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On the well-posedness of deterministic

queuing networks with feedback control ∗

Giacomo Como† Gustav Nilsson‡

August 18, 2021

Abstract

We study the well-posedness of a class of dynamical flow network systems describing
the dynamical mass balance among a finite number of cells exchanging flow of traffic
between themselves and with the external environment. Dynamical systems in the
considered class are described as differential inclusions whereby the routing matrix is
constant and the outflow from each cell in the network is limited by a control that is a
Lipschitz continuous function of the state of the network. This framework finds appli-
cation in particular within traffic signal control, whereby it is common that an empty
queue can be allowed to have more outflow than vehicles in the queue. While models
for this scenario have previously been presented for open-loop outflow controls, this
result ensures the existence and uniqueness of solutions for the network flow dynamics
in the case Lipschitz continuous feedback controllers.

Keywords— transportation networks, queuing networks, feedback control, well-posedness,
reflection principle

1 Introduction

The use of dynamical flow network models to model transportation networks has recently
gained a great deal of attention, see, e.g., [7, 6]. Such models describe the dynamical
flow of mass among a finite set of interconnected cells have sometimes been referred to as
compartmental systems in the control literature [15, 28]. Dynamical flow networks have also
been used to model and design controllers for general queuing networks [16, 21, 29], where
those control solutions have later been adopted to transportation networks, for example
in [27, 17].

In order to capture congestion effects in transportation, such dynamical flow network
systems are typically nonlinear [4]. In particular, most of them prescribe that the outflow
from a cell in the network is limited by a nonlinear function of the queue lengths. In a
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signalized traffic network, outflows from some lanes are limited by a traffic signal, while
in a highway network different traffic flow models such as the Lighthill-Whitham-Richards
(LWR) model [19, 25] and the Cell Transmission Model (CTM) [9, 10] suggest that the
flow from one partition of the highway to another is limited by the fundamental diagram.
However, in signalized traffic networks, it is not always the case that there is enough vehicles
to achieve the outflow limit imposed by the traffic signal controller. In this cases, first-order
ODE-based models fall short of describing the network flow dynamics while guaranteeing
physically meaningful properties such as mass conservation and non-negativity of queue
lengths.

In this paper, we study dynamical models for deterministic queuing networks, where the
actual outflow from the links may be less than what the controller allows for, in the case
when there is not enough mass present on the links. The dynamic evolution of the flow
network is then described by a certain differential inclusion. Under the assumption that the
outflow from the links is the maximum allowed when there is mass present on the links, we
investigate existence and uniqueness of solutions to the dynamical flow network.

The dynamical queuing network model we study is a particular point-queue network.
This model is sometimes referred to as vertical queues, to emphasize that a possible spatial
distribution of the particles queuing up is not considered in the model. Although the model
is a point-queue model, congestion effects can be incorporated since the outflow from each
queue is limited by feedback. Hence, it is possible to fit cell-transmission like congestion
dynamics [9, 10] into the model, where the outflow from some queues are limited by a traffic
signal controller, while the outflow from other queues are limited by demand and supply
functions. Finite storage can then be taken into account in the model through capacity
limiting supply functions.

The main contribution of this paper consists in showing that existence and uniqueness
of a solution to the considered deterministic queuing networks can be guaranteed when the
controller is feedback-based and Lipschitz continuous. In fact, as clarified in the paper,
standard results for the existence of solutions of differential inclusions [1] do not apply in
this setting. Instead, we base our arguments on a non-trivial extension of the reflection
principle for reflected Brownian motion [12].

A similar point-queue model, but where the outflow controller does not have feedback,
i.e., it is an open-loop controller, has been studied for a general queuing model in [18]
and specifically for traffic signal control in [22] and [14]. In [22] and [14], the existence
and uniqueness of a solution to the dynamics have been shown when control action is
binary and pre-determined, i.e., the traffic signal at a given time point is either green
or red and does not depend on the current traffic situation. However, in many models
for transportation networks, the outflow is state-dependent and in many feedback based
solutions for traffic signal control, one is instead considering an averaged control signal that
depends continuously on the state, such as in [11, 2, 23]. In [3] it has been shown that under
certain assumptions, the averaged control signal dynamics stays close to the binary control
signal dynamics. While the model in [18] allows for non-binary control actions, the outflows
are still assumed to be independent of the current queue lengths.

The outline of the paper is as follows: The rest of this section is devoted to introducing
some basic notation. In Section 2, the deterministic queuing network model is introduced,
together with examples illustrating how existing traffic models and controllers fit into the
modeling framework. In Section 3 the main result of the paper is presented, existence and
uniqueness of solutions for the deterministic queuing network model, and in Section 4 we
discuss how the main result relates to some feedback controllers for traffic signal control.
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The paper is concluded by discussing some directions to further work. In the Appendix we
present the proofs of some of the more technical results.

