
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated translation of Android context-dependent gestures to visual GUI test instructions / Coppola, Riccardo; Ardito,
Luca; Torchiano, Marco. - ELETTRONICO. - (2021), pp. 17-24. (Intervento presentato al convegno 12th International
Workshop on Automating TEST Case Design, Selection, and Evaluation tenutosi a Athens, Greece nel 23 August 2021)
[10.1145/3472672.3473954].

Original

Automated translation of Android context-dependent gestures to visual GUI test instructions

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3472672.3473954

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2918472 since: 2021-08-24T22:44:12Z

ACM

Automated Translation of Android Context-Dependent Gestures
to Visual GUI Test Instructions

Riccardo Coppola
riccardo.coppola@polito.it

Politecnico di Torino
Turin, Italy

Luca Ardito
luca.ardito@polito.it
Politecnico di Torino

Turin, Italy

Marco Torchiano
marco.torchiano@polito.it

Politecnico di Torino
Turin, Italy

ABSTRACT
Layout-based (2nd generation) and Visual (3rd generation) GUI test-
ing are two very common approaches for mobile application testing.
The two techniques expose complementary advantages and draw-
backs, and the literature on GUI Testing has highlighted the benefits
of an approach based on a translation from one generation to the
other.

The objective of this work is to provide an improvement to our
prototype tool, TOGGLE, designed to translate 2nd generation test
suites, written with the Espresso framework, to 3rd generation ones
that can be run by the EyeAutomate and Sikuli tool.

We extended TOGGLE by adding (1) support for context-based
gestures, performed through the scrollTo and onData commands,
and (2) support for the combination of Layout-based locators with
logical operators.

We evaluated the new version of the tool on five different exper-
imental subjects. For each of the applications, 30 test cases were
developed and automatically translated with TOGGLE+.

We observed an increase of 68% of translatable test cases when
transitioning from the previous prototype to the current version of
the tool. The generated Visual test cases also proved to have high
robustness, with flakiness of just 2% (i.e., 98% correct executions).

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Maintaining software.

KEYWORDS
GUI Testing, Android Testing

ACM Reference Format:
Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2021. Automated
Translation of Android Context-Dependent Gestures to Visual GUI Test
Instructions. In Proceedings of the 12th InternationalWorkshop on Automating
TEST Case Design, Selection, and Evaluation (A-TEST ’21), August 23–24, 2021,
Athens, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3472672.3473954

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-TEST ’21, August 23–24, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8623-4/21/08. . . $15.00
https://doi.org/10.1145/3472672.3473954

1 INTRODUCTION
Mobile devices and mobile apps are highly pervasive in our ev-
eryday life, supporting a wide range of activities and providing
complex user experiences and interactions. Such complexity in user
interaction, paired with the variety of the Graphical User Interfaces
provided (GUI), drive a need for thorough testing and verification
in this software domain.

Many tools are available in technical and academic literature to
allow testing replicating the users’ operations with Android GUIs.
These tools can be based on the identification and verification of
GUI components through exact screen coordinates (1st generation
or coordinate-based tools), text-based properties of the visualized
GUI components (2nd generation or Layout-based tools) or – as in
more recent research efforts – through the application of image
recognition techniques (3rd generation generation or Visual tools).
However, while low-level unit testing not involving the GUI is a
widespread practice, these higher-level testing techniques are not
extensively adopted by practitioners, and manual execution of test
sequences is preferred [8].

1st generation techniques have generally been abandoned be-
cause of the intrinsic inaccuracy of coordinate-based locators. Re-
search into 2nd generation and 3rd generationGUI testing techniques,
instead, has shown that they still expose complementary bene-
fits and drawbacks. A combined application of them (through
translation-based test creation) can mitigate the most crucial de-
terrents to the adoption of GUI testing, i.e. the high fragility of
test cases during the expected evolution of the System Under Test
(SUT) [1], and the problematic adaptability of test cases to different
hardware and software configurations.

