det𝜮) can be numerically computed by first

obtaining 𝐋 and then taking its trace:

1
2
ln(det𝜮) =

𝑁+𝑀
∑
𝑘=1

ln(𝐿𝑘𝑘).

6.3.2 Learning of the 𝜂 parameter of the theta mixture pseudo-
prior

By following the reasoning of Sec. 4.10, and in analogy with what was done in the
case of the spike-and-slab prior, we can easily write a gradient descent update for the
parameter 𝜂 of the thetamixture pseudoprior. All we need to do is to compute the partial
derivative of the terms 𝐹𝑄(𝑘), 𝑘 = 𝑁 + 1, ...,𝑁 + 𝑀 given in Eq. (6.28) with respect to 𝜂.
In this way, we readily obtain:

𝜕𝐹𝐸𝑃
𝜕𝜂

=
𝑁+𝑀
∑

𝑘=𝑁+1

𝜕𝐹𝑄(𝑘)

𝜕𝜂
,

where:

𝜕𝐹𝑄(𝑘)

𝜕𝜂
=

−2erf( 𝜇𝑘
√2Σ𝑘

)

1 + (2𝜂 − 1)erf( 𝜇𝑘
√2Σ𝑘

)
. (6.31)

Finally, the gradient descent update reads:

𝜂𝑛𝑒𝑤 ← 𝜂𝑜𝑙𝑑 −
𝜕𝐹𝐸𝑃
𝜕𝜂

|
𝜂𝑜𝑙𝑑

𝛿𝜂, (6.32)

where 𝛿𝜂 is the learning rate.

6.4 Sparse perceptron learning from noiseless exam-
ples

In this section, we show the results obtained from applying Gaussian EP to sparse per-
ceptron learning from noiseless examples. We will first analyze the case of i.i.d. Gaus-
sian patterns and then move on to that of correlated Gaussian patterns. As anticipated
above, we will consider a Bayes-optimal setup in order to perform the analysis un-
der controlled conditions. Therefore, we assume that a fraction 𝜌0 of the weights of
the teacher are drawn from a standard normal distribution and the remaining fraction
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1 − 𝜌0 are zero and choose the prior associated with the weights of the students to be a
spike-and-slab prior with density parameter 𝜌 and precision of the slab 𝜆 = 1.

Since the amplitude information of the weights to be retrieved is lost due to the
sign nonlinearity, given a solution of Eq. (6.2), all vectors obtained by multiplying the
norm of this solution by a scale factor also fulfill the perceptron classification rule.
Therefore, we will normalize the weights of the student and of the teacher to one when
assessing the goodness of the student’s estimate. This will be done by considering the
MSE between the normalized weights of the student and the normalized weights of the
teacher:

MSE ( 𝒘
‖𝒘‖

,
𝑩
‖𝑩‖

) = 1
𝑁

𝑁
∑
𝑘=1

(
𝑤𝑘
‖𝒘‖

−
𝐵𝑘
‖𝑩‖

)
2
, (6.33)

which we will express in decibel (dB). The performance of EP based sparse perceptron
learning will be compared to those related to the 1-bit approximate message passing
technique (1bitAMP) from Ref. [122] and to the generalized vector approximate mes-
sage passing algorithm (grVAMP) from Ref. [85], which was discussed in Sec. 3.7.1.

We carried out numerical simulations on i.i.d. patterns drawn from a standard nor-
mal distribution and evaluated the MSE (6.33) over 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100 instances, each of
which consisting of a i.i.d. pattern matrix, its associated labels and a set of weights of
the teacher perceptron. We set the number of weights as 𝑁 = 128 and the density level
𝜌0 = 0.25 Moreover, we set 𝜖stop = 10−4 for the EP convergence parameter and use
0.9995 for the EP damping parameter, although good results are obtained using lower
values too, e.g. 0.99. Moreover, we set the maximum number of iteration to 50000. The
resulting values of theMSE as a function of 𝛼 are shown in Fig. 6.1 and demonstrate that
using EP, 1-bit AMP and grVAMP to train the student perceptron from i.i.d. Gaussian
patterns do not lead to appreciable differences in terms of training error. We adopted
a convergence threshold equal to 10−4 in the case of 1-bit AMP and equal to 10−8 in
the case of grVAMP. All simulations converged within the thresholds specified, regard-
less of the algorithm. The error bars in Fig. 6.1 were computed by dividing the sample
standard deviation of the MSE by √𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠.

Analogously to what was done when analyzing the performance of Gaussian EP on
the CS problem (cfr. Sec. 5.5), we now consider the problem of training the student on
correlated patterns drawn from a multivariate normal distribution, in the simple case
where the Gaussian distribution has zero vector mean and covariance matrix given by:

S = 𝐘⊤𝐘 + 𝜟, (6.34)

where 𝐘 ∈ ℝ𝑢×𝑁 is an i.i.d. matrix with entries drawn from a standard normal distribu-
tion and 𝜟 is a diagonal matrix, the diagonal entries of which are given by the absolute
value of i.i.d. random numbers drawn from a standard Gaussian distribution too. We
recall that the diagonal matrix 𝜟 is added so that 𝐒 has full rank. As we did in the CS
problem, we choose 𝑢 = 1 for the matrix 𝐘, because this choice leads to the off diagonal
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Figure 6.1: 𝑀𝑆𝐸 resulting from sparse perceptron training from i.i.d. patterns using
EP, 1-bit AMP and grVAMP based learning as a function of 𝛼. The parameters of the
teacher are 𝑁 = 128 and 𝜌0 = 0.25 and the number of instances considered is 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
100. All simulations converged and the MSE shown is averaged over all instances. The
error bars are estimated as 𝜎/√𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where 𝜎 is the sample standard deviation of the
𝑀𝑆𝐸 computed over all instances. Copyright (2021) by the American Physical Society.
Reproduced with permission.

and diagonal elements of the covariance matrix having the same order of magnitude,
so that correlations are not negligible.