1.1 Notation

We let R(+) denote the (non-negative) reals. For a finite set A, we let RA denote the set of
vectors with real entries indexed by the elements of A. For a vector a ∈ Rn, we let diag(a)
in Rn×n be a matrix with the entries of a on the diagonal and all off-diagonal entires equal
to zero. With 1 we denote a vector whose all entries equals one. Inequalities between
vectors are meant to hold entry-wise, i.e., e.g., a ≤ b for a, b ∈ RA means that ai ≤ bi for
every i in A. The positive part and the negative part of a vector x ∈ RA are denoted by
[x]+ = max{x, 0} in RA and [x]− = max{−x, 0} in RA, respectively, where max and min
are applied entry-wise. Analogously, the absolute value of a vector x in RA is the vector
|x| = [x]+ +[x]− in RA+ whose entries are equal to the absolute values of the entries of x. We
let ‖·‖ be the standard 2-norm, unless otherwise specified. Finally, a directed multigraph
is a 4-tuple G = (V, E , σ, τ) where V is a finite set of nodes, E is a finite set of links, and
σ, τ : E → V are the maps assigning to each link i in E its tail node σ(i) and head node τ(i),
respectively, such that σ(i) 6= τ(i) for every i in E .

2 Dynamical Model of Traffic Network

In this section, we present the dynamical model of traffic flow in a network of vertical queues
and provide examples showing how existing traffic flow models and traffic signal controllers
can be cast into this framework.

We model the network topology as a directed multigraph G = (V, E , σ, τ). Every link i
in E is to be interpreted as a cell containing a time-varying queue length xi = xi(t) ≥ 0, for
t ≥ 0. The state of the system is described by the vector x = x(t) in X = RE+ whose entries
coincide with the queue lengths or sizes in the different links and evolves in continuous time
as the cells exchange flow with adjacent cells and possibly with the external environment.

In particular, let each cell i in E possibly receive an exogenous inflow λi = λi(t) ≥ 0
directly from the external environment. Moreover, let zi = zi(t) ≥ 0 be the total outflow
from cell i directed towards immediately downstream cells and possibly to the external
environment. Specifically, we shall assume that a constant fraction Rij ≥ 0 of the outflow
zi from cell i is directed towards a cell j 6= i such that τ(i) = σ(j), while the remaining part
(1−

∑
j Rij)zi leaves the network directly. Conservation of mass then gives

ẋi = λi +
∑
j∈E:

τ(j)=σ(i)

Rjizj − zi , i ∈ E . (1)

In order to introduce a more compact notation, let us stack the exogenous inflows in a
vector λ = (λi)i∈E in RE+ and the cells’ outflows in a vector z = (zi)i∈E in RE+. Moreover,

let us introduce the routing matrix R in RE×E+ whose entries Rij ≥ 0 coincide with fraction
of outflow from cell i that flows directly to cell j. Observe that the network topology
constraints imply that Rij = 0 whenever τ(i) 6= σ(j). Moreover, conservation of mass
implies that

∑
j Rij ≤ 1 for every cell i in E , i.e., the routing matrix R has be row sub-

stochastic. Equation (1) can then be expressed more compactly as

ẋ = λ− (I −RT )z . (2)
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In order to complete the description of the dynamical flow network system, it remains
to specify how the outflow vector z depends on the state vector x. In this paper, we focus
on the case where the outflow zi from a cell i is limited by a feedback-controller ζi(x), so
that

0 ≤ zi(t) ≤ ζi(x(t)) , i ∈ E , t ≥ 0 ,

and that in fact the outflow zi from cell i coincides with ζi(x) whenever the queue length
xi is strictly positive, i.e.,

xi(ζi(x(t))− zi) = 0 , i ∈ E , t ≥ 0 .

With this assumption, it is clear that the outflow from one link zi is only unspecified when
there are no particles present on one link, i.e., when xi = 0, while the controller still gives
the link service such that ζi(x) > 0. The rationale for not forcing zi = ζi(x) also when
xi = 0 is that in this case, if it happens also that λi +

∑
j Rjizj < ζi(x), then the dynamics

would force the system to violate the non-negativity constraint on the queue length, i.e.,

xi(t) ≥ 0 , i ∈ E , t ≥ 0 .

Observe that the three constraints above may be rewritten more compactly as

x ≥ 0 , (3)

0 ≤ z ≤ ζ(x) , (4)

xT (ζ(x)− z) = 0 . (5)

where ζ : X → RE+. Although the controller is set, the dynamics above is a differential
inclusion, since the outflow zi is not uniquely specificied when for some for some cell i in
E , the queue length xi = 0 but ζi(x) > 0. As we illustrate through the examples below,
situations like this can occur when a traffic signal controller serves more than one queue
simultaneously when activating a phase. We shall refer to the system of differential inclusions
(2)–(5) as a (feedback-controlled, deterministic) queuing network.

