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IoT for Real Time Presence Sensing
on the 5G EVE Infrastructure

Riccardo Rusca, Claudio Casetti, Paolo Giaccone
Politecnico di Torino and CNIT, Italy

Abstract—One of the most widely advertised capabilities of
5G targets the massive Machine-Type Communication (mMTC)
giving the development of Internet of Things (IoT) solutions
center stage in the new generation of mobile networks. In this
paper, we address the possibility of detecting people on city streets
thanks to deployment of commercial sensors, connected to the
5G network, that capture WiFi probes transmitted by people’s
smart devices. We first outline the motivation of such a scenario.
Then, we illustrate our implemented architecture and present
the results detected in an area near the Politecnico di Torino
within the 5G EVE H2020 project. We show that our architecture
can monitor real-time data coming from the installed sensors
and thus estimate the number of people present in an area by
simply collecting anonymized MAC addresses and timestamps
from smart devices of passers-by.

I. INTRODUCTION

Internet-of-Things (IoT) systems have started to permeate
people’s everyday lives, both at home and in Smart City envi-
ronments. With the coming of age of 5G networks, several use
cases have been developed to improve the citizens’ quality of
life and to allow city administrations to introduce new services.
Indeed, one of the definitions of a “Smart City” relates to an
urban area that uses different types of IoT electronic sensors
to collect data and efficiently provide, through the analysis
of the captured data, resources and services to improve life
in the city. The Smart City concept integrates information
and communication technologies (ICT) and various physical
devices connected to the city’s IoT network; this permits to
calibrate and optimize the efficiency of the operations and
services that the city offers to its citizens, and it also makes it
easier to monitor what is happening in the city in real-time and
how the city is evolving. But there are even more compelling
reasons: following the pandemic caused by COVID-19, the
detection of gatherings of people as well as the counting of
people in transit areas has become crucial in order to monitor
and ensure the safety of the communities. The role of IoT
devices for the purpose of detecting people gatherings has thus
become crucial.

In this paper, we address the problems of people counting
and of detecting the main mobility patterns, presenting an
architecture that uses data collected by commercial WiFi scan-
ners. These sensors are capable of capturing probes messages
passively transmitted by smartphones or other smart devices
that are trying to identify known nearby WiFi Access Points
(APs) or other devices to connect to. Of course, the limitations
of this approach are that, in principle, we cannot know if the
people are either on foot or on a vehicle. And, when detected

by the scanners, if they carry with them just one smart device
or more than one.

The rest of the paper is organized as follows: Sec. II presents
the implemented architecture, the IoT scenario, and provides
some details on which data are collected and their structure,
while the retrieval and filtering processes are analyzed in-depth
in Sec. III. Some results about the main detected mobility
patterns and the implemented real-time dashboard are then
provided in Sec. IV. A discussion of related work is in Sec. V
and we draw our conclusions in Sec. VI.

II. 5G EVE SCENARIO AND TESTBED ARCHITECTURE

The 5G EVE architecture [1] supporting our IoT use case
includes an edge cloud environment, where edge applications
are realized by combining multiple Virtual Network Functions
(VNFs). In Figure 1, we can see the details of the testbed
specifically implemented for the mobility tracking use case.
The WiFi scanners operate on the available channels in the 2.4
and 5 GHz ISM bands. All the scanners are connected through
the RAN (Radio Access Network) to the OneM2M server [2],
an open architecture for the provision of IoT services.

All the data stored in the OneM2M platform are retrieved
by the MOB (“MOBility tracking”) VNF and saved in a local
database for subsequent uses. Finally, the experimenter can
connect to the VIS (“VISualization”) VNF to see in real-
time the data collected by the scanners through a web-based
visualization tool.

The platform’s edge cloud (grey part in Figure 1) runs
in a dedicated data center available within Politecnico di

Fig. 1: 5G EVE Edge Cloud testbed architecture by which the
data collected by the WiFi scanner is processed through two
VNFs [3]



Fig. 2: Coverage map of the 5G EVE testbed with the 6 Wi-Fi scanners, in the area between the Politecnico di Torino campus
and the Porta Susa train station.