Although, assuming the parameters 𝑁, 𝜌0 and 𝛼 to be equal and given the same val-
ues for 𝜖stop and for the maximum number of iterations in Gaussian EP, the estimation
accuracy appears to be lower when considering this kind of patterns as compared to
the previous case of i.i.d. Gaussian patterns, our results show that Gaussian EP still al-
lows the student perceptron to learn the weights of the teacher fairly well. The increase
in the MSE as compared to the case of CS reconstruction is to be expected, since the
information reduction in the linear projections, due to the patterns being correlated,
is worsened by the presence of the sign non-linearity. Both effects are combined in
the data matrix 𝐗𝜎, as both patterns and labels enter in its definition, cfr. Eq. (6.4).
However, it is worth noticing that Gaussian EP based training outperforms other mes-
sage passing algorithms applied to the same problem. For example, the estimates of the
means and of the variances of the weights of the teacher diverge if one uses 1bitAMP,
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Figure 6.2: Sparse perceptron learning from correlated Gaussian patterns, with param-
eter 𝑢 = 1, using EP and grVAMP. (a) ROC curves for various values of 𝛼. (b) Sensitivity
plots for the same values of 𝛼 considered in panel (a). For reference, in (a) and (b) the
case of ideal variable selection by the teacher perceptron that provided the examples is
also shown (black line). (c) MSE in dB for 𝑁 = 128 and 𝑁 = 256. In each plot, the mean
values and the standard deviations are computed over the set of all 𝑁𝑐𝑜𝑛𝑣 instances for
which convergence was achieved. The error bars are estimated as 𝜎/√𝑁𝑐𝑜𝑛𝑣, where 𝜎 is
the sample standard deviation over the same set of instances. Copyright (2021) by the
American Physical Society. Reproduced with permission.

which prevents us from including it in our comparisons. Moreover, we find that Gaus-
sian EP also outperforms grVAMP in this scenario and show this fact in Fig. 6.2, where
we considered 𝑁 = 128 weights, with density level of the teacher given by 𝜌0 = 0.25.
As in the previous case involving i.i.d. Gaussian patterns, the convergence parameters
of grVAMP and EP were set to 10−8 and to 10−4, respectively. Attempting to train the
student perceptron setting a lower convergence threshold for grVAMP did not lead to a
better estimate of the target weights. For EP, a damping equal to 0.999 was used. Under
these values of the parameters, we show the fraction of converged trials achieved by
EP and grVAMP in Table 6.1.
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𝛼 𝑓𝐸𝑃 𝜎𝑓𝐸𝑃 𝑓𝑔𝑟𝑉𝐴𝑀𝑃 𝜎𝑔𝑟𝑉𝐴𝑀𝑃
0.5 1 0 1 0
1.0 1 0 0.96 0.02
1.5 1 0 0.89 0.03
2.0 1 0 0.83 0.04
2.5 1 0 0.87 0.03
3.0 1 0 0.87 0.03
4.0 1 0 0.85 0.04
5.0 1 0 0.82 0.04
6.0 1 0 0.80 0.04

(a) 𝑁 = 128
𝛼 𝑓𝐸𝑃 𝜎𝑓𝐸𝑃 𝑓𝑔𝑟𝑉𝐴𝑀𝑃 𝜎𝑔𝑟𝑉𝐴𝑀𝑃
0.5 0.99 0.01 1 0
1.0 0.73 0.04 0.99 0.01
1.5 0.92 0.03 0.94 0.02
2.0 0.96 0.02 0.88 0.03
2.5 0.88 0.03 0.83 0.04
3.0 0.88 0.03 0.73 0.04
4.0 0.92 0.03 0.80 0.04
5.0 0.94 0.02 0.76 0.04
6.0 0.96 0.02 0.70 0.05

(b) 𝑁 = 256

Table 6.1: Fraction of converged trials over a set of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100 different instances
of the teacher’s weights and of the training set, with 𝑁 = 128 and 𝜌0 = 0.25. The
patterns in the training set were drawn from a multivariate Gaussian distribution
having covariance matrix given by (6.34). The quantity 𝑓𝐸𝑃 denotes the fraction of
converged EP simulations and 𝜎𝐸𝑃 is associated uncertainty, which was estimated as

√𝑓𝐸𝑃(1 − 𝑓𝐸𝑃)/𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, whereas 𝑓𝑔𝑟𝑉𝐴𝑀𝑃 and 𝜎𝐸𝑃 denote the analogous quantities as-
sociated with grVAMP.

In terms of variable selection, we can see that EP based training of the student clas-
sifier leads to a more accurate estimate of the subset of nonzero weights as compared to
grVAMP based training, as demonstrated by the receiver operating characteristic (ROC)
curves shown in Fig. 6.2a and by the sensitivity plots shown in Fig. 6.2b, where the
average of the quantities considered was computed over the set of the 𝑁𝑐𝑜𝑛𝑣 instances
for which both algorithms achieved convergence and the error bars were estimated as
the standard deviation over the same set of instances divided by √𝑁𝑐𝑜𝑛𝑣. We here give
some details on how these curves are constructed for a single instance:

1. Given a set of weights of the teacher and given the parameters of the student at the
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end of the training phase, we assign a score to each weight of the teacher, based
either on their absolute value or on their estimated probability of being nonzero as
provided by the parameters of EP and of grVAMP. In case one is interested in using
the probability that a given weight is nonzero, the relevant expression is given by:

𝑃≠0𝑖 = (1 + (1
𝜌
− 1)

√

1 + 𝜆Σ𝑖
𝜆Σ𝑖

e
−

𝜇2𝑖
2Σ𝑖(1+𝜆Σ𝑖))

−1

. (6.35)

If, on the one hand, the algorithm of interest is EP, then:

• 𝜇𝑖, for 𝑖 = 1,… ,𝑁, denotes the mean of the 𝑖th marginalized cavity distribution

• Σ𝑖 denotes the variance of the 𝑖th marginalized cavity distribution

while if, on the other hand, the algorithm considered is grVAMP, then:

• 𝜇𝑖 is the 𝑖th component of the VAMP vector 𝐫1𝑘,
• Σ𝑖 is given by the VAMP variance 𝛾−11𝑘 ,

where the index 𝑖 refers to vector components and the index 𝑘 to the current iter-
ation in VAMP (cfr. Sec. 3.7) and 𝜌 and 𝜆 denote the values of the spike-and-slab
prior.