Throughout the paper, we assume that the routing matrix R is out-connected, meaning
that for every link i in E there exists some link j in E and an integer l ≥ 0 such that∑
k∈E Rjk < 1 and (Rl)ij > 0. Under such assumption, our main result presented as

Theorem 1 in Section 3 guarantees that, whenever the feedback controller ζ(x) is a Lipschitz-
continuous function of the state, the queuing network (2)–(5) admits a unique solution for
every initial state x(0) in X .

We conclude this section by discussing some examples in order to better motivate the
considered dynamical network flow system and illustrate the usefulness of our result.

Example 1 To illustrate how our model can be used together with a feedback based traffic
signal controller, consider a small queuing network consisting of two controlled nodes as
depicted in Figure 2. Assume that nodes v1 and v2 are equipped with two service phases,
such that either the east-west or north-south going links can receive service simultaneously.

For example, if the service allocation is computed by the Generalized Proportional Al-
location (GPA) controller proposed in [23, 24], the outflow from each link will be limited
by

ζ1(x) = ζ8(x) =
x1 + x8

x1 + x3 + x5 + x8 + κ1
,
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Figure 1: The network in Example 1. The network consists of two signalized junctions.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Time

Node v1

x1
x3
x5
x8

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Time

Node v2

x7
x9
x11
x13

Figure 2: Time evolution of the queue lengths xi in Example 1.
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Figure 3: Time evolution of the control signals ζi(x(t)) in Example 1. As a reference, also
the equilibrium arrival rates ai = ((I −RT )−1λ)i are plotted for each link i in E .
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ζ3(x) = ζ5(x) =
x3 + x5

x1 + x3 + x5 + x8 + κ1
,

ζ7(x) = ζ9(x) =
x7 + x9

x7 + x9 + x11 + x13 + κ2
,

ζ11(x) = ζ13(x) =
x11 + x13

x7 + x9 + x11 + x13 + κ2
,

where κ1, κ2 > 0 are constants. The GPA-controller splits the service between the different
phases in proportion to sum of the queue lengths in each each phase. The constants κ1 and
κ2 are introduced to capture the fact that a fraction of the service cycle cannot be utilized,
as there is some overhead time between the activation of subsequent phases.

For the links heading towards the boundary of the network, i.e., the links in the set
B = {e2, e4, e6, e10, e12, e14}, we assume that particles are allowed to flow out from the
network with unit rate at all times, i.e., ζi(x) = 1 for all i in B. Moreover, outflow from
the boundary links will leave the network, so Rij = 0 for all i in B and all j in E.

In this example, it is possible that control action is larger than the actual outflow. It can
for instance happen when x1 = 0, but

ζ1(x) =
x8

x3 + x5 + x8 + κ1
> λ1 .

A numerical simulation of the queuing network is shown in Figure 2. In the simulation, we
assume that 1/4 of the inflow from each link to the nodes v1 and v2 is going left, 1/4 going
right, and the remaining half of the flow proceeds straight. Moreover, we let λ1 = 0.10,
λ3 = 0.20, λ5 = 0.30, λ9 = 0.25, λ11 = 0.35, and λ13 = 0.15. The constants in the
controllers are chosen to be κ1 = 0.1 and κ2 = 0.2, and all the queue lengths are initiated
at 0.1, i.e., xi(0) = 0.1 for every link i in E.

In Figure 3, the control actions ζi(x) are plotted, together with the outflows at the equi-
librium flow z = a. The latter can be computed as a = (I − RT )−1λ. From Figure 2 and
Figure 3, we can see that controller will be equal to the equilibrium flows for all links where
xi > 0, while for the links where xi = 0, the controller will allow for more outflow than what
is physically possible, and hence zi < ζi(xi) for those links. Moreover, the control action
converges to the outflows for the links with xi > 0. This observation, is a consequence of the
fact proven in [23] that the GPA controller is stabilizing, i.e., as long as the demands are
feasible, the controller will ensure that the queue lengths stay bounded by giving each queue
enough of service.

While the example above assume no propagation delay between the nodes, dynamical
propagation delay can be introduced into the model by adding intermediate nodes, as the
following example shows. This property makes the proposed model more adaptable to
certain applications, compared to the open loop model presented in [22, 14], where the
delay is assumed to be independent of the state.

Example 2 Starting from Example 1, we introduce two intermediate nodes between the
nodes v1, and v2, as shown in Figure 4. Moreover, we let the outflow from the added
intermediate links adhere the continuous version of the Cell Transmission Model (CTM) [9,
10], used to model traffic flow in e.g. [20, 8]. To each of the links e15, e16, e17 and e18 we
assign a demand function di(xi) ≥ 0 that is strictly increasing and Lipschitz continuous in
the queue length. To each of links e7, e8, e16 and e18 we assign a supply function si(xi) ≥ 0
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Figure 4: The network in Example 2. By introducing intermediate nodes between the
junction, the flow dynamics can be discretized and a dynamic propagation delay can be
modeled.
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Figure 5: How the queue lengths x evolve with time in Example 2. Compared to Example 1,
the trajectories becomes different, due to the flow propagation dynamics on the intermediate
links.
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that is non-increasing and Lipschitz continuous in the queue length. The outflows from the
the intermediate links are then given by

ζ15(x) = min(d15(x15), s16(x16)) , ζ16(x) = min(d16(x16), s7(x7)) ,

ζ17(x) = min(d17(x17), s18(x18)) , ζ18(x) = min(d18(x18), s7(x8)) .