Torino. Thanks to the use of the edge paradigm, the proposed
architecture can scale horizontally with the number of scanners
installed. Furthermore, the use of two VNFs to realize the
entire mobility tracking application provides high flexibility
in terms of required hardware resources.

The experimental testbed covers the area between the main
campus of Politecnico to Porta Susa, which is the major
transit train station of Torino. The area is characterized by
a large inflow and outflow of people that every day move into
and out of the campus. In this area, next to the avenue, a
bike path is also present, so the WiFi scanners can capture
the devices carried by people using different transportation
means (e.g., foot, bike, electric scooter, car, motorbike). Six
Meshlium Libelium WiFi scanners [4] were installed as shown
in Figure 2: two of them were installed inside the campus
close to entry gates, and the others were installed on top of
traffic lights, with the support of the municipality and utilities
companies. The scanners were configured to passively capture
the “Probe Requests” that are periodically sent by mobile
devices while searching for known WiFi networks. Probe
requests messages include a unique device identifier (i.e., the
MAC address) and some device capabilities (e.g., supported
802.11 standards). They can be directed to one specific Access
Point (AP) by indicating its SSID (Service Set IDentifier) or
broadcasted to all APs within range.

Each scanner is connected to the 5G EVE platform [1]
through a cellular connection. According to factory settings,
every 51 seconds the scanners group the information about all
the detected devices during the last sampling period and every
two minutes they upload the collected data to the OneM2M
platform [2].

Each sample collected and uploaded by each scanner is
described by the following fields:

• the MAC address of the detected device. This field

is anonymized by digesting the device MAC address
through an SHA-224 function directly on the WiFi scan-
ner. The default hash function available in the Libelium
scanners digests the MAC address together with the
current time, not allowing the identification of the same
MAC address at different times. To avoid this problem,
the hashing mechanism was modified to digest just the
MAC address without timestamp;

• the timestamp, with a one-second precision. Since the
sampling occurs every 51 seconds, all the probe requests
observed during the same sampling period are recorded
with the same sampling period, making it impossible to
get a detailed timing sequence of the probe requests.
Notably, multiple probe requests coming from the same
device during the same sampling period are collapsed into
a single sample;

• the RSSI at the receiver. This field has not been consid-
ered since the Libelium documentation does not explain
how the value of RSSI is evaluated (e.g., it is unclear if
the value detected is the average or the maximum) and
how the RSSI of multiple probe requests received during
the same sampling period is computed. Furthermore,
as well known in the literature, the RSSI cannot be
considered a reliable metric for mobility tracking;

• the interface vendor. This field has not been considered
since it does not permit to identify the interface uniquely
and in most of the cases is equal to “Unknown”.

Figure 3 exemplifies a sample in JSON format, reporting the
fields described above.

A. MAC randomization
Some operating systems have devices randomize the MAC

address to ensure user privacy, i.e., the device can use a fake
random address to send probe requests. This is especially a
problem for our monitoring platform because a single device



Fig. 3: Example of samples for two detected devices in JSON
format

can appear with multiple MAC addresses. Since we count the
unique MAC addresses to infer the number of different devices
in an area, MAC randomization leads to overestimating the
actual number. Both Android and Apple iOS are known to
have been using MAC randomization techniques [5], [6].
Recent studies have introduced solutions to overcome this
limitation for counting procedures by implementing a sort of
de-randomizer [7], an algorithm that is based on the analysis
of common characteristics present in different probe requests,
which remain constant even with randomized MAC addresses,
and other parameters that allow calculating the probability
that two random MAC addresses belong to the same device.
In our case this de-randomizer is not applicable because for
privacy reason all the MAC addresses are anonymized with an
irreversible SHA-224 hash function.

III. EDGE-BASED MOBILITY TRACKING APPLICATION

As shown in Figure 1, the mobility tracking application
has been implemented by combining two VNFs within the
edge cloud. The data available from the OneM2M system
is retrieved and processed by the MOB VNF, running on a
dedicated linux Virtual Machine (VM). The results are shown
in real-time by the VIS VNF, running on another VM and
exposing a standard web interface to the experimenters.