2. We sort theweights of the teacher in decreasing order based on the scores specified
at the previous point.

One interesting observation emerging from Fig. 6.2 is that the discrepancy between
the ROC curves associated to EP and grVAMP increases as a function of 𝛼. Accordingly,
the same behavior appears in the sensitivity plot, signaling a qualitative difference in the
variable selection capabilities of the two algorithms in the Gaussian correlated pattern
setup that we are considering here. This fact, in turn, implies that the fixed points of
Gaussian EP describe the weights of the teacher more faithfully than those reached by
grVAMP, as confirmed by the discrepancy between the MSEs associated with the two
algorithms, which are shown in Fig. 6.2c, and allows us to conclude that, indeed, the
EP and grVAMP approximations are significantly different. Notice that this fact is not
(only) due to convergence issues, since the plots in Fig. were obtained by considering
only instances where both algorithms converged. For instance, considering 𝛼 = 2, we
obtain 𝑀𝑆𝐸 = (−25.7 ± 0.2) dB in the case of grVAMP and 𝑀𝑆𝐸 = (−26.4 ± 0.3) dB in
the case of EP. In order to grasp this difference, let us consider the variances 𝑑𝑘 of the
EP approximating Gaussian factors 𝜙𝑘, for 𝑘 = 1,… ,𝑁, bearing in mind the relationship
between EP and VAMP described in Sec. 4.8. In the EP approximation, these variances
span several orders of magnitude, as it can be appreciated from Fig. 6.3, where we plot
the histogram of the values taken by 𝑑1,… , 𝑑𝑁 at the end of the training phase for a
particular instance of the weights of the teacher and of the patterns given as input to
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the student, for 𝛼 = 2. On the contrary, the VAMP ansatz in grVAMP constrains all
variances to be equal, thus limiting the extent to which the posterior distribution can
be well approximated. We show both the case of Gaussian correlated patterns and the
case of i.i.d. Gaussian patterns in order to highlight the difference in their distributions
in the two cases: in the Gaussian correlated case, the distribution of the variances is
mostly spread over the range 10−4 ≤ 𝑑 ≤ 1, whereas in the i.i.d. Gaussian case the
same distribution mostly concentrates around one peak. The discrepancy between the
MSEs obtained from the two approximations becomes even larger as 𝛼 is increased.
The variances of the approximating factors still span several orders of magnitude, but,
as we show in Fig. 6.4, tend to concentrate at lower values, in accordance with the
better performance displayed by EP at large 𝛼. In both Figs. 6.3 and 6.4, the range
of the parameters 𝑑𝑘 is represented in logarithmic scale and the grVAMP estimate of
the variances 𝑑𝑘 is given by the vertical red line. For the sake of comparison, we also
include the average EP estimate and its associated sample standard deviation, which
correspond to the green vertical line and to the light green region, respectively.

We explained in Sec. 4.10 how the parameters of the prior can be approximately in-
ferred during the EP iterations by minimizing the EP free energy using gradient descent
and we applied the procedure to the online estimation of the density parameter of the
spike-and-slab prior in the CS problem, as discussed in Sec. 5.3. The same strategy can
be applied to the sparse perceptron learning problem in order to infer the value 𝜌0 of
the density level of the teacher weights, which one assumes not to be known a priori.
Although we will only state results concerning the estimation of 𝜌0 as obtained in the
Gaussian EP framework, we notice that a similar expectation maximization strategy
can also be implemented for 1bitAMP and grVAMP (see e.g. Ref. [29]).

In Table 6.2, we show the EP estimate of the teacher density as obtained from a set
of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100 numerical experiments on a system with 𝑁 = 128 and target value
of the density level given by 𝜌0 = 0.25. More precisely, we give its mean 𝜌𝐿 and its
standard deviation, obtained as its sample standard deviation divided by √𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. We
also provide the relative discrepancy between 𝜌0 and 𝜌𝐿, wherewe have not included the
associated statistical uncertanties due to the fact that Δ𝜌 ≫ 𝛿𝜌𝐿. In all simulations, the
initial value of the parameter 𝜌 of the spike-and-slab prior associated with the weights
of the student was randomly drawn from a uniform distribution over the interval 0.05 ≤
𝜌 ≤ 0.95 and we chose 𝛿𝜌 = 10−5 for the learning rate of the gradient descent. For these
values of the parameters, convergence was achieved in all simulations for all values of
𝛼. Overall, Table 6.2 shows that the EP estimate of 𝜌0 tends to be quite accurate and that
it improves as the number of patterns presented to the student perceptron increases.

6.5 Sparse perceptron learning from a noisy teacher
We now analyze the performance of Gaussian EP on the sparse perceptron learning
problem when a small fraction of the binary labels is corrupted by noise. In this case,
some patterns are mislabeled and the task of the student perceptron is to learn the
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Figure 6.3: Examples of a set of variances in Gaussian EP and in VAMP at the end of
the training on one instance for 𝑁 = 128, 𝜌0 = 0.25 and 𝛼 = 2.

correct classification rule from the knowledge of the corrupted examples and from the
information that a (possibly unknown) fraction of the labels was wrongly assigned. As
in the noiseless case, we consider a Bayes-optimal setting in order to avoid complicat-
ing the analysis. Therefore, we replace the theta pseudoprior with the theta mixture
pseudoprior given in Eq. (6.11).
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Figure 6.4: Examples of a set of variances in Gaussian EP and in VAMP at the end of
the training on one instance for 𝑁 = 128, 𝜌0 = 0.25 and 𝛼 = 6.

In order to compare EP to grVAMP in this scenario, we implemented the theta mix-
ture pseudoprior in both algorithms. Moreover, we include in our comparisons the
variational algorithm proposed in Ref. [34], called R1BCS. This algorithm attempts to
jointly recover the signal and a sparse noise vector producing the incorrect labels by
means of an expectation maximization scheme. As in the previous section, we set the
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𝛼 𝜌𝐿 ± 𝛿𝜌𝐿 (i.i.d.) Δ𝜌/𝜌0 (i.i.d.) 𝜌𝐿 ± 𝛿𝜌𝐿 (MVN) Δ𝜌/𝜌0 (MVN)
2 0.191 ± 0.003 0.236 0.161 ± 0.004 0.341
3 0.220 ± 0.002 0.121 0.196 ± 0.004 0.206
4 0.234 ± 0.002 0.066 0.207 ± 0.003 0.182
5 0.240 ± 0.002 0.042 0.214 ± 0.003 0.144
6 0.242 ± 0.001 0.031 0.223 ± 0.003 0.115

Table 6.2: EP based estimation of the density 𝜌0 of the teacher’s weights for a perceptron
with parameters 𝑁 = 128 and 𝜌0 = 0.25. The average and the standard deviation of the
learned value of 𝜌0 at convergence over all converged training simulations are denoted
by 𝜌𝐿 and 𝛿𝜌𝐿, respectively, whereas Δ𝜌 is the absolute difference between 𝜌0 and the
estimate 𝜌𝐿. In each trial, the initial condition 𝜌0 was drawn uniformly from the interval
0.05 ≤ 𝜌 ≤ 0.95.