In our previous work, we have conceptualized and developed
a prototype framework, TOGGLE, for the translation of Android
Layout-based tests written with Espresso to two state-of-the-art
Visual testing tools, EyeAutomate and Sikuli[5]. The tool featured
an initial set of interactions akin to those implemented in state-
of-the-art tools to translate tests for web applications [11]. Still, it
provided partial coverage of all the possible actions that can be
executed by the Espresso framework or by other similar Layout-
based GUI testing tools for Android applications. With this work,
we provide the following contributions:

• We extend the current state-of-the-art in the field of An-
droid GUI testing by defining amethodology for representing
context-dependent gestures in Visual GUI test suites;

• We implement these translation mechanisms in a revised
version of our tool, TOGGLE+;

• We experimentally evaluate the ability of the new tool in
translating Android-specific gestures to Visual test cases.

https://doi.org/10.1145/3472672.3473954
https://doi.org/10.1145/3472672.3473954
https://doi.org/10.1145/3472672.3473954

A-TEST ’21, August 23–24, 2021, Athens, Greece Riccardo Coppola, Luca Ardito, Marco Torchiano

The remainder of the manuscript is organized as follows: Section
2 provides background information about Android testing tools,
their drawbacks, and the benefits of a translation-based approach;
Section 3 includes information about the TOGGLE tool; Section 4
and describes the improvements that we applied to the framework;
Section 5 describes the experimental evaluation of the tool and
reports its results; Section 6 discusses the potential limitations of
the present work; Section 7 concludes the paper by summarizing
the findings and providing hints for future research directions.

2 BACKGROUND
This section describes the way Android GUIs are organized and the
available technologies for testing Android apps, along with their
main drawbacks. We also discuss the motivation and the benefits
of a translation-based approach combining the characteristics of
Layout-based and Visual testing.

2.1 Android Native App Structure
Android applications can be divided into three categories:

• Native, when developed for Android devices specifically us-
ing constructs specific of the development platform;

• Web-based, when developed as canonical web applications
and then optimized for the fruition on mobile devices (e.g.,
progressive web apps);

• Hybrid, when developed using multi-platform platforms (e.g.,
Flutter or React Native).

The behaviour for each GUI screen of Android apps is defined by
components named Activities. Each activity populates the screen
with widgets according to the arrangement defined in XML layout
files. Layout files define a standard set of properties for each compo-
nent, many of which are text-based and can be used as locators or
oracles for Layout-based testing techniques (e.g., ids, contained text,
content descriptions, hints in text input boxes). Multiple layouts
can be defined for the same activity to provide a different arrange-
ment or appearance of the widgets based on orientation, resolution
and other characteristics of the device where the app is launched.
Specific layout components (e.g., AdapterViews or GridViews) are
typically populated dynamically at runtime.

2.2 Tools for Android GUI Testing
Layout-based testing techniques for Android apps are typically used
to test Native applications since they are engineered to recognize
the elements of the GUI by using domain-specific layout properties.

By adopting a classification scheme provided by Linares-Vasquez
et al. [10], we define Automation APIs the tools providing means of
writing JUnit-like sequences of interactions and assertions against
the widget of the SUT. The most widespread tools of this category
are the built-in Espresso, and UIAutomator frameworks [14], and
the multi-platform Appium framework [12].

More recent Model-based tools, like SAPIENZ, [2], and Droidbot
[9], leverage the definition of GUI components to create models
of the GUI that can be exploited to define and execute test cases
automatically.

Visual testing tools have been rarely defined specifically for
mobile applications in the literature. These tools are, however, in-
herently platform-agnostic. Hence they can be applied to any SUT

emulated on a desktop device where the image recognition engine
is launched. Tools like Sikuli [13] and EyeAutomate [3] have been
used for research on mobile testing. The main limitation of Visual
testing tools when applied to Android SUTS is the lack of built-in
support for Android-specific commands (e.g., gestures) that have
to be emulated through basic mouse and keyboard operations on
the virtual devices.

2.3 Limitations of Android GUI Testing
One of the most critical issues impacting Android GUI testing is
Fragmentation, i.e., the wide variety of devices, screen sizes, and
versions of the Android operating systemwith which an application
must provide compatibility. This peculiarity of the mobile domain
mandates the need for testing each app on all such configurations.
Test suites, especially Visual ones, require a significant effort to be
adapted to the various configurations considered [7].

Another critical weakness of mobile GUI testing is Fragility. A
test case is said fragile when it fails because of changes in the
locators or oracles it uses (layout properties for Layout-based tests
and widget captures for Visual tests).

Fragility can frequently manifest during the lifespan of a mobile
application, given the fast-paced evolution of the hardware and soft-
ware configurations it must be released on. The adaptation of test
cases may sum up to a significant fraction of the total maintenance
cost of the whole software project [6].

2.4 Benefits of a Translation-Based Approach
Works in the literature have testified that a combination of Layout-
based and Visual GUI testing approaches can be used to mitigate
the respective drawbacks of the two techniques used alone [1]. The
most commonmethodology adopted to combine the two techniques
is a translation-based approach to automatically convert locators
and oracles based on layout properties to screen captures that image
recognition algorithms can employ.