A. The MOBility tracking VNF

The MOB VNF retrieves the data from the remote platform
through an MQTT (Message Queuing Telemetry Transport)
client. Notably, MQTT is a very lightweight, open transport
protocol, based on the publish-subscribe paradigm. As a
reminder, the protocol runs over TCP/IP, so it is reliable and
it prevents the out-of-order delivery of data.

As depicted in Figure 4, the MQTT client makes a subscrip-
tion for each topic for which it wants to be notified when new
data with these specific topics are uploaded. The mechanism
involves creating a Subscription resource, triggering a notifi-
cation message from the MQTT broker whenever a resource
(containing data) is uploaded. When a new message arrives at
the broker from the WiFi scanner, it is saved in the OneM2M
server, and then it is also sent to the MQTT client where
the message is parsed, analyzed and then stored into a local
MySQL database.

Before saving the data on the database, two operations
occur in sequence: (i) address digesting, (ii) stationary device
removal. In the address digesting phase, each anonymized

Fig. 4: MQTT publish-subscribe protocol in the MOB VNF

MAC address is represented on 224 bits, corresponding to 56
hexadecimal digits. In order to optimize the implementation
in terms of performance and storage, we stored just a subset
of bits for each MAC address. This procedure increases the
probability that two distinct MAC addresses are stored with
the same identifier and thus collide in our database. In order
to avoid collisions, we exploited some theoretical results
regarding the well-known birthday paradox. The probability
p of collision for MAC addresses based on k bits can be
estimated as follows:

p ≈ 1 − e−
m2

2k+1

where m is the number of stored MAC address. In our
scenario, with almost 15 million MACs corresponding to 10
months of data collected, p is 6 · 10−6 and for 30 millions
MAC p is 2 ·10−5, i.e., the collision probability is completely
negligible.

During the operations for the stationary device removal,
MAC addresses of fixed devices around the scanners, like
Smart TVs or IoT devices, are detected and inserted in a
blacklist to be removed from further processing. These type
of devices can be identified thanks to the continuous flows
of probe requests observed around the clock, making it very
unlikely that they belong to passers-by. Every night, a Python
script automatically runs with the aim to find new possible
MAC addresses to add to the blacklist, following an empirical
procedure, whose pseudocode is shown by Algorithm 1. After
retrieval, the MAC addresses are saved into a dictionary T ,
where the MAC x is the key and the value T (x) is an array
of timestamps associated with the MAC. Then, for each MAC
address the number of timestamps per hour is evaluated. If
there were more than 15 timestamps per hour for at least
20 hours out of 24, the corresponding MAC is considered
belonging to a stationary device so it is added to the blacklist
ΩB and no longer considered during the processing and the
visualization.

Since October 1st, 2019, we have identified 168 distinct
MAC addresses in ΩB , of which about 40 were detected on
the first day, and around 7-8 new ones have been added every
month into ΩB by the algorithm.

B. The VISualization VNF

The VIS VNF provides a flexible visualization tool, acces-
sible with a standard web browser, to show the results of the
processing occurring in MOB VNF. We chose Grafana [8]



Algorithm 1 Stationary device detection
1: procedure FIND STATIONARY DEVICES(candidate set Ω of MAC addresses)
2: let ΩB = ∅ . Initialize the set of stationary MAC addresses
3: for all x ∈ Ω do . For each MAC in the candidate set
4: let T [x] be the set of timestamps associated to x
5: let counter[24] = [] . Initialize an array with a counter for each hour
6: for t ∈ T [x] do . For each timestamp associated to X
7: counter[hour(t)]++ . Update the per-hour counter for x
8: z = 0 . Counter with the hours with at least 15 observations
9: for h = 0→ 23 do . For each hour

10: if counter[h] ≥ 15 then . Check if at least observations exist
11: z++
12: if z ≥ 20 then . Check if number of hours with many observations
13: add x to the blacklist ΩB

14: return ΩB . Return the set of stationary MAC addresses

as a real-time data visualization tool. Grafana is a multi-
platform, open-source analytics and interactive visualization
web application. It enables the creation of complex monitoring
dashboards using interactive query builders on databases and
provide interactive charts, graphs and alerts. It is also possible
to set threshold values above or below with which to generate
alerts.