precision parameter of the spike-and-slab to 𝜆 = 1 in grVAMP. In R1BCS, we set a con-
vergence criterion such that ‖𝒘𝑅1𝐵𝐶𝑆−𝒘𝑜𝑙𝑑

𝑅1𝐵𝐶𝑆‖ < 𝜖𝑠𝑡𝑜𝑝, where 𝒘𝑅1𝐵𝐶𝑆 denotes the R1BCS
estimate of the student perceptron after training is completed. In Gaussian EP, we set
the parameter 𝜆 of the spike-and-slab prior to 10−4 and the damping factor to 0.99. In
all algorithms, the convergence threshold 𝜖𝑠𝑡𝑜𝑝 was set to 10−4. In our numerical exper-
iments, we mislabelled a number 𝐾𝑙𝑎𝑏𝑒𝑙 = (1 − 𝜂0)𝑀 of examples, where the parameter
𝜂0 denotes the true fraction of correctly assigned labels, which the students possibly
needs to retrieve during the training process.

We consider both the case of perceptron learning from i.i.d. Gaussian patterns drawn
from a standard Gaussian distribution and that from correlated Gaussian patterns con-
structed as in the previous section about noiseless examples, with covariance matrix
given by (6.34). In both cases, we considered a set of 100 instances, each of which con-
sisting of a different weight vector for the teacher and a different set of patterns. The
rate of convergence within the threshold 𝜖𝑠𝑡𝑜𝑝 was 1 for all algorithms in the case of i.i.d
patterns and for R1BCS and EP in the case of multivariate Gaussian patterns. However,
in the latter case, we observed a rate of failure in the convergence of grVAMP up to 15%.

We analyzed the variable selection capabilities of EP in the mislabeled examples
scenario by computing the ROC curves and the sensitivity plots related to the same
instances considered above, both those consisting of i.i.d. Gaussian patterns and those
consisting of correlated Gaussian patterns. The ROC curves and sensitivity plots are
associated with the weights of the student perceptron, where the number of weights
was𝑁 = 128, the density level of the teacher was 𝜌0 = 0.25 and the fraction of unflipped
labels was taken as 𝜂0 = 0.95. We show the resulting ROC curves for the i.i.d. pattern
case in Fig. 6.5a and their associated sensitivity plots in Fig. 6.5b. Likewise, for the case
of Gaussian correlated patterns, the relevant ROC curves are shown in Fig. 6.5a and the
related sensitivity plots are shown in Fig. 6.5b.

In order to obtain the curves presented in Fig. 6.5, the weights of the teacher, 𝑩, were
sorted based on the absolute value of the weights of the student, 𝒘. Concerning EP and
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Figure 6.5: Sparse weight estimation from i.i.d. Gaussian patterns and from correlated
Gaussian patterns, with parameters 𝑁 = 128, 𝜌0 = 0.25, 𝑢 = 1, 𝜂0 = 0.95. A fraction
(1 − 𝜂0) of the labels are mislabeled. Comparison between the ROC curves associated
with the student’s estimate as obtained from R1BCS, grVAMP and EP (a,c) and between
the related sensitivity plots (b,d). For reference, the case of ideal variable selection by
the teacher perceptron that provided the examples is shown in black in all panels. The
plotted quantities are the mean values computed over the set of all 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 instances
and the error bars are estimated as 𝜎/√𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100 and 𝜎 denotes
the sample standard deviation over all instances. Copyright (2021) by the American
Physical Society. Reproduced with permission.

grVAMP, we also considered the score expressed in Eq. (6.35) as a sorting criterion.
However, this did not lead to noticeably different results, as the curves obtained with
the two criteria approximately overlap.

From the ROC curves and sensitivity plots in the panels of Fig. 6.5, we see that
EP and grVAMP are mostly comparable in terms of their true positive ratio. However,
for large 𝛼, the values associated with EP are smaller in the i.i.d. case. This fact is
most likely to be attributed to the presence of numerical effects, as we will argue in
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𝛼 𝐴𝑈𝐶𝐸𝑃 𝐴𝑈𝐶𝑔𝑟𝑉𝐴𝑀𝑃 𝐴𝑈𝐶𝑅1𝐵𝐶𝑆
0.5 0.621 ± 0.005 0.627 ± 0.005 0.595 ± 0.005
1.0 0.706 ± 0.005 0.710 ± 0.005 0.682 ± 0.004
1.5 0.770 ± 0.005 0.777 ± 0.005 0.746 ± 0.005
2.0 0.806 ± 0.005 0.809 ± 0.005 0.792 ± 0.004
2.5 0.835 ± 0.004 0.840 ± 0.004 0.824 ± 0.005
3.0 0.860 ± 0.004 0.865 ± 0.005 0.854 ± 0.004
4.0 0.893 ± 0.004 0.899 ± 0.004 0.887 ± 0.004
5.0 0.913 ± 0.004 0.920 ± 0.004 0.91 ± 0.004
6.0 0.927 ± 0.003 0.936 ± 0.003 0.923 ± 0.003

(a) AUC (i.i.d. patterns)
𝛼 𝐴𝑈𝐶𝐸𝑃 𝐴𝑈𝐶𝑔𝑟𝑉𝐴𝑀𝑃 𝐴𝑈𝐶𝑅1𝐵𝐶𝑆
0.5 0.588 ± 0.006 0.579 ± 0.006 0.559 ± 0.005
1.0 0.661 ± 0.005 0.628 ± 0.006 0.641 ± 0.006
1.5 0.727 ± 0.006 0.685 ± 0.006 0.694 ± 0.006
2.0 0.732 ± 0.007 0.696 ± 0.006 0.734 ± 0.006
2.5 0.775 ± 0.007 0.719 ± 0.006 0.775 ± 0.006
3.0 0.788 ± 0.007 0.742 ± 0.007 0.793 ± 0.006
4.0 0.834 ± 0.007 0.788 ± 0.006 0.828 ± 0.005
5.0 0.856 ± 0.006 0.807 ± 0.006 0.851 ± 0.006
6.0 0.882 ± 0.005 0.825 ± 0.007 0.885 ± 0.005

(b) AUC (patterns from MVN)

Table 6.3: (a) AUC scores associated with the ROC curves shown in Fig. 6.5a, which
correspond to EP, grVAMP and R1BCS based training from i.i.d. Gaussian patterns
with a small fraction of mislabeled examples. (b) AUC scores associated with the ROC
curves shown in Fig. 6.5c, corresponding to EP, grVAMP and R1BCS based training from
correlated Gaussian patterns with mislabeled examples. In both (a) and (b), 𝑁 = 128,
𝜌0 = 0.25, 𝑢 = 1 and the consistency level of the labels assigned to the patterns is
𝜂0 = 0.95.

more detail below. In terms of performance as compared to R1BCS, we find that both
EP and grVAMP significantly outperform R1BCS when training is conducted on i.i.d.
patterns, especially at low 𝛼. In order to corroborate this fact, we give the values of
the areas under the the ROC curves (AUC), which are reported in Table 6.3a. From the
table, we can see that the relative discrepancy between the AUCs does not exceed 0.008
when considering EP and grVAMP, but can be as large as 0.03 when considering EP and
R1BCS.