The benefits of the translation-based approach are manifold.
First, Layout-based tests and Visual tests, even if exercising the same
user scenarios against the SUT, can detect complementary types of
mutants: respectively, errors in the properties and composition of
the GUI, and errors in the pictorial rendering of the interface. The
automated creation of Visual counterparts of Layout-based tests
can therefore enhance the defect-finding capabilities of an existing
test suite at a minimal cost.

As well, Layout-based and Visual tests are fragile to complemen-
tary modifications in the SUT. The translation-based approach can
reduce the test maintenance costs by automatically analyzing the
failing locators and repairing them based on the still valid coun-
terparts. For instance, if a Visual locator can no longer be found
because the appearance of a widget is changed in a new release
of the app, it can be re-generated automatically by using the un-
changed associated Layout-based properties.

Finally, Visual scripts expose very limited robustness to varia-
tions in the screen resolution or aspect ratio, whilst Layout-based
ones generally have higher portability to varying configurations.
By generating Visual scripts through reuse of Layout-based tests, it
is possible to port them to different configurations automatically.

Automated Translation of Android Context-Dependent Gestures to Visual GUI Test Instructions A-TEST ’21, August 23–24, 2021, Athens, Greece

Figure 1: Architecture of TOGGLE

Table 1: Commands covered by the TOGGLE Script Creator

Espresso command Android-specific Required Visual instructions

Click No 1
Double Click No 2
Long click No 3
Press Back Yes 1
PressKey No 1
PressMenuKey Yes 1
CloseSoftKeyboard Yes 1
Swipe[Up/Left/Down/Right] Yes 4
ClearText No 2
TypeIntoFocusedView Yes 1
TypeText No 2
ReplaceText No 3

While our previous work and related ones have empirically
proved these benefits, a limitation of current translation-based
approaches is the absence of a translation of complex gestures and
assertions that are specific to the Android platform. Those complex
actions cannot be directly translated to equivalent Visual inter-
actions performed through mouse and keyboard commands. The
work described in this paper aims at overcoming such limitations.

3 THE TOGGLE TOOL
The TOGGLE tool, which was initially described and evaluated in
our previous works [4][5], is a tool to perform automated transla-
tion of Layout-based test suites written with the Espresso frame-
work to Visual test suites in the syntax of Sikuli and EyeAutomate.
We originally chose Espresso as the starting Layout-based tool since
– based on our previous analyses – it is the most widespread GUI
testing tools used in open-source Android repositories [6].

The tool receives as input a Layout-based test class, executes it
against an emulated Android Virtual Device and generates cropped
screen captures of the GUI that can be used as oracles and locators
for Visual test suites.

(a) Original test case

(b) Log excerpt

(c) Screen hierarchy (dump) with highlighted Layout-based locator

(d) Visual locator for the interacted widget

Figure 2: Translation steps

The architecture of TOGGLE, shown in the diagram in fig. 1 is
based on four main components:

• Enhancer: it parses the Layout-based script passed as input
(fig. 2a) and injects functions of the TOGGLE library, that
are required to capture the required information for the
translation when the test is executed.
Specifically, the TOGGLE library features methods to obtain,
at each interaction with the GUI, the fullscreen capture and
the dump file, an XML representation of the current screen
including all widget properties.
The enhancer also injects calls to a logging method to de-
fine the trace of interactions that have to be translated. In
the original version of TOGGLE, the Enhancer module can
recognize only Espresso assertions starting with the onView
method. The tool can interact only with individual widgets
and not with dynamically populated widget lists (i.e., meth-
ods starting with the onData assertion).

• Executor: it executes the enhanced test script against the se-
lected Android Virtual Device (AVD). The executor launches
the device, installs the Application Under Test (AUT), and

A-TEST ’21, August 23–24, 2021, Athens, Greece Riccardo Coppola, Luca Ardito, Marco Torchiano

runs the test so that – with the previously injected calls –
screen captures, properties, and interaction traces are pro-
duced and saved on the device memory.

• Log Parser: it parses the log (fig. 2b) generated during the
execution of the test. For each interaction, it retrieves:
– the type of interaction;
– the widget on which it has been performed and,
– its parameters (e.g., a string for a text input).
It then uses the dump file (Figure. 2c) to retrieve the bounding
box of the widget to cut it from the related screen capture,
and generates theVisual locator (fig. 2d). For each interaction,
it creates a ToggleInteraction object.