The two VMs corresponding to MOB and VIS VNFs reside
on the same local network, so they communicate with each
other by using integrated Grafana API and SQL queries. The
MySQL database, containing all the data collected by the WiFi
scanners, is the data source for the dashboards.

We implemented different dashboards, one for each scanner
and one merging all the scanners’ data, as shown in Sec. IV-A.
We also created a dynamic website that, for a given time
interval, displays a map with the most popular mobility
patterns, as shown in Sec. IV-B. This is achieved by Python
script running in the VIS VNF.

We also considered alternative solutions with respect
to the adopted combination of Grafana with MySQL
database. We evaluated two other combinations: Grafana plus
Prometheus [9], and Kibana plus Elasticsearch [10], but
both have shown some limitations for our use case. Indeed,
Prometheus does not allow to save historical series, and data
are not accessible for future analysis. Instead, Elasticsearch
does not allow to manage the large number of data as collected
by our case due to the high overhead when indexing.

IV. DATA ANALYSIS

In this section, we describe the main outcome of the large
amount of data captured in our testbed. Since October 2019,
the total number of detection events has been 56,690,983,
corresponding to 24,344,198 distinct MAC addresses. Because
of MAC randomization, the latter represents an upper bound
on the number of detected devices. In particular, in Sec. IV-A
we study the effect caused by COVID-19 restrictions on the
number of detection events, in Sec. IV-B we investigate the
mobility patterns, and, finally, in Sec. IV-C, we conclude with
the analysis of the adopted means of transportation.

A. Effect of COVID restrictions on the presence of devices

Figures 5 and 6 show a screenshot of the dashboards
provided by the VIS NFS and related to two scanners for

a time period of about 16 months (from October 1st, 2019
to the first half of January 2021), i.e., covering both the pre-
COVID era and the COVID era. Scanner 5 is located within
the Politecnico campus but it is very close to the main entrance
of a large high school. Scanner 6 is instead located next to the
avenue leading to the Porta Susa train station.

The dashboards provided by the VIS VNF show two dif-
ferent representations of the same data: the line chart shows
the number of distinct MAC addresses detected over a given
sampling period; instead, the heatmaps show the occurrence
of detection over time during a particular hour (on the y axis).
In the heatmap, the intensity of the red color in each box is
proportional to the number of distinct MAC addresses that
were detected. This number is affected by the randomization
process and thus it represents an upper bound on the actual
number of WiFi devices and is related to the number of people
present in the covered area (not counting those not carrying
detectable devices, of course). Nevertheless, thanks to the law
of large numbers, we expect that the actual number of people
is a fixed fraction γ of the number of distinct MAC addresses.
Common sense suggests (even though we cannot prove it)
that γ < 1, given that most people typically carry at most
one device with the WiFi interface on. If these reasoning
stands, the results can be used to accurately compare the
relative number of people in different areas monitored by WiFi
scanners.

The graphs shown in Figure 5 and Figure 6 present some
short periods of missing samples related temporary outages of
the scanners due to blackouts, network problems or mainte-
nance activities. Their effect can be considered negligible.

From the line graph of Figure 5 it is possible to observe the
effect of the working days, of the holidays and of lockdown
periods due to COVID-19, and a number of interesting obser-
vations on social behaviors and trends can be highlighted.

