
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A simple and effective algorithm for the maximum happy vertices problem / Ghirardi, Marco; Salassa, Fabio. - In: TOP. -
ISSN 1134-5764. - ELETTRONICO. - 30:(2022), pp. 181-193. [10.1007/s11750-021-00610-4]

Original

A simple and effective algorithm for the maximum happy vertices problem

Publisher:

Published
DOI:10.1007/s11750-021-00610-4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2906151 since: 2022-08-05T08:54:07Z

Springer

Vol.:(0123456789)

TOP
https://doi.org/10.1007/s11750-021-00610-4

1 3

ORIGINAL PAPER

A simple and effective algorithm for the maximum happy
vertices problem

Marco Ghirardi1 · Fabio Salassa1

Received: 6 April 2020 / Accepted: 31 May 2021
© The Author(s) 2021

Abstract
In a recent paper, a solution approach to the Maximum Happy Vertices Problem has
been proposed. The approach is based on a constructive heuristic improved by a
matheuristic local search phase. We propose a new procedure able to outperform
the previous solution algorithm both in terms of solution quality and computational
time. Our approach is based on simple ingredients implying as starting solution gen-
erator an approximation algorithm and as an improving phase a new matheuristic
local search. The procedure is then extended to a multi-start configuration, able to
further improve the solution quality at the cost of an acceptable increase in compu-
tational time.

Keywords Happy coloring · Matheuristics · Local search

Mathematics Subject Classification 90C27 Combinatorial Optimization · 90C11
Mixed Integer Programming · 90C59 Approximation methods and heuristics in
mathematical programming

1 Introduction

Vertex coloring problems are one of the most popular and extensively studied sub-
jects in the field of graph theory. They have received wide attention in the literature,
not only for their real-world applications but also for their theoretical aspects and for
the computational hardness (Malaguti and Toth 2010). Traditional vertex coloring
problems consist of coloring all vertices of a graph G with different colors in such
a way that any pair of adjacent vertices are labeled with different colors. Recently,
interest has been also devoted to vertex coloring problems where the coloring of
adjacent vertices is desired to be the same. This is the case of the problem called
Maximum Happy Vertices Problem (MHV) considered in this paper. Given a set of

 * Marco Ghirardi
 marco.ghirardi@polito.it

1 DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

http://orcid.org/0000-0002-4222-8375
http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-021-00610-4&domain=pdf

 M. Ghirardi, F. Salassa

1 3

precolored vertices, the problem asks to extend the coloring to the remaining verti-
ces with the objective to maximize the number of nodes colored with the same color
of their adjacent vertices.

The MHV problem and the concept of “happiness” related to vertices have been
proposed in Zhang and Li (2015). A vertex is considered happy if all its neighbors
are of the same color. The problem objective is the maximization of the number of
happy vertices.

More formally, the MHV problem considers an undirected graph G = (V ,E) with
n vertices and m edges (with � (i) defined as the set of neighbors of vertex i), a color
set K = {1,… , k} , a subset of vertices A ⊆ V where |A| ≥ k and a partial coloring
c ∶ A → {1,… , k} such that ∀ i ∈ {1,… , k},∃ v ∈ A ∶ c(v) = i . The problem asks
to extend the coloring c to the remaining non-precolored vertices to a complete
graph coloring c̄ ∶ V → {1,… , k} such that the total number of happy vertices is
maximized.

In a recent paper Lewis et al. (2019), the MHV problem has been addressed and
a solution approach based on the Construct, Merge, Solve & Adapt (CMSA) frame-
work of Blum et al. (2016) has been applied to deal with 380 computationally hard
instances.

The problem has also been tackled from a theoretical point of view, see the proof
of NP-hardness in Zhang and Li (2015), approximation algorithms in Zhang et al.
(2018) and complexity results in Agrawal (2017) and Aravind et al. (2016), where
polynomial algorithms for simple special cases have been proposed.