The situation appears to be qualitatively different in the case of correlated Gaussian
patterns, where the ROC curves and sensitivity plots related to EP and to R1BCS are
mostly comparable and exceed those related to grVAMP in terms of true positive rate.
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Overall, these results show that the variable selection properties of EP tend to be more
robust than those of grVAMP in the correlated Gaussian pattern regime. This observa-
tion is confirmed by the AUC reported in Tab. 6.3b and agrees with what we observed
in the ideal case without mislabeling. Here, the discrepancy between EP and grVAMP
is large for large 𝛼 and is maximum at 𝛼 = 6.
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Figure 6.6: Sparse perceptron learning from a training set with a fraction (1 − 𝜂0) of
mislabeled examples: comparison between EP, grVAMP and R1BCS in terms of their
MSE for (a) i.i.d. Gaussian patterns, 𝜂0 = 0.95, (b) i.i.d. Gaussian patterns, 𝜂0 = 0.9, (c)
correlated Gaussian patterns, 𝜂0 = 0.95 and (d) correlated Gaussian patterns, 𝜂0 = 0.9.
In all panels,𝑁 = 128 and 𝜌0 = 0.25. Themean squared errors plotted are averaged over
the set of all 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 instances considered, which are the same as in Fig. 6.5, and the
error bars are estimated as 𝜎/√𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where 𝜎 denotes the sample standard deviation
over all instances. Copyright (2021) by the American Physical Society. Reproduced
with permission.

In order to see how these variable selection properties affect the student’s retrieval
of the teacher’s weights, we show the MSE in Fig. 6.6 for both 𝜂0 = 0.95 and 𝜂0 = 0.9.
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6.5 – Sparse perceptron learning from a noisy teacher

Notice that, as the instances considered are the same, the case of i.i.d. Gaussian patterns
in Fig. 6.6a corresponds to the ROC curves shown in Fig. 6.5a and to the sensitivity
plots in Fig. 6.5b. Likewise, Fig. 6.6c, which refers to correlated Gaussian patterns,
is related to Figs. 6.5c and 6.5d. We show the MSE both using a dB scale (see the
main plots) and using a linear scale (insets). By inspecting both scales, we find that,
although the MSE of EP is larger than that of grVAMP at large 𝛼 in the i.i.d. pattern
setup when looking at the dB scale (see Figs. 6.6a and 6.6b), the difference is very small
and therefore is not noticeable on a linear scale. The slightly lower performance of EP
is in agreement with Figs. 6.5a and 6.5b and should be ascribed to numerical effects.
This belief is not only based to the smallness of the MSE and of their discrepancies,
but also on the relationship of the VAMP approximation to Gaussian EP, which was
discussed in Sec. 4.8. In particular, we recall that VAMP can be seen as a special case of
Gaussian EPwhere all approximating factors are univariate Gaussian factors having the
same variance. As such, the Gaussian EP approximation is expected to be more general
than the VAMP ansatz, as we discussed above when interpreting our results concerning
perceptron training from correlated Gaussian patterns in the noiseless regime. In turn,
this observation explains the differences between the MSE of EP and grVAMP in Fig.
6.6c for 𝜂0 = 0.95, which not only appear on a dB scale but also on a linear one. Once
again, this fact agrees with the results found for the ROC curves in Fig. 6.5c. However,
as soon as the fraction of mislabeled examples is large enough, EP and grVAMP become
comparable in terms of MSE regardless of the specific value of 𝛼, as it can be deduced
from Fig. 6.6d.

As alreadymentioned above, the fraction 𝜂0 of correctly assigned labels is not known,
in general, and the same applies to the parameter 𝜌0. We here demonstrate that EP is
able to find an accurate estimate of 𝜂0 by iteratively updating the parameter 𝜂 of the
prior using the gradient descent update given in Eq. (6.32). In order to see this, we
considered 100 instances and sampled a different initial condition for the parameter 𝜂
by drawing it uniformly from the interval 0.5 < 𝜂 < 1. We checked that 𝜌0 and 𝜂0 can
be learned simultaneously, where the initial condition for 𝜌 was chosen as described at
the end of Sec. 6.4. We show the EP estimate of the parameters 𝜌0 and 𝜂0 in the case of
i.i.d. patterns in Tab. 6.4a and in the case of correlated Gaussian patterns in Tab. 6.4b.

Among the algorithms presented in our comparisons, EP proves to be quite efficient
in terms of computational complexity. For comparison, R1BCS has a computational cost
𝑂((1+𝛼3)𝑁 3), as both a𝑁 ×𝑁 and a𝑀×𝑀matrix are inverted, whereas EP is dominated
by𝑂((1+𝛼)𝑁 3) elementary operations if the formulationwith rigid linear constraints of
Sec. 4.4 is used. In the case of EP, the cost is due both to the inversion of the covariance
matrix of the approximated distribution 𝑄 and to the computation of𝑁 2 scalar products
between 𝑀-dimensional vectors in Eq. (4.38). This makes EP especially advantageous
as compared to R1BCS in the large 𝛼 regime. However, in general, EP tends to be slower
than grVAMP for large sets of weights of the teacher and student perceptrons. In fact,
in spite of the fact that grVAMP has cubic computational complexity as a function of
𝑁, the initial SVD associated with this cost needs only be performed once (cfr. Secs.
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𝛼 𝜌𝐿 Δ𝜌/𝜌0 𝜂𝐿 Δ𝜂/𝜂0
2.5 0.229 ± 0.004 0.08 0.964 ± 0.001 0.02
3.0 0.234 ± 0.003 0.07 0.957 ± 0.003 0.007
4.0 0.247 ± 0.004 0.01 0.9584 ± 0.0005 0.009
5.0 0.249 ± 0.003 0.003 0.9561 ± 0.0007 0.006
6.0 0.252 ± 0.003 0.007 0.9544 ± 0.0004 0.005