The lockdown started in Torino on March 9th, 2020 and the
effect on the mobility around the campus and the high school
is evident. Indeed, the peaks around 25k MACs detected before
March dropped to about 5k detection events from March to
September 2020. Also, from the half of September to the
first days of November 2020, the school and the university
were open again and we can see some peaks of presence. The
heatmap of Figure 5 shows very well the periodicity due to
the working days in the week. The area is mainly frequented
by students either of Politecnico or of the high school. While
it is rare to observe people in the area before 7 am, the peaks
of presence before COVID are in the time range 7:30 am -
2:30 pm, during working days: they are strongly correlated
with the starting time of classes at Politecnico and at the high
school, and to the end time of the midday classes at both
institutions. Conversely, very few people are around in the
evening and early night. Both the line chart and the heatmap of
Figure 5 show the effects of the Christmas holiday, highlighted
by the lack of students during such a period. After the summer,
high-school classes started on September 14th and continued
until the end of October, when new COVID-related restrictions
interrupted lessons in presence. Instead, the university did not



(a) Line chart scanners 5

(b) Heat map scanners 5

Fig. 5: Dashboard of scanner 5, installed within the Politecnico campus, for the period Oct. 2019-Jan. 2021

(a) Line chart scanners 6

(b) Heat map scanners 6

Fig. 6: Dashboard of scanner 6, installed near Porta Susa train station, for the period Oct. 2019-Jan. 2021

start classes in presence (except for few hours). Thus, all the
peaks in September-October are expected to be due mainly
to high-school students. We also expect that the presence of
Politecnico employers (faculty and administrative staff) was
very limited because of the restrictions to access the offices
and of the adopted smart working procedures.

Figure 6 covers a much more crowded area than the one
covered by Figure 5, with a broader variety of people due
to the closeness to the train station. One very interesting
phenomenon that can be seen in the line graph of Figure 6
is how the number of detection events after the lockdown,
from May/June, has risen to near the standard values of the
months before COVID-19, despite some mobility restrictions.
This means that most people transiting in the area are not
related to Politecnico, whose classes were still going on in an

on-line fashion. This is actually not surprising, due the location
far from Politecnico. In the heatmap of Figure 6 we can see
how the peak hours reflect the classic working hours, i.e.,
between 8 am and 7 pm, which is a more extended range with
respect students’ attendance range observed in Figure 5. The
heatmap highlights very well the night life during Saturday
evenings before the lockdown in March and the number of
people in the early hours of Sunday, from midnight to 2 am,
is coherently always higher than all other early hours of the
days during the working days.

We now consider specifically the period just before Italy
went in lockdown, i.e., the period corresponding to 4 consec-
utive weeks between the second half of February 2020 and
the first half of March 2020. This period of time is interesting
since the last two weeks of February corresponded to the (last)



Fig. 7: Number of distinct MAC addresses detected by scanner
9 during February and March 2020, at the time of the initial
COVID outbreak in Italy

in-presence winter session exams at Politecnico di Torino, so
the area near the campus was populated by numerous students,
professors, and university employees. While from March 9th,
2020, the lockdown officially began throughout Italy, bringing
people’s movements to the bare minimum.

Figure 7 shows the evolution of the number of devices
captured by scanner 9 for each day. We obtained similar
results for the other scanners. The number of detection events
has dropped showing the effect of COVID restrictions, in
particular due to the lockdown during the second week of
March. Furthermore, we can see that the number of detection
events during the working days for each curve, except for the
red one, is almost the same, and then decreases during the
weekends due to the lack of students and employees of the
Politecnico di Torino, commuting to/from the campus area.

B. Analysis of the mobility patterns

We now investigate the mobility paths and define the
mobility pattern as the sequence of scanners in which the
same MAC address has been detected within a time window
of 5 minutes. As an example, the mobility pattern denoted as
“498” means that the same MAC address has been detected
first by scanner 4 then by scanner 9 and last by scanner 8,
and the difference between the timestamps of two consecutive
detection events was less than 5 minutes.