From a computational perspective, to the best of our knowledge, the work of
Lewis et al. (2019) is the first attempt to propose solution procedures dealing with
large-size instances. Moreover, the authors of Lewis et al. (2019) made freely avail-
able both the instance generator Lewis et al. (2018a, b) and the source code (except
the part related to the mixed integer linear programming solver GUROBI) Lewis
et al. (2019). The work of Lewis et al. (2019) proposes a hybrid heuristic approach,
based on a constructive heuristic improved by a matheuristic local search phase.

Matheuristics are solution methods that have been successfully applied to sev-
eral combinatorial optimization problems [see for instance Ball (2011), Della Croce
et al. (2013)], giving rise to an impressive amount of research in recent years.
Matheuristics have been applied to routing Macrina et al. (2019) Shahmanzari et al.
(2020), packing Billaut et al. (2015), Martinez-Sykora et al. (2017), rostering Della
Croce and Salassa (2014), Doi et al. (2018), lot sizing Ghirardi and Amerio (2019)
and machine scheduling Della Croce et al. (2014), Croce et al. (2019), Fanjul-Peyro
et al. (2017) just to cite a few of them. Matheuristics rely on the general idea of
exploiting the strength of both metaheuristic algorithms and exact methods.

In the present work, we developed a simple but effective matheuristic algorithm,
along the same line of CMSA in Lewis et al. (2019), to deal with the Maximum
Happy Vertices Problem. The proposed matheuristic algorithm is based on an over-
arching neighborhood search approach with an intensification search phase realized
by a MILP solver. The main advantages of our approach, with respect to the one of
Lewis et al. (2019), are:

– Better performances in terms of solution quality,

1 3

A simple and effective algorithm for the maximum happy vertices…

– Much better performances in terms of computational times (few seconds against
1 h),

– Simple design of the solution procedure,
– Simple integration in a multi-start version able to further improve the solutions

quality.

The paper is organized as follows. In Sect. 2 , the integer linear programming for-
mulations of the problem are provided. Section 3 is devoted to the description of the
proposed solution algorithms. In Sect. 4, computational results and benchmarks are
presented. Sect. 5 concludes the paper with final remarks.

2 MIP models

Two mixed integer linear programming formulations are provided in Lewis et al.
(2019).

In the first model (M1), integer variables xi ∈ {1,… , k} define the color assigned
to each vertex, while variables yi are forced to be one only if vertex i is unhappy. The
set A represents the set of precolored vertices while c(i) is the color assigned to each
vertex in A. Recall that � (i) is defined as the set of neighbors of vertex i. The overall
model is:

where (1) maximizes the number of happy vertices, (2) assigns colors to all the pre-
colored vertices, (3) sets yi = 1 for unappy vertices. (4) and (5) define the optimiza-
tion variables.

Note that constraints (3) are not linear, and hence they require a linearization [not
explicitated in Lewis et al. (2019)], which results in their substitution with:

(1)max n −

n∑

i=1

yi

(2)
subject to:

xi = c(i) ∀vi ∈ A

(3)yi ≥
|xi − xj|

n
∀i ∈ V ,∀j ∈ � (i)

(4)xi ∈ {1,… , k} ∀i ∈ V

(5)yi ∈ {0, 1} ∀i ∈ V

(6)yi ≥
xi − xj

n
∀i ∈ V ,∀j ∈ � (i)

 M. Ghirardi, F. Salassa

1 3

The second model (M2) uses binary variables xij where xij = 1 if and only if color j
is assigned to vertex i. Variables yi have the same meaning as in the first model.

Here, (8) maximizes the number of happy vertices, constraints (9) specifies the pre-
colorings, constraints (10) ensures that one color is assigned to any vertex, and con-
straints (11) forces yi = 1 if vertex i is unhappy. (12) and (13) define the optimiza-
tion variables.

As before, constraints (11) are not linear, and we propose the following
linearization:

We also point out that yi variables, for this second model, not necessarily need to be
defined as binary. It is, in fact, sufficient to define them as 0 ≤ yi ≤ 1 given that they
are constrained by (14) and (15) which enforce yi to be 0 or 1.