(a) i.i.d. patterns
𝛼 𝜌𝐿 Δ𝜌/𝜌0 𝜂𝐿 Δ𝜂/𝜂0
2.5 0.206 ± 0.006 0.2 0.951 ± 0.002 0.0006
3.0 0.208 ± 0.006 0.2 0.953 ± 0.001 0.003
4.0 0.228 ± 0.005 0.09 0.953 ± 0.001 0.003
5.0 0.23 ± 0.005 0.08 0.9526 ± 0.0005 0.003
6.0 0.236 ± 0.004 0.05 0.9529 ± 0.0004 0.003

(b) patterns from MVN

Table 6.4: Values of the 𝜂0 parameter of the theta mixture pseudoprior estimated by the
student perceptron during the training phase when using EP to learn the weights of the
teacher (a) from i.i.d. Gaussian patterns and (b) from correlated Gaussian patterns for
𝑁 = 128. The estimated value of 𝜂0 is denoted as 𝜂𝐿, the target value being 𝜂0 = 0.95,
whereas the target value of 𝜌 is 𝜌0 = 0.25. Δ𝜌 and Δ𝜂 denote the absolute difference
between the target value and the estimate of the parameters 𝜌 and 𝜂, respectively.

3.7) and can thus be neglected if 𝑁 is small enough. Then, the remaining part of the
algorithm is dominated by a matrix-vector product and, therefore, its computational
cost is quadratic in 𝑁. In order to give an idea of the running times involved for the
implementations considered in our comparisons, which can be found at Refs. [105, 123–
125], we show the simulation times of R1BCS (𝑡𝑅1𝐵𝐶𝑆), EP (𝑡𝐸𝑃) and grVAMP (𝑡𝑔𝑟𝑉𝐴𝑀𝑃)
in Tab. 6.5 for 𝑁 = 128. In grVAMP, we set the number of iterations of the inner VAMP
module to 2000 and the maximum number of iterations of the outer MMSE module to
1000. The fact that 𝑡𝑔𝑟𝑉𝐴𝑀𝑃 appears to be larger than 𝑡𝐸𝑃 for the simulated size that we
considered is related to the VAMP module of grVAMP being run one time per iteration.

6.6 Sparse perceptron learning from temporally cor-
related patterns

We now consider another example of correlated patterns produced as follows. 𝑁 di-
luted perceptrons connected to form a recurrent network with no self-loops receive
binary inputs 𝒙 . generated according to a Glauber dynamics at zero temperature. Let
𝐁 ∈ ℝ𝑁×(𝑁−1) be the weight matrix of the network and 𝑩𝑖 its 𝑖th row, which corre-
sponds to the set of weights that the 𝑖th perceptron of the network receives from all
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𝛼 𝑡𝐸𝑃 (s) 𝑡𝑔𝑟𝑉𝐴𝑀𝑃 (s) 𝑡𝑅1𝐵𝐶𝑆 (s)
0.5 2.7 ± 0.2 126.7 ± 0.8 6.5 ± 0.2
1.0 2.6 ± 0.03 134.6 ± 0.9 12.0 ± 0.3
1.5 3.74 ± 0.04 147.0 ± 1.0 22.2 ± 0.5
2.0 5.65 ± 0.08 159.0 ± 1.0 47.6 ± 1.0
2.5 6.97 ± 0.09 175.7 ± 1.0 94.9 ± 2.0
3.0 8.3 ± 0.1 212.9 ± 20.0 150.9 ± 3.0
4.0 10.2 ± 0.1 258.3 ± 10.0 373.4 ± 7.0
5.0 12.2 ± 0.1 311.6 ± 10.0 628.0 ± 10.0
6.0 15.6 ± 0.2 353.9 ± 10.0 1052.9 ± 20.0

(a) i.i.d. patterns
𝛼 𝑡𝐸𝑃 (s) 𝑡𝑔𝑟𝑉𝐴𝑀𝑃 (s) 𝑡𝑅1𝐵𝐶𝑆 (s)
0.5 2.7 ± 0.2 139.2 ± 2.0 6.7 ± 0.2
1.0 3.7 ± 0.1 155.7 ± 2.0 14.4 ± 0.4
1.5 4.8 ± 0.1 206.8 ± 20.0 27.0 ± 0.7
2.0 6.2 ± 0.2 289.0 ± 40.0 53.6 ± 1.0
2.5 7.7 ± 0.2 236.3 ± 20.0 105.8 ± 3.0
3.0 9.5 ± 0.3 294.3 ± 30.0 158.5 ± 4.0
4.0 11.4 ± 0.3 366.9 ± 40.0 379.4 ± 8.0
5.0 14.1 ± 0.4 423.5 ± 40.0 592.7 ± 10.0
6.0 15.9 ± 0.4 498.5 ± 50.0 1057.2 ± 20.0

(b) patterns from MVN

Table 6.5: Simulation time for the EP and R1BCS based sparse weight learning from (a)
i.i.d. Gaussian patterns and from (b) correlated Gaussian patterns. In both (a) and (b),
a small fraction of examples were mislabeled. In simulations, parameters were set as
𝑢 = 1 and 𝜂0 = 0.95, while the EP damping factor was equal to 0.99. The uncertainties
were estimated as 𝜎/√𝑁𝑐𝑜𝑛𝑣, where 𝜎 is the sample standard deviation over the set of
converged trials and 𝑁𝑐𝑜𝑛𝑣 denotes the number of converged simulations.

other perceptrons. A schematic representation of such a network is given in Fig. 6.7
Starting at 𝑡 = 0 from a random vector 𝑥0 = sign(𝜉0), where 𝜉0 ∼ 𝒩 (𝜉; 0, I), the patterns
at discrete times 𝑡 = 1,2,… , 𝑇 can be dynamically generated either synchronously or
asynchronously:

• Synchronous update. Given a pattern 𝒙 𝑡 at time 𝑡, all perceptrons compute their
own outputs at time 𝑡 + 1 according to the Glauber dynamics:

𝑧𝑡𝑖 = 𝑩⊤
𝑖 𝒙

𝑡
⧵𝑖, (6.36)

𝑥 𝑡+1𝑖 = sign (𝑧𝑡𝑖) , (6.37)

where 𝒙 𝑡⧵𝑖 is the binary classification labels produced by all perceptrons except the
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!xτ, τ = 1,…, M

ρ0 = 0.25

N = 128

Figure 6.7: Schematic representation of a recurrent network of teacher perceptronswith
diluted weights generating 𝑀 pattern vectors dynamically.