Figure 8 shows, through a heatmap in a logarithmic scale,
the occurrences of detection for each scanner for different
hours of the day. All data used for the charts were captured
between October 1st, 2019, and April 25th, 2020. In Figure 8,
all the single scanner patterns are represented, i.e., the devices
have been detected by a single scanner within a 5 minutes
interval of time. This scenario corresponds very likely to two
different cases. Either the device leaves the area and no longer
passes under another scanners, or the MAC address is changed
due to randomization effect. The highest density of devices
is observed under scanner 6, and this is expected since the

Fig. 8: Per-hour occurrences of single detection for each
scanner

scanner is close to the train station and the street covered by
the scanner is the busiest. Moreover, during the hours from 8
to 20, we observed 80% of all the detection events of the day,
due to the usual working daily pattern, except for scanner 6,
where the time interval extends up to 1 in the morning due to
the night life in the area.

Figure 9 shows all observed patterns with multiple scanners.
As we can see, the most frequent pattern is the “98”, which
corresponds to the pedestrian crossing of the main avenue.
It is interesting to see how pattern “49” is more frequent
than pattern “48”; this can be explained by the fact that
many people, on the sidewalk of Politecnico headed north-east
towards the train station, prefer to cross the street at the first
intersection they find and continue on the opposite sidewalk.
Thus, the testbed is also able to capture some micro-mobility
patterns, despite the coarse area covered by each scanner.

Figure 10 shows a screenshot of the map obtained by the

Fig. 9: Per-hour occurrences of mobility patterns captured by
multiple scanners



Fig. 10: Mobility paths on February 12th, 2020 between 12:00
and 13:00

web interface exposed by the VIS NFS. Thanks to some
colored arrows superimposed on the Politecnico area map, the
six most frequent patterns on a given temporal window are
highlighted. As in the previous heatmaps, the color tone differ-
entiates the detection density, with darker color corresponding
to higher number of detected devices. In detail, Figure 10
shows the mobility path directions of the 12th February 2020
around midday. The most frequent pattern is “98”, followed
by “49”, then “45”, “96”, “48”, and finally “86”. So we can
expect that the main flow of people was moving from the
Politecnico to Porta Susa train station, which is reasonable
given that people and students are generally commuting at
that hour.

C. Mobility type

By observing the travel time between different WiFi scan-
ner, we were able to estimate the expected travel speed and
the kind of mobility in terms of transportation means. In
particular, we show the results just for pattern “46” , because it
corresponds to the most distant pair of scanners, with disjoint
coverage areas (as shown in Fig. 2) and thus the estimation
errors are minimized. Note that such errors depends on both
the coarse temporal sampling (we recall that each WiFi scanner
produces one sample every 51 seconds) and on the imprecise
information about the coverage area, which does not allow
to know exactly the physical distance between two samples
detected by two distinct WiFi scanners. Indeed, consider the
extreme case in which the coverage area of two WiFi scanners
are overlapping: a device could be detected at the same time
by both scanners, and the travel time would be zero, even if
the WiFi scanners are far, resulting in a huge over-estimation
of the speed.

The graph in Figure 11 shows the distribution of the travel
time between scanner 4 and scanner 6 and the corresponding
estimated speed, given that the distance between the two

Fig. 11: Distribution of the travel time and estimated speed
between scanner 4 and scanner 6 (i.e., mobility pattern “46”)
from 1/10/2019 to 17/01/2020

scanners is equal to 550 m. The graph above shows two
data series; in particular, the series “last 4, first 6” shown
in blue means that the travel time has been calculated taking
into account the last detection event on scanner 4 and the
first detection event of the same MAC address on scanner 6.
Instead, for the series “first 4, last 6”, in orange, the calculated
time is the difference between the last timestamp detected
on scanner 6 and the first of scanner 4. These two series
represent respectively the upper bound and the lower bound on
the time taken to travel the space between the two scanners.
The distribution of the two bounds on the travel times in
Figure 11 are almost equivalent, thus the estimated means of
transportation is not affected by the uncertainty in the coverage
area. This is not surprising, since the two scanners have been
chosen to be far from one another.