Despite the fact that in Lewis et al. (2019), it is reported that model M2 is
far less reliable w.r.t. solution quality, we tested it against all instances using
CPLEX 12.7 as MIP solver and found out that 80 instances out of the whole
dataset made of 380 instances were solved to optimality. All instances with 250,
500, 750 and 1000 nodes and k = 10 had been solved to optimality within the
time limit of 3600 s, the same time limit used in Lewis et al. (2019). Thus, in
our experiments, model M2 outperforms model M1. From now on, in our algo-
rithms, we use model M2 for benchmarks since, overall, it gives better solutions
within the same time limit with respect to the model M1.

(7)yi ≥
xj − xi

n
∀i ∈ V ,∀j ∈ � (i)

(8)max n −

n∑

i=1

yi

(9)
subject to:

xij = 1 ∀i ∈ A ∶ c(i) = j

(10)
k∑

j=1

xij = 1 ∀i ∈ V

(11)yi ≥ |xij − xlj| ∀i ∈ V ,∀l ∈ � (i),∀j ∈ K

(12)xij ∈ {0, 1} ∀i ∈ V ,∀j ∈ K

(13)yi ∈ {0, 1} ∀i ∈ V

(14)yi ≥ xij − xlj ∀i ∈ V ,∀l ∈ � (i),∀j ∈ K

(15)yi ≥ xlj − xij ∀i ∈ V ,∀l ∈ � (i),∀j ∈ K

1 3

A simple and effective algorithm for the maximum happy vertices…

3 A simple solution approach

We propose here a simple but effective matheuristic improvement approach. Start-
ing from a given solution, the algorithm iteratively improves it with a scheme based
on the neighborhood search approach. Each iteration explores the neighborhood by
constructing a problem where the variables to be optimized refer to a subset of the
variables of the original problem, while other ones are fixed to the value they have in
the current solution. The detailed procedure is described in Algorithm 1. The algo-
rithm starts with a given feasible solution c̄ (step 1). A counter no_improvement of
iterations passed without finding an improving solution is set to 0 (step 2). At each
iteration of the main loop (cycle 3–16), a subset of candidate colors for each node is
selected and an exact method is employed to build a possibly improved solution. In
the current solution (steps 4 − −8), candidate colors for each node i are the current
color and all the colors assigned to nodes adjacent to i with a path of length L, i.e.
nodes colors that can be recognized following an L − length edge path. The resulting
problem is then optimally solved through model (8)–(13), obtaining solution c̄′ (step
9). If the new solution is better than the previous one, the counter of non-improving
iterations is reset to 0 (step 11). Otherwise, it is increased by one (step 13). Note that
solution c̄′ cannot be worse than the current solution c̄ because the latter is a feasible
solution of the ILP model. Hence, it is always accepted as the new current solution
(step 15). The improvement phase is repeated if less than S iterations have been per-
formed without improving the current solution.

CMSA solution approach proposed in Lewis et al. (2019) is based on a similar
improvement scheme as the one we propose, with a different neighborhood defini-
tion. We highlight here the main differences:

– In CMSA, candidate colors for each node i to be chosen for reoptimization are
only the color of i plus, with a given probability, a subset of the colors of the
neighbor nodes of i, while our matheuristic procedure considers, as possible can-
didates for each node i, all colors of the nodes that could be reached from node
i with a path of a given length. Hence, the neighborhood dimension of the pro-
posed algorithm is larger than the one of CMSA.

– CMSA uses model M1, while in our case, model M2 has been selected. This
choice does not affect the algorithm results in terms of solution quality (all ILPs
are solved to optimality) but influences the running time.

 M. Ghirardi, F. Salassa

1 3

In Lewis et al. (2019), two constructive methods are proposed for the initial solu-
tion generation, namely Greedy −MHV and Growth −MHV . We point out that
Greedy −MHV is the same procedure as the approximation algorithm G proposed in
Zhang et al. (2018). The approximation algorithm G has been used in our approach
as starting solution. During preliminary testings, we tried the best among algorithm
G (a.k.a. Greedy −MHV) and Growth −MHV , but we experienced no improve-
ments in the solutions quality.