• Visual script creator: it receives the list of ToggleInterac-
tion objects and translates each interaction to the syntax
of the desired Visual testing tool (e.g., Python scripts for
SikuliX, and plain text files for EyeAutomate). A 1-to-1 map-
ping from Layout-based to Visual instructions is generally
not possible since the latter has to be performed through
generic mouse and keyboards interaction. Table 1 show the
commands supported by the original version of the tool.

4 IMPROVEMENT OF THE TOGGLE TOOL
Starting from the original prototype of TOGGLE, we developed
extensions of the tool to increase the number of operations that can
be effectively translated automatically to Visual test scripts. The
source code of the TOGGLE+ tool is available as an open-source
repository1.

4.1 Scroll Operations
We added support for the scroll interaction with dynamically popu-
lated containers of widgets in the AUT. It is worth mentioning that
for Android AUTs, the scroll interaction is different from the swipe
interaction, which can be performed on statically defined views as
well.

The scroll interaction can be performed through two different
commands with the Espresso framework, onData and scrollTo. The
translation of both commands, however, follows a typical sequence
of steps that is now detailed.

First, a sequence of instructions has to be added to the test code
by the Enhancer when parsing the Layout-based test scripts and
identifying scroll commands to generate the following elements
when the Executor runs the test:

(1) A reference to the container of the View where the scroll is
executed. The way the object is referenced depends on the
specific Espresso command, as detailed in subsections 4.1.1
and 4.1.2;

(2) A screen capture of the GUI appearance before the scrolling
operation (i.e., starting situation), as well as the correspond-
ing XML dump file;

(3) Starting coordinates (𝑥𝑠 , 𝑦𝑠) of the scroll interaction;
(4) Ending coordinates (𝑥𝑒 , 𝑦𝑒) of the scroll interaction;
(5) A screen capture of the GUI appearance after the scrolling

operation (i.e., ending situation), as well as the corresponding
XML dump file;

1https://git-softeng.polito.it/d023270/toggle-v2

(6) A log line reporting the information described in the previous
points.

After the test is executed and the information above is collected,
the Log Parser module of the TOGGLE+ architecture handles creat-
ing the ToggleInteraction object representing the scroll interaction.
The main operations performed by the Log Parser module are the
following:

(1) The image locator to be used in the Visual test script is
extracted by retrieving the boundaries of the elements in the
XML dump and cutting a sub-image of the screen capture of
the starting situation;

(2) The direction and offset (𝑥𝑜 , 𝑦𝑜) of the scroll is computed,
based on starting and ending coordinates. The computed
offset allows defining one of two specializations of the Tog-
gleInteraction object, VerticalScroll or HorizontalScroll.

The Visual Script Creator, finally, utilizes the information in the
ToggleInteraction object to generate commands for the selected
Visual testing tool syntax. Within a Visual test script, a scroll inter-
action is obtained by a pressure on a specific point on the screen,
a movement along the scroll direction and, finally, the release of
the pressure. This operation has to be repeated in a loop until the
destination View of the scroll is displayed on the screen, if the offset
to reach the ending situation is bigger than the size of the View.
The flow chart representing a scroll operation in a Visual test script
is represented in figure 3.

The number of movements performed in the loop depends on
the scroll offset and the size of the scrollable View in the direction
of the scroll, i.e. the scrollStep. The number of movements can hence
be computed as 𝑓 𝑙𝑜𝑜𝑟 (𝑥𝑜/𝑠𝑐𝑟𝑜𝑙𝑙𝑆𝑡𝑒𝑝) in case of horizontal scroll,
or 𝑓 𝑙𝑜𝑜𝑟 (𝑦𝑜/𝑠𝑐𝑟𝑜𝑙𝑙𝑆𝑡𝑒𝑝) in case of vertical scroll.

If the offset to scroll is not an exact multiple of the scrollStep,
the remainder is computed as 𝑥𝑜 𝑚𝑜𝑑 𝑠𝑐𝑟𝑜𝑙𝑙𝑆𝑡𝑒𝑝 in case of the
horizontal scroll, or 𝑦𝑜 𝑚𝑜𝑑 𝑠𝑐𝑟𝑜𝑙𝑙𝑆𝑡𝑒𝑝 in case of the vertical scroll.