In Figure 5 we show the trajectories for the queue lengths on the incoming links to
node v1 and v2. The simulation parameters are the same as in Example 1, and for all the
intermediate links we let di(xi) = xi and

si(xi) =

{
1− xi if xi ≤ 1 ,

0 otherwise.

Moreover, we let x15(0) = x16(0) = x17(0) = x18(0) = 0. That the intermediate nodes
introduces a propagation delay, can be seen though that it takes a longer time for the queue
length on link e8 to converge. The reason for that the same delay can not be observed on
link e7, is that the controller is already allowing for more outflow than needed, due to a long
queue on link e9.

As a remark, in the case when the demand functions are on the form

di(xi) = Ci
xi

xi + κi
,

where Ci > 0 and κi > 0 are constants. If sj(xj) ≥ Ci for all xj, then the stability analysis
for the General Proportional Allocation controller, done in [23], can be applied to ensure
stability of the deterministic queuing network. This since the demand function is in fact a
GPA controller with just one incoming link.

3 Existence and Uniqueness of Solutions

In this section, we present a proof of existence and uniqueness of a solution to the dynamical
system (2)–(5). We start off this section with an example showing why classical results about
existence of solutions to differential inclusions [1] are not applicable to the analysis of the
considered queuing network model (2)–(5).

Example 3 For the purpose of illustrating why standard results for differential inclusion
are not directly applicable, consider a small queuing network consisting of two parallel links
between two nodes, as depicted in Figure 3. We assume that both the links belongs to the
same service phase, i.e., when one link gets served, the other link gets served as well. Let
the outflow controller be

ζ1(x) = ζ2(x) =
x1 + x2

x1 + x2 + 1
. (6)

For exogenous inflows (λ1, λ2), the queuing network (2)–(5) reduces to

ẋ1 = λ1 − z1 , ẋ2 = λ2 − z2 ,

x1 ≥ 0 , x2 ≥ 0 ,
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0 ≤ z1 ≤
x1 + x2

x1 + x2 + 1
, 0 ≤ z2 ≤

x1 + x2
x1 + x2 + 1

,

x1

(
x1 + x2

x1 + x2 + 1
− z1

)
= 0 , x2

(
x1 + x2

x1 + x2 + 1
− z2

)
= 0 .

This can be rewritten more compactly as a differential inclusion

ẋ ∈ F (x) ,

where F (x) is the set-valued map defined by

F (x) =



{(
λ1 −

x1 + x2
x1 + x2 + 1

, λ2 −
x1 + x2

x1 + x2 + 1

)}
if x1 > 0, x2 > 0 ,[[

λ1 −
x2

x2 + 1

]
+

, λ1

]
×
{
λ2 −

x2
x2 + 1

}
if x1 = 0, x2 > 0 ,{

λ1 −
x1

x1 + 1

}
×

[[
λ2 −

x1
x1 + 1

]
+

, λ2

]
if x1 > 0, x2 = 0 ,

{(λ1, λ2)} if x1 = 0, x2 = 0 .

Now, consider the sequence of states x(n) = (1, 1/n) in X . Then,

F (x(n)) =
{
y(n)

}
, y(n) =

(
λ1 −

1 + 1/n

2 + 1/n
, λ2 −

1 + 1/n

2 + 1/n

)
, n = 1, 2 . . . ,

while
lim

n→+∞
x(n) = x∗ , lim

n→+∞
y(n) = y∗ ,

where
x∗ = (1, 0) , y∗ = (λ1 − 1/2, λ2 − 1/2) ,

and
F (x∗) = {λ1 − 1/2} × [[λ2 − 1/2]+, λ2] .

Now, assume that 0 < λ2 < 1/2, so that [λ2 − 1/2]+ = 0 and

F (x∗) = {λ1 − 1/2} × [0, λ2] .

Then, clearly y∗ /∈ F (x∗), thus implying that the set-valued map F (x) is not lower semi-
countinous 1 at x∗. Moreover, chose some ε > 0 such that ε < 1/2 − λ2, and consider the
neighborhood

N = (λ1 − 1/2− ε, λ1 − 1/2 + ε)× (−ε, λ2 + ε)

of F (x∗). Then, since y(n)
n→+∞−→ y∗ /∈ N , it is immediate to verify that y(n) /∈ N for

sufficiently large n, thus implying that the set-valued map F (x) is not upper semi-countinous2

at x∗. Hence, the set-valued map F (x) is neither upper nor lower semicountinous and hence
the classical existence results in [1, Chapter 2] cannot be applied to the consider model of
queuing network (2)–(5).
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Figure 6: The small network used in Example 3.