The rationale of algorithm G of Zhang et al. (2018) is to label all the uncolored
vertices with the same color and testing all possible k colors obtaining, in such way,
k different vertices colorings. The starting solution is then chosen among all k color-
ings, i.e. the one exhibiting the largest number of happy vertices (Algorithm 2).

To further test the matheuristic improvement algorithm in order to assess the
quality of the proposed approach, we tested it in a multi-start setting. In this new
configuration, the improvement procedure depicted in Algorithm 1 is applied not
only on the solution obtained by the best coloring of algorithm G , but on all possi-
ble k different vertices colorings. The best final result is then returned. Algorithm 3
resumes the main steps of the multi-start procedure.

1 3

A simple and effective algorithm for the maximum happy vertices…

4 Computational experiments

We decided to test different configurations of algorithms over a dataset generated
thanks to the instance generator in Lewis et al. (2018a, b). According to Lewis et al.
(2019), instances were generated as random graphs using values of p = 5∕(n − 1) ,
where n is the total number of nodes and p the probability of two vertices being
adjacent. This value of p induces an average vertex degree of 5. In all instances,
10% of the vertices were precolored. Authors of Lewis et al. (2019) state that these
configurations lead to the creation of the most difficult-to-solve instances. As in
Lewis et al. (2019), we considered classes of instances with a number of colors k
equal to 10 or 50 on graphs having a number of nodes n of 500, 750, 1000, 2000,
3000, 4000, 5000, 7500 and 10000. Since the solver is able to solve to optimality
four classes (namely all the ones with k = 10 and with n equal to 250, 500, 750
and 1000), these were not considered in our dataset. For each of the remaining 15
classes, 20 instances were generated. For tuning the algorithm parameters, we gener-
ated an additional smaller dataset, composed of 10 instances for each of the classes
with k equal to 10 or 50 and n equal to 3000, 5000 and 10000.

The algorithms have been implemented in C++ and the source code is available
upon request to the authors. All tests have been performed on an i5-8500 3 GHz
CPU system with 16 GB of RAM and CPLEX 12.7 as MIP solver. CPLEX solver
has been applied with no parameters tuning and in multi-threaded mode.

The following two subsections present the results of the experiments aiming to
tune the algorithm parameters, and the comparison between the results of the pro-
posed algorithms and CMSA, proposed in Lewis et al. (2019).

4.1 Parameter tuning

In order to tune the values of parameters L and S of Algorithm 1, a set of computa-
tional experiments has been performed.

Table 1 summarizes the results. For each class of instances (k colors and n
nodes), we present the average percentage of happy nodes H% and computational

 M. Ghirardi, F. Salassa

1 3

Ta
bl

e
1

 Im
pr

ov
em

en
t p

ro
ce

du
re

 a
lg

or
ith

m
 p

ar
am

et
er

 tu
ni

ng

Th
e

be
st

en
tri

es
 fo

r e
ac

h
lin

e
ar

e
hi

gh
lig

ht
ed

 in
 b

ol
d

L
1

2

S
1

2
3

1
2

3

k
n

H
%

T
H

%
T

H
%

T
H

%
T

H
%

T
H

%
T

10
30

00
59

.2
25

1.
1

59
.2

25
1.

9
59

.2
25

2.
5

59
.2
44

3.
0

59
.2
44

4.
2

59
.2
44

6.
4

10
50

00
59

.1
22

2.
0

59
.1

22
3.

1
59

.1
22

4.
7

59
.1
31

5.
4

59
.1
31

9.
2

59
.1
31

13
.1

10
10

00
0

57
.9

81
6.

4
57

.9
82

9.
1

57
.9

85
12

.9
57

.9
92

12
.8

57
.9
94

20
.0

57
.9
94

31
.4

50
30

00
56

.1
41

5.
1

56
.1

41
8.

2
56

.1
41

11
.4

56
.2

49
7.