In the recreation of the scroll movement, we had to empirically
tune the timing between each couple of subsequent interactions to
perform with the SUT. The refresh time required by the GUI and
the speed of the movements of the cursor can impact the precision
of the operations performed in terms of ending coordinates reached
after the scroll. We added a sleep time of 0.1 seconds between the
start of the pressure on the Visual locator and the actual movement
and a sleep time of 1 second after the end of each movement and the
release. Additionally, since performing too long movements could
lead to losing focus of the current View in the emulated device, we
divided each individual movement (of 𝑠𝑐𝑟𝑜𝑙𝑙𝑆𝑡𝑒𝑝 length) into three
segments of equal length, without releasing the pressure on the
View. A sleep time of 0.25s is inserted between each segment. The
evaluation of sleep times was performed by gradually reducing the
injected time until flakiness was encountered in test suite execution.

4.1.1 onData. The onData method is a type of ViewAssertion, de-
signed to perform an interaction on anAdapterView (i.e., an Android
View whose purpose is to display a group of child elements con-
tained in an adapter), finding among its child the one that matches
the specified conditions, scrolling to it, and then optionally ex-
ecuting one interaction on it. The method is the principal way
of interacting with dynamically-populated widget containers, for

Automated Translation of Android Context-Dependent Gestures to Visual GUI Test Instructions A-TEST ’21, August 23–24, 2021, Athens, Greece

Figure 3: Flowchart for a scroll operation in a Visual test
script

Figure 4: Espresso.onData() scrolling semantics.

onData(inAdapterView(withId(R.id.
↩→ settings_category_list)).atPosition(12).check
↩→ (matches(isDisplayed));

Figure 5: Example of scroll command with onData

which it is not possible to access the individual elements through
the onView method, previously implemented in TOGGLE.

As displayed in figure 4, the onData method scrolls the widget
container until the searched element is brought to the first available
position (the upmost one in case of vertically scrollable container,
and the leftmost one in case of horizontally scrollable container),
or it is not possible to scroll the View any longer.

Figure 5 represents the way a scroll operation is defined in
Espresso with the usage of the onData method: the method re-
ceives the id of the Adapter as a parameter; it is then possible to

Figure 6: ViewActions.scrollTo() scrolling semantics.

onView(withId(R.id.view_id))
.perform(scrollTo());

Figure 7: Example of scroll command with scrollTo

define a position to which the scroll has to be performed (alterna-
tively, the specific element can be identified based on its textual
properties); finally, the operation to perform on the View once it is
reached (in the example, the verification of its presence) is specified.
The reference point for the start of the scroll operation is the first
element in the ViewAdapter.

The Enhancer module identifies the presence of the inAdapter-
View keyword to identify the View where the scroll has to be per-
formed and computes the coordinates and the offsets by using the
getter methods of the adapterView. The Espresso ViewAction per-
formed once the element is found and made visible in the Adapter
View is then logged as a separate Visual operation to be translated
to the destination scripting syntax.

4.1.2 scrollTo. The scrollTomethod is a ViewAction. Thus it is used
as the conclusion of an Espresso command after a View is identified
(see figure 8).

Such ViewAction applies only to instances of the ScrollView
and HorizontalScrollView classes and scrolls to an existing layout
element until it is displayed (as shown in figure 6). The element
to which the scroll has to be performed is identified through text-
based properties. No movement is performed on the View if the
element is already visible on the screen.

When scrollTo operations are found, the Enhancer injects in-
structions to log the first element in the ScrollView and computes
the offset to reach the ending point after the searched element is
made visible.

4.2 AllOf - AnyOf View Assertions
The allOf() and anyOf() Espresso commands express a logical

relationship between different ViewMatchers that can be used to
identify a View in the currently inflated layout hierarchy. Their
purpose is to express, respectively, a logical and or a logical or
condition between the results of two ViewMatchers.

A-TEST ’21, August 23–24, 2021, Athens, Greece Riccardo Coppola, Luca Ardito, Marco Torchiano

onView(allOf(withId(R.id.view), withText("Hello!")));

onView(anyOf(withId(R.id.view), withText("Hello!")));

Figure 8: Examples of allOf - anyOf commands

Table 2: Considered experimental subjects.