Despite the fact that classical existence results for solutions of differential inclusions
cannot be applied to the considered model of feedback controlled queuing network (2)–(5),
both existence and uniqueness of solutions can proven, as formalized in the following result,
which is the main contribution of this paper. Before stating it, let us define a solution of
the queuing network (2)–(5) as the pair (x(t), z(t)) of an absolutely continuous function
x : [0,+∞)→ RE+ and a bounded measurable function z : [0,+∞)→ RE+ that jointly satisfy
(2)–(5).

Theorem 1 Let R be an out-connected routing matrix, λ : [0,+∞)→ RE+ a bounded mea-
surable exogenous inflow vector, and ζ : X → Z a Lipschitz continuous feedback controller.
Then for every initial condition x(0) in X , the queuing network (2)–(5) admits a unique
solution (x(t), z(t)).

The proof of Theorem 1 is inspired by the reflection principle for Brownian motion, as
previously presented in [12]. The main technical challenge to be faced consists in extending
the analysis of [12] to the case when the outflow is determined by a Lipschitz continuous
feedback controller.

Throughout the proof the of Theorem 1, we will make use of the fact that since the
routing matrix is out-connected, it has a spectral radius strictly smaller than 1, see e.g. [5,
Proof of Theorem 2]. Then, from [13, Lemma 5.6.10] it follows that there exists a vector
norm ‖·‖† on RE such that the induced matrix norm of R satisfies ‖R‖† < 1. For T > 0, we

shall consider the space CT of continuous vector-valued functions f : [0, T ] → RE equipped
with the norm

‖f‖ =

∥∥∥∥ sup
0≤t≤T

|f(t)|
∥∥∥∥
†
.

Now, to a given continuous vector-valued function γ in CT , we associate the operator

Πγ : CT → CT

defined by
[Πγ(v)] (t) = sup

0≤s≤t

[
RT v(s)− γ(s)

]
+
, 0 ≤ t ≤ T . (7)

The following result shows that for every continuous vector-valued function γ in CT , the
operator Πγ admits a unique fixed point Ψ(γ) that is a Lipschitz-continuous function of γ.

Proposition 1 For every T > 0 and γ in CT , the operator Πγ admits a unique fixed point

Ψ(γ) = Πγ(Ψ(γ)) ∈ CT . (8)

Moreover, the operator Ψ : CT → CT that maps a continuous vector-valued function γ into
the unique fixed point of the associated operator Πγ is Lipschitz continuous.

1C.f. [1, Chapter 1.1, Definition 2] and subsequent sequantial characterization of lower semi-continuity
of set-valued maps.

2C.f. [1, Chapter 1.1, Definition 1] for the notion of upper semi-continuity of set-valued maps.
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Proposition 1 is proven in Appendix A.
Our next step towards proving Theorem 1 consists in finding an equivalent formulation

of the controlled traffic network dynamics (2)–(5). Towards this goal, we introduce two
operators

Φ : CT → CT , Γ : CT → CT ,
defined by

[Φ(y)](t) = y(t) + (I −RT )[Ψ(y)](t) , 0 ≤ t ≤ T , (9)

and, respectively,

Γ(x)(t) = x(0) +

∫ t

0

(
λ(s)− (I −RT )ζ(x(s))

)
ds , : CT → CT . (10)

We will now use the operators Ψ,Φ, and Γ in (8), (9), and (10) to state another dynamical
system whose solution is related to the controlled traffic network dynamics in (2)–(5).

Proposition 2 Let R be an out-connected routing matrix, λ : [0, T ]→ RE+ a bounded mea-
surable exogenous inflow vector, ζ : X → Z a Lipschitz continuous feedback controller, and
x(0) in X . Then, (x(t), z(t)) is a solution of the queuing network (2)–(5) in a time inter-
val [0, T ] with initial condition x(0) if and only if there exist y, w in CT that are absolutely
continuous and such that

x = Φ(y) , (11)

y = Γ(x) , (12)

w = Ψ(y) , (13)

and
z(t) = ζ(x(t))− ẇ(t) , (14)

for almost all 0 ≤ t ≤ T .

Proposition 2 is proven in Appendix B. We propose here a physical interpretation of
the terms appearing in its statement. The entries of the vector y(t) can be interpreted as
the “signed queue lengths” on the links if their size were allowed to go negative, i.e, if the
constraint x ≥ 0 were removed. On the other hand, the entries of the vector w(t) measure
how much one must add to y(t) in order to make sure that the queue lengths x(t) remain
non-negative for every t ≥ 0. In Figure 7 those trajectories are illustrated for a single cell,
i.e., R = 0. Observe that w(t) is non-decreasing and only increases when x = 0.

We are now in a position to show how Theorem 1 follows from Proposition 1 and Propo-
sition 2.