1
56
.2
50

10
.9

56
.2
50

13
.9

50
50

00
56

.1
01

11
.4

56
.1

01
13

.1
56

.1
01

17
.7

56
.1
32

13
.1

56
.1
32

18
.5

56
.1
32

27
.9

50
10

00
0

54
.9

91
26

.1
54

.9
91

35
.1

54
.9

95
39

.5
54

.9
99

29
.0

55
.0

21
39

.8
55
.0
23

61
.4

AV
G

57
.2

60
8.

7
57

.2
60

11
.8

57
.2

62
14

.8
57

.2
91

11
.7

57
.2

95
17

.1
57
.2
96

25
.7

1 3

A simple and effective algorithm for the maximum happy vertices…

time T over the 10 tuning instances, with different parameters values L and S. The
best entries for each line are highlighted in bold.

Parameter L defines the neighborhood size, and has been considered equal to 1
or 2. Setting a value of 3 or more will result in the creation of ILP models with too
many free variables, sometimes exceeding a time limit of 3600 s without finding the
optimal solution. It is clear from the table that the best choice is L = 2 , having better
results at cost of an acceptable increase of computational time.

Paramenter S configures the algorithm stopping criterion and ranges from 1 to
3. While an improvement is clear in results obtained increasing S from 1 to 2, the
results are, for most instances, the same when S = 3 . Hence, we decided to set S = 2.

4.2 Algorithms results comparison

As previously pointed out, authors of Lewis et al. (2019) made freely available the
source code of their algorithms except the part related to the mixed integer linear
programming model and solver. Then, in order to benchmark our procedure with the
reference algorithm CMSA, we re-implemented it, integrating their source code with
a mixed integer linear programming model. In the description of CMSA, it is not
clear how single-color labels could be efficiently excluded from the list of possible
colors since the variables used are of integer type (model M1 is used) and no con-
straints sets (i.e. disjunctive constraints) have been explicitated to deal with values
exclusion. Hence, we contacted the authors of Lewis et al. (2019) asking for details
on CMSA implementation which is slightly different with respect to the published
paper. Thanks to their help we reconstructed CMSA as originally implemented. Each
time the LP model M1 is run, the following rules are used:

– If a node ī has only one candidate color c̄ , the corresponding variable is set to
that color (xī = c̄).

– If a node ī has more candidate colors, the corresponding variable is left free to
get any value (xī ∈ {1, ..., k}).

For other details about CMSA refer to Lewis et al. (2019). On the other side, exclud-
ing values implying model M2 as in our matheuristic is rather simple: it is, in fact,
sufficient to add constraints like xīj̄ = 0 if we want to prevent node ī to be labeled
with color j̄.

We tested the following approaches:

– CPLEX: Lower Bound and Upper Bound after 3600 s calculated by CPLEX
solver with model M1.

– CMSA: original CMSA using as starting solution the best among Greedy −MHV
and Growth −MHV with a time limit of 3600 s [as in Lewis et al. (2019)]. Con-
sidering that CMSA is not a deterministic algorithm, we present here the best
result obtained with 10 different executions.

– MH-G: matheuristic algorithm 1, configured with L = 2 and S = 2 , using as
starting solution the approximation Algorithm G.

 M. Ghirardi, F. Salassa

1 3

– MS: multi-start version of the procedure, depicted in algorithm 3.

Table 2 summarizes the results. The meaning of the columns of Table 2 is the
following:

– Column 1: number of different colors k.
– Column 2: number of nodes n of the specific class of instances.
– Column 3: percentage of “happy” vertices w.r.t the total number of nodes of the

upper bound provided by CPLEX after 3600 s of run.
– Column 4: percentage of “happy” vertices w.r.t the total number of nodes of the

lower bound provided by CPLEX after 3600 s of run.
– Column 5: average values of the percentage of “happy” vertices given by the

CMSA approach after 3600 s—best of 10 executions.
– Column 6: average values of the percentage of “happy” vertices given by the pro-

posed MH − G algorithm (bold characters if MH − G is better than CMSA).
– Column 7: average maximum CPU time needed to compute the result of MH − G

algorithm, in seconds.
– Column 8: average values of the percentage of “happy” vertices given by the

MS configuration of the proposed algorithm (bold characters if MS is better than
MH − G).