𝑖-th one at the current time 𝑡.

• Asynchronous update. At each time 𝑡 = 1,2,… , 𝑇, one perceptron is selected
at random with uniform probability and generates a binary label according to Eq.
(6.37). Thus, given a pattern vector at the current time 𝑡, the pattern vector at
time 𝑡 + 1 has all components equal to those at the current time step, except for
the 𝑖th one, which is replaced with the label generated by the perceptron selected.
In order to adjust the extent to which consecutive pattern vectors are temporally
correlated, we fix the Hamming distance between subsequent patterns to a desired
level and, given the current pattern, run the dynamics (6.37) and only store the
candidate pattern vector when the target Hamming distance is achieved.

In practice, it is important to select the nonzero weights of the recurrent network
at random in order to avoid that the synchronous dynamics converges to a periodic at-
tractor. Indeed, by selecting a number 𝑁 = 128 of perceptrons with connection density
level 𝜌0 = 0.25, this problem did not occur.

Considering again the teacher-student paradigm and a noiseless setup, we compared
EP and grVAMP in terms of training accuracy of the perceptrons in a student network
from the examples generated by a teacher recurrent network. Both networks consist of
𝑁 = 128 perceptrons and we set the teacher density level to 𝜌0 = 0.25. The damping
parameter of EP was set to 0.999 and the convergence threshold was set to 10−4 for both
EP and grVAMP. In addition, the precision parameter of the spike-and-slab was set to
𝜆 = 1 both in EP and in grVAMP.

We quantified the accuracy of learning the target classification rule from synchronously
generated patterns and from asynchronously generated patterns. In the presence of
synchronously updated patterns, all simulations run on the perceptrons of the student
network converged within the threshold specified both for EP and for grVAMP. We an-
alyzed the variable selection properties and learning accuracy of the two algorithms
in the synchronous and asynchronous pattern regimes by computing the average ROC
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curves, the average MSEs and the statistical uncertanties associated with the percep-
trons of the student network. The sorting criterion of the weights of the teacher per-
ceptrons was based on their absolute values when computing the ROC curves.

In the synchronous update setup, both EP and grVAMPwere able to properly identify
the same number of teacher’s weights. This can be seen from the overlapping vertical
portion of the ROC curves shown in Fig. 6.8a. Therefore, the teacher-student MSE
as a function of 𝛼 exhibits comparable values for the two algorithms. As can be seen
in Fig. 6.8b, a similar picture was observed when the patterns were obtained from
an asynchronous generative process, where patterns vectors were included among the
examples only after a “full sweep” of as many updates as the number of perceptrons in
the teacher network. In this situation, patternswereweakly correlated and convergence
of grVAMP was still very good. In fact, the observed convergence rate was larger than
95% for all values of 𝛼 that we considered.

We now show our results on simulations performed with asynchronously generated
patterns, where we set a Hamming distance 𝑑𝐻(𝒙𝑡+1, 𝒙𝑡) = 10 between subsequent pat-
tern vectors. This choice corresponds to a Pearson correlation coefficient 𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 = 0.84
between pattern vectors 𝒙𝑡 and 𝒙𝑡+1. In this case, the observed convergence rate of the
student perceptrons dropped significantly for grVAMP, whereas the convergence rate
for EP was mostly unaffected, as shown in the inset of Fig. 6.8d. Taking into account
all perceptrons of the student network (both those for which grVAMP converged and
those for which it did not), we find that grVAMP is not able to accurately estimate the
weights of the teacher perceptrons with strongly correlated patterns. We show the ROC
curves obtained in this case in Figs. 6.8c and the related MSE in Fig. 6.8d. The poor
performance of the grVAMP estimate is related to the low convergence rate of the al-
gorithm, as can be deduced from the fact that when both EP and grVAMP converged
their estimates of the teacher weights were similar.

Analogously to what we saw in the previous sections, the student perceptrons were
able to infer the density of the weights of their teachers quite accurately using EP on the
temporally correlated patterns considered here. The parameter 𝜂0 of the theta mixture
pseudoprior could also be learned if noise was injected on the labels, provided that
the noise level 1 − 𝜂0 was not too large, similarly to what we observed in Sec. 6.5 for
i.i.d. Gaussian patterns and for the correlated Gaussian patterns. We provide the EP
estimate of the noise level when 𝜂0 = 0.9 and some examples of the estimated values
of the density level 𝜌0 at large 𝛼 in Tab. 6.6. The parameter 𝜂0 is inferred quite well for
weakly correlated patterns (synchronous case), but is overestimated when patterns are
strongly correlated (asynchronous case with 𝑑𝐻 = 10).
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𝛼 𝜂𝐿 (synchr.) Δ𝜂/𝜂0 (synchr.) 𝜂𝐿 (asynchr.) Δ𝜂/𝜂0, (asynchr.)
0.5 0.86 ± 0.02 0.05 0.979 ± 0.004 0.09
1.0 0.96 ± 0.01 0.06 0.9945 ± 0.0009 0.1
1.5 0.927 ± 0.007 0.03 0.991 ± 0.001 0.1
2.0 0.899 ± 0.008 0.001 0.983 ± 0.001 0.09
2.5 0.893 ± 0.007 0.008 0.975 ± 0.001 0.08
3.0 0.901 ± 0.001 0.001 0.967 ± 0.001 0.07
4.0 0.9036 ± 0.0008 0.004 0.950 ± 0.001 0.06
5.0 0.9087 ± 0.0008 0.01 0.946 ± 0.001 0.05
6.0 0.9108 ± 0.0006 0.01 0.9389 ± 0.0008 0.04

(a)

Value of 𝛼 Estimated 𝜌synchr Estimated 𝜌asynchr, 𝑑𝐻 = 10
4.0 0.224 ± 0.002 0.208 ± 0.002
5.0 0.233 ± 0.002 0.223 ± 0.002
6.0 0.237 ± 0.001 0.231 ± 0.001

(b)