Proof of Theorem 1: It follows from Proposition 1 that Ψ is a Lipschitz continuous
operator on CT . Hence, the operator Φ is Lipschitz-continuous as well and we shall denote
by φ > 0 its Lipschitz constant. Since ζ : X → RE is a Lipschitz continuous function,
the operator Γ is Lipschitz-continuous on CT for all T > 0, with Lipschitz constant equal
to $T for some constant $ > 0 that is independent from T . It then follows that, for
0 < T < ($φ)−1, the composition operator Φ ◦ Γ : CT → CT is Lipschitz continuous with
Lipchitz constant

L = $φT < 1 .

Therefore, Φ ◦ Γ is a contraction on CT , hence it has a unique fixed point x = Φ(Γ(x)). Let

y = Γ(x) , w = Ψ(y) , z = ζ(x)− ẇ .

11



y(t)

t
w(t)

ẏ = λ− ζ(x)

w(t) = sup0≤s≤t[−y(s)]+

x(t)

t

x = y + w

Figure 7: The connection between the quantities x, y and w in Proposition 2 for the case
when the network consists of a single cell

Table 1: Comparison of different traffic signal controllers
Controller Feedback Lipschitz continuous Green light

based wrt to queue lengths to empty lanes
Fixed-Time [22] No No Yes

GPA [24] Yes Yes Yes

MaxPressure [27] Yes No Yes, but discrete
time dynamics

Cyclic BackPressure [17] Yes Yes Yes
(for fluid approx.) (for fluid approx.)

Gramian Based [2] Yes Unknown Yes, but
proportional outflow

Averaged Model [11] Yes Unknown Yes, but mapped
through a demand function

By Proposition 2 we get that such (x, z) is the unique solution to the queuing network (2)–
(5) on [0, T ] with initial condition x(0). Existence and uniqueness of the solution (x(t), z(t))
of the queuing network (2)–(5) can then be extended to every t ≥ 0 by virtue of standard
continuation arguments.

4 Discussion

The result presented in Theorem 1 is useful when the transportation network is modeled
through continuous-time dynamics, and the outflows from the queues are controlled with
a Lipschitz continuous feedback controller. Moreover, for the dynamical system (2)–(5) to
be effectively differential inclusion —rather than a differential equation— there must be a
possibility for the controller to give service to empty queues. This situation can, for instance,
occur when more than one queue belongs to a service phase, but also if one queue receives
service longer than needed to empty the queue.

In Table 1 we summarize how the presented result relates to some previously proposed
models and policies for traffic signal control. One common way to address the modeling
issue when empty queues receive green light, is to introduce a demand function that models
the outflow from the queue. The outflow from one queue i in E is then zi = di(xi)ζi(x)

12



where di(xi) ≥ 0 is the demand function. The demand function has then to be chosen such
that di(0) = 0. In [2] the demand function is assumed to be linear, while [11] allows for more
general demand functions. While this modeling approach ensures that the queue lengths
can not go below zero even when the traffic signal controller ζi(x) is strictly positive, the
modeling approach also deviates from the point-queue dynamics.

In point-queue models, the traffic will flow out with maximum capacity when it is allowed
to do so. In contrast, by introducing a demand function, the outflow will increase with the
queue lengths. Point-queue models have previously also been used when developing control
strategies for traffic signal control, such as the MaxPressure [27] and a point-queue model is
also used for the analysis of fixed-time controllers in [22]. The assumption that the outflow
will be at maximum capacity, but where this capacity may depend on which phase that is
activated when vehicles are queuing up, is also in line with the classical approaches to model
a signalized junctions [26].

On the other hand, models where the traffic flow depends on the number of vehicles, are
common to model traffic propagation between junctions. For example, in [11] a continuous
version of the Cell Transmission Model [9, 10] is used. As illustrated in Example 2, the
model analyzed in this paper allows for incorporating such dynamics between the junctions.
Hence, the presented model makes it possible to combine models for traffic flow propagation
between the junctions with point-queue dynamics at the junctions.

5 Conclusion

In this paper, we have presented a dynamical model for transportation networks consisting
in a deterministic queuing network, where a feedback-controller limits the outflow from each
link. The feedback-controller may allow for more outflow that is physically possible to flow
out. Due to this property, the queuing network is described as a differential inclusion. We
show that such differential inclusion admits a unique solution for every initial state. In
the future, we plan to extend the well-posedness results, at least for the existence part, to
non-Lipschitz and possibly discontinuous feedback controls as those mentioned in [24]. It
would also be of great interest to study the case of time-varying routing matrix R and/or
to analyze how robust the model is to the choice of such matrix.
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h(s) = f(s)− g(s) .