– Column 9: average maximum CPU time needed to compute the result of MS pro-
cedure, in seconds.

Table 2 Computational results: algorithms results comparison

For each line, the MH-G% value is in bold if better than CMSA% and the MS% value is in bold if better
than MH-G%

k n UB% LB% CMSA% MH-G% MH-G(s) MS% MS(s)

10 2000 65.764 59.540 59.883 59.908 2.7 59.908 27.5
10 3000 66.161 59.020 59.232 59.252 4.7 59.262 46.2
10 4000 69.237 59.011 59.570 59.598 6.9 59.598 65.1
10 5000 68.939 58.450 59.024 59.040 9.0 59.042 85.6
10 7500 68.524 58.493 58.987 59.007 14.6 59.009 145.0
10 10000 68.653 57.509 57.974 57.999 20.3 57.999 214.9
50 500 61.560 56.060 56.080 56.140 1.4 56.160 74.9
50 750 61.856 55.587 55.640 55.707 2.2 55.707 117.1
50 1000 64.376 57.095 57.240 57.255 3.0 57.260 159.3
50 2000 65.277 56.090 56.535 56.568 6.5 56.568 355.4
50 3000 65.058 55.352 55.670 55.703 10.7 55.707 581.0
50 4000 65.856 55.994 56.446 56.480 14.6 56.484 814.4
50 5000 65.684 55.622 56.062 56.091 19.0 56.091 1067.8
50 7500 68.127 55.387 55.809 55.839 30.4 55.839 1795.3
50 10000 67.878 54.492 54.860 54.884 43.7 54.884 2626.5

1 3

A simple and effective algorithm for the maximum happy vertices…

As can be seen, the simple proposed approach MH − G outperforms CMSA both
in terms of solution quality and CPU effort. We recall that the stopping criterion
used in Lewis et al. (2019) is the time limit of 3600 s. Our approach gives better
results in about two order of magnitude less CPU time. Moreover with algorithm
MS, we gain even more solution quality, largely within the 3600 s limit. These
results illustrate the effectiveness of our approach which shows up to improve with
respect to the current literature.

To further assess the effectiveness of our approaches, Table 3 is reported. Even
if the averages improvements of objectives function values may seem limited, the
number of improvements is definitely clear. Here, Columns 1 and 2 are the same as
in Table 3, while column 3 explicits the number of instances per class. Columns 4
and 5 are dedicated to enlight the number of instances improved with respect to the
CMSA procedure of MH − G and MS algorithms, respectively. As can be seen, apart
from one case where the number of improved instances is very limited, MH − G
(and consequently MS) approaches consistently improve over CMSA. It is important
to note that there are no instances where CMSA is better than any of our approaches.
Globally, we could improve 180 out of 300 instances and we point out that our
approach is consistently better on the larger-size instances. This again confirms the
effectiveness of the proposed approach.

5 Concluding remarks

A simple procedure has been developed to deal with the Maximum Happy Verti-
ces Problem. A starting solution generation obtained thanks to an approximation
algorithm is improved via a large-scale neighborhood exploration made with an
MILP formulation of the problem. The procedure is then extended in a multi-start

Table 3 Number of improved
instances with respect to CMSA
algorithm

k n # Instances MHGvsCMSA MSvsCMSA

10 2000 20 7 7
10 3000 20 9 9
10 4000 20 10 10
10 5000 20 13 13
10 7500 20 16 16
10 10000 20 16 16
50 500 20 6 7
50 750 20 6 6
50 1000 20 2 3
50 2000 20 11 11
50 3000 20 15 15
50 4000 20 15 15
50 5000 20 16 16
50 7500 20 19 19
50 10000 20 19 19