Table 6.6: (a) Estimate of the parameter 𝜂0 of the theta mixture pseudoprior resulting
from sparse weight learning from the same patterns as in Fig. 6.8. The true unknown
value of 𝜂0 is 0.9. (b) Estimated value of the density of the weights of single percep-
trons for large 𝛼 and with no mislabeling of the examples, both with synchronously
updated patterns and with asynchronously updated patternes, where, in the latter case,
the Hamming distance between pattern vectors at consecutive time steps was fixed as
𝑑𝐻 = 10. In both (a) and (b), 𝑁 = 128 and 𝜌0 = 0.25.
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Figure 6.8: Performance of grVAMP and of EP led sparse weight retrieval from corre-
lated binary patterns generated by means of a Glauber dynamics at zero temperature.
Panels (a) and (b) refer to weakly correlated patterns, while panels (c) and (d) refer to
strongly correlated patterns. Both in the teacher network and in the student network,
𝑁 = 128 and 𝜌0 = 0.25. In each panel, the mean values and the uncertainties were
evaluated over the whole set of 𝑁 perceptrons. The error bars were estimated as 𝜎/√𝑁,
where 𝜎 denotes the sample standard deviation computed over the set of all 𝑁 student
perceptrons completing the learning task. (a) ROC curves associated with the learned
weights of each student perceptron for several values of 𝛼 for synchronously updated
patterns. In this case, convergence was achieved by all perceptrons during the train-
ing task. (b) MSE (in dB) related to the synchronously updated patterns of (a) and to
the case where patterns are updated asynchronously and included in the training set
only after each perceptron is selected to yield the corresponding update (“full sweep’
update’). (c) ROC curves related to the student’s weights as learned from a training
set consisting of asynchronously updated patterns, for the same values of 𝛼 as in panel
(a). The Hamming distance between pattern vectors at consecutive times was set to 10.
(d) MSE (in dB) related to the simulations over the same instances considered in panel
(c). The fraction of perceptrons for which the training task converged is shown in the
inset of panel (d). Copyright (2021) by the American Physical Society. Reproduced with
permission. 127
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Chapter 7

Conclusions and open
questions

In this PhD dissertation, we analyzed Gaussian EP as an efficient computational scheme
to solve sparse linear estimation problems and tested it on two important applications:
compressed sensing (CS) reconstruction and the problem of learning a binary classifi-
cation rule using a diluted Bayesian classifier.

In the first problem, we studied the CS reconstruction threshold of Gaussian EP
when incorporating a 𝐿0 regularization in the approximation. Moreover, we showed in
a simple case of correlated sensing matrices that the Gaussian EP threshold is robust
against the presence of structure in the measurement matrix and that EP outperforms
several state-of-the art algorithms, which either fail to converge or, despite converging,
are unable to successfully retrieve the target signal.

In the sparse perceptron learning problem, we used Gaussian EP in order to train
a sparse Bayesian perceptron from a set of examples under different conditions. We
took advantage of a novel Gaussian EP implementation which allows to significantly
reduce the computational cost of the EP algorithm by leveraging the linear dependence
between variables. For the sparse perceptron, this improvement led to the cost being
𝑂((1 + 𝛼)𝑁 3) rather than 𝑂((1 + 𝛼)3𝑁 3), which is particularly useful when training the
perceptron on large training sets. We compared the performance of EP to algorithms
of the AMP type and of the VAMP type when correlated inputs are provided to the
perceptron to be trained and found a significantly better performance of EP in terms of
convergence, variable selection properties and accuracy of the fixed points reached at
the end of the training phase. Moreover, the algorithm appeared to be robust against
noise as long as the noise level was small enough. In the opinion of the author, these
results provide a firm step towards the development of effective approximate inference
algorithms that can be applied to data sets with statistical structure.

The work presented in this dissertation complements other studies concerning EP
[126] and opens the way to several research directions, both in terms of applications
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and on the theoretical and computational side. A few relevant applications outside of
optical and medical imaging are, for instance, supervised and unsupervised learning in
neural networks.

Indeed, with regards to supervised learning, the application of EP to binary clas-
sification could be extended to the case of shallow neural networks with one hidden
layer, for instance soft committee machines [127, 128], as well as to deeper architectures,
where the hidden layer could have ReLU activation functions, as commonly found in
deep learning. Here, one may be interested in estimating the inputs to the network
and the states of the hidden units given the knowledge of the weights and of the out-
put, similarly to the multilayer extension of the AMP algorithm [129] and of the VAMP
algorithm [130, 131]. Moreover, assessing the generalization error associated with EP
based training and understanding the possible effects of neural network overparame-
terization on the performance of EP in the teacher-student scenario are questions that
were not addressed in this PhD thesis and that could be worth pursuing.

On the unsupervised learning side, an interesting application is provided by the re-
stricted Boltzmann machine (RBMs) [132], which is a generative model defined on a
bipartite graph with two sets of random variables called visible units and hidden units.
As the graph is bipartite, there are no connections between units of the same kind. The
visible units are assumed to reproduce the observed data, the statistical dependencies of
which are set by means of the hidden layer. RBMs are trained by maximizing the like-
lihood of the parameters of the model (i.e., the connections between the visible layer
and the hidden layer and the biases of the units) given the observations of a training set
[133]. Computing the gradient of the likelihood requires matching the empirical mo-
ments of the data distribution to those of the RBMdistribution. As the latter distribution
is typically intractable, its moments are usually estimated using Monte Carlo sampling
[134, 135]. Recently, some TAP based mean fields methods have been proposed [136],
which suggests that the EP ansatz would be a promising candidate for RBM training
too. In fact, as we argued in this PhD thesis, EP is a flexible and expressive approxima-
tion scheme and appears to be particularly advantageous due to its ability to take into
account non trivial correlations present in the data to be modeled.

Finally, two very important theoretical issues to be addressed in future research con-
sist in understanding the convergence of EP based schemes and in finding ways to mod-
ify the EP update rules in order to reduce the computational burden of the algorithm,
while ensuring that the algorithm still converges to the same fixed points. In this sense,
the derivation of alternative iterative schemes exploiting the fact that the fixed points
of EP are stationary points of the EP free energy seems a promising direction worth
pursuing. A tool which has proven to be effective in order to track the convergence
of message passing algorithms is the framework known as state evolution (or density
evolution). To date, this framework has mostly been used to predict the performance of
AMP and VAMP based algorithms [82, 137–139] and has only recently begun to be ap-
plied to EP (see, e.g., Ref. [140]). Therefore, an interesting direction for future research
concerns using state evolution to characterize the convergence and the performance
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of the EP formulations presented in this thesis as applied to several linear estimation
problems, including those studied in this dissertation.
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