Choose some
s∗ ∈ arg max

0≤s≤t
[f(s)]+ , q∗ ∈ arg max

0≤s≤t
[g(s)]+ ,

and observe that

[f(s∗)]+ = [g(s∗) + h(s∗))]+ ≤ [g(s∗)]+ + [h(s∗))]+ , (16)

[g(q∗)]+ = [f(q∗)− h(q∗))]+ ≤ [f(q∗)]+ + [−h(q∗))]+ = [f(q∗)]+ + [h(q∗))]− . (17)

Using (16) and the fact that [f(s∗)]+ = sup
0≤s≤t

[f(s)]+, we get

sup
0≤s≤t

[h(s)]+ ≥ [h(s∗)]+

≥ [f(s∗)]+ − [g(s∗)]+

≥ sup
0≤s≤t

[f(s)]+ − sup
0≤s≤t

[g(s)]+ .

Analogously, (17) and the fact that [g(q∗)]+ = sup
0≤s≤t

[g(s)]+ give

sup
0≤s≤t

[h(s)]− = sup
0≤s≤t

[−h(s)]+

≥ [g(q∗)]+ − [f(q∗)]+

≥ sup
0≤s≤t

[g(s)]+ − sup
0≤s≤t

[f(s)]+ .

Therefore,

sup
0≤s≤t

|h(s)| = max

{
sup

0≤s≤t
[h(s)]+, sup

0≤s≤t
[h(s)]−

}
≥

∣∣∣∣ sup
0≤s≤t

[f(s)]+ − sup
0≤s≤t

[g(s)]+

∣∣∣∣ .
Now, let us define the vector α in RE with entries

αi = sup
0≤t≤T

∣∣[Πγ(v)]i (t)− [Πγ(w)]i (t)
∣∣ ,

for all i in E . Using (7) and (15), we get

αi = sup
0≤t≤T

∣∣∣∣ sup
0≤s≤t

[f(s)]+ − sup
0≤s≤t

[g(s)]+

∣∣∣∣
≤ sup

0≤t≤T
sup

0≤s≤t
|h(s)|

= sup
0≤t≤T

∣∣[RT (v(t)− w(t))]i
∣∣

≤
∑
j

Rji sup
0≤t≤T

|vj(t)− wj(t)| .

Hence,
‖Πγv −Πγw‖ = ‖α‖† ≤

∥∥RT∥∥† ‖v − w‖ .
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Since
∥∥RT∥∥† < 1, the above proves that Πγ is a contraction on CT .

We are now ready to prove Proposition 1.
Proof of Proposition 1 It follows from Lemma 1 and the Banach fixed point theorem
that for every continuous vector-valued function γ in CT , the operator Πγ admits a unique
fixed point Ψ(γ) = Πγ(Ψ(γ)) in CT .

To prove the second part of the proposition, for k ≥ 0, let Πk
γ be the composition of Πγ

with itself k times. Fix three functions v, γ, η in CT and for 0 ≤ t ≤ T , define

δk(t) =
[
Πk
γ(v)

]
(t)−

[
Πk
η(v)

]
(t) .

Then, we have that∣∣δk+1(t)
∣∣ =

∣∣[Πk+1
γ (v)

]
(t)−

[
Πk+1
η (v)

]
(t)
∣∣

=

∣∣∣∣ sup
0≤s≤t

[
RT [Πk

γv](s)− γ(s)
]
+
− sup

0≤s≤t

[
RT [Πk

ηv](s)− η(s)
]
+

∣∣∣∣
≤

∣∣∣∣ sup
0≤s≤t

[
RT
(
[Πk
γv](s)− [Πk

ηv](s)
)
− (γ(s)− η(s))

]
+

∣∣∣∣
≤ sup

0≤s≤t

∣∣RT δk(s)
∣∣+ sup

0≤s≤t
|γ(s)− η(s)|

so that
||δk+1|| ≤

∥∥RT∥∥† ∥∥δk∥∥+ ‖γ − η‖ .

It follows that, for all v in CT and k ≥ 0,

∥∥Πk
γ(v)−Πk

η(v)
∥∥ ≤ k∑

l=0

∥∥RT∥∥l† ‖γ − η‖ .
Since ||RT ||† < 1 and Πγ and Πη are both contractions with fixed points Ψ(γ) and Ψ(η),
respectively, taking the limit as k grows large in the above gives

‖Ψ(γ)−Ψ(η)‖ = lim
k→∞

∥∥Πk
γ(v)−Πk

η(v)
∥∥

≤
+∞∑
l=0

∥∥RT∥∥l† ‖γ − η‖
=

‖γ − η‖
1− ‖RT ‖†

.

which concludes the proof of Proposition 1.