It is also important to note that cars and motorbikes must
cross three traffic light intersections, while people traveling on
the cycle path or the sidewalk must only cross one pedestrian
crossing. The first peak on the left corresponds to an average
travel time of 50 s (i.e., average speed of 40 km/h), while the
second about 100 s (i.e., average speed of 20 km/h). Instead,
the highest peak corresponds to 210 s (i.e., average speed of
9 km/h). From the travel speeds expressed above, it is evident
that the first two peaks on the left, most likely correspond
to people moving by cars or motorbikes and the second peak
corresponds probably to bikes or electric scooters (often used
in the area). Instead, the other three peaks (from 250 s to
370 s) correspond to people on bicycles and some cars stuck
in traffic. Finally, all the remaining peaks (above 400 s) are
expected to correspond to walking people.

V. RELATED WORK

Over the years, several technical approaches have been used
to address the problem of detecting and counting people in an



urban area, using, e.g., infrared sensors, cameras, pressure sen-
sors, visible light sensors, RFID, UWB, and audio-processing.
However, the techniques mentioned above do not provide
satisfactory results in relation to the cost of implementation
and performance [11].

Some approaches are based on electromagnetic methods
that analyze in space and time a signal received which is
affected by the presence of the people in the area. All
these methods are suitable for small indoor environments and
requires specific sources of radio frequency. As an example,
the work [12] proposed to count people exploiting the WiFi
signal, assuming that the movements of the human body affect
the wireless signal reflections, which results in variations in the
CSI (Channel State Information). The method works well in a
quasi-static indoor scenario, within the same room, as people
in a meeting or staffs in an office, but this is very different from
our scenario, which is very dynamic, with people moving fast
by car, by bicycle or on foot. Another work [13] focused on
counting people crossing a doorway using off-the-shelf WiFi
devices, by exploiting the reflections of the wireless signal
on the human body and by installing special receivers that
process the reflected signals. Thus, the approach is tailored to
indoor environment and cannot be applied in an outdoor urban
scenario with the sensors installed (as in our case) on top of
traffic lights.

An alternative approach is to count people using cameras
and advanced algorithms for video image processing, but it is
quite expensive. For example, the state of the art YOLO V3
library [14] can identify and count the heads in a 30 FPS
video in real-time, but it requires a high-level GPU and a
highly equipped server, thus the overall video-based detection
platform is too expensive for large-scale use.

Instead, the authors of [15], similarly to our paper, used the
probe request messages sent by mobile phones to count the
number of passengers in a bus. Through the implementation of
filters based on dynamic and static information, they were able
to reach an accuracy up to 70%. In this study, however, the
randomization of MAC addresses was not considered, which
is one of the main problems that undermine the accuracy of
people counting, in very dynamic environments.

In [16] we presented some experimental results based on a
very preliminary version of the 5G EVE testbed in Torino, in
which only the data on the OneM2M platform was processed
directly with some ad hoc software without any interactive
dashboard. Our current results are instead obtained by the
mobility tracking application running in the edge cloud.

Furthermore, [16] focused only on detecting the mobility
path of single individuals in the area covered by the WiFi
scanners based on a Machine Learning approach. Thus, the
approach is complementary to the macroscopic view of mo-
bility considered in this work.

VI. CONCLUSIONS

We addressed the problem of detecting people on city
streets by means of off-the-shelf WiFi scanners. In a testbed
developed within the 5G EVE H2020 project, we implemented

a mobility tracking application in the edge cloud by combin-
ing two VNFs that retrieve the information captured by the
scanners from a OneM2M platform. One VNF is responsible
to process the data, clean it and save into a local database.
Another VNF is instead devoted to providing a dashboard
by which users can access the data in real time through an
interactive web visualization tool.

The experimental data collected span the course of 17
months and were shown to be very effective to understand
the behavior and mobility of people, e.g., during work/holiday
period or due to the COVID-19 restrictions, despite the coarse
sampling time adopted by the scanners and the imprecise cov-
erage information. The proposed approach is fully transparent
and does not require the installation of any application in
the mobile devices of the people whose presence we aim
at detecting. It is also scalable and could be extended to
cover whole urban areas, opening the possibility to capture
macroscopic mobility trends and understand social behaviors
with an unprecedented level of aggregation.
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