Application PlayStore
down-
loads

GitHub
stars

GitHub
com-
mits

Lines
of
code

Last update

Budget Watch 29 70 477 9860 27/01/2021
Contact Book - 7 26 2980 02/08/2019
PDF Converter 952 607 639 19110 23/03/2021
Simple Calendar 6805 2397 4350 28762 22/03/2021
Stoic Reading - 14 235 31836 05/02/2021

Table 3: Distribution of Espresso commands and assertions
per experimental subject

Interaction Budget
Watch

Contact
Book

PDF CON-
VERTER

Simple
Calendar

Stoic Read-
ing

allOf 1 1 34 8 0
anyOf 2 0 0 0 0
atPosition 21 9 0 0 0
click 37 30 7 30 20
inAdapterView 21 9 0 0 0
instanceOf 0 0 34 0 0
isDisplayed 17 24 11 12 9
matches 23 24 11 12 9
onData 21 9 0 0 0
onView 44 46 37 63 52
scrollTo 3 0 19 12 23
typeText 2 1 0 9 0
withContentDesc. 2 0 4 5 0
withId 55 53 33 62 50
withText 9 3 0 4 2

All 258 209 190 217 165

The support for these instructions, previously missing in the orig-
inal prototype of the TOGGLE tool, has been achieved by slightly
modifying the ToggleInteraction class and defining an array of
SearchType and SearchKeywords instead of an individual value and a
boolean parameter in the ToggleInteraction used to define whether
the logical and or or applies.

The Enhancer method, when allOf() or anyOf() calls are encoun-
tered, has been modified to support multiple keywords instead of
single one per log line.

5 EVALUATION
This section describes the experimental evaluation conducted on
TOGGLE+, the adopted procedure and its results.

5.1 Experimental Subjects and Environment
For the evaluation of the applicability of the tool in translating
Espresso Layout-based commands, we needed a set of Android
projects containing Espresso test suites. We initially mined GitHub
repositories containing code written with the Espresso framework;
however, the number and size of test suites did not prove to be
sufficient for our purposes in any of the projects. Therefore, we
selected five applications on which we developed Espresso test

suites. The applications were selected from the F-Droid open-source
app repository2 based on the following criteria: (i) the application
had to be native; (ii) the code of the application had to be hosted on
GitHub; (iii) the application had to be updated at least once in last
two years; (iv) the application had to have a sufficient complexity
(at least two thousand LOCs). The set of selected applications, along
with information about their size and diffusion among end-users
and developers’ community, is reported in table 2.

For each experimental subject, one author of the paper developed
a suite of 30 test cases. The author was not involved in developing
the TOGGLE+ modules and was only given the list of commands
supported by the tool for the definition of test cases. The distribution
of the Espresso commands we used in the test suites is reported in
table 3. Over the 150 tests, 45% of them execute at least one scroll
interaction (with a top 80% for Budget Watch).

The hardware infrastructure used to execute all test cases is an
Acer Aspire A715-71G with an Intel(R) Core(TM) i7-7700HQ CPU
at the frequency of 2.80GHz, 16GB of RAM, and running Windows
10 Home as the operating system. All Espresso test cases have been
executed on a Nexus 5 API 28 (Android 9) with disabled animations.

All 3𝑟𝑑 generation test executions have been performed on a
black background to avoid any disturbances to the image recogni-
tion algorithms and executed with the SikuliX tool.

5.2 Research Questions and Procedure
The evaluation of the TOGGLE+ tool entailed answering two re-
search questions, detailed in the following along with the adopted
procedure.

• RQ1 - Translation Precision: What is the efficiency of the
TOGGLE+ tool in translating test cases?

To answer RQ1, we measured the ratio between the test cases
that were correctly translated by the TOGGLE+ tool (i.e., those for
which a valid Visual test script was created by applying the tool)
and the total number of test cases to translate (i.e., 30 per each
experimental subject).

• RQ2 - Visual Script Success Rate: What is the success
rate of the Visual test scripts generated through translation?

To answer RQ2, we computed the Success Rate metric, defined
as the ratio between the number of completely executed test cases
and the total number of executions performed.

This evaluation is necessary since evidence reports that Visual
test script has high flakiness. Visual test scripts can have aleatory
results. They can fail because of imprecision of the image recogni-
tion algorithm, timing issues with the emulated devices, and other
issues implying that the Visual locators are not properly loaded at
the time of image search.

To evaluate the inherent flakiness of Visual scripts, we executed
each successfully translated test case on the emulated device ten
times.

• RQ3 - Visual Interaction Success Rate: What is the suc-
cess rate of the individual Visual interactions generated
through translation?