 M. Ghirardi, F. Salassa

1 3

configuration. Both approaches have been tested over 300 instances from the lit-
erature and compared with a reference algorithm, namely CMSA from Lewis et al.
(2019). Solution quality and very limited running times confirm the effectiveness
of our approach which is based on simple elements and shows up to improve with
respect to the current literature.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Agrawal A (2017) On the parameterized complexity of happy vertex coloring. In IWOCA
Aravind N, Kalyanasundaram S, Anjeneya SK (2016) Linear time algorithms for happy vertex coloring

problems for trees. In IWOCA
Ball M (2011) Heuristics based on mathematical programming. Surv Oper Res Manag Sci 16:21–38
Billaut J, Croce F, Grosso A (2015) A single machine scheduling problem with two-dimensional vector

packing constraints. Eur J Oper Res 243:75–81
Blum C, Pinacho P, López-Ibáñez P, Lozano JA (2016) Construct, merge, solve and adapt a new general

algorithm for combinatorial optimization. Comput Oper Res 68:75–88
Croce F, Grosso A, Salassa F (2019) Minimizing total completion time in the two-machine no-idle no-

wait flow shop problem. J Heuristics 1:1–15
Della Croce F, Salassa F (2014) A variable neighborhood search based matheuristic for nurse rostering

problems. Ann Oper Res 218:185–199
Della Croce F, Grosso A, Salassa F (2013) Matheuristics: embedding milp solvers into heuristic algo-

rithms for combinatorial optimization problems. Heuristics: theory and applications. Nova Science
Publishers, New York, pp 31–52

Della Croce F, Grosso A, Salassa F (2014) A matheuristic approach for the two-machine total completion
time flow shop problem. Ann Oper Res 213:67–78

Doi Tsubasa, Nishi Tatsushi, Voß Stefan (2018) Two-level decomposition-based matheuristic for airline
crew rostering problems with fair working time. Eur J Oper Res 267:428–438

Ghirardi M, Amerio A (2019) Matheuristics for the lot sizing problem with back-ordering, setup carry-
overs, and non-identical machines. Comput Ind Eng 127:822–831

Giusy Macrina G, Laporte F. Guerriero, Pugliese L (2019) An energy-efficient green-vehicle routing
problem with mixed vehicle fleet, partial battery recharging and time windows. Eur J Oper Res
276:971–982

Lewis R, Thiruvady D, Morgan K (2018a) Algorithm source code. http:// www. rhydl ewis. eu/ resou rces/
happy algs. zip. Accessed date 7 Jun 2021

Lewis R, Thiruvady D, Morgan K (2018b) Problem instance generator. http:// www. rhydl ewis. eu/ resou
rces/ happy gen. zip. Accessed date 7 Jun 2021

Lewis R, Thiruvady D, Morgan K (2019) Finding happiness: an analysis of the maximum happy vertices
problem. Comput Oper Res 103:265–276

Luis Fanjul-Peyro F, Perea R. Ruiz (2017) Models and matheuristics for the unrelated parallel machine
scheduling problem with additional resources. Eur J Oper Res 260:482–493

Malaguti E, Toth P (2010) A survey on vertex coloring problems. Int Trans Oper Res 17:1–34

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.rhydlewis.eu/resources/happyalgs.zip
http://www.rhydlewis.eu/resources/happyalgs.zip
http://www.rhydlewis.eu/resources/happygen.zip
http://www.rhydlewis.eu/resources/happygen.zip

1 3

A simple and effective algorithm for the maximum happy vertices…

Martinez-Sykora A, Alvarez-Valdés R, Bennell J, Ruiz R, Tamarit JM (2017) Matheuristics for the irreg-
ular bin packing problem with free rotations. Eur J Oper Res 258:440–455

Shahmanzari Masoud, Aksen D, Salhi S (2020) Formulation and a two-phase matheuristic for the roam-
ing salesman problem: application to election logistics. Eur J Oper Res 280:656–670

Zhang P, Li A (2015) Algorithmic aspects of homophyly of networks. Theor Comput Sci 593:117–131
Zhang P, Xu Y, Li A, Lin G (2018) Improved approximation algorithms for the maximum happy vertices

and edges problems. Algorithmica 80:1412–1438

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A simple and effective algorithm for the maximum happy vertices problem
	Abstract
	1 Introduction
	2 MIP models
	3 A simple solution approach
	4 Computational experiments
	4.1 Parameter tuning
	4.2 Algorithms results comparison

	5 Concluding remarks
	References