B Proof of Proposition 2

(i) Let (x(t), z(t)) be a solution of the controlled traffic network dynamics (2)–(5) on [0, T ]
with initial condition x(0). For 0 ≤ t ≤ T , let

w(t) =

∫ t

0

(ζ(x(s))− z(s))ds , (18)
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y(t) = x(t)− (I −RT )w(t) . (19)

We will show that (11)–(14) are satisfied. Indeed, taking the time derivative of both sides
of (18) gives (14). On the other hand, (19), (2), and (18) yield

y(t) = x(t)− (I −RT )w(t)

= x(0) +

∫ t

0

(λ(s)− (I −RT )z(s))ds− (I −RT )w(t)

= x(0) +

∫ t

0

(λ(s)− (I −RT )ζ(x(s)))ds

= Γ(x)(t) ,

so that (12) is satisfied as well. Moreover, (19) and (13) clearly imply (11). Hence, it
remains to prove (13). For that, first observe that (18) and (5) imply that

x ≥ 0 , xT ẇ = 0 , 0 ≤ ẇ ≤ ζ(x) . (20)

In turn, the above and (19) imply that, for 0 ≤ s ≤ t,

w(t) ≥ w(s) = RTw(s) + x(s)− y(s) ≥ RTw(s)− y(s) ,

so that
w(t) ≥ sup

0≤s≤t

{
RTw(s)− y(s)

}
.

Since w(0) is non-increasing and w(0) = 0, we have w(t) ≥ 0, which together with the above
gives

w(t) ≥ sup
0≤s≤t

[
RTw(s)− y(s)

]
+

= Πy(w)(t) .

In fact, if the above were not an identity for some 0 ≤ t ≤ T , there would exist some
0 ≤ t∗ ≤ T and i in E such that

wi(t
∗) > sup

0≤s≤t∗

{∑
j
Rjiwj(s)− yi(s)

}
, ẇi(t

∗) > 0 . (21)

But the second inequality above and (20) imply that xi(t
∗) = 0 so that, by (19),

yi(t
∗) =

∑
j
Rjiwj(t

∗)− yi(t∗) ,

which contradicts (21). Hence, we necessarily have

w(t) = Πy(w)(t) , 0 ≤ t ≤ T ,

i.e., w is the fixed point Πy on CT , so that (13) is satisfied.
(ii) Let w, x, y, z ∈ CT be such that y and w are absolutely continuous and (11)–(14) are
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satisfied. Then, for 0 ≤ t ≤ T , an application of (11), (9), (12), (13), (10), and (14) give

x(t) = Φ(y)(t)

= y(t) + (I −RT )Ψ(y)(t)

= Γ(x)(t) + (I −RT )w(t)

= x(0) +

∫ t

0

(
λ(s)− (I −RT )ζ(x(s))

)
ds+ (I −RT )

∫ t

0

(ζ(x(s))− z(s)) ds

= x(0) +

∫ t

0

(
λ(s)− (I −RT )z(s)

)
ds ,

hence (2) is satisfied. On the other hand, (11), (9), (8), and (7) give

x(t) = Φ(y)(t)

= y(t) + (I −RT )Ψ(y)(t)

= y(t)−RTΨ(y)(t) + sup
0≤s≤t

[
RTΨ(y)(s)− y(s)

]
+

≥ 0 .

(22)

Moreover, (13), (8), and (7) yield

w(t) = Ψ(y)(t) = sup
0≤s≤t

[
RTw(s)− y(s)

]
+
, (23)

so that wi(t) is non-decreasing for all i in E , hence ẇ ≥ 0 . Furthermore, let I := {i ∈ E :
ẇi(t) > 0} be the set of cells i such that wi(t) is strictly increasing at time t. It then follows
from (23) that

wi(t) =
∑
j∈E

Rjiwj(t)− yi(t) , i ∈ I . (24)

Equation (24) implies that, for i ∈ I,

ẇi(t) =
∑
j∈E

Rjiẇj(t)− ẏi(t)

=
∑
j∈I

Rjiẇj(t)− λi(t) + ζi(x(t))−
∑
j∈E

Rjiζj(x(t))

≤
∑
j∈I

Rjiẇj(t)− λi(t) + ζi(x(t))−
∑
j∈I

Rjiζj(x(t)) .

The above implies that

(I −RTII)ẇI(t) ≤ (I −RTII)ζI(x(t))− λI(t) , (25)

where RII is the I × I block of R and ẇI(t), ζI(x(t)), and λI(t) are the I blocks of
the corresponding vectors ẇ(t), ζI(x(t)), and λI(t). Since R is out-connected, each of its
diagonal blocks such as RII has spectral radius smaller than 1. Hence (I −RTII) invertible
with nonnegative inverse (I −RTII)−1. Hence, (25) implies that

ẇI(t) ≤ ζI(x(t))− (I −RTII)−1λI(t) ≤ ζI(x(t)) .
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Since ẇE\I(t) = 0 by definition and we have already noticed that ẇ(t) ≥ 0, we thus have
that z = ζ(x)− ẇ satisfies

0 ≤ z ≤ ζ(x) . (26)

Finally, using again (11), (9), (13), and (24), one gets that

xi(t) = yi(t) + wi(t)−
∑
j

Rjiwj(t) = 0

for every i ∈ I. Along with (22) and (26), this implies that

xT (ζ(x)− z) = xT ẇ = 0 . (27)

From (22), (26), and (27) it follows that (5) is satisfied. Therefore (x, z) is a solution of
(2)–(5).
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