To answer RQ3, the ratio of successfully executed interactions,
i.e. the ratio of interactions executed correctly by the Visual test
2https://www.f-droid.org/

Automated Translation of Android Context-Dependent Gestures to Visual GUI Test Instructions A-TEST ’21, August 23–24, 2021, Athens, Greece

Table 4: Translation Precision of state of the art and re-
engineered TOGGLE tool

State-of-the-art TOGGLE+
Application Translatable tests Ratio Translatable tests Ratio

Budget Watch 5 17% 30 100%
Contact Book 22 73% 30 100%
PDF Converter 0 0% 30 100%
Simple Calendar 11 37% 30 100%
Stoic Reading 10 33% 30 100%

Total 48 32% 150 100%

Table 5: Success rate of Visual test execution per experimen-
tal subject

Application Successful executions Failing executions Success Rate

Budget Watch 292 8 97.3%
Contact Book 298 2 99.3%
PDF Converter 282 18 94%
Simple Calendar 300 0 100%
Stoic Reading 298 2 99.3%

Total 1470 30 98%

Table 6: Success rate of individual Visual interactions

Visual Interaction Successful interaction Failing interaction Success Rate

Check 1572 27 98.3%
Click 1240 0 100%
FullCheck 906 2 99.8%
Scroll 869 1 99.9%
TypeText 120 0 100%

Total 4707 30 99.3%

driver on the total amount of interactions in the test suites. We
evaluated the percentage of correct interactions also for each type
of Visual interactions available. Visual interactions were classified
in five different types of operations: clicks instructions, type instruc-
tions, scroll instructions, checks (i.e., verification of the presence
of the Visual oracle of an individual widget), and full checks (i.e.,
verification of the Visual oracle of a full-screen capture of the AUT).

5.3 Results
All the test suites that were developed involved a certain amount
of command involving scroll operations or the anyOf - AllOf as-
sertions and were therefore not translatable – by design – from the
state-of-the-art version of the TOGGLE tool. In table 4 we compare
the absolute amount and the percentage of test cases that were
translated for both versions of the tool.

The results highlight that the employed methodology is able to
ensure a significant increase in the number of test cases that are
translatable to Visual test scripts. The usage of scrolling operations
allows testing apps that largely rely on dynamic view containers
exhaustively.

Figure 5 reports the results obtained to answer RQ2. On the 300
test executions for each test suite, we observed a minimum success
rate of 94% for PDF Converter (18 test failures) and a maximum
success rate of 100% for Simple Calendar. These results prove that

it is possible to obtain Visual test suites that have a robustness
comparable to Layout-based ones.

Figure 6 reports the results obtained to answer RQ3. In the table,
the total amount of executed interactions of each type is shown.
The number of executed interactions depends on the number of
repetitions of the test scripts and the failures during the test run.
All interactions that would happen in a successful test run are not
executed after a failure. Of the 30 failed instructions, it can be seen
that 27 of them were check instructions performed on individual
locators of the GUIs, 2 were full checks (generally performed at
the end of a test sequence). Only a single scroll interaction was
not performed properly and failed because of the inability to cor-
rectly reaching the element in the AdapterView, thus making it
impossible to proceed with the test case. No click or text input op-
eration failed. This result was indeed expectable because the Visual
script runner does not perform any verification when launching
mouse and keyboard inputs against the emulated system. If these
atomic operations are performed incorrectly, the test case’s failure
is typically triggered by subsequent check instructions.

6 THREATS TO VALIDITY
6.1 Threats to Construction Validity
We empirically validated the feasibility of translation of gestures on
Android components in terms of the success rate of the translation
and robustness of the test case executions. An aspect that can be
evaluated is the possibility of false negatives, i.e., elements partially
made visible by scroll operations that would make Layout-based
test work but would lead Visual scripts to fail. We did not take into
account this aspect in the current evaluation of the tool.

6.2 Threats to External Validity
A limitation to the external validity of the evaluation is intro-
duced by the construction of the test suites, in which we used
only Espresso methods supported by the translator. Therefore the
results of the evaluation are not generalizable to any Espresso test
suites. The technique is also not applicable to other testing tools or
syntaxes for the Android domain.

As well, Visual testing tools for Android apps are typically not
applicable to SUTs featuring very dynamic GUIs (e.g., videogames
or apps with multimedia content). The evaluation results defined
in this paper are therefore not generalizable to SUTs of different
categories than those used as experimental subjects. All the appli-
cations mined belonged to theWork and Productivity category of
the F-Droid repository of Android apps.

7 CONCLUSION AND FUTUREWORK
This paper presented a re-engineering of the prototype framework
we showed in our previous works to enable automated translation
between 2nd generation and 3rd generationGUI test cases for mobile
applications.

We added the support ofmore complexAndroid-specific gestures,
i.e. the scroll interactions, that are very commonly executed when
interacting with a mobile app.

To validate the methodology that we defined for the recreation
of context-based gestures, we performed the translation on 150 test
cases developed for five different experimental subjects. While the

A-TEST ’21, August 23–24, 2021, Athens, Greece Riccardo Coppola, Luca Ardito, Marco Torchiano

original prototype tool was able to translate correctly only 48 of
the test cases (32%), the improved version was able to translate the
entirety of the test suite. The generated visual instructions also
proved to have very low flakiness and to be repeatedly executable
with a very low probability of triggering false negatives when
executed by the Visual test engine.

This experimental evidence creates the basis for future improve-
ments of the current methodology and tooling. First, we plan to
extend the tool to support Kotlin, which is becoming the first-
choice programming language to develop Android apps. This ex-
tension would require creating a new Enhancer module able to
parse Espresso test classes developed in Kotlin. Another planned
improvement is the development of additional Enhancer modules to
add translation capabilities for other Layout-based testing tools, e.g.
Appium or UIAutomator. Finally, we plan to evaluate the benefits
introduced by the translation-based approach in industrial contexts
and empirically evaluate the improvements that can be obtained
regarding the maintenance effort of test scripts and the portability
of tests to different devices.

ACKNOWLEDGMENTS
The authors would like to thank MSc Vittorio Di Leo for his contri-
bution to this work.

REFERENCES
[1] Emil Alégroth, Zebao Gao, Rafael Oliveira, and Atif Memon. 2015. Conceptualiza-

tion and evaluation of component-based testing unified with visual gui testing:
an empirical study. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1–10.

[2] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying search based software engineering

with Sapienz at Facebook. In International Symposium on Search Based Software
Engineering. Springer, 3–45.

[3] Luca Ardito, Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. 2019.
Espresso vs. eyeautomate: An experiment for the comparison of two generations
of android gui testing. In Proceedings of the Evaluation and Assessment on Software
Engineering. 13–22.

[4] Luca Ardito, Riccardo Coppola, Marco Torchiano, and Emil Alégroth. 2018. To-
wards automated translation between generations of gui-based tests for mobile
devices. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops. 46–53.

[5] Riccardo Coppola, Luca Ardito, Marco Torchiano, and Emil Alégroth. 2021. Trans-
lation from layout-based to visual android test scripts: An empirical evaluation.
Journal of Systems and Software 171 (2021), 110845.

[6] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. 2018. Mobile gui
testing fragility: A study on open-source android applications. IEEE Transactions
on Reliability 68, 1 (2018), 67–90.

[7] Muhammad Kamran, Junaid Rashid, and Muhammad Wasif Nisar. 2016. Android
fragmentation classification, causes, problems and solutions. International Journal
of Computer Science and Information Security 14, 9 (2016), 992.

[8] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the test automation culture of
app developers. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1–10.

[9] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26.

[10] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automatedmobile app testing.
In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 399–410.

[11] Leotta Maurizio, Stocco Andrea, Ricca Filippo, and Paolo Tonella. 2018. Pesto:
Automated migration of DOM-based Web tests towards the visual approach.
(2018).

[12] Shiwangi Singh, Rucha Gadgil, and Ayushi Chudgor. 2014. Automated testing of
mobile applications using scripting technique: A study on appium. International
Journal of Current Engineering and Technology (IJCET) 4, 5 (2014), 3627–3630.

[13] Jin-lei Sun, Shi-wen Zhang, Song Huang, and Zhan-wei Hui. 2018. Design
and application of a Sikuli based capture-replay tool. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE,
42–44.

[14] Denys Zelenchuk. 2019. Espresso and ui automator: the perfect tandem. In
Android Espresso Revealed. Springer, 165–189.

	Abstract
	1 Introduction
	2 Background
	2.1 Android Native App Structure
	2.2 Tools for Android GUI Testing
	2.3 Limitations of Android GUI Testing
	2.4 Benefits of a Translation-Based Approach

	3 The TOGGLE tool
	4 Improvement of the TOGGLE tool
	4.1 Scroll Operations
	4.2 AllOf - AnyOf View Assertions

	5 Evaluation
	5.1 Experimental Subjects and Environment
	5.2 Research Questions and Procedure
	5.3 Results

	6 Threats to Validity
	6.1 Threats to Construction Validity
	6.2 Threats to External Validity

	7 Conclusion and Future Work
	Acknowledgments
